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1. Introduction

Abstract algebra is a field of mathematics which, among other things, is con-
cerned with the classification of some mathematical structures. Looking for so-
lutions of polynomials over a field is natural and it can lead to exploring and
classifying field extensions. This is the subject of Galois theory, which translates
the problem of studying a kind of field extension into that of studying a group
associated with it, namely the Galois group [18]. A division algebra over a given
field is, in some sense, a possibly non-commutative field extension. In a similar
manner to Galois theory, an interesting group arises in the attempt of classifying
finite-dimensional central division algebras over a fixed field k. This is the Brauer
group, named after Richard Brauer [2].

An algebra over a field k is both a k-vector space and a ring [14, Chapter 18].
Thus, a lot of definitions that apply to rings or vector spaces make sense for al-
gebras too. For instance, an algebra is simple if it is simple as a ring, and it is a
division algebra if it is a division ring. It is finite-dimensional, if it is as a vector
space. We also say that a k-algebra is central if its center is the field k.

The classes of central simple algebras over k modulo a certain equivalence re-
lation form an abelian group, called the Brauer group, where the group law is
given by the tensor product and the identity element by the class of k. One im-
portant result discussed in the thesis is that, by using Wedderburn’s theorem,
one establishes a bijection between the Brauer group and all of the isomorphism
classes of finite-dimensional central division algebras [16, Theorem 9.129]. The
Brauer group can be trivial, such as the Brauer group of an algebraically closed
field.

Quaternion algebras are a specific example of finite-dimensional central simple
k-algebras 4.3. Hence, we are going to study their classes in the Brauer group.

Finally, we make some explicit computations with elements of order two, and,
in particular, with classes of quaternion algebras. In contrast to algebraically
closed fields, the Brauer group of Q is very complicated. That is the reason we
restrict to Br(Q)[2]. Classes of quaternion algebras are elements of this subgroup.
In fact they generate this subgroup, but that’s also hard. So instead, we content
ourselves with explicit computations with classes of quaternions.
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2. Background on Algebras

All rings used in this project have a unit element. An algebra is a combination
of a ring and a vector space. [14, Chapter 18] Both of these definitions are well
known from the Algebra courses. [18] In order to discuss the definition and some
properties of an algebra over a field, we need first to review some definitions
from algebraic structures.

Definition 2.1. [18, Definition 1.1.1] A division ring is a nonzero ring R with
the additional property that for every nonzero element of the ring R, a ∈ R ,
there exists the inverse element a−1 ∈ R, i.e a non-zero element satisfying aa−1 =
a−1a = 1.

Example 2.2. Division Rings: R, C, Q, or more generally any field, the Hamilton
quaternions HR which will be discussed later in Example 3.19.

Example 2.3. Non Division Rings: The matrix ring M2(Q).
It suffices to take a nonzero element that does not have an inverse.
For [

2 0
0 0

]
∈ M2(Q),

there is not an inverse matrix, since the determinant is equal to 0.
Therefore, the matrix ring M2(Q) is not a division ring.

Definition 2.4. [18, Definition 1.1.1] A field is a division ring with the property
that multiplication is commutative.

2.1. Algebras.

Definition 2.5. [14, Chapter 18] Let k be a field. An algebra A over k is a
nonempty set A, together with three operations, addition (denoted by +), multi-
plication (denoted by juxtaposition) and scalar multiplication (also denoted by
juxtaposition) for which the following properties hold:

(1) A is a vector space over k under addition and scalar multiplication
(2) A is a ring under addition and multiplication
(3) If r ∈ k and a, b ∈ A then r(ab) = (ra)b = a(rb) = (ab)r

An algebra A over a field k is also called a k-algebra.

Example 2.6. Some examples of k-algebras are:
(1) the field k itself
(2) any field containing k
(3) the Hamilton quaternions HR, if k = R

(4) the n× n matrices Mn(k)

As we have seen with both rings and vector spaces, subrings and subspaces
can accordingly be defined as well. Similarly, it is natural to consider subsets of
an algebra that are algebras themselves.

Definition 2.7. [14, Chapter 18] Let A be a k-algebra. A subalgebra of A is a
subset of A that is a subring of A, having the same identity as A, and a subspace
of A.
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Definition 2.8. [14, Chapter 18] If we give the k-algebra A the reverse multiplica-
tion law

(a, b)→ (a ◦ b) = ba
we get a k-algebra, denoted by Ao , and called the opposite k-algebra of A.

Recall that an algebra is a ring with some additional structure. We may wonder
if, considered as a ring, it is a division ring.

Definition 2.9. A nonzero algebra A is called a division algebra if every nonzero
element in A is invertible in A.

Definition 2.10. [14, Chapter 18] The center of a k-algebra A is the subset con-
sisting of all the elements that commute with every other element, i.e.

Z(A) = {a ∈ A , ax = xa | ∀x ∈ A}.

Remark 2.11. [14, Chapter 18] The center of an algebra A is never trivial since it
always contains the field k that A is defined over: k ⊂ Z(A). By this we mean
that the image of k in A under

x 7→ xA1

is always in Z(A). Indeed, ∀a ∈ A and x ∈ k we have that

(x1A)a = x(1Aa) = x(a1A) = (xa)1A = a(x1A).

Lemma 2.12. The center of an algebra A is a subalgebra of A.

Proof. In the course of algebraic structures [18, Exercise I.4.12] we proved that the
center of a ring is a subring so it suffices to show that it is a subspace.

In fact, since we already know that Z(A) is a subring, we only need to check
that it is closed under scalar multiplication.
Let r ∈ k and a ∈ Z(A). Then for any x ∈ A we have:

(ra)x = r(ax) = r(xa) = x(ra).

So ra ∈ Z(A) and hence Z(A) is a subalgebra of A. �

Definition 2.13. [14, Chapter 18]: Let k be a field and A an algebra over k. Then
A is central if its center is just k in the sense of Remark 2.11.

We now recall the definition of a right, left and a two-sided ideal of a ring from
the course ”Algebraic Structures”. However, in the course we often encountered
commutative rings so the distinction among the three definitions was often lost.

Definition 2.14. [18, Definition II.2.2] A right ideal I of a ring R is a subgroup of
the additive group of R. Moreover,

ar ∈ I, for all r ∈ R, a ∈ I.

Definition 2.15. [18, Definition II.2.2] A left ideal I of a ring R is a subgroup of
the additive group of R, with the additional property:

ra ∈ I, for all r ∈ R, a ∈ I.

Definition 2.16. [18, Definition II.2.2] A two-sided ideal I of a ring R is both a
right and a left ideal, closed under right and left multiplication:

ar, ra ∈ I, for all r ∈ R, a ∈ I.
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Definition 2.17. [14, Chapter 18] A k-Algebra A is simple if its only two-sided
ideals are {0} and A.

Example 2.18. The k-algebra Mn(k) is simple, as we will see in Example 4.1.

Proposition 2.19. Every division k-algebra is simple.

Proof. In a division k-algebra A every nonzero element is a unit. Thus, if I is a
non-zero two-sided ideal and q ∈ I, we have q−1 ∈ A and hence

q · q−1 = 1A ∈ I,

but this implies
a · 1A = a ∈ A, ∀a ∈ A.

This shows that I is equal to A. �

Definition 2.20. Dimension of a k-algebra: The dimension of a k-algebra is its
dimension as a k-vector space.

Assumption 2.21. Every algebra from now on will be assumed to be finite-
dimensional.

Example 2.22. Central Simple k-algebras
(1) The n× n matrices over k: Mn(k) over k (see Example 4.1)
(2) Central division algebras over k (see Example 4.2)
(3) Quaternion algebras over k (see Example 4.3)

Algebras over a fixed field k are k-vector spaces, hence we can define the tensor
product of two such algebras, as we normally do for more general modules over
a ring:

Definition 2.23. [17, VII.3.1 Definition] If R is a ring and M, N are R-modules,
then a tensor product of M and N is a pair (T, β) in which T is an R-module
and β : M × N → T is a bilinear map, such that the following holds: given
any R-bilinear map b : M× N → S for some R-module S, there exists a unique
R-module homomorphism f : T → S such that b = ( f ◦ β).

Theorem 2.24. Existence and Uniqueness theorem of tensor products[17, VII.3.4
Theorem]: For given M and N there always exists a tensor product (T, β). It is
unique up to isomorphism and we denote it by M⊗R N =: T where β is denoted
by ⊗.

Elements in M ⊗R N, that have the form m⊗ n for some m ∈ M and n ∈ N
are called elementary tensors. In the case when R is a field k and M and N are
algebras over k, we may give the tensor product of M and N the structure of a
k-algebra:

Theorem 2.25. Let A and B k-algebras. There is a unique multiplication on A⊗k B
making it a k-algebra such that

(a⊗ b)(a′ ⊗ b′) = aa′ ⊗ bb′

for elementary tensors. The multiplicative identity is 1⊗ 1.

The proof of the theorem is given in [4, Theorem 7.1].
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2.2. Homomorphisms and Isomorphisms of Algebras. A homomorphism is a
structure-preserving map between two algebraic structures of the same type. For
instance between two groups, two vector spaces, two rings or two algebras.

Definition 2.26. [14, Chapter 18]: Let A and B be k-algebras.
A map σ : A → B is a k-algebra homomorphism if and only if it is a ring homo-
morphism and a linear transformation. That is:

(1) ∀ a, a′ ∈ A
σ(a + a′) = σ(a) + σ(a′)

(2) ∀ a, a′ ∈ A
σ(aa′) = σ(a)σ(a′)

(3) σ(1A) = 1B.
(4) For ∀ r ∈ k and a ∈ A:

rσ(a) = σ(ra)

An isomorphism of k-algebras is a bijective algebra homomorphism. A k-
endomorphisms is a homomorphism from a k-algebra to itself.
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3. Definition and properties of Quaternion Algebras

A brief introduction to quaternion algebras [18] was given in the Algebraic
Structures course but here they will be analysed in more depth. In this chapter k
denotes a field of characteristic different than 2.

3.1. Definition and Properties.

Definition 3.1. [5, Definition 3.3] A quaternion algebra over k is a 4-dimensional
k-algebra with a basis 1, i, j, ij with the following multiplicative relations:

(1) i2 ∈ k×, j2 ∈ k×, ij = −ji

and every c ∈ k commutes with i and j. When

i2 = a, j2 = b

this ring is denoted by (a, b)k.

We need to show that the above k-algebra is well-defined.

