
adaptable processes: concepts,
design and implementation in

camunda

Ana Roman

Supervised by:
D. Karastoyanova
V. Andrikopoulos

March 22, 2021
University of Groningen

2

Abstract

Due to the generic approach that they take while modelling scenarios, as
well as their independence from application domains, business workflows
have also grown increasingly popular among the scientific community and
applications. In a business context, process automation can drastically
improve an organization’s performance and efficiency, and thus reduce
costs in terms of time and money. In the scientific context, on the other
hand, process automation can be used as a tool for conducting experiments,
bringing with it the advantage that such an approach allows for automation
as well as reproducibility of the results, which is a key element in the
academic research field.
In the past years, Camunda has proven itself to be a powerful workflow and
decision automation platform, that provides numerous tools to facilitate the
modelling, execution and analysis of business processes. At the same time,
Camunda is BPMN compliant, coming as an answer to the problems that
scientists often face when relying on tools developed by other scientists,
that are more often than not outdated or based on outdated programming
languages.
Despite the extensive set of tools that the state of the art business workflow
systems currently have, they still lack the possibility of trial-and-error
modelling that is needed when working with processes that do not have a
complete set of instructions, and thus cannot support incomplete, partially
defined workflow models, such as in the case of scientific experiments or in
a business process where processes can evolve over time.
The present study addresses these limitations that are also present in
Camunda, with regards to the possibility of flexible development and
execution of models and processes. The system will be extended with ad-
vanced flexibility features that will allow users from both worlds (business
and scientific) to create and run workflows in an explorative manner in
order to increase the robustness of their applications.

3

4

Contents

Acronyms 9

1 Introduction 11
1.1 Motivation . 12
1.2 Problem Statement . 12
1.3 Research question and objectives . 13
1.4 Summary of contributions . 13
1.5 Structure of the thesis . 14

2 Background and Related Work 15
2.1 Background . 15

2.1.1 Business Process Management 15
2.1.1.1 The BPM Lifecycle 16

2.1.2 Workflows . 16
2.1.2.1 Business vs. Scientific Workflows 17
2.1.2.2 Components . 18

2.1.3 Flexibility . 19
2.1.4 Camunda . 21

2.1.4.1 Motivation . 21
2.1.4.2 Architecture Overview 22

2.1.5 Alternatives to Camunda . 28
2.2 Related work . 29

2.2.1 The Model-as-you-go approach 29
2.2.1.1 Conceptual requirements 30
2.2.1.2 Requirements analysis & suggested solutions 30

2.2.2 “Flexible Modeling and Execution of Choreographies”
- Andreas Weiß . 34
2.2.2.1 High-Level Requirements 34

5

3 Methodology 37
3.1 Requirements . 37

3.1.1 Use Case Scenarios . 38
3.1.2 Requirements Analysis . 39

3.1.2.1 Requirements Framework 39
3.1.2.2 Non-functional requirements 40

3.2 Adaptable Processes . 42
3.2.1 Loan application procedure . 42
3.2.2 Scientific simulation . 43

4 Suggested Solution and Implementation 47
4.1 Camunda - Basic Concepts . 47

4.1.1 The Process Engine . 47
4.1.2 The REST API . 51

4.2 Instance Migration . 52
4.2.1 The Implementation of the Instance Migration 53

4.2.1.1 The Modeler . 54
4.2.1.2 The REST API . 55
4.2.1.3 Edge cases . 56

4.3 New Instance Deployment with Data Transfer 58
4.3.1 Specifying a starting Node ID 60
4.3.2 Conclusion . 65

5 Evaluation and Conclusions 67
5.1 Evaluation . 67

5.1.1 Application to the Use Cases 67
5.1.1.1 Loan approval system 67
5.1.1.2 Scientific simulation 68

5.1.2 Requirements Fulfillment . 69
5.2 Conclusion . 70

5.2.1 Summary of results . 70
5.2.2 Limitations and discussion . 71
5.2.3 Future research . 72

6

List of Figures

2.1 The BPM life cycle . 17
2.2 The Workflow Reference Model . 19
2.3 Overview of the architecture of Camunda 22
2.4 An overview of the Camunda Engine 24
2.5 An overview of the Camunda Modeler 25
2.6 An overview of the Camunda Cockpit 26
2.7 An overview of the Camunda Tasklist 27
2.8 Process States in conventional workflows vs Model-As-You-Go 31
2.9 Architecture of Mayflower . 33
2.10 Research Contributions of A. Weiß . 35

3.1 Loan application procedure - initial model 43
3.2 Loan application procedure - modified model 43
3.3 Scientific simulation - initial model . 45
3.4 Scientific simulation - modified model 45

4.1 Camunda Engine API Services . 48
4.2 UML diagram of the Instance Migration 54
4.3 The two types of deployment allowed through the Modeler 55
4.4 UML diagram of REST API components 57
4.5 UML diagram of the Data Transfer approach 61
4.6 Possible case of a deadlock . 62
4.7 UML diagram of the Data Transfer approach, when a specifit activity

ID is given . 64

7

8

Acronyms

BP Business Process. 11

BPM Business Process Management. 11

BPMN Business Process Model and Notation. 18

DMN Decision Modelling and Notation. 23

UML Unified Modeling Language. 18

WfMC Workflow Management Coalition. 16, 18

WfMS Workflow Management System. 12, 18

9

10

Chapter 1 | Introduction

At the core of Business Process Management (BPM) lies the observation that every
product offered by a company on the market is the result of a number of activities [1].
Business Processes (BP) coordinate these activities as well as the interrelationships
between them, and as such, are crucial to a company’s performance. A deep under-
standing of the processes that take place in an organization can lead to consistent
outcomes and improvements, such as costs or execution times reduction, reducing
error rates and also more opportunities to innovate which can bring about competitive
advantage [2]. Instead of focusing on the execution of individual activities, BPM
focuses on managing the entire chains of events, activities and decisions that are
valuable to an organization, its customers and its stakeholders [3]. Processes can
be formally defined as the sum of events, activities and decisions that lead to an
outcome [1]. BPM can be seen as a mechanism for controlling the execution of these
processes by providing a set of tools such as concepts, methods, documentation,
monitoring and means of optimization [4].
According to the literature [2], quality of the processes and the way in which the
processes are conducted may lead an organization to outperform another one offering
similar services.

In the past years, BPM has started to receive more attention from other com-
munities outside of the business world. In particular, the scientific community has
started using some of the tools provided by BPM when coordinating their own research
and experiments. Through workflows that are used for scientific means, also called
scientific workflows, scientists can benefit from the extensive set of tools that conven-
tional workflow management systems have to offer, and have access to a significant
body of knowledge from the heavily researched BPM domain. Scientific workflows
can be particularly useful to specify the control and data flow of experiments, or to
orchestrate software modules and services that scientists develop themselves [5].

Offering a BPMN compliant engine and a number of applications that enable
non-IT specialists to develop and deploy processes, Camunda has become increasingly

11

popular as a Workflow Management System (WfMS) between both business and
scientific communities. It is an open, ongoing project that is continuously improved,
and has a large community of developers and users from a vast number of domains.
Due to its recent increase in popularity and the set of tools that it already offered,
Camunda was selected as the candidate for the topic of this thesis.

1.1 Motivation
Despite the already existing set of tools that they provide, and the extensive work
that has been done on the research of BPM, existing WfMS still lack features and
characteristics that are desirable in scientific contexts and applications. For example,
most systems do not provide the deployment of flexible, adaptable processes, that
would enable a trial-and-error way of developing processes. In an experimental
context, not all the steps are known beforehand and a lot of activities are subject to
change. Processes are usually long-running, with activities that could take days, even
weeks [6]. In the light of these issues, one can already understand why the flexibility
of a process instance would be preferred over the redeployment and repetition of the
same steps.
However, not only the scientific community could benefit from such capabilities.
Business processes usually handle extensive amounts of sensitive data and have to
follow rules imposed by the surrounding environment, such as legislation, changing
market conditions or rules of conduct. According to the literature, changing a
workflow instance is easier and would allow a workflow management system to be
more responsive to the changes in its environment [7].

The vision of the current work is to aid users from both worlds and contexts in
improving their processes, by providing them with the concepts and a proof-of-concept
implementation of adaptable processes on the Camunda OSS.

1.2 Problem Statement
The topic of adaptable processes has been thoroughly discussed in the past by the
literature. In their work [6], Karastoyanova and Sonntag have laid the foundation of a
new technique called Model-as-You-Go, which allows the development and deployment
of adaptable processes on a BPEL engine. In his dissertation thesis [8], A Weiß extends
the Model-as-You-Go technique such that it can be applied to choreographies.
However, all of the previous work and research has focused mainly on the BPEL lan-
guage and engine. Up to the point of writing this thesis, the subject of adaptations on

12

Chapter 1. Introduction

the Camunda OSS has not yet been researched or implemented.

1.3 Research question and objectives
With regards to the aforementioned problem statement, the overall goal of the current
thesis is to explore the concept and requirements of a WfMS that provides flexibility
capabilities. The current work will investigate previous work done on this topic, will
select relevant ideas and will put together a conceptual blueprint. At the same time,
it will describe how the concepts derived from the literature can be translated into
implementation, which will then be applied on the Camunda software.
As such, the research question that will be explored is the following:

How can the concepts extracted from existing literature be applied when extend-
ing Camunda with flexible execution of processes?

1.4 Summary of contributions
With the research objectives and question in mind, the contributions of the current
thesis can be outlined. The main focus of this work is to contribute with a concept that
will allow users of the Camunda WfMS to improve the robustness of their applications
by enabling the ability to deploy adaptable processes.
This contribution can be further divided the following way:

(I) A concrete list of requirements that, according to the literature, are fundamental
to any WfMS that should allow adaptable processes.

(II) A proof-of-concept implementation of an extension on the Camunda software,
that enables the deployment of adaptable processes
This second sub-contribution has been split in two:

(a) Providing the implementation of the Instance Migration approach
(b) Providing the implementation of the Data Transfer approach

13

1.5 Structure of the thesis
The thesis is structured as follows:

Chapter 1: Introduction This chapter focuses on introducing the core ideas behind
the current work and the motivation that supports the importance of it. It describes
the problem statement, the research question and the objectives that are to be met by
this work.

Chapter 2: Background and Related Work This chapter is split up in two parts.
Firstly, it will begin by introducing a lot of the core concepts behind processes, busi-
ness processes, BPM and the BPM Lifecycle and Management. Then, it will describe
Workflows, their components and make the difference between business and scientific
workflows. Afterwards, a high-level overview will be given as an introduction to Ca-
munda.
Secondly, the relevant literature is presented, with focus on the Model-As-You-Go ap-
proach.

Chapter 3: Methodology Here, the requirements will be presented, extracted
from two separate use cases. The concept and the flow of adaptable processes will be
explained at a high level.

Chapter 4: Suggested Solution and Implementation This chapter will firstly
take a look at the basic implementation of Camunda, and secondly it will present the
architecture, together with the design decisions of the extensions brought to Camunda.

Chapter 5: Evaluation and Conclusion The last chapter focuses on the evalu-
ation of the extensions brought to Camunda. The implementation will be evaluated
based on its’ compliance with the requirements and its usefulness towards the presented
Use Cases. The chapter will conclude the work with the summary of the results, a dis-
cussion on the limitation as well as the ideas for future work.

