
IEM BAIP, SII 2020/2021, BACHELOR INTEGRATION PROJECT 1

The Validation of a Lyapunov Deep Learning Algorithm for an
Inverted Pendulum Cart System
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Abstract— In the study of nonlinear system stability, a
deep learning algorithm was constructed in order to en-
large a system’s stability region. Previous study has shown
that the deep learning algorithm in [2] was able to enlarge
the stability region for a nonlinear system consisting of
two state variables. This study is about the implementation
of a nonlinear system, consisting of four state variables,
into the deep learning algorithm in order to enlarge the
stability region. The inability of the deep learning algorithm
to enlarge the stability region of a system consisting of four
state variables is discussed. The study is finalized with a
recommendation for further research.

Index Terms— Nonlinear System, Lyapunov
Stability, Deep Learning Algorithm, LQR Con-
troller, Cart Inverted Pendulum System.

I. INTRODUCTION

Most of modern day robots are nonlinear systems,
where stability of these systems is critical for its use.
As a consequence of the human-interference in certain
robotics fields, like in healthcare [1], it is of importance
that all movement is predictable, in order to prevent oper-
ational casualties. In the current study on the stabilization
of nonlinear systems [2], the most classical settings in
nonlinear control design are investigated, using neural
networks with a deep learning approach.

A deep learning algorithm can be used to compute
the stability region of nonlinear systems. The deep
learning algorithm that was developed in [2] consists of
a learner and a falsifier. The learner attempts to find
the control and Lyapunov functions, while the falsi-
fier finds counterexamples of instability and therefore
guides the learner towards solutions. Once the falsifier
is unable to find examples of instability, the system is
considered Lyapunov stable. Using the developed deep
learning algorithm instead of existing methods like sum-
of-squares (SOS) and semidefinite programming (SDP)
[3], the region of attraction is enlarged and therefore, the
robustness of the system is improved.

In order to evaluate the efficacy of the deep learning
algorithm, a nonlinear system has been investigated and
the corresponding equations of motion, describing the
dynamics of a nonlinear system, were determined. Imple-
menting the equations of motion and the corresponding

LQR controller into the deep learning algorithm [2], the
region of attraction is calculated. The nonlinear system
being investigated is the Cart-Inverted-Pendulum-System
(CIPS) [4], due to the simplistic equations of motion
and nonlinear nature of the system. A schematic display
of the CIPS and the parameter values for this system
are given in section III of this paper. The writers of
[2] focused on the applicability of the deep learning
algorithm on nonlinear systems with two state variables,
as is discussed in section II, preliminaries. The CIPS
system has four state variables. This study will be the
first application of a nonlinear system consisting of
four state variables, being applied to a deep learning
algorithm.

Fig. 1. SpaceX’s Falcon 9-R rocket after landing on a platform
at sea.

CIPS is an important type of nonlinear system, as
detailed in [5]. The subject of paper [5] is the con-
trollability of the landing of the SpaceX Falcon 9-R
rocket, which can be seen in figure 1. The importance
of stability is given in this specific example, with the
exact same dynamical movement of its parts, due to
the objective set by the operating company SpaceX .
The objective is to reuse rockets and have them land
on platforms at sea. The instability of the system would
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result in a crash of the rocket. Having more knowledge
on the stability region of this system could result in the
possibility of landing the rocket in less ideal conditions,
e.g., stormy weather, and therefore increase the usability
of this technology.

This study is structured as follows: in section II, the
preliminaries, concerning the theoretical background of
certain aspects are described. Section III, the implemen-
tation and elaboration on key concepts, in which a more
detailed description and more background is given on
important subjects. In section IV, the experiment, the
result of the implementation of the CIPS on the deep
learning algorithm is discussed. Section V will provide
a discussion, where the expected outcome is compared to
the actual outcome. Finally, in section VI the conclusion
of this research is given.

