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Abstract
Applying boundary conditions to fluctuations of the electromagnetic field results in boundary-dependent
modification of the zero-point energy and hence, also a force on the boundaries. This force is known as
the Casimir force and this review describes its origins and multiple mathematical descriptions, which
can be harnessed in order to calculate the force between any two bodies of any material with known
optical properties. Predicted a long time ago, it is in theory possible to modify the boundary conditions
in a manner, which creates a repulsive force, as opposed to the usual attractive force, which is found
in the vast majority of setups. Different approaches to achieve a repulsive Casimir force are discussed
and compared, including forces due to boundary conditions, due to usage of metamaterials, and most
importantly – due to usage of three-dimensional topological insulators. Special attention is paid to the
latter, including a summary of the most important breakthroughs related to this new class of materials.
It is concluded that even though the realisation of repulsive Casimir forces has been predicted in many
systems and can be beneficial for a number of applications, an undisputed piece of experimental evidence
is yet to be presented. Finally, it is pointed out that a better modelling of topological insulators and
their electric/optical properties could lead to an understanding of the bulk and surface contributions
to the force, which is presently missing from the field. It is very likely that a breakthrough of this sort
will inspire and kick-off a series of experiments, dedicated to measuring a repulsive Casimir force in
topological insulators.
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I. Introduction

Imagine that you are a computer chip manufacturer
and you create a device, which includes a silicon
cantilever. The cantilever itself acts as a clock gener-
ator – a driven oscillator, analogous to a heartbeat
of the device, which introduces the basic time step
of computation. For a large number of oscillations
the device functions perfectly but all of a sudden
it breaks irreversibly. What happened? An effect
of stiction took place, which effectively glued the
silicon cantilever to a nearby component, and the
culprits are no other than the random electromag-
netic fluctuations, constituting the Casimir force.

This example is one of many in modern day
electronics, where downsizing is essential for in-
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crease in computational power of commercial de-
vices but it comes with new unique hurdles. For
instance, at small sizes and separations the finite
atomic size and deviation from the thermodynamic
limit become more apparent and chaotic behaviour
can dominate. Therefore, it is important that
these effects are studied for the successful devel-
opment of micro/nanoelectro-mechanical systems
(MEMS/NEMS) among other applications.

Furthermore, the theoretical and experimental
study of Casimir forces is of crucial importance to
the fundamental comprehension of Physics. The
Casimir force involves and arises from the zero-
point energy (ZPE) of free space and its connection
to photon-matter interactions. Introducing a pair of
conducting slabs reduces the amount of available
modes between the slabs because they have to obey
additional boundary conditions. Consequently, the
zero point energy in the region is reduced and this
reduction is slab-separation-dependent but more
on that later. The ZPE finds roots in the uncer-
tainty principle and the quantisation of energies in
quantum systems. It has been and still is one of
the biggest problems in Physics for over one hun-
dred years ever since Planck postulated the theory
of quantum mechanics. The Casimir forces offer a
unique chance to study this phenomenon directly
by subjecting micro-sized objects to these forces un-
der different condition, unlike the Lamb shift, for
instance, which is also rooted in the ZPE, but can
only be probed indirectly by spectroscopic methods.

This review summarises the most important
mathematical models, which are used to study
Casimir forces. It is then discussed how these mod-
els can create desirable effects in various systems.
Particular focus is paid to the relatively new class
of materials, known as topological insulators (TIs),
whose unique electronic properties can result in ef-
fects such as tunable Casimir forces. A review of the
relevant theoretical breakthroughs is presented as
well as a few suggestions for the future of the field.

II. A Theory of Lifshitz

In 1873 Johannes van der Waals published his doc-
toral dissertation, in which he gave the mathematical
description of what he thought was a more realistic
scenario for a gas behaviour1. Namely, he acknowl-
edged that individual gas particles take up a certain
finite volume and additionally, they would experi-
ence attractive forces between themselves. Van der
Waals’s motivation was adding the ability of gases
to aggregate in a phase-transition-like fashion to the
already existing ideal gas model. The Dutchman
had published his dissertation around the same time
when the Classical electrodynamics theory had been
finalised by Maxwell, among others. This allowed
for Lebedev in his own respective doctoral disser-
tation to postulate that these inter-particle forces
may arise from charge fluctuations and the particles
would be analogous to little microscopic antennae2.
Within forty years, neutral particle interactions had
been characterised and shown to obey an energy
potential dependence ∝ r−6, where r stands for par-
ticle separation and is assumed large compared to
the particle size. Most famously, the London disper-
sion forces fall in that category3,4 but also Debye5

and Keesom6 forces. One way to explain the in-
verse power six law is in the paradigm of quantum
mechanics, where a dipole-dipole interaction en-
ergy can be treated in second-order perturbation
theory, effectively squaring the r−3-dependent elec-
tric dipole potentials7,8.