14

Chapter 2 | Background.
Related Work

This section introduces fundamental concepts, definitions and ideas that have served
as the foundation for the current research.
The section is split into two parts: firstly, section 2.1 will give an overview of the theory
that served as a foundation for the current research, collected from the literature, such
as books, manuals, official documentation and articles.
Secondly, section 2.2 will analyse the previous work that has been done on the current
research topic, and presents the conceptual ideas found in the literature such that they
can later be applied in this research.

2.1 Background
This section introduces the fundamental concepts, formalities and ideas that this thesis
is based on and that are necessary in order to understand business processes, from
modelling to execution. Firstly, the chapter will focus on the background information
and the formal definitions of workflows and business processes. Then, a high-level
overview of Camunda will be described, focusing on the components that were most
relevant for the topic of this thesis.

2.1.1 Business Process Management
Business Process Management (BPM) supervises the way work and tasks are being
performed in an organization, focusing on both outcomes and improvement oppor-
tunities at the same time [2]. At the core of BPM lies the process: the sum of
activities, events and decisions that are all put into motion whenever a company
wants to achieve a certain goal, from the micro-level, where only one or a few number
of parties are involved (eg. packaging a product for delivery) to the macro-level,
where multiple parties, systems and people have to work together and coordinate their

15

actions (such as sending a Rover to the surface of Mars1). The importance of business
processes has been extensively described in the first chapter, and the same moti-
vation can be used when talking about the importance of business process management.

2.1.1.1 The BPM Lifecycle

According to the literature [2], at a conceptual level, all BPM initiatives follow certain
steps in their life cycles. A depiction of the steps can be seen in figure 2.1.
The life cycle starts whenever a business problem is presented. As a result of this, an
analysis of the process architecture is made in order to provide an overview of all the
processes in an organization, which can be used to select the best-fitting process (or
set of processes) that can be used to solve the problem.
Next, the previously selected processes are documented and presented as so called “as-
is process models”, which in turn are analysed in order to identify issues or to measure
their performance; the set of found issues are then ranked based on a certain aspect,
such as impact, estimated costs or time to solve.
The next step describes the changes that should be brought when addressing the is-
sues, and generates an improved “to-be process model”, and the next step will make
the transition from the “as-is process” to the “to-be process”, in both organizational
changes (eg. changes to the participants) and automation (changes to the IT systems).
The newly formed process is then monitored, its data analysed and the performance
measured, to ensure that the performance objectives have been met. Whenever errors
or new issues are found, the cycle is then restarted and repeated - which can happen
on a continuous basis.

2.1.2 Workflows
The Workflow Management Coalition (WfMC) was established in 1993, and is
an international organization whose duty is to “concentrate purely on process” 2.
They develop reference models, documents and standards for the interoperability of
workflow management systems.
According to the WfMC, workflows can be formally defined as ”the automation of a
business process, in whole or part, during which documents, information or tasks are
passed from one participant to another for action, according to a set of procedural
rules” [9]. Informally, a workflow can be seen as the part of a business process that
can be automated with the help of a computer system [8]. In a typical workflow

1https://mars.nasa.gov/mars2020/
2Official Website: https://www.wfmc.org/

16

https://mars.nasa.gov/mars2020/
https://www.wfmc.org/

Chapter 2. Background & Related Work

Figure 2.1: The BPM lifecycle, as found in [2]

scenario, both computer systems and people are involved [7]. The tasks are divided
according to specific resource allocation rules, in order to achieve a certain objective
(eg. highest efficiency, lowest error rate, etc).

2.1.2.1 Business vs. Scientific Workflows

The need for appropriate monitoring tools for business workflows has been discussed
in the previous sections. The application of business workflows to other fields, such
as science and simulations, is an issue that has been researched extensively by the
scientific workflow and service composition communities [6]. By using convention-
al/business workflow technologies in the scientific field, natural scientists benefit from
a multitude of tools and knowledge that is readily available.
However, the literature [5], [6] also identifies a few differences between the requirements
of the two types of workflows, for example, the fact that scientific experiments often
require a more explorative approach when designing their models, based on trial and
error, or the fact that in a scientific context, the scientist is both the designer and the
user of the workflow.

In their work [10], Leyman and Roller identify, define and exemplify four types

17

of business workflows, as well as their direct counterparts in the fields of science and
engineering. The four types of workflows are the following:

Collaborative - involve many individuals, and is usually focused on a single project. Such
examples could be the release of a new product or the tracking of tasks and
systems involved in an assembly line of a hardware component.

Ad-hoc - they are less formal in structure and response, and are usually targeted towards
handling uncommon situations. For example, whenever a legal policy changes
and a company has to change some of their activities, or when an exception is
thrown in a software system and certain error-handling behaviors are required.

Administrative - they deal with tasks that should be done on a frequent basis, but are not directly
tied to a product or an objective. Such activities include the management of
systems, book keeping, scheduled maintenance or managing log/output files.

Production - the activities that lie at the core of a company, such as the steps involved in
issuing an insurance policy or the weather systems that interpret sensor data to
run simulations and try to predict extreme weather conditions.

2.1.2.2 Components

According to [9], all workflow systems contain a number of generic components which
can interact according to a set of rules. In order to achieve interoperability between
different workflow systems, standardised interfaces should be provided and common
data formats should be established.
Figure 2.2 depicts the workflow reference model proposed by the WfMC, which can
be seen as an overview of the architecture of a generic WfMS.

In their work, Leymann and Roller [10] identify two types of WfMS compo-
nents, based on the type of functionalities that they have: build time and run time
components.
The build time components allow users to create their workflow models, together
with all the required information and data. In the Workflow Reference Model, this
component is seen as a Process Definition Tool. There exists a multitude of languages
for specifying process models, such as BPMN [11], UML Activity Diagrams [12],
Case Management and Notation (CMN) [13] or Petri-Nets [14]. In the current thesis,
BPMN will be used as the main language of reference.
The run time components allow the initialization of process instances, the navigation
through the model graph and the execution of each activity’s behavior. They allow
the monitoring of instances as well as the modifications brought to the instances.

18

Chapter 2. Background & Related Work

Figure 2.2: The Workflow Reference Model of the WfMC, taken from [9]

In his work [8], A. Weiß refers to workflow execution as “the actual navigation through
the workflow path from activity to activity, either sequentially or in parallel, using
workflow data to determine the correct path and the manipulation of said data”. In the
context of the current work, the same definition will be used and referenced.

Soundness

The workflow literature identifies one minimum requirement: soundness which should
be met by every process. In their work [15], Aalst and Hee state that a process is
sound if there exists no unnecessary tasks, and that every process that is started must
be fully completed, without any remaining dangling active executions.

2.1.3 Flexibility
Depending on the domain of application or the nature of a research activity, the term
flexibility can be defined in different ways [16].
Within the BPM domain, flexibility can be seen as the ability to take into consid-
eration different activities from a multitude of disciplines, such as computer science,
information science, economics, etc. [1].
However, a general consensus of the literature defines flexibility as the ability to react

19

to changes [2]. These changes can be from both internal sources, such as the replacing
of a software system, or external, for example, whenever a change in the legislation
does not allow certain parts of a process. Flexibility can also concern the ability
of handling fluctuating amounts of workload, as well as the responsiveness to those
changes.

Taking into consideration the two types of components that Leyman and Roller [10]
have identified, described in section 2.1.2.2, flexibility can also be looked at from
two dimensions. Run time flexibility focuses on the ability to change a business
process during execution (after it has been started and before completion). Build time
flexibility describes the ability to alter the structure of the business process.

The concept of workflow flexibility can also be found in the literature under
the name of dynamic or adaptive workflows [7]. In this context, the adaptation of
workflows can be seen as the extension of a static process whenever some change is
required, by bringing modifications to the process rather than building a completely
new model. This change can be ad-hoc, meaning that it only applies to a single
process instance, or general, where a subset or all of the existing and future process
instances should have these changes implemented [7].

Correctness Whenever a workflow is subject to changes, there must be a set of
criteria, rules or specifications that can ensure the correctness of the workflow. When
checking for correctness, a few questions can be asked, such as: What changes are
allowed to be made? and Is the resulting workflow process definition following the
aforementioned criteria and specifications?.
The literature [17] distinguishes between two types of correctness: syntactic correctness
(eg. Is the resulting process definition still a sound model?) and semantic correctness
(eg. Can the running instances that have been modified still be completed?).

The correctness of a workflow and its adaptations is an issue that should be
guaranteed and checked. However important this issue is, it is outside the scope of
this thesis, since it represents an entire research topic on its own. We leave it to the
users to ensure the correctness of their workflows and adaptations.
More information on the correctness of workflows can be found in: [17], [18], [19].

20

Chapter 2. Background & Related Work

2.1.4 Camunda
Camunda1 is a Java-based framework for workflow and process automation. It makes
use of BPMN models, and provides an extended set of tools that can be used to design,
execute and automate business processes. These tools provide support for all the stages
in the life cycle of a workflow, as mentioned previously.
In this section, the choice for choosing Camunda as a workflow framework will be argued
for, and a brief overview of the architecture of the software will be given together with
a small introductory use case.

2.1.4.1 Motivation

The reasoning behind choosing Camunda as the process automation framework
is multifold. Keeping in mind the drawbacks of the existing scientific workflow
management systems, such as the use of outdated languages and technologies, the ties
to a particular domain or the lack of user-friendly interface, Camunda can be seen as
a possible solution to the most significant of those aspects.

First of all, and as mentioned previously, Camunda is BPMN compliant. Since
one of the important drawbacks of the previously used systems was the fact that
they were, more often than not, using outdated languages and technologies developed
in-house by scientists [6], BPMN does not have this drawback; it is a well-known
modelling language that is easy to learn, and according to the literature, the most
popular language used for describing processes [3]. Knowledge of BPMN is enough to
get a user started with modelling and deploying their own models onto the system.
At the same time, Camunda is implemented in Java2, and users can also write their
own Java classes to add the desired behaviors to the services. As such, the problem
that some of the existing WfMS had with regards to using outdated languages and
technologies are not present with Camunda.

Secondly, the software has become increasingly popular as a commercial tool
for process automation. Since Camunda works with BPMN models which are domain
independent, it has a vast number of applications and can be easily integrated into
existing solutions by a lot of organizations from a multitude of industries, such as
finance, insurance and software3.

Thirdly, Camunda is an ongoing project, being continuously developed and im-
1Official website: https://camunda.com/
2https://www.java.com/en/
3A list of organizations using Camunda: https://camunda.com/about/customers/

21

https://camunda.com/
https://www.java.com/en/
https://camunda.com/about/customers/

Figure 2.3: Overview of the architecture of Camunda

proved by both the ‘parent’ developers and the community. There are a lot of
resources available to assist users with getting started with the application, such as
extensive documentation, a multitude of examples and tutorials for beginners, a blog
that is frequently updated and a forum where users can ask questions and discuss
on various topics with other developers. New features are often suggested and rolled
out by the community, and the development team is responsive to the ideas brought
forward to them; in their official repository, individual users can make contributions
by submitting their code via Merge Requests, which the team will then review, discuss
and ultimately merge into the main project.

Lastly, Camunda is an open-source project, and the source code for the main,
most important packages is openly available from the official repositories, and this
comes with all the benefits (and disadvantages, of course) of an application that is
open source. The source code of the Camunda Modeler and the Camunda Engine,
together with the REST API are available for download from their official repositories.

2.1.4.2 Architecture Overview

As mentioned in section 2.1.2, most workflow management systems follow a similar
pattern when it comes to their architecture. By analysing the different sub-applications
that Camunda has, the same pattern can be observed.