II. PRELIMINARIES

In order for the deep learning algorithm in [2] to
operate, the nonlinear system being researched must
be a Lyapunov stable system. The following paragraph
will give some theoretical background on Lyapunov
functions. Section III will give the mathematical proof
that the CIPS is a Lyapunov function. Furthermore, the
conclusions of previous works like [2] and [8] will be
discussed in this chapter.

A. Lyapunov Theory

For a non-negative function V to be Lyapunov stable,
one of (2) or (3) must be true, as is explained in [6].
V̇ (x) represents the time derivative of V along the

trajectories of the system dynamics and F (x) represents
the displacement derivative of function V .

V̇ (x) =
dV

dx
ẋ =

dV

dx
F (x) (1)

The stability of the origin at x = 0, which is the
starting point of the V trajectory, is characterized by:

V (x) > 0, V̇ (x) ≤ 0→ x = 0 is stable (2)

V (x) > 0, V̇ (x) < 0→ x = 0 asymptotically stable
(3)

If V satisfies one of the conditions in (2) or (3), we
say that function V is Lyapunov stable.

A function being Lyapunov stable means that the
system is stable near the origin [6] and has a partially
known stability region.

B. Other Work
The construction of deep learning algorithm was due

to the lacking safety guarantees for nonlinear, safety-
critical systems. In [8], the safety region for a standard
simulated inverted pendulum is determined to become
greater, as well as the given conclusion that their al-
gorithm is applicable to a great range of autonomous
nonlinear systems in uncertain and safety-critical envi-
ronments. More information about the application of the
simple pendulum in the deep learning algorithm is given
in section IV, experiment.

In using the deep learning algorithm developed in [8],
the writers of [2] have extended the range of applicable
nonlinear systems in real-life situations by applying the
algorithm on the Caltech ducted fan in hover mode and
the N-link planar Robot balancing, which can be seen
in figure 2. In this study, the stability regions for both
systems were enlarged.

Fig. 2. (left): the Caltech ducted fan and (right) a 2-link planar
robot.

III. IMPLEMENTATION AND ELABORATION ON KEY
CONCEPTS

In this section, more information on the nonlinear
system of concern in this paper is given. As well as
the corresponding equations of motion and the controller
used to regulate the movement.

A. Equations of Motion
The equations of motion represent the movement of a

dynamical system, by which the deep learning algorithm
can eventually compute the region of attraction. The
equations of motion for the Cart Inverted Pendulum
System are, based on the schematic representation in
figure 3, given in [7] and by (4) and (5)

(M +m)ẍ−mlφ̈cosφ+mlφ̇2sinφ = F (4)

lφ̈− gsinφ− ẍcosφ = 0 (5)

In the equations above, x is the cart displacement, φ
is the angular displacement of the pendulum, F is the
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external force applied to the cart by the controller, M is
the mass of the cart, m is the mass of the pendulum, l
is the pendulum length and g the gravitational constant.
A schematic representation is given below.

Fig. 3. Schematic representation of the CIPS and all forces
applied.

B. Proof of Lyapunov Stability

The two-dimensional cart inverted pendulum system
is proven to be Lyapunov stable in [9], in the follow-
ing manner, using the theory described in the previous
section, preliminaries.

Stabilizing the variables φ and φ̇ is done by introduc-
ing function V , as:

V (φ, φ̇) =
1

2
(k1cos

2φ− 1)φ̇2 + (1− cosφ) (6)

In which constant k1 > 1. Therefore V (φ, φ̇) becomes
a positive definite, for all |φ| < φ̃ < π/2 ,

where:

φ̃ = cos−1(

√
1

k1
)(7)

The time derivative of V is then given by:

V̇ (φ, φ̇) = φ̇cosφ(ε0α(φ) + k1β(φ, φ̇)), (8)

where:

α(φ) = 1− k1cos2φ, (9)

β(φ, φ̇) = (−φ̇2 + cosφ)sinφ (10)

The controller output is then given by:

ε0 = −
1

α(φ)
(φ̇cosφ+ k1β(φ, φ̇)), (11)

Makes variables φ and φ̇ converge asymptotically to
zero, because ε0 produces:

V̇ (φ, φ̇) = −φ̇2cos2φ (12)

As is shown in (12), the derivative of V converges
asymptotically to zero and therefore is a Lyapunov
function.

