

faculty of science
and engineering

 mathematics and applied
mathematics

Bayesian Networks of
Spotify’s audio features

Bachelor’s Project Mathematics

18 May 2020

Student: S.M.R. Kockelkorn

First supervisor: dr. M.A. Grzegorczyk

Second assessor: dr. R.I. van der Veen

Contents

1 Introduction 3

2 Introduction Bayesian Networks 6

2.1 Independence and factorization of the joint probability function 7

3 Data 15

4 Method 18

4.1 Marginal edge posterior probabilities: A strategy to build-up a graph that
fits the data best . 18

4.2 Metropolis-Hastings Structure MCMC sampler: Sampling to efficiently com-
pute all possible graphs of P(graph|data) . 23

4.3 Bayesian Statistics . 27

4.4 BGe scoring metric: How to calculate the last terms 30

4.5 Convergence Diagnostics . 34

4.5.1 Trace plot . 34

4.5.2 Scatter plot . 35

4.6 Work in R . 36

5 Results 38

5.1 Number of iterations needed . 38

5.2 Example of sufficient Trace plot & scatter plot 38

5.3 The 45 scatter plots between two out of the ten edge scores of the data
samples of 10 songs . 39

5.4 The 45 scatter plots between two out of the ten edge scores of the data
samples of 100 songs . 42

5.5 The 45 scatter plots between two out of the ten edge scores of the data
samples of 500 songs . 45

5.6 The 3 scatter plots of averages of the edge scores of the ten different samples
of sizes 10, 100 and 500 . 48

5.7 Resulting DAG . 49

2

6 Discussion 50

7 Conclusion 51

A R Code 54

A.1 Codes for structure MCMC Grzegorczyk . 54

A.2 Code to perform the structure MCMC algorithm for sample size 10 73

A.3 Script for scatterplots different data10samples 76

A.4 Script for scatterplots different sample sizes 77

B Spotify distributions 80

1 Introduction

More than ever before in history, scientists and developers are analyzing music and looking
into related applications of the analysis. [Luo, 2018] The modern ability to stream music
using services such as Spotify, Pandora, and Apple music has revolutionized how music
is consumed [Amsterdam, 2019] and has thereby also opened up many import areas of
research. “There are researches that focus on underlying technologies, working mechanisms,
user experience and other specific topics in music analysis field.” [Luo, 2018]

Not only is there more demand for research from the streaming music industry, they also
provide new research opportunities. Spotify for instance, created something called Spotify
API for developers, an open database from which for every song on Spotify various audio
features can be downloaded. Examples of such features are danceability, loudness, and
instrumentalness.

Various research has been done with their openly accessible audio features. Topics include
history of music, genre prediction [Luo, 2018], prediction of hit songs [Georgieva et al.],
music recommendations and many more.

Bayesian Networks, a probabilistic graphical model, can be used to graphically represent
conditional (in)dependencies between variables learnt from data. [Pearl, 2011] It combines
elements from graph theory (directed acyclic graphs) and probability theory (Bayesian statis-
tics [Bolstad and Curran, 2016]). Probabilistic models based on directed acyclic graphs
(DAGs) such as Bayesian networks have a long and rich tradition, which began with the
geneticist Sewall Wright (1921) [Pearl, 2011]. “Graphical modeling is an important method
to efficiently represent and analyze uncertain information in knowledge-based systems. Its
most prominent representatives are Bayesian networks and Markov networks for probabilis-
tic reasoning.” [Borgelt et al., 2002]

3

The use of Bayesian networks is, however, not the only method of graphical modeling, there
are also Gaussian Graphical Models (GGMs) and Relevance Networks (RNs). [Werhli et al.,
2006]. The problem of the Relevance Networks is that is can not distinguish between direct
and indirect interactions. Therefore there are in general many false positives extracted.
Graphical Gaussian Models have the disadvantage of rarely being mentioned in literature.

Why would one choose the use of Bayesian statistics over of methods? “MCMC simulations
are indispensable when adopting a proper Bayesian approach to inference, which tends to
be computationally less expensive than the frequentist approach of bootstrapping (Larget
and Simon, 1999).” The Bayesian approach also guards against overfitting, as it includes
an intrinsic penalty for unnecessary complexity [Cawley and Talbot, 2007].

In Bayesian statistics, usually the ultimate goal is to know the posterior distribution. It is
denoted by P (graph|data), the probability of the graph given the data. Bayesian statistics
is different in approach than classical or frequentist statistics. In classical statistics, the
parameters are seen as fixed and the data as varying, whereas in Bayesian statistics it is
exactly the other way around. The data is fixed and the parameters vary. This approach
has some advantages and disadvantages, some would argue [Bolstad and Curran, 2016].

In classical statistics, a probability is seen as the relative frequency of a certain event in a
long scenario of identical events. In Bayesian statistics, a probability is seen as the total
number of correct outcomes divided by the total number of initial conditions. How certain
are we of a specific outcome? This can be seen as more subjective, which is due to the choice
of prior. The exact definition of a prior will be introduced in a couple of sentences. It is not
necessarily more subjective, because by choosing the right informative prior and by having
a relatively large enough data set, the choice of prior becomes less and less important.
However, Bayesian statistics of course also has a lot of objectivity.

There are many important applications of Bayesian networks. This can be read as well
in Iqbal. “The Bayesian Network (BN) is a widely applied technique for characterization
and analysis of uncertainty in real-world domains. Thus, the real application of BN can be
observed in a broad range of domains such as image processing, decision making, system
reliability estimation and PPDM (Privacy Preserving in Data Mining) in association rule
mining and medical domain analysis.” [Iqbal et al., 2015] Although not mentioned above,
many important applications come from systems biology, where gene-regulatory networks
[Friedman et al., 2000] and protein pathways [Sachs et al., 2005] can be learnt from post-
genomic data.

There are two variants of Bayesian networks, the dynamic and static variant. In this paper,
only the static Bayesian network approach will be used on our data. Bayesian networks are
also used in two different ways, first having the data and then providing most likely graph
and then the other way around.

The conditional (in)dependencies can be learnt by using Metropolis-Hastings Markov Chain

4

Monte Carlo (MCMC) algorithms. In this paper, the structure MCMC sampler of Friedman
and Koller [Friedman and Koller, 2003] will be used. This algorithm allows us to take a
sample of the set of all graphs from the posterior distribution. P (graph|data) and represents
the probability of the graph given the data. The greedy-search algorithm is an alternative
method to the structure Metropolis-Hastings MCMC but will not be used, because it is used
to search for the “single-best graph” and searching for that doesn’t make a lot of sense if an
inference will be made for large data sets. Which is usually the case. The linear Gaussian
BGe scoring metrics as developed by Geiger and Heckerman [Geiger and Heckerman, 1994]
will be used to describe a score for each graph such that multiple graphs can be compared.

Bayesian networks have been used before in relation to music, context-aware music recom-
mendation system using fuzzy Bayesian networks with utility theory [Park et al., 2006].
This paper attempts to learn conditional (in)-dependencies between Spotify’s audio fea-
tures, studying different sample size data.

In this paper, first, there will be looked into Bayesian statistics, Bayesian networks, BGe
score and structure Metropolis-hasting MCMC method and then those will all be applied
to data sets containing 10 audio features for different sizes of songs column vectors. In
this way, the dependencies between the variables will be learned. All the programming and
computing will be done in R.

In order to run the structure MCMC algorithm, the number of iterations needs to be
determined. This will be different for each separate size of the data set. The number of
iterations used will be chosen by looking at some convergence diagnostics. The number
of iterations required for convergence for different data sample sizes will be presented in
a table. After that it will be repeated for 10 different data sets down sampled from the
original data set for the sizes of 10, 100 and 500 songs. By means of some scatter plots the
similarities between those 10 different samples will be assessed and there will be looked into
providing a explanation for that. After that also the averages of the results for different
data samples of the same size will be taken. These will be compared in three different
scatter plot. Whether or not they are (dis)similar, will be shown in the results section and
an explanation for the outcome will be given.

After representing the conditional (in)-dependencies between the audio features in a graph-
ical model, a verdict will be made whether or not the method used (Bayesian Networks) was
appropriate for this particular predicted inference. This method for learning which graphs
represent the data best is based on Bayesian statistics to compute the posterior probability
for each graph. For computing the posterior probability, the BGe scoring metric will be
used. There are however some alternatives that may lead to different results. The BDe
likelihood is one of them. Then, it is important to compare all the posterior probabilities
for each graph and choose the best graph. (This can be done by using greedy search) Most
often, however, looking for the single best graph doesn’t make any sense. In this case, we
would rather use model averaging. We would like to check the relative frequency multiplied

5

by the posterior distribution for each edge. The posterior distribution is proportional to
the marginal likelihood, in other words the score. Unfortunately computing the scores for
all the graphs is too much to compute. This is where the Metropolis Hasting Structure
MCMC comes into play. It enables us to take a sample from the posterior distribution.