22

https://docs.camunda.org/manual/7.14/
https://github.com/camunda/camunda-bpm-examples
https://www.youtube.com/user/camundaVideo
https://camunda.com/blog/
https://forum.camunda.org/
https://github.com/camunda/camunda-bpm-platform
https://github.com/camunda/camunda-modeler
https://github.com/camunda/camunda-bpm-platform

Chapter 2. Background & Related Work

Figure 2.31 gives a broad overview of the architecture of Camunda, as well as the
typical user roles that will interact with the different components of the system 2.

The two different types of components that Leymann and Roller [10] attribute
to a typical WfMS and that were mentioned in section 2.1.2.2, are also present in
Camunda. Different terminology is used in this case; however, the concepts and the
functionality behind each of these elements are in line with the ones mentioned in the
literature.
On the one hand, the formally named build time components of a typical WfMS can
be found in Camunda as part of the Modelling step, attributed to the Modeler.
On the other hand, the remaining sub-applications of Camunda fall under the run
time components, or the Execution step. The Engine has the role of the Workflow
Enactment Service, and it communicates with the other modules through interfaces
provided by the REST/Java API.

Next, a brief introduction will be given for each of the modules. As previously
mentioned, alongside the Engine, Camunda offers intuitive, user-friendly front-end
applications that make it easy for users outside of the scientific world to use the
software. Even though not all of these front-end applications were modified in the
context of this work, they are worth mentioning because they were extensively used
during the research phase and also are relevant for the Use Cases of this work.

The Engine The Engine is the element that lies at the core of Camunda. Whenever a BPMN
model is deployed, this component will translate it into Java objects and store the
its representation internally. It manages operations such as creation, activation,
suspension or deletion of a process instance, a process deployment or a process
definition. The Engine does the navigation through the model graph from one
activity to another, executes all the activities’ behaviors and communicates with
the external process participants (such as web services or other engines). At the
same time, it also handles the persistent data layer by managing with a database.
According to the official documentation3, The Engine provides an interface that
can be used by other applications in order to communicate. At the core, the
Engine is a lightweight application that can parse BPMN and DMN files, can
be used standalone or together with all the other packages that Camunda has
to offer. It can also interpret behavior representations (eg. Service Tasks that

1As found at: https://docs.camunda.org/manual/7.14/introduction/
2All of these tools are present in the Community Edition, which can be downloaded from the official

website. An Enterprise Edition is also available and provides additional features. An overview of the
differences between the two can be found here: https://camunda.com/enterprise/

3https://docs.camunda.org/manual/7.14/introduction/architecture/

23

https://docs.camunda.org/manual/7.14/introduction/
https://camunda.com/download/
https://camunda.com/download/
https://camunda.com/enterprise/
https://docs.camunda.org/manual/7.14/introduction/architecture/

Figure 2.4: The architecture of the Camunda Engine, as presented on the official
documentation website1

invoke a piece of code) and execute them during runtime.
An overview of the architecture of the Engine can be seen in Figure 2.4, as it is
found in the original documentation.

Modeler The Camunda Modeler is a standalone application, a visual editor that can be used
to produce BPMN models. It is a dedicated application that can be downloaded
and installed on the user’s local file system. The application offers a complete
set of tools for generating models, such as modelling processes, assigning tasks
to users, and it even has integrated functionality to allow models to be deployed
to the Camunda Engine directly from the user interface.
Under the hood, the Modeler is a NodeJS2 application. It is open source, and the
source code can be downloaded from the official GitHub repository3. In order to
communicate with the Engine, the Modeler sends requests to the REST API.
An overview of the UI of the Modeler can be seen in Figure 2.5.

One aspect to note about the Modeler is the fact that it does not insure against
possible errors in the process model, such as deadlocks, livelocks, dead or use-
less transitions. This aspect should be taken into consideration by the user,
who should make sure that the model adheres to the concept of soundness [15],

2https://nodejs.org/en/
3https://github.com/camunda/camunda-modeler

24

https://nodejs.org/en/
https://github.com/camunda/camunda-modeler

Chapter 2. Background & Related Work

Figure 2.5: An overview of the Camunda Modeler

discussed in section 2.1.2.

Cockpit Out of the three front-end applications that Camunda has, the Cockpit is the
most important from a development point of view, due to the multitude of func-
tionalities that it has and the information that it provides. It can be used as an
administration and monitoring tool for the process models and their respective
deployments, process instances and the currently active activities. It allows the
user to see specific information about a process, such as versioning, the number
of running instances and which activities are being executed. It also allows the
user to suspend and resume an entire process, or a single process instance.
The Cockpit also allows the inspection of a single (running) process instance,
which allows the user to see the information specific to that instance, such as
data (in the form of variables), as well as the User Tasks and the users that have
been assigned to them.
A more extensive explanation of all the aspects and functionalities of this web
application is given in the official documentation1. An overview of the Cockpit
showing a deployed process definition that has three running process instances
can be seen in figure 2.6.

1https://docs.camunda.org/manual/7.14/webapps/cockpit/

25

https://docs.camunda.org/manual/7.14/webapps/cockpit/

Figure 2.6: An overview of the Camunda Cockpit

Tasklist This application allows for the management of User Tasks, such as searching,
filtering, creating new tasks or completing active ones, as well as allowing users
to claim tasks, to reassign them or to set due dates.
After a task has been assigned to a certain user in the Cockpit, the task will
appear in that user’s Tasklist view, and the user can access it, view all the
information provided by the task or insert data whenever necessary. Afterwards,
whenever a user completes their tasks, the Activity will be marked as completed
in the process instance as well, and the execution will move on further in the
graph.
Another important functionality that is provided by this webapp is the possibility
to start a new Process, by pressing the Start Process button in the top right
corner of the screen. Whenever that button is pressed, the user is shown a generic
start form where variables can be specified and then a new process instance of
the selected process will be started.
More information over the Tasklist can be found in the official documentation1.
An overview of the user interface of this web application can be seen in figure
2.7.

1https://docs.camunda.org/manual/7.14/webapps/tasklist/

26

https://docs.camunda.org/manual/7.14/webapps/tasklist/

Chapter 2. Background & Related Work

Figure 2.7: An overview of the Camunda Tasklist

Admin The Admin application is responsible for the User Rights management, handling
user identity and authorization. The application can be used to have an overview
of all the registered users of a given application, their roles, tasks, and Group
membership. More explanations can be found in the official documentation1.
For the purpose of the current work, this module has not been used or interfered
with, and as such, will not be treated further.

Enterprise Edition The Camunda software also offers an Enterprise Edition. This
edition provides a larger toolbox of functionalities for their users, and they mainly
focus on providing User Interfaces for operations that the Community Edition allow
only through code or REST requests.
Examples of such operations are the deletion of a Process Definition or providing
access to the history of all Process Instances, including the completed ones (in the
Community Edition, once a Process Instance has finished, it is no longer visible to
the user in any of the Web applications). The Enterprise Edition also offers a user
interface for the conducting of an Instance Migration2. The Instance Migration
approach will be explained and discussed in more detail in section 4.2, together with
all the limitations that it has. The same limitations that will be discussed in the
following sections are also present in the Enterprise Edition. And at the same time,
this edition is not open source and also sits behind a costly paywall, which scientists
are not always guaranteed to have the means to pay.

1https://docs.camunda.org/manual/7.14/webapps/admin/
2More details can be found at: https://docs.camunda.org/manual/7.14/webapps/

cockpit/bpmn/process-instance-migration/

27

https://docs.camunda.org/manual/7.14/webapps/admin/
https://docs.camunda.org/manual/7.14/webapps/cockpit/bpmn/process-instance-migration/
https://docs.camunda.org/manual/7.14/webapps/cockpit/bpmn/process-instance-migration/

2.1.5 Alternatives to Camunda
In this section, a few WfMS will be shortly discussed as possible alternatives to Ca-
munda. One thing to note is that all the applications that will be mentioned are not
open source, which was a factor of major importance in the selection process. However,
they do exist on the market at the moment of writing this thesis, and as such are worth
mentioning.

Kissflow Kissflow1 provides its users with a worklow automation package, which also
includes tools that cover the entire life cycle, from modelling to deployment, execution
and monitoring. This platform is heavily focused on business processes and targeted
towards businesses and customers, advertising advantages such as ”No code” and a
visual interface that is easy to use - no BPMN, but a visual editor that is supposed to
make modelling easier. These advantages can prove to be useful in a business context,
where the employees of a company have little to no programming knowledge, but at
the same time they can be detrimental to scientists and their experiments, because of
the very limited amount of customization and the limited possibilities that are offered.

Others Other WfMS systems that provide means of modelling and executing pro-
cesses are IBM WebSphere Process Server: 2 and the Oracle BPEL Process Manager 3.
However, those applications are heavily enterprise-oriented. While the set of tools that
they provide are beneficial in the business context, they do not satisfy all the require-
ments that present themselves in the development of an application in the scientific
domain. For example, ad-hoc adaptation features are not available.

1https://kissflow.com
2https://www.ibm.com/cloud/blog/websphere-trial-options-and-downloads
3https://www.oracle.com/middleware/technologies/bpel-process-manager.

html

28

https://kissflow.com
https://www.ibm.com/cloud/blog/websphere-trial-options-and-downloads
https://www.oracle.com/middleware/technologies/bpel-process-manager.html
https://www.oracle.com/middleware/technologies/bpel-process-manager.html

Chapter 2. Background & Related Work

2.2 Related work
This section takes a look at the literature that covered topics similar to the research
presented in this thesis. It discusses existing research done on adaptive processes and
process flexibility in the context of e-Science and Business Process Management (BPM).
These works serve as a foundation for the requirements analysis of developing flexible
processes, which will be introduced in the following section.
This section is mainly based on the published paper “Model-as-you-go: An Approach
for an Advanced Infrastructure for Scientific Workflows” [6] as well as the dissertation
thesis of A. Weiß, “Flexible Modeling and Execution of Choreographies” [8].

2.2.1 The Model-as-you-go approach
As mentioned previously, the concept of adaptable processes has been studied before
and various implementations have been proposed by the literature. One such study
has been conducted by Sonntag and Karastoyanova in their work [6], which helped lay
the foundation of a new approach that would extend an existing WfMS with advanced
flexibility capabilities. The main goal of this study was to help the scientific community
create applications and experiments, by providing them with an empirical design of
a WfMS that would mirror the trial-and-error manner in which such work is conducted.

The new approach makes the development of processes more efficient and ro-
bust, because it allows the user to bring modifications to a running process instance
without losing the progress that was already made. And this is a very important
contribution, since scientific workflows can be long-running, spanning over the course
of multiple days, can invoke multiple systems, and possibly uses resources that may
not always be available. With these aspects in mind, it is evident that restarting such
a process is not always an option.

Despite the fact that the application of their work is based on the BPEL mod-
elling language, as well as a BPEL engine for executing the processes, most of the
ideas that are discussed were presented on a conceptual level in order to allow them
to be applied to other systems.

Wavefront One important detail to note is the fact that in their work, Karastoyanova
and Sonntag [6] use the term wavefront to describe the currently active activities,
which can also be seen as the present of an instance [20]. In Camunda, the concept of
wavefront exists as well and is implemented by the means of a token. In the monitoring
tool (eg. the Cockpit as seen in figure 2.6), the tokens can be seen as the number

29

indicators on the bottom-left corner of an activity.