C. Theory on Controller
Controlling the nonlinear CIPS is done with an LQR

controller. As is described in [10], the LQR controller is
used for complex nonlinear systems with strict perfor-
mance requirements, consisting of matrices A, B and Q
and value R. Matrices A and B depend on the dynamics
of a particular system and can therefore not be adjusted.
The specific values for A and B are found in appendix
B. The controller is determined as the optimum of a
linear quadratic cost function where the system dynamics
are represented in a linearized state space matrix A
and input vector B of the nonlinear system. The cost
function is optimized using a weighting matrix Q and
weighting vector R as parameters, rendering a vector
K as usable controller values by using the Matlab
command K = lqr(A,B,Q,R).

D. State Space Equation and LQR Controller
Values

The equations of motion mentioned in the ‘CIPS
Equations of motion’ paragraph can be rewritten in first
order equations, in the state space form, as found in [4]:


ż1
ż2
ż3
ż4

 =


z2

1

2
gmsin2φ−lm(φ̇2)sinφ

(msin2φ)+M

z4
g(M+m)sinφ−lm(φ̇2)sinφcosφ

l(msin2φ+M)

+


0
1

msin2φ+M

0
cosφ

l(msin2φ+M)

 [F ]
(13)

The following table contains the values of the param-
eters of importance:

An initial LQR gain vector, as is shown in [4], is given
by:

Kinitial =
[
−1000.00 −946.79 4353.27 803.53

]
(14)

The computation of K can be found in Appendix B.
Combining the values given in the table above and

(13) and (14), a simulation is made in Matlab, to verify
the stability of the CIPS with these variables. The initial
K vector will be improved in section IV, experiment.
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Parameter Values

Mass Cart (M) 1 kg
Mass Pendulum (m) 0.5 kg
Length Pendulum (l) 0.7 metres

Gravity (g) 9.81 m/s2

TABLE I
PARAMETER VALUES

E. Proof of State-Space equations and Controller

Using the Matlab file main, which can be found in
[13], the controlled CIPS is simulated for eight seconds,
as can be seen in figure 4.

Fig. 4. Output of angle phi, with respect to time, of the controlled
CIPS, using the initial controller values for K.

The starting position x0 is in the downright position
with angle φ = −π. Controlling the inverted pendulum
corresponds to getting the angle φ in a stable upright
position, with a value of 0 radians.

Figure 4 shows five different stages. The first being
the starting position −π at t = 0, as discussed above.
Secondly, the controller alters the angle of the pendulum,
in order to reach the upright position, in the time period
0 < t < 2. The third phase consist of the stabilization
of the system at time period 2 < t < 5. In the fourth
phase, at t = 5, the system is externally effected for the
last time, resulting in a small angle deviation. Finally at
the fifth stage, the angle is reduced to 0 and considered
stable.

IV. EXPERIMENT

The experimental stage of this research consists of
improving the LQR controller, improving the parameters
of the deep learning algorithm and the implementation

of the CIPS in the algorithm in combination with the
improved controller values and algorithm’s parameters.

A. Improved LQR controller

Matrices A and B depend on the system’s dynamics
and can therefore not be altered in the simulation setup.
Simulations have shown, by using the Matlab file main
in [13], that the R value of 0.0001 is a value sufficient
for this research. Therefore, the focus will be on the
four Q values, Q11, Q22, Q33 Q44 as shown below in
the sensitivity matrix Q. All four values for Q will be
simulated one by one until the outcome of the stability
graph is useful for this research.

Q =


Q11 0 0 0
0 Q22 0 0
0 0 Q33 0
0 0 0 Q44

 (15)

The initial values for Q are: Q11 = 100, Q22 = 1,
Q33 = 1000 and Q44 = 1.

