
BSc thesis

High precision control design for the
PERA system

Authors:
Alex Sloot S3645010

Supervisors:
prof.dr.ir. J.M.A. Scherpen

Dr. L.P. Borja Rosales
C. Chan Zheng

A.Bosch

Groningen, June 16, 2021

BSc Industrial Engineering and Management

Faculty of Science and Engineering

University of Groningen

2

Abstract

Robotic arms may perform very high-precision tasks such as wafer production and eye
surgery. However, only special classes of mechanical systems currently manage these precise
tasks. Demand for a broader range of systems with high precision and accuracy exists in
aerospace, medical, and manufacturing fields. In the non-linear field, a class of non-linear
port-Hamiltonian mechanical systems with optimization opportunities exists. This thesis
will explore the bounds of tuning non-linear passivity-based proportional-integral-derivative
controller gains by testing a proposed tuning rules theory by [Chan Zheng et al., 2020].
First, the problem setting will briefly be explained, after which the technical background
will be addressed. The remainder of this thesis is split up into three chapters each covering
a part of the main question of this thesis: “How can one adequately select non-linear
PID controller gains in order to reduce oscillations for port-Hamiltonian systems resulting
in higher precision robots to satisfy customer requirements in fields such as aerospace,
medical areas, and manufacturing”. The Philips Experimental Robot Arm (PERA) will
be used for testing the proposed tuning rules.

Keywords— port-Hamiltonian, PERA, PID control, non-linear tuning rules

3

4

Contents

Notation 7

1 Introduction 8

1.1 Project description . 8

1.2 Problem statement . 8

1.3 Contents of this thesis . 9

2 Technical background 10

2.1 port-Hamiltonian . 10

2.2 Saddle point matrices . 10

2.3 Passive systems . 11

2.4 PID-PBC . 12

2.4.1 PID-PBC versus standard PID . 12

2.5 Linearization of port-Hamiltonian systems . 13

2.6 Lyapunov stability . 14

2.7 Energy shaping . 15

2.8 Tuning rules . 15

3 PID controller for the PERA 17

3.1 PERA closed-loop and linearized . 18

3.2 Tuning rule implementation . 18

4 PERA’s testing environment 20

4.1 Experimental setup of the PERA . 20

4.2 Methodology . 20

5 Testing the tuning rules 22

5.1 General method . 22

5.2 Low Ki values . 23

5.3 High Ki values . 23

5.4 Steady-state error . 25

5.5 Passivity-based controller with extra integrator 26

5.6 Additional remarks . 27

Conclusion and recommendations 28

Tuning rules: Proposition 1 . 28

passivity-based control integrator . 28

Future work recommendations . 29

References 30

5

Appendices 32
A PERA plots . 33
B Code for the linearized PERA matrices . 39
C Code for the PERA joints simulation. 42
D Code for the PERA gains using tuning rule 1 43
E Code for the PERA plots using tuning rule 1 45

6

Notation

This project involves many mathematical expressions, this chapter will briefly show some used
notations.

Matrices of size n×m are denoted by An×m, where A represents any matrix. The zero
matrix and identity matrix, also of size n×m, are denoted by 0n×m and In×m, respectively.

Time derivatives can be displayed either using the notation dA(x)
dt or Ȧ(x). This example

uses A(x) as any function at a state x.

The euclidian norm is represented as follows: ||A||B =
√
ATBA.

Desired points are represented using a * subscript, i.e. desired q := q∗.

Eigenvalues are depicted as λ. Maximum and minimum eigenvalues as λmax and λmin,
respectively.

The Hessian matrix of function A(x) over b is represented as ∇2
bA(x).

7

Chapter 1: Introduction

This chapter serves as an introduction by providing the reason(s) for this project, the particular
objective this project tries to help realize, and a general overview of the thesis.

1.1 Project description
Many systems are linear, or can be fairly well estimated linearly, meaning ‘discarding’ the

higher-order terms in the Taylor series produces a (negligible) error [Tailor and Bhathawala, 2011]
[Stewart, 2016]. Currently, robot arms are often not precise enough when discarding the
higher order terms. Think for instance of a robot performing eye surgery with a precision of
1 micron [Dormehl, 2017] or manufacturing electronics such as wafers (diameter ≤ 300mm)
[Mathia, 2010]. Although these processes may already be performed by certain robots, these
are only small special classes of mechanical systems [Chan Zheng et al., 2020]. Demand ex-
ists for options to stabilize a broader range of non-linear systems. Within this novel field
of research, discoveries have been made concerning proportional-integral-derivative (PID)
controllers for port-Hamiltonian (pH) systems. Port-Hamiltonian systems are based upon
the idea of formalizing basic interconnection laws combined with power-conservation. The
Hamiltonian is defined as the total energy present in the system [Van Der Schaft, 2006]. View-
ing the Hamiltonian as a Lyapunov function, which requires certain criteria (please refer to
chapter 2), the system can be tested on stability [Spong et al., 2006]. Any physical system
will converge towards a minimum of energy, an equilibrium, provided that no energy is added,
the system does not create energy, and dissipation is present [Spong et al., 2006]. Utilizing
energy shaping, a certain manipulation that creates an energy minimum at the desired state,
the system can converge towards this new equilibrium (energy minimum). Energy shaping
combined with a PID controller is proposed by [Zhang et al., 2018]. This research combines
this proposed PID controller with a theory of PID gains tuning rules for non-linear pH systems
by [Chan Zheng et al., 2020]. The Philips Experimental Robot Arm (PERA) will be used as
the non-linear mechanical pH system for this empirical theory-testing research. The PERA
tries to mimic human arm-like behavior and can, for instance, be used for pick-and-place type
of tasks.

1.2 Problem statement
How can one adequately select non-linear PID controller gains to reduce oscillations for

port-Hamiltonian systems - here tested on the PERA system - resulting in higher precision
robots to satisfy customer requirements in field such as aerospace, manufacturing, and medical
areas.

To solve the problem, a proposed non-linear PID controller using passivity based control
by [Zhang et al., 2018] combined with non-linear tuning rules for port-Hamiltonian systems
provided by [Chan Zheng et al., 2020] will be implemented and tested on the three degrees of
freedom, mechanical PERA system. Ease of implement-ability and measurements of rise time
performance and reduction in oscillations will determine the effectiveness of the tuning rules.
The research needs to be performed within roughly 13 weeks.

8

1.3 Contents of this thesis
This thesis will contribute to the novel field of non-linear control theory by the validation

of non-linear tuning rules for the proposed PID controller, tested on the PERA robot. The
thesis is set up as follows: Chapter 2 presents the technical background of the project, chapter
3 concerns the connection between theory and the PERA, chapter 4 covers the experimental
setup and usage of the PERA system, chapter 5 dives into the implementation and results of
the tuning rules. A conclusion including potential future work recommendations is provided
last.

9

Chapter 2: Technical background

This chapter concerns the technical background knowledge, which will be key for this project.
The technical knowledge includes: port-Hamiltonian structures, passive systems, Lyapunov
functions, saddle-point matrices, and tuning rules.

2.1 port-Hamiltonian
A general model for a port-Hamiltonian state-space representation can be seen in (2.1)

with corresponding output given as (2.2). Note that this representation does not include the
addition of an external force factor as, for instance, shown in [Muñoz Arias, 2015].[

q̇
ṗ

]
=

[
0n×n In×n
−In×n −D(q,p)

]
.

[
∂H(q,p)
∂q

∂H(q,p)
∂p

]
+

[
0n×n

G

]
u (2.1)

y = GT∂H(q, p)

∂p
(2.2)

where 0n×n and In×n represent a zero matrix and the identity matrix, respectively. The
value n equals the number of degrees of freedom (DoF) present. Furthermore, D(q, p) represents
the effect of damping due to friction, the dimensions need to match, therefore D(q, p) ∈ <n×n.
The actuators incorporated as G ∈ <n×m (n again as the DoF, m as the number of inputs).
The input u ∈ <m will be torque in the case of the PERA, other systems may use force as an
input. The Hamiltonian of the above system can be stated as the sum of kinetic energy and
potential energy, which can be written as

H(q, p) =
1

2
pTM−1(q)p+ V (q) (2.3)

with M(q) = MT(q), positive definite (M(q) > 0) and M(q) ∈ <n×n. M(q) represents the
mass inertia matrix and V (q) the potential energy. Chapter 4 will show both matrices for the
three DoF PERA system.

2.2 Saddle point matrices
The tuning rules provided by [Chan Zheng et al., 2020] make use of the concept of saddle

point matrices, which are a special class of matrices with certain useful properties. Using these
properties, the behavior of the system’s transient response can be verified which essentially
started the theory of non-linear tuning rules. Furthermore, saddle point matrices enable a
clear, visible difference between kinetic and potential energy as well as damping in the system.