2.2.1.1 Conceptual requirements

When developing the empirical concepts for the WfMS, the following high-level
requirements have been identified in their work. Below, the requirements will be listed
and discussed. A number of these requirements are also applicable to the context of
the present work, and will be treated in the following chapters.

MR-1 Providing an integrated tool that supports most of the workflow life cycle.

MR-2 Enabling the trial-and-error manner of development, whenever the workflows are
not fully known prior to their execution.

MR-3 The merging of the execution and monitoring phases of the workflow life cycle.

MR-4 Enabling the management of executions directly from the modelling tool.

MR-5 The integration of the tools for instance monitoring and modeling, in order to
view the results.

MR-6 Enabling the looping back from the execution phase to the modeling phase by
allowing instance adaptations; at the same time, the users should be unaware of
the technical details behind the adaptation process, and the migration to new
versions should be seen as part of the modeling phase.

2.2.1.2 Requirements analysis & suggested solutions

In the current section, the requirements enumerated earlier in Section 2.2.1.1 will be
discussed, together with the suggested solutions. The discussion will be kept at a
conceptual level, since the implementation suggested by the authors concerns a different
application.

MR-1 This requirement is rooted in the fact that scientists themselves handle every
step of the workflow life cycle, and having a single tool that integrates most of
the steps will be beneficial for their work, since it removes the need to switch
between tools.
In order to achieve this requirement, the workflow engine was updated such
that it would publish execution events about the process instances that were
deployed (eg. information such as status - running or suspended, currently
running activity, etc). The modeling tool would pick those execution events up

30

Chapter 2. Background & Related Work

Figure 2.8: Process states in a conventional workflow system a) and in the Model-As-
You-Go approach b), as found in [6], where a process instance enters the Suspended
state after execution is finished.

and display them to the user. At the same time, the workflow modeling tool was
extended with functionality that allowed it to subscribe to the events published
by the engine, such that it could display information about process instances.

MR-2 In order to enable the trial-and-error approach for development, there are a few
steps that should be achieved: first of all, the user should be able to select,
in the modeler, the workflow instance that they wish to change, and should
have the possibility to suspend its execution. Second, the user will make the
desired modifications to the model and then re-deploy it on the engine (as a new
version), with the logic of the old workflow instance adapted to the new one.
Requirements MR-3, MR-4 and MR-6 are also related to the current one, and
will give more concrete descriptions of the steps involved.

Another functionality that had to be implemented in order to enable this
approach was the possibility to keep a workflow instance ‘alive’, even after the
last activity in the process has been executed. For this, a modification to the
process state life cycle has been introduced, namely, after completion, a process
enters the “Suspended” state instead of going into the “Completed” state. From
being suspended, the user can decide what to do with the instance: either to
complete it, or adapt it and re-run it.
A depiction of the process state diagrams can be seen in figure 2.8.

MR-3 Since requirement MR-1 enforces the use of an integrated tool for the steps in the

31

life cycle of a workflow, this requirement MR-3 can be related to the previously
mentioned one. Through the modeler, the user should be able to select a specific
workflow instance, and see the state of its execution, for example, to be aware of
which activities are being executed.
At the same time, the modeling tool should also be able to handle variable
values for individual workflow instances. Therefore, this extension was also im-
plemented.

MR-4 In order to enable the administration of executions directly from the modelling
tool, alongside the monitoring properties mentioned in the previous requirements,
the tool has been extended with further management functions, such as the
possibility to suspend, resume, terminate and delete workflow instances. These
operations were offered through a simple visual interface (eg. a toolbar), and were
applied to the workflow instances that were currently selected and monitored by
the user (as mentioned in MR-3). The workflow instance ID is used to correctly
identify which processes should be altered.

MR-5 The integration between the monitoring and modeling tools has also been treated
in MR-1 and MR-3. However, according to this particular requirement, the user
should also be able to view the results of the workflow instance (such as the
handled data, variables, etc). In order to achieve this, the workflow instance
states are being saved to a persistent storage module. Whenever an instance
is selected for monitoring, the information can be fetched from the storage and
communicated to the modelling tool, which will then present it to the user.

MR-6 As a continuation of the previously mentioned requirement MR-2, this require-
ment targets the migration of a currently running (suspended) process instance
to a new version of the workflow model.
On the one hand, the authors discuss the different issues that arise when
handling different versions of a workflow, and introduce the term Concurrent
workflow evolution to describe the situation when multiple versions of a workflow
are concurrently active.
On the other hand, whenever an instance is migrated to a new version, the
logic and data related to the instance should be ported and adapted from the
old version. To ensure the compatibility between the two versions, a validation
component has been implemented.

In order to implement the instance adaptations, the Model-as-You-Go ap-
proach also discusses the re-run of workflow parts. This operation can be done
in two ways:

32

Chapter 2. Background & Related Work

Figure 2.9: The architecture of Mayflower, as presented and described in [6]

(a) iteration: will run the activities again, starting from any given activity
(possibly selected by the user).

(b) re-execution: will undo already completed tasks by executing their compen-
sating behaviors, and then re-runs activities. This operation is especially
important whenever idempotent services are executed or a workflow changes
the state of a different system, for example.

The authors of the Model-as-You-Go approach have implemented all of the require-
ments mentioned above, and more, in a proof-of-concept application called Mayflower,
based on the BPEL engine.
The requirements that the Mayflower system had to implement served as the
foundation for the requirements of the current thesis. The fact that they were kept at
a conceptual level, without mentioning any implementation-level details, made them
translatable and portable to any system or engine that should be extended with the
aforementioned capabilities.

The architecture of Mayflower can be seen in figure 2.9, and more explanations

33

about the implementation details can be found in the original article [6].

2.2.2 “Flexible Modeling and Execution of Choreographies”
- Andreas Weiß

The dissertation thesis of A. Weißputs together a number of prior research contribu-
tions, in order to achieve the flexible modeling and execution of choreographies. At
the core of his work, lies the vision to support users from diverse application domains
[...] to solve problems in an easy, flexible manner [5]. His vision is in line with goals
of the Mode-As-You-Go approach authors, as well as with the vision of the current
thesis, and some of the ideas that he presents were kept in mind when developing the
requirements and solutions of this thesis.

The application of his work is also focused on workflows, workflow management
systems and the functionalities of business and scientific workflows. His work brings
forward a number of important research contributions, by presenting prior research
done on the topics of flexible modeling and execution and extending them with an
application to choreographies. An overview of his work’s contribution can be seen in
figure 2.10.

2.2.2.1 High-Level Requirements

Below, the high-level requirements of the dissertation are presented, together with a
short explanation.

ChorR-1 User-friendly modeling
A user-friendly way of modelling processes, including the reuse of (parts of)
existing models.

ChorR-2 Technical transparency
The technical and implementation details of the system should be hidden from
the user as much as possible.

ChorR-3 User-driven control
A user-friendly way of controlling the execution of process instances, with actions
such as starting, pausing, resuming or terminating.

ChorR-4 Integration of modeling and monitoring
The integration of the two reduce complexity and technicalities for the user and
can be beneficial to non-IT experts.

34

Chapter 2. Background & Related Work

Figure 2.10: The research contributions of A. Weiß, as presented in his dissertation
thesis [5]

ChorR-5 Flexibility mechanisms
Enabling the flexibility mechanisms introduced by the Model-as-You-Go ap-
proach.

ChorR-6 Separation of concerns
This requirement describes the separation of concerns principle as known in the
software engineering field [21].

ChorR-7 Standard compliance
The concepts and tools used for the development of his work should be compliant
with the industry IT standards.

As one can already observe, some of these requirements are overlapping almost
entirely or on a conceptual level with the requirements presented by the authors of
the Model-as-You-Go approach. At the same time, these requirements were also kept
in mind in the context of the current thesis.

One important aspect of the work of A. Weißis the size of the contribution
that he has brought to the research field of workflows. As previously mentioned, he
brings together a number of previous research topics and papers. From each of these

35

studies, he adopts the ideas and concepts that are the most important and pieces them
together, such that they form the foundation of his work. From there, he proposes a
new proof-of-concept application, from the architecture to the implementation, that
should encompass all the research contributions as well as all the requirements that
he discovered.

His work is broad and it treats multiple subjects, and the concept of adaptive
processes is only one of them. As can be seen in figure 2.10, he also introduces other
concepts, such as Choreography Fragments, Choreography Life Cycle Management and
Rewinding and Repeating of Choreography Logic. While these concepts are of outmost
importance for the vision of his work and also for the current thesis, they are outside
the scope of this thesis and will be left as ideas for future work.

36

Chapter 3 | Methodology

This chapter describes the requirements analysis for extending a workflow engine
with the possibility of deploying adaptable processes. The related work and literature
sections have already illustrated that this subject has been extensively researched,
and the conceptual groundwork has already been laid by the authors of the respective
studies. As mentioned before, the conceptual nature of their studies serves as a
guide for the implementation of these requirements on specific engines. As such,
the majority of ideas and requirements that are described in this section have been
adopted from the literature and follow the same conceptual steps. The resulting
requirements framework will be used as a reference when implementing the adaptable
processes concept for business processes.

In the context of this work, the term adaptable process will refer to a process
instance that has the ability to deal with changes and modifications. Process
adaptability should be applied to the process instance during run time.

The chapter is structured as follows: Firstly, section 3.1 introduces two moti-
vating scenarios for adaptable processes, each from a different domain of application.
Then, it will describe the specific requirements that are to be developed to cover the
issues that arose in the two scenarios. Secondly, section 3.2 will discuss the specific
objectives of the adaptable processes.

3.1 Requirements
The current section will give an overview of the requirements which stand behind the
implementation of the adaptable processes concepts for business process models, which
will be presented in the next section.
The current section is structured as follows: At first, subsection 3.1.1 will introduce
two use case scenarios, one from a business context and the second from a scientific
experiment, where the users could benefit from the possibility of having an adaptive

37

process instance. These scenarios are either fictional or adopted from the literature.
Then, with the insights of the literature presented in the earlier section together with
the scenarios, a framework of requirements will be presented in subsection 3.1.2.

3.1.1 Use Case Scenarios
Table 3.1 presents two conceptual scenarios, each from a different application domain:
business and scientific. For each scenario, its origin, a description as well as the prob-
lems that it comes across are presented.

Scenario Description Problem Context

Business domain

UC-1
Loan approval
system

Most of the steps are automated,
except a few which require man-
ual user input. In one case, a
manager notices a mistake in the
input, which ultimately changes
the output of the process

- The process instance is already started. The user
has already introduced his confidential data, which
is not stored anywhere else.
- There is no way of changing the course of the
process through a user interface; this operation can
only be done with the help of an IT expert
- If the process is left to continue as-is, the output
would be wrong

Scientific domain

UC-2
Scientific
simulation

When conducting an experiment
or a simulation, a scientist would
like to be able to check the output
of each operation (activity) before
moving on to the next steps, to be
able to make the required changes
to the data if needed.

- The scientist would like to be able to inspect the
data after every step in the pipeline
- The scientist would like to be able to make
changes to the model after each step, to have a
better overview of the output
- The scientist wants to be able to go back to a
previously executed step in order to introduce dif-
ferent parameters and to run it again, without los-
ing the rest of the progress
- The data can consist of high-resolution 3D im-
ages, so every step of the process is time consuming
(eg. a few hours on a personal computer)

Table 3.1: Scenarios requiring adaptable processes and their requirements

The given scenarios in Table 3.1 illustrate that adaptive processes are needed in
both domains. The situations deal with different types of data, but still do benefit

38

Chapter 3. Methodology

from the adaptation of a process instance that would transfer the data from one
instance version to the new one, without the loss of data.
The benefit of having this type of adaptation are different in each case. For the loan
system, it could correct an erroneously entered piece of information. For the scientist,
it would enable an exploratory fashion of modelling a process, where the control and
data flows are not entirely known from the beginning.

