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ABSTRACT

Spiking neural networks (SNNs) in neuromorphic systems are more
energy efficient compared to deep learning–based methods, but there is no
clear competitive learning algorithm for training such SNNs. Eligibility
propagation (e-prop) offers an efficient and biologically plausible way to
train competitive recurrent SNNs in low-power neuromorphic hardware.
In this report, previous performance of e-prop on a speech classification
task is reproduced, and the effects of including STDP-like behavior are
analyzed. Including STDP to the ALIF neuron model improves the
classification performance, but this is not the case for the Izhikevich
e-prop neuron. Finally, it was found that e-prop implemented in a single-
layer recurrent SNN consistently outperforms a multi-layer variant.
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1INTRODUCTION

The human brain is one of the most complex systems in the universe.
Its approximately 86 billion neurons (Azevedo et al., 2009) and 100–500
trillion synapses (Drachman, 2005) are capable of abstract reasoning,
pattern recognition, memorization, and sensory experience—while con-
suming only about 20 W of power (Drubach, 2000; Sokoloff, 1960).
An early goal of artificial intelligence has been to construct systems

that exhibit similar intelligent traits (Turing, 1948). One of the proposed
methods was to emulate the network of biological neurons in the human
brain using simple units called perceptrons (Rosenblatt, 1958). These
perceptrons were inspired by Hebbian learning (Hebb, 1949), which was
a new (and later corroborated) theory on biological learning. After the
popularization in the 1980s of trainable Hopfield networks (Hopfield,
1982) and backpropagation (Rumelhart, G. E. Hinton, and Williams,
1986), which enabled learning linearly inseparable tasks, artificial neural
networks (ANNs) and the connectionist approach were embraced with a
new appreciation.
These ANNs are networks of small computational units that can be

trained to perform specific pattern recognition tasks. Backpropagation
has proven to work well in training ANNs with multiple layers, most
popularly in the field of deep learning (DL), which has become a dom-
inant field in artificial intelligence. This popularity is partly due to
exponentially increasing computing power and data storage capabilities,
as well as the rise of the Internet, which has also provided ample train-
ing data. Some variations on ANNs have shown to improve learning
performance, such as using convolutional (CNN) and recurrent (RNN)
neural networks, both of which are, like the perceptron, inspired by
the architecture of the human brain (Fukushima and Miyake, 1982;
Hubel and Wiesel, 1968; LeCun, Bengio, et al., 1995; Lukoševičius and
Jaeger, 2009). These types of networks approach or exceed human level
performance in some areas (Schmidhuber, 2015).

energy limits However, DL-based methods are starting to show
diminishing returns; training some state-of-the-art models can require
so much data and computing power that only a small number of organi-
zations has the resources to train and deploy them. For example, one
of the current top submissions of the “Labeled Faces in the Wild” face
verification task is a deep ANN by Paravision that was trained using a
dataset of 10 million face images of 100 thousand individuals1. Beside
very large datasets, deep ANNs also require a significant amount of
power to train. For instance, ResNet (Kaiming He et al., 2016) has been
trained for 3 weeks on a 8-GPU server consuming about 1 GWh. This

1 See http://vis-www.cs.umass.edu/lfw/results.html#everai. Last accessed Jan-
uary 2021.
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2 introduction

high power consumption precludes computations in mobile low-power or
small-scale devices, which now require at least a connection to a cloud
computing server.
The energy consumption of DL contrasts strongly with that of the

human brain, which can learn patterns using far less energy and data.
This is because despite the biologically inspired foundation, deep ANNs
are fundamentally different from the brain, which is an inherently time-
dependent dynamical system (Sacramento et al., 2018; Woźniak et al.,
2020) that relies on biophysical processes, recurrence, and feedback of its
physical substrate for computation (Bhalla, 2014; Sterling and Laughlin,
2015). Deep ANNs are implemented on von Neumann architectures
(Von Neumann, 1993), i. e., a system with a central processing unit
(CPU) and separate memory, which are significantly different from the
working model of the brain (Schuman et al., 2017).

One reason for the inefficiency of deep ANNs is that their imple-
mentations suffer from the von Neumann bottleneck (Zenke and E. O.
Neftci, 2021), which involves a limited throughput between the CPU
and memory—a data operation cannot physically co-occur with fetching
instructions to process that data because they share the same communi-
cation system. Parallelization on GPUs has alleviated this bottleneck
to some extent, but the human brain is more efficient as it is embed-
ded in a physical substrate whose neurons operate and communicate
fully in parallel (A Pastur-Romay et al., 2017) using sparsely occurring
spikes (Bear, Connors, and Paradiso, 2020), and where no explicit data
processing instructions exist. A spike can be represented as a binary
value which causes the synapse to increase the membrane potential in
the efferent neuron to change by a fixed value (Bear, Connors, and
Paradiso, 2020). Connections in ANNs are represented abstractly by
large weight matrices, which are all multiplied with neuron activation
values at every propagation cycle. In the brain, a synapse spikes sparsely
and thereby saves energy while conveniently including an informative
temporal component.
A second reason is that backpropagation requires two passes over

the ANN: the first to compute the network output given an input,
and the second to propagate the output error back into the network
to move the weights between neurons in the direction of the negative
gradient. Backpropagation in RNNs is often performed by unrolling
the network in a feedforward ANN in a process called backpropagation
through time (BPTT). The human brain, in contrast, is unlikely to use
backpropagation, BPTT, or gradients of the output error (Lillicrap and
Santoro, 2019).

spiking neural networks Spiking neural networks (SNNs)
(Gerstner and Kistler, 2002; Maass, 1997) are another step towards
biological plausibility of connectionist models. SNNs use neurons that
do not relay continuous activation values at every propagation cycle, but
spike once when they reach a threshold value. This makes SNNs poten-
tially much more energy efficient than ANNs that use backpropagation.
SNNs are competitive to ANNs in terms of accuracy and computational
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power, as well in their ability to display precise spike timings (Lobo et al.,
2020). Their sparse firing regimes also offer improved interpretability of
their behavior as compared to traditional ANNs (Soltic and Kasabov,
2010), which is desired in areas such as medicine or aviation.

However, SNNs have not been as popular as ANNs. One reason for
this is that spike-based activation is not differentiable. As a consequence,
backpropagation cannot be directly used to move in the negative direc-
tion of the error gradient, although some attempts have been made to
bridge this divide (Bellec, Scherr, Hajek, et al., 2019; Bohte, Kok, and
La Poutre, 2002; Hong et al., 2010; J. H. Lee, Delbruck, and Pfeiffer,
2016; Ourdighi and Benyettou, 2016; Sacramento et al., 2018; Whitting-
ton and Bogacz, 2019; Y. Xu et al., 2013) and to make backpropagation
more biologically plausible.

Similarly, it has been demonstrated that approximations of BPTT can
be applied to recurrent SNNs (RSNNs) (Bellec, Salaj, et al., 2018; Huh
and Sejnowski, 2017). Both single- and multi-layer SNNs have shown
good performance in visual processing (Escobar et al., 2009; Kherad-
pisheh et al., 2018; D. Liu and Yue, 2017) and speech recognition (Dong,
Xuhui Huang, and B. Xu, 2018; Tavanaei and Maida, 2017). However,
none of these algorithms are biologically plausible. While DL was rapidly
becoming popular during the 2010s, there was no clear learning algo-
rithm for SNNs that could compete with ANNs. A second reason for the
relative unpopularity of SNNs is that they are generally emulated in von
Neumann architectures, undermining their energy efficiency advantages.

neuromorphic computing SNN learning algorithms are par-
ticularly useful in the upcoming field of neuromorphic computing (NC)
(Mitra, Fusi, and Indiveri, 2008), in which analog very-large-scale in-
tegration (VLSI) systems are used to implement neural systems. On
the surface, it can be understood as running neural networks not ab-
stracted in a digital system, but physically embedded in a dedicated
analog medium. A central advantage of NC is energy efficiency (Hasler
and Akers, 1990; J.-C. Lee and Sheu, 1990; Tarassenko et al., 1990).
This energy efficiency, combined with NC’s massive parallelism (Monroe,
2014), makes VLSIs particularly relevant for implementing SNNs.

Like SNNs, neuromorphic systems typically use sparse, event-based
communication between devices and physically colocalized memory and
computation (E. O. Neftci, 2018; Sterling and Laughlin, 2015). Al-
though colocalized memory and computation has also been implemented
in digital machines, such as Google’s TPU2, Graphcore’s IPU3, or Cere-
bras’ CS-14, neuromorphic systems are more efficient for running ANNs
(Merolla et al., 2014; Rajendran et al., 2019). The energy consumption
of CMOS artificial neurons is several orders of magnitude lower than
that of neurons in an ANN, and even 2–3 times lower than the energy
consumption of biological neurons (Elbez et al., 2020), offering a possible
escape from the increasing energy costs of DL models.

2 See https://cloud.google.com/tpu/docs/tpus. Last accessed January 2021
3 See https://www.graphcore.ai/products/ipu. Last accessed January 2021
4 See https://cerebras.net/product/#chip. Last accessed January 2021
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Because of this massive parallelism, high energy efficiency, and good
ability to implement cognitive functions, neuromorphic systems are
attracting strong interest. In particular, SNNs emerged as an ideal
biologically inspired NC paradigm for realizing energy-efficient on-chip
intelligence hardware (Davies et al., 2018; Merolla et al., 2014), suitable
for running fast and complex SNNs on low-power devices. For instance, a
competitive image classification performance was reached with a 6-order
of magnitude speedup in a leaky integrate-and-fire (LIF) SNN in field-
programmable gate arrays, compared to digital simulations (G. Zhang
et al., 2020).

biological learning To run an SNN on neuromorphic hardware,
a local and online learning algorithm is needed. The precondition of
locality refers to the idea that a neuron or synapse can only access
information or communication with which it is physically connected. For
instance, the inner state of a neuron can only be influenced by itself,
or by the spikes it receives from afferent neurons. Similarly, a synapse
can only spike or change its weight based on signals from the afferent
and efferent neuron. This is a direct consequence of the colocalization
of processing and memory. The precondition of being online can be
regarded as temporal locality—neurons and synapses can only access
information that physically exists at the same point in time. They cannot
access information about past or future events, except if explicit memory
traces of a past event are retained over time. In that case, past events
can affect the neuron’s current behavior.
The brain also adheres to these two constraints. Some of the more

common learning rules in ANNs are based on a form of Hebbian learning,
which is a major factor in biological learning and memory consolidation
(Schuman et al., 2017). Classical Hebbian learning is often summarized
by “cells that fire together, wire together”, if there is a causal relationship
between these cells, such as a postsynaptic potential on a connecting
synapse. Direct application of Hebbian learning in a spiking neural
network will generally lead to a positive feedback loop, because “wiring
cells together”, or increasing the synaptic strength, will in turn increase
the likelihood that they also fire together (Zenke, Gerstner, and Ganguli,
2017). Furthermore, classical Hebbian learning describes no way for a
synapse to weaken.