Picture a matrix of size n×m, a point in the matrix that is both a maximum of its row, n∗
and minimum of its column m∗, or vice versa, is stated to be a saddle point of that particular
matrix at (n∗,m∗). Matrices can have multiple saddle point numbers as well as multiple
maxima or minima.

Linear systems can be described as shown in (2.4).[
˙̃x
˙̃y

]
= −Θ

[
x̃
ỹ

]
,Θ :=

[
A BT

B−1 C

]
(2.4)

10

where A ∈ <n×n and A is positive definite, C ∈ <m×m and C is positive semi-definite,
B ∈ <m×n with full rank, m ≤ n. The matrix Θ from (2.4) belongs to a class of saddle-point
matrices. The usefulness of this particular matrix form is that the eigenvalues of the matrix Θ
can be obtained by individually looking at the sub-blocks A, B, and C instead of the entirety
of matrix Θ [Benzi, 2006].

2.3 Passive systems
A passive system is a system that does not generate energy by itself. This means that if

no energy is inputted and dissipation is present due to friction, the system will eventually
reach an equilibrium. If the following equations (2.5)(2.6)(2.7)(2.8) hold, a system (u 7→ y) is
said to be passive.

s(x) ≥ 0 (2.5)

where s(x) represents the storage of energy in state x.

D ≥ 0 (2.6)

with D representing frictional energy, which in the real world is always equal or more than
zero. The assumption D = 0 may be used when dissipation is low. Later on, this assumption
will simplify the port-Hamiltonian system for the PERA as Chapter 3 will show.

There exists a relation between output and power, which can be established by a simple
unit check. Square brackets will be used to imply ”units of”. Note that [input× output] =
[u].[GT × q̇] = [torque].[rotational velocity] as GT has no units.

[u].[GT q̇] = Nm.
rad

s
=
m.kg

s2
.m.

m.m−1

s
=
m2kg

s3
= W = [power]

Input energy can thus be represented as input times output. The flow of energy, energy
input minus energy output (dissipation), can now be formulated. Note that the units of energy
flow are Watts, thus using the found relation from the above unit check we can define

ṡ = uTy −D (2.7)

ṡ is the derivative of energy storage, the flow of energy. If (2.6) and (2.7) are satisfied, then
the following must also hold

ṡ ≤ uTy (2.8)

To tie in the Hamiltonian to passive mechanical systems, the following relation, equation
(2.9), can be used. Which also implies (2.10)

H(q, p) = s(x) (2.9)

Ḣ(q, p) = ṡ(x) (2.10)

Another method concluding the same result uses the time derivative of the Hamiltonian.
This directly shows Ḣ(q, p) = uTy [van den Bos, 2019].

Using the equations (2.8) and (2.10) or the time derivative of the Hamiltonian, the following

relation can be obtained by noting that q̇ equals ∂H(q,p)
∂p when substituting the output from

(2.2) using (2.1).
Ḣ(q, p) ≤ uTGTq̇ (2.11)

11

Where uT represents the system’s (transposed) input and the remaining term, GTq̇, the output.
Again, note equation (2.11) uses ’less than or equal to’ due to friction, the assumption D = 0
simplifies the equation.

It has now been established that a relation between the Hamiltonian and passive systems
exist. However, one last connection still needs to be made, namely the connection to the
mechanical PERA system. Luckily, this step is fairly simple as all that needs to be done is
to verify whether the requirements in (2.5)(2.6)(2.7)(2.8) hold for the PERA. As the PERA
exists as a machine in the real world (friction exists) running on electrical energy, (2.5) and
(2.6) are immediately satisfied. The energy flow only depends on the power and dissipation
as the machine does not generate movement (energy) in itself, (2.7) is thus true. As (2.8)
is automatically satisfied when (2.7) is true, the PERA qualifies as a passive system. Any
mechanical system can be evaluated in the same way, and will reveal to be a passive system.

2.4 PID-PBC
A proportional-integral-derivative passivity-based controller (PID-PBC) will be used in

this project. The mechanical system as shown in (2.1) can be further investigated and altered.
As will be shown in section 2.7, energy shaping can be used to change the Hamiltonian of the
system. The desired Hamiltonian, denoted as Hd, can now be used to achieve a certain desired
end state. The following type of PID-PBC will be considered [Chan Zheng et al., 2020].

u = −Kpy −KI(γ(q) + κ)−Kdẏ (2.12)

where κ represents a constant vector to assign the equilibrium for the closed-loop system.
The gains KP , KI and KD satisfy KP ,KI > 0 and KD ≥ 0. The variables y and γ(q) represent
the systems output, GTq̇, and integral of the output, GTq, respectively. The closed-loop system
can now be represented as in (2.13)[

q̇
ṗ

]
= Υ−1(q)F (q, p)Υ−T(q)∇Hd(q, p) (2.13)

where Hd is defined as (2.14), Υ as in (2.15) and F (q, p) as (2.16). Note the representation
of the euclidian norm, used in (2.14).

Hd(q, p) = H(q, p) +
1

2
||γ(q) + k||2KI

+
1

2
||y||2KD

(2.14)

Υ(q) =

[
In×n 0n×n

GKD(∇qy)T In×n +GKDG
TM−1(q)

]
(2.15)

F (q, p) =

[
0n×n In×n
-In×n −D(q, p)−GKPG

T

]
(2.16)

2.4.1 PID-PBC versus standard PID
An important note should be made regarding the nature of the PID-PBC compared to a

standard PID controller. The widely used PID controllers are based on an error signal around
the position of the system. The PID controller gains act upon the position of the system.
A PID-PBC is based on the system’s passive output, for instance, for mechanical systems
it corresponds to the velocity. This implies the PID-PBC gains act on the velocity of the

12

system. The proportional, integral and derivative gains thus do not perform exactly similar
for a standard PID controller versus a passivity-based PID controller. The following equations
summarize, where x represents the position and ẋ = v with v as the velocity.

KPx+KI

∫
x+KDẋ

KP v +KI

∫
v +KDv̇ = KP ẋ+KIx+KDẍ (2.17)

An important observation, that will later on also be used, can be made. Equation (2.17)
shows that a standard PD controller is similar to a passivity-based PI controller 1. Later on in
this project, the PERA will be tested using a passivity-based PI controller, which thus relates
to a standard PD controller. As Chapter 5 will show, a steady-state error will be observed. A
standard PD controller may solve this problem by adding an integrator term, however, for the
passivity-based controller this imposes problems as an integrator term is already in use.

2.5 Linearization of port-Hamiltonian systems
Linearization is a commonly performed action to simplify a system and allow for further

computations which can be very complex and/or exhausting for non-linear systems, but
can be well approximated linearly [Stewart, 2016] [Charlet et al., 1989]. This research uses a
linearization of the port-Hamiltonian system around the desired position in q, i.e. q̃ = q − q∗,
p̃ = p, as shown below in (2.18).[

˙̃q
˙̃p

]
= Υ−1

∗ F∗Υ
−T
∗ ∇2Hd∗

[
q̃
p̃

]
(2.18)

The three PID gains can be related to this linearized form in the following way. The terms,
R, P, W, are related to damping injection, potential energy and kinetic energy, respectively
[Chan Zheng et al., 2020].

R := GKPG
T +D∗

P := GKIG
T +∇2V∗

W := GKDG
T +M∗ (2.19)

As mentioned, tte gains KP , KI and KD satisfy KP ,KI > 0 and KD ≥ 0, therefore,
the above matrices, R,P,W , are all positive (semi-)definite matrices. Defining the matrices
φW , φP ∈ <n×n as full rank matrices and satisfying the following equation, a transformation
can be made.

W−1 = φTWφW , P = φTPφP (2.20)

The Cholesky decomposition is used to obtain the results. A transformation matrix,
T ∈ <2n×2n, is constructed with new coordinates: z ∈ <2n. The following equation (2.21)
relates z to this transformation matrix and the linearized system is given as (2.22). The saddle
point matrix N as represented in (2.22) will be of importance for the tuning rules due to its
saddle point properties.

1The proportional term for position relates to the integral term of velocity and the derivative term of position
relates to the proportional velocity term.