For both scenarios, restarting a process definition is not a feasible option, firstly
because sensitive data is lost, and secondly because the individual activities can be
too time consuming.

3.1.2 Requirements Analysis
The current subsection will give an overview of the requirements framework of the
thesis at hand, deduced from the literature as well as the use cases presented in the
previous section.

3.1.2.1 Requirements Framework

In order to produce the requirements framework of the current thesis, a few steps were
taken.
First of all, the requirements of the literature study presented in section 2.2 were
deduced and summarized. Then, the most relevant requirements were outlined and
selected as requirements for the current work.

One aspect to note is the fact that Camunda already fulfilled some of the re-
quirements that had to be implemented by the previous literature, and as such, those
will be omitted. One such example is requirement MR-3, which involved the merging
of execution and monitoring phases. This requirement can be omitted, since the
Camunda Cockpit mentioned in section 2.1.4.2 already handles the two phases in the
same user interface. Another example of such a requirement is ChorR-3, because
Camunda already implements mechanisms for user-driven control.
The collected requirements were classified into four categories, which are presented
below.

R-1 Concept and implementation
The current thesis should follow the relevant literature and present the theory
that was applicable when extending the workflow engine, at a conceptual level.
At the same time, the thesis should give a high-level overview of the implemen-
tation details of the suggested solution, together with arguments to support the

39

decisions taken about the architecture and design of the application.
The implementation should follow the usual design principles, such as separa-
tion of concerns, as explained in ChorR-6, and it should be as non-intrusive as
possible.

R-2 Runtime adaptation on the Control Flow
The flexibility mechanisms previously mentioned from the literature should be
made available to the user, such as the migration of a running process instance
to a new version of the process model. The adaptation should be done through
a user-friendly graphical interface, such as to hide all the technicalities from the
user.
The user should also be able to re-iterate parts of the model, starting from a
specified activity.

R-3 Data flow preservation
Changing a process instance (through a migration or re-iteration) should preserve
the data that had been obtained in the original instance, by transferring it to
the new instance without any loss of information.

R-4 Organizational change
User Tasks or tasks that have assigned a certain system or endpoint should be
able to be adapted as well. If it is desired that the new version of a process
instance should re-assign an activity (or multiple), this change should be picked
up by the process and it should be propagated to the new version.

3.1.2.2 Non-functional requirements

This subsection will outline the most important non-functional requirements at a con-
ceptual level.

NF-1 Usability
In the vision presented in section 1.1, the focus was on assisting users of a WfMS
with the added functionality of adaptations. As such, the users should be able
to easily deploy an adaptive process on the engine, without any prior technical
knowledge.

NF-2 Usefulness
Through the adaptable process concept, the dimensions of time, cost and quality
should be improved in the context of both business and science processes, for
example, by reducing the required execution time of a process or by allowing
changes that correct an error in an activity.

40

Chapter 3. Methodology

NF-3 Non-intrusive changes
The implementation of the new functionality should be as non-intrusive as pos-
sible, and it should not interfere with the way that the engine functioned prior
to the changes.

41

3.2 Adaptable Processes
Keeping in mind the aforementioned use cases in subsection 3.1.1 and the requirements
of the previous subsections, this section will introduce the logic flow behind the adap-
tation of a process instance . The section will look at the two use cases and suggest
possible solutions that cover all the issues mentioned in the problem context in each
use case (eg. table 3.1, by using process instance adaptation).

3.2.1 Loan application procedure
Since the specific steps of a loan application procedure are outside the scope of this
work, a simplified, high-level version of such a procedure can be seen in figure 3.1.

As explained in the use case, the situation where a problem could arise would
be the case when the employee who was supposed to make the decision about the
loan made a mistake, and marked the loan as rejected. As such, the process instance
proceeds by executing the sub-process Perform rejection procedure, and the manager
only notices the error when the task to set the loan application status to ’finished’
shows up in his list of active tasks.
Before bringing any modifications to the engine, the process instance is rather static,
meaning that any changes in the control flow of the process instance cannot be done
easily through a user interface.

However, by implementing the adaptable concept, the manager who noticed the
error can open the respective model in the Modeler, and decide how to handle the
situation.

One possible solution would be to change the process definition model to in-
clude the possibility to loop back right before the decision was made and to change
the decision made by the previous employee.
To do this, the manager would have to bring a modification to the already existing
model, and indicate to the modeler that he would like to deploy the process in an
adaptable manner, rather than a new deployment. Then, he can indicate in his
assigned task that the process is not yet finished, and the outcome of the process
instance will change. Since the adaptation flow will ensure that the data belonging
to the old process is preserved and migrated to the new version of the model, the
manager does not have to worry about losing the client data that was already present.
The new version of the model can be seen in figure 3.2.
Since this modification is ad-hoc, brought only to the specified process instance, it will

42

Chapter 3. Methodology

Figure 3.1: The initial model of a loan application procedure

Figure 3.2: The modified model of a loan application procedure

not interfere with the other running process instances of the same process definition.

3.2.2 Scientific simulation
For this use case, we can take as an example the typical process involved in conducting
an experiment. Supposing that a scientist first has a sub-process ready that does some
pre-processing on some data. Then, the scientist has to provide some parameters and
some files as input, execute some code and then inspect the results of the execution. If
the scientist decides that the results of the two steps are satisfactory, the simulation
can be started. The example process model can be seen in figure 3.3.
However, if after inspecting the results of both steps, the scientist notices that the
output data of the second step still needs some modifications before it can be used
as input into the simulation, one more activity should be added to the model; the
activity should execute a piece of code that handles these modifications. Then, the
scientist performs the adaptable logic on the running process instance by deploying
the new model and migrating the running instance to the new version. The new
version of the running instance will then execute the newly added activity whenever
the scientist decides to complete the user task Inspect results of second step, and the

43

process will continue with the simulation. All the data of the previous process is also
preserved and transferred to the new version. The new version of the model can be
seen in figure 3.4.
There is no limit to the number of modifications that can be brought to a model. This
represents an advantage, since scientists do not have to worry about missing steps in
their models, or not being able to make small changes to their work. These cases can
easily be handled through adaptations.

Another option that the scientist has is to keep only the data that has resulted
from the pre-processing step, and restart all the other activities. In this case, the new
activity Execute modifications can be added in the modeler and the new version of
the model can be deployed as an adaptable process. If the ID of the activity Provide
directory of data files is also passed to the deploy adaptable window, the new process
instance will know to pick this activity as the starting point.
When this happens, the process will re-execute all the other activities except the
pre-processing step, and all the data from the old version will be overwritten in the
new process with the new values.

44

Chapter 3. Methodology

Figure 3.3: The initial model of a scientific simulation

Figure 3.4: The modified model of a scientific simulation

45

46

Chapter 4 | Suggested Solution
and Implementation

The previous chapter presented the conceptual requirements that should be followed
when extending a workflow engine with the capability of deploying adaptable processes.

4.1 Camunda - Basic Concepts
The current section will present an overview of the architecture and design of Camunda,
as it is implemented at the time of writing this thesis1. Keeping in mind that Camunda
has a lot of functionalities to help users develop workflows, only the aspects that were
changed and that were most relevant for the context of this thesis will be mentioned.
More information on the implementation of Camunda can be found in the official
documentation2.

4.1.1 The Process Engine
As mentioned previously in section 2.1.4.2, the Process Engine is the module that
lies at the core of Camunda. Figure 2.4 gave an overview of the architecture of the
engine.

The implementation of the engine is very complex and it encompasses a lot of
functionality. To better handle its high degree of complexity, the developers have
split the main package into multiple services that have specific functionalities. An
overview of the main, most important services can be seen in figure 4.1. Below, a
brief introduction will be given to the services that have been used when writing the
implementation of the current research.

1Since Camunda is an ongoing project, some of the details mentioned in this section might be
subject to change.

2Camunda official documentation https://docs.camunda.org/

47

https://docs.camunda.org/

Figure 4.1: Overview of the Camunda Engine services, as found in the official docu-
mentation

The complete list of services together with more detailed explanations on the
functionalities of each specific service can be found in the official documentation1.

• ProcessEngineConfiguration

This class will read a file that contains specifications of the Engine. Then, it
will initialize and build a process engine based on those specifications whenever
Camunda is started. This process engine will be used throughout the whole
lifetime of the application.

• ProcessEngine

This is the object that the ProcessEngineConfiguration will build on
startup. It is a Java object representation of the engine. It gives access to a
public API that can be queried in order to interact with the other services.

• RepositoryService

This service is the most important for the context of the current work.
It can be used to manage and manipulate static data, such as process deploy-
ments and definitions that are known to the engine. It uses the internal database

1https://docs.camunda.org/manual/7.14/user-guide/process-engine/
process-engine-api/

48

https://docs.camunda.org/manual/7.14/user-guide/process-engine/process-engine-api/
https://docs.camunda.org/manual/7.14/user-guide/process-engine/process-engine-api/

Chapter 4. Suggested Solution and Implementation

to store and fetch this information.
For example, whenever a new model is deployed on the engine, the
RepositoryService uploads the model file onto the engine, it inspects it
and parses it, creating the internal representation of the model. Then, it creates
a new Deployment object and assigns it a unique deployment ID; afterwards, it
creates a new Process Definition with a unique ID. In this context, a process
definition can be seen as the representation of the process model on the engine.
The process definition can now be used to start process instances.

In short, the functionalities of RepositoryService are the following:

1. it can query for processes definitions and deployments;
2. it handles the versioning of the definitions; Whenever a new version of the

same definition is deployed on the engine, the service will assign to it a
version number higher than the previous one.

3. it can be used to suspend process definitions, which will not allow new
instances of the respective definition to be started any more; at the same
time, it also allows re-activation of a definition, which does the opposite;

4. it can retrieve resources related to process definitions, such as the
model files, diagrams or their internal representation. For example, the
RepositoryService can retrieve the list of Java objects that represent all
the Activities in a model;

Listing 4.1 provides a code snippet that illustrates how the RepositoryService
can be used to query for a ProcessDefinition by using its ID.

1 ProcessDefinition originProcessDefinition =
2 engine.getRepositoryService()
3 .getProcessDefinition(originProcessDefinitionId);

Listing 4.1: How the RepositoryService can be used to query for static data

• RuntimeService

Whereas the RepositoryService handles static data, the RuntimeService
does the opposite. For each Process Definition that is deployed on the engine,
the RuntimeService can be used to start new Process Instances of those
definitions. In Camunda, process instances are seen as execution of a process
definition. For each process definition known to the engine, and each version of

49

a process definition, multiple Process Instances can be running at the same
time.
The most important functionalities of this service are the following:

1. the service can be used to query for process instances and executions.
The concept of an execution is indicated by the activity token, and has been
mentioned before in the literature under the name of wavefront;

2. it can manage the life cycle of an instance, through operations such as
suspending (pausing), resuming or cancelling a process instance

Note: One important aspect of the life cycle management, is the
fact that the RuntimeService can be used to start a ProcessInstance
from any node or transition in the model, and not only at the start event.
This aspect is important, and it will be used later in the implementation
of the Data Transfer approach.

3. it handles the data of process instances; the service can be used to query
for process variables (which are variables specific to an instance)

4. the RuntimeService can be used to perform instance migrations, where
a process instance can be migrated to a new version without the loss of
data.