This thesis is organized as follows: In 2 an introduction into Bayesian Networks is provided.
After that in 3, information is given regarding the data set. In 4 the method used in this
research is explained. After that the results and discussion and conclusion will be given.

In the last section a conclusion and discussion is provided.

2 Introduction Bayesian Networks

The alternatives for Bayesian Networks are, assuming everything is conditionally inde-
pendent or assuming everything is conditionally dependent, bayesian networks are just in
between that. That’s why it is the best method for looking at causal interactions.

When can it be applied? The Static Bayesian Network method can be applied to data
stemming from various domains if they satisfy the criteria. The conditions for the data
set for which this method can be applied needs to have is an n by m matrix, where each
column m is one independent observation of the n variables which the conditional (in)
dependencies want to be learnt from. So the n variables make up the row and the columns
are the independent observations. The entries, so the measurements of each observation
per variable need to be continuous."Bayesian networks are ideal for taking an event that
occurred and predicting the likelihood that anyone of several possible known causes was
the contributing factor."

Why do we want to know conditional dependencies? The ultimate goal for Bayesian
statistics would be to learn causal networks, but unfortunately, Bayesian Networks not nec-
essarily represent that. Bayesian networks represent conditional (in)dependency relations
-not necessarily causal interactions.

We would only like our not yet discussed method to differentiate between direct and indirect
edges. We would like for example, let’s say the amount measured of one hormone or anything
is correlated to two others, but we would like to know if the number of spotted sharks had
a direct correlation between the number of sales from ice cream or that maybe there is
no direct edge and only two direct edges between the temperature on the beach and the
spotted sharks and ice cream sales. Bayesian networks represent conditional (in)dependency
relations not necessarily causal interactions.

Goal bayesian networks. Distinguish between direct and indirect edges include examples,
t1 and t2 are dependent but conditional on the coin they’re not dependent. In this case, if
there would be only looked at dependencies relations then between t1 and t2 would be an

6

edge. But that can causally not be.

Introduction to graphs?probabilistic graphical models This part will be largely
based on Koski and Noble [2011].

2.1 Independence and factorization of the joint probability function

This section is largely based on Koski and Noble [2011] and Bishop [2006].

Let us say there exists a random vector X̄ = (X1, . . . , Xn) consisting of n random variables,
defined on a continuous state space. Although the joint probability function P (X1, . . . , Xn)
contains full information about the n random variables X1, . . . , Xn Koski and Noble [2011],
it is usually not the most useful description in practice. The important features of the
distribution may not be immediately clear in a complex joint distribution. Also, in many
situations, the elementary building blocks of the joint probability function are low order
conditional probabilities (will shortly be explained in more detail), each defined over small
groups of variables and those conditional probability distributions are often easier to ac-
cess. The following few paragraphs elaborate on those smaller building blocks of the joint
probability function. First the notion of independence is defined.

Definition 2.1 (Independence). Two random variables X and Y are independent if and
only if

P (X = x, Y = y) = P (X = x)P (Y = y) (1)

The notion of joint independence is defined as follows.

Definition 2.2 (Joint independence). A collection of n random variables (X1, . . . , Xn) is
said to be jointly independent if

P (X1, . . . , Xn) = Πn
i=1P (Xi) (2)

As can be seen, if a collection of n random variables would be jointly independent, the
equation above would already show the smaller building blocks of the joint probability
function. In many cases, the n random variables that are under examination are not jointly
independent but contain some conditional independencies. Soon it will be shown that the
elementary building blocks of the joint probability function will be low order conditional
probabilities. First, the notion of conditional probability will be defined and from there it
will be built up to multiple definitions of conditional independence.

Definition 2.3 (Conditional Probability). For any two of the n random variables X1, . . . , Xn

the following holds, where the two are represented as X and Y . The probability of Y con-
ditional on X P (Y = y|X = x), describes the probability of Y being equal to its realisation

7

y, given that you already know X = x. The conditional probability is defined in the
following way:

P (Y = y|X = x) =
P (X = x, Y = y)

P (X = x)
. (3)

The probability of Y conditional on X is given by the joint probability of X and Y divided
by the marginal probability of X. Here, P (X = x, Y = y) is the joint probability and
P (X = x), the marginal probability defined as

P (X = x) =
∑
Y

P (X = x|Y = y). (4)

Intuitively, this makes sense. Let us say there are only two possible outcomes of y namely
either 0 or 1. If the probability of X being equal to 0 and the probability of X being equal
to 1 are summed up, indeed one would receive P (X = x). Sometimes the above equation
is referred to as the sum rule. Besides the sum rule, a so-called product rule exists as well.
A joint probability function of two variables can always be rewritten by using the product
rule of probability in the following way:

P (X,Y) = P (Y |X)P (x)

= P (X|Y)P (Y)
(5)

If the two variables, X and Y , would be independent then the following would hold.

P (X = x, Y = y) = P (X = x)P (Y = y), (6)

which is the definition of X and Y being independent. If X and Y are independent, the
following also holds.

P (Y = y|X = x) =
P (X = x, Y = y)

P (X = x)

=
P (X = x)P (Y = y)

P (X = x)

= P (Y = y)

(7)

where [1] was used in the second line. This make sense intuitively. If X and Y are inde-
pendent, knowing the outcome of X would not change the probability of Y being equal to
y. Now the concept of conditional dependence will be introduced. Conditional dependence
is the concept of two or more events being dependent on the conditional of a third.

Definition 2.4 (Conditional independence). Given three random variables X, Y and Z,
with P (Z) > 0, X and Y are conditionally independent given Z if

P (X,Y |Z) = P (X|Z) · P (Y |Z) (8)

8

The following theorem about conditional independence holds.

Theorem 2.1. X and Y are conditionally independent given Z if and only if

P (X|Y, Z) = P (X|Z) (9)

Proof.

P (X|Y,Z) =
P (X,Y, Z)

P (Y,Z)

=
P (X,Y |Z) · P (Z)

P (Y |Z) · P (Z)

=
P (X,Y |Z)

P (Y |Z)

=
P (X|Z) · P (Y |Z)

P (Y |Z)
by using8

= P (X|Z)

(10)

Because of symmetry, one could also show the following.

Theorem 2.2. If X and Y are conditionally independent given Z, then

P (Y |X,Z) = P (Y |Z) (11)

Another way of expressing the conditional independence is to write it as a factor of P (X|Z)
and P (Y |Z). More precisely,

P (X,Y, Z) = P (X,Y |Z) · P (Z)

= P (X|Z) · P (Y |Z) · P (Z)by using (8)
(12)

As can been seen in the above definition, a specific factorization of the joint probability
function is closely related to (conditional) independencies. By applying the product rule as
given in (5) multiple times, every joint distribution can be factorized into various combi-
nations of low order conditional probabilities, ‘the elementary building blocks of the joint
probability function’. As an example, this will be done with a joint distribution over three
random variables a, b, c. The joint distribution P (a, b, c) can be factorized by applying the
product rule multiple times in six unique ways.

P (a, b, c) = P (a|b, c)P (b, c)

= P (a|b, c)P (b|C)P (c)
(13)

9

As seen here, the first choice was picking a then b then c. So there are 3 ·2 = 6 possibilities.
All are listed below.

P (a, b, c) = P (a|b, c)P (b|c)P (c)

= P (a|b, c)P (c|b)P (b)

= P (b|a, c)P (a|c)P (c)

= P (b|a, c)P (c|a)P (a)

= P (c|a, b)P (a|b)P (b)

= P (c|a, b)P (b|a)P (a)

(14)

The above possible ways of factorization, will be used in the next few paragraphs to motivate
the use of directed graphs to describe probability distributions. Let us represent the right-
hand side of the last variation of the factorization in terms of a simple graphical model as
follows.

A simple graphical model consists of nodes and edges. First for each of the random vari-
ables a, b, c a node will be introduced and each node is associated with the corresponding
conditional distribution on the right-hand side of the last variation of the factorization.
So, for example, node c is associated with the factor P (c|a, b). Then for each conditional
distribution, directed edges are added in the following way. A directed edge will be placed,
with its head pointing to the node associated with the conditional distribution factor and
its tail pointing to variables which the distribution is conditioned. Meaning for the factor
P (c|a, b), there will be a directed edge pointing from a to c and one from b to c. The result
is the following graph.

Figure 1: A directed graphical model representing the joint probability distribution over
three variables a,b,c corresponding to right-hand side factorization of last of the variations
in (14)

Whereas for the factor P (a) there will be no edges direct towards node a. The result is the
graph shown in 1. If there is a directed edge coming from node a to a node b, then a is
called a parent of node b, and b is called the child of node a.