Lemma 3.2. There is a unique multiplication on (a, b)k, that is associative and
compatible with the multiplicative relations of (1).

Proof. The quaternion algebra (a, b)k can be written as a vector space over k:

(a, b)k = k + ki + kj + kij.

Thus all properties of addition are inherited from the vector space structure. Mul-
tiplication is less trivial, since Definition 3.1. only specifies some multiplicative
relations. We extend it to (a, b)k using associativity:

• associativity: There is a unique possible associative multiplication ta-
ble on the basis 1, i, j, ij which satisfies the multiplicative relations of the
quaternion k-algebra. This is given by:

× 1 i j ij
1 1 i j ij
i i a ij aj
j j -ij b -bi
ij ij -aj bi -ab

By the multiplication table we see that (a, b)k is closed under multiplica-
tion, since any element in (a, b)k is a k-linear combination of 1, i, j, ij. We
need to check that the resulting multiplication law on (a, b)k is associative,
i.e. for all q1, q2, q3 ∈ (a, b)k

(q1q2)q3 = q1(q2q3).

Actually it is enough to check that associativity holds for all triples q1, q2, q3
of basis elements. We verify this in a few cases; the proof in the remaining
cases is similar.
(1)

(ii)i = ai = ia = i(ii)
(2)

(ii)j = aj = i(ij)
(3)

(ii)(ij) = aij = iaj = (i)(iij)
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(4)
(ij)j = bi = ib = i(jj)

...
• distributivity: We need to show that

q1(q2 + q3) = q1q2 + q1q3

and
(q1 + q2)q3 = q1q3 + q2q3

This follows from the fact that multiplication and addition in k satisfy
distributivity.

Therefore, the quaternion k-algebra has a unique k-algebra structure. �

Lemma 3.3. Any k-algebra generated as a k-vector space by symbols 1, i, j, ij sat-
isfying the multiplicative relations of Definition 3.1 has dimension 4.

Proof. It suffices to show that 1, i, j, ij are linearly independent.
We start by showing that 1 is not in the k-span of i, denoted 〈i〉k. Suppose 1 ∈ 〈i〉k,
then this would imply

(2) 1 = α · i, for some α 6= 0

We can multiply (2) on the right by j:

1 · j = α · i · j
We can multiply (2) on the left by j:

j · 1 = α · j · i
so we can equate them:

α · i · j = α · j · i;
since α 6= 0, this implies that

i · j = j · i⇒ 2ij = 0

But this is a contradiction since char(k) 6= 2 and ij 6= 0 since (ij)2 ∈ k×.
Therefore, 1 is not in the k-span of i. By a similar argument, 1 is not in the k-span
of j. So 1 and i are linearly independent as well as 1 and j.
Now we need to check whether j is linearly independent with i and 1. We proceed
in a similar manner as before:
Assuming j ∈ 〈1, i〉k then j can be written as:

(3) j = α + βi,

for some β 6= 0. Right multiplying (3) with i we get:

ji = αi + βi2

left multiplying (3) with i we get:

ij = αi + βi2

We observe that the right hand side of both equations is the same so we can
equate them:

ij = ji⇒ 2ij = 0
Which by the same argument as before, is a contradiction so j is not in 〈1, i〉k,
therefore, 1, i, j are linearly independent. We only need to check whether ij is in
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〈1, i, j〉k.
Suppose ij ∈ 〈1, i, j〉k, then we can write it as:

(4) ij = α + βi + γj,

for some α, β, γ ∈ k. Multiplying (4) on the left by i we get:

aj = i2 j = αi + βi2 + γij⇒ aj− γij = αi + βa

Multiplying (4) on the right by i we have:

iji = αi + βi2 + γji⇒ −aj + γij = αi + βa

This mean we can write:
aj− γij = −aj + γij⇒

2aj = 2γij
Right-multiplying with j:

2ab = 2γbi⇒ ab = γbi

Which is a contradiction since 1 and i are linearly independent and a, b 6= 0.
Therefore, ij is not in 〈1, i, j〉k. So 1, i, j, ij are linearly independent. �

Lemma 3.4. Suppose A is a 4-dimensional k-algebra admitting a basis v1, v2, v3, v4
with the following properties:

(1) v4 = v2v3
(2) v1 = 1A, where 1A is the multiplicative identity of A.
(3) v2

2 = a · 1A
v2

3 = b · 1A
(4) v2v3 = −v3v2

Then A is isomorphic to (a, b)k.

Proof. From (1)− (4), we see that the basis (v1, ..., v4) satisfies the conditions of
the defining basis (1, i, j, ij) of (a, b)k. Then, we see that A satisfies the definition
of (a, b)k algebra, so A and (a, b)k are isomorphic as k-algebras. �

Example 3.5. An example of a quaternion algebra is (−1,−1)R. This is denoted
by HR and it is known as the R- algebra of Hamilton quaternions. In this case
we have that:
i2 = −1, j2 = −1, ij = −ji.
We can compute (ij)2 = ijij = −iijj = −1.

Proposition 3.6. [5, Theorem 4.3] For b ∈ k×, (b, 1)k ' M2(k).

Proof. M2(k) is a 4-dimensional k-algebra admitting a basis

v1 =

[
1 0
0 1

]
, v2 =

[
0 1
b 0

]
, v3 =

[
1 0
0 −1

]
, v4 =

[
0 −1
b 0

]
.

To verify the above form a basis it is enough to show that the elements are linearly
independent. For each i ∈ {0, 1, 2, 3} let yi ∈ k. Then :

y0

[
1 0
0 1

]
+ y1

[
0 1
b 0

]
+ y2

[
1 0
0 −1

]
+ y3

[
0 −1
b 0

]
=
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y0 0
0 y0

]
+

[
0 y1

by1 0

]
+

[
y2 0
0 −y2

]
+

[
0 −y3

by3 0

]
=

[
y0 + y2 y1 − y3

b(y1 + y3) y0 − y2

]
= 02

⇐⇒ y0 = −y2 and y1 = y3 and y1 = −y3 and y0 = y2 ⇒ y0 = y2 = y3 = y4 = 0.

So it is indeed the case.
Let’s check if the basis elements satisfy the properties of the basis 1, i, j, ij of (b, 1)k.

(1)

v2v3 =

[
0 1
b 0

] [
1 0
0 −1

]
=

[
0 −1
b 0

]
= v4

(2)

v1 =

[
1 0
0 1

]
= IM2(k).

(3)

v2
2 =

[
0 1
b 0

] [
0 1
b 0

]
=

[
b 0
0 b

]
= b · IM2(k).

(4)

v2
3 =

[
1 0
0 −1

] [
1 0
0 −1

]
=

[
1 0
0 1

]
= 1 · IM2(k).

(5)

−v3v2 = −
[

1 0
0 −1

] [
0 1
b 0

]
= −

[
0 1
−b 0

]
=

[
0 −1
b 0

]
= v2v3

Thus by Lemma 3.4
(b, 1)k ' M2(k).

�

Remark 3.7. In this section we assumed that the field k is of characteristic differ-
ent from 2. The reason for this is that in characteristic 2 we have

2ij = 0⇒ ij = −ij

thus, if ij = −ji as well then ji = ij. In particular, the multiplicative relations of
Definition 3.1 would extend to a commutative multiplication if char(k) = 2. Then
the center is the entire quaternion algebra, since all of its elements will commute
with every element of the algebra. So they would not be central algebras, unless
(a, b)k = k, and in this project we are interested in analysing the Brauer Group
of a field through central simple algebras. Moreover, it is not possible to have a
non-commutative quaternion algebra of dimension 4 and characteristic 2.

From the definition we can deduce some properties of quaternion algebras.

Lemma 3.8. (1) [3, Exercise 10.2.5 ] There is a symmetry relation in Quater-
nion algebras: (a, b)k ' (b, a)k .

(2) [3, Exercise 10.2.5 ] (a, b)k ' (ac2, b)k where a, b, c ∈ k× .
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Proof. (1) (b, a)k is a 4-dimensional k-algebra with a basis {1, i′, j′, i′ j′} such
that

i′2 = b · 1(b,a)k
, j′2 = a · 1(b,a)k

, i′ j′ = −j′i′.

Let’s find a basis such that the properties of the standard basis of (a, b)k
are satisfied. Pick

v1 = 1(b,a)k
, v2 = j′, v3 = i′, v4 = i′ j′.

Then
(1)

v4 = i′ j′ = v2v3

(2)

v1 = 1(b,a)k

(3)

v2
2 = j′2 = a · 1(b,a)k

v2
3 = i′2 = b · 1(b,a)k

(4)

v2v3 = i′ j′ = −j′i′ = −v3v2

Thus by Lemma 3.4

(a, b)k ' (b, a)k.

(2) (ac2, b)k is a 4-dimensional k-algebra with basis {1, i′, j′, i′ j′} such that

(i′)2 = ac2 · 1(ac2,b)k
, (j′)2 = b · 1(ac2,b)k

, i′ j′ = −j′i′.

Let’s find a basis such that the properties of (a, b)k are satisfied. Pick

v1 = 1(ac2,b)k
, v2 = c−1i′, v3 = j′, v4 = c−1i′ j′.

(1)

v4 = c−1i′ j′ = v2v3

(2)

v1 = 1(ac2,b)k

(3)

v2
2 = i′2(c2)−1 = ac2(c2)−1 · 1(ac2,b)k

= a · 1(ac2,b)k

v2
3 = j′2 = b · 1(ac2,b)k

(4)

v2v3 = i′ j′ = −j′i′ = −v3v2

Thus by Lemma 3.4: (ac2, b)k ' (a, b)k. �
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3.2. Division and split quaternion algebras. In this section it will be shown that
a quaternion algebra over k is either a division algebra or it is isomorphic to
M2(k). We start with some preliminary definitions.
Given q ∈ (a, b)k,

q = α + βi + γj + δij.
we define its conjugate as

q̄ = α− βi− γj− δij
and its norm by

N(q) = qq̄ = α2 − β2a− γ2b + abδ2 = q̄q.