In 1948, another Dutch physicist by the name of
Hendrick Casimir used the newly developed Quan-
tum field theory (QFT) to derive a force that appears
on two infinite conducting parallel plates as a result
of field fluctuations9. Later, he and Polder pub-
lished a generalisation on the Van der Waals forces,
which included retardation due to the finite speed
of light, and in the limit of which the potential scales
as r−7 10. In the last paper the authors express the
possibility for the problem to be approached in a
more fundamental fashion, thus, providing a gen-
eral theory for the interactions due to charge and
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electromagnetic field fluctuations between any two
bodies. However, Casimir and Polder never man-
aged to come up with such a complete and rigorous
theory. Soon enough, in 1954 Evgeny Lifshitz pub-
lished a theory, derived from electrodynamics’ stress
tensor11, later reformed with his colleagues in the
Quantum field theory formalism (DLP theory)12,
which was widely accepted. The theory finds its
basis in fundamental electrodynamics and builds
on top of that to give the general forces that arise
between any two electrically responsive bodies. Fur-
thermore, it reduces to the Casimir, London, Debye,
etc. forces in their respective limits and geometries.
The theory was later reformulated by usage of sum-
mation over multiple modes of effective oscillators
within the materials, where boundary conditions
arise from the existence of material interfaces, in a
series of papers from 1968 to 197613–15. The newer
formulation is considered rigorous by some review-
ers16 and rather heuristic by others17. In all ap-
proaches, the energy of a system due to charge and
electromagnetic field fluctuations is shown to be
derivable from and dependent solely on the optical
properties of the materials and the geometry of the
particular setup.

A
εA,  μA

m
εm,  μm

B
εB,  μB

Figure 1: Simplest case for calculation of Van der
Waals forces. Two semi-infinite condensed bodies,
separated by an arbitrary fluid medium.

The simplest case where two semi-infinite pieces
of materials A and B are separated by a distance

l and the separation is filled by material m, is de-
picted in Figure 1. In the heuristic theory, the free
energy per unit area it takes to bring the two bodies
from infinite separation to the specified separation
is expressed as

G(l) =
kBT

2π c2

∞

∑
n=0

† εmµmξ2
n

∫ ∞

1
p (1)

× ln
(
(1− ∆̄Am∆̄Bme−rn p)(1− ∆Am∆Bme−rn p)

)
,

with the force per unit area experienced by each
condensed body following from F(l) =

(
−∂G(l)

∂l

)
T

and being easy to compute in the given logarith-
mic notation. DLP theory derives the force di-
rectly from the electromagnetic stress tensor and
sidesteps the expression for energy but the two re-
sults are identical. In Equation 1, aside from the
regular physical constants, T represents absolute
temperature, rn =

2l ξn
√

εmµm
c , ∆̄ij =

siεj−sjεi
siεj+sjεi

with

si =
√

εiµi
εmµm
− 1 + p2, and ∆ being the magnetic

equivalent of ∆̄ (so that εi −→ µi). For the majority
of nonmagnetic materials Equation 1 can be sim-
plified by considering µ ≈ 1∀ regions but as will
be shown later, it is important to consider the mag-
netic contribution for effects such as a repulsive
Casimir force. The integration parameter p is used
to simplify the expression. Other than that the in-
tegration is over all physically allowed frequencies
of an electromagnetic wave, carrying information
of the surface mode of one material to that of the
other. The dagger on the summation signifies that
the first term (n = 0) is multiplied by 1

2
a and the

summation itself is over all n ∈ N, as defined in
the so-called imaginary frequencies h̄ξn = 2πkBT n.
Understanding these imaginary frequencies is the
crux of the Lifshitz theory.

In the original DLP theory, they arise naturally
as allowed frequency modes of the Fourier series
decomposition of a Green’s function, corresponding
to the free photon, which mediates the electromag-
netic forces between the two bodies12. Obtaining

aDue to the nature of the ground state of electromagnetic fluctuations (harmonic oscillator).
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a physically measureable quantity from an inter-
action amplitude in Quantum field theory always
requires integration over all possible 4-momenta.
In the DLP paper, it is shown that the aforemen-
tioned integration of income/outcome parameters
in QFT is equivalent to taking the sum over all imag-
inary frequencies in DLP theory. In the heuristic the-
ory the imaginary frequencies arise as the allowed
electromagnetic modes, which obey the boundary
conditions, arising at the material interfaces. With
that being said, the dielectric constant and the mag-
netic permeability in Equation 1 are part of the
sum and evaluated at these imaginary frequencies
ξn. Fortunately, these can be easily related to the
imaginary part of the frequency-dependent com-
plex dielectric constant ε(ω) = ε′(ω) + iε′′(ω) by a
Kramers-Kronig transform18

ε(iξn) = 1 +
2
π

∫ ∞

o

ω ε′′(ω) dω

ω2 + ξ2
n

. (2)

It becomes clear that the forces, experienced by
the two semi-infinite condensed bodies, are then
dependent only on the separation and the optical
properties of each of the materials. In the heuristic
theory it is more intuitive to see that the energy
in Equation 1 arises purely between the two inter-
faces. Hence, adding interfaces will result simply
in additional terms in the expression, one per each
unique pair of interfaces with variable separation.
Different geometries can then be approximated by
considering collections of surfaces and taking their
limit to smoothen them out. It is quite important to
point out that in these theories, it is assumed that
the surfaces are flat and continuous – individual
atoms are seen only as part of a continuous whole
and there is no roughness. This restricts the theory
to only be accurate for separations up to l ∼ 5 nm.
Later works show both theoretically and experimen-
tally the effect that surface roughness plays on the
Casimir and Van der Waals forces at both small
and large separations19–21. The contribution due
to roughness is usually computed with perturba-
tion theory and as can be expected, becomes more
significant at smaller separations.