10

Each of those six representations gives a different graphical model. In the same way, any
joint distribution can be factorized by using the product rule multiple times. The following
is one variation of this. Let p(X1, . . . , Xn) be the joint distribution of n random variables
then

P (X1, . . . , Xn) = P (Xn|X1, . . . , Xn−1) . . . P (X2|X1) (15)

For any given choice of n, this factorization described above can be represented in a graph-
ical model with n nodes, one for each conditional distribution on the right-hand side, with
each node having incoming edges from all lower-numbered nodes. This graph belongs to
the group of fully connected graphs, because there is an edge between every pair of nodes.

Up until now, the graphs shown so far represented ways of factorization corresponding to
fully connected graphs. It will be shown in the next paragraphs that it is the absence of
edges in the graph that conveys interesting information about the properties of the class of
distributions that the graph represents.

Figure 2: Graphical model corresponding to factorization (16)

The following factorization is represented in Figure 2.

P (A,B,C,D,E, F) = P (A) · P (B|A) · P (C|A) · P (D|B,C) · P (E|D) · P (F |C,D) (16)

An assumption called the Markov assumption will be made in order to differentiate between
direct dependency relations and indirect dependency relations. Such a nice factorization is
necessary to get as close as possible to representing causal relationships.

The local Markov assumption in Bayesian Networks says: “Conditional on its parents’ nodes,
each node Xi is stochastically independent of its non-descendants.” Recall that stochasti-
cally independent can be interpreted as adding the independent terms as given. Because
they are independent knowing them or being conditional won’t make a difference. As is
explained here [7]. To define the Markov assumption more formally, consider the following.

11

Definition 2.5 (Markov assumption). Let X1, ..., Xn be the topological order of the n nodes.
The Markov assumption states that for each i ∈ {1,n}, and pa(Xi) ⊂ {X1, ..., Xi−1}

P (Xi|pa(Xi)) = P (Xi|X1, ..., Xi−1), (17)

where pa(Xi) is the set of parent nodes for Xi. The local Markov assumption is defined
as

P (X1, ..., Xn) = Πn
i=1P (Xi|pa(Xi)). (18)

The local Markov assumption is now proved.

Proof. Without loss of generality it is assumed that X1, . . . , Xn is the topological order of
the n nodes.

P (X1, ..., Xn) = P (Xn|Xn−1, . . . , X1) · P (Xn−1, ..., X1)

= P (Xn|Xn−1, ..., X1) · P (Xn−1|Xn−2, ..., X1) · P (Xn−2, ..., X1)

= P (Xn|Xn−1, ..., X1) · P (Xn−1|Xn−2, ..., X1) · P (Xn−2|Xn−3, ..., X1) · P (Xn−3, ..., X1)

= Πn
i=3P (Xi|X1, ..., Xi − 1) · P (X1, X2)

= Πn
i=3P (Xi|X1, ..., Xi − 1) · P (X2|X1) · P (X1)

= Πn
i=3P (Xi|X1, ..., Xi − 1) · P (X2|pa(X2)) · P (X1|pa(X1))

= Πn
i=1P (Xi|pa(Xi))

(19)

Here, the last equality is obtained by using equation (17). The directed graphs that are
being considered are subject to an important restriction, there must be no directed cycles.
In other words, there must be no closed paths within the graph such that there is a path
from node to node along edges following the direction of the arrows and end up back at the
starting node. Such graphs are called directed acyclic graphs or DAGs.

As shown before, the factorization of the joint distribution together with the conditional
independence relations are often not unique. This gives rise to the notion of equivalence
classes for the graphs.

Every specific factorization gives rise to a unique graphical model. Two different graphs are
in the same equivalence class if their underlying mathematical structure (the factorization)
is equivalent, meaning they all have the same joint distribution.

12

Figure 3: Equivalence classes of network of three nodes

An entire equivalence class of graphs can be represented by their so-called CPDAG repre-
sentation. A CPDAG contains directed and undirected, biconditional edges.

Figure 4: CPDAG of Figure 2

An algorithm to convert any DAG to their corresponding CPDAG will be later discussed.

To infer the conditional independence statements directly from a given DAG, there exists
a theory called d-separation. D-separation will not be discussed in this paper, but if the

13

reader wants to know more about it they are invited to look at the equivalently named
sections in Koski and Noble [2011] or in Bishop [2006]. The most important conditions
related to d-separation are listed below:

1. Each node is only conditional on its parent set, not on other ancestors (Markov
assumption);

2. If nodes don’t have common ancestors then nodes are marginally stochastically inde-
pendent;

3. If nodes have common descendant, when they are conditional on one or more of their
mutual descendants, they are stochastically dependent.

14

3 Data

The data set that will be used in this research consists of measurements of Spotify of
the variables listed before for 2017 different songs. This data set was found on the in-
ternet and can be downloaded through this link: https://www.kaggle.com/geomack/
spotifyclassification. The data set included some more then the ten listed variables,
but the others weren’t continuous entries. Something that is necessary for this method.

Before the algorithms were performed on this data , the non continuous variables were
excluded. The variables that were left are presented together with the explanations given
by Spotify in the figure below.

15

https://www.kaggle.com/geomack/spotifyclassification
https://www.kaggle.com/geomack/spotifyclassification

Figure 5: All ten features and their explanations given by Spotify

16

Figure 6: The distributions for nine of the variables, downloaded from Spotify. From row
one to row three and from left to right: accousticness, dancebiity, energy, intruentalness,
liveness, loudness, speechiness,tempo and valence

After excluding the non-continuous variables from the data, the data matrix also needed
to be transposed. After transposing a the required matrix of n variables x m observations
was obtained. In this case, there are n = 10 variables and m = 2017 observations, songs in
this case together given a 10x2017 matrix.

In order for the design method to work best, it is necessary that the songs are randomly sam-
pled. Unfortunately this is not the case, the songs are not completely random sampled. The
data set is composed of approximately a 1000 songs liked and a 1000 songs disliked by some-
one, who gathered this data for a personal project. His project can be read here: https://
opendatascience.com/a-machine-learning-deep-dive-into-my-spotify-data/. He se-
lected the songs however as di verse as possible. He chose different genres and at most 5
songs from the same artist.

Later will be assumed that our variables are Gaussian Normal distributed. From the Spotify
for developers website, figures of the distributions for all of the variables, except the one of
duration could be downloaded. This is important information. Those figures can also be
studied in more detail in the appendix.

17

https://opendatascience.com/a-machine-learning-deep-dive-into-my-spotify-data/
https://opendatascience.com/a-machine-learning-deep-dive-into-my-spotify-data/

4 Method

The underlying theory of the method is based upon [Grzegorczyk].

4.1 Marginal edge posterior probabilities: A strategy to build-up a graph
that fits the data best

In this paper, the main objective is to find a Bayesian network that represents the data
best. Something called the posterior distribution, denoted as P (graph|data), will be used
for this. This distribution P (graph|data) describes the probability of a specific graph repre-
senting the actual network given the data. The last section has shown that the underlying
mathematical structure of a graph is a specific factorization of the joint distribution of all
variables included in the network. So P (graph|data) can be seen as the probability of some
particular factorization of the joint probability function given that the data is known.

There exist multiple ways to achieve the main objective, i.e. to find the best graph that
fits the data. Graph and Directed acyclic graph will be used interchangeably.

In this paper, the best graph that fits the data will be found by building up one graph
through looking at which edges occur frequently in the most likely graphs that fit the data.
This approach is chosen because if a large network (many nodes) has to be learnt from
only a small number of observations, it does not usually make sense to search for a single
“best” graph. After all, there is no single graph that has a ‘significantly greater’ posterior
probability than the other graphs. In that case, there are usually multiple “good” graphs
whose posterior probabilities are approximately equally high. The reason for that is when
there are not enough observations there is not enough information to see the exact nuances,
differentiate between different graphs, in the dependency relations, because the number of
possible graphs grows super-exponentially in the number of nodes. In that case, it makes a
lot more sense to look at features all those “good” graphs share.

This approach may raise a question: “Why not look directly at the probability of an edge
occurring instead?” This will not be done, because the main reason for using Bayesian
Networks is to look at an entire network and in doing so also differentiate between direct
and indirect dependencies. Using the approach of solely looking at an edge instead of an
entire network will undermine exactly what we are trying to accomplish.

Looking at the features all those “good” graphs share can be computationally expensive, so
only the frequencies of some edges occurring will be looked at. It could, of course, be the
case that some particular information will get lost at this point. Say, for instance, two edges
are occurring only simultaneously or not at all in all “good” graphs, but it is probably better
than looking only at the single best graph. However, our built up graph can theoretically
have a lower posterior probability than one of the “good” graphs, but still this approach is
preferred in this situation. The reason for this is that the result will, in the end, contain

18

more information. That is because our goal is to find only direct edges, so we are interested
in the direct edges obtained from the multiple graph structures. Because we will be only
looking at edge features, their topological similarities may be overseen.

There is a need to differentiate between two uses of the word graph: Our final graph (build-
up from the weighted graphs of others) and all the possible graphs (so all possible networks
from which the final graph will be build up). The most likely graphs,(latter definition) that
fit the data is described by P (graph|data).