Listing 4.2 is a code snippet from the implementation, that shows how the
RuntimeService can be used to query for a process instance based on its ID,
as well as how to suspend a process instance.

1 // Find a ProcessInstance based on ID
2 ProcessInstance originProcessInstance =
3 engine.getRuntimeService()
4 .createProcessInstanceQuery()
5 .processInstanceId(originProcessInstanceId)
6 .singleResult();
7

8 // Suspend a ProcessInstance based on ID
9 engine.getRuntimeService()

10 .suspendProcessInstanceById(originProcessInstanceID);
Listing 4.2: How the RuntimeService can be used to manage process instances

The fact that the Engine, through the RuntimeService allows for instance migrations
is positive, and will be beneficial for the context of this research. However, this func-

50

Chapter 4. Suggested Solution and Implementation

tionality is only available through a request to the REST API and it has to follow specific
guidelines, which are not always clear.
According to requirement R-2, a user-friendly interface is the desired manner in which
this change should be done. As such, this research will focus on implementing this
interface and will take into consideration the implications which a process instance
migration brings. These will be discussed in detail in section 4.2.

4.1.2 The REST API

The REST API package lies on top of the Engine, and it can be queried by other
applications in order to interact with the Engine. The module has a lot of pre-defined
endpoints that can be used to perform different actions on the engine, such as
deploying a new model, starting a new process instance, fetching information about
deployments, definitions or process instances, just to name a few. A complete list of
the endpoints, together with their parameter specifications and expected outputs can
be found in the official documentation1.

In its implementation, the REST API makes use of the functionality provided by
services mentioned in the subsection above in order to complete the requests that it
receives, without interfering with the implementation of the engine.
For example, whenever a request is sent to the endpoint that should return infor-
mation about a deployment based on the deployment ID, the REST API invokes the
RepositoryService to search for the deployment in the engine. If a deployment was
found with the given ID, information about it is returned as a response; otherwise, an
error is thrown.

As mentioned in section 2.1, the Modeler uses the REST API to deploy .bpmn
model files onto the engine, by sending a request to a specific URL, with the model as
a parameter.
This has led to the idea of creating a similar behavior for the deployment of adaptable
processes. By interacting only with the REST API, the extension brought to the code
could make use of all the functionality that is made available through the Engine,
without bringing any changes to its implementation. This would be in line with the
specifications of requirement R-2, which mentions that the implementation of the
extension should be as non-intrusive as possible.
At the same time, having access to the Engine object would allow the performing of
Instance Migrations, as described previously.

1https://docs.camunda.org/manual/latest/reference/rest/

51

https://docs.camunda.org/manual/latest/reference/rest/

The following sections will present the implementation of the extensions brought to
the Modeler and the REST API, in order to allow the user to deploy adaptive processes.

4.2 Instance Migration
The official documentation1 of the Instance Migration procedure gives a detailed
explanation of the steps that need to be performed in order to execute the migration.
According to the documentation, there are two steps involved when creating a
migration.
To note is the fact that for the rest of the thesis, the origin process instance (the
process instance that needs the adaptation) will sometimes be referred to as simply
origin, and the target process definition (the new version of the adaptable process)
will be called target.

The two steps required for an Instance Migration:

(I) Creating a MigrationPlan
Through a set of migration instructions, the migration plan should describe
how a process instance should be migrated from one definition to a different
definition, or to a different version of the same definition. The migration plan
identifies the origin and target process definitions by their IDs.
The set of migration instructions will be used to create a mapping between
the activities of the initial process definition and the activities of the target
definition. Whenever activities do not change from the original definition to the
target one, the migration plan can also be instructed to map all the activities
that are equal (they have the same ID, type and scope), without having to
provide instructions for all of them.

One aspect that the documentation mentions is the fact that the mapped
activities have to be semantically equivalent. This means that tasks that have
different types (eg. a User Task and a Script Task) cannot be mapped through
the instructions. The implication of this limitation is the fact that it does not
allow the activity to change type from one version to the other. This limitation
will be discussed more in the following sections.

(II) Creating a MigrationPlanExecutionBuilder, passing it the MigrationPlan and
executing it

1URL: https://docs.camunda.org/manual/latest/user-guide/process-engine/
process-instance-migration/

52

https://docs.camunda.org/manual/latest/user-guide/process-engine/process-instance-migration/
https://docs.camunda.org/manual/latest/user-guide/process-engine/process-instance-migration/

Chapter 4. Suggested Solution and Implementation

Second of all, when the migrationPlan has been created, it needs to be applied
to a (set of) process instance(s). For this, a MigrationPlanExecutionBuilder
needs to be created. The builder will look at the migration plan and apply all the
instructions to the process instance that is specified. The target process instance
is identified through its ID.

A code snippet, extracted from the implementation, that has been used to create a
migrationPlan can be seen in listing 4.3.

1 // Create the migrationPlan
2 MigrationPlan migrationPlan = engine.getRuntimeService()
3 .createMigrationPlan(originProcessDefinitionId, targetProcessDefinitionId)
4 .mapEqualActivities()
5 .updateEventTriggers()
6 .build();
7

8 // Create the MigrationBuilder and pass it the migrationPlan
9 MigrationPlanExecutionBuilder builder = engine.getRuntimeService()

10 .newMigration(migrationPlan)
11 .processInstanceIds(originProcessInstanceId);
12

13 // Execute the migration
14 builder.execute();

Listing 4.3: Example code for creating and executing a MigrationPlan

4.2.1 The Implementation of the Instance Migration
Whenever a user decides to migrate one of the running process instances, first the
Modeler will be used to apply the desired changes to the respective model. Then, the
option to deploy adaptable should be available; by selecting this option, the running
instance of the process will be migrated to the new model. The changes should be
visible whenever the user opens up the Cockpit.

In the background, multiple things need to happen. First of all, the process in-
stance that should be migrated should be suspended (if it is not already). Second
of all, the updated version of the model that the user has worked on needs to be
deployed to the Engine. The previous section presented the two steps that need to
be taken whenever an instance migration should be performed on a process instance.
However, for the creation of the migration plan, the first step mentions that both
process definitions, the origin and the target, should be present on the engine. By
deploying the new version of the model on the engine, we ensure that both versions

53

Figure 4.2: Conceptual illustration of the interactions between components when per-
forming an Instance Migration

are present.
At the same time, the REST API should have the means to make a distinction between
the two types of deployment - either a normal deployment, where a new process model
is sent to the engine, or an adaptable deployment, such that the running process
instance can be migrated to this new deployment. Whenever the deploy adaptable
action is sent to the REST API, the service will proceed with the adaptable logic, by
making the migrationPlan and executing it.

The UML diagram in figure 4.2 presents a conceptual illustration of the inter-
actions between the Modeler, the REST API and the Engine.

4.2.1.1 The Modeler

In order to allow the user to deploy a new version of a model onto the engine and
to mark it as an adaptation of a process instance instead of a new deployment, the
Modeler had to be extended with a new functionality, namely, the ability to deploy
adaptable. As such, a new button was added to the Modeler, that would open a
new window where the user can enter the ID of the process instance that should be
migrated. By opening this new window instead of the typical deployment one, the
difference between the two types of deployment is also made and this information can

54

Chapter 4. Suggested Solution and Implementation

(a) The basic deployment window in the Modeler (b) The adaptable process deployment

Figure 4.3: The two types of deployment allowed through the Modeler

be sent to the engine, together with the new model. Figure 4.3 shows a side-to-side
view of the two deployment windows.

4.2.1.2 The REST API

The REST API was also extended in order to implement the adaptable process concept.
First of all, a new endpoint was added: /deployment/deploy-adaptable, that can
accept a new model, together with data. By accessing this endpoint instead of the
standard deployment one, the distinction between the two cases can be easily made.
The endpoint that can be accessed in order to make a normal deployment is the
following: deployment/create

Listing 4.4 provides a code snippet to present the code that was added to the
DeploymentRestService interface and to the DeploymentRestServiceImpl class. The
two already existing classes have minimal alterations brought to them, which is in line
with requirement R-2.

55

/deployment/deploy-adaptable
deployment/create

Afterwards, a new class has been added, the AdaptableDeploymentService,
that orchestrates all the logic behind the adaptation. It firstly fetches the ID of the
process definition that the adapted process instance belongs to. Secondly, it handles
the deployment of the new model and fetches the ID of the new ProcessDefinition.
Then, it calls on the new class MigrationService, which compares the two process
definitions in order to decide whether the migration can be safely performed. If the
migration can be performed without issues, it will be executed and the user should be
able to see the results in the Cockpit.
However, there are a few cases when the migration cannot be performed, and these
cases will be discussed in the following subsection 4.2.1.3.

The UML diagram in figure 4.4 illustrates the interactions that take place within the
REST API, whenever a request is sent by the Modeler to deploy an adaptable process
which requires the creation and execution of a migrationPlan.

1 // DeploymentRestService.java
2 @POST
3 @Path(”/deploy-adaptable”)
4 @Consumes(MediaType.MULTIPART_FORM_DATA)
5 @Produces(MediaType.APPLICATION_JSON)
6 DeploymentDto deployAdaptable(@Context UriInfo uriInfo,
7 MultipartFormData multipartFormData);
8

9 // DeploymentRestServiceImpl.java
10 public DeploymentWithDefinitionsDto deployAdaptable(
11 UriInfo uriInfo,
12 MultipartFormData multipartFormData) {
13

14 AdaptableDeploymentService service =
15 new AdaptableDeploymentService(getEngine(), multipartFormData);
16

17 return service.deployAdaptable();
18 }

Listing 4.4: The extensions brought to the REST API

4.2.1.3 Edge cases

Throughout the development of the implementation, a few limitations of the Instance
Migration According to the documentation and our own tests, the migration is guar-
anteed to perform as expected in the following cases:

• Whenever the changes that are brought to the model are made either in the
past (changes made to activities that have finished executing) or in the future

56

Chapter 4. Suggested Solution and Implementation

Figure 4.4: Conceptual illustration of the interactions between the REST API compo-
nents and the Engine when performing an Instance Migration

57

(activities that have not been reached yet).
This includes operations such as deleting, adding or changing activities in the
future or in the past.

• If there are changes made to active activities, then the activities should not
change type or ID. However, their names or internal behavior may change.

Those being said, during development we have encountered situations when a
migration could not be performed. One such example is whenever the user is trying
to bring modifications to an active activity (either by deleting it or changing its
type). Whenever an Instance Migration would be performed on an instance where
an active activity would be deleted, an error will be thrown because the migration
will not know how to proceed with the execution of the active activity. The same
will happen whenever an active activity changes type - from a User Task to a Manual
Task, for example.

However, these situations are very likely to happen in practice, and should not
be a limitation of the adaptable process concept. To address this limitation, changes
should be brought to the internal implementation of the Engine. But, according to
requirement R-2, the extensions brought to Camunda should be non-intrusive. Making
changes to the Engine would be an intrusive operation, and as such, is not an option
for the current research.

In order to cover the cases that cannot be handled by a migration, a different
approach has been found. While it does not solve the problem of the limitation, the
different technique will be able to handle the edge cases. And the user will not be
aware of the differences between the two. This approach will be presented in the
following section, 4.3.

4.3 New Instance Deployment with Data Transfer
From the documentation and from experimenting with the Instance Migration, the
limitations in functionality that it provides have become clear. The migration cannot
be performed in cases that are crucial to the development of adaptable processes, such
as the deletion or replacement of an active task.