In order to see what the effect of retardation on
the system is, it is convenient to make an approxima-
tion, in which the magnetic contribution is neglected
and εi − εj � 1 ∀ i 6= j, ω. A Taylor expansion of
the expression in Equation 1 around ∆̄Am∆̄Bm = 0
and evaluation of the integral results in

G(l) =
−kBT
8π l2

∞

∑
n=0

†∆̄Am∆̄Bm

Rn(l,ξn)︷ ︸︸ ︷
(1 + rn) e−rn

+O(∆̄2
Am∆̄2

Bm) , (3)

which is a lot more digestible than the original full
expression. In this limit, it is clearly seen that for
each mode that the sum runs over, there is one
clear contribution from the deltas (independent of
separation length) and one from Rn ≤ 1, which fol-
lows from retardation as will be pointed out shortly.
The imaginary frequency ξn, when used in a com-
plex exponent evidently is the rate of decay with
time of a charge fluctuation at a certain temperature.
Upon revisiting the definition of rn, it becomes then
clear that it is nothing but the ratio of the time it
would take light to travel 2 times the distance l in
the medium m and the lifetime of a surface mode
fluctuation 1

ξn
.

Rn

Exact
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Figure 2: Exact and up to first approximation re-
tardation factor as a function of the ratio of photon
travel time over average fluctuation lifetime.
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Hence, the case rn � 1 corresponds to a scenario
where a surface mode fluctuation emits a photon,
but dies out before the photon comes back with in-
formation about fluctuations at the same frequency
on the other side of the medium and therefore, the
majority of fluctuations do not contribute to the en-
ergy. Rn is a monotonically decreasing function of
rn, with a significant drop in the vicinity of rn = 1,
which is in agreement with the intuitive explanation
given here (See Figure 2).

The case of two finitely thick (a, b) slabs is the
first one to be of a more significant interest because
it is the simplest experimentally accessible system.
Let the two closest interfaces (the only ones in the
infinite slab scenario) be called primary and the next
in order carry increasing numbers. As mentioned
previously, any pair of interfaces with variable sep-
aration contributes to the total force and for two
slabs this adds up to four total terms. The original
term, arising from the primary interfaces, is clearly
dominant in the regime l � a, b if, of course sepa-
rations are small enough for retardation to not play
a significant role. It is also very important to point
out that sign of the interaction, which determines
the attractive or repulsive character of the force,
emerges from the relative differences in dielectric
constants and magnetic permeabilities (∆̄, ∆). It is
clear from the definition of the relative differences
that ∆ij = −∆ji. Therefore, the interaction between a
primary and a secondary interface will work against
the contribution from the two primary interfaces. It
follows from here that in the limit where retardation
is not significant, the thinner the slabs, the weaker
the force due to charge fluctuations.

One might raise the question if there can be
repulsive action in a system due to charge fluctua-
tions. In the first approximation limit as in Equation
3, it is evident that a positive ∆̄Am∆̄Bm leads to a
negative force per unit area (pressure) and there-
fore, attractive forcesb. A direct conclusion is that
for two classical materials that are alike, the forces
will only be attractive. Intuitively speaking, if the

medium m is connected to a large reservoir, as in the
Grand canonical ensemble, then the forces between
the two slabs become repulsive if it is energetically
favourable in terms of interaction of fluctuations for
the system to inject more of material m between the
slabs. This, in turn, occurs if the interaction A−m
is stronger than the interaction of m with itself so
that m wants to be in touch with A and leave the
reservoir. Additionally, the B− m interaction has
to be weaker than any of the other two interactions
so that the A− B interaction is weaker and the two
slabs prefer m between them rather than sticking to
each other. In the aforementioned first approxima-
tion, the forces are repulsive if εA < εm < εB at the
imaginary frequencies with relevant contribution to
the total force17. In systems of this sort, it has been
found experimentally that such repulsive forces ex-
ist22 (see Figure 3) but only in systems where the
wave propagating medium is a liquid. It is crucial
to point out that repulsive forces have only been
found for long-range interactions where the retar-
dation effect is significant. Additionally, the results
and interpretation of the results has been a topic
of debate and controversy within the field. In the
following section more sophisticated examples of
system with repulsive forces due to electromagnetic
fluctuations are presented.

III. Repulsive Forces

A repulsive force in a NEMS/MEMS is a very valu-
able property, which extends the lifetime of the sys-
tem and protects it from stiction. Already more
than twenty years ago, people started questioning
the contribution and effect of the Casimir force on
the stability of such systems23,24. In addition, the
rougher a surface, the more likely it is that a driven
oscillating plate will exhibit chaotic motion, which
leads to stiction and malfunction of the device25. It
is clear that a repulsive force at small separations
will eliminate any points of stable equilibrium at
l = 0 but a more extensive study is still to be done.

bTrue as long as the energy decays like l−α, α ∈ R++. An increasing force would be unphysical.
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Such a study should involve a variety of cases, in-
cluding ones where the force is both repulsive and
attractive at different separations.