Spike-timing-dependent plasticity (STDP) (Abbott and Nelson, 2000;
Caporale and Dan, 2008) is a type of Hebbian learning that incorpo-
rates temporal causality on a synapse from neuron A to neuron B: if
B spikes right after neuron A, then the synapse is strengthened, but if
B spikes right before A, it is weakened. It is widely known that STDP
is a fundamental learning principle in the human brain (Caporale and
Dan, 2008; Kandel et al., 2000), including perceptual systems in the
sensory cortex (S. Huang et al., 2014). STDP by itself can be used as an
unsupervised learning algorithm or to forming associations in classical
conditioning (Diehl and Cook, 2015; C.-H. Kim et al., 2018). Further-
more, it has been demonstrated to form associations between memory
traces in SNNs, which are crucial for cognitive brain function (Pokorny
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et al., 2020). To allow supervised learning, or operant conditioning,
a learning signal is required to influence the direction of the synapse
weight change: a positive learning signal will reinforce the association
(long-term potentiation), and a negative learning signal weakens it (long
term depression) (Lobov et al., 2020). STDP with a learning signal is
known as reward-modulated STDP (R-STDP) (Legenstein, Pecevski,
and Maass, 2008) in the field of SNNs and three-factor Hebbian learning
in neuroscience (Frémaux and Gerstner, 2016). Three-factor Hebbian
learning has been demonstrated to outperform its classical two-factor
counterpart in a localization-and-retrieval task (Porr and Wörgötter,
2007). A possible reason for this performance difference is that modula-
tory signals “may provide the attentional and motivational significance
for long-term storage of a memory in the brain” and stabilize classical
Hebbian learning (Bailey et al., 2000).
Neurotransmitters are used to modulate the learning signal in the

brain. Dopamine, for instance, which has a central behavioral and
functional role in the primary motor cortex (Barnes et al., 2005; Dang
et al., 2006), has been shown to modulate synapses through dendritic
spine enlargement during a very narrow time window (Dang et al.,
2006). It is behaviorally related to novelty and reward prediction (S. Li
et al., 2003; Schultz, 2007) by gating neuroplasticity of corticostriatal
(Reynolds, Hyland, and Wickens, 2001; Reynolds and Wickens, 2002)
and ventral tegmental (VTA) synapses (Bao, Chan, and Merzenich,
2001). In the VTA, dopaminergic neurons respond to learning signals
in a highly localized manner that is specific for local populations of
neurons (Engelhard et al., 2019). This is also the case in other areas of
the midbrain (Roeper, 2013).
However, R-STDP by itself does not solve the credit assignment

problem, which relates to neuromodulation of synapses after a learning
signal is presented with some delay. In that case, when the learning signal
is presented, the neurons have long spiked, and it is not clear which
synapses elicited the behavior that is rewarded or punished. Recent
research suggests that the brain uses eligibility traces (Florian, 2007;
Izhikevich, 2007) to solve the credit assignment problem (Gerstner,
Lehmann, et al., 2018; Stolyarova, 2018). In particular, the synaptic
CaMKII protein complex is activated during the induction of long-term
potentiation (LTP) of biological synapses if the presynaptic neuron spikes
shortly before a postsynaptic neuron (Sanhueza and Lisman, 2013). This
LTP is maintained over behavioral time spans, and gradually fades.
When followed by a learning signal in the form of a neurotransmitter,
synaptic plasticity is induced (Cassenaer and Laurent, 2012; Gerstner,
Lehmann, et al., 2018; Yagishita et al., 2014).
Over the past decade, eligibility traces have been researched in the

context of a wide range of topics, such as biological learning, spiking
neural networks, and neuromorphic computing. Synaptic plasticity was
demonstrated using eligibility traces in deep feedforward SNNs (Kaiser,
Mostafa, and E. Neftci, 2020; E. O. Neftci et al., 2017; Zenke and
Ganguli, 2018) and could be implemented in feedforward VLSIs. In
Zenke and Ganguli (2018) it is asserted that these methods are also
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applicable for RSNNs. Eligibility traces have also been shown to solve
difficult credit assignment problems in SNNs using R-STDP (Bellec,
Scherr, Subramoney, et al., 2020; Legenstein, Pecevski, and Maass, 2008)
and in RNNs (Kaiwen He et al., 2015), and have a predictable learning
effect (Legenstein, Pecevski, and Maass, 2008).

eligibility propagation Eligibility propagation (e-prop) (Bel-
lec, Scherr, Subramoney, et al., 2020) is a local and online learning
algorithm for RSNNs that can be mathematically derived as an ap-
proximation to BPTT (see also Section 2.4). The main aspect that
distinguishes e-prop from other eligibility trace–based algorithms is that
the particular computation of the eligibility trace depends on multiple
hidden states of a neuron. The property that a neuron can have multiple
hidden states means that there are many types of neuron models that
can be used in e-prop.

In e-prop, the learning signal is a local variation on random broadcast
alignment, which propagates the error directly back onto the neurons
with a random weight, resembling the function of a neuromodulator in the
brain. This has been suggested to provide a diversity of feature detectors
for task-relevant network inputs (Bellec, Scherr, Subramoney, et al.,
2020). This form of broadcast alignment can perform as effectively as
backpropagation in some tasks in feedforward ANNs (Lillicrap, Cownden,
et al., 2016; Nøkland, 2016) and multi-layer SNNs (Clopath et al.,
2010; Samadi, Lillicrap, and Tweed, 2017), but performs poorly in deep
feedforward ANNs for complex image classification tasks (Bartunov
et al., 2018).

The local and online properties of e-prop make it a biologically plau-
sible learning algorithm that can be implemented on VLSIs. E-prop
has been demonstrated to work for a large variety of tasks, including
classifying phones (i. e., speech sounds), for which it performs competi-
tively with RNNs that use BPTT and the popular LSTM neuron model
(Graves, Mohamed, and G. Hinton, 2013).

The fading eligibility trace in e-prop is similar to STDP in that the
weight change is smaller if there is a longer delay between a presynaptic
and postsynaptic spike. However, e-prop is essentially independent of
STDP, because it does not explicitly relate the order of the pre- and
postsynaptic spike to the synaptic weight update. However, in Bellec,
Scherr, Subramoney, et al. (2020) e-prop is remarked to start showing
STDP-like properties if the synaptic delay of a spike is prolonged.

So far, only the LIF and adaptive LIF (ALIF) neuron models have been
used in e-prop, which do not show STDP-like properties by default. In
Traub et al. (2020), a functional modification was made to the LIF model
such that STDP can occur. In particular, STDP occurs when the neuron
model provides a negated gradient signal in the case when a presynaptic
signal arrives too late. This resembles the biological phenomenon of
error-related negativity (ERN) (Nieuwenhuis et al., 2001), which is a
negative brain response that immediately follows an erroneous behavioral
response and peaks after 80–150 ms with an amplitude that depends on
the intent and motivation of a person. Traub et al. (2020) also showed
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this effect for the Izhikevich neuron (Izhikevich, 2003). However, these
STDP-modified neurons were shown only in a single-synapse demo to
illustrate the STDP properties, not in a full learning task.

multi-layer rsnns The discovery of backpropagation allowed
gradient descent–based training of multi-layer ANNs, which significantly
increased their performance. Although it is unlikely to use backprop-
agation, the human brain is hierarchically structured such that early
layers process simple information and deep layers process more abstract
information. Similarly, multi-layer CNNs also show higher levels of
abstraction in deeper layers of the network. For instance, early convolu-
tional filters identify lines and edges, while deeper filters identify more
complex shapes. In RNNs, stacking recurrent layers results in a similar
abstraction—but it is temporal instead of spatial (Gallicchio, Micheli,
and Pedrelli, 2017; Hermans and Schrauwen, 2013). Deeper RNN layers
exhibit slower time dynamics and longer memory spans than shallow
layers (Gallicchio, 2018), suggesting that they ignore small variations in
the input signal and integrate larger temporal patterns. It is unclear if
these findings extrapolate to RSNNs.

research objectives State-of-the-art SNN learning algorithms
perform well on a variety of tasks, but have so far not shown the
efficiency and learning performance of the human brain. SNNs are most
efficient when embedded in a neuromorphic system, requiring a learning
algorithm that is local and online. E-prop is an example of such an
algorithm, but it has not yet been used in conjunction with neuron
models other than LIF and ALIF. These neuron models do not show
STDP-like behavior, which is a fundamental learning principle in the
brain, and has a close connection to biological eligibility traces, and
may therefore improve the accuracy and efficiency of e-prop. For this
reason, in this research I continue the trend of emulating biological
processes by for the first time modifying the e-prop network to use
neuron models that show STDP-like behavior. Analyzing the effects of
including STDP-like behavior to the neuron models in an e-prop network
is the primary research objective in this report.

Two neuron models that display STDP are used. The first model is the
ALIF-STDP, which is a new crossover neuron model of the ALIF neuron
(used in Bellec, Scherr, Subramoney, et al. (2020)) and the STDP-LIF
neuron (derived but not verified for e-prop in Traub et al. (2020)). The
second STDP-like neuron model is the Izhikevich neuron model, which
was also derived in Traub et al. (2020), and is slightly modified in this
research to produce stable eligibility traces over time.
So far, only the performance of e-prop models with a single fully-

connected pool of neurons has been described. Whereas multi-layered
CNNs and RNNs can sometimes process abstract information more
easily, it is not clear if this also holds for SNNs or e-prop models. The
secondary research objective is analyzing the effects of a multi-layered
e-prop architecture.



8 introduction

structure of this report In the remainder of this report, the
e-prop framework is described in Chapter 2. Then, Chapter 3 describes
the method used to implement the TIMIT phone classification task and
modify the e-prop algorithm to a multi-layer framework with different
neuron models, particularly the STDP-ALIF and Izhikevich models.
This modified e-prop framework is implemented and experimentally
verified. The results are presented and discussed in Chapter 4. These
results show that including STDP in ALIF neuron models can indeed
improve the learning performance and leads to a higher classification
accuracy. However, this does not hold for the Izhikevich neuron, sug-
gesting that this neuron model is not suited for e-prop in its current
form. Furthermore, the use of multiple stacked recurrent layers slows
down the learning speed, and so does not provide an efficient e-prop
architecture. Finally, Chapter 5 summarizes and concludes this report.



2THEORETICAL FRAMEWORK

This chapter describes the theoretical framework of eligibility propaga-
tion expounded in previous literature, which is then developed further
in Chapter 3.

2.1 eligibility propagation model

In Bellec, Scherr, Subramoney, et al. (2020), an eligibility propagation
(e-prop) modelM of a neuron j in a feedforward or recurrent network
is defined by a tuple 〈M,f〉, where M is a function

htj = M
(
ht−1
j , zt−1,xt,Wj

)
(2.1)

that defines the hidden state htj at a discrete time step t, where zt−1 is
the observable state of all neurons at the previous time step (i. e., the
binary spike values), xt is the model input vector at time t, and Wj

is the weight vector of afferent (i. e., “incoming”) synapses. The hidden
state of a neuron contains all variables that are used for a specific neuron
type, e. g., an activation value, or a variable that models a neuron’s
refractory period after a spike. In short, Equation 2.1 indicates that the
hidden state is affected primarily by spikes of other neurons zt−1, and
the current input to the model xt, which are both weighted by trainable
network weights Wrec

j ⊂Wj and Win
j ⊂Wj , respectively.

The function f inM describes the update of the observable state of
a neuron j at time t:

ztj = f
(
htj
)
, (2.2)

such that the spikes elicited by a neuron only depend on its hidden state.
For instance, a neuron j may spike at time t (i. e., ztj = 1) if its activity,
which is contained in the hidden state, reaches a threshold value.