We need to show that the norm is multiplicative, meaning that for all c, d ∈
(a, b)k

N(cd) = N(c)N(d)
So let

c = α1 + β1i + γ1 j + δ1ij, d = α2 + β2i + γ2 j + δ2ij.
then

c̄ = α1 − β1i− γ1 j− δ1ij, d̄ = α2 − β2i− γ2 j− δ2ij.
Therefore,

cd = α1α2 + β1β2a + γ1γ2b− δ1δ2ab + (α1β2 + α2β1 − γ1δ2b + δ1γ2b)i

+(α1γ2 + β1δ2a + α2γ1 − δ1β2a)j + (α1δ2 + β1γ2 − γ1β2 + α2δ1)ij

⇒ cd = α1α2 + β1β2a + γ1γ2b− δ1δ2ab− (α1β2 + α2β1 − γ1δ2b + δ1γ2b)i

−(α1γ2 + β1δ2a + α2γ1 − δ1β2a)j− (α1δ2 + β1γ2 − γ1β2 + α2δ1)ij.

Furthermore,

d̄c̄ = (α2 − β2i− γ2 j− δ2ij)(α1 − β1i− γ1 j− δ1ij)
= α1α2 − α2β1i− α2γ1 j− α2δ1ij− α1β2i + β1β2a + β2γ1ij + β2δ1aj− α1γ2 j

−γ2β1ij + γ2γ1b− γ2δ1bi− α1δ2ij− δ2β1aj + δ2γ1bi− δ2δ1ab

= cd

Since
q̄q = qq̄, cd = d̄c̄

then

N(cd) = cdcd

= cdd̄c̄

= cN(d)c̄

= cc̄N(d)

= N(c)N(d).

Note that N(0) = 0.
Therefore, we can conclude that the norm is multiplicative.

Lemma 3.9. [18, I.1.5 Example] Suppose N(q) 6= 0, then q is invertible and q−1 =
q̄

N(q) .
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Proof. Assumming that N(q) 6= 0,define

q−1 =
q̄

N(q)

Then

qq−1 = q
q̄

N(q)
=

N(q)
N(q)

= 1 =
q̄q

N(q)
= q−1q

So, q−1 is indeed the inverse element of q. �

The norm gives us a first criterion to establish whether a quaternion algebra is
a division algebra.

Proposition 3.10. [18, I.1.5 Example] A quaternion algebra over a field k is a
division algebra if and only if the norm N : (a, b)k → k does not vanish outside 0.

Proof. Assume that (a, b)k is a division algebra. Let q = α + βi + γj + δij ∈ (a, b)k
nonzero, then there exists an inverse element such that

q · q−1 = 1.

Assume that
N(q) = 0 = q · q̄,

left-multiplying by q−1 we obtain

q̄ = q−1q · q̄ = q−1 · N(q) = 0,

which occurs if and only if α, β, γ, δ = 0. Therefore q = 0. So, we get a contradic-
tion. Thus, if (a, b)k a division algebra the norm does not vanish outside 0.
Conversely for N(q) 6= 0, we apply Lemma 3.9, and then the quaternion algebra
is a division algebra over k.

�

Definition 3.11. [9, Definition 1.1.6] A quaternion algebra over k is split if it is
isomorphic to M2(k) as a k-algebra.

Theorem 3.12. [9, Proposition 1.1.7] If (a, b)k is split then it is not a division
algebra.

Proof. If (a, b)k is split then (a, b)k ' M2(k) as k-algebra. M2(k) is not a division
algebra since not every nonzero matrix has an inverse element. For example[

1 0
0 0

]
,

is a nonzero matrix of M2(k) but it is not invertible. Hence a split (a, b)k is not a
division algebra. �

To distinguish between split and division quaternion algebras, we will use an-
other norm, the norm of the field extension k(

√
a)|k. The following discussion

applies for a not being a square in k, otherwise k(
√

a) = k and the norm of the
extension k/k is the identity.
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Definition 3.13. The norm of k(
√

a) for an element

α = x +
√

ay, where a is not a square

is equal to
Nk(
√

a)|k(α) = (x−
√

ay)(x +
√

ay) = x2 − ay2.

Lemma 3.14. Properties of the norm:
(1) The norm is multiplicative.
(2) If b is the norm of an element of k(

√
a), then b−1 also is.

(3)
Nk(
√

a)|k(b) = bn, ∀b ∈ k,

where [k(
√

a) : k] = n.

Proof. Statement (1) is straightforward to check and (3) follows by definition.
For (2): If a is a square in k, then trivial. Else, by (1) we know that the norm is
multiplicative, therefore: if b = x2 − ay2 for some x, y ∈ k then

bb−1 = 1 = (x2 − ay2)b−1 ⇒

b−1 =
1

x2 − ay2 =
x2 − ay2

(x2 − ay2)2 = (
x

x2 − ay2 )
2 − a(

y
x2 − ay2 )

2.

[5, Lemma 4.12] �

Theorem 3.15. [9, Proposition 1.1.7] If the norm of

N : (a, b)→ k

has a nontrivial 0 then b is the norm of an element of k(
√

a)|k.

Proof. Let
q = α + βi + γj + δij ∈ (a, b)k\{0}

with α, β, γ, δ ∈ k, such that
N(q) = 0

By rewriting N(q) = 0, we get:

(γ2 − aδ2)b = α2 − aβ2

If a is a square then it is straightforward that b is the norm of an element of k.
But if a is not then we get that

γ2 − aδ2 = (γ−
√

aδ)(γ +
√

aδ) 6= 0

So, we can divide by it and get:

b =
α2 − aβ2

γ2 − aδ2

Since the field norm is multiplicative:

b = Nk(
√

a)|k(α +
√

aβ)Nk(
√

a)|k(γ +
√

aδ)−1 = Nk
√

a)|k

(
α +
√

aβ

γ +
√

aδ

)
�

Theorem 3.16. [5, Theorem 4.16.]
If b is a norm of an element of k(

√
a) then (a, b)k ' M2(k).
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Proof. If a is a square in k, then the theorem follows from Lemma 3.8 (2) and
Proposition 3.6. Assume now that a is not a square in k. Let’s assume that b is
the norm of an element k(

√
a). Then, by Lemma 3.14, we know that the inverse

of b will also be the norm of an element of the field extension:

b−1 = (x−
√

ay)(x +
√

ay) = x2 − ay2, x, y ∈ k.

Choosing wisely:
u := xj + yij

Taking the square of it we obtain:

u2 = (xj + yij)2 = x2b− aby2 = b(x2 − ay2) = bb−1 = 1

Moreover,
ui = xji− yji2

iu = xij + yi2 j = −xji + yji2 = −ui.
This implies that there is an element:

v = (1 + a)i + (1− a)ui

which satisfies
uv = (1 + a)ui + (1− a)i = −vu

as well as
v2 = (1 + a)2a− (1− a)2a = 4a2.

This means we have a basis {1, u, v, uv} that satisfies the properties of a basis of
the quaternion algebra (1, 4a2)k. Thus:

(a, b) ' (1, 4a2) ' (1, a2) ' M2(k).

The last isomorphism follows from the symmetry property and Proposition 3.6.
�

Remark 3.17. In the theorem it is the same as proving that a is a norm of k(
√

b)|k,
because of the symmetry relation (a, b)k ' (b, a)k

Theorem 3.18. [9, Proposition 1.1.7] The following statements are equivalent:
(1) (a, b)k is split.
(2) (a, b)k is not a division algebra.
(3) The norm of (a, b)k

N : (a, b)k → k
has a non-trivial zero.

(4) The element b of (a, b)k is the norm of an element of the field extension
k(
√

a)|k.

Proof. (1) ⇒ (2) is Theorem 3.12. (2) ⇒ (3) is Proposition 3.10. (3) ⇒ (4) is
Theorem 3.15. (4)⇒ (1) is Theorem 3.16. �

Example 3.19. [18, after I.1.5 Example] In Example 3.5 we saw HR, the R- algebra
of Hamilton quaternions. This is an example of a quaternion algebra that is a
division algebra. We have that:

i2 = a = −1, j2 = b = −1

−1 is not a norm of the field extension R(
√
−1)/R = R(i)/R = C/R. Indeed,

(x + iy)(x− iy) = x2 + y2 = −1
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has no solutions x, y ∈ R. Therefore, HR is not split. So, by applying Theorem
3.18 HR is a division algebra.

Proposition 3.20. If a, b ∈ k× and k field of char(k) 6= 2, then:
(1) [3, Exercise 10.2.5 ] (a2, b)k is not a division algebra.
(2) [3, Exercise 10.2.7 ] for any a ∈ k× (a, 1)k is split.
(3) [3, Exercise 10.2.7 ] for any a 6= 0, 1 ∈ k× (a, 1− a)k is split.

Proof. (1) To show that the algebra (a2, b)k is not a division algebra we can
use the fact that: k(

√
a2)|k = k(a)|k = k|k. Therefore, the norm is just the

identity map:
N : k→ k

So b = N(b). Thus, (a2, b)k ' M2(k) by Theorem 3.18(2) and Proposition
3.6. So, (a2, b)k is split, meaning that (a2, b)k is not a division algebra.

(2) (a, 1)k is split by Proposition 3.6
(3) It suffices to prove that 1− a is a norm of the field extension k(

√
a)|k. If a

is a square in k, then the statement is trivial, so w.l.o.g a is not. Then,

N(1−
√

a) = 1− a.

Therefore, applying Theorem 3.18 we get that (a, 1− a)k is split.

�

3.3. Quaternion Algebras and their Tensor Product.

Lemma 3.21. [9, Lemma 1.5.1] The tensor product of the two matrix algebras
Mn(k) and Mm(k) over k is isomorphic to the matrix algebra Mnm(k).

Proof. We define the map:

ψ : Mn(k)×Mm(k)→ Mnm(k)

(A, B)→ A� B
using the Kronecker product :

(A� B) :=


a11B · · · a1nB

. . .

. . .

. . .
an1B · · · annB


where A = (aij) and B ∈ Mm(k).
We know it is a k-bilinear map since it is k-linear in both arguments.
By the universal property of tensor products the following map is induced by ψ
and it is well-defined and k-linear.

f : Mn(k)⊗k Mm(k) 7→ Mnm(k)

A⊗k B 7→ A� B
To show that we obtain isomorphism between these k-algebras we need to show
that f is both a ring and a k-vector space isomorphism. To show bijectivity it
suffices to show either injectivity or surjectivity since the dimension of the two
k-algebras is equal to (mn)2.