Figure 3: First measurement of repulsive Casimir
forces. Blue data represents gold-silica interactions
(asymmetric system and repulsive forces) whereas
the orange data represents gold-gold interactions
(symmetric system and attractive forces). Forces are
between a gold sphere and a gold/silica substrate,
immersed in bromobenzene. Image is taken from
the original paper of Munday et al22

Figure 4: Predicted repulsive Casimir forces and di-
electric constants at imaginary frequencies between
Polytetrafluoroethylene and gold surfaces for vari-
ous liquids. Image is taken from the original paper
of van Zwol and Palasantzas et al26

1. Due to geometry and boundary conditions

Even though it may seem like forces due to elec-
tromagnetic fluctuations are attractive in nature, as
observed in most fluids, it is not so crazy to think
about repulsive forces. After all, even vacuum al-
lows for repulsive forces between two bodies but
to see how that is possible, one must not ignore
the contribution of the magnetic properties. Look-
ing at Equation 1 it is clear that a bigger-than-one
argument of the natural logarithm is necessary to
derive repulsive forces – a condition, which is satis-
fied when ∆̄Am∆̄Bm, ∆Am∆Bm < 0. It can be shown
that a general parameters such as µA = εB = 1,
εA, µB > 1 result in ∆s with opposite signs in pairs,
which in turn satisfies the general condition to have
a repulsive force. This result is generalised in the
paper of Kenneth et al, where repulsive Casimir
forces are predicted for a large volume of the pa-
rameter space of a system27. The approach and the
results were criticised one year later and to this date,
there is no real conclusion on whether the results
should hold or not28. In any case, there is no exper-
imental evidence to suggest the claims for repulsive
forces to hold. One peculiar and interesting case
is repulsion between conducting bodies, solely due
to geometry of the setup and its symmetry. The
geometry is namely a small elongated body (allow-
ing for electric dipole oscillations) over a perforated
plane. The proof involves arguments involving the
fluctuation-dissipation theorem29 and using it to re-
late the fluctuation energy to the energy of a dipole
oscillator. It is shown that the energy when the
elongated body is in the centre of the whole is then
the same as the energy when the body is at infinity,
implying a sign change of the Casimir force at a
given point in-between30. This is, however, more of
a curiosity than an actually applicable result.

The first computed repulsive force is that of a
perfect conductor and an infinitely permeable ma-
terial, computed by Boyer as a sort of pioneering
work in the field of repulsive Casimir forces nearly
fifty years ago31. It was inspired by an even earlier
work by Lukosz, which didn’t go too deep in the
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topic of repuslive forces32. It should be pointed
out that these would be repulsive forces between
classical materialsc, arising purely due to boundary
conditions at the interfaces, and are not the same
as the measured repulsive forces in the paper by
Munday et al, which is mentioned in the previous
section22. In general, if one of the boundaries obeys
the Neumann boundary condition (continuous first
derivative of function) and the other – a Dirichlet
boundary condition (continuous function), the force
can be repulsive34. The issue with repulsive forces
from boundary conditions is that it is very hard to
tune the magnetic permeability µ of materials and it
is also studied significantly less extensively than the
dielectric constant. Additionally, repulsive forces
in liquids, like the one from the Munday et al pa-
per have been shown to exist for a very limited set
of systems, and an even smaller subset of systems
that exhibit strong repulsive forces26. Some of these
systems and their predicted repulsive forces are
showcased in Figure 4. The limited material choices
and the mandatory liquid presence hinder the avail-
ability for applications. Fortunately, there are other
tricks that one may employ in order to achieve re-
pulsive Casimir forces in vacuum/air, which is what
the rest of this paper is dedicated to.

2. Metamaterials

As stated previously, the set of classical mate-
rials and geometries, for which a repulsive or
tunable Casimir force can be experienced, is ex-
tremely limited. This, however, can be changed
if metamaterials are used – materials or complex
geometries/structures of different composite sub-
materials, with properties that are tuned for a spe-
cific purpose36 (see Figure 5). The field of meta-
materials started with a paper by Veselago, who
predicted a metamaterial with a negative dielectric
constant and electric permeability in a certain fre-
quency range37 and to present day such materials

have been readily observed38. It is imporant to no-
tice that such a metamaterial must be dispersive in
order to satisfy conservation of energy37. One might
be misled that this leads to an unchanged refractive
index due to the definition n =

√
εµ but this would

only hold if ε, µ ∈ R. In fact, for a general optical
constants ε, µ ∈ C, the following can be stated:

Let ε = rεeiφε , µ = rµeiφµ

=⇒ n =
√

rεrµ ei
φε+φµ

2 (4)

=⇒ Re[n] < 0 for π < φε + φµ < 2π .