13

T :=

[
0n×n φ−T

W M−1
∗

φP 0n×n

]
, z := T

[
q̃
p̃

]
(2.21)

ż = −Nz,N :=

[
φWRφ

T
W φWφ

T
P

−φPφTW 0n×n

]
(2.22)

2.6 Lyapunov stability

General non-linear systems can be represented as follows [Charlet et al., 1989]:

ẋ = f(x) + g(x)u (2.23)

Where ẋ ∈ <n, f(x) ∈ <n, g(x) ∈ <n×m and u ∈ <. Lyapunov’s second method, also
known as the direct method, uses a function V (x) to determine stability. A system can be
stated to be stable when the initial state of the system lies closely at the equilibrium and the
current state of the system stays in a certain proximity of the equilibrium [Veen et al., 2020]
[Spong et al., 2006]. Let us assume an equilibrium point x∗ exists for a non-linear function of
the form 2.23 with the function V (x) ∈ < as a Lyapunov candidate. It can be stated that V (x)
is a Lyapunov function and x∗ a stable equilibrium if the following criteria hold [Khalil, 2002]
[van den Bos, 2019] [Veen et al., 2020]

• V (x) is continuously differentiable

• V (x) is positive definite relative to x∗

• V̇ (x) is negative semi definite with respect to x∗, i.e. V̇ (x) ≤ 0, ∀x ∈ <

V (x) is now a Lyapunov function, however, stronger versions of stability exist. If the following
criteria applies x∗ is locally asymptotically stable.

• V̇ (x) is negative definite, V̇ (x) < 0

Lastly, the strongest stability for x∗, globally asymptotically stable, is true when V (x) is
radially unbounded. Meaning the function ’blows up’, thus no minimum exists as x approaches
infinity:

• V (x)→∞ as ||x|| → ∞

For the PERA system, the Hamiltonian can be defined as a Lyapunov candidate. The above
criteria can be used to assess Lyapunov stability. Note (2.3) and (2.11) can be substituted
into the following.

H(q, p) = V (x)

Ḣ(q, p) = V̇ (x) (2.24)

14

2.7 Energy shaping
Energy shaping concerns the manipulation of functions to ”relocate” the desired state to a

local minima for the system to converge towards the desired state. This is best illustrated in
figure 2.1. The importance of Lyapunov stability can also be easily explained now. As stated,
if proven a function indeed classifies as a Lyapunov function, converging behavior towards the
equilibrium is guaranteed. Therefore, if the function classifies as a Lyapunov function, the
current state will converge towards the equilibrium; minimum in figure 2.1. Proper usage of
energy shaping manages to place the desired state at the minimum of the function, effectively
guaranteeing the system will converge towards the desired state, provided the function is
proven to be Lyapunov stable.

Energy shaping thus changes the Hamiltonian of the system, visible as the energy function
on the left in figure 2.1. The desired Hamiltonian is represented as the energy function in the
right side of figure 2.1.

Figure 2.1: A visual representation of energy shaping. Note this is only a visual aid, energy
shaping the Hamiltonian related to the PERA may not result as depicted.

2.8 Tuning rules
Tuning rules exist for linear systems. For example the Ziegler-Nichols method may be

used[Meshram and Kanojiya, 2012]. However, for non-linear systems due to high complexity,
less scientific work is available. The tuning rules provided by [Chan Zheng et al., 2020] have
been mentioned a couple of times, but what they entail has not yet been explained. The
tuning rules have specifically been made to work with passivity-based controllers and concern
three propositions.

Proposition 1: The spectrum of system (2.18) is real and non-negative if expression (2.25)
is satisfied. Non-negative, real eigenvalues imply oscillations will not be present in the system.

4λmax(P)λmax(W) ≤ λmin(R)2 (2.25)

Proposition 2: denoting with (λN , v) any eigenpair of (2.22), where λN ∈ C and v ∈ <n,
then the damping ratio of λN is given by (2.26) and bounded by (2.27). The eigenvalues are

15

constrained by (2.28). Note that this tuning rule can be used when oscillations are present in
the system, opposed to Proposition 1.

ζN :=
1

2

v∗Xv

v∗v

(√
v∗ZTZv

v∗v

)−1

(2.26)

ζmin ≤ ζ2N ≤ ζmax (2.27)

ζmin := max

(
0,

1

4

λmin(R)2

λmax(W)λmax(P)

)
ζmax := min

(
1,

1

4

λmax(R)2

λmin(W)λmin(P)

)
(2.28)

Proposition 3: The lower bound of the real part of the spectrum of N can be denoted
by <(λu). Now the rise time from (2.18) is upper bounded by tru ∈ R+. tru is defined as in
(2.29).

tru :=
4

<(λu)
(2.29)

Where <(λu) depends on the spectrum of N. Denoted by S1, S2 and S3 are three different
forms of the spectrum of N, corresponding with these cases are three different values for
<(λu). Note that these cases essentially tell when to use the tuning rule from Proposition 1
or Proposition 2.

S1. the spectrum of N is purely real

S2. all elements in the spectrum of N have an imaginary non-zero element (complex)

S3. some elements are purely real, other elements have a non-zero imaginary part

<(λu) =

min{λmin(W−1R), λmin(R−1P)} if S1
1
2λmin(W−1R) if S2

min{12λmin(W−1R), λmin(R−1P)} if S3

(2.30)

16

Chapter 3: PID controller for the PERA

The key question to be answered this chapter is: “How does the proposed PID controller
work theoretically for the three degrees of freedom port-Hamiltonian PERA system?”. This
question will bring insight into the actual modeling of the PERA system. Knowledge provided
in Chapter 2 will be used.

First off, the general port-Hamiltonian model can be used for the PERA system. However,
some additional information and assumptions can be used to change the model slightly. This
thesis assumes the natural damping of the environment will be negligible. The damping
matrix D(q, p) can thus be simplified, in this case into a zero matrix of size n× n. Another
assumption regards the actuators of the system. It is assumed the system is fully actuated,
which simplifies the port-Hamiltonian system as G now becomes an identity matrix of size
n× n. The port-Hamiltonian state-space representation thus becomes as shown in (3.1) with
output as (3.2) and Hamiltonian in (3.3).[

q̇
ṗ

]
=

[
0n×n In×n
−In×n −0n×n

]
.

[
∂H(q,p)
∂q

∂H(q,p)
∂p

]
+

[
0n×n
In×n

]
u (3.1)

y = GT∂H(q, p)

∂p
= q̇ (3.2)

H(q, p) =
1

2
pTM−1(q)p+ V (q) (3.3)

Now, M−1(q) and V (q) need to be defined. As stated before, these represent the mass
inertia matrix and potential energy, respectively. Using the Denavit-Hartenberg conventions,
both can be defined [Spong et al., 2006] [van den Bos, 2019]. Note that V (q) resembles a
general form of potential energy, E = m× g × h, where the height has been rewritten to be
non-negative and changed from a sine into a cosine. This to more accurately resemble the
state of the PERA, which is non-negative for q2 [Chan-Zheng et al., 2020]. The zero-state for
the PERA is stated as the robotic arm pointing downwards (see figure 4.2a).

M(q) =

I1 + I2 + I3 +m3d
2
c2sin

2(q2) 0 I3cos(q2)
0 I2 + I3 +m3d

2
c2 0

I3cos(q2) 0 I3

 (3.4)

V (q) = gdc2m3(1 + sin(q2 −
1

2
π)) = gdc2m3(1− cos(q2)) (3.5)

The partial derivative of V(q) over q1, q2 and q3, respectively, can be calculated and is
shown in (3.6).

∂V (q)

∂q
=

 0
gdc2m3sin(q2)

0

 (3.6)

17

Consequently, the Hessian of the potential energy over q, ∇2
qV (q), can be determined

and is stated as in (3.7). Note that this matrix relates to equation (2.19) and will be used
when calculating the PID controller gains using Proposition 1. The Hessian of the desired
Hamiltonian is computed similarly, which is used in the linearized system from (2.18).

∇2
qV (q) =

∂2V
∂q21

(q) ∂V
∂q1∂q2

(q) ∂V
∂q1∂q3

(q)

∂V
∂q2∂q1

(q) ∂2V
∂q22

(q) ∂V
∂q2∂q3

(q)
∂V

∂q3∂q1
(q) ∂V

∂q3∂2
(q) ∂V

∂q23
(q)

 =

0 0 0
0 gdc2m3cos(q2) 0
0 0 0

 (3.7)

3.1 PERA closed-loop and linearized
The closed-loop representation as shown before in (2.13)-(2.16) represents the PERA’s

closed-loop. The matrices can now be filled in. Due to the number of computations and a
high chance of mistakes when calculating by hand, the program MATLAB has been used.
The code generating these results can be found in appendix B. This code also provides the
linearized system for the PERA as can be calculated using (2.18). The resulting matrices have
not been placed here due to size constraints.

Regarding the computation of the matrices. A key point is the calculation of the lower left
block of Υ(q) from (2.15), GKD(∇qy)T. To obtain this n× n matrix block, the expression in
(3.8) has been used. Where ei, ek are standard basis: [1 0 0], [0 1 0] and [0 0 1] depending on
the iteration, here n = m = 3.