18 NEFELI STRATOU S3426041

For surjectivity, we work with the following matrices. Let l, i, j ∈ N with 1 ≤
i, j ≤ l, and define E(l)

ij as the l × l matrices whose entries are zero except for the
(i, j) entry which is equal to 1. These form a basis for the space of l × l matrices
over k. We will show that if we pick this basis for Mnm(k), then any element in
the basis is in the image of f .
Let E(n)

rs ∈ Mn(k)and E(m)
ij ∈ Mm(k). Taking their tensor product we obtain that:

f (E(n)
ij ⊗ E(m)

rs ) = E(n)
ij � E(m)

rs = E(nm)
(i−1)m+r,(j−1)m+s

Since {E(nm)
(i−1)m+r,(j−1)m+s} is a basis of Mmn(k) then f is surjective. Therefore a

bijective vector space homomorphism. To show is a k-algebra isomorphism we
need to show that f is also a ring homomorphism:

• The identity element of
(Mn(k)⊗k Mm(k)) maps to the identity element of Mnm(k):

f (In ⊗k Im) = In � Im = Inm,

• Let
x = A⊗k B, y = A′ ⊗k B′,

for some A, A′ ∈ Mn(k) and B, B′ ∈ Mm(K). Then,

f (xy) = f ((A⊗k B)(A′ ⊗k B′)) = f (AA′ ⊗k BB′) = AA′ � BB′

f (x) f (y) = f (A⊗k B) f (A′ ⊗k B′) = (A� B)(A′ � B′) =
a11B · · · a1nB

. . .

. . .

. . .
an1B · · · annB




a′11B′ · · · a′1nB′

. . .

. . .

. . .
a′n1B′ · · · a′nnB′

 =


a11a′11BB′ · · · a1na′1nBB′

. . .

. . .

. . .
an1a′n1BB′ · · · anna′nnBB′

 =

(AA′ � BB′)

Thus,
f (xy) = f (x) f (y)

Therefore, the map is multiplicative.
Therefore, we obtain that f is k-algebra isomorphism. So, we can conclude that
Mn(k)⊗k Mm(k) ' Mnm(k). �

Theorem 3.22. [9, Lemma 1.5.2] Given elements a, b, b′ ∈ k×, we have an isomor-
phism

(a, b)k ⊗k (a, b′)k ' (a, bb′)k ⊗k M2(k)

Proof. Let 1, i, j, ij be the standard basis for (a, b)k and 1, i′, j′, i′ j′ to be the standard
basis for (a, b′)k.
We define the k-subspaces of (a, b)k ⊗ (a, b′)k :

A1 = 〈(1⊗ 1), (i⊗ 1), (j⊗ j′), (ij⊗ j′)〉k
A2 = 〈(1⊗ 1), (1⊗ j′), (i⊗ i′ j′), ((−b′i)⊗ i′)〉k

To show that A1 and A2 are subalgebras of (a, b)⊗ (a, b′) we need to show that
they are closed under multiplication, since addition is defined component-wise
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and the identity element is also in both A1 and A2. We show this for A1; the
proof for A2 is very similar.
It suffices to show this for the given spanning set for A1. Everything multiplied
with the identity is trivially in A1. For the rest:

(i⊗ 1)(j⊗ j′) = (ij⊗ j′) ∈ A1.

(j⊗ j′)(i⊗ 1) = −(ij⊗ j′) ∈ A1.

(i⊗ 1)(ij⊗ j′) = a(j⊗ j′) ∈ A1.

(ij⊗ j′)(i⊗ 1) = −a(j⊗ j′) ∈ A1.

(j⊗ j′)(ij⊗ j′) = −bb′(i⊗ 1) ∈ A1.

(ij⊗ j′)(j⊗ j′) = bb′(i⊗ 1) ∈ A1.

(i⊗ 1)(i⊗ 1) = (i2 ⊗ 1) = a(1⊗ 1) ∈ A1.

(j⊗ j′)(j⊗ j′) = (j2 ⊗ j′2) = (b⊗ b′) = bb′(1⊗ 1) ∈ A1.

(ij⊗ j′)(ij⊗ j′) = (−ab⊗ b′) = −abb′(1⊗ 1) ∈ A1.

We now show that:
A1 ' (a, bb′) :

Recall that A1 is generated as a k-vector space by

v1 = (1⊗ 1), v2 = (i⊗ 1), v3 = (j⊗ j′), v4 = (ij⊗ j′).

We have:
• v1 = (1⊗ 1) = 1A1

• v2
2 = (i⊗ 1)(i⊗ 1) = (i2 ⊗ 12) = (a⊗ 1) = a(1⊗ 1) = a · 1A1

• v2
3 = (j⊗ j′)(j⊗ j′) = (j2 ⊗ j′2) = (b⊗ b′) = bb′(1⊗ 1) = bb′ · 1A1

• v2v3 = (i⊗ 1)(j⊗ j′) = (ij⊗ j′) = (−ji⊗ j′) = (−j⊗ j′)(i⊗ 1) = −v3v2
• v2v3 = (i⊗ 1)(j⊗ j′) = (ij⊗ j′) = v4

Therefore, applying Lemma 3.4 we see that A1 satisfies the properties of the
quaternion algebra (a, bb′), so A1 ' (a, bb′).
Similarly, A2 is a 4- dimensional k-algebra and to see this it suffices to show that:

A2 ' (b′,−a2b′)

holds by choosing

v1 = (1⊗ 1), v2 = (1⊗ j′), v3 = (i′ ⊗ i′ j′), v4 = ((−b′i)⊗ i′)

• v1 = (1⊗ 1) = 1A2

• v2
2 = (1⊗ j′)(1⊗ j′) = (1⊗ j′2) = (1⊗ b′) = b′(1⊗ 1) = b′ · 1A2

• v2
3 = (i ⊗ i′ j′)(i ⊗ i′ j′) = (i2 ⊗ i′ j′ij′) = (a ⊗ −ab′) = −a2b′(1 ⊗ 1) =

−a2b′ · 1A2
• v2v3 = (i⊗−i′b′) v3v2 = (i⊗ i′ j′)(1⊗ j′) = (i⊗ i′b′) = −v2v3
• v2v3 = (1⊗ j′)(i⊗ i′ j′) = (i⊗−i′ j′2) = (i⊗−i′b′) = −b′(i⊗ i′)

= (−bi⊗ i′) = v4

Therefore, applying Lemma 3.4 we see that A2 satisfies the properties of the
quaternion algebra (b′,−a2b′), so

A2 ' (b′,−a2b′).
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Applying Lemma 3.8 (ii), we obtain

(b′,−a2b′) ' (b′,−b′).

In order to show that (b′,−b)k is split, it suffices to show that −b′ is the norm of
an element of k(

√
b′). This is the case, since if k(

√
b′) 6= k, then

N(
√

b′) = −b′.

This implies that :
A2 ' (b′,−b′) ' M2(k).

We need to prove that the following map:

ρ : A1 ⊗k A2 → (a, b)⊗k (a, b′)

which is induced by the k-bilinear map

(x, y) 7→ xy

is surjective and a ring homomorphism.
ρ is a ring homomorphism since:

•
ρ((1⊗k 1)⊗ (1⊗k 1)) = (1⊗k 1)(1⊗k 1) = (1⊗k 1).

• It is linear in both arguments.
• To prove that ρ is multiplicative we need to show that for every x ∈ A1

and y ∈ A2, we have yx = xy. Let’s check this for some standard basis
elements. For the rest the proof is similar.

(i⊗ 1)(1⊗ j′) = (i⊗ j′) = (1⊗ j′)(i⊗ 1)

(j⊗ j′)(1⊗ j′) = (j⊗ j′2) = (1⊗ j′)(j⊗ j′)

(ij⊗ j′)(i⊗ i′ j′) = (iij⊗ ij′ j′) = (i⊗ i′ j′)(i⊗ i′ j′)

(j⊗ j′)(i⊗ i′ j′) = (ij⊗ ij′ j′) = (i⊗ i′ j′)(j⊗ j′)

(ij⊗ j′)((−b′i)⊗ i′) = (−biij⊗ i′ j′) = ((−b′i)⊗ i′)(ij⊗ j′)
· · ·

To show that ρ is bijective since domain and target of ρ have the same dimension,
both equal 16, and the fact that ρ is k-linear using the universal property of tensor
products, then it is enough to only show surjectivity.
To prove surjectivity it suffices to show that all standard basis elements of (a, b)⊗k
(a, b′) lie in the image of ρ.
The basis elements of (a, b)⊗k (a, b′) are expressed by:

ui ⊗ vj,

where
ui ∈ {1, i, j, ij}, vj ∈ {1, i′, j′, i′ j′}.

To see this is the case we can start with:

ρ((1⊗ 1)⊗ (A2)) = A2

ρ(A1 ⊗ (1⊗ 1)) = A1

which shows that 7 of 16 basis elements of (a, b)⊗k (a, b′) lie in the image of ρ.
For the other 9 elements left we can explicitly find preimages under ρ:

ρ((i⊗ 1)⊗ (1⊗ j′)) = (i⊗ j′)
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ρ((j⊗ j′)⊗ (1⊗ j′)) = b′(j⊗ 1)⇒ ρ

(
(j⊗ j′)⊗ (1⊗ j′)

b′

)
= (j⊗ 1)

ρ((ij⊗ j′)⊗ (i⊗ i′ j′)) = ab′(j⊗ i′)⇒ ρ

(
(ij⊗ j′)⊗ (i′ ⊗ i′ j′)

ab′

)
= (j⊗ i′)

ρ((j⊗ j′)⊗ (−b′i⊗ i′)) = −b′(ij⊗ i′ j′)⇒ ρ

(
− (j⊗ j′)⊗ (−b′i⊗ i′)

b′

)
= (ij⊗ i′ j′)

ρ((ij⊗ j′)⊗ (1⊗ j′)) = b′(ij⊗ 1)⇒ ρ

(
(ij⊗ j′)⊗ (1⊗ j′)

b′

)
= (ij⊗ 1)

ρ((i⊗ 1)⊗ (−b′i⊗ i′)) = −b′a(1⊗ i′)⇒ ρ

(
(i⊗ 1)⊗ (−b′i⊗ i′)

−b′a

)
= (1⊗ i′)

ρ((i⊗ 1)⊗ (i⊗ i′ j′)) = a(1⊗ i′ j′)⇒ ρ

(
(i⊗ 1)⊗ (i′ ⊗ i′ j′)

a

)
= (1⊗ i′ j′)

ρ((ij⊗ j′)⊗ (−b′i⊗ i′)) = −ab′(j⊗ i′ j′)⇒ ρ

(
(ij⊗ j′)⊗ (−b′i⊗ i′)

−ab′

)
= (j⊗ i′ j′)

ρ((j⊗ j′)⊗ (i⊗ i′ j′))) = b′(ij⊗ i′)⇒ ρ

(
(j⊗ j′)⊗ (i′ ⊗ i′ j′)

b′

)
= (ij⊗ i′)

We are allowed to divide by nonzero elements in k inside the ρ map because of
linearity. Therefore, ρ is surjective. Thus, we have a k-algebra isomorphism.