The imaginary part of the refractive index is related
to absorptiond, which is not the focus of the paper.
However, a negative real part of the refractive in-
dex leads to some interesting effects. For instance,
the group velocity of a wave package is opposite to
the direction of energy transport (which gives the
name left-handed to such materials), refraction only
reflects a wave, Ĉerenkov radiation is emitted in a
cone behind the charged particle instead of in front,
etc.39 As pointed out by Casimir in the original pa-
per, a material with ε = µ = −1 sitting between the
conducting infinite planes will result in a repulsive
force, which is not immediately visible from Equa-
tion 1. In general, left-handed materials have been
used for creation of perfect lenses40 but their appli-
cation can also go further. As mentioned previously,
left-handed materials can give rise to a repulsive
Casimir force, even if not the entire medium be-
tween the two slabs is left-handed (useful because
such metamaterials are usually solid) as demon-
strated first by Leonhardt and Philbin41. Despite
the appealing result, the model, which is used, is
rather primitive and makes some quite crude as-
sumptions regarding the setup and the optical prop-
erties. One such assumption is that ε = µ = −1 for
all frequencies, which is very unrealistic, and even
if the constants were negative for a given frequency
range, depending on temperature, if the range is

cClassical materials can be defined as homogeneous and infinitely divisible33.
dIm[n] must be positive so that absorption doesn’t amplify the wave instead and energy is conserved. This effectively sets the

upper limit of the summed phase to 2π.
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Figure 5: Picture of a chiral metamaterial. Taken from paper by Wang et al35.

small enough and the constants are positive outside,
the attraction may outweigh the repulsion.

It turns out that ε, µ < 0 is not a mandatory
condition for a negative refractive index and the
so-called chiral metamaterials give rise to the same
result42. In chiral materials the electric field of a
propagating wave is coupled to the magnetic field
by a coupling parameter κ(ω). Solving the modified
Maxwell’s equations results in the possibility for the
real part of the refractive index to take negative val-
ues even if the individual real parts of the dielectric
constant and the magnetic permeability are not si-
multaneously negative at a given frequency range.
In particular, the refractive index expression can be
modified by adding or subtracting κ from the ex-
pression in Equation 4, depending on the direction
of circular polarisation of light passing through the
materiale. A pioneering work in the general repul-
sive force in chiral metamaterials is done by Rosa et
al but it involves some rather unrealistic modelling
of the frequency dependence of the magnetic perme-
ability by a Lorentz-Drude model43. Even with its
flaws, this paper examines chirality and repulsive
forces using a complete Lifshitz theory, unlike the
paper by Leonhardt and Philbin, mentioned in the

previous paragraph. A follow-up paper by Zhao et
al offers an improved model for the frequency de-
pendence of the relevant optical parameters. Their
conclusion is that a repulsive force is indeed observ-
able, even though it is weaker than that of the pio-
neering work and only present when the coupling
is sufficiently large44. This was initially predicted
to be true for a couple of known metamaterials45.
The large, coupling, however, in addition to other
restrictions on the parameter space, which make
a repulsive force possible, have been shown to be
in contradiction with the causality and passivity of
a real chiral metamaterial46. Additionally, it was
later realised that when the theoretical predictions
are translated to reality, it is close to impossible to
achieve a fully repulsive Casimir force. The negative
refractive index does, however, reduce the overall
attractive force, which can still be useful for ap-
plications in MEMS/NEMS47. The usage of chiral
metamaterials has also been extended to chiral meta-
material slabs with and without substrate and the
theoretical predictions are that repulsive force will
be observable48. As of present day such a result
is yet to be reported by experiment. This is also a
potential reason why the seemingly highly active

eAny polarisation of light can be expressed as a linear combination of left- and right-handed circular polarisation.
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field of Casimir forces and metamaterials around
2010 has been dormant for the past ten years. The
exception is made by a brief study of the emerg-
ing so-called hyperbolic metamaterials – metama-
terials with a heavily anisotropic dielectric tensor,
which are of large interest nowadays in the field
of nanophotonics49,50. Due to modified dispersion
relation, it can be shown that hyperbolic metamate-
rials slabs can also exhibit repulsive Casimir force
although once again, there is a lack of experimental
evidence51,52.

Metamaterials are not the only materials where
a repulsive force can be obtained in theory. Other
examples include graphene53,54 and arrays of silver
nanorods55,56. Combined with the highly magnetic
materials and coatings, from which the search for
repulsive Casimir systems partially started27, these
examples all involve some sort of electronic states
in a dimension, lower than three. One particular
system, which also exhibits such behaviour are the
so-called topological insulators and the next section
deals with them exclusively and in more detail.