(∇qy)T = ∇q(GTM−1(q)p) =
m∑
i=1

m∑
k=1

n∑
j=1

eie
T
k

(
∂(GTM−1(q))

∂qk
pj

)
(3.8)

Although the above equations (3.1)-(3.8) can be used to model the closed-loop system
for the PERA, this method will not be used. The sheer size of the individual entries of the
matrices limits the use of them. The matrices can become to big to even be displayed in
MATLAB, thus they are not provided here. The PERA itself measures certain variables such
as its positions q1, q2 and q3. This simplifies computation into measurements, allowing for
usage of the PERA without the knowledge of the entire closed-loop system. The tuning rules
use a linearized system to allow for computational speed while staying accurate. To compute
the PID controller gains, the closed-loop and linearized system do not need to be known.
Therefore, to control the PERA, it is not necessary to obtain the closed-loop or linearized
system dynamics. Certain components will still be needed of course. The computation relies
on the equations (2.19)-(2.22). Appendix D shows the calculation of the PID controller gains.
Note that Proposition 1 from the tuning rules has been used.

The PID controller gains computed in MATLAB can be implemented into the python
code and directly be tested on the PERA. The python code handles all matrix computations
during the testing. MATLAB has been used as it is more suited for the usage of symbols in
computations.

3.2 Tuning rule implementation
To compute the gains using the first tuning rule, a couple of variables need to be obtained.

First off, the mass-inertia matrix, damping matrix (here 03×3) and (Hessian of the) potential
energy. Second, the desired values for q and p, [−2π

3
π
2
π
2]T, [0 0 0]T, respectively. Third, the

values for KD and KI need to be set arbitrarily. As this project proposes to use a passivity

18

based PI controller, the KD values can be set to zero, while the KI only have to satisfy
KI > 0, low KI values will not perform as well as higher KI values. The KP gains can now be
calculated using Proposition 1. Afterwards, the system can be tested, using the matrices R, P
and W from (2.19), combined with cholesky decompositions, the linearized system (2.22) and
its spectrum can be obtained. Lastly, a formula to determine whether an overshoot should
theoretically occur is used, this formula is shown in (3.9). This equation uses saddle-point
matrix N from (2.22). An overshoot occurs if d < 1, otherwise no overshoot occurs. A system
is critically damped for d = 1.

d =
−real(eig(N))√

real(eig(N))2 + im(eig(N))2
(3.9)

19

Chapter 4: PERA’s testing environment

What does the setup of the PERA system at the university of Groningen look like and how
does one operate the robot using Python code. Lastly, how is the test comprised to appropriately
test different situations and/or gain values.

4.1 Experimental setup of the PERA
The robot is set up at the University of Groningen. Figure 4.1 shows the available PERA

for this project. An emergency stop button may be used to cut off power to the system in
case of potential collisions. The emergency stop button is not shown in this figure.

Figure 4.1: The PERA at the university of Groningen

Some approximations for the PERA’s masses are given. The parts of interest for this
research are the upper and lower arm as well as the gripper. The shoulder joints are not
interacted with. The moving parts consist of the upper arm, lower arm and hand/griper,
approximated as 2.9 kg, 0.8kg and 0.2kg, respectively [Rijs et al., 2010]. This project does
not take into account a separate joint between the gripper and under arm. These can thus be
combined to a total of 1kg. In terms of inertia for the three joints, each value is assumed to be
0.01. Lastly, the distance to the denter of the arm is measured as 0.16 meters, this distance is
represented in the mass-inertia matrix as dc2.

4.2 Methodology
The test to be performed in this project is comprised of a simple motion of the robotic arm

from an initial downward position (see 4.2a) towards a bend in the arm (4.2b). The starting
position has been chosen due to an easy and fairly accurate manual reset to this particular
position, which is required to keep the system to start in the same position each test. The
starting position is [-π 0 0]T, although the system does not fully reach q1 = −π, the system is
roughly 180 degrees rotated from its zero position. The shoulder’s zero position would make
the PERA point towards its own stand, limiting movement and causing potential collisions.
The desired position in q is set as [−2π

3
π
2
π
2]T. Note p∗ has been excluded as they equal zero.

20

(a) The PERA in the downward position (b) The PERA in the desired position

Figure 4.2: The test to be performed starting in the position shown left, ending in the desired
position as shown right. Note the highest placed joint representing the shoulder is merely
placed to make the illustration possible, the lower three joints represent q1, q2, and q3.

Appendix C shows the MATLAB code used. This code uses the MATLAB robotic toolbox
[Corke, 2017]. The main focus of this project will be on Proposition 1, this proposition regards
the tuning rule without oscillations, which is more compatible with the PERA. As described
in Chapter 3, the gains using the tuning rules have been computed using MATLAB. To test
the effectiveness of the computed gains, a comparison between arbitrarily set PID gains and
the computed tuning rules’ gains is made. An in depth analysis of this comparison is provided
in Chapter 5.

21

Chapter 5: Testing the tuning rules

The chapter covers the question: ”Does the method provided to tune the PID controller easily
and safely tune the controller gain values to ensure the PERA system is not harmed and in
what sense does this method of tuning the controller gains outperform not using the rules”.
First, a brief explanation regarding the method of testing will be provided. After which the
results will be shown and explained. Lastly, some additional observations and remarks will be
presented.

5.1 General method

Normally PID-controllers have three K-gain values/matrices. This research has focused on
the use of only two of these: the proportional and integral terms, therefore the implemented
controller is of the PI type. Both of these consist of a 3× 3 diagonal matrix. The use of a
diagonal matrix simplifies computations in, for instance, the closed-loop (2.13) or the linearized
system (2.18). The KD-gains have thus been set to zero, resulting in a 03×3 KD matrix. The
KI values have been arbitrarily chosen. Two separate tests have been performed, one test
uses relatively low values, referred to as low KI , the other test uses higher KI values, referred
to as high KI . All values are listed in Table 5.1. Reason for different tests with different
KI values is that the PERA reacts fairly differently due to these changes. Using KI values
lower than the low KI values chosen here may result in the PERA not reaching the desired
position at all. For both low and high Ki value tests, KP values have been computed using
the tuning rules (please refer to appendix D for the used method). Both situations have also
been run with arbitrarily chosen KP values (see Table 5.1) to compare the effect of the first
tuning rule to arbitrarily chosen values. Each test has been conducted 5 times and produces a
single data-set each time. In MATLAB, the data has been combined into averages to remove
randomness. As the linearized system from equation (2.4) shows, the desired p values, P∗, are
set as zero, while the desired q values can be set. The initial position is manually set to the
downward position as shown in figure 4.2a, not that for the shoulder joint, q1, this position is
at -180 degrees, or −π radians. The other two joints both start at zero. The desired position
has been set to [−2π

3
π
2
π
2 0 0 0]T, or [−2π

3
π
2
π
2]T when leaving p∗ out. The next sections will

show most figures next to each other, however, full-sized figures are included in appendix A.

Low Ki
diag([50 30 20])

High Ki
diag([200 250 200])

arbitrary Kp diag([1 13 9]) diag([1 13 9])
tuned Kp diag([3.3347 2.5830 2.1090]) diag([6.6693 7.4565 6.6693])
high Kp - diag([50 50 50])

Table 5.1: The integral and corresponding proportional gains used.

22

5.2 Low Ki values

As can be seen in figure 5.1, the KP values using the first tuning rule has a positive effect
on the result of all three joints. Especially the desired position of the second elbow joint, q3,
which corresponds to the rotation of the lower arm, is reached significantly sooner when using
the computed KP values instead of the arbitrarily chosen ones. It can thus be stated that the
first tuning rule, Proposition 1, has a positive effect on reaching the desired positions when
using (relatively) low KI values. It should be mentioned that although both q2, and q3 may
seem to have a slight overshoot, this is not the case. The computed gains relate have been
computed and tested theoretically and are meant to result in a situation where an overshoot is
just barely avoided. If the value from (3.9) is less than 1, an overshoot occurs, if it is equal or
higher than 1, no overshoot occurs. The computed KP gains result in a d value of 1, therefore
no overshoot should occur.

Figure 5.1: Position of q1, q2, and q3 using low Ki values combined with either arbitrary or
tuned Kp values.

5.3 High Ki values

Using higher KI values, the PERA generally moves quicker towards its desired position.
However, a trade-off occurs where oscillations due to the faster movement may be present.
The KP values can stabilize this behavior. Again using Proposition 1 from the tuning rules,
the KP gains are computed similarly but have changed due to different KI gains.

23

(a) High Ki values (b) High Kp included

Figure 5.2: Position of q1, q2, and q3 using high Ki values combined with either arbitrary,
tuned or high Kp values.