If the posterior probability would be calculated for each graph it would be computationally
too expensive or even impossible in some cases, that’s why there will be taken a sample
of graphs of the posterior distribution. When the posterior probabilities are known, the
sample and the graphs can be weighted by their posterior probabilities such that the so-
called “good” graphs have a greater influence. First, two more actions need to be done to
the found group before we can look at the edge frequencies.

First, as shown in the previous section, for each sampled graph there exist other graphs in
their equivalence class which have the same posterior probability. So these other graphs
are considered equally “good”. That is why for each graph of the sample their CPDAG will
be calculated. This will be done by using an algorithm , which takes as input an incidence
matrix and gives as output the CPDAG incidence matrix, where each undirected edge is
presented as a bi-directional . The matrix consist of zeroes and ones. The second action
that needs to be done is the filtering of invalid DAGs. We would like to know what the
similarities are between them and if they have something in common. More precisely, it is
checked whether there are edges that every “good” graph has or edges that no graph has.
This can be done by calculating the posterior probability that there is an edge averaged
across all “good” graphs that are still directed acyclic graphs. This is called marginal edge
posterior probabilities.

Calculation of the marginal edge posterior probabilities will be done in the following way.
First, an indicator function will be used to indicate whether or not the CPDAG of a graph G
possesses the edge in question. Now, the equation to calculate the marginal edge posterior
probability is given as follows.

P (A→ B|D) :=
∑
G

P (G|D) · I(G), (20)

where I(G) is the binary indicator function given by

I(G) =

{
1, if CPDAG of G possesses the edge
0, otherwise

(21)

Here, P (A → B|D) is the probability, given the data, for a directed edge from node A to
node B to be present in our best possible graph. Recall the posterior distribution is denoted

19

by P (graph|data), and P (G|D) for short, which was briefly discussed before. The name
stems from Bayesian Statistics, the field that will be used in this approach and that is closely
looked into in Section 4.3. P (graph|data) can be seen as the likelihood of each particular
network structure given the data. As we have seen before, each network structure together
with its equivalence class is characterized by their unique (for the whole class) factorization
of the joint probability function.

The following two figures serve to give the reader some more intuition into Equation 20 of
the marginal edge posterior distribution. Let us say there are some graphs who follow the
following posterior distribution.

Figure 7: Visual representation of some graphs and their corresponding posterior probabil-
ities P (graph|data)

If P (graph|data) is then multiplied by the indicator function for a specific edge, the following
figure is obtained.

Figure 8: Visual intuition of the marginal edge posterior distribution

20

Remember that the following must always hold.∑
G

P (G|D) = 1 (22)

So the equation P (A → B|D) :=
∑

G P (G|D) · I(G) can in this setting be interpreted as
the percentage of the total area in the figure has the specif edge under examination.

Another method is to simply look at which sole graph describes the data best by P (graph|data).
So for each possible option. This method could be done by the so-called Greedy search al-
gorithm. This paper will not go into that.

For both methods, just computing P (graph|data) for all possible graphs is computationally
very costly and not sufficient. To calculate the above for each graph and for each edge
that would be computationally for large networks really expensive and maybe even nearly
impossible.

That is why a random sample of graphs will be taken from the posterior distribution
P (graph|data). Then, the frequency of the edges occurring in the graph sample would say
something about how likely they are. For comparison, if we would sample from the normal
distribution we would get most realisations of the random variables near the mean.

In our case, if we sample from the posterior distribution, the realisations – in this case
realisations of the graphs have a score – are proportional to the posterior near the mean.
Therefore, if we can sample from the posterior distribution, we could give a pretty good
estimation of the marginal edge posterior probabilities.

In our method this will be done by taking a sample form P (graph|data), and estimating
the mean. This will be done using the Metropolis-Hastings structure Markov Chain Monte
Carlo algorithm, which will be more thoroughly discussed in Section 4.2.

As mentioned before, the marginal edge posterior probability needs to be calculated. This
will be done by estimation from a sample of P (graph|data), which is a discrete distribution.
The next paragraph will elaborate on what sampling from P (graph|data) will look like. The
posterior distribution will look something like Figure 7. So the realisations making up a
sample from P (graph|data) will all be graphs.

For clarity it will now be compared to a Poisson distribution.

21

Figure 9: Poisson distribution as demonstrative example of sampling of a distribution

The mean of this Poisson distribution is 10. It is a discrete distribution, so it has discrete
states. In this specific example, the realisations of X can take on numbers 1 to 20. A
random sample of this Poisson distribution might be {10, 11, 9, 8, 3, 4, 2} The case of taking
a sample of P (graph|data) is rather similar. The realisations of the posterior distributions
are specific graphs. It could help to think about them first enumerating all the possible
graphs and then drawing a sample, just as in the Poisson case. The marginal edge posterior
probability can be rewritten as:

P (A→ B|D) :=
∑
G

P (G|D) · I(G)

= P (I(G) = 1|D)

(23)

By using the Law of large numbers it will be shown that we can estimate the unknown
marginal edge posterior probability by the corresponding relative frequency in the graph
sample. Rewritten in mathematical terms, it reads.

P̂ (A→ B|D)→ P (A→ B|D) for T →∞ (24)

Here P̂ (A → B|D) = 1
T

∑T
i=1 I(Gi) and is called the estimator. It can be seen as the

relative frequency of an edge in the sample. T is the sample size. The Law of large numbers
is given as follows.

Theorem 4.1 (Law of large numbers). Let X1, X2, . . . be i.i.d random variables. Let E[X]
denote the expectation of a random variable X. Then the Law of large numbers states

22

that: ∑T
i=1 xi
n

→ E[X] for T →∞, (25)

where E[X] =
∑

x x · P (X = x) .

Let in our case X be the binary indicator function I(G). Then, by law of large numbers it
holds that ∑T

i=1 I(Gi)

T
→ Edata[I(G)], (26)

where I(Gi) is a realisation of I(G) indicating with either 0 or 1 that Gi possesses the
specific edge. Now the only step left to be shown is Edata[I(G)] = P (I(G) = 1|D)

Edata[I(G)] = 0 · Pdata(I(G) = 0) + 1 · Pdata(I(G) = 1)

= P (I(G) = 1|D)
(27)

If we can generate a sample from our posterior distribution then, as mentioned earlier, two
actions still need to be executed in order to First, check if the graphs satisfy the acyclicity
constraint and secondly , compute their corresponding CPDAG.

After those algorithms are performed, this procedure results in a bunch of incidence ma-
trices. From those it can be checked for each edge if it is there in the following way. For
the edge from node Xi to Xj look at incidence matrix I for entry Ii,j if it is 1, it is clear

that the graph possesses that edge. Then
∑T

i=1 I(Gi)
T can be calculated as estimation for

P (Xi → Xj |D).

All of this will be stored in a matrix, now indicated by A,here Ai,j = P (Xi → Xj |D). And
after that is all learnt, a cut-off is searched for and a graph will be presented. The next
section will elaborate on how exactly a sample will be taken from the posterior distribution.

4.2 Metropolis-Hastings Structure MCMC sampler: Sampling to effi-
ciently compute all possible graphs of P(graph|data)

The Metropolis-Hastings Structure Markov Chains Monte Carlo simulation uses, as the
name suggests, insights fromMarkov Chains. Markov chains give us the chance to determine
the trajectory of discrete states. What is meant here is that in this paper this means a path
or walk through discrete states of our graphs. The State space is composed of all possible
graphs. In Markov Chains, it is not required to know the whole distribution. It is only
required to know the conditional probabilities, in other words only the probability of the
system going to one particular state given that the system is already in one of the states.

23

Let us look at an example. Say there is a system with discrete state-space S = {A,B,C}
meaning some system can be in three different states, namely state A, B or C. Assume
the system started in a randomly chosen state A. It will soon be explained that this choice
doesn’t influence the results if the system moves from state to state long enough. The
probabilities to go from one state to an other are known and presented in the so-called
transition matrix P .

Figure 10: Example of Markov chain

On the left of Figure 10 the state diagram is shown and on the right the transition matrix
P . The transition matrix P can be interpreted in the following way: Pi,j = P (Xj |Xi) for
i, j ∈ A,B,C and Xi, Xj being the nodes corresponding to the states A,B,C respectively.
So PA,B = P (B|A) = 0.1 describes the probability of moving to state B given that the
system is in system A.
So if the beginning state is known together with the transition matrix P , an trajectory of
the systems states can be sampled.

Let us assume the system is now in state A. Then a possible trajectory sampled from the
transition matrix could be: A → C → B → C. In this paper, the state space will be the
space containing all possible graphs. So a sample of a trajectory can then, for example, be
the following: G6 → G3 → G2 → G5 → G7, where Gi is a graph and i can be ranging from
0 to the number of all possible graphs.