The purpose of an e-prop model is that it can be trained to perform
a learning task, such as classification. As described in the remainder of
this chapter, the weight matrix W, which comprises the weight values
of all synapses in the model, is trained such that the input vectors xt

yield a good prediction of the classes they belongs to.
The formalizations described in Equations 2.1 and 2.2 indicate that

e-prop is a local training method, because a neuron’s observable state
depends only on its own hidden state, which in turn depends only on
observable signals that are directly connected to it. E-prop is also an
online training method, because both the hidden and observable state of
a neuron depend only on information that is still available; the observable
state is updated at the same time step as the hidden state, and the
hidden state is updated according to information which is then present
in the afferent neurons.

9



10 theoretical framework

The precise formulations of M and f depend on the neuron models
that are used in the e-prop model.

2.2 neuron models

lif neuron In Bellec, Scherr, Subramoney, et al. (2020), the LIF
neuron model is formulated in the context of e-prop, along with a variant
(viz. ALIF) that has an adaptive threshold based on the neuron’s spiking
frequency. The observable state of a LIF model is given by

ztj = H
(
vtj − vth

)
, (2.3)

where H is the Heaviside step function, vtj is the activity of neuron j at
discrete time t, and vth is the threshold constant. (Note that this and
all other used hyperparameters are listed in Table A.2.) From Equation
2.3 it follows that a neuron spikes (ztj = 1) if its activity reaches the
activity threshold, and remains silent (ztj = 0) otherwise. These spikes
are the only communication between neurons in the e-prop model.

The hidden state htj of a LIF neuron model contains only an activity
value vtj that evolves over time according to the equation

vt+1
j = αvtj +

∑
i 6=j

W rec
ji z

t
i +

∑
i

W in
ji x

t+1
i − ztjvth, (2.4)

where W rec
ji is a synapse weight from neuron i to neuron j, and α is a

constant decay factor. In Equation 2.4, the first term models the decay of
the activity value over time. The second and third term model the input
of the neuron from other neurons, or from the input to the network,
respectively. The fourth term (−ztjvth) ensures that the activity of the
neuron drops when it spikes. Furthermore, ztj is explicitly fixed to 0 for
T refr time steps after a spike to model neuronal refractoriness.
In biological neurons, the refractory period consists of an “absolute”

phase, during which eliciting a new spike is impossible, and a subsequent
“relative” phase, during which the threshold is temporarily increased
(Purves, 2008). Clamping ztj to 0 emulates only this absolute phase, and
is therefore only a crude approximation to model biological refractoriness.
The refractory period is built into the equations of the Izhikevich neuron
model described in Section 3.2.2.2, which is therefore arguably a more
biologically plausible neuron model.

alif neuron The ALIF neuron model introduces a threshold adap-
tation variable atj to the hidden state of the LIF neuron, such that

htj
def
=
[
vtj , a

t
j

]
. In an ALIF neuron, the spiking threshold increases after

a spike, and otherwise decreases back to a baseline threshold vth in the
continued absence of spikes.
This resembles spike frequency adaptation (SFA), a common feature

of neocortical pyramidal neurons (Benda and Herz, 2003). SFA is a
homeostatic control mechanism that affects the spiking frequency based
on the recent spiking activity, such that neurons that spike relatively
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infrequently become more sensitive, and vice versa. Ahmed et al. (1998)
found that a single time constant is a good fit to characterize the
threshold’s exponential decay to a steady state.
The observable state of an ALIF neuron is therefore described by

ztj = H
(
vtj − vth − βatj

)
(2.5)

and

at+1
j = ρatj + ztj , (2.6)

where 0 < ρ < 1 is an adaptation decay constant and β ≥ 0 is an
adaptation strength constant. Equation 2.6 indicates that the adaptive
threshold increases at every spike, and decays back to vth in the absence
of spikes. The decay factor ρ of the threshold adaptation is higher than
the decay factor α of the neuron activity, such that the immediate firing
behavior of a neuron is affected on a shorter time scale than the threshold
adaptation, which is better suited to reflect the working memory of
a neuron and track longer temporal dependencies in the input data
than the activation decay. The interaction between the neuron activity,
adaptive threshold and spiking behavior is illustrated in Figure 2.1.

The LIF neuron is a spacial case of an ALIF neuron, for which β = 0,
effectively canceling the effect of the threshold adaptation value atj on
the observable state ztj in Equation 2.5. Therefore, only the e-prop
derivations for the ALIF neurons will be described in the following
sections. From this point, references to LIF neurons in this report will
refer to this special case.

2.3 network topology

The e-prop network structure as used in this report consists of the
following main components:

1. An input layer xt.

2. A recurrent layer containing N neurons that are connected to all
other neurons in this layer by weights Wrec. This layer is also
connected to the input layer by weights Win.

3. An output layer yt connected to the recurrent layer by weights
Wout.

Since one of the goals of this report is to evaluate multi-layer topologies,
the recurrent layer component is modified in Section 3.2.1 to support
architectures with a feedforward series of recurrent layers.
An input vector xt at time step t is fed to a pool of N recurrent

neurons with hidden states ht and observable states zt through input
weights Win. The recurrent weights Wrec connect neurons with each
other, but no self-loops exist. Therefore, the recurrent neurons also
receive inputs from the observable states of the afferent neurons. 25% of
these neurons are LIF neurons (i. e., β = 0) and the others are ALIF
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Figure 2.1: A simulated ALIF neuron j receives a sinusoidal input I for 300
time steps t. This figure illustrates the adaptive threshold a, which
increases at every spike z, requiring a higher activity v for a
next spike. When a spike occurs, v decreases by vth. Note that
the first wave of the sinusoid elicits a stronger spike train than
subsequent waves, demonstrating the homeostatic effect of the
adaptive threshold. Note also that on a short time scale, spikes tend
to occur primarily in the upward phases of the sinusoid, suggesting
that ALIF neurons are well-suited to respond to changes in the
input signals.

neurons. The output weights Wout process the observable states of the
neurons through a softmax function into a logits layer πt. These logits
are compared with the target output π∗,t and multiplied with broadcast
weights Bt to obtain a learning signal Ltj for every neuron j in the
pool. Figure 2.2 illustrates the basic architecture of a single-layer e-prop
model.

Like in Bellec, Scherr, Subramoney, et al. (2020), weights are initialized
by sampling them from a Gaussian distribution N

(
0,
√
N
)
where N is

the number of afferent neurons. For instance, the weights Win between
the input and the first layer are sampled from N

(
0,
√

39
)
if there are

39 input features. Likewise, each of the neurons has N − 1 afferent
recurrent weights, so the recurrent weights within a layer are sampled
from N

(
0,
√
N − 1

)
.

A randomly selected 80% of synaptic weights is then set to a value
of 0, as well as the synapses that connect a neuron to itself, rendering
them ineffective.



2.4 deriving e-prop from rnns 13

  

ii

jj

ALIFALIF

LIFLIF
xx
tt

𝜋𝜋
tt 𝜋𝜋

*, t*, t

LLtt

BB

EEtt
WW

inin

WW
recrec

WWoutout

Figure 2.2: A basic illustration of a single-layer network architecture. An input
vector xt at time step t is fed to a pool of N recurrent neurons with
hidden states ht and observable states zt through input weights
Win. The recurrent weights Wrec connect neurons with each other,
but no self-loops exist. A randomly selected 25% of these neurons
is a LIF neuron (i. e., β = 0) and the others are ALIF neurons.
The output weights Wout process the observable states of the
neurons through a softmax function into a logits layer πt. These
logits are compared with the target output π∗,t and multiplied
with broadcast weights Bt to obtain a learning signal Lt

j for every
neuron j in the pool. Note that weights illustrated in red are e-prop
weights, i. e., they track eligibility traces.

2.4 deriving e-prop from rnns

Eligibility propagation is a local and online training method that can
be derived from backpropagation through time (BPTT). In BPTT, an
RNN is unfolded in time, such that the backpropagation method used
in feedforward neural networks can be applied to compute the gradients
of the cost with respect to the network weights.
In this section, the main equation of e-prop

dE

dWji
=
∑
t

dE

dztj
·

[
dztj
dWji

]
local

, (2.7)

where · denotes the dot product, is derived from the classical factor-
ization of the loss gradients in an unfolded RNN as in Bellec, Scherr,
Subramoney, et al. (2020):

dE

dWji
=
∑
t′≤T

dE

dht
′
j

·
∂ht

′
j

∂Wji
, (2.8)

where summation indicates that weights are shared. Recall that for ALIF
neurons, htj

def
=
[
vtj , a

t
j

]
. This is also the true for ALIF neurons that use

β = 0 to disable their threshold adaptability.
By applying the chain rule, the first factor dE

dht
′
j

can be decomposed

into a series of learning signals Ltj = dE
dztj

and local factors
∂ht−t

′
j

∂htj
for all
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t starting from the event horizon t′, which is the oldest time step that
information is used from:

dE

dht
′
j

=
dE

dzt
′
j︸︷︷︸

Lt
′
j

∂zt
′
j

∂ht
′
j

+
dE

dht
′+1
j

∂ht
′+1
j

∂ht
′
j

. (2.9)

Note that this equation is recursive. If Equation 2.9 is substituted into
the classical factorization (Equation 2.8), the full history of the synapse
i→ j is integrated, and a recursive expansion is obtained that has dE

dhT+1
j

as its terminating case:

dE

dWji
=
∑
t′

(
Lt
′
j

∂zt
′
j

∂ht
′
j

+
dE

dht
′+1
j

∂ht
′+1
j

∂ht
′
j

)
·
∂ht

′
j

∂Wji
(2.10)

=
∑
t′

(
Lt
′
j

∂zt
′
j

∂ht
′
j

+

(
Lt
′+1
j

∂zt
′+1
j

∂ht
′+1
j

+ (· · · )
∂ht

′+2
j

∂ht
′+1
j

)
∂ht

′+1
j

∂ht
′
j

)
·
∂ht

′
j

∂Wji
.

(2.11)

The recursive parenthesized factor can be written into a second factor
indexed by t:

dE

dWji
=
∑
t′

∑
t≥t′

Ltj
∂ztj
∂htj

∂htj

∂ht−1
j

· · ·
∂ht+1

j

∂ht
′
j

·
∂ht

′
j

∂Wji
. (2.12)

By exchanging the summation indices, the learning signal Ltj is pulled
out from the inner summation.
Within the inner summation, the terms

∂ht+1
j

∂htj
are collected in an

eligibility vector εtji and multiplied with the learning signal Ltj at every
time step t. This is crucial for understanding why e-prop is an online
training method—local gradients are computed based on traces that
are directly accessible at the current time step t, and the eligibility
vector operates as a recursively updated “memory” to track previous
local hidden state derivatives:

εtji =
∂htj

∂ht−1
j

· εt−1
ji +

∂htj
∂Wji

. (2.13)

This is why the ρ and α parameters, which define the decay rate
in hidden states and the corresponding eligibility vectors, should be
set according to the required working memory in the learning task.
The eligibility vector and the hidden state have the same dimension:{
εtji,h

t
j

}
⊂ Rd, where d = 2 for the ALIF and Izhikevich neuron models.