To allow the possibility of these use cases, a new approach is proposed. The
steps will be similar as with the Instance Migration, up to a certain point:

1. The user makes changes to the model and selects the deploy adaptable method

58

Chapter 4. Suggested Solution and Implementation

2. The origin process instance is suspended and the new model is deployed onto the
engine

3. The lists of activities from the two process definitions (origin and target) are
compared. Then, the extension will establish what kind of changes were made,
and will decide on the course of action:

CASE I If no active tasks were changed:
- proceed with the migration as previously explained

Note: Until this point, the logic is the same as with the Instance Migration.
The following steps have been added for the implementation of the new
approach.

CASE II If an active task was deleted or changed:
- fetch all the data that was computed by the origin process instance
- pick the node right before the deleted activity as the start point for the
new process instance
- use the RuntimeService to start a new process instance of the newly
deployed model
- assign the data of the origin to the target

The main idea behind this technique is the transfer of data between the two process
instances. In accordance with requirement R-3, whenever a process instance is
migrated, data should also be handled and moved from the origin instance to
the target. This approach handles this requirement, and ensures that the data
of the old process instance is assigned to the new instance before the instance is
created. When the instance is started, all the data is readily available and the
execution token will be right before the deleted activity. To the user, the new instance
will look as a modification of the old one, and not as a completely new proces definition.

Because of the way this technique works, it will be referred to as the Data
Transfer approach.

There are a few advantages to using an Instance Migration instead of the
Data Transfer method. First of all, the Instance Migration will transfer all execu-
tions from a process instance to the other. This means that, whenever two branches
are concurrently active in the origin process, the executions will be transferred and
the branches will also be active in the target process.

59

However, the Data Transfer approach can only start one execution (one branch).
This has the implication that the user should ensure the re-iteration of the process
instance from a ’safe’ point in the model - one that would ensure that both the
execution branches that were previously active, will be active in the target process.
This implication will be further discussed in section 4.3.1.
Second of all, if an instance is adapted through a migration, the new instance will
maintain a lot of the information from the origin instance. The ID of the process
instance will stay the same. To the user, the transition will seem as if the model of
the process instance ’transforms’ into the new version. However, in the background, a
new process instance of the target process definition is started, and the information is
transferred from one instance to the other (not just the variables or output), also in
the database and in the internal representation of the model inside the engine.

Keeping those aspects in mind, for the context of this thesis we have de-
cided to provide both methods for the adaptation of processes. The new class
ProcessInstanceStarted has been added, such that we have a better separation of
concerns between the MigrationService functionality and the starting of a new proces.

Figure 4.5 illustrates the interactions between the different components in order
to realize this approach. To note is the fact that some of the initial steps that were
presented in the previous diagrams (eg. in figure 4.4) have been merged into a more
generic one, since they are the same, and instead, the focus was on the modified
interactions.

4.3.1 Specifying a starting Node ID
In the CASE II of section 4.3, a decision was made to pick the node right before
the changed activity as a starting node for the new process. This can be seen as a
temporary solution, because it has a lot of downsides; for example, if the changed
activity was in a parallel gateway branch, then the new process will start the execution
on the branch of the changed activity only, and will lead to a deadlock, since the
second gateway expects two tokens, however, it will only receive one.

This example has been illustrated in figure 4.6, where there are two active tasks,
Execute Task B and Execute Task C. If the user decides to swap out or completely
remove the activity Execute Task B, then, according to the logic explained above, the
new process instance would start at the node before this task.
In the example, the starting activity would be Execute Task A. However, this logic
does not take into consideration the context of the change.

60

Chapter 4. Suggested Solution and Implementation

Figure 4.5: Conceptual illustration of the interactions between the REST API compo-
nents and the Engine when performing the Data Transfer approach

61

Figure 4.6: Possible case when, by starting a process instance at the node preceding
the changed activity Execute Task B, a deadlock could be caused

When the process instance starts at Execute Task A, the respective execution branch
will proceed, and the execution will reach the parallel gateway. However, the execution
on the second branch will not be restarted. The gateway expects two tokens before it
can proceed - and because the second branch is never restarted, the gateway will be
waiting for a second token indefinitely.

One possible solution to this problem would be the implementation of an algorithm
to dynamically determine the restart point that would not lead to a deadlock. In the
example presented in figure 4.6, this point could be the Gateway after the Start activity.

The dynamic determination of re-iteration points is a research topic on itself.
In his work, A. Weiß proposes a number of algorithms that can be used to dynamically
find the best starting points of an instance, such that no errors, like the deadlock
mentioned above, could occur. Due to the complexity of the topic, and to the limited
time available for conducting the current research, we have decided to leave the topic
open for future work.

One alternative solution for the problem described above is to allow the user to
specify which node the new process instance should start the execution from. This
alternative leaves it to the best-judgement of the user to select the appropriate
start node (activity or gateway) that allows for a correct execution of the in-
stance. It also brings along the advantage of the re-iteration of the process from any
given node, if the user would like to make changes to their model and re-run parts of it.

To facilitate this, the Modeler was extended with the option to specify a Node
ID as a parameter when deploying an adaptable process. This can be seen in figure

62

Chapter 4. Suggested Solution and Implementation

4.3(b), where the field for the Activity ID is present and optional.
Whenever an Activity ID is provided, the Data Transfer approach will be used to
migrate from one process instance to the new one. The Activity ID will be passed to
the RepositoryService as the starting point. The actual implementation, however,
will start the execution at the transition right before the mentioned activity, to ensure
that the activity itself will be executed.

Listing 4.5 is a code snippet from the implementation that starts a new
ProcessInstance from a given transition and assigns to it a list of variables.

1 ProcessInstance processInstance =
2 engine.getRuntimeService()
3 .createProcessInstanceById(targetProcessDefinitionId)
4 .setVariables(variables)
5 .startTransition(sequenceFlow.getId())
6 .executeWithVariablesInReturn(false, false);

Listing 4.5: Example code for starting a ProcessInstance at a given transition ID

To separate the concerns of the two approaches of adaptation, a new class has been
added along with the MigrationService, namely the ProcessInstanceStarter. This
class will focus only on the starting of a process instance from a specific node.
This class offers two functions, that can be used depending on the type of node that the
new instance should use as a starting point: startProcessInstanceAtTransition()
and startProcessInstanceAtGateway() . The first function is used to start a new
process at the transition right before the selected activity, so it will look at the incoming
transition of that activity. The second function is needed when dealing with gateways.
If the user would like to start the process on a gateway, there are two possible cases
that we need to take into consideration.

• If the gateway brings together multiple branches (so the number of incoming
transitions is higher than 1), we cannot restart the process before the gateway,
because only one execution will be active and this will result in a deadlock again.
As such, we need to restart the execution after the gateway.

• If the gateway only has one incoming transition, it is safe to start the process on
that specific transition. This will also take care of the case in which the gateway
is a conditional one. By starting the process before the gateway, we ensure that
the conditions will also be taken into consideration, because the behavior of the
gateway will be executed in order to select the correct path.

63

Figure 4.7: Conceptual illustration of the interactions between the REST API compo-
nents and the Engine, when the user provides an Activity ID as a starting point

64

Chapter 4. Suggested Solution and Implementation

4.3.2 Conclusion
The proof-of-concept implementation explored the ways in which Camunda could be
extended with the functionality of deploying adaptable processes. The application
already had a basic version of an instance migration, however it was not done through
a user interface, but only accessible through the REST API. The implementation of
the current research included an extension brought to the Modeler that makes the flow
of deploying an adaptable process available through a friendly user interface.
The section described the instance migration also in terms of its limitations, and it
proposed an alternative solution for the cases where the built-in instance migration
would fail to execute. The code that implements all the functionality mentioned in
this chapter, and some minor supporting extensions such as logging, error handling,
etc., can be found in the GitHub repository1.

1https://github.com/ana-roman/camunda-adaptable-processes

65

https://github.com/ana-roman/camunda-adaptable-processes

66

Chapter 5 | Evaluation
and Conclusions

After having introduced the implementation of the Camunda extension that will allow
the deployment of adaptable processes, the current chapter will present the validation
of the implementation, by looking at the use cases presented in section 3.1.1 as well
as the requirements presented in 3.1. The evaluation will be described in section 5.1.
Afterwards, section 5.2 will draw the conclusion of the current thesis, by summarizing
the work and discussing its limitations and topics for future research.

5.1 Evaluation
The current section will take a look at the suggested implementation that was de-
scribed in chapter 4. Firstly, it will look at the problem context of the Use Cases
presented in section 3.1.1 and will discuss whether the current implementation would
be beneficial for the two. Secondly, it will look back at section 3.1, to discuss whether
the implementation fulfills all the requirements that were proposed.

5.1.1 Application to the Use Cases
Section 3.1.1 presented two Use cases that, despite being fictional, were used to illus-
trate the need for adaptable processes in the development of business process.
A few video clips that demonstrate how to deploy adaptable processes can be found in
the GitHub repository of the project.

5.1.1.1 Loan approval system

In the use case Loan approval system, the manager needed to find a way to correct
the process instance that had faulty data. The presence of the faulty data would have
as implication a wrong output of the process, which could lead to potentially upset
clients.

67

In this case, two primary requirements had to be met. First of all, the process model
of the process instance should be modified, such that the user could overwrite the
faulty data and change the final outcome of the process. Second of all, the data
of the client had to be preserved, since the data was sensitive and not directly available.

Through the state-of-the-art implementation of the Camunda extension, the
manager should be able to make the desired changes through the user interface of
the Modeler, without asking for additional help. The manager could use the Instance
Migration approach to solve this problem.
Firstly, the Modeler could be used to make changes to the process instance model.
One such change could be the indication a mistake and the ability to loop back to an
earlier activity. This behavior has been illustrated in figure 3.2. Then, by choosing
the deploy adaptable option in the modeler, the user only needs to specify the ID of
the process instance that should be corrected, and then deploy the adaptable process.
The process instance will be migrated, together with all the data. This change should
be visible in the Cockpit, where a new process instance will be visible with all the
data that was already present. Now, the manager should be able to correct the output
of the process by modifying the fields that were incorrect.

5.1.1.2 Scientific simulation

The use case of the scientific simulation had an extra requirement on top of two already
mentioned by Loan approval system. Alongside the ability to bring changes to a model
and the preservation of data, the scientist wanted to be able to restart the execution
of a process instance from a specific activity.
The implementation of the adaptable processes that was described in this thesis would
also assist the scientist, by allowing the option of performing experiments in an ex-
ploratory fashion. As such, there can be an initial version of the process on the engine,
and then modifications can be brought to it, without the loss of data. The same steps
will be followed by the scientists, as in the case of the manager: the process model will
be modified in the Modeler and the option to deploy adaptable will be chosen; this can
be repeated until a version of the model that follows all of the requirements is reached.
Whenever the scientist notices that some steps in the process should be ‘backtracked’,
Data Transfer approach can be used to deploy the adaptable process and to start at a
given activity, while keeping all the data that was previously generated. However, the
variables that resulted as output from activities that are executed again will rewrite
the ’old’ values of the variables (the ones transferred from the origin process instance).

68

Chapter 5. Evaluation and Conclusions

5.1.2 Requirements Fulfillment
In this section, the requirements presented in section 3.1 will be named, and the dis-
cussion will focus on whether the implementation of the adaptable processes extension
fulfills each requirement.