IV. Topological Insulators

1. What are they?

Imagine a system of one electron, which is confined
to two dimensions (x̂, ŷ) and is subjected to a con-
stant magnetic field B in the confining dimension
ẑ. Let the gauge of the electromagnetic potential
be such that the scalar potential vanishes and the
vector potential is given by A = yBx̂ so that the (non-
relativistic) Hamiltonian of one electron of mass m
and charge e is

H =
(p + e

c A)2

2m
=

1
2m

(
(px +

e
c By)2 + p2

y ,
)

(5)

where p represents momentum in two dimensions.
According to quantum mechanics pi = −ih̄∂i and
the energy of a given state E satisfies Hψ = Eψ,
where ψ is the wavefunction of the electron. The
wavefunction can be guessed as a plane wave in x so

that ψ(x, y) = exp(ikxx) φ(y). Letting the Hamilto-
nian operator from Equation 5 act on this wavefunc-
tion confirms its validity as a solution and results in
a harmonic oscillator in y(

p2
y

2m
− 1

2 mω2
c (y− yk)

2

)
φ(y) = Eφ(y);

ωc =
eB
mc

, yk =
eB
h̄c

kx (6)

=⇒ E = h̄ωc(n + 1
2 ), n ∈N

Importantly, this is the energy for the electron in
both x and y. Even though we said the wavefunction
is free in the x direction, which means it can have
any momentum, a change of momentum effectively
displaces the oscillator in y and does not affect its
energy. This makes sense because the 2D system
should be invariant to gauge transformations, cor-
responding to rotations in the x− y plane, and so
its energy should not be different in any of the two
existing degrees of freedom in that plane. The har-
monic oscillator state is highly localised around the
potential minimum but as visible by the presence
of yk in Equation 6, the position of the state can be
anywhere in the x− y plane. These states can then
be represented by parallel lines, concentric circles
or vortices, the latter of which is chosen here. In a
realistic system, there must be edges present to the
plane and these edges start confining states, whose
wavefunctions begin to be physically cut-off by the
edge. The edge is introduced by a boundary with
an insulator. This confinement increases the energy
of the states significantly around the edges. Hence,
the energy can vary in k-space but only around the
edges. So if the system has a particular Fermi en-
ergy, which lies between the energies given by the
states in Equation 6, then any small electric field per-
turbation to the system will result in a current but
only in the states whose energy has been confined
by the edge (see Figure 6).

In the picture where the states are represented
by vortices, the edge breaks the vortex and makes
it bounce on the perimeter of the plane like shown
in Figure 6 since the presence of the magnetic field
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does not allow it to change direction of rotation. The
corresponding states are delocalised and conduct-
ing. What is described here is an overly-simplified
picture of a two-dimensional topological insulator
but it gets the message across – the states in the
middle are insulating and the states on the edges
are conducting. A lot of details are skipped such as
having more than one electron, defining the Fermi
energy, the role of impurities and their necessity
for the definition of a Fermi energy in-between the
perfect states, etc.

Figure 6: Simplified schematic of the representa-
tion of Quantum Hall states by vortices and the
corresponding energy-momentum diagram, which
shows that the states on the edge can conduct.

All of this is closely related to the Quantum Hall
effect, which won’t be discussed here, however59.
Moreover, the conducting states are effectively one-
dimensional and propagate a current only in one

direction without any back-scattering. A system
that has these conducting edges and insulating bulk
has a unique so-called topological invariant (known as
TKNN invariant), which is obtained by a special sur-
face integral over the Brillouin zone59. An analogy
is the famous topological invariance between a cof-
fee mug and a doughnut (representing a Quantum
Hall state), which are topologically different from
a ball (representing an insulating state) or some
alien doughnut with two holes. In terms of physical
symmetry, it can be stated that the magnetic field
breaks time-reversal symmetry (a.k.a. T-symmetry)
– a necessity for the observation of the effect. The
question is whether a topological insulator can ex-
ist without the presence of an external field. The
first candidate is spin-orbit coupling, which, how-
ever, does not come with the appropriate symmetry
breaking60. It was still used in some pioneering
models. The breakthrough came in 2005 when Kane
and Mele came up with a realistic model for a topo-
logical insulator without an external field and they
also showed that a new topological Z2 invariant ex-
istsf, which also allows conducting edge states in
any two-dimensional system as long as it obeys cer-
tain conditions57. In fact, the invariant corresponds
to the number of pairs of conducting edge states.
Importantly, a system with Z2 invariance does not
have to break time-reversal symmetry. They showed
graphene is one of those materials at sufficiently low
temperatures at given ranges of coupling strengths
as depicted in Figure 757.

A few years later is was realised by a few people
almost simultaneously that there are more topologi-
cal invariants, which would allow conducting sur-
face states in three-dimensional systems61–63. Fur-
thermore, it was shown that there are materials,
for which these topological invariants exist. More
popular and promising ones include Bi2Te3, Sb2Se3,
and Sb2Te3

64. Moreover, the surface states form
Dirac cones, which means the surface carriers are
in the ultra-relativistic limit E ∝ p58 (see 8). In
three-dimensional systems it was found that the

fInvariant corresponds to a two-fold cyclic group.
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Figure 7: Electronic states energy-momentum diagram for a one-dimensional graphene zigzag strip. On the
left there are spin-dependent conducting states and on the right there are none. The conducting states only
appear when the staggered lattice potential is sufficiently weak and the parameter space, for which they are
observed, is depicted in the central frame. Taken from Kane and Mele’s original paper57

Figure 8: Experimentally measured electronic states of Bi2Te3 in the two crystallographic plane directions.
The surface states are the thinner lines that go between the bulk states. The Dirac cones in the vicinity of the
Γ-point are clearly visible. Taken from the original paper of Xia et al58

11
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necessary topological invariants can arise from the
orbital motion of electrons. This motion intro-
duces a magnetoelectric coupling term in the La-
grangian/Hamiltonian and breaks the time-reversal
symmetry, thus, separating the topological insulator
(TI) from a normal insulator65,66. The modified elec-
trodynamics that follow include a perturbation in
the form of a cross-term between the magnetic and
electric fields, very similarly to chiral metamaterials,
even though the coupling is rooted in a fundamen-
tally different physical phenomenon.