The eligibility trace etji is a product of
∂ztj
∂htj

and the eligibility vector,
resulting in the gradient that can be immediately applied at every time
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step t, or accumulated and integrated locally on a synapse (see Section
2.5.2 for details):

dE

dWji
=
∑
t

dE

dztj

∂ztj
∂htj

∑
t≥t′

∂htj

∂ht−1
j

· · ·
∂ht+1

j

∂ht
′
j

·
∂ht

′
j

∂Wji︸ ︷︷ ︸
εtji︸ ︷︷ ︸

etji

. (2.14)

This is the main e-prop equation.

2.5 learning procedure

The e-prop equation (Equation 2.14) can be applied to any neuron type
with any number of hidden states. In this section, the derivation for
ALIF neurons will be detailed.

2.5.1 Eligibility trace

Recall the hidden state update equations from Section 2.2:

vt+1
j = αvtj +

∑
i 6=j

W rec
ji z

t
i +

∑
i

W in
ji x

t+1
i − ztjvth (2.4 revisited)

and

at+1
j = ρatj + ztj (2.6 revisited)

and the update of the observable state

ztj = H
(
vtj − vth − βatj

)
. (2.5 revisited)

The hidden state htj of an ALIF neuron j is therefore a vector con-
taining its activation and threshold adaptation:

htj =

(
vtj

atj

)
. (2.15)

This hidden state is associated with a two-dimensional eligibility vector

εtji
def
=

(
εtji,v

εtji,a

)
(2.16)

that relates to a synapse from any afferent neuron i to neuron j.
Recall from Chapter 1 that the eligibility trace slowly fades after a

spike has occurred on a synapse, such that a delayed learning signal
can still modify the synaptic strength accordingly, solving the credit
assignment problem. Intuitively, the eligibility vector computes the
correct contribution of each of the components of the hidden state. For
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a LIF neuron, the only component is the activation value, and so it is
simply a low-pass filter of the spikes of the afferent neuron.
For the default ALIF neuron, however, the hidden state derivative

∂ht+1
j

∂htj
must be computed to derive the eligibility vector. This hidden

state derivative is expressed by a 2× 2 matrix of partial hidden state
derivatives:

∂ht+1
j

∂htj
=

∂vt+1
j

∂vtj

∂vt+1
j

∂atj
∂at+1
j

∂vtj

∂at+1
j

∂atj

 . (2.17)

The presence of ztj , and its relation to the Heaviside step function
H(·) in the hidden state updates in Equation 2.4 and Equation 2.6
seems problematic for computing these partial derivatives, because the
derivative

∂ztj
∂vtj

is nonexistent. This is overcome by replacing it with a
simple nonlinear function called a pseudo-derivative. Outside of the
refractory period of a neuron j, this pseudo-derivative has the form

ψtj = γmax

(
0, 1−

∣∣∣∣∣vtj − vth − βatjvth

∣∣∣∣∣
)
, (2.18)

where γ is a dampening constant, which is set to 0 during the neuron’s
refractory period. Like in Esser et al. (2016), this pseudo-derivative is 1
at time steps where the neuron spikes, and linearly decays to zero in the
positive and negative direction. The synaptic weight can only change
when the pseudo-derivative is nonzero.

Now, the partial derivatives in the hidden state derivative can be
computed by replacing the Heaviside function Equation (in 2.5) by the
pseudo-derivative ψtj :

∂vt+1
j

∂vtj
= α (2.19)

∂vt+1
j

∂atj
= 0 (2.20)

∂at+1
j

∂vtj
= ψtj (2.21)

∂at+1
j

∂atj
= ρ− ψtjβ. (2.22)
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These partial derivatives can be used to compute the eligibility vector:(
εt+1
ji,v

εt+1
ji,a

)
=

∂vt+1
j

∂vtj

∂vt+1
j

∂atj
∂at+1
j

∂vtj

∂at+1
j

∂atj

 ·(εtji,v
εtji,a

)
+

∂vt+1
j

∂Wji

∂at+1
j

∂Wji

 (2.23)

=

(
α 0

ψtj ρ− ψtjβ

)
·

(
εtji,v

εtji,a

)
+

(
zt−1
i

0

)
(2.24)

=

 α · εtji,v + zt−1
i

ψtjε
t
ji,v +

(
ρ− ψtjβ

)
εtji,a

 . (2.25)

Intuitively, these eligibility vector components can be seen as the con-
tribution of the hidden state component to the increase of the eligibility
trace. For instance, the activation eligibility component εtji,v of a synapse
i→ j at time step t is, like in the LIF neuron, a low-pass filter of the
afferent spikes zi.
The threshold adaptation eligibility component εtji,a is less intuitive,

but acts as a correction factor for the more slowly decaying threshold
adaptation. Its first term ψtjε

t
ji,v causes it to increase when a neuron

has recently spiked and when the activation is already increasing again.
Therefore, it is higher for synapses that have a higher spike frequency.
The second term threshold adaptation eligibility component is a decay
corrected for the adaptation strength β.

This eligibility vector update can be recursively applied. For eligibility
vectors of synapses that are efferent to input neurons, the input value
xti is used in place of zt−1

i in Equation 2.24. Note that the current time
index t is used for input neurons to satisfy the online learning principle
defined in the model definition in Equation 2.1; neurons receive input
from the input at time t, and from the spikes of other neurons emitted at
time t− 1. Furthermore, the absence of εtji,a in the computation of εt+1

ji,v

facilitates online training in emulations in non–von Neumann machines,
because εt+1

ji,a can be computed before εt+1
ji,v , relieving the need to store a

temporary copy of its value. In later sections, it is demonstrated that
this does not necessarily hold for other neuron models, such as the
Izhikevich neuron.

The eligibility vector needs to be multiplied with the partial derivative
of the observable state with respect to the hidden state to obtain the
eligibility trace:

etji = εtji ·
∂ztj
∂htj

. (2.26)

Again, the Heaviside function in Equation 2.5 is replaced by ψtj :

∂ztj
∂htj

=

 ∂ztj
∂vtj
∂ztj
∂atj

 (2.27)

=

(
ψtj

−βψtj

)
. (2.28)
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Therefore, the eligibility trace is computed by

etji =

(
εtji,v

εtji,a

)
·

 ∂ztj
∂vtj
∂ztj
∂atj

 (2.29)

=

(
εtji,v

εtji,a

)
·

(
ψtj

−βψtj

)
(2.30)

= ψtj
(
εtji,v − βεtji,a

)
. (2.31)

This means that the eligibility trace can be understood as a low-pass
filter of the afferent spikes, with a correction for the efferent neuron’s
threshold adaptation: a neuron with a higher threshold builds up an
eligibility trace more slowly than its more sensitive counterparts. Figure
2.3 illustrates the behavior of the synaptic variables in an ALIF neuron
described above.
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Figure 2.3: A single-synapse simulation of the evolution of the full hidden
state of the ALIF neuron. The blue lines indicate the postsynaptic
neuron j, and the orange lines indicate the presynaptic neuron i.
The injected current It increases the voltage vtj and is deliberately
controlled to produce the spike pattern ztj where the postsynaptic
neuron spikes after the presynaptic neuron during the first half, and
vice versa during the second half of the plot. The learning signal
Lt
j is kept at a constant value and is omitted for clarity, such that

the relation between the eligibility trace etji and the accumulated
weight change ∆W t

ji can be clearly observed. Note that the synapse
weight increases regardless of the order of spikes, indicating an
absence of STDP in the standard e-prop ALIF neuron.
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2.5.2 Gradients

Gradient descent is used to apply the weight updates, such that weights
are updated by a small fraction η in the negative direction of the
estimated gradient of the loss function with respect to the model weights:

∆W = −η d̂E

dWji

def
= −η

∑
t

∂E

∂ztj
etji. (2.32)

Note that for clarity, this section describes e-prop using stochastic
gradient descent. In the actual implementations in Bellec, Scherr, Subra-
money, et al. (2020) and this research, the Adam optimization algorithm
(Kingma and Ba, 2014) is used (see Section 3.4).

error metric In the TIMIT frame-wise phone classification task,
there are K = 61 output neurons ytk where k ∈ [1 . . K]. These are
computed according to

ŷtk = κŷt−1
k +

∑
j

W out
kj z

t
j (2.33)

and

ytk = ŷtk + bk, (2.34)

where κ ∈ [0, 1] is the decay factor for the output neurons, W out
kj is the

weight between neuron j and output neuron k, and bk is the bias value.
The decay factor κ acts as a low-pass filter, smoothing the output values
over time and implemented based on the observation that output frame
classes typically persist for multiple time steps.

The softmax function σ(·) computes the predicted probability πtk for
class k at time t:

πtk = σk
(
yt1, . . . , y

t
K

)
=

exp
(
ytk
)∑

k′ exp
(
ytk′
) . (2.35)

This predicted probability is compared with the one-hot vector corre-
sponding to the target class label π∗,tk at time step t using the cross
entropy loss function

E = −
∑
t,k

π∗,tk log πtk, (2.36)

thereby obtaining the accumulated loss E at time step t.
Since the learning signal Ltj is defined as the partial derivative of the

error E with respect to the observable state ztj of a neuron j afferent to
an output neuron k, we can use

Ltj =
∂E

∂ztj
=
∑
k

Bjk
∑
t′≥t

(
πt
′
k − π

∗,t′
k

)
κt
′−t, (2.37)
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where Bjk is a feedback weight from neuron k back to output neuron
j. There are multiple strategies for choosing feedback weights. Bellec,
Scherr, Subramoney, et al. (2020) noted that a constantly uniform weight
matrix yields poor performance, which has been empirically verified in
my project. However, when the feedback weight matrix is initialized
from a zero-centered normal distribution, it can remain either constant,
mirror (W out)>, or update according to (∆W out)>. These three variants
are referred to in Bellec, Scherr, Subramoney, et al. (2020) as random,
symmetric, and adaptive e-prop, respectively. In this paper, symmetric
e-prop is used (i.e., Bjk

def
= W out

kj ) unless explicitly stated otherwise.
Note that the term κt

′−t in Equation 2.37 is a filter that compensates
for the decay factor of output neurons. Note also that this equation
does not allow online learning, because future time steps t′ are accessed.
However, if a low-pass filter with factor κ is applied on the eligibility
trace, it will cancel out the effects of the future time steps on the
learning signal, and the estimated loss gradient can be approximated.
This low-pass filter of the eligibility trace can be implemented in an
online fashion by including it as a hidden synaptic variable ētji. Recall

that the estimated loss gradient d̂E
dWji

is approximated by
∑

t
∂E
∂ztj
etji.

Therefore, after inserting Equation 2.37 in Equation 2.32, the weight
update is computed by

∆Wji = −η
∑
t′

∂E

∂zt
′
j

et
′
ji (2.38)

= −η
∑
t′

∑
k

Bjk
∑
t′≥t

(
πt
′
k − π

∗,t
k

)
κt
′−tet

′
ji (2.39)

= −η
∑
k,t′

Bjk
∑
t′≥t

(
πt
′
k − π

∗,t
k

)
κt
′−tet

′
ji (2.40)

= −η
∑
t

∑
k

Bjk

(
πtk − π

∗,t
k

)
︸ ︷︷ ︸

=Ltj

∑
t′≤t

κt
′−tet

′
ji︸ ︷︷ ︸

def
= ētji

, (2.41)

where Wji is an input or recurrent weight. By implementing ēji as a
low-pass filter (with factor κ) of the eligibility trace, the weight update
in Equation 2.41 is implemented as a local and online learning algorithm.
The training algorithm for the output weights W out and bias b can

be directly derived from gradient descent:

∆W out
kj = −η

∑
t

(
πtk − π

∗,t
k

)∑
t′≤t

κt
′−tztj (2.42)

and

∆bk = −η
∑
t

(
πtk − π

∗,t
k

)
. (2.43)
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3.1 data preprocessing

In this section, the content of the TIMIT speech corpus is described,
as well as the preprocessing method that transforms the speech signals
into usable features in the e-prop framework.