R1 Concept and implementation
For the fulfilment of this requirement, the thesis had to provide a conceptual
overview of adaptable processes, and how this concept could be used to extend
the Camunda OSS. Sections 3.1, 3.2 together with chapter 4 discuss in detail
both the concepts and the implementation details of this extension.
As such, requirement R1 has been fulfilled.

R2 Runtime adaptation on the Control Flow
Chapter 4 gives a detailed explanation on how the concept of adaptable processes
has been implemented. By deploying an adaptable process, a user can achieve
ad-hoc runtime adaptations on the control flow.
At the same time, the extension brought to Camunda has been minimally in-
trusive. The existing classes of the REST API package were extended with the
addition of a few extra lines of code, such that none of the already existing fea-
tures were interfered with. The rest of the implementation was done through
dedicated classes and services.
Requirement R2 has been fulfilled.

R3 Data flow preservation
Both the Instance Migration and Data Transfer approaches handle the trans-
fer of data from a previous instance to the other, by reassigning the variables
from the origin to the target process instances.
Requirement R3 has been fulfilled.

R4 Organizational change
Whenever a task gets reassigned (eg. a User Task is reassigned to a different
User/User Group or a Service Task changes the endpoint that it is talking to),
these changes will be picked up by both adaptation methods.
Moreover, as a side note, Camunda already had the functionality of reassigning
an active User Task implemented in the Cockpit’s user interface.
Requirement R3 has been therefore fulfilled.

69

5.2 Conclusion
This section provides a summary of the main results of the current research, and
concludes the work. It will present the limitations that were found for the current
implementation, as well as ideas for future work.

5.2.1 Summary of results
Section 2.2 described how the concept of adaptable processes was studied in the past
by the literature. A lot of ground work had already been laid and a vast number of
concepts were well established. The literature provided a very clear blueprint that any
workflow management system should follow, whenever it should be extended with the
capability of adaptable processes. However, with so much material available and all
the different functionalities that all seemed to be of outmost importance, a selection
had to be made in order to centralize the focus strictly on the requirements, behaviors
and capabilities of adaptable processes.

The first main contribution of this work is related to the study of the litera-
ture. In this thesis, the literature has been studied and summarized, and the most
relevant information has been extracted and presented. Following the same pattern
as the literature, the theoretical findings of this thesis have been presented at a
conceptual level. A list of high-level requirements was established, and they were also
kept separate from the implementation, in order to allow them to be independent
from the workflow management system.

Secondly, the thesis presented the implementation of the concepts on the Ca-
munda Workflow Management System. And this brings us to the second main
contribution. In the light of the literature and the established requirements, the
current thesis described in detail the implementation of the extension that was
brought to Camunda. The second contribution is made up of two parts: one for each
of the two approaches that allow the deployment of adaptable processes, namely the
Instance Migration and the Data Transfer methods. Depending on the type of
adaptation that the user wants to perform, one of the two methods can be used and
the Evaluation section has explained how this can be done.

70

Chapter 5. Evaluation and Conclusions

5.2.2 Limitations and discussion
The first limitation that the current implementation has, was mentioned in the
implementation of the Data Transfer method. Whenever this approach is used
for the modification of an active task without specifying an node ID to start
from, the method is set to start the new process instance from the node that
precedes the modified task. This can lead to errors such as deadlock, as it was
described in the section. Although it can be surpassed by providing a node ID
as a starting point, this is only a work around and it does not solve the actual
issue. At the same time, human error can still lead to problems whenever a user
selects a ‘wrong’ activity to start from (in this context, a wrong activity can be seen
as an activity that, whenever chosen as a starting point, would lead to potential errors).

The second limitation that has not yet been discussed, is the inability to com-
pensate already executed activities whenever a process instance is restarted from an
earlier point in time. In their work [6], Karastoyanova and Sonntag outline the need
for compensating activities. For example, some activities might perform actions that
are not idempotent. As such, the re-execution of such an activity without it being
firstly compensated might lead to errors or unwanted results.

Lastly, the current work does not implement keep-alive mechanism as the au-
thors of the Model-as-You-Go described, and as it was illustrated in figure 2.8. In
order to set ’break points’ in the model, the user has to add Nodes that implement
wait states (states that require further input to continue) such as User Tasks or
Message Receiving Tasks. For the same reason, the current implementation does not
support the deployment of a model that is not complete. In order for a model to
be deployed, it needs to have a start and an end event. So the flow of the current
implementation is different from the one described in the Model-as-You-Go approach.

Despite these limitations, the current implementation does touch upon and ful-
fills all the expected requirements. The topic of adaptable processes in Camunda has
never been previously researched; as such, the current thesis lays the foundation for
the basic concepts surrounding this topic, and only focused on the core, indispensable
requirements.

71

5.2.3 Future research
One of the possible future research topics has already been mentioned in section 4.3.
The dynamic decision of the best possible starting point is an interesting topic, and
it definitely needs further investigation. The benefits of having this functionality
would be substantial. For example, it could ensure that whenever new instances are
started, they are started from a safe point, from where the successful completion of
the instance could be guaranteed.

Other interesting future research topics stem from the limitations addressed
previously. The lack of compensations when re-iterating (parts of) a model can lead
to errors. As such, this topic is worth researching, because it could solve the problems
that arise whenever activities do not have idempotent behaviors, as mentioned
previously.
At the same time, something similar to the keep-alive mechanism mentioned in the
literature could be researched and implemented. This mechanism would make the
development of adaptable processes even easier from the user’s point of view, because
there would be no need to add wait-state activities in the model such that an instance
does not finish executing.

72

Bibliography

[1] M. Weske, Business Process Management: Concepts, Languages, Architectures.
01 2007. (Cited on pages 11 and 19.)

[2] M. Dumas, M. L. Rosa, J. Mendling, and H. A. Reijers, Fundamentals of Business
Process Management. Springer Publishing Company, Incorporated, 2018. (Cited
on pages 11, 15, 16, 17, and 20.)

[3] P. Harmon, The State of Business Process Management. 03 2016.
As found at: http://www.bptrends.com/bpt/wp-content/uploads/
2015-BPT-Survey-Report.pdf. (Cited on pages 11 and 21.)

[4] W. Aalst, “Business process management: a comprehensive survey,” ISRN Soft-
ware Engineering, 01 2012. (Cited on page 11.)

[5] A. Weiß, V. Andrikopoulos, M. Hahn, and D. Karastoyanova, “Model-as-you-
go for choreographies: Rewinding and repeating scientific choreographies,” IEEE
Transactions on Services Computing, vol. 13, no. 5, pp. 901–914, 2020. (Cited on
pages 11, 17, 34, and 35.)

[6] M. Sonntag and D. Karastoyanova, “Model-as-you-go: An approach for an ad-
vanced infrastructure for scientific workflows,” Journal of Grid Computing, vol. 11,
09 2013. (Cited on pages 12, 17, 21, 29, 31, 33, 34, and 71.)

[7] J. vom Brocke and M. Rosemann, Handbook on Business Process Management 1:
Introduction, Methods, and Information Systems. Springer Publishing Company,
Incorporated, 1st ed., 2010. (Cited on pages 12, 17, and 20.)

[8] A. Weiss, “Flexible modeling and execution of choreographies,” 09 2018. Found at:
http://dx.doi.org/10.18419/opus-10224. (Cited on pages 12, 16, 19, and 29.)

[9] J. Eder, Workflow Management and Workflow Management System, pp. 3545–
3549. Boston, MA: Springer US, 2009. (Cited on pages 16, 18, and 19.)

73

http://www.bptrends.com/bpt/wp-content/uploads/2015-BPT-Survey-Report.pdf
http://www.bptrends.com/bpt/wp-content/uploads/2015-BPT-Survey-Report.pdf
http://dx.doi.org/10.18419/opus-10224

[10] F. Leymann and D. Roller, Production Workflow - Concepts and Techniques. 01
2001. (Cited on pages 17, 18, 20, and 23.)

[11] OMG, “The complete business process handbook,” 2015. Found at: https://
www.omg.org/news/whitepapers/Business_Process_Model_and_Notation.pdf.
(Cited on page 18.)

[12] OMG, “Unified modeling language (uml),” 2015. Found at: https://www.omg.
org/spec/UML/2.5.1/PDF. (Cited on page 18.)

[13] OMG, “Case management model and notation (cmmn),” 2016. Found at: https:
//www.omg.org/spec/CMMN/1.1/PDF. (Cited on page 18.)

[14] W. Aalst, “The application of petri nets to workflow management,” Journal of
Circuits, Systems, and Computers, vol. 8, pp. 21–66, 02 1998. (Cited on page 18.)

[15] W. V. Aalst and K. V. Hee, “Workflow management: Models, methods, and
systems,” in Cooperative information systems, 2002. (Cited on pages 19 and 24.)

[16] M. J. Alter, Science of Flexibility. 2004. (Cited on page 19.)

[17] W. Aalst, van der, T. Basten, H. Verbeek, P. Verkoulen, and M. Voorhoeve,
Adaptive workflow: On the interplay between flexibility and support, pp. 63–70.
Netherlands: Kluwer Academic Publishers, 2000. (Cited on page 20.)

[18] M. Reichert and P. Dadam, “Adeptflex—supporting dynamic changes of work-
flows without losing control,” Journal of Intelligent Information Systems, vol. 10,
pp. 93–129, 2004. (Cited on page 20.)

[19] M. Reichert and B. Weber, Enabling Flexibility in Process-Aware Information
Systems: Challenges, Methods, Technologies. 10 2012. (Cited on page 20.)

[20] M. Sonntag and D. Karastoyanova, “Concurrent workflow evolution,” Electronic
Communications of the EASST, vol. 37, 2011. (Cited on page 29.)

[21] R. Mitchell, ed., Managing Complexity in Software Engineering. Computing, In-
stitution of Engineering and Technology, 1990. (Cited on page 35.)

74

https://www.omg.org/news/whitepapers/Business_Process_Model_and_Notation.pdf
https://www.omg.org/news/whitepapers/Business_Process_Model_and_Notation.pdf
https://www.omg.org/spec/UML/2.5.1/PDF
https://www.omg.org/spec/UML/2.5.1/PDF
https://www.omg.org/spec/CMMN/1.1/PDF
https://www.omg.org/spec/CMMN/1.1/PDF

	Acronyms
	Introduction
	Motivation
	Problem Statement
	Research question and objectives
	Summary of contributions
	Structure of the thesis

	Background and Related Work
	Background
	Business Process Management
	The BPM Lifecycle

	Workflows
	Business vs. Scientific Workflows
	Components

	Flexibility
	Camunda
	Motivation
	Architecture Overview

	Alternatives to Camunda

	Related work
	The Model-as-you-go approach
	Conceptual requirements
	Requirements analysis & suggested solutions

	``Flexible Modeling and Execution of Choreographies" - Andreas Weiß
	High-Level Requirements

	Methodology
	Requirements
	Use Case Scenarios
	Requirements Analysis
	Requirements Framework
	Non-functional requirements

	Adaptable Processes
	Loan application procedure
	Scientific simulation

	Suggested Solution and Implementation
	Camunda - Basic Concepts
	The Process Engine
	The REST API

	Instance Migration
	The Implementation of the Instance Migration
	The Modeler
	The REST API
	Edge cases

	New Instance Deployment with Data Transfer
	Specifying a starting Node ID
	Conclusion

	Evaluation and Conclusions
	Evaluation
	Application to the Use Cases
	Loan approval system
	Scientific simulation

	Requirements Fulfillment

	Conclusion
	Summary of results
	Limitations and discussion
	Future research