If one would like to calculate the probability that a system X is in state i at step t,
P (Xt = i), this can be done in the following way.

Let t = 1, 2, 3, . . . be the number of steps or iterations. Let X be a system with state space
S = {1, . . . , k}, with k a Let the k-dimensional row vector composed of P (Xt = i) for each
i in the state space be defined in the following way:

pt := (pt,1, . . . pt,k) = (P (Xt = 1), . . . , P (Xt = k)) (28)

24

First, an initial distribution is required, which gives the probabilities of the systems being
initially in either one of all the states of the state space. This is presented as a row vector,
denoted her as p1. In our example from before this could be

p1 = (P (X1 = A), . . . , P (X1 = C) = (
1

3
,
1

3
,
1

3
),

meaning for each state it is equally likely that the system is initially in that state. Then
the probability that a system X is in state i at step t, can be read off by calculating pt for
each i ∈ S, using the equation below.

pt = p1 · T t−1 (29)

The nice thing about Markov chains for this situation, is that there exists a so-called station-
ary distribution of a discrete Markov chain with transition matrix T . J = (p(1), ..., p(k))
is the stationary distribution of T if π · T = π. The stationary distribution of a Markov
chain does not depend on initial distribution. Because π = p1 · T t for t → ∞ there is a
correlation between π and T. Unique for both. If π = (p(i), ..., p(k)) then the equation of
detailed balance is given by

Ti,j
Tj,i

=
p(j)

p(i)
. (30)

This concept of stationary distribution will be used to sample graphs from the P (graph|data)
distribution. A specific transition matrix is sought that leads to the stationary distribution
of the posterior distribution P (graph|data). Then the initial graph that is chosen has no
influence if we iterate long enough. So we look for a transition matrix corresponding to
P (graph|data) as a stationary distribution. This is be done by looking at the equation of
detailed balance. We want π = (P (G1|D), ..., P (Gk|D)).

Ti,j
Tj,i

=
T (Gi, Gj)

T (Gj , Gi)
=
P (Gj |P)

P (Gi|D)
, (31)

for all Gi, Gj ∈ S where (i 6= j) with P (Gi|D) > 0 and Tj,i > 0. It is common for the
Metropolis-Hastings method to take T (i, J) as the product of Q(i, j) and A(i, j) for j 6= i
and for j = i

Q is usually chosen and is the proposed probability. A is the acceptance probability.

One of them can be chosen and the other is determined by the equation of detailed balance
because it needs to be satisfied to get π to be P (graph|data). Usually, Q is chosen. So A
is fixed as we set Q. The equation of detailed balance is satisfied if

A(Gi, Gj) = min
{

1,
P (Gi|D)

P (Gj |D)
· Q(Gi, Gj)

Q(Gi, Gj)

}
(32)

25

We choose Q such that we randomly select one of the neighboring graphs. That is because
the ratio P (Gi|D)

P (Gj |D) is easier to determine for neighboring graphs. So

Q(Gi, Gj) =

{ 1
|N(G)| , G∗ ∈ N(G)

0, G∗ /∈ N(G)
(33)

Here, N(G) is set of neighbor graphs ofG. So ifG∗ ∈ A(Gi, Gj) = min
{

1, P (Gi|D)
P (Gj |D) ·

Q(Gi,Gj)
Q(Gi,Gj)

}
,

it holds that

A(Gi, Gj) = min
{

1,
P (Gi|D)

P (Gj |D)
· Q(Gi, Gj)

Q(Gi, Gj)

}
= min

{
1,
P (D|Gj) · P (Gj)

P (D|Gi) · P (Gi)
· |N(Gi)|
|N(Gj)|

} (34)

where P (D|Gj)
P (D|Gi)

is called the likelihood ratio, P (Gj)
P (Gi)

is called the prior ratio and |N(Gi)|
|N(Gj)| is called

the Hastings-ratio. Needs to be calculated. The names stem from Bayesian Statistics and we
will dive into them more closely in Section 4.3. Per construction the transition matrix A·Q is
guaranteed to converge to P (graph|data). So if we take trajectory G1 → G5 → G7 → G100,
after it is iterated long enough, it will be sampled from that distribution. This procedure
is called the structure MCMC sampling scheme.

The graph sample can be used to estimate marginal edge posterior probabilities.

1. Observation 1
Burn-in and sampling phase

2. Observation 2
Thinning because of auto correlation.

3. Observation 3.
Method

4. Observation 4.
Number of observations

efficient computation Hastings-ratio number of neighbouring → still DAG and single edge
operations incidence matrix. ALgorithms single edge CITE SINGLE EDGE ALGORITHMS
We will now look more closely at the acceptance probabilities A(G....) and dive into some
Bayesian Statistics. Bayesian and stat other two names come from.

26

4.3 Bayesian Statistics

Another field of Statistics used in this research is Bayesian Statistics. This area is largely
based on Bayes’ rule or sometimes called Bayes’ theorem.

Theorem 4.2 (Bayes’ theorem). Let A and B are events. The conditional probability
of A given B is given by

P (A|B) =
P (A,B)

P (B)
(35)

with P (B) 6= 0. This expresses the likelihood of event A given that event B is true.

deduction likelihood and prior, prior becomes uniform if edge deletion or addition and
parent node set s.414

A(Gi, Gj) = min
{

1,
P (Gi|D)

P (Gj |D)
· Q(Gi, Gj)

Q(Gi, Gj)

}
= min

{
1,
P (D|Gj) · P (Gj)

P (D|Gi) · P (Gi)
· |N(Gi)|
|N(Gj)|

} (36)

Posterior distribution ultimate goal Bayesian statistics Bayesian statistics is largely based
on Bayes rule which is made by using two times the conditional probability rule.

P (A|B) =
P (A,B)

P (B)
(37)

P (X|Y) =
P (X,Y)

P (Y)
=
P (Y |X) · P (X)

P (Y)
=
P (Y |X) · P (X)∑

X P (Y,X)
=

P (Y |X) · P (X)∑
X P (Y |X) · P (X)

(38)

P (graph|data) =
P (data, graph)

P (data)
=
P (data|graph) · P (graph)

P (data)
(39)

This equation will be used a lot since it is central to our inference, so a name will be
introduced for every factor. These names are commonly used in the paradigm Bayesian
statistics.
P (graph|data) is the posterior probability. It is the posterior (aposteriori) probability of
the graph (in sense of model) given by the observed data P(data|graph) is the marginal
likelihood. (score) “Assuming that the true (in-)dependencies among the variables are
inferrable from the data, D, high marginal likelihoods can only be reached by those graphs
that imply or approximate these true relationships” (cite Marco)

P (graph) is the prior probability. (apriori)prior; Which values is theta or graph in our case
likely to take on. In our case will be uniform. Need to be uninformative –> Jeffrey’s prior

27

P (data) is the probability given the data and is called the normalization constant. It is
called the normalization constant because in conditional probability there is a shift from
the whole probability space to the smaller space of Y . Here, the thing it is conditional
on is now the whole probability space, so it is equal to one. Therefore, there is a need to
normalize by a factor. That factor is the normalization constant.

So our normalization constant P (data), or P (D), is actually defined as follows:

P (D) =
∑
G?

P (D|G?)P (G?), (40)

where we sum over all valid directed graphs G. This definition, as was mentioned before,
ensures that

∑
graphsP(graph|data)= 1 holds.

The normalization constant P (data) does not depend on the choice of a graph, so we have
that the posterior probability P (graph|data) is proportional to the score times the prior .
The MH MCMC is based on the denominator remaining fixed.

P (graph|data) =
P (data|graph) · P (graph)

P (data)
∝ P (data|graph) · P (graph) (41)

The marginal likelihood in sense of the model is given by

P (data|graph) =

∫
P (data,q|graph)dq (42)

Because q is supposed to be continuous maybe? So integral over joint probability. What
is q? q is a vector of still unknown parameters that are required. What can we think of
my model? model 1. that it is random sample iid 2. give the distribution of data. The
marginal likelihood can be rewritten in the following way.

P (D|G) =

∫
P (D, q|G)dq

=

∫
P (D, q,G)

P (G)
dq

=

∫
P (D, q,G)

P (G)
· P (q|G)

P (q|G)
dq

=

∫
P (D, q,G)

P (q,G)
· P (q|G)

=

∫
P (D|q,G) · P (q|G)dq

(43)

We will now be focussing on how we will find the probability distribution of a graph. to
calculate the score. the joint distribution will be separated and each random variable maybe
gaussian normal, will be explained in BGe section

28

We will now look into something called CPDAG representation. The end must perform to
calculate the accurate relative edge frequency. Because all scores are the same for graphs
in the same equivalence class, they all represent the found score, which places all of them
in the highest score graph pool.

To obtain an algorithm which takes as input a DAG incidence matrix and converts it into
a CPDAG representation incidence matrix, we need to take a look at two sub algorithms.
The first one aims to assess the so-called topological order of the nodes of a DAG. The
second one aims to asses the order of the edges. It will use the topological ordering of
the node to do this. Finally, the algorithm that converts a DAG into a CPDAG can be
constructed.