3.1.1 The TIMIT speech corpus

TIMIT is a speech corpus that contains phonemically transcribed
speech (Garofolo et al., 1993), comprising 6300 sentences, 10 spoken
by each of the 630 speakers. To include a broad range of dialects these
speakers are sampled from 8 different geographical regions in the United
States (as categorized in Labov, Ash, and Boberg (2008)) in which they
lived during their childhood years. Table 3.1 breaks down the precise
composition of the dialect distribution.

dialect region #male #female total

1 (New England) 31 (63%) 18 (27%) 49 (8%)
2 (Northern) 71 (70%) 31 (30%) 102 (16%)
3 (North Midland) 79 (67%) 23 (23%) 102 (16%)
4 (South Midland) 69 (69%) 31 (31%) 100 (16%)
5 (Southern) 62 (63%) 36 (37%) 98 (16%)
6 (New York City) 30 (65%) 16 (35%) 46 (7%)
7 (Western) 74 (74%) 26 (26%) 100 (16%)
8 22 (67%) 11 (33%) 33 (5%)

All 438 (70%) 192 (30%) 630 (100%)

Table 3.1: Distribution of speakers’ dialect regions and sexes. Speakers of the
innominate dialect region 8 relocated often during their childhood.

The sentence text can be categorized into 2 dialect sentences, 450
phonetically compact sentences, and 1890 phonetically diverse sentences.

The dialect sentences, which are spoken by all speakers, are designed to
expose the dialectical variants of the speakers. The phonetically compact
sentences are designed to include many pairs of phones. The phonetically
diverse sentences are taken from the Brown Corpus (Kucera, Kučera,
and Francis, 1967) and the Playwrights Dialog (Hultzsch et al., 1964)
in order to maximize the number of allophones (i. e., different phones
used to pronounce the same phoneme). Table 3.2 lists an overview of
the distribution of the number of speakers per sentence type.

21
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sentence type #sentences #speakers total

Dialect 2 630 1260
Compact 450 7 3150
Diverse 1890 1 1890

Total 2342 6300

Table 3.2: Distribution of sentence types.

Each of the sentences is encoded in as a waveform signal in .wav
format, and is accompanied by a corresponding text file indicating which
phones are pronounced in the waveform, and between which pairs of
sample points.

3.1.2 Data splitting

The TIMIT dataset is split into a training, validation and testing set
as in Graves and Schmidhuber (2005) and Bellec, Scherr, Subramoney,
et al. (2020). The training set is used to train the network synaptic
weights according to the e-prop algorithm. The validation set is used to
obtain a well-performing set of hyperparameters. The testing set is used
to evaluate the performance of the network after the hyperparameters
are obtained.
The TIMIT corpus documentation offers a suggested partitioning of

the training and testing data, which is based on the following criteria:

1. 70%–80% of the data is used for training, and the remaining
20%–30% for testing.

2. No speaker appears in both the training and testing partitions.

3. Both subsets include at least 1 male and 1 female speaker from
every dialect region.

4. There is a minimal overlap of text material in the two subsets.

5. The test set should contain all phones in as many allophonic
contexts as possible.

In accordance with these criteria, the TIMIT corpus includes a “core” test
set that contains 2 male speakers and 1 female speaker from each dialect,
summing up to 24 speakers. Each of these speakers read a different set of
5 phonetically compact sentences, and 3 phonetically diverse sentences
that were unique for each speaker. Consequently, the test set comprises
192 sentences (24× (5 + 3)) and was selected such that it contains at
least one occurrence of each phone. In this report, the TIMIT core test
set is used, thereby meeting the criteria listed above.
The remaining 4096 sentences are randomly partitioned into 3696

training sentences and 400 validation sentences in this research (the
TIMIT corpus contains no fixed training/validation set partition).
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3.1.3 Engineering features

The data preprocessing pipeline is similar to that used in Fayek (2016),
which can be summarized by applying a pre-emphasis filter on the
waveforms, then slicing the waveform in short frames, taking their short-
term power spectra, computing 26 filterbanks, and finally obtain 12
Mel-Frequency Cepstrum Coefficients (MFCCs). Then, these MFCCs
are aligned with the phones found in the TIMIT dataset. An example
of a waveform signal is given in Figure 3.1.
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Figure 3.1: Raw TIMIT waveform signal

pre-emphasis In speech signals, high frequencies generally have
smaller magnitudes than lower frequencies. To balance the magnitudes
over the range of frequencies in the signal, a pre-emphasis filter y(t) is
applied on the waveform signal x(t):

y(t) = x(t)− 0.97x(t− 1). (3.1)

This procedure yields the additional benefit of improving the signal-to-
noise ratio. An example of a pre-emphasized signal is given in Figure
3.2.

framing The waveforms, which are sampled at a rate fs of 16 kHz,
cannot be directly used as input to the model, because they are too long—
a typical sentence waveform contains in the order of tens of thousands
of data points. Furthermore, the individual data points are not very
informative, because they reflect the sound wave of the uttered sound, not
the characteristics of the source of this sound. These sounds are filtered
by the shape of the vocal tract, which manifests itself in the envelope
of the short time power spectrum of the sound. This power spectrum
representation describes the power of the frequency components of the
signal over a brief interval. The frequency components are assumed to
be stationary over short intervals, in contrast to the full sentence, which
carries its meaning because it is non-stationary. Therefore, the waveform
signals are transformed into series of frequency coefficients of short-term
power spectra. To obtain these multiple short-term power spectra over
the duration of the waveform, it is sliced into brief overlapping frames.
Every 160 samples (equivalent to 10 ms) of a pre-emphasized signal,

an interval frame of 400 samples (equivalent to 25 ms) is extracted. This
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Figure 3.2: A segment of a signal after the pre-emphasis filter of Equation
3.1 was applied to it. The upper panel contains samples 28000–
30000 of the signal in Figure 3.1, while the lower panel contains
its pre-emphasis filtered counterpart. Note that the filtered signal
is less symmetric around the horizontal axis, because the filtered
signal is similar to a first derivative—the original signal has sharper
increases than decreases, so the filtered signal has stronger extrema
towards the positive direction.

means that the frames overlap by 25 ms. The waveform is zero-padded
such that the last frame also has 400 samples. By this process, signal
frames xi(n) are obtained, where n ranges over 1–400, and i ranges over
the number of frames in the waveform.
Then, a Hamming window with the form

w [n] = a0 − a1 cos

(
2πn

N − 1

)
, (3.2)

is applied where N is the window length of 400 samples, 0 ≤ n < N ,
a0 = 0.53836, and a1 = 0.46164. A plot of this window is given in
Figure 3.3. This window is applied to reduce the spectral leakage, which
manifests itself though sidelobes in the power spectra. Applying the
Hamming window reduces the sidelobes to near-equiripple conditions,
minimizing the leakage (Smith, accessed December 2020).

short-term power spectra The power spectra Pi are ob-
tained for each frame by first taking the absolute K-point discrete
Fourier transform (DFT) of the frame samples xi(n):

Xk =

∣∣∣∣∣
N−1∑
n=0

xi(n) · e−
i2π
N
kn

∣∣∣∣∣ , (3.3)

where K = 512. This yields the magnitudes of the discrete cosine
transform (DCT) of the frames.
The power spectra are obtained using the equation

P =
Xk

2

K
, (3.4)
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Figure 3.3: The form of the Hamming window applied on signal frames to
reduce spectral leakage.

an example of which is shown in Figure 3.4.
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Figure 3.4: The power spectra of a sentence.

mel filterbank The short-term power spectra are then trans-
formed to Mel-spaced filterbanks. The Mel scale is a scale of pitches that
are perceptually equal in distance (Stevens, Volkmann, and Newman,
1937). This is in contrast to the frequency measurement, in which the
human cochlea can distinguish lower frequencies more accurately than
higher ones. The aim of converting to the Mel scale is to make every
filterbank coefficient feature equally informative, thereby improving the
learning performance of the model.
The Mel-spaced filterbank is a set of 40 triangular filters that we

apply to each frame in P .
To compute the Mel-spaced filterbank, lower and upper band edges

of respectively 0 Hz and fs/2 = 8 kHz are selected, and convert these to
Mels using

m(f) = 2595 log10

(
1 +

f

700

)
, (3.5)

where f is the frequency in Hz. This yields a lower band edge of 0 Mels
and an upper band edge of approximately 2835 Mels.
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The 40 filterbanks are obtained by first spacing 42 points m linearly
between these bounds (inclusive), thereby obtaining 40 points spaced
exclusively between the bounds.

Then, the vector of Mel frequencies m is converted back to Hz using

f = 700
(

10m/2595 − 1
)
. (3.6)

The resulting frequencies f are rounded to their nearest Fourier transform
bins b using

b = b(K + 1)f/fsc. (3.7)

The resulting 40 filterbanks with their corresponding Mels and fre-
quencies are listed in Table A.1.
The ith filter in filterbank Hi is a triangular filter that has its lower

boundary at bi Hz, its peak at bi+1 Hz, and its upper boundary at bi+2

Hz. For other frequencies, they are 0. Therefore, the filterbank can be
described by

Hi(k) =



0 if k < bi
k−bi

bi+1−bi if bi ≤ k < bi+1

1 if k = bi+1

bi+2−k
bi+2−bi+1

if bi+1 < k ≤ bi+2

0 if bi+2 < k

, (3.8)

where 0 ≤ k ≤ K
2 . These Mel-spaced filters are shown in Figure 3.5.
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Figure 3.5: The Mel-spaced filterbanks.

After applying the filterbank to the short-term power spectrum, a
spectrogram S of the frame sequence (see e. g. Figure 3.6) is obtained.

mel-frequency cepstral coefficients Coefficients in the
spectrograms are strongly correlated, which would negatively impact
the learning performance of the model. Therefore, the DCT is applied
again to decorrelate the coefficients and obtain the power cepstrum C
of the speech frame:

Ck = 2c

N−1∑
n=0

S (n) cos

(
πk (2n+ 1)

2N

)
, (3.9)
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Figure 3.6: An example of the spectrogram of a sentence.

where c is a scaling factor that makes the matrix of coefficients orthonor-
mal:

c =


√

1
4N if k = 0,√
1

2N otherwise.
(3.10)

The first coefficient in C is discarded, because it indicates the average
power of the input signal and therefore carries little meaning. Coefficients
higher than 13 are also discarded, because they represent only fast
changes in the spectrogram and increase the complexity of the input
signal while adding increasingly less meaning to it. Next, the first and
second derivatives of the MFCCs over time are concatenated to the 13
MFCC features, obtaining an input vector of size 39.

Then, these input vectors are balanced by centering each frame around
the value 0. An example of these input vectors is given in Figure 3.7.
Note that before training a model, all input vectors (including validation
and testing data) are standardized channel-wise according to the full
training set (see 4.1 for an example input as used by the model).

target output The target output of the model is a frame-wise
representation of the phones that are uttered in a sentence. The TIMIT
corpus contains text files indicating in what order phones occur in a
sentence, and their starting and ending sample points.