Figure 5.2a shows choosing to use the tuning rules computed gain values does not alter
the outcome much. Arbitrarily chosen KP gains seem to do a decent job. The KI values are
simply significantly higher, limiting the effect of the KP values. The question then arises
whether choosing much higher KP values may have a positive effect. A test with both high
KI values and high KP values has been conducted. The results from this test (after averaging)
are compared with both arbitrary and tuned KP values combined with high KI values in
figure 5.2b.

Although figure 5.2b may make it seem like choosing high KP values is a valid option. A
closer look at an individual data-set instead of the average reveals why this is not a good idea.
This same result was also visually noticeable when testing the robot. The robot arm becomes
unusable as the entire system will move towards the equilibrium so quickly, it overshoots and
compensates too much. The system now oscillates around the desired point as can be seen for
q2 in figure 5.3b.

(a) Zoomed out. (b) Zoomed in.

Figure 5.3: A single test of using high Ki and Kp values makes the robot arm oscillate.

24

(a) Shoulder (b) Elbow movement

(c) Elbow rotation (d) Desired position as [0 0 0]T

Figure 5.4: Shoulder, elbow movement and rotation using low and high Ki values and moving
the system towards its zero position.

It can clearly be seen from figure 5.4, using the first tuning rule, Proposition 1, has a more
positive effect on the rise time and the transient response in general than arbitrary KP values
do.

5.4 Steady-state error
The PERA does not always seem to reach the initially defined desired position. However,

as this occurred in every test, it was hypothesized that it may be possible the PERA would
have a certain zero-offset. As figure 5.4d clearly shows, when the desired positions are stated as
[0 0 0]T, the PERA does not reach this state, no matter the used gains. Taking this zero-offset,
which is mainly present for the shoulder joint, as the other two are an order of magnitude
smaller, it can be seen that indeed the desired position differs from the reached position by a
similar offset. Figure 5.4a, therefore, incorporates a desired-offset line to show the convergence

25

behavior towards the PERA’s final position. An explanation for the PERA’s offset may be
that the damping matrix is assumed to be zero or the motors undergo a hysteresis error. It
has been observed that moving the PERA manually to any position, gravity does not manage
to bring the PERA perfectly into its downward position. Therefore, damping must have some
effect. However, damping may still be assumed to be zero for the purpose of this project’s
objective, to test the proposed tuning rule. The general effect of the tuning rule will still be
present, difference may be that instead of critical damping due to the tuning rules, the natural
damping added may slightly overdamp the system. This coincides with the found results as no
overshoots occur and some tests even show slight overdamping, therefore a lower convergence.
This lies outside of this project’s scope, however.

5.5 Passivity-based controller with extra integrator

It has been mentioned several times that a passivity-based PI controller coincides with a
standard PD controller. Removing the steady-state error with a standard PD controller can be
managed using the integral term. This is more complicated for a passivity-based controller as
the integral term is already in use. To show the effects of adding an extra integrator to reduce
the steady-state error, a simple integrator has been implemented. Due to time constraints, the
effect of this simple integrator is far from optimized, however, the same principles still apply.
The extra integrator term has itspassivity based gains placed diagonally in a 3× 3 matrix,
represented as KII . The closed-loop dynamics of the system are not altered, only the input to
the system is changed by subtracting the value z. Where the dynamics of z are represented
by (5.1), with δ as the elapsed time between consecutive loops to properly match units.

z = z + ż

ż = KII(q − q∗)δ (5.1)

The simple integrator has only been tested on the shoulder joint (q1) as this joint experi-
enced the highest steady-state error and the integrator’s effect is thus most noticeable for this
joint. In 5.5a the effect of the integrator, KII = diag([9 0 0]) combined with low KI values can
be seen. Figure 5.5b shows the effect of using too high values for KII , diag([35 0 0]), combined
with high KI values, the system now overcompensates. It can be concluded that the extra
integrator manages to reduce the steady-state error. However, to reduce the steady-state error
optimally, several tests with different KII gains need to be performed to find adequate values.

26

(a) Low Ki values with integrator (b) Overtuning the integrator gains

Figure 5.5: The effects of adding an extra integrator term to a passivity-based PI controller.

5.6 Additional remarks
In figure 5.4 the tests with high KP are also included. It can be seen they do not perform

as well as using the tuning rules. Next to this, note these are the averages of the five separate
high KP tests, individually they look similar to the depiction in figure 5.3, implying heavy
oscillations.

Some of the above-shown figures may show differences in starting positions. This effect is
most noticeable in 5.5. Although each test starts of in the same downward position as figure
4.2a shows, the PERA is manually placed into this position, therefore slight differences in
starting positions may be present. This does not affect the outcomes nor does it change the
validity of the testing method.

27

Conclusion and recommendations

This final chapter will conclude the performed work, the outcomes of the project and provide
some future work recommendations.

Tuning rules: Proposition 1
The performed tests for the PERA show that the implementation of the first tuning

rule has a positive effect on the rise time performance and reduces the oscillations of the
system. Although some simplifications have been made to the model of the PERA, the general
impact of the tuning rule remains unchanged. Potentially, assuming damping of the system
to be non-zero may ensure even better performance from the tuning rule as currently slight
overdamping may be present. The effect from the tuning rule is most noticeable when using
lower KI values, due to the higher impact of the KP values. However, the tuning rule still
manages to outperform arbitrarily chosen, or high KP values when using higher KI values.
Therefore, it can be stated that for a three degrees of freedom passive mechanical system, the
first tuning rule, Proposition 1, computes adequate gains.

passivity-based control integrator
As has been previously mentioned, the implementation of the first tuning rule concerns the

transient response and left a steady-state error. The system has reached a high precision, but
lacks accuracy. Normally a standard PD controller incorporates an integrator term to solve
this problem. However, as equation (2.17) shows, the passivity-based controller similar to a
standard PD controller already uses an integral term. Therefore, a different approach is needed.
A very simple extra integrator has been implemented and yielded promising results, provided
proper gains are used. More complicated and quite possibly better-performing integrators
can be implemented. Research surrounding this topic covers certain transformations to
incorporate an integral term for a passivity-based controller while preserving the general
framework. Some examples consist of [Dirksz and Scherpen, 2011], [Ferguson et al., 2017] and
[Ortega and Romero, 2012]. Due to the assumption of zero damping, the integrator proposed
by [Dirksz and Scherpen, 2011] matches best for the 3 degrees of freedom PERA. The control
input can be changed to incorporate the integrator. However, a hurdle yet to be surpassed is
finding a transformation of the linearized system with the integrator that satisfies the required
saddle point matrix properties for the first tuning rule.

Future work recommendations
This project has focused on testing the first tuning rule on a three degrees of freedom

system. This leaves potential future work to test the tuning rule on a system with more
degrees of freedom, although in general, the tuning rule will likely perform adequately. Future
tests would need to prove its effectiveness.
As this project has only focused on testing the first tuning rule, the second and third tuning
rules still need to be experimentally verified. The second tuning rule incorporates oscillations
from the system, therefore, this tuning rule will likely be more difficult to implement. The
third tuning rule may give information surrounding the rise time performance of the system,

28

potentially a system where a very fast rise time is required and some resulting oscillations are
allowed would be a suitable test option.
As stated above, the implementation of a passivity-based integrator is not yet complete. A
transformation of the linearized system’s dynamics satisfying saddle point matrix properties
still needs to be found. Due to time constraints, this research has not explored options for
such a transformation, which leaves potential future work.

29

References

[Benzi, 2006] Benzi, Michele & Simoncini, V. (2006). On the eigenvalues of a class of saddle
point matrices. Numerische Mathematik, 103:173–196.

[Chan-Zheng et al., 2020] Chan-Zheng, C., Borja, P., Monshizadeh, N., and Scherpen, J.
(2020). Exponential stability and tuning for a class of mechanical systems. arXiv preprint
arXiv:2011.14543.

[Chan Zheng et al., 2020] Chan Zheng, C., Borja Rosales, P., and Scherpen, J. (2020). Tuning
rules for a class of port-hamiltonian mechanical systems. In Tuning Rules for a Class of
Port-Hamiltonian Mechanical Systems, page extended abstract. 21st IFAC World Congress
; Conference date: 12-07-2020 Through 17-07-2020.

[Charlet et al., 1989] Charlet, B., Lévine, J., and Marino, R. (1989). On dynamic feedback
linearization. Systems & Control Letters, 13(2):143–151.

[Corke, 2017] Corke, P. I. (2017). Robotics, Vision & Control: Fundamental Algorithms in
MATLAB. Springer, second edition. ISBN 978-3-319-54413-7.

[Dirksz and Scherpen, 2011] Dirksz, D. A. and Scherpen, J. M. (2011). Port-hamiltonian and
power-based integral type control of a manipulator system. IFAC Proceedings Volumes,
44(1):13450–13455.