A sketch of the algorithm is given in the following informal way.

• Step 1: Give skeleton

• Step 2: Give skeleton with directed v structures, called Gv

• Step 3: Give graph Gv+ (give edges direction back which reversal would create new
v structures)

• Step 4: Add direction to edges whose reversal gives invalid cycles

We will now look into the marginal likelihood of the graph in the sense of the model. The
goal here is to learn whether there is a possibility to make the graph simpler and closed
form. That is why we assumed and looked into the local Markov assumption.

In the last section, the following was concluded.

P (D|G) =

∫
P (D|q,G) · P (q|G)dq (44)

Now, we would like write P (D|q,G) with our knowledge of the Markov assumption. If the
realizations of the dataset are independent, the following holds

P (D|q,G) = Πn
i=1Π

m
j=1P (Xi = Di,j |pa(Xi) = Dpa(Xi),j , qi (45)

If we know the graph, then we also know part of the structure of the joint probability
funtion of the variables. This fact follows from the factorization or Markov assumption
(18). Since the observations are independent, we can write:

P (D|q,G) = Πm
j=1P ((X1, ..., Xn) = (D1,j , ..., Dn,j)|G, q)

= Πm
j=1P ((X1 = D1,j , ..., Xn = Dn,j)|G, q)

(46)

29

Now we will use the fact that if we know the graph, we also know from (18) that we can
simplify the joint density distribution in the following way. If we simply take one observation
from the realizations of the data set, so some column j of our data matrix, we can use the
Markov assumption again to see that

P (X1, ..., Xn) = Πn
i=1P (Xi|pa(Xi)). (47)

P ((X1 = D1,j , ..., Xn = Dn,j)|G, q) = Πn
i=1P (Xi = Di,j |pa(Xi) = Dpa(Xi),j , q)

= Πn
i=1P (Xi = Di,j |pa(Xi) = Dpa(Xi),j , qi)

(48)

P (D|q,G) = Πn
i=1Π

m
j=1P (Xi = Di,j |pa(Xi) = Dpa(Xi),j , qi (49)

4.4 BGe scoring metric: How to calculate the last terms

In the former section, we showed a more explicit method to calculate the marginal likeli-
hood. What we are missing, however, is our choices for the parameters and hence also for
distribution of our variables. These parameters are denoted as the vector q.

This vector will be looked into more closely now, and we will assume for all parameters in
it both independence and modularity. The definition of these assumptions is given below.

Assumption 1 – Parameter independence.

Definition 4.1 (Parameter independence). Parameters are called independent if the
distributions of the separate parameters (for the local probability distributions) are stochas-
tically independent.

Assumption 2 – Parameter modularity

Definition 4.2 (Parameter modularity). Parameter modularity means the density of
the parameters (of each local distrubition) depends on the local structure (i.e. the parents
of Xi only. (18) The following holds.

P (qi|G) = P (qi|Xi, pa(Xi)) for i = 1, . . . , n (50)

Assumptions 1 & 2 entail the following.

P (q|G) = Πn
i=1P (qi|pa(Xi)) (51)

30

↓ (Bayes Theorem) Proof ??

P (graph|data) =
P (data, graph)

P (data)

↓ P (D,G)=P (D|G)·P (G) (conditional) Proof ??

=
P (data|graph) · P (graph)

P (data)

↓ P (D)is constant (Normalisation constant) Proof ??

∝ P (data|graph) · P (graph)

=

∫
P (D|q,G) · P (q,G)dq · P (G)

=

∫
ΠΠP (Xi = Di,j |pa(Xi) = Dpa(Xi),j,qi) · P (q|G)dq · P (G)

=

∫
ΠΠP (Xi = Di,j |pa(Xi) = Dpa(Xi),j,qi) ·Π

n
i=1P (qi|pa(Xi))dq · P (G)

(52)

31

P (graph|data) =

=

∫
Π ΠP (Xi = Di,j |pa(Xi) = Dpa(Xi),j,qi) ·Π

n
i=1P (qi|pa(Xi))dq · P (G)

=

∫
n times· · ·

∫
(P (qi|pa(Xi)) ·Πm

j=1p(xi = Di,j |pa(X1) = Dpa(Xi),j,qi))dq1 , . . . dqn · P (G)

= Πn
i=1

∫
(P (qi|pa(Xi)) ·Πm

j=1P (Xi = Di,j |pa(Xi) = Dpa(Xi),i,qi)dqi · p(G)

= Πn
i=1Ψi(pa(Xi), D

Xi , Dpa(Xi)) · P (G).

(53)

The idea is now to go into Hastings ratio and simplify. First let us consider the Likelihood
ratio.

P (D|Gj)

P (D|Gi)
=

Πn
k=1Ψk(pa(Xk|Gj), DXk, D

pa(Xk|Gj))

Πn
k=1Ψk(pa(Xk|Gi), DXk, Dpa(Xk|Gi))

(54)

Here, Gi and Gj are two neighbouring graphs. This implies that to go from Gi to Gj , a
single edge deletion, a single edge addition or an edge reversal has been performed. Call
the node where the altered edge was pointing to Xu, then the two neighboring graphs Gi

and Gj can only differ with respect to the parent node set of Xu. From this the expression
below follows for an edge deletion or addition but not both.

P (D|Gj)

P (D|Gi)
=

Ψu(pa(Xu|Gj), DXu, D
pa(Xu|Gj))

Ψu(pa(Xu|Gi), DXu, Dpa(Xu|Gi))
(55)

If an edge reversal was the change between Gi to Gj , more precisely the reverse of an edge
from node Xw to node Xu, then the two neighboring graphs Gi and Gj can only differ with
respect to the parent sets of the two nodes Xu and Xw. From this the expression below
follows for an edge reversal.

P (D|Gj)

P (D|Gi)
=

Ψu(pa(Xu|Gj), DXu, D
pa(Xu|Gj))

Ψu(pa(Xw|Gi), DXw, Dpa(Xw|Gi))
· Ψw(pa(Xw|Gj), DXw, D

pa(Xw|Gj))

Ψw(pa(Xw|Gi), DXw, Dpa(Xw|Gi))
(56)

32

Figure 11: 1

Let’s have a closer look at those factors. As seen before this below holds.

Ψi(pa(Xi), D
Xi , Dpa(Xi)) · P (G) =∫

(P (qi|pa(Xi)) ·Πm
j=1P (Xi = Di,j |pa(Xi) = Dpa(Xi),i,qi)dqi · p(G)

(57)

P (µ,W |Xi) =
P (X1, . . . , Xn|µ,W) · P (µ,W)

P (Xi)

=
P (X1, . . . , Xn|µ,W) · P (µ|W) · P (W)

P (Xi)

(58)

where P (X1, . . . , Xn|µ,W) is multivariate Gaussian distributed. P (µ,W) is normal Wishart
distributed. And P (µ|W) is multivariate normal distributed N(µ0, νW) such that ν > 0,
P (W) is Wishart distributed. α > n− 1 degrees of freedom. Precision matrix T, denoted
by W (α, T0).
µ expectation vector is Gaussian N(µ0, ν

−1 · Σ = N(µ0, (νW)−1) = P (µ|W) and P (W) =
W (α, T0) with α > 0 and precision matrix T0. The hyperparameters (called hyper, because
parameters are µ and W in this case) must be set fixed α, ν, µ0 and T0

1

33

Likelikhood Model parameters Conjugate prior
distribution Prior hyperparameters

Multivariate normal µ (mean vector)
W (precision matrix) Normal Wishart µ0, k0, v0, V

(µ0, v, α, T0)
Multivariate normal
with known µ W Wishart v, V (a, T0)

Table 1:

4.5 Convergence Diagnostics

In order to check if the algorithm was iterated long enough such that the Markov Chain
is iterated long enough such that it converged to the stationary distribution, such that
we indeed have a sampling of the posterior distribution there is a need for convergence
diagnostics. Both the Trace plot and Scatter plots, which will be explained shortly, provide
a necessary but not sufficient condition for convergence.

4.5.1 Trace plot

Figure 12: Examples of Trace plots 2

34

Figure 13: Examples of Scatter plots 3

4.5.2 Scatter plot

As mentioned before, for each data set, there will be done three independent runs of the
structure MCMC algorithm in order to check for convergence. Three scatter plots will be
made to examine the differences in edge scores of the three runs.

A scatter plot, possesses the ability to compare two different edge score result of the two
runs at the same time. This means there will be made three scatter plots in total, one for
run 1 versus run 2, one for run 1 versus run 3 and one for run 2 versus run 3.