These phones are discretized into frames such that they align correctly
with the MFCCs. They are represented in one-hot vector encoding. Since
the dataset contains 61 different phones, this is also the length of these
vectors.

Figure 3.7 illustrates the waveform data and its frame-wise aligned
MFCCs and target output. Note that the full dataset of features is
standardized per training data channel; feature channels are first centered
around 0, and then divided by their standard deviations. To prevent
data leakage, validation and testing data are standardized according to
the means and standard deviations in the training data. An example of
a standardized input is shown in Figure 4.1.
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(a) MFCCs centered around 0 per channel. Note that these MFCCs are standard-
ized channel-wise over the full training dataset, and that the first and second
derivations of the MFCC features are omitted.
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(b) Target signal encoded as a one-hot vector changing over time. The order of phones
along the one-hot vector corresponds to the order in which they are encountered
in processing the dataset. This particular example shows a pattern because it is
the first processed sentence in the training set.

Figure 3.7: MFCCs features and corresponding target phones.

3.2 enhancing e-prop

In my project I examined two types of enhancements to apply the e-prop
learning algorithm on the TIMIT dataset.

The first type is the effect of the neuron model; particularly, the effect
of including STDP behavior is analyzed. The second type is the effect
of a multi-layered architecture.

The results of these enhancements will answer the research questions
posed in Chapter 1, i.e., whether multi-layered architectures or inclusion
of STDP in neuron models improves the performance of e-prop.

3.2.1 Multi-layer architecture

The multi-layer e-prop architecture can be described in the same formal
model as its single-layer counterpart, in which the hidden state is based
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Figure 3.8: An illustration of a multi-layer network architecture. Some details
shown in Figure 2.2 are omitted for clarity.

on temporally (i.e., online) and spatially locally available information at
a neuron j:

htj = M
(
ht−1
j , zt−1,xt,Wj

)
. (2.1 revisited)

For the multi-layer architecture, however, neurons in deeper layers
no longer depend on the input, but on the observable states of the
previous layer at the same time step, such that at every time step, a full
pass through the network is made. We modify the indexing notation
accordingly, in order to directly refer to neurons and weights in a
particular layer r ∈ [1 . . R]:

htrj =

M
(
ht−1
rj , zt−1

r ,xt,Wrj

)
if r = 1

M
(
ht−1
rj , zt−1

r , ztr−1,Wrj

)
otherwise,

(3.11)

where htrj (resp. ztrj) is the hidden state (resp. observable state) of a
neuron j in layer r, and Wrj = Win

rj ∪Wrec
rj is the set of afferent weights

to neuron j in layer r.
Similarly, the observable state can be modeled by

ztrj = f
(
htrj
)

(3.12)

and the network output by

ytk = κyt−1
k +

∑
j,r

W out
rkj z

t
rj + bk, (3.13)

whereW out
rkj is a weight between neuron j in layer r and output neuron k.

Note that the summation over r entails that the output layer is connected
to all neurons in all layers in the network. This allows trainable broadcast
weights in earlier layers, such as those found in symmetric and adaptive
e-prop.

multi-layer alif neurons An ALIF neuron in a multi-layer
architecture is similar to one in a single-layer architecture (see Section
2.2). The only difference, apart from the layer indexing, is its activity
update. For a multi-layer ALIF neuron, the activity value is given by

vt+1
rj = αvtrj +

∑
i 6=j

W rec
rji z

t
i +

∑
i

W in
rjiI − ztrjvth, (3.14)
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where

I =

xt+1
i if r = 1

zt+1
r−1,i otherwise.

(3.15)

3.2.2 Other neuron types

In this section, the STDP-ALIF and Izhikevich neuron models are
presented. The advantage of these models over the standard ALIF
model is that they naturally elicit STDP. Additionally, the Izhikevich
model has an implicit refractory mechanism that is built into its system
of equations, making it a more biologically plausible model, as opposed
to the (STDP-)ALIF model that requires an explicit timer variable in a
neuron’s hidden state (but it is still local and online).
The Izhikevich e-prop neuron model was first presented by Traub

et al. (2020) only in a single-synapse demonstration of its STDP prop-
erties. In this report, the performance of the e-prop Izhikevich model
is experimentally validated in a learning task for the first time. Traub
et al. (2020) also described the STDP-LIF, which is a non-adaptive
modification of the standard LIF neuron. Here, its adaptive counterpart,
the STDP-ALIF model, is derived and validated as well. This allows for
a direct comparison between the ALIF and STDP-ALIF models, such
that the effects of STDP can be more precisely analyzed.

3.2.2.1 STDP-ALIF

The key change between the ALIF and STDP-ALIF neuron is that the
latter is reset to zero at a spike event, and when its refractory period of
δtref time steps ends. Recall that in contrast, the standard ALIF neuron
only uses a soft reset by including a term −ztrjvth in its activation update
equation (Equation 3.14).
The activation update of the STDP-ALIF neuron is therefore:

vt+1
rj = αvtrj +

∑
i 6=j

W rec
rji z

t
i +
∑
i

W in
rjiI−ztrjαvtrj−z

t−δtref
rj αvtrj , (3.16)

where, again, I is the network input if r = 1, otherwise it is the observable
state of neuron i in the preceding layer (see Equation 3.15). Recall that a
neuron cannot spike for T refr time steps after its last spike—therefore, the
neuron is still suppressed at time step t− δtref and hence the fourth and
fifth terms −ztrjαvtrj and −z

t−δtref
rj αvtrj cannot simultaneously be nonzero.

Note also that Equation 3.16 will not necessarily set the activation value
precisely to 0 at spike time and after the refractory time, as only the
activation that caused the neuron to spike will be subtracted, and the
new input values described in its second and third term will be added
to the new activation value.
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The hidden state derivative changes accordingly:

∂vt+1
rj

∂vtrj
= α− ztrjα− αz

t−δtref
rj (3.17)

= α
(

1− ztrj − z
t−δtref
rj

)
. (3.18)

Note that the absence of atrj in the new activation update entails that
the other entries of the hidden state Jacobian are equal to those of the

ALIF model, i. e.,
∂vt+1
rj

∂atrj
= 0,

∂at+1
rj

∂vtrj
= ψtrj , and

∂at+1
rj

∂atrj
= ρ− ψtrjβ.

Using these values, we compute the new eligibility trace:

εt+1
rji =

∂ht+1
rj

∂htrj
· εtrji +

∂ht+1
rj

∂Wrji
(3.19)

=

α(1− ztrj − z
t−δtref
rj

)
εtrji,v + zt−1

ri

ψtrjε
t
rji,v +

(
ρ− ψtrjβ

)
εtrji,a

 (3.20)

Note that the observable state of the afferent neuron zt−1
ri in Equation

3.20 changes to ztr−1,i if r > 1 and εt+1
rji corresponds to a weight between

layer r − 1 and r. If the weight is instead between the network input
and the first layer, then this zt−1

ri changes to xti. Note also that this
corrects an inconsistency in the STDP-LIF model described in Traub
et al. (2020), where the observable state at the current time step t is
accessed instead of t− 1, thereby diverging from the e-prop model in
Equation 3.11.
The eligibility trace remains

etrji =
∂ztrj
∂htrj

· εtrji (3.21)

= ψtrj
(
εtrji,v − βεtrji,a

)
. (3.22)

By resetting the neuron activation at spike time and after the refrac-
tory time, STDP is introduced in the system by clamping the pseudo-
derivative to a negative value, instead of 0, during the refractory time:

ψtrj =

−γ if t− tzrj < δtref

γmax
(

0, 1−
∣∣∣vtrj−vthvth

∣∣∣) otherwise
(3.23)

The factor of the pseudo-derivative and the eligibility vector can therefore
produce both positive or negative eligibility traces and gradients (see
Figure 3.9).

3.2.2.2 Izhikevich neuron

The standard system of equations of the Izhikevich neuron is described
by

v′ = 0.04v2 + 5v + 140− a+ I (3.24)
a′ = 0.004v − 0.02a, (3.25)
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Figure 3.9: A single-synapse simulation of the STDP-ALIF neuron model.
Orange and blue lines respectively describe properties of the afferent
and efferent neuron.

where v′ and a′ are the values of the activation value v and recovery
variable a at the next time point, and I is the current input to the
neuron. Following Traub et al. (2020), the activation reset and refractory
period are built into this system of equations by replacing v and a by
respectively:

ṽtrj = vtrj −
(
vtrj + 65

)
ztrj (3.26)

ãtrj = atrj + 2ztrj , (3.27)

such that when a spike event occurs (i. e., ztrj = 1), the activation value
is reset to its baseline value of −65, and the recovery variable increases
by 2. We describe this “self-resetting” Izhikevich neuron in the context
of multi-layer e-prop as follows:

vt+1
rj = ṽtrj + 0.04

(
ṽtrj
)2

+ 5ṽtrj + 140− ãtrj + Itrj (3.28)

at+1
rj = ãtrj + 0.004ṽtrj − 0.02ãtrj . (3.29)
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The partial derivatives of the hidden state htrj can then be computed:

∂vt+1
rj

∂vtrj
=
(
1− ztrj

) (
6 + 0.08vtrj

)
(3.30)

∂at+1
rj

∂vtrj
= −1 (3.31)

∂vt+1
rj

∂atrj
= 0.004

(
1− ztrj

)
(3.32)

∂at+1
rj

∂atrj
= 0.98. (3.33)

Using these values, we compute the new eligibility trace:

εt+1
rji =

∂ht+1
rj

∂htrj
· εtrji +

∂ht+1
rj

∂Wrji
(3.34)

=

(1− ztrj
)(

6 + 0.08vtrj

)
εtrji,v − εtrji,a + zt−1

ri

0.004
(

1− ztrj
)
εtrji,v + 0.98εtrji,a

 (3.35)

As in Traub et al. (2020), the pseudo-derivative is defined as

ψtrj = γ exp

min
(
vtrj , 30

)
− 30

30

 , (3.36)

such that ∂ztrj
∂vtrj
∂ztrj
∂utrj

 =

(
ψtrj

0

)
, (3.37)

and therefore only εtrji,v is used in computing the eligibility trace:

etrji =
(
ψtrj 0

)(εtrji,v
εtrji,a

)
(3.38)

= ψtrjε
t
rji,v. (3.39)

However, when inserting these equations in a single-synapse demo,
the eligibility vector assumes extremely high or low values (see Figure
3.10).

This suggests that the Izhikevich neuron does not fit the e-prop
framework well. In this report, this is corrected by clipping the value
of εtji,v to [−3, 3] and εtji,a to [−0.005, 0.005]. This correction yields the
desired STDP behavior (see Figure 3.11).
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Figure 3.10: A single-synapse simulation of the uncorrected Izhikevich neuron.
Note that εtji,v takes on extreme values and that the eligibility
vector flips sign at any pair of spikes. Orange and blue lines
respectively describe properties of the afferent and efferent neuron.
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Figure 3.11: A single-synapse simulation of the corrected Izhikevich neuron.
Orange and blue lines respectively describe properties of the
afferent and efferent neuron.
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3.3 regularization

Firing rate regularization and L2 regularization are applied to improve
the stability of the learning process and the generalizability of the
resulting model. These two regularization methods are motivated by
biological plausibility, ease of implementation in the e-prop framework,
and improved empirical performance.