Changing Q11 to 0.001 results in the graph shown in
figure 5.

Fig. 5. Output of angle phi, with respect to time, of the controlled
CIPS, using the value Q11 = 0.001.

The result of adjusting Q11 makes the system reach
stability faster at t = 2 and is not affected by the external
force at t = 5, therefore the value of Q11 is seen as useful
for this research. From here on we will use Q11 = 0.001
in every simulation.

Simulations have shown that the alteration of Q22 does
not effect the system’s stability. Therefore Q22 = 1 is
considered good enough for this study.

Figure 6 shows the graph for Q33 = 10000, clearly
showing improvement in stability rate at t = 2 seconds.
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Therefore, Q33 = 10000 will be used for further simu-
lations.

Fig. 6. Output of angle phi, with respect to time, of the controlled
CIPS, using the value Q33 = 10000

Value Q44 = 0.01 improves the stability of the system,
reaching stability faster, as can be seen in figure 7. There-
fore, Q44 = 0.01 will be used in further simulations.

Fig. 7. Output of angle phi, with respect to time, of the controlled
CIPS, using the value Q44 = 0.01

The final Q matrix is composed as follows:

Qfinal =


0.001 0 0 0
0 1 0 0
0 0 10000 0
0 0 0 0.01

 (16)

The LQR controller is then represented by the K
matrix, after implementing the A, B, Q and R values in

the Matlab command K = lqr(A,B,Q,R), rendering
the following result:

Kfinal =
[
−3.16 −129 10041 228

]
(17)

The K values are implemented in the deep learning
algorithm.

B. Improved Parameters in deep learning Algorithm

In order for the deep learning algorithm to operate
as effective as possible, another non linear system is
introduced. The writers of [2] studied the simple pen-
dulum with two state variables, φ and φ̇. The region
of attraction of this simple pendulum was enlarged
by using the deep learning algorithm. This algorithm
consists of many parameters. In order to optimize the
chances of satisfying the Lyapunov conditions for our
CIPS with four variables, we must find the improved
values for certain parameters for the simple pendulum.
The parameters in the deep learning algorithm of impor-
tance are: Sample size (SS), Hidden Dimension (HD),
balllowerbound, ballupperbound and the range of results for
x. An improved result has the lowest running time and
the fewest iterations. In Table II, an overview of the
performed simulations and the corresponding results is
given.

No. SS HD balllb ballub xrange time (s) iterations

1 500 6 0.5 6 -6,6 42 540
2 1000 6 0.5 6 -6,6 - -
3 100 6 0.5 6 -6,6 277 1940
4 200 6 0.5 6 -6,6 11 290
5 300 6 0.5 6 -6,6 34 590
6 200 8 0.5 6 -6,6 144 1440
7 200 4 0.5 6 -6,6 - -
8 200 6 -4 4 -6,6 10 250
9 200 6 -2 2 -6,6 18 390

10 200 6 -3 3 -6,6 9 240
11 200 6 -3 3 -10,10 14 370
12 200 6 -3 3 -1,1 7 230
13 200 6 -3 3 -3,3 9 290
14 200 6 -3 3 -4,4 6 210

TABLE II
SIMPLE PENDULUM: ALGORITHM PARAMETERS

Lowering the Sample Size improves the running time
and lowers the needed iterations to satisfy the Lyapunov
conditions, for which SS = 200 turned out to be
an improvement. Enlarging or lowering the amount of
Hidden Dimensions in the neural network had a negative
effect on both running time and the needed iterations.
Therefore, the initial amount of 6 Hidden Dimensions is
useful for this research. The ball range turned out useful
for this research with the upper boundary being 3 and
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the lower boundary begin −3. Enlarging the xrange made
the algorithm take longer to satisfy conditions. Lowering
the xrange improved the running time and lowered the
needed iterations. It turned out that xrange = −4, 4
rendered the lowest running time.