[Dormehl, 2017] Dormehl, L. (2017). Robot eye surgeon is 10x more precise than the most
steady-handed human. Last accessed 18 February 2021.

[Ferguson et al., 2017] Ferguson, J., Donaire, A., and Middleton, R. H. (2017). Integral control
of port-hamiltonian systems: Nonpassive outputs without coordinate transformation. IEEE
Transactions on Automatic Control, 62(11):5947–5953.

[Khalil, 2002] Khalil, H. K. (2002). Nonlinear systems; 3rd ed. Prentice-Hall, Upper Saddle
River, NJ. The book can be consulted by contacting: PH-AID: Wallet, Lionel.

[Mathia, 2010] Mathia, K. (2010). Robotics for electronics manufacturing: principles and
applications in cleanroom automation. Cambridge university press.

[Meshram and Kanojiya, 2012] Meshram, P. and Kanojiya, R. G. (2012). Tuning of pid
controller using ziegler-nichols method for speed control of dc motor. In IEEE-international
conference on advances in engineering, science and management (ICAESM-2012), pages
117–122. IEEE.

[Muñoz Arias, 2015] Muñoz Arias, M. (2015). Energy-based control design for mechanical sys-
tems: Applications of the port-Hamiltonian approach. PhD thesis, University of Groningen.

[Ortega and Romero, 2012] Ortega, R. and Romero, J. G. (2012). Robust integral control of
port-hamiltonian systems: The case of non-passive outputs with unmatched disturbances.
Systems & Control Letters, 61(1):11–17.

30

[Rijs et al., 2010] Rijs, R., Beekmans, R., Izmit, S., and Bemelmans, D. (2010). Philips
Experimental Robot Arm: User Instruction Manual V1.1. Philips Applied Technologies,
v1.1 edition. APT536-09-9962.

[Spong et al., 2006] Spong, M. W., Hutchinson, S., Vidyasagar, M., et al. (2006). Robot
modeling and control. John Wiley & sons, INC.

[Stewart, 2016] Stewart, J. (2016). Calculus. CENGAGE Learning, eighth edition.

[Tailor and Bhathawala, 2011] Tailor, M. R. and Bhathawala, P. (2011). Linearization of
nonlinear differential equation by taylor’s series expansion and use of jacobian linearization
process. International Journal of Theoretical and Applied Science, 4(1):36–38.

[van den Bos, 2019] van den Bos, F. (2019). A pouring application for the Philips Experimental
Robotic Arm, using saturated passivity-based control without velocity measurements. PhD
thesis, Rijksuniversiteit Groningen.

[Van Der Schaft, 2006] Van Der Schaft, A. (2006). Port-hamiltonian systems: an introductory
survey. In Proceedings of the international congress of mathematicians, volume 3, pages
1339–1365. Citeseer.

[Veen et al., 2020] Veen, J. et al. (2020). Passivity-based trajectory tracking of the Philips
Experimental Robot Arm. PhD thesis, Rijksuniversiteit Groningen.

[Zhang et al., 2018] Zhang, M., Borja, P., Ortega, R., Liu, Z., and Su, H. (2018). Pid
passivity-based control of port-hamiltonian systems. IEEE Transactions on Automatic
Control, 63(4):1032–1044.

31

Appendices

32

Appendix A: PERA plots

33

Figure A.1: Low Ki

Figure A.2: High Ki

34

Figure A.3: High Ki, high Kp included

Figure A.4: High Kp zoomed out

35

Figure A.5: High Kp zoomed in

Figure A.6: Shoulder

36

Figure A.7: Elbow movement

37

Figure A.8: Elbow rotation

Figure A.9: Desired position as [0 0 0]T

38

Appendix B: Code for the linearized PERA matrices

1

2 % Alex Sloot, S3645010
3 % this script calculates the linearized system of
4 % [tilde q dot; tilde p dot]
5 % the outcome will not be used for any calculations
6 % merely to show the sheer size of the computations
7 % and therefore the effect of the tuning rules theory
8

9 %% Variables with syms
10 clear all; clc;
11

12 syms q1 q2 q3
13 q = [q1; q2; q3];
14 syms p1 p2 p3
15 p = [p1; p2; p3];
16 syms q1dot q2dot q3dot
17 qdot = [q1dot; q2dot; q3dot];
18

19 syms y
20 G = sym(eye(3));
21 y = transpose(G) * qdot;
22

23 syms I1 I2 I3 m3 dc2 g
24 M = [I1 + I2 + I3 + m3*dc2ˆ2 * sin(q2)ˆ2, 0, I3*cos(q2);
25 0, I2 + I3 + m3*dc2ˆ2, 0;
26 I3*cos(q2), 0, I3];
27 invM = simplify(inv(M));
28

29 % V(q) for potential energy, Vdiff for the partial derivative over q
30 V = -g * dc2 * m3 * cos(q1) * sin(q2);
31 Vdiff = [diff(V, q1); diff(V, q2); diff(V, q3)];
32

33 % Hamiltonian, note that G is identity so transpose(G) = G, k is a constant
34 syms k Kd Ki Kp
35 H = 1/2 * transpose(p) * invM * p + V;
36 % the following is used in Hd (euclidian norm): (| |A | | K)ˆ2 = ...

(sqrt(transpose(A)*K*A))ˆ2
37 Hd = H + 1/2 * (sqrt(transpose(G*q+k)*Ki*(G*q+k)))ˆ2 + 1/2 * ...

(sqrt(transpose(y)*Kd*y))ˆ2;
38

39 % matrix for F
40 F(1:3, 1:3) = sym(zeros(3)); % 3x3 zeros
41 F(1:3, 4:6) = sym(eye(3)); % 3x3 identity
42 F(4:6, 1:3) = sym(-1*eye(3)); % 3x3 -1*identity
43 F(4:6, 4:6) = sym(-G * Kp * transpose(G)); % D(q, p) = 3x3 zeros, left out
44

45 % computations for nabla y
46 L = G * invM;
47 nabla y = zeros(3);
48 for i=1:3

39

49 for k=1:3
50 for j=1:3
51 % standard basis vectors: e i, e k
52 e i = [0 0 0];
53 e i(i) = 1;
54 e k = [0 0 0];
55 e k(k) = 1;
56 nabla y = nabla y + e i * transpose(e k) * diff(L, q(k)) * p(j);
57 end
58 end
59 end
60 nabla y = simplify(nabla y);
61

62 % matrix Y
63 Y(1:3, 1:3) = sym(eye(3));
64 Y(1:3, 4:6) = sym(zeros(3));
65 Y(4:6, 1:3) = G * Kd * nabla y;
66 Y(4:6, 4:6) = simplify(sym(eye(3)) + G * Kd * transpose(G) * invM);
67 Y = simplify(Y);
68

69 % the partial of the desired hamiltonian over q and p, (size = 6x1)
70 partial Hd = [diff(Hd, q1); diff(Hd, q2); diff(Hd, q3);
71 diff(Hd, p1); diff(Hd, p2); diff(Hd, p3)];
72 partial Hd = simplify(partial Hd);
73

74 % the hessian (2nd partial derivative over q and p) matrix of Hd
75 Hd hessian = sym(zeros(6));
76 for row = 1:6
77 for col = 1:6
78 Hd hessian(row, col) = partial Hd(row)*partial Hd(col);
79 end
80 end
81 Hd hessian = simplify(Hd hessian);
82

83 %% Variables values
84 %Variables (should be calculated, assumption all=0.01)
85 I1 = 0.01;
86 I2 = 0.01;
87 I3 = 0.01;
88 g = 9.81;
89 % syms need to be substituted
90 dc2 = 0.16; % distance to center of the arm
91 m3 = 1; % m3 = lower arm (0.8kg) + gripper (0.2kg)
92 %(q*, p*) = (q*, 0)
93 q1 = -2/3*pi;
94 q2 = 1/2*pi;
95 q3 = 0;
96 p1 = 0;
97 p2 = 0;
98 p3 = 0;
99

100 %% linearized system matrices around (q*, p*) = (q*, 0)
101 Y star = subs(Y)
102 F star = subs(F)
103 Hd hessian star = subs(Hd hessian)
104

105 %% linearized system

40

106 % in between steps are used as the computation is too long at once
107 a = simplify(Y star \ F star); % faster than inv(Y star)*F star
108 b = simplify(-1*transpose(Y star));
109 c = simplify(a * b);
110 qp tilde = c * Hd hessian star
111 qp tilde = simplify(qp tilde)
112

113 %% closed loop system (too long/complicated)
114 % [qdot; pdot], qdot = [qdot1; qdot2; qdot3], same for pdot, (size = 6x1)
115 % qdot pdot = inv(Y) * F * transpose(Y)ˆ-1 * partial Hd;
116 % qdot pdot = simplify(qdot pdot);

41

Appendix C: Code for the PERA joints simulation.