�

Corollary 3.23. [9, Corollary 1.5.3] For a quaternion algebra (a, b)k the tensor
product algebra (a, b)⊗ (a, b) is isomorphic to the matrix algebra M4(k).

Proof. Applying Theorem 3.22, in the case where

b = b′,

we get that
(a, b)⊗ (a, b) ' (a, b2)⊗M2(k).

Applying Proposition we get 3.20,

(a2, b) ' M2(k),

Therefore:
(a, b)⊗ (a, b) ' M2(k)⊗M2(k).

and by applying Lemma 3.21, we get:

(a, b)⊗ (a, b) ' M2(k)⊗M2(k) ' M4(k)

�
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4. Central Simple Algebras over a field k

We will define the elements of the Brauer group of a field k as certain equiv-
alence classes of central simple algebras over k. In this chapter we give some
examples of central simple algebras and we show that the tensor product of two
such algebras is again central and simple.

Example 4.1. [9, Example 2.1.2] We will show that Mn(k) is a central simple
algebra. To prove that it is simple, we need to show its only two sided ideals are
{0} and Mn(k).
Take a nonzero two-sided ideal J of Mn(k). We use elementary matrices as in
the proof of the Lemma 3.21. The elements in Mn(k) can be expressed as linear
combinations of the Eij, therefore, it suffices to show that Eij are in J, ∀i, j.
Note that:

EkiEijEjl = Ekl ,

∀1 ≤ i, j, k, l ≤ n.
Therefore, it is enough to show then that Eij ∈ J for some i, j.
Take an element M ∈ J such that in the (i, j) position it has an entry m 6= 0.
Multiplying by left and right by matrices in Mn(k), we get that:

Eii MEjj = mEij ∈ J,

since J is a two-sided ideal. Multiplying by the scalar m−1 we obtain:

m−1mEij = Eij ∈ J.

Therefore, J is the entire matrix k-algebra and Mn(k) is simple.

The field k is embedded into Mn(k) via the map

a 7→ aIn,

and is clearly contained in the center. We need to show that

Z(Mn(k)) = {aIn ∈ Mn(k) : a ∈ k}.
Let M = (Mij) be in the center of Mn(k). For any i, j ∈ {1, ..., n} we have

(5) Eij M = MEij.

The left hand side of (5) at the (r, s) entry can be expressed as:

(Eij M)rs = ∑
k
(Eij)rk Mks = Mjs,

if r = i, otherwise it is 0.
Similarly the right hand side at the (r,s) entry is equal to:

(MEij)rs = ∑
k

Mrk(Eij)ks = Mrj,

when s = j and 0 otherwise.
Taking r = i and s = j, we find that

Mii = Mjj for all i, j.

If we take r = i and s 6= j, then we see that Mjs = 0. Therefore M is a scalar
multiple of En.
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Example 4.2. By Proposition 2.19 every division algebra is simple. Therefore,
central division algebras over k are simple.

Example 4.3. We now show that quaternion algebras over a field k of characteris-
tic different than 2 are central simple k-algebras. By Subsection 3.2 we know that
quaternion algebras can be either split or division algebras.

(1) Let A = (a, b)k be a division quaternion algebra over k. By Proposition
2.19, A is simple. To show that A is central, let 1, i, j, ij be a standard basis
of A and take an element q = α + βi + γj + δij in the center of A.
Multiplying q on the right by i we get:

qi = αi + βi2 + γji + δiji = αi + βa− γij− δja

Multiplying q on the left with i we have:

iq = αi + βa + γij + δja.

Equating the two expressions we find that

−γij− δja = γij + δja⇒ 2γij = 2δaj.

Since q is in the center, j and ij are linearly independent and a is a unit,
we get that both γ and δ are 0.
Similarly, multiplying q on the left and right by j, we find that β = 0, so
q = α ∈ k.

(2) A split quaternion algebra is central simple by Example 4.1.

Theorem 4.4. [3, Lemma 10.2.13] The tensor product of two central simple alge-
bras is also a central simple algebra.

Proof. This follows immediately from the Lemma 4.5 and Lemma 4.6. �

Lemma 4.5. [3, Lemma 10.2.11] Let k be a field and let A and B be simple algebras
over k. If A is central over k, then the tensor product A⊗k B is simple.

Proof. [6, Chapter 17] Let I be a nonzero two-sided ideal of A⊗k B. Any nonzero
v ∈ I can expressed as:

v = (a1 ⊗k b1) + · · ·+ (an ⊗k bn),

with bi ∈ B linearly independent and ai ∈ A, uniquely determined. We choose a
v ∈ I such that n is minimal for all nonzero elements of I.
For a1 6= 0, Aa1 A is a nontrivial two-sided ideal and since A is simple we have
that Aa1 A = A.
There are c1, ..., cm, d1, ..., dm ∈ A such that

1 = c1a1d1 + c2a1d2 + ... + cma1dm.

It follows that
v′ := ∑

j
(cj ⊗ 1)v(dj ⊗ 1)

is of the form

v′ = (1⊗k b1) + (a′2 ⊗ b2) + · · ·+ (a′n ⊗k bn) ∈ I.
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We claim that n = 1.
To show this, it suffices to prove that a′i ∈ Z(A), since Z(A) = k.
Note that if all a′i ∈ k\{0}, then

(a′i ⊗ bi) = (1⊗ a′ibi).

Setting b′i = a′ibi, then we can write

v′ = (1⊗ b′1) + · · ·+ (1⊗ b′n)

= (1⊗ b′1 + · · ·+ b′n)

Let a ∈ A. We want to show aai = aia for all i. Take the element:

p = (a⊗k 1)v′ − v′(a⊗k 1) = (aa2 − a2a)⊗k b2 + · · ·+ (aan − ana)⊗k bn ∈ I,

since I is a two-sided ideal. p has n − 1 summands so, since n is minimal this
implies that p = 0, so since b′is are linearly independent we have:

(aai − aia) = 0⇒ aai = aia ∀i.

Therefore, ∀i, ai are in the center Z(A) = k.
Hence, v′ = (1⊗k b) ∈ I with 0 6= b ∈ B. Using the fact that B is simple, implying
that BbB = B, we have:

(1⊗k B) = (1⊗k BbB) = (1⊗k B)(1⊗k b)(1⊗k B) ⊂ I.

Therefore,
(A⊗k 1)(1⊗k B) = (A⊗k B) ⊂ I,

so I = (A⊗k B). �

Lemma 4.6. [3, Lemma 10.2.12] If A and B are central k-algebras, then A⊗k B is
central.

Proof. Let’s take a nonzero element x in Z(A⊗k B) and write

x = ∑
i
(ai ⊗k bi),

where ai ∈ A and bi ∈ B linearly independent over k.
Let a ∈ A. Then we have :

(∑
i
(ai ⊗k bi))(a⊗k 1) = (a⊗k 1)(∑

i
(ai ⊗k bi))⇒ 0 = ∑

i
(aia− aai)⊗k bi.

Since the bi are linearly independent over k, we obtain

aia = aai.

This implies that k = Z(A) for all i.
This implies, that similarly to the proof of Lemma 4.5, we can write x as :

x = (1⊗ b), for some b ∈ B.

Since 1⊗ b ∈ Z(A ⊗ B), it commutes with every (1⊗ b′) ∈ (1⊗ B). But since
b′ 7→ 1⊗ b′ defines an isomorphism B 7→ 1⊗ B, we get that b is in the center of
B, which is just k, by assumption.. Therefore, x ∈ (k⊗ k) = k.

�
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5. Wedderburn’s theorem

In the process of classifying central simple k-algebras an important tool is Wed-
derburn’s theorem. The goal of this chapter is to give a proof to this result.

Theorem 5.1. Wedderburn’s theorem[3, Theorem 10.2.10]: Let A be a central
simple algebra over a field k. There are a division algebra D, unique up to iso-
morphism, and a unique positive integer n such that A is isomorphic to Mn(D).

To prove the theorem we will first introduce some lemmas and then prove the
existence and the uniqueness of D and n separately.

Definition 5.2. A minimal left ideal of a k-algebra A is a left ideal of A containing
no other nonzero left ideals of A.

5.1. Existence. For the existence part of the proof we use Henderson’s approach
[10, pp 365− 366] as our main reference. However, this proves a slightly more
general result. Namely, it is shown that any simple ring with a minimal nonzero
left ideal is isomorphic (as a ring) to the ring of n× n matrices over some division
ring D. Thus, in order to use Henderson’s approach, we will also show that any
k-algebra contains a nonzero minimal left ideal, and that with our assumptions D
is a division algebra over k and the ring isomorphism is a k-algebra isomorphism.

If D is a ring and M is a right A-module, then we write EndD(M) for the ring
of right D-module endomorphism of M.

Lemma 5.3. Let A be a k-algebra with an idempotent e such that AeA = A, and
let D = eAe and M = Ae. Then there is an isomorphism of k-algebras:

A ' EndD(M).

Proof. We start by noting that D is a k-algebra, since it inherits all the properties
from A, but with identity e since e2 = e.
Moreover, M is a right D-module, with scalar multiplication defined as follows:
Let m = a1e ∈ M and d = ea2e ∈ D:

md = a1eea2e = a1ea2e ∈ M.

We need to also show that EndD(M) is a k-algebra. This is the case since:
(1) M = Ae is a k-vector space since A is a k-algebra by assumption.
(2) Endk(M) is a k-vector space .
(3) EndD(M) is a k-linear subspace of Endk(M) since D is a k-algebra.

Let
f : A→ EndD(M)

[ f (a)](m) = am,
we will show that f is an isomorphism of k-algebras.
We first show that f is well-defined, i.e. that f (a) is indeed an element of
EndD(M) for any a ∈ A.

(1) Let a ∈ A and some m = a′e ∈ M, then

[ f (a)](m) = am = aa′e ∈ M.