A similar magnetoelectric coupling was known
beforehand from Axiong physics, which was pre-
dicted to have potential in Condensed matter
physics decades prior to the discovery of three-
dimensional TIs67. As it turns out, properties of
the Axion particle field can be directly translated
to TI physics. This gives a slight taste of already
existing Physics into a field, which is full of new
ideas and possibilities68,69. It should be pointed
out that the Axion field coupling does not imply
these hypothetical particles exist – it is simply con-
venient to pretend that the time-reversal symmetry
breaking arises from coupling with the Axion field,
even though its roots lie elsewhere but the results
are identical. It will be shown in the next section
how the magnetoelectic coupling comes into play to
create repulsive Casimir forces.

Clearly, topological insulators have some very
interesting electronic properties and these have
made them very promising materials for the fu-
ture. Some of their theorised or realised applica-
tions include quantum computing, superconduc-
tors, polarisation splitters, and general spintron-
ics/magnetoelectronics62,70–74. The question left to
answer now is how are these electronic properties
going to impact the Casimir force and also, how are
the distinct surface states going to contribute if they
are so different from the bulk states.

2. What forces do they give rise to?

The first challenge for computing a Casimir force on
a TI is the approach – how should the surface states
be treated? It is in principle possible to introduce
the concept of continually varying the dielectric
constant and magnetic permeability into the mate-
rial and compute a Casimir force based on that17.
It is then a possibility to attach a certain effective
depth to the surface states and optical constants,
which quickly decay to the bulk optical constants
away from the surface. This, however, is unfeasible
since optical properties are studied with ellipsom-
etry, which is only sensitive to the bulk states, and
there are no studies so far with this approach. An-
other possibility is to treat the electrons as a free
two-dimensional gas of Dirac fermions, which turns
out to lead to similar results as the aforementioned
Axion field coupling75. As will be shown, for spe-
cific systems of TIs, the Casimir force can be tuned
to become repulsive.

The first approach to be introduced is one util-
ising an Axion field coupling and was done by
Grushin and Cortijo in 2011, amongst the Casimir re-
pulsion craze in the field77. The Lagrangian density
of the system can be written as

L = εE2 − 1
µ B2︸ ︷︷ ︸

Classical

+θ
α

4π2 E · B , (7)

where the last term represents the coupling to the
Axion field by a parameter θ, also known as the
Topological magnetoelectric polarisablity. α ≈ 1

137
is the fine structure constant. Since B breaks T-
symmetry and E does not, their inner product
breaks T-symmetry and therefore also the newly
added term to the Lagrangian density breaks it.
Hence, θ = 0 corresponds to a normal insulator
and TI bulk states are identified by θ = π. Upon
introduction of an additional external T-symmetry
breaking perturbation on the surface, θ can be mod-
ified to take values θ = (2n + 1)π, n ∈ Z. The
exact value of θ then depends on the nature of the

gAxions are hypothetical elementary particles, proposed to solve the so-called strong CP problem in Quantum chromodynamics.
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(a) (b)

Figure 9: Casimir force per unit area (in units of h̄ω4
R/(c32π2)) versus a dimensionless slab separation

parameter on a logarithmic scale. ωR is the resonance frequency of the pure oscillator model, used for
computation of the force. In (a), computation at different TI slab thicknesses are presented whereas in
(b), the computation is performed for varying magnetoelectric coupling strengths. θin corresponds to the
coatings on the side of the gap between the TI slabs and θex – to the other two coatings. Taken from the
original paper by Nie et al76.

perturbation. Such perturbations can be realised ex-
perimentally the easiest by an application of a thin
magnetised ferromagnetic layer. In Grushin and
Cortijo’s paper, the dielectric response of the bulk
is modelled by a Lorentz-Drude oscillator, which
is arguably a good approximation for topologically
insulating materials such as TlBeSe2

78. Within the
given approximations, it can then be shown that for
a system of two semi-infinite TIs (as in Figure 1) in
vacuum with magnetic coatings facing towards the
gap, corresponding to θ1 and θ2, a repulsive Casimir
force exists at smaller separations if θ1 and θ2 have
opposite signs (opposite magnetisations with re-
spect to the surface normal vectors). The force is
also weakly attractive at larger separations and a
point of zero force can be predicted. The repulsive
force is the largest for θ1 = −θ2 = π 77. Although
the result looks appealing, there are some simplifi-
cations and approximations that might prevent an
experimental realisation such as the aforementioned
pure oscillator model for the dielectric response. An-