1 % File to give a representation of the to be performed test
2

3 % Alex Sloot, S3645010
4 clear all; clc;
5

6 % Initialize PERA
7 % the first link is unused, links 2,3,4 are q1, q2, q3, respectively.
8 L(1) = Link('revolute', 'd', 0, 'a', 0, 'alpha', -pi/2, 'modified', ...

'offset', -pi);
9 L(2) = Link('revolute', 'd', -0.16, 'a', 0, 'alpha', -pi/2, 'modified', ...

'offset', 0);
10 L(3) = Link('revolute', 'd', 0, 'a', 0, 'alpha', -pi/2, 'modified', ...

'offset', 0);
11 L(4) = Link('revolute', 'd', 0.16, 'a', 0, 'alpha', -pi/2, 'modified', ...

'offset', 0);
12

13 % Create homogeneous transformation matrix from final joint to end effector
14 A34 = eye(4);
15 % Create and plot PERA
16 PERA = SerialLink(L,'name','PERA');
17 PERA.tool = A34;
18 PERA.plotopt ={'workspace' , [-.2 .2 -.2 .2 -0.5 .2]};
19 figure(1)
20 PERA.teach

42

Appendix D: Code for the PERA gains using tuning rule 1

1

2 % Alex Sloot, S3645010
3 % this script calculates the gains for the PERA
4 % some assumptions have been used, such as the initial ki gains
5 % and the damping is set to a zero matrix
6 % due to an assumed to be fully actuated system, G is an identity matrix
7

8 %% Variables in syms
9 clear all; clc;

10 syms g dc2 m3 q1 q2 q3
11 q = [q1; q2; q3];
12

13 V = m3 * g * dc2 * (1 - cos(q2));
14 Vdiff = [diff(V, q1); diff(V, q2); diff(V, q3)];
15

16 % for the hessian: take the second partial derivative
17 % (row,col)=(1:3, 1:3) relate to partial over q1, q2, q3, respectively
18 for row = 1:3
19 for col = 1:3
20 V hessian(row, col) = diff(Vdiff(row), q(col));
21 end
22 end
23 V hessian = simplify(V hessian);
24

25 %% Variables with values
26 % the syms need to be substituted to allow for calculations
27 %Variables (should be calculated, assumption all=0.01)
28 I1 = 0.01;
29 I2 = 0.01;
30 I3 = 0.01;
31 g = 9.81;
32 dc2 = 0.16; % distance to center of the arm
33 m3 = 1; % m3 = lower arm (0.8kg) + gripper (0.2kg)
34 %(q*, p*) = (q*, 0)
35 q1 = -2/3*pi;
36 q2 = 1/2*pi;
37 q3 = 0;
38 p1 = 0;
39 p2 = 0;
40 p3 = 0;
41

42 % mass-inertia matrix
43 M = [I1 + I2 + I3 + m3*dc2ˆ2 * sin(q2)ˆ2, 0, I3*cos(q2);
44 0, I2 + I3 + m3*dc2ˆ2, 0;
45 I3*cos(q2), 0, I3];
46 invM = inv(M);
47

48 D = diag([0.1 0.1 0.1])*0; % 3x3 zero matrix
49

50 ki = [50 30 20]; % leave fixed

43

51 % ki = [200 250 200]; % leave fixed
52 %% Tuning rule 1:
53 % note that as G is an Identity matrix, it can be left out
54 kp = sqrt(4*max(ki+double(subs(V hessian)))*max(eig(M)))-min(eig(D));
55

56 %% Setting the gains:
57 Kp = diag(kp);
58 Kd = 0;
59 Ki = diag(ki);
60

61 %% Testing the computed gains:
62 % matrices relating to the gains
63 R = Kp + D;
64 P = Ki + double(subs(V hessian));
65 W = Kd + M;
66 % cholesky decomposition gives phi W, phi P
67 phi W = chol(W);
68 phi P = chol(P);
69 N = [phi W * R * transpose(phi W), phi W * transpose(phi P);
70 -phi P * phi W, zeros(3)];
71 eigN = eig(N)
72 A = [zeros(3), -inv(M);
73 Ki, R * inv(M)];
74 d = -real(eigN)./sqrt(real(eigN).ˆ2 + imag(eigN).ˆ2);
75 if d < 1
76 fprintf("\n%f < 1, therefore an overshoot occurs", d)
77 else
78 fprintf("\n%f ≥ 1, therefore no overshoot occurs", d)
79 end
80 fprintf("\n\n")
81 % some eig(N) do, some do not have an imaginary part
82 % this has effect on S1, S2, S3 of tuning rule 3
83 zplane([],eigN)
84 disp(Kp)

44

Appendix E: Code for the PERA plots using tuning rule 1

1 % Alex Sloot, S35645010
2 % Plots made from experimental data tested on the PERA
3 % Note that data from all files goes up to a certain time period
4

5 %% Loading and processing data
6 clear all; clc;
7 % variables
8 all tune low = [];
9 all ran low = [];

10 all tune high = [];
11 all ran high = [];
12 all ran highKp = [];
13 all tune low Kii = [];
14 all tune high Kii = [];
15 maxRow = 300;
16 maxCol = 10;
17 tune low combined = zeros(maxRow, maxCol);
18 ran low combined = zeros(maxRow, maxCol);
19 tune high combined = zeros(maxRow, maxCol);
20 ran high combined = zeros(maxRow, maxCol);
21 ran highKp combined = zeros(maxRow, maxCol);
22 tune low Kii combined = zeros(maxRow, maxCol);
23 tune high Kii combined = zeros(maxRow, maxCol);
24 % reading in all data, only the first 400 rows are important
25 file dir = 'D:\Documents\MATLAB\Thesis\csv files\';
26 range = ['A1:J' num2str(maxRow+1)];
27 for fileId = 1:5 % fileId will also show the maximum number of files used
28 read tune low = xlsread([file dir 'KI 503020 tuning' ...

num2str(fileId,'%d') '.csv'], range);
29 read ran low = xlsread([file dir 'KI 503020 no tuning' num2str(fileId, ...

'%d') '.csv'], range);
30 read tune high = xlsread([file dir 'KI 200250200 tuning' ...

num2str(fileId, '%d') '.csv'], range);
31 read ran high = xlsread([file dir 'KI 200250200 no tuning' ...

num2str(fileId, '%d') '.csv'], range);
32 read ran highKp = xlsread([file dir 'KI 200250200 no tuning highKp' ...

num2str(fileId, '%d') '.csv'], range);
33 read tune low Kii = xlsread([file dir 'KI 503020 Kii' num2str(fileId, ...

'%d') '.csv'], range);
34 read tune high Kii = xlsread([file dir 'KI 200250200 Kii' ...

num2str(fileId, '%d') '.csv'], range);
35 all tune low = [all tune low, read tune low];
36 all ran low = [all ran low, read ran low];
37 all tune high = [all tune high, read tune high];
38 all ran high = [all ran high, read ran high];
39 all ran highKp = [all ran highKp, read ran highKp];
40 all tune low Kii = [all tune low Kii, read tune low Kii];
41 all tune high Kii = [all tune high Kii, read tune high Kii];
42 end
43

45

44 %% combining the data into averages
45 % looping through each row and column, summing the values from the read-in
46 % files, and dividing by the number of read-in files to obtain the average
47 for col=1:maxCol
48 for row=1:maxRow
49 tune low sum = 0;
50 ran low sum = 0;
51 tune high sum = 0;
52 ran high sum = 0;
53 ran highKp sum = 0;
54 tune low Kii sum = 0;
55 tune high Kii sum = 0;
56 for temp = 1:fileId
57 tune low sum = tune low sum + all tune low(row, col + (temp-1) ...

* maxCol);
58 ran low sum = ran low sum + all ran low(row, col + (temp-1) * ...

maxCol);
59 tune high sum = tune high sum + all tune high(row, col + ...

(temp-1) * maxCol);
60 ran high sum = ran high sum + all ran high(row, col + (temp-1) ...

* maxCol);
61 ran highKp sum = ran highKp sum + all ran highKp(row, col + ...