We also need to check that it is a right D-module homomorphism. Let
d ∈ D, then:

[ f (a)](md) = amd = [ f (a)](m)d.
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Note that all multiplications take place in A.
Additivity is easy, so f (a) ∈ EndD(M).
To prove that is f a ring homomorphism we show for all a1, a2 ∈ A and
m ∈ M:

[ f (1)](m) = 1 ·m = m = id(m)

[ f (a1 + a2)](m) = (a1 + a2)m = a1m + a2m = [ f (a1)](m) + [ f (a2)](m)

[ f (a1a2)](m) = a1a2m = a1(a2m) = [ f (a1)](a2m) = [ f (a1)]( f (a2)(m))

(2) To prove injectivity it suffices to show that the kernel of f is trivial. Take
a ∈ ker( f ). Then, we have

0 = [ f (a)](M) = aM = aAe.

Hence we find:
aAeA = 0.

Using AeA = A we get:
aA = 0.

In particular,
a = a · 1⇒ a = 0.

Therefore, ker( f ) = {0}.
(3) For surjectivity we first note that since

A = AeA,

then for some ai, bi ∈ A, i = 1, ..., k we can express

1 =
k

∑
i=0

aiebi.

Take δ ∈ EndD(M) and evaluate it at an arbitrary m ∈ M, where m =
ae = ae2 = (ae)e = me ∈ M, then we can write

δ(m) = δ(1 ·m)

= δ((
k

∑
i=0

aiebi)m)

=
k

∑
i=0

δ(aiebim)

=
k

∑
i=0

δ(aiebi(me))

= (
k

∑
i=0

(δ(aie)ebi))m.

The last equality occurs since δ is a right D-module endomorphism and
ebime ∈ D. Since ∑(δ(aie)ebi) does not depend on m then we can express
δ as:

δ = f (
k

∑
i=0

(δ(aie)ebi)).

Therefore, f is surjective.
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To finish the proof it suffices to show that f is also a k-vector space homomor-
phism: So it is enough to show for λ ∈ k and a ∈ A we get:

[ f (λa)](m) = λam = λ(am) = λ[ f (a)](m), for all m ∈ M.

Therefore, f is a k-algebra isomorphism:

A ' EndD(M).

�

Now we are going to apply this result to prove the existence of Wedderburn’s
theorem.

Theorem 5.4. If A is a simple k-algebra then

A ' Mn(D),

for some n ∈N and D a division k-algebra.

Proof. In order to apply Henderson’s result we first show that every k-algebra has
a minimal left nonzero ideal. The key to this statement is that all k-algebras in
this project are finite dimensional.
Note that: every ideal I of a k-algebra A is a vector space over k. This happens
since I is an A-module and A is a k-module.
Assume that A has no minimal left ideal. Let I be a nonzero left ideal of A. Then,
we obtain an infinite descending chain of ideals:

I = I ) I1 ) I2 ) . . .

Note that by linear algebra dimk(Ii) > dimk(Ii+1). Hence, the chain cannot be
infinite since dimk(I) is a finite integer, and all dimk(Ii) > 0.
So we reach a contradiction. Therefore, A has a minimal nonzero left ideal M.

Now we need to show that the conditions of Lemma 5.3 apply for A and M,
and an appropriately chosen D. To finish the proof, it suffices to show that D is a
division algebra and that M has finite rank over D.

(1) If b ∈ A, b 6= 0 and since 0 6= b = 1b1 ∈ AbA, we have AbA = A, because
AbA is a 2-sided principal ideal of A. Hence it must be 0 or A.

(2) Let’s show that M = Ae for some idempotent e in A.
Since M2 ⊂ M is an ideal then M2 = 0 or M2 = M since M minimal.
If M2 = 0 , then

0 = (Am)2 = (AmA)m = Am, for all nonzero m in M.

But this does not hold since

0 6= m = 1m ∈ Am.

Thus the only case that can hold is M2 = M. For m ∈ M we obtain a left
ideal Mm of A contained in M. Hence, there is a nonzero x in M such
that

Mx = M,
otherwise we would obtain M2 = 0. Therefore there exists an e ∈ M such
that

ex = x.
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It turns out that e is an idempotent such that M = Ae, as we’ll now
explain. Note that

e2x = ex ⇒ (e2 − e)x = 0.

Thus, e2 − e is an element of the left annihilator of x in M. The left
annihilator in M of x is a left ideal contained in M so it is either the
zero ideal or all of M. But e is in M and ex = x 6= 0, so the annihilator
must be 0. Hence e is idempotent. We know e is nonzero, so Ae is a
nonzero ideal contained in M, hence M = Ae.

(3) Now we can apply Lemma 5.3 with D = eAe and get

A ' EndD(M).

(4) Let’s check that D = eAe is indeed a division k-algebra.
Let

d = eae ∈ D, such that d 6= 0,

then
d = 1d is in Ad = Aed,

and
Aed is an ideal of A containted in Ae,

so since Ae is minimal, we get

Aed = Ae.

Thus there exists an a′ ∈ A such that a′d = e. By setting d′ = ea′e we get

d′d = (ea′e)(eae) = ea′eae = e2 = e.

so every nonzero element in eAe has a left inverse with respect to the
identity e.
Let c be the left inverse of d′ [11][page 18]. We need to show that c is
equal to d. This is indeed the case, since:

c = ce = c(d′d) = (cd′)d = ed = d.

This implies that all left inverses are also right inverses, so D is a division
k-algebra.

(5) Note that M is a sub k-vector space of A, so M has finite dimension as a
k-vector space. But D is a k-vector space, so

rkD(M) ≤ dimk(M) ≤ dimk(A) < ∞.

(6) Let dimk(A) = n2. M is finite dimensional over D.
We have

Mn(D) ' EndD(M), for some n ∈N,

where the isomorphism is the same as for vector spaces over fields. So we
associate to an endomorphism its representative matrix with respect to a
choice of basis [11][1.3]:

Mn(D) ' EndD(M) ' A.

�
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5.2. Uniqueness. The uniqueness part of Wedderburn’s theorem states that if
D, D′ are division rings such that

Mn(D) ' M′n(D′)

for some n, n′ ≥ 1, then
D ' D′

and
n = n′.

Let’s start describing the simple left modules of Mn(D) where D is a division
ring. For 1 ≤ r ≤ n, let Lr ⊂ Mn(D) be the set of all matrices in the form
M = [mij] with only nonzero entries in the rth column. It is easy to see that these
ideals are left ideals of Mn(D) and that they are all isomorphic.

Lemma 5.5. Lr is a minimal ideal of Mn(D).

Proof. To show this we take a nonzero x ∈ Lr. Then, there exist a1, . . . , an, not all
zero, such that:

x = a1E1r + a2E2r + ... + anEnr.
Suppose we have a nonzero ideal J ⊂ Lr. Let y a nonzero element of J. We can
express it as:

y = ∑
i

aiEir,

with at least one ak 6= 0. Left-multiplying y with Ekk ∈ Mn(D) we get:

Ekky = akEkr ∈ J.

Since ak 6= 0:
Ekky

ak
= Ekr ∈ J.

So,
EikEkr = Eir ∈ J

since J is a left ideal. Hence, Eir ∈ J, ∀i. This means J = Lr. Thus, Lr is minimal.
�

In particular by definition Lr are simple Mn(D)-modules, for all r ≥ 1.

Lemma 5.6. All simple left Mn(D)-modules are isomorphic.

Proof. Note that Lr are all trivially isomorphic with each other for all r ≥ 1.
For the rest of simple left Mn(D)-modules we proceed as follows.
It is clear that

Mn(D) = ⊕Lr.
Suppose we have a nonzero simple left Mn(D)-module M.
Then

{0} 6= M = Mn(D)M = (⊕Lr)M.
This means that there exists an r such that:

Lr M 6= {0}
Then we create an isomorphism [11, 1.8]. For m ∈ M such that Lrm is nontrivial,
we let:

f : Lr → M
y 7→ ym.



30 NEFELI STRATOU S3426041

It is easy to see that this is a left Mn(D)-module homomorphism.
Since Lr is simple and the kernel is a nonzero submodule of Lr, f is injective.
Similarly, since f is a nonzero map and im( f ) is a submodule of M and M is
simple, f is also surjective. Thus, f is a Mn(D)-module isomorphism. �

For all 1 ≤ r ≤ n, Dn ' Ir. Thus, we conclude that Dn is a simple left Mn(D)-
module.

Lemma 5.7. There is a ring isomorphism

EndMn(D)(Dn) ' Do.

Proof. We define the map:

f : Do 7→ EndMn(D)(Dn)

d 7→ (P 7→ Pd).
We can express f as:

[ f (d)](P) = Pd.
We will show that for d ∈ Do, [ f (d)] is a left Mn(D)-module homomorphism. For
l ∈ Mn(D) we have:

[ f (d)](lP) = lPd = l[ f (d)](P).
Additivity is clear.
So f (d) ∈ EndMn(D)(Dn) for all d ∈ Do.
For injectivity, we take d ∈ ker( f ), then d = 0 since D is a division ring. Therefore
f is injective.
For surjectivity, we have to show that every element in the endomorphism ring
can be written as a multiplication on the right by an element in D. We take an
element g ∈ EndMn(D)(Dn) and we want to show that:

g = f (d)

for some d ∈ Do.
Let (e1, . . . , en) the standard basis of Dn. Then,

g(e1) = e1d1 + · · ·+ endn,

for some di ∈ D.
We will show that g = f (d1).
First, we have

g(e1) = g(E11e1) = E11g(e1) = E11(e1d1 + · · ·+ endn) = e1d1

so

g(e1) = [ f (d1)](e1).

Now let j > 1. Then
ej = Ej1e1,

so
g(ej) = g(Ej1e1) = Ej1g(e1) = Ej1e1d1 = [ f (e1)](dj)

and hence
g = f (e1),

since g is uniquely determined by the values it takes on the basis elements ej.
Therefore f is surjective, so f is a ring isomorphism. �
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Now we conclude the proof of uniqueness of Wedderburn’s theorem:
Suppose that D, D′ are division algebras and that

A ' Mn(D) ' Mn′(D′)

for n, n′ suitable integers. Then since Dn is a minimal left ideal of Mn(D) and D′n ′

of Mn′(D′). But since the rings are isomorphic, D′n ′ is isomorphic to a minimal
left Mn(D)-ideal as well. From Lemma 5.6 we know that:

Dn ' D′n
′
.

By Lemma 5.7 we know that the following ring isomorphisms hold:

D′o ' EndA(Dn) ' EndA(D′n
′
) ' Do.

Therefore, this implies that
D ' D′

and
n = n′.