After the structure MCMC algorithm is performed, the edge scores will be presented in a
matrix. Before the scatter plots can be madem the entries of the matrices will be stored
in a vector except the entries on the diagonal of the matrix. The entries on the diagonal
correspond to probabilities of an edge from a node to itself and by the acyclicity contraint
those are excluded. Now those two vectores wil be combined to create n 2-tuples with the
x- coordinate being the edge score for one edge from one of the runs and the y-coordinate
for the other run. The 2-tuples can be interpreted as x- and y-coordinates and can be
plotted in a graph. The line y = x will also be plotted as reference.For all of them will be
checked whether or not the points lie nicely near the diagonal, indicating that their edge
scores do not differ so much with respect to one another.

2Grzegorczyk, M., Statistical Genomics. University of Groningen, 2019.
3Grzegorczyk, M., Statistical Genomics. University of Groningen, 2019.

35

4.6 Work in R

As mentioned before, in this research there will different numbers of songs, so columns
sampled from the original data consisting of 2017 unique songs. This will be done for
different sizes of samples from the original data for sizes of 10, 100 and 500 songs.

Each of these three sample sizes will be examined 10 times. Hence, we end up with 10
unique matrices of size 10x10, 10 unique matrices of size 10x100 and 10 unique matrices of
size 10x500. Each of them are made by first drawing a random vector of size 10, 100 and
500 from numbers 1 to 2017 and then merging the corresponding columns together in one
matrix.

For each unique matrix of n-variables by m-observations, three independent runs of the
structure MCMC algorithm were done. As described in the convergence diagnostics section,
this is done to check for convergence. Have we iterated long enough such that our sample
indeed can be seen as drawn from the posterior distribution?

Necessary but not sufficient conditions for convergence are that the three independent runs
of the structure MCMC algorithm don’t differ that much from each other. They should,
if iterated long enough, end up with approximately the same results. If this is indeed the
case can be checked by looking at if the same plateaus are reached in the Trace plot and
the points being plotted near the diagonal line. The Trace plots will then be checked. After
that three scatter plots will be made, one for run 1 versus run 2, one for run 1 versus run 3
and one for run 2 versus run 3. For all of them will be checked whether or not the points
lie nicely near the diagonal, indicating that their edge scores do not differ so much with
respect to one another.

For every run of the structure MCMC, two variables need to be set: the thinning constant
and the number of iterations. The thinning constant indicates how many out of a sequence
of graphs will be stored. A thinning constant of 100 indicates that out of a sequence of 100
graphs one will be stored, so one each 100. This need to be done because as mentioned
before graphs succeeding one another will be auto-correlated because to move from one
graph to another only graphs are allowed that differ only with respect to one single edge.
That’s why there is a need to filter out some graphs and only save some of them. The
number of iterations needs to be large enough so that convergence can be seen by means
of the convergence diagnostics. This will be done by trial and error. For every unique data
set of the same size, the same number of iterations will be done.

The results, the edge scores, for all ten different data samples for each size, will be compared.
This will be done by using again scatterplots. One scatter plot can only compare two results
at the same time, meaning two compare ten result, 10 choose 2 = 45 scatterplots need to
be made for each category of sample size 10, 100 and 500. For this the averages of the
three independent runs of the structure MCMC algorithms will be calculated. In order to
come up with solely one result for each unique data sample. Taking the average is chosen

36

because it is not possible anymore that those three runs differ much, because the number
of iterations was already increased such that the scatterplots revealt that.
After that the average will also be taken of the edge scores of those 10 different samples
of the same size. Such that we only end up with three different vectors of edge scores for
10, 100 and 500 respectively.
The scripts that were written for these purposes, can be found in the appendices A.3 and
A.2. The other scripts used in this paper can also be found there.

37

5 Results

This section presents the results of the R scripts as given in the appendix A.3. The form
of presentation is by presenting scatter plots for different data samples of 10, 100 and 500
songs.

5.1 Number of iterations needed

The number of iterations needed to obtain a ‘reasonably good’ plot differs for the different
sample sizes. Judging from the plots, the following values are decided on, where m denotes
the size of the dat set.

m # iterations
10 80.000
100 50.000
500 100.000

Table 2: Number of iterations needed to get a ‘reasonably good’ scatter plot

5.2 Example of sufficient Trace plot & scatter plot

Visually, the ‘sufficiently well’ plot looks like the following.

38

5.3 The 45 scatter plots between two out of the ten edge scores of the
data samples of 10 songs

Figure 14: Caption

39

Figure 15: Caption

40

Figure 16: Caption

41

5.4 The 45 scatter plots between two out of the ten edge scores of the
data samples of 100 songs

Figure 17: Caption

42

Figure 18: Caption

43

Figure 19: Caption

44

5.5 The 45 scatter plots between two out of the ten edge scores of the
data samples of 500 songs

Figure 20: Caption

45

Figure 21: Caption

46

Figure 22: Caption

One result was quite peculiar, as all points seemed to be extremely close to the diagonal
line. The plot is presented below.

47

Figure 23: Caption

5.6 The 3 scatter plots of averages of the edge scores of the ten different
samples of sizes 10, 100 and 500

- Made by average of 10 times down-sampling and average of 3 runs - Avav of 500 generally
higher edge scores

48

Figure 24: Scatter plots to compare different sample sizes

5.7 Resulting DAG

49

6 Discussion

The results weren’t quite were was hoped for. This can have multiple good reasons. Un-
fortunately it is not clear yet, what was the main cause. However underneath there will be
multiple options listed how to improve the research.
The songs weren’t a randomly sampled. To improve the research, maybe in future research
it could be sampled somehow directly from Spotify.
A second improvement would be, instead of assuming the variables to be Gausian normal
distributed, they could be assumed to be distributed as the pictures downloaded from Spo-
tify suggested.
A third improvement would be, to take for all of the different sample sizes the same number
of iterations. Or to maybe include a metric to measure exactly how close the points are to
the diagonal.

50

7 Conclusion

In this thesis, Bayesian networks were used to analyze a data set from Spotify API. The
MCMC algorithm was applied to gain information about possible best graphs of zoiets.
From this, scatter plots were made to compare different sample sizes of the data.

As can be seen from the scatter plots, the edge scores differ a lot for different data samples.
That’s why it wouldn’t be good to infer one Bayesian Network out of them and their
corresponding conditional (in)-dependencies.

51

References

Noah Amsterdam. Analyzing popular music using spotify’s machine learning audio features.
2019.

Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

William M Bolstad and James M Curran. Introduction to Bayesian statistics. John Wiley
& Sons, 2016.

Christian Borgelt, Jörg Gebhardt, and Rudolf Kruse. Graphical models. In In Proceedings
of International School for the Synthesis of Expert Knowledge (ISSEK’98, pages 51–68.
Wiley, 2002.

Gavin C Cawley and Nicola LC Talbot. Preventing over-fitting during model selection via
bayesian regularisation of the hyper-parameters. Journal of Machine Learning Research,
8(Apr):841–861, 2007.

Nir Friedman and Daphne Koller. Being bayesian about network structure. a bayesian
approach to structure discovery in bayesian networks. Machine learning, 50(1-2):95–125,
2003.

Nir Friedman, Michal Linial, Iftach Nachman, and Dana Pe’er. Using bayesian networks to
analyze expression data. Journal of computational biology, 7(3-4):601–620, 2000.

Dan Geiger and David Heckerman. Learning gaussian networks. In Uncertainty Proceedings
1994, pages 235–243. Elsevier, 1994.

Elena Georgieva, Marcella Suta, and Nicholas Burton. Hitpredict: Predicting hit songs
using spotify data.

Marco Grzegorczyk. Statistical genomics.

Khalid Iqbal, Xu-Cheng Yin, Hong-Wei Hao, Qazi Mudassar Ilyas, and Hazrat Ali. An
overview of bayesian network applications in uncertain domains. International Journal
of Computer Theory and Engineering, 7(6):416, 2015.

Timo Koski and John Noble. Bayesian networks: an introduction, volume 924. John Wiley
& Sons, 2011.

Kehan Luo. Machine learning approach for genre prediction on spotify top ranking songs.
2018.

Han-Saem Park, Ji-Oh Yoo, and Sung-Bae Cho. A context-aware music recommendation
system using fuzzy bayesian networks with utility theory. In International conference on
Fuzzy systems and knowledge discovery, pages 970–979. Springer, 2006.

52

Judea Pearl. Bayesian networks, 2011.

Karen Sachs, Omar Perez, Dana Pe’er, Douglas A Lauffenburger, and Garry P Nolan.
Causal protein-signaling networks derived from multiparameter single-cell data. Science,
308(5721):523–529, 2005.

Adriano V Werhli, Marco Grzegorczyk, and Dirk Husmeier. Comparative evaluation of
reverse engineering gene regulatory networks with relevance networks, graphical gaussian
models and bayesian networks. Bioinformatics, 22(20):2523–2531, 2006.