3.3.1 Firing rate regularization

A firing rate regularization term is added to individually modulate
the spike frequencies of the neurons. Since spikes in a neuromorphic
architecture cost energy, the practical motivation for this regularization
term is that it increases the energy efficiency of the model. The biological
motivation is that the firing rate of biological neurons is also under
homeostatic control (Erickson et al., 2006).
Firing rate is implemented by adding a regularization term Ereg to

the loss function that penalizes neurons that have a too low or too high
firing rate:

Ereg =
1

2

∑
j

(
f target − fav,t

rj

)2
, (3.40)

where f target is a target firing rate of 10 Hz, and

fav,t
rj =

1

t
ztotal,t
rj (3.41)

is the running average of the spike frequency, where ztotal,t accumulates
spikes emitted by neuron j in layer r up to (and including) time step t.
Note that ztotal,0 = 0, i. e., the accumulation resets at each new training
sample. By implementing this sum as a hidden variable, e-prop remains
an online and local training algorithm when firing rate regularization is
implemented. Adhering to these two constraints supports the biological
plausibility of the firing rate regularization term. After the training
sample, the effect of the firing rate regularization on the weight update
is integrated.
Another possibility to compute the average firing rate would be to

track an exponentially decaying firing rate. This was not implemented in
this research for the following two reasons. First, the effects of the firing
rate regularization are integrated only at the end of a training sample (see
Equation 3.43), likely causing any fluctuations of the average frequency
over time to cancel each other out and result in an effectively similar
regularization term as the current, non-decaying frequency calculation.
Second, since one of the objectives of this research is to reproduce results
obtained in Bellec, Scherr, Subramoney, et al. (2020) and expand on that
paper, the regularization term is kept as faithful to theirs as possible.
However, analyzing the effects of different firing rate regularization terms
might be an interesting direction for future research.
To insert the regularization term into the e-prop framework, we

compute the weight update that regularizes the firing rate toward f target
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through gradient descent, similarly to the main e-prop weight update in
Equation 2.32:

∂Ereg

∂ztrj
=
(
f target − fav,t

rj

)
. (3.42)

Note that this regularization loss differs from the firing rate regularization
described in Bellec, Scherr, Subramoney, et al. (2020), in which the
firing rate is calculated in an offline fashion, by retroactively computing
the average firing rate based on all spikes instead of only accumulated
spikes. Note also that in Bellec, Scherr, Subramoney, et al. (2020), ∂Ereg

∂ztrj

is multiplied with the eligibility trace etrji, as in Equation 2.32 to obtain
the weight update, whereas in this report, the eligibility trace is omitted,
resulting in a number of benefits:

1. It allows silent neurons that have infrequently spiking afferent
neurons to more easily increase their firing rate, because their
low afferent eligibility traces no longer nullify the regularization
gradients, and thereby result in a better empirical learning perfor-
mance.

2. It is more efficient in emulations on von Neumann machines,
because the element-wise multiplication of ∂Ereg

∂ztrj
and the eligibility

trace is a relatively large computation on the order Θ
(
n2
)
that no

longer needs to be computed.

3. It is more intuitive, as only the gradient of the firing rate is used
to compute the weight update.

We apply the weight update ∆Wrji of the regularization gradient using

∆regWrji = −η creg
∑
t

(
f target − fav,t

rj

)
. (3.43)

Note that the regularization gradients can be combined and accumu-
lated over time on the same synaptic variable as the normal gradients,
facilitating practical implementation of the learning procedure in both
software emulations and neuromorphic embeddings:

∆Wrji = −η
∑
t

(
creg

(
f target − fav,t

rj

)
+ Ltrj · ētrji

)
. (3.44)

3.3.2 L2 regularization

To regularize weights around 0, a small fraction (parametrized by cL2)
of the value of the weight is added to its gradient value at every weight
update:

∆L2Wrji = −η cL2 ·Wrji, (3.45)

which can be added to the full weight update as an extra term:

∆Wrji = −η

(
cL2 ·Wrji +

∑
t

(
creg

(
f target − fav,t

rj

)
+ Ltrj · ētrji

))
.
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(3.46)

The statistical motivation for this extra regularization term is that by
softly restricting the weights, the network is less likely to overfit on the
training data.

The biological motivation is that biological synapses are regularized by
a multiplicative factor to decrease the strength of individual synapses to
the same proportion (Turrigiano and Nelson, 2000), likely counteracting
the run-away effects that the positive feedback of STDP naturally induces
(Siddoway, Hou, and Xia, 2014). Moreover, there are natural bounds of
the strength of a biological synapse, measured by the amplitude of the
postsynaptic potential, because the number of neurotransmitter vesicles
and release sites is physically limited (Del Castillo and Katz, 1954).
These natural limits are approximately 0.4 mV to 20 mV (Diaz-Rios and
Miller, 2006).

3.4 optimizer

For simplicity, in this report weight updates are described using stochas-
tic gradient descent:

∆Wrji = −η
∑
t

Ltrj · ētrji. (3.47)

However, the results described in Section 4.1 are obtained using Adam
(or Adaptive Moment Estimation) (Kingma and Ba, 2014). This opti-
mization method tracks running averages of the gradient and its second
moment (resp.Mrji and Vrji), and fits the local and online constraints of
e-prop, because the running averages are tracked per individual synapse.
The Adam weight update in the context of multi-layer e-prop is given
by:

M
(i+1)
rji = β1M

(i)
rji + (1− β1)G

(i)
rji (3.48)

V
(i+1)
rji = β2V

(i)
rji + (1− β2)

(
G

(i)
rji

)2
(3.49)

M̂rji =
M

(i+1)
rji

1− βi+1
1

(3.50)

V̂rji =
V

(i+1)
rji

1− βi+1
2

(3.51)

∆W
(i+1)
rji = −η M̂rji√

V̂rji + 10−5

, (3.52)

where G(i) is the estimated gradient
∑

t L
t
rj · ētrji at weight update i, and

β1 = 0.9 and β2 = 0.999 are the forgetting factors for the gradient and
its second moment, respectively. The firing rate and L2 regularization
terms are omitted here for clarity. Note that the forgetting factors are
not indexed, but raised to the power of i + 1, in computing the bias-
corrected estimates M̂rji and V̂rji. Note also that minibatches of size 32
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are used to more accurately estimate the gradient and enable a stabler
descent in the error landscape. The value of G(i)

rji is computed as the
mean over the minibatch.

Note that the learning rate is linearly ramped up from 0 to η during
the first epoch, such that the initial minibatches are used to aggregate
good initial momentum buffers, as the variance is higher when fewer
minibatches are processed. This “warming up” of the learning rate is a
variance reduction technique that has shown beneficial results in training
other models (L. Liu et al., 2019). Empirical observations on the resulting
learning curves (see Section 4.1) suggest that this procedure does not
hamper a rapid initial decrease of the loss function.



4DISCUSS ION

In this chapter, the learning performance and regularization behavior
of the ALIF, STDP-ALIF, and Izhikevich neurons are compared and
discussed. Then, the effect of stacking multiple recurrent layers on
the learning performance and speed is examined. Next, possible future
research avenues are discussed.

4.1 results

Figure 4.1 shows a typical classification result of a full validation sen-
tence.
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Figure 4.1: An example validation result using a trained ALIF model. The plot
in the top row shows the standardized MFCC frames including
its first and second derivatives of a sentence changing over time.
The plot in the second row shows the probability distributions π
of the frame-wise outputs of the model. The plot in the third row
indicates the predicted phone πmax per frame. The plot in the last
row shows the target phones π∗.

4.1.1 Comparing neuron models

accuracy The main outcome of the neuron model comparison is
that in these results, the STDP-ALIF neuron outperforms the ALIF
and corrected Izhikevich neuron models in classifying phones in the
TIMIT dataset. This suggests that including STDP-like behavior to
the ALIF neuron results in a better learning performance, answering
the primary research objective posed in Chapter 1. Furthermore, the
ALIF and STDP-ALIF neuron perform better than the Izhikevich e-
prop neuron model. In Figure 4.2a the Izhikevich neuron reaches a

39
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misclassification rate of 93.8% on the test set, which is only slightly
better than constantly predicting the most frequent class. The ALIF
neuron model reaches a test misclassification rate of 58.4% in relatively
few iterations, after which validation performance starts to decrease.
The STDP-ALIF neuron model scores best, reaching a performance of
48.3% after approximately 3500 iterations, suggesting that the addition
of the STDP mechanism to the ALIF neuron improves the classification
performance. Furthermore, the STDP-ALIF model does not show signs
of overfitting as much as the ALIF neuron such as a decreasing validation
performance in Figure 4.2a. However, the Izhikevich neuron shows STDP
behavior too but performs poorly, suggesting that STDP by itself does
not necessarily constitute a well-performing neuron model. The STDP-
ALIF neuron may instead work by virtue of another factor, such as its
better spike frequency adaptation compared to the Izhikevich neuron
model. Note that the test performance was obtained from the model
with the best validation accuracy (the used hyperparameters are listed
in Table A.2).

Figure 4.2b illustrates the decrease of the cross-entropy score, which
for the ALIF and STDP-ALIF neurons is comparable to that of the
misclassification rate. The cross-entropy and classification performance
of the Izhikevich neuron stalls relatively quickly at poor levels, suggesting
that it trains its bias toward more frequent phone classes in the training
data rather than learning a general relationship between input MFCCs
and classes.
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Figure 4.2: Classification performance on the validation data for each of the
three neuron models in a single-layer e-prop model. The opaque
lines indicate the running average of the real validation scores
indicated by the transparent lines. The star symbols indicate the
performances on the test set, with a misclassification rate of 93.5%
for the Izhikevich neuron, 58.4% for the ALIF neuron, and 48.3%
for the STDP-ALIF neuron type.

firing rate Figure 4.3a illustrates the effect of the firing regular-
ization term. It can be observed that the ALIF and STDP-ALIF neuron
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models are able to quickly modulate their mean spiking frequencies
to the desired target frequency of 10 Hz, but the Izhikevich neuron
overshoots to a mean spiking frequency of approximately 18 Hz.
Figure 4.3b illustrates the decrease of the regularization error. The

regularization error of the Izhikevich and ALIF neuron models quickly
converges to fluctuate around a constant value, whereas that of the
STDP-ALIF neuron model continues to decrease over time, even after
the mean spiking frequency and classification performance have both
converged to a plateau.
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Figure 4.3: Effect of firing rate regularization on the validation data for each
of the three neuron models.

4.1.2 Comparing network depth

The comparison between the network depth in Figures 4.4a–4.4c suggests
that single-layer e-prop networks train considerably more efficiently and
accurately than multi-layer e-prop networks and show less variance
among validation runs. This holds for all tested neuron types. The
cross-entropy error, spiking frequency, and regularization error are also
better for single-layer networks (see Figure A.1).
Therefore, rearranging the neurons into a stacked architecture does

not appear to improve the classification performance, answering the
secondary research objective posed in Chapter 1. In particular, it appears
to diminishes the learning speed to a significant extent and render
multi-layer e-prop architectures more inefficient than single-layer ones.
However, it is not certain that multi-layer architectures are necessarily
worse—they train more slowly, but in this report the performance
was still improving when their training runs were interrupted due to
practical limits. Therefore, particularly for the ALIF neuron, the multi-
layer networks might outperform the single-layer networks if future work
where low computing power and energy costs are not a priority.
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(a) ALIF model.
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(b) STDP-ALIF model.
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(c) Izhikevich model.