(temp-1) * maxCol);
62 tune low Kii sum = tune low Kii sum + all tune low Kii(row, ...

col + (temp-1) * maxCol);
63 tune high Kii sum = tune high Kii sum + all tune high Kii(row, ...

col + (temp-1) * maxCol);
64 end
65 tune low combined(row, col) = 1/fileId * tune low sum;
66 ran low combined(row, col) = 1/fileId * ran low sum;
67 tune high combined(row, col) = 1/fileId * tune high sum;
68 ran high combined(row, col) = 1/fileId * ran high sum;
69 ran highKp combined(row, col) = 1/fileId * ran highKp sum;
70 tune low Kii combined(row, col) = 1/fileId * tune low Kii sum;
71 tune high Kii combined(row, col) = 1/fileId * tune high Kii sum;
72 end
73 end
74

75 fprintf("\n Columns are as follows:")
76 fprintf("\n Time, Shoulder, Elbow up, Elbow turn, Vel S3, Vel S2, Vel S1, ...

Tau0, Tau1, Tau2\n ")
77

78 %% Creating a reference line
79 % the desired positions for q1, q2, q3 over 300 time instances
80 % q1 needs a slight change:
81 % -0.193 is a zero-offset for low Ki
82 % -0.045 is a zero-offset for high Ki
83 E0(1:maxRow) = pi/2;
84 E1(1:maxRow) = pi/2;
85 S0(1:maxRow) = -2*pi/3;
86 S1(1:maxRow) = -2*pi/3 - 0.193;
87 S2(1:maxRow) = -2*pi/3 - 0.045;
88 %% Making the plots
89 time = tune low combined(:, 1); % could be taken from any of the lists
90

91 % shoulder rotation q1 (with and without tuning)
92 figure(1)

46

93 subplot(2, 1, 1)
94 plot(time, S0, '--', time, tune low combined(:, 2), time, ...

ran low combined(:, 2), time, S1, '--', 'LineWidth', 1.5)
95 title('Shoulder q1: low Ki')
96 xlabel('Time (s)')
97 ylabel('Angle (rad)')
98 legend('desired', 'tuned Kp', 'arbitrary Kp', 'desired - offset', ...

'location', 'southeast')
99 % shoulder rotation high Ki values

100 subplot(2, 1, 2)
101 plot(time, S0, '--', time, tune high combined(:, 2), time, ...

ran high combined(:, 2), time, ran highKp combined(:, 2), time, S2, ...
'--', 'LineWidth', 1.5)

102 title('Shoulder q1: high Ki')
103 xlabel('Time (s)')
104 ylabel('Angle (rad)')
105 legend('desired', 'tuned Kp', 'arbitrary Kp', 'high Kp', 'desired - ...

offset', 'location', 'southeast')
106

107 % elbow position q2 (with and without tuning)
108 figure(2)
109 subplot(2, 1, 1)
110 plot(time, E0, '--', time, tune low combined(:, 3), time, ...

ran low combined(:, 3), 'LineWidth', 1.5)
111 title('Elbow q2: low Ki')
112 xlabel('Time (s)')
113 ylabel('Angle (rad)')
114 legend('desired', 'tuned Kp', 'arbitrary Kp', 'location', 'southeast')
115 subplot(2, 1, 2)
116 plot(time, E0, '--', time, tune high combined(:, 3), time, ...

ran high combined(:, 3), time, ran highKp combined(:, 3), 'LineWidth', 1.5)
117 title('Elbow q2: high Ki')
118 xlabel('Time (s)')
119 ylabel('Angle (rad)')
120 legend('desired', 'tuned Kp', 'arbitrary Kp', 'high Kp', 'location', ...

'southeast')
121

122 % elbow rotation q3 (with and without tuning)
123 figure(3)
124 subplot(2, 1, 1)
125 plot(time, E1, '--', time, tune low combined(:, 4), time, ...

ran low combined(:, 4), 'LineWidth', 1.5)
126 title('Elbow q3: low Ki')
127 xlabel('Time (s)')
128 ylabel('Angle (rad)')
129 legend('desired', 'tuned Kp', 'arbitrary Kp', 'location', 'southeast')
130 subplot(2, 1, 2)
131 plot(time, E1, '--', time, tune high combined(:, 4), time, ...

ran high combined(:, 4), time, ran highKp combined(:, 4), 'LineWidth', 1.5)
132 title('Elbow q3: high Ki')
133 xlabel('Time (s)')
134 ylabel('Angle (rad)')
135 legend('desired', 'tuned Kp', 'arbitrary Kp', 'high Kp', 'location', ...

'southeast')
136

137 %% Subplots for the low Ki values:
138 figure(4)

47

139 for j = 1:3
140 subplot(3, 1, j)
141 plot(time, tune low combined(:, j+1), time, ran low combined(:, j+1), ...

'LineWidth', 1.5)
142 xlabel('Time (s)')
143 ylabel('Angle (rad)')
144 legend('tuned', 'arbitrary', 'location', 'southeast')
145 if j == 1
146 title('Shoulder (q1)')
147 elseif j == 2
148 title('Elbow (q2)')
149 else
150 title('Elbow (q3)')
151 end
152 end
153

154 %% Subplots for the high Ki values:
155 figure(5)
156 for j = 1:3
157 subplot(3, 1, j)
158 plot(time, tune high combined(:, j+1), time, ran high combined(:, ...

j+1), time, ran highKp combined(:, j+1), 'LineWidth', 1.5)
159 % plot(time, tune high combined(:, j+1), time, ran high combined(:, ...

j+1), 'LineWidth', 1.5) % no highKp
160 xlabel('Time (s)')
161 ylabel('Angle (rad)')
162 legend('tuned', 'arbitrary', 'high Kp', 'location', 'southeast')
163 % legend('tuned', 'arbitrary', 'location', 'southeast') % no highKp
164 if j == 1
165 title('Shoulder (q1)')
166 elseif j == 2
167 title('Elbow (q2)')
168 else
169 title('Elbow (q3)')
170 end
171 end
172

173 %% NOTES
174 % the system does not reach [0 0 0] even when trying to,
175 % so the lines S, E0, E1 can differ from the final reached value
176 read 000 pos = xlsread([file dir 'to initial pos.csv']);
177 time0 = read 000 pos(1:500, 1);
178 for i = 1:length(time0)
179 y0(i) = 0;
180 end
181

182 % highKp combined probably filters out the heavy oscillations
183 for p= 1:3
184 figure(6)
185 subplot(3, 1, p)
186 plot(time0, y0, '--', time0, read 000 pos(1:500, 1+p), 'LineWidth', 1.5)
187 xlabel('Time (s)')
188 ylabel('Angle (rad)')
189 legend('desired (0)', 'current', 'location', 'east')
190 if p == 1
191 title('Shoulder (q1) to 0')
192 elseif p == 2

48

193 title('Elbow (q2) to 0')
194 else
195 title('Elbow (q3) to 0')
196 end
197 figure(7)
198 subplot(3, 1, p)
199 plot(read ran highKp(:, 1), read ran highKp(:, 1+p), 'LineWidth', 1.5)
200 if p == 1
201 title('Shoulder (q1)')
202 elseif p == 2
203 title('Elbow (q2)')
204 else
205 title('Elbow (q3)')
206 end
207 xlabel('Time (s)')
208 ylabel('Angle (rad)')
209 legend('high kp', 'location', 'southeast')
210 end
211

212 %% Plot for using the z integrator low Ki and Kii = [9 0 0]
213 figure(8)
214 plot(time, tune low combined(:, 2), time, tune low Kii combined(:, 2), ...

time, S0, '--', 'LineWidth', 1.5)
215 xlabel('Time (s)')
216 ylabel('Angle (rad)')
217 legend('tuned', 'with integrator', 'desired', 'location', 'southeast')
218 title('Shoulder (q1)')
219

220

221 %% Plot for using the z integrator high Ki and Kii = [35 0 0]
222 figure(9)
223 plot(time, tune high combined(:, 2), time, tune high Kii combined(:, 2), ...

time, S0, '--', 'LineWidth', 1.5)
224 xlabel('Time (s)')
225 ylabel('Angle (rad)')
226 legend('tuned', 'with integrator', 'desired', 'location', 'southeast')
227 title('Shoulder (q1)')

49

	Notation
	Introduction
	Project description
	Problem statement
	Contents of this thesis

	Technical background
	port-Hamiltonian
	Saddle point matrices
	Passive systems
	PID-PBC
	Linearization of port-Hamiltonian systems
	Lyapunov stability
	Energy shaping
	Tuning rules

	PID controller for the PERA
	PERA closed-loop and linearized
	Tuning rule implementation

	PERA's testing environment
	Experimental setup of the PERA
	Methodology

	Testing the tuning rules
	General method
	Low Ki values
	High Ki values
	Steady-state error
	Passivity-based controller with extra integrator
	Additional remarks

	Conclusion and recommendations
	Tuning rules: Proposition 1
	passivity-based control integrator
	Future work recommendations

	References
	Appendices
	PERA plots
	Code for the linearized PERA matrices
	Code for the PERA joints simulation.
	Code for the PERA gains using tuning rule 1
	Code for the PERA plots using tuning rule 1