other one is the assumption that the Axion coupling
Lagrangian density is a good description for an in-
finitely large frequency range69. Nonetheless, the
general result within the approximations is that the
Casimir force can be tuned and switched from re-
pulsive to attractive by the application of suitable
magnetic layers on the TI surface. The result was
built upon by Chen and Wan who show a gener-
alised picture with its respective limits75. Later,
Martinez and Jalil showed that the forces can be fur-
ther tuned by introduction of free surface charges,
which effectively play the same role as the Axion
field coupling79. Finally, within the same formalism
and pool of assumptions, Nie et al showed that the
results can be extended to systems with TI slabs
(four θ-associated magnetic coatings in total) with
and without substrate76. Moreover, the presence of
a substrate (Silicon) strengthens the attractive forces
and pushes the zero-force point towards smaller
separations. Most notably, the study shows that
the slab separation at the zero-force point decreases
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with decreasing slab thickness but thinner slabs also
exhibit stronger attractive forces (see Figure 9a, 9b).
The stronger attractive forces for thinner slabs is
not in agreement with the result for two classical
slabs, which is discussed in the first section. The
thickness-dependence can be complemented with
a study by Post et al where it is shown that thin TI
films can effectively modify the parameters in an
oscillator model and exhibit smaller-than-expected
band gaps80. A study, which implements these
findings into Casimir force calculations is yet to be
performed. Finally, an increasing dielectric constant
of the TI leads to a decreasing zero-force separa-
tion and the temperature of the system also plays a
significant role, which is, however, nontrivial.

What is left to be done in the field is to bring
these topological insulator models to reality. The
range and magnitude of the Casimir forces in TIs
are large enough to be accessible experimentally
by atomic force microscopy (AFM) techniques or
Fabry-Perot type cavities76. There are, of course,
quite a few complications to be encountered in that
direction. First of all, a measurement of the dielec-
tric constant in a film is necessary for computation
of the forces from optical data, which can then be
compared to actual force measurements. The optical
measurements have to be performed, however, over
an extremely wide range of frequencies, which is
rather challenging by itself. Furthermore, any opti-
cal measurement will pick up information about the
dielectric response in the bulk but not the surface.
This leads us to the next point – there is a lack of
realistic studies on the contribution of surface states
to the Casimir force. Modelling the system by con-
tinuously varying the dielectric constant around the
surface could lead to a more detailed understand-
ing. One significant challenge with experimental
measurement of the Casimir force by AFM is the
presence of residual charge on the surfaces, which
has to be measured beforehand and its contribution
has to be subtracted from the measurement.

Finally, for finding applications of a repulsive
Casimir force, there have to be studies, which delve

deeper into the dynamics and stability of systems
with repulsive Casimir forces. Such studies are al-
ready present for regular Casimir systems with at-
tractive forces and are of extreme importance in
NEMS/MEMS25. Studies regarding the dynamics
of repulsive Casimir systems will be necessary to
point out the superiority of such systems in elec-
tromechanical systems but perhaps are only logical
to appear after sufficient experimental understand-
ing of the repulsive Casimir forces is reached. Thus,
the first priority for topological insulators and any
other materials/systems, for which repulsive forces
have been theorised, is to observe and understand
the repulsive interaction by means of experiment,
including the contribution of surface states via an
appropriate model.

V. Conclusion

Understanding the intermolecular and interatomic
forces has been of great interest since the develop-
ment of thermodynamics in the late 19th century and
is just as relevant today in fields ranging from The-
oretical physics to Medicine. The most important
contribution to the understanding of these forces
was made by Lifshitz in the mid-20th century who
showed that as long as the optical response of a
system in a wide enough frequency range is known,
which is a challenge by itself, the forces due to fluctu-
ations in the electromagnetic field can be computed.
One realisation that followed was that under spe-
cific conditions the Lifshitz theory predicts that the
forces could turn repulsive and this opens an ocean
of application possibilities ranging from quantum
levitation to nano/micro electromechanical systems
without stiction and only imagination can be the
limit if the Casimir forces are fully tamed81. In liq-
uid, repulsive forces have been predicted but the
validity of their subsequent measurement is dis-
puted. In air and vacuum it becomes clear that the
overwhelming majority of classical materials will
result in attractive forces, with the exception be-
ing asymmetric systems involving materials with
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strong magnetic response but even this result is
disputed and not set-in-stone. Systems that hold
the greatest promise are built from a new genera-
tion of materials – metamaterials and topological
insulators. Coincidentally, in both the former and
the latter, a degree of coupling between the electric
and magnetic field within the material is present,
which modifies the underlying electrodynamics and
is theorised within a set of approximations to result
in repulsive forces. Three-dimensional topological
insulators appear more promising due to being eas-
ier to work with than metamaterials and offering
a wider range of tunability in the force. To this
day, however, there is a lack of experimental evi-
dence to support any of the theoretical predictions
and a lot of work is still to be done. Some of the
challenges that remain to be tackled include an un-
derstanding of the contribution of surface states
in topological insulators, their implementation in
experiment and dependence on sample thickness,
presence of a substrate, temperature, etc. Tackling
some of these challenges might revive the field of re-
pulsive Casimir forces and unlock the gate towards
application but also, fundamental understanding
of both the materials involved and the fluctuations
of the electromagnetic field, related to the problem
of zero-point energy, as well as how the different
elements of the problem intertwine.
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