Figure 4.4: Accuracy comparison on the validation data between single- and
multi-layer e-prop models.

4.2 possible improvements

There are many hypothetical ways of improving the performance or
biological plausibility of e-prop that have not yet been considered in this
report. For instance, a likely reason that the learning speed of the multi-
layer architectures was slower than their single-layer counterparts is that
the weights are poorly initialized. Empirical observation of the learning
process suggested that during early epochs, spiking activity faded in
deeper layers, because the spiking activity from a preceding layer is
generally weaker than the input values the first layer receives. Higher
weights in-between layers mitigate this fading activity, but require some
search to find a good value. In this report, the firing rate regularization
term approximated this value, but learning is more efficient with a
better initialization, since initial synaptic weights significantly affect the
performance of STDP-based SNNs (J. Kim et al., 2020).
Also in this report, certain parameters such as firing rate targets

(f target), activity leak (α), and feedback signals were constant for all
neurons, except the threshold adaptivity (β), which was 0 for a randomly
selected 25% of the neurons to emulate non-adaptive LIF neurons. Future
research could examine the effects of sampling some of these parameters
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from a distribution for each neuron, thereby creating a more diverse
population of neurons with different time scales. This sampling requires
a careful assessment of the time scales related to the learning task; in
particular, the network should be able to process the slowest relevant
time scale of the task (Jaeger et al., 2021). In the TIMIT classification
task, for instance, this could span the whole time fragment, because
initial words give semantic context to all subsequent words. However,
a more predictive time scale for the TIMIT dataset is on the scale of
approximately 8 MFCC frames, which is now accurately captured by
the adaptive threshold component in the ALIF neuron model. Temporal
dependencies can also be found when moving in the opposite direction—
later words and sounds give informative context to earlier words and
sounds. In Bellec, Scherr, Subramoney, et al. (2020), this context was
captured in a bidirectional network, improving the accuracy by nearly
15%. In this report, this was empirically validated as well, but left
undiscussed because a bidirectional network is not biologically plausible,
as directly accessing future input values violates the “online” constraint.
According to Bellec, Scherr, Subramoney, et al. (2020), e-prop suggests
that the experimentally found diverse time constants of the firing activity
of populations of neurons in different brain areas (Runyan et al., 2017)
are correlated with their capability to handle corresponding ranges of
delays in temporal credit assignment for learning. Setting different values
for these parameters per layer might also have a beneficial effect; Ahmed
et al. (1998) suggested that deeper layers display slower and weaker
adaptation rates than early layers.
In the brain, neurons primarily tend to connect to nearby neurons.

This suggests that the effects of the topology within a layer might
positively affect the learning process. A simple lattice topology might
better approximate the connectivity of the brain, decrease the computa-
tional complexity in emulations in von Neumann machines, and allow
easier on-chip implementations in neuromorphic hardware. Hierarchical
clustering of neurons might also have a beneficial effect, as this has
been demonstrated to improve R-STDP in SNNs (Weidel, Duarte, and
Morrison, 2021) and address the scalability issue of SNNs (Carrillo et al.,
2012). Because a neuromorphic system can support complex network op-
erations (Hasler and Akers, 1990), large-scale conductance-based SNNs
(Yang, B. Deng, et al., 2019; Yang, J. Wang, et al., 2019) and asyn-
chronous communication in VLSIs through address-event-representation
(“A Pulse-Coded Communications Infrastructure for Neuromorphic Sys-
tems” 1998; Lazzaro et al., 1993) might be suitable to further customize
the connectivity graph of an e-prop architecture.
Other exciting research avenues include connectivity graphs that

change over time through a dynamic pruning and growing of weights
and neurons. Here, the biological motivation is that the human brain
prunes synaptic connections during early development (Huttenlocher
et al., 1979). Elbez et al. (2020) demonstrated that 75% of a SNN can be
compressed while preserving its performance, but it is not clear if this
can be applied in a biologically plausible way in the e-prop framework.
However, integrating stochastic synaptic rewiring (Kappel et al., 2018)
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into an ALIF network can improve its short-term memory (Bellec, Scherr,
Subramoney, et al., 2020).

Finally, synaptic delay might improve the temporal processing power
of an e-prop model. In this report, communication between neurons
was transmitted as a spike over a synapse with a delay of 1 ms. This
delay could differ among synapses, such that potentially informative
past inputs are more accurately preserved in synaptic delays, rather
than only in eligibility traces and activity loops. This can help deal with
tasks that require processing information on multiple time spans (Jaeger
et al., 2021). This resembles the variable physical length of myelinated
biological synapses and the number of nodes of Ranvier along them,
affecting the conductance of the action potential (Bean, 2007).

4.3 future directions

As neuromorphic computing matures, neuroscience improves, and DL
increasingly hits fundamental limitations, there is an exciting future for
biologically plausible SNNs. There is much to gain from cross-fertilization
between these fields. The popularity of DL was accelerated by accessible
platforms to implement and deploy ANNs. Similar high-level simulation
platforms are now in active development, which can integrate the typical
behavior of memristive device models into crossbar architectures within
DL systems (Lammie et al., 2020).
Recent advances in neuromorphic computing indicate this increas-

ing popularity. Neuromorphic architectures have been used for mapless
navigation with 75 times lower power and better performance (Tang,
Kumar, and Michmizos, 2020); as low-power solutions for simultaneous
localization and mapping of mobile robots (Tang, Shah, and Michmizos,
2019), for planning (Fischl et al., 2017), and control (Blum et al., 2017);
and self-repairing SNN for fault detection (Zhu et al., 2017). While cross-
fertilization between neuromorphic computing and quantum computing
is starting to take place (Russek et al., 2016), as quantum superposition
and entanglement can be used to process information in parallel and
in a high-dimensional state space (Fujii and Nakajima, 2017; Tacchino
et al., 2019; Yamamoto et al., 2017), more physics and materials science
is required to build efficient neuromorphic architectures (Marković et al.,
2020). The same holds for the cross-fertilization between neuroscience
and learning rules of biologically plausible SNNs. Nanodevices that
emulate biological synapses with learning functions can benefit neuro-
morphic architectures (Ren et al., 2018; Y. Wang et al., 2018; Yao et al.,
2017), particularly the two-terminal memristor (Jo et al., 2010; Z. Wang
et al., 2017). However, it has been argued that the learning principles of
biological NNs are not explored enough to design engineering solutions
(Gorban, Makarov, and Tyukin, 2019; Taherkhani et al., 2018). Feedback
connections, for which the brain uses neurotransmitters, may become
particularly problematic in large-scale neuromorphic systems. Another
issue in analog computation is how to match the system’s internal tem-
poral processing to that of its inputs. Emulating neural dynamics on
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a physical substrate is more efficient but requires constraints to match
the brain’s timescales (Jaeger et al., 2021; Mead, 1990). Future work
on e-prop could explore a combination with attention-based models in
order to cover multiple timescales (Bellec, Scherr, Subramoney, et al.,
2020).





5CONCLUS ION

As deep learning models require increasing amount of energy, the up-
coming neuromorphic computing paradigm offers various ways to more
efficiently run spiking neural networks. Spiking neural networks can
learn to perform tasks with a good performance and low energy require-
ments, but there is no established learning algorithm yet. In this paper,
the e-prop learning algorithm for recurrent spiking neural networks was
combined with STDP, which is a major component of biological learning.
In this report, the e-prop framework was applied on the TIMIT

phone classification task, meeting the objectives listed in Chapter 1.
First, the performance of the ALIF neuron was reproduced using the
explicit e-prop equations. Next, the STDP-LIF neuron was modified to
the STDP-ALIF model that was experimentally verified to outperform
the ALIF neuron on the TIMIT learning task. Also, the Izhikevich
neuron, which also shows STDP behavior, was shown to be unstable
and performing worse than the ALIF and STDP-ALIF neurons. This
suggests that STDP does not provide an adequate neuron model by
itself, but that e.g. spike frequency adaptation also needs to be taken
into account. However, enhancing an already well-performing neuron
model to display STDP-like properties can improve the performance.
Finally, the effect of stacking multiple layers was also examined in

combination with the ALIF, STDP-ALIF, and Izhikevich neuron model,
and did not appear to improve the learning performance in this task.
Possible future work on this topic includes research on the effects of

more elaborate weight initialization methods, variable hyperparameters
for individual neurons, different static or dynamic connectivity graphs,
and synaptic delays.

The scientific gain of this research is that the link between STDP and
e-prop was more closely examined than in previous literature, and that
the inclusion of STDP in e-prop can lead to a more accurate or efficient
learning performance. E-prop combined with the STDP-ALIF neuron
model remains a framework that offers high potential for biologically
plausible learning algorithms for SNNs, which can be particularly well-
suited for replicating intelligent behavior in low-power neuromorphic
hardware.
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AAPPENDIX

a.1 implementation

The code is available at https://github.com/wkvanderveen/maspro.
It does not require any machine learning libraries (except basic PyTorch
to initialize arrays on the GPU); all computations are explicitly imple-
mented in pure multidimensional NumPy-like arrays. The code contains
a configuration file to set various options for the MFCC preprocessing
and e-prop process, including the number of layers, whether to use an
uni- or bidirectional network (a legacy option not treated in this report),
and the window size in the MFCCs, for example.
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(a) ALIF cross-entropy.
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(b) STDP-ALIF cross-
entropy.
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(c) Izhikevich cross-
entropy.

0 2000 4000 6000
Iterations

0

20

40

60

80

100

M
ea

n 
fre

qu
en

cy
 (H

z)

Mean frequency (Hz) (ALIF)

1 layers
2 layers
3 layers

(d) ALIF spike rate.
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(e) STDP-ALIF spike
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(f) Izhikevich spike rate.
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Figure A.1: Cross-entropy rates, mean spiking frequencies, and regularization
errors for multi-layer networks.
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mels hz filterbank

0 0 0
105 68.5 2
210 143.7 4
315 226.2 7
420 316.8 10
525 416.3 13
630 525.5 16
735 645.4 20
840 777 24
945 921.5 29
1050 1080.1 34
1155 1254.4 40
1260 1445.4 46
1365 1655.3 53
1470 1885.7 60
1575 2138.6 68
1680 2416.3 77
1785 2721.2 87
1890 3055.9 97
1995 3423.3 109
2100 3826.7 122
2205 4269.5 136
2310 4755.7 152
2415 5289.4 169
2520 5875.3 188
2625 6518.6 209
2730 7224.8 231
2835 8000 256

Table A.1: Conversion table between linearly spaced Mels and their corre-
sponding frequencies and filterbank boundaries.
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symbol description value

α Activity leak 0.8
β Adaptivity 0.184
ρ Adaptivity leak 0.975
κ Output decay 0.8
γ Pseudoderivative dampening 0.3
vth Base threshold 0.95
δtref Refractory time 2
η Learning rate 0.01
β1 Adam momemtum factor 1 0.9
β2 Adam momemtum factor 2 0.999
creg Firing rate regularization 50
cL2 L2 regularization 10−5

f target Target firing rate 0.01
N Network size 800∗

Table A.2: The full list of hyperparameter values, used in all networks and
neuron model types.
*This is the total number of neurons in multi-layer networks (400
per layer in 2-layer networks, and 266 in 3-layer networks).
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