C. Outcome of Implementation of CIPS in Deep
Learning Algorithm

Implementing the improved algorithm parameters as
mentioned in No.14 in Table II in the algorithm com-
posed for the CIPS in [13], answers the question if the
deep learning algorithm is operable for the nonlinear Cart
Inverted Pendulum System.

Due to the fact that the algorithm was unable to
find a Lyapunov function that satisfied the conditions,
this algorithm can not be validated in its current form.
In the Discussion section, possible outcomes of this
experiment are compared to the actual outcome and
recommendations are made for further study.

V. DISCUSSION

This section will provide the theoretical reason of the
results given in section IV.

The Improvement of the Q variables and the K array
was done through altering the diagonal values of the Q
matrix. Changing Q11, corresponding to the deviation of
displacement x, from 100 to 0.001 improved the stability
of the system. This was to be expected, due to the fact
that the stability of the system has no correlation with
the location, displacement x, of the system, therefore the
Q11 value should be low. Having Q22 as a very large or
small number slows down the stability time, therefore
proving that either a very large or small deviation of the
velocity v is disadvantageous for the system’s stability.
The value for Q33, corresponding to the angle φ of the
pendulum, can neither be too large nor too small, as the
simulation results showed. The fact that the deviation
of the angle should be as low as possible for improved
control, combined with the instability of the system when
Q33 is too big are the reason. Lowering Q44, representing
the relative importance of adjusting the velocity of the
angle, φ̇, will lower the movement of the pendulum,
resulting in the system being stable quicker.

Lowering the sample size results in less samples
needed to be evaluated by the algorithm, therefore low-
ering the time needed to satisfy the Lyapunov conditions.
Changing the ball range to points around central point 0,
increases the chance of satisfying Lyapunov conditions
since both the positive and the negative values are

checked on satisfied conditions. Decreasing the xrange
decreases the amount of possibilities for the state vari-
ables, therefore helped the algorithm decrease the time
to satisfy the Lyapunov conditions.

The reason the deep learning algorithm was not able to
compute values to satisfy the Lyapunov conditions have
nothing to do with the system itself since the CIPS is a
Lyapunov stable system. A recommendation for future
study would be to adjust the deep learning algorithm
in the neural network, in order to be able to compute
the Lyapunov conditions for nonlinear systems with four
state variables. Since the alteration of the neural network
part of the algorithm is outside the focus of the study,
this has not been included in the scope of this research.

VI. CONCLUSION

In order to validate the applicability of the deep
learning algorithm from [2], simulations have been done,
with improved parameters and improved LQR controller
values, for a nonlinear system with four state variables.
The conclusion can be drawn, that the deep learning
algorithm in its current form is not suited for calculating
values that satisfy the Lyapunov conditions for the cart
inverted pendulum system.

VII. APPENDICES

A. Simplification of the Deep Learning Algorithm

Developed by the writers of paper [2]. As can be seen,
the algorithm consists of a learner and a falsifier. Once
the falsifier is unable to produce unstable points for the
function, the function is considered Lyapunov stable.

Fig. 8. Deep learning algorithm, as is explained in [2].
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B. LQR values

Computing the LQR values was done by using
Matlab. Needed components for this calculation were
the A, B and Q matrices and the R-value. These follow
the theory explained in [12] and are composed and
chosen as follows:

A =


0 1 0 0
0 −1

M
mg
M 0

0 0 0 1

0 −1
Ml

(M+m)g
Ml 0

 =


0 1 0 0
0 −1 4.9050 0
0 0 0 1
0 −1.4286 21.0214 0


(18)

B =


0
1
M
0
1
Ml

 =


0
1
0

1.4286

 (19)

Qinitial =


100 0 0 0
0 1 0 0
0 0 1000 0
0 0 0 1

 (20)

R = 0.0001 (21)

The command K = lqr(A,B,Q,R) in Matlab ren-
ders the K matrix in (14) as a result.
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