This finishes the proof of Wedderburn’s theorem.
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6. The Brauer group of a field and the Brauer group of algebraically

closed fields

We will now define the Brauer group of a field. The elements of the Brauer
group are equivalence classes of central-simple k-algebras.

Remark 6.1. If A is a central simple k-algebra then Ao is also a central simple
k-algebra, since they are the same as k-vector spaces.

Lemma 6.2. [16, Lemma 9.126(i)] If A is a k-algebra, then:

A⊗k Mn(k) ' Mn(A),

for n ∈ N.

Proof. Consider the map:

f : A×Mn(k)→ Mn(A)

(a, s) 7→ as,

where we view Mn(k) as a k-subalgebra of Mn(A) and A as the subalgebra AIn
of Mn(A). This is clearly a k-bilinear map.
Let g be the k-linear map induced by f by the universal property of tensor prod-
ucts. We need to show that g is a k-algebra isomorphism.
First we show that it is a k-algebra homomorphism. We have

g(1A ⊗ In) = In.

To show g is multiplicative take a, a′ ∈ A and s, s′ ∈ Mn(k):

g((a⊗k s)(a′ ⊗k s′)) = g((aa′ ⊗k ss′)) = aa′ss′ = asa′s′ = g((a⊗k s))g((a′ ⊗k s′)),

where the third equality follows from the fact that k is in the center. So g is a
k-algebra homomorphism.
For injectivity, it suffices to check that the kernel contains no nontrivial elemen-
tary tensors since every element in A⊗k Mn(k) can be expressed as a linear com-
bination of elementary tensors.
For an element (a⊗k s) ∈ ker(g):

g(a⊗k s) = as = 0⇒ a = 0 or s = 0,

since a is a diagonal matrix with entries all equal and k is a field.
In either case

a⊗k s = 0,

therefore the kernel is trivial so g is injective.
For surjectivity, we compare the dimensions of A⊗k Mn(k) and Mn(A).

dimk(A⊗k Mn(k)) = dimk(A)dimk(Mn(k)) = dimk(A)n2 = dimk(Mn(A)).

Therefore, we obtain that g is a k-algebra isomorphism. �

Lemma 6.3. [11] Let A be a central simple k-algebra. Then

A⊗k Ao ' Mm(k),

where m = dimk(A).
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Proof. Consider the map
σ : A× Ao → Endk(A)

(a, b) 7→ (x 7→ axb).
We need to show that σ((a, b)) is a k-endomorphism of A, for any a ∈ A and
b ∈ Ao.
For a fixed a and b we define:

f = σ(a, b).
For l ∈ k:

f (lx) = alxb = l(axb) = l f (x).
For x1, x2 ∈ A:

f (x1 + x2) = a(x1 + x2)b = ax1b + ax2b = f (x1) + f (x2).

So σ((a, b)) ∈ Endk(A).
We will construct an isomorphism between A⊗ Ao and Mm(k) by applying the
universal property of the tensor product to σ. It is easy to see that sigma is
bilinear. Using the universal property of tensor products σ induces a k-linear
map ρ:

ρ : A⊗k Ao → Mm(k)
Then the map ρ is defined as:

[ρ((a⊗k b))](x) = axb.

Then we have to show that ρ is a k-algebra isomorphism. We have that

[ρ(1⊗k 1)](x) = x for all x ∈ A.

so ρ(1⊗k 1) is the identity of Endk(A).
Let a, a′ ∈ A and b, b′ ∈ Ao. Then, for x in A, we have:

[ρ(a⊗k b)(a′ ⊗k b′)](x) = [ρ(aa′ ⊗k bb′)](x) = aa′xb′b

= ρ(a⊗k b)(a′xb′) = ρ(a⊗k b)(ρ(a′ ⊗k b′)(x)).

So we obtain a k-algebra homomorphism.
The kernel of ρ is a two-sided ideal of A⊗k Ao so by Lemma 4.5, ker(ρ) = {0}.
So ρ is injective.
In order to show ρ is surjective we compare the dimensions of A ⊗k Ao and
Endk(A). We get:

dimk(Endk(A)) = m2 = dimk(A)dim(Ao) = dim(A⊗k Ao).

So ρ is a k-algebra isomorphism.
Therefore, A⊗k Ao ' Mm(k) since Endk(A) ' Mm(k). �

Definition 6.4. Let k be a field and A and B be central simple k-algebras.
We call A and B Brauer equivalent and write A ∼ B, if

A⊗k Mn(k) ' B⊗k Mm(k),

for some positive integers m, n. We write [A] for the Brauer equivalence class of
a central simple k-algebra A.

Lemma 6.5. Brauer equivalence defines an equivalence relation.

Proof. • Reflexivity and symmetry are clear.
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• For transitivity, let A, B and C be central simple k-algebras such that A ∼
B and B ∼ C. Let s, l, m, n be positive integers such that:

A⊗k Mn(k) ' B⊗k Mm(k), B⊗Ms(k) ' C⊗k Ml(k)

By using Lemma 3.21 we obtain:

A⊗k Mns(k) ' A⊗k Mn(k)⊗k Ms(k) ' B⊗k Mm(k)⊗k Ms(k) '
C⊗k Ml(k)⊗k Mm(k) ' C⊗k Mlm(k) and hence A ∼ C.

�

Lemma 6.6. Let A, B, A′, B′ be central simple k-algebras such that [A] = [A′] and
[B] = [B′]. Then

[A⊗ B] = [A′ ⊗ B′].

Proof. The operation on the Brauer group is well defined. [16, Theorem 9.128(i)]
If A, A′, B, B′ are central simple k-algebras and A ∼ A′ and B ∼ B′ then:

A⊗k Mn(k) ' A′ ⊗k Mm(k),

B⊗k Ms(k) ' B′ ⊗k Ml(k),
for n, m, s, l positive integers. Then:

A⊗k B⊗k Mn(k)⊗k Ms(k) ' A⊗k B⊗k Mns(k)

and
A′ ⊗k B′ ⊗k Mm(k)⊗k Ml(k) ' A′ ⊗k B′ ⊗k Mml(k).

So
A⊗k B⊗k Mns(k) ' A′ ⊗k B′ ⊗k Mml(k)⇒ A⊗k B ∼ A′ ⊗k B′.

�

Definition 6.7. [16, Definition page 737] We define the Brauer group of k to be
the set

Br(k) = {[A] : A central simple k-algebra}
with binary operation

[A][B] = [A⊗ B].

Lemma 6.8. The Brauer group Br(k) is an abelian group with identity element
[k]. The inverse of a class [A] is the class [Ao].

Proof. By Lemma 6.6 and 4.6 we know that the binary operation of Br(k) is well-
defined. The tensor product is associative, thus the binary operation is as well.
The identity element of the Brauer group of k is just the class of k. This is the case
since:

A⊗k k = A,
for every k-module A.
The inverse of a class A it is the class of its opposite element Ao by Lemma 6.3.
This proves that Definition 6.7 gives Br(k) a group structure. Finally, the group
Br(k) is abelian since the tensor product is commutative.

�

Example 6.9. Some examples of the Brauer group of a field [16, Example 9.130]:
• The Brauer group of the real numbers has only two elements: the classes

of R and the Hamiltonian quaternions.
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• The Brauer group of a finite field is trivial.

The main reason why Brauer groups were introduced was to classify division
k-algebras through central simple k-algebras. The following lemma is essential
before we proceed in showing the connection between the two.

Lemma 6.10. Let D be a division ring and k its center. Then, k is a field and for
every n ≥ 1 we have

Z(Mn(D)) = k.

Proof. [11, 2.2] First we show that Z(D) is a field. To do so we take a nonzero
element y ∈ Z(D) and d ∈ D. We have:

d−1yy−1d = 1⇒ (d−1y)−1 = y−1d,

as well as
yd−1dy−1 = 1⇒ (yd−1)−1 = dy−1.

Using the above expressions, we obtain that

dy−1 = (yd−1)−1 = (d−1y)−1 = y−1d.

Hence Z(D) is a field. To prove the second assertion we let:

f : D → Z(Mn(D))

d 7→ dIn.
Then

fZ(D) : Z(D)→ Z(Mn(D))

is clearly an injective ring homomorphism.
To prove f is surjective, let a = (aij) ∈ Z(Mn(D)), we want to show that

a = f (a11) and a11 ∈ Z(D).

Then aij can be expressed as:
aij = aEij.

For all i, j, we have
aij = aEij = Eija = aji.

Hence aij = 0 for i 6= j. Moreover, all aii = a11, so

a = a11 In = f (a11) ∈ f (Z(D)).

�

Corollary 6.11. If Mn(D) is a central k-algebra, where D is a division k-algebra,
then D is also central.

Proof. This follows from Lemma 6.10 and Example 4.2. �

Lemma 6.12. [16, Theorem 9.128] Let A be a central simple k-algebra such that
A ' Mn(D) , where D is a division k-algebra. Then D is central simple and
[A] = [D] in Br(k).

Proof. By Lemma 6.10 and Corollary 6.11 we have that D is a central simple k-
algebra. From Lemma 6.2:

A ' Mn(D) ' D⊗k Mn(k).

�
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Theorem 6.13. [16, Theorem 9.129] If k is a field, then there is a bijection from
Br(k) to the family ∆ of all isomorphism classes of finite-dimensional central
division algebras over k.

Proof. We define a map
g : ∆→ Br(k)

g(D) = [D].

We have to show that g is well defined.
Let D, D′ two central division k-algebras :

D ' D′

Then,

D ' D⊗ k ' D⊗M1(k)

D′ ' D′ ⊗ k ' D′ ⊗M1(k),

so
g(D) = g(D′).

So g is well defined.
For injectivity, suppose that

g(D) = g(D′),

then there are positive integers n, m such that:

D⊗Mn(k) ' D′ ⊗Mm(k).

By Lemma 6.2 we get:
Mn(D) ' Mm(D′),

and by the uniqueness of Wedderburn’s theorem we have D ' D′.
To show g is surjective, let c ∈ Br(k), then

c = [Mn(D)],

where D is a division k-algebra and n a positive integer. Then, by Lemma 6.12,
we have that D is central over k, and

g(D) = c.

So g is surjective, and we obtain that g is bijective. �

Remark 6.14. By Theorem 6.13 there exists a noncommutative division ring,
finite-dimensional over its center k, if and only if Br(k) 6= {0}.

We will now show that there are no such division rings whose center is an
algebraically closed field.

Definition 6.15. A field k is algebraically closed if every non-constant polynomial
in k[x] has a root in k.

Lemma 6.16. [9, Corollary 2.1.7] Let k be an algebraically closed field. Then every
central simple k-algebra is isomorphic to Mn(k) for n ≥ 1.
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Proof. Let D be a finite-dimensional division k-algebra. We want to show that
D=k.
It suffices to prove that D ⊂ k, so we take x ∈ D, then there exists

a0, . . . , an ∈ k such that a0 + a1x + · · ·+ anxn = 0,

where not all ai are 0.
Without loss of generality assume that an 6= 0, n ≥ 1, else x is in k.
Let

f (t) = antn + · · ·+ a0 ∈ k[t].
Since k is algebraically closed, we get x ∈ k. Therefore, k = D.
By Wedderburn’s theorem we know that if A is a central simple k-algebra then
A ' Mn(D), for D division k-algebra and n ∈N. By the above D = k, so

A ' Mn(k).

�

Theorem 6.17. [11] The Brauer group of an algebraically closed field k is trivial.

Proof. This follows directly from Lemma 6.16. �

Example 6.18. The Brauer group of the complex numbers C is trivial, by applying
Lemma 6.16.
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7. Computations in the two-torsion subgroup of Br(Q)

In this section we will use results on quaternion algebras derived in Section
3.3 in order to study some elements of order 2 in Br(Q).
In contrast to the example at the end of Section 6, the Brauer group of Q is
infinite and its structure is quite complicated [15]. So instead, we will look at
some explicit examples of elements of order dividing 2. For instance, classes of
quaternion algebras satisfy this. If k is a field of characteristic not 2, then by
Corollary 3.23 we have:

[(a, b)k ⊗k (a, b)k] = [M4(k)] = [k].

Since Br(k) is an abelian group, the elements of order dividing two form a sub-
group, which we will denote by Br(k)[2]. The class of the tensor product of two
quaternion algebras is also in this subgroup. We will investigate for some explicit
examples if it is also the class of a quaternion algebra. The following lemma will
aid in showing that certain quaternion algebras are isomorphic.

Lemma 7.1. Let a, b ∈ Q∗, with a 6= −b. Then we have:

(a, b)Q ' (a + b,−ab)Q.

Proof. Let {1, i, j, ij} be a basis of (a, b)k such that:

i2 = a · 1(a,b)Q
, j2 = b · 1(a,b)Q

and ij = −ji,

Then let B := {1, i + j, ij, (i + j)ij} and we will show that it is a basis for
(a + b,−ab)Q: Take ai ∈ Q, for i ∈ {0, 1, 2, 3}:

a0 + a1(i + j) + a2ij + a3(i + j)ij = 0⇒
a0 + a1i + a1 j + a2ij + a3aj− a3bi = 0⇒
a0 + (a1 − a3b)i + (a1 + a3a)j + a2ij = 0

This implies that:

a0 = 0 and a1 = a3b and a1 = −a3a and a2 = 0.

Since a 6= −b we have:

(a + b)a3 = 0⇒ a3 = 0 and a1 = 0.

So 1, i + j, ij, (i + j)ij are linearly independent. We also need to show that i + j
and ij are in (a + b,−ab)k.

(i + j)2 = (i + j)(i + j) = i2 + ij + ji + j2 = i2 + j2 = a + b ∈ (a + b,−ab)k.

(ij)2 = −i2 j2 = −ab ∈ (a + b,−ab)k.

ij(i + j) = i2 j + jij = −iji− ijj = −ij(i + j).

Therefore, B forms a basis of (a + b,−ab)Q.
To show that B forms a basis in (a, b)Q we need to furthermore express every
standard basis element of (a, b)Q as a linear combination of the
{1, i + j, ij, (i + j)ij}:
For 1 and ij it is trivial. For i we get:

(−a)(i + j) + (i + j)ij = −ai− aj + aj− bi = −(a + b)i
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since a 6= −b then we can divide by −(a + b), so

i =
a(i + j)
(a + b)

− (i + j)ij
(a + b)

Similarly, for j:

b(i + j) + (i + j)ij = bi + bj + aj− bi = (a + b)j

so again dividing by (a + b):

j =
b(i + j)
(a + b)

+
(i + j)ij
(a + b)

.

Therefore, it forms a basis of (a, b)Q, so according to Lemma 3.4 we obtain

(a, b)Q ' (a + b,−ab)Q.

�

Example 7.2. We have that (−2,−3)Q ' (−1,−1)Q.

Proof. This is easy to show by applying Lemma 7.1 twice and then using Lemma
3.8(i):

(−1,−1)Q ' (−2,−1)Q ' (−3,−2)Q ' (−2,−3)Q.
�

Lemma 7.3. Let m be a rational number which is not:
(1) a square of a rational number or
(2) negative such that −m is the sum of three square elements of Q.

Then, (−1,−1)Q is not isomorphic to (m, b)Q, for any b ∈ Q∗.

Proof. Suppose that (−1,−1)Q is isomorphic to (m, b)Q.
Then m is a square in (−1,−1)Q:

x2 = m,

where
x = a + bi + cj + dij, with a, b, c, d ∈ Q.

This implies that:

x2 = (a + bi + cj + dij)2 =

a2 − b2 − c2 − d2 + (2ab + cd− cd)i + (2ac− bd + bd)j + (2ad + bc− bc)ij = m

a2 − b2 − c2 − d2 = m
2ab = 0, 2ac = 0, 2ad = 0.

• If b, c, d = 0, then
a2 = m.

so m is the square of the rational number a.
• If m = l2 is the square of a rational number l, then by Lemma 3.20i:

(m, b)Q = (a2, b)Q ' M2(Q).

On the other hand, the proof of Example 3.19 shows that (−1,−1)Q is a
division algebra, therefore not isomorphic to M2(Q). So we get a contra-
diction.
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• So if m is not a square, then we must have a = 0 and hence

−b2 − c2 − d2 = m,

so m is a negative number such that −m is the sum of three rational
squares.

�

In the project [1], it is shown that the quaternion algebra (−1,−1)Q is not
isomorphic to (−7,−1)Q. In this project, we use the same technique to show
following more general results.

Example 7.4. The quaternion algebra (−1,−1)Q is not isomorphic to (−7, b)Q,
for any b ∈ Q∗.

Proof. [1][Voorbeeld 2.6] Applying Lemma 7.3 it suffices to show that 7 is not the
sum of three rational squares. We assume that it is:

b2 + c2 + d2 = 7.

Multiplying with the largest common divisor of b, c, d we obtain the following
equation in Z:

p2 + q2 + r2 = 7s2,
where we may assume that gcd(p, q, r, s) = 1. Working modulo 8 we realise that
this equation has no solutions since all the squares modulo 8 are equal to 0, 1 and
4. Therefore, (−1,−1)Q is not isomorphic to (−7, b)Q. �

Example 7.5. The quaternion algebra (−1,−1)Q is not isomorphic to (7, b)Q, for
any b ∈ Q∗.

Proof. We apply Lemma 7.3(1) since 7 is a positive integer. �

In order to investigate whether the class of the tensor product of two quater-
nion algebras is also represented by a quaternion algebra we introduce the fol-
lowing definition.

Definition 7.6. Let k be a field. We call (a, b)k and (c, d)k linked if there exist
x, b′, d′ ∈ k∗ such that:

(a, b)k ' (x, b′)k, and (c, d)k ' (x, d′)k.

Lemma 7.7. If (a, b)k and (c, d)k are linked then

(a, b)k ⊗k (c, d)k

is Brauer equivalent to a quaternion algebra.

Proof. Since (a, b)k and (c, d)k are linked, there exist x, b′, d′ ∈ k∗ such that:
(a, b)k ' (x, b′)k and (c, d)k ' (x, d′)k.
Thus by Lemma 3.22:

[(a, b)k ⊗k (c, d)k] = [(x, b′)k ⊗k (x, d′)k] = [(x, b′d′)k ⊗k M2(k)] = [(x, b′d′)k].

�

We showed in Example 7.5 that the following quaternion algebras are not iso-
morphic, however, the following examples show that they can be linked.
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Example 7.8. [12, Exercise III.20] The quaternion algebras (−2,−3)Q and
(−7,−23)Q are linked.
We can see this by applying Lemma 7.1:

(−7,−23)Q ' (−30,−161)Q

By applying Lemma 7.1 twice and at the last step Lemma 3.8(i):

(−2,−3)Q ' (−5,−6)Q ' (−11,−30)Q ' (−30,−11)Q.

Therefore, in the notation of Definition 7.6 we may take:

x = −30, b′ = −161, d′ = −11 ∈ Q∗.

Moreover, by Lemma 3.22 the tensor product of (−2,−3)Q and (−7,−23)Q is
Brauer equivalent to a quaternion algebra. Explicitly :

[(−2,−3)Q ⊗k (−7,−23)Q] = [(−30,−11)Q ⊗k (−30,−161)Q] =

[(−30, 1771)Q ⊗k M2(Q)] = [(−30, 1771)Q]

Example 7.9. As an easier example, we show that

(−1,−1)Q ⊗k (−1,−7)Q

is Brauer equivalent to a quaternion algebra. Applying directly Lemma 3.22:

[(−1,−1)Q ⊗k (−1,−7)Q] = [(−1, 7)Q ⊗k M2(k)] = [(−1, 7)Q].

This example completes Example 7.5. It means that the subgroup of Br(Q)[2]
spanned by (−1,−1)Q and (−1,−7)Q consist only of elements that can be rep-
resented by quaternion algebras. Recall that (−1,−1)Q, (−1,−7)Q and (−1, 7)Q

are all pairwise non-isomorphic from the examples above.

Remark 7.10. [12, Example 2.16] Let k be a field of char 6= 2. Then any quaternion
algebra (a, b)k can be linked to any split quaternion algebra over k.
This is the case since

(a, b2)k ' M2(k).

Remark 7.11. A field is called linked if any two quaternion algebras over it are
linked. It is shown in [12] that Q is a linked field, but the proof is beyond the
scope of this project. See for some examples of fields that are not linked [8, Section
5.2]. Since Q is linked, the classes of quaternion algebras form a subgroup of
Br(Q)[2]. In fact, this subgroup is the entire Br(Q)[2] but the proof is very hard.
It is a consequence of the (Albert-)Brauer-Hasse-Noether theorem [15, Theorem
2.3].
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