53

A R Code

A.1 Codes for structure MCMC Grzegorczyk

strMCMC <- function(Data ,incidence ,iterations ,step_save , fan.in=nrow(Data)
-1, v=1, mu=numeric(nrow(Data)), a=nrow(Data)+2, T_0=diag (0.5, nrow(Data)
,nrow(Data))){

n <- nrow(Data) # number of nodes
m <- ncol(Data) # number of observations

T_m <- T_0 + (m-1)* cov(t(Data)) + ((v*m)/(v+m))* (mu - rowMeans(Data))%*%t
(mu - rowMeans(Data))

L1 <- list() # incidence matrix
L2 <- list() # log BGe score
#

###

functions we need in the algorithm

calculation of the first ancestor matrix:
ancestor <- function(incidence){
incidence1 <- incidence
incidence2 <- incidence
k <- 1
while (k < nrow(incidence)){
incidence1 <- incidence1%*%incidence
incidence2 <- incidence2 + incidence1
k <-k+1
}
incidence2[which(incidence2 [,]>0)] <- 1
return(t(incidence2))}

function for the computation of c(n, alpha)
c_function <- function(N,A){
fact <- numeric(N)
for (i in 1:N){
fact[i] <- -lgamma ((A+1-i)/2)
}
product <- sum(fact) -(A*N/2)*log (2)- (N*(N-1)/4)*log(pi)
return(product)}

top_order <- function(incidence){
Order <- numeric(n)
fan_in <- numeric(n)
no_fan_in <- numeric (0)
m <- 1

54

for (p in 1:n){ # number of parent
nodes at the beginning

fan_in[p] <- sum(incidence[,p])
}
no_fan_in <- which(fan_in==0)
while (length(which(Order ==0)) >0){ # as long as there is

a node without an order
fan_in[which(incidence[no_fan_in[1] ,]==1)] <- fan_in[which(incidence[no_fan

_in[1] ,]==1)] - 1
no_fan_in <- c(no_fan_in, c(which(incidence[no_fan_in[1] ,]==1),which(fan_in

==0))[duplicated(c(which(incidence[no_fan_in[1] ,]==1),which(fan_in==0)))
])

Order[m] <- no_fan_in[1]
no_fan_in <- no_fan_in[-1]
m <- m+1
}
return(Order)
}

assign the topological order of the descendants of the child
des_top_order <- function(incidence , ancest1 ,child){
top <- top_order(incidence)
position_child <- which(top== child)
top_all_after <- top[position_child:n] # top. order without

the "first" nodes
desc <- which(ancest1[,child]==1) # descendants of the

child
inter_step <- c(child ,desc ,top_all_after)
des_top <- inter_step[which(duplicated(inter_step))]
return(des_top)
}

#
###

computation of the (logarithmizid) BGe Score of the FIRST graph
P_local_num <- numeric(n) ### numerator of the factors
P_local_den <- numeric(n) ### denumerator of the factors

for (j in 1:n) {
n_nodes <- which(incidence[,j]==1) # parents of j
P_local_num[j] <- (-(length(n_nodes)+1)*m/2)*log(2*pi) + ((length(n_nodes)

+1)/2)*log(v/(v+m)) + c_function ((length(n_nodes)+1),a)-c_function ((
length(n_nodes)+1),a+m)+ (a/2)*log(det(as.matrix(T_0[sort(c(n_nodes ,j)),
sort(c(n_nodes ,j))])))+ (-(a+m)/2)*log(det(as.matrix(T_m[sort(c(n_nodes ,
j)),sort(c(n_nodes ,j))])))

if(sum(incidence[,j]) >0){ # if j has at least one parent
P_local_den[j] <- (-(length(n_nodes))*m/2)*log(2*pi) + (length(n_nodes)/2)*

log(v/(v+m)) + c_function(length(n_nodes),a)- c_function(length(n_nodes)

55

,a+m)+ (a/2)*log(det(as.matrix(T_0[n_nodes ,n_nodes])))+ (-(a+m)/2)*log(
det(as.matrix(T_m[n_nodes ,n_nodes])))

}
else{ # if j has no parents
P_local_den[j] <- 0
}
}
bge_old <- (sum(P_local_num)) -(sum(P_local_den))

first ancestor matrix
ancest1 <- ancestor(incidence)

####### ... the number of neighbour graphs/proposal probability for the
FIRST graph

1.) number of neighbour graphs obtained by edge deletions
num_deletion <- sum(incidence)

2.) number of neighbour graphs obtained by edge additions 1- E(i,j)
- I(i,j) - A(i,j)

inter_add <- which(matrix(rep(1,n*n),nrow=n) - diag(1,n,n) - incidence -
ancest1 >0)

add <- matrix(numeric(n*n),nrow=n)
add[inter_add] <- 1
add[,which(colSums(incidence)>fan.in -1)] <- 0
num_addition <- sum(add)

3.) number of neighbour graphs obtained by edge reversals I - (I^t *
A)^t

inter_rev <- which(incidence - t(t(incidence)%*% ancest1)==1)
re <- matrix(numeric(n*n),nrow=n)
re[inter_rev] <- 1
re[which(colSums(incidence)>fan.in -1) ,] <- 0 # CORRECTED!!!???!!!
num_reversal <- sum(re)

total number of neighbour graphs:
total <- sum(num_deletion ,num_addition ,num_reversal)

proposal probability:
proposal <- 1/total

############## sampling a new graph (or rather sampling an edge to shift)
sample one of the three single edge operations
random <- sample (1:total ,1)

operation <- 0 # memorise , if the single edge
operation is (will be) an edge reversal

if (random > total - num_reversal){
operation <- 1}

shifting of the incidence matrix

56

incidence_new <- incidence

if (random <= num_deletion){ # if edge deletion was sampled
if(length(which(incidence >0)) >1){
new_edge <- sample(which(incidence >0) ,1)} # sample one of the existing

edges
else
{new_edge <- which(incidence >0)}
incidence_new[new_edge] <- 0} # and delete it

if (random > (total - num_reversal)){ # if edge reversal was sampled
if(num_reversal >1){
new_edge <- sample(which(re==1) ,1)} # sample one of the existing edges

where a reversal leads to a valid graph
else{
new_edge <- which(re==1)}
incidence_new[new_edge] <- 0 # delete it
junk <- matrix(numeric(n*n),nrow=n) # creating a matrix with all

entries zero
junk[new_edge] <- 1 # an only a "1" at the entry of

the new (reversed) edge
incidence_new <- incidence_new + t(junk)}# sum the deleted matrix and the "

junk -matrix"

if (random <= (total - num_reversal) & random > num_deletion){ # if
edge addition was sampled

if(num_addition >1){
new_edge <- sample(which(add ==1) ,1)} # sample one of the existing edges

where a addition leads to a valid graph
else{
new_edge <- which(add ==1)}
incidence_new[new_edge] <- 1 # and add it
}

#################### Updating the ancestor matrix

creating a matrix with dimensions of the incidence matrix and all entries
zero except for the entry of the chosen edge

help_matrix <- matrix(numeric(n*n),nrow=n)
help_matrix[new_edge] <- 1

numbers of the nodes that belong to the shifted egde
parent <- which(rowSums(help_matrix)==1)
child <- which(colSums(help_matrix)==1)

updating the ancestor matrix (after edge reversal)
edge deletion
ancestor_new <- ancest1
if (operation ==1){

57

ancestor_new[c(child ,which(ancest1[,child]==1)),] <- 0 # delete
all ancestors of the child and its descendants

#
top_name <- des_top_order(incidence_new , ancest1 , child)
for (d in top_name){
for(g in which(incidence_new[,d]==1)) {
ancestor_new[d,c(g,(which(ancestor_new[g ,]==1)))] <- 1
}
}
edge addition
anc_parent <- which(ancestor_new[child ,]==1) #

ancestors of the new parent
des_child <- which(ancestor_new[,parent]==1) #

descendants of the child
ancestor_new[c(parent ,des_child),c(child ,anc_parent)] <- 1
}

updating the ancestor matrix (after edge deletion)
if (random <= num_deletion){
ancestor_new[c(child ,which(ancest1[,child]==1)),] <- 0 # delete

all ancestors of the child and its descendants
#

top_name <- des_top_order(incidence_new , ancest1 , child)
for (d in top_name){
for(g in which(incidence_new[,d]==1)) {
ancestor_new[d,c(g,(which(ancestor_new[g ,]==1)))] <- 1
}
}
}

updating the ancestor matrix (after edge addition)
if (random <= total - num_reversal & random > num_deletion){
anc_parent <- which(ancest1[parent ,]==1) # ancestors of the new

parent
des_child <- which(ancest1[,child]==1) # descendants of the child
ancestor_new[c(child ,des_child),c(parent ,anc_parent)] <- 1
}

####### ... the number of neighbour graphs/proposal probability for the
proposed graph

1.) number of neighbour graphs obtained by edge deletions
num_deletion_new <- sum(incidence_new)

number of neighbour graphs obtained by edge additions 1- E(i,j) - I(
i,j) - A(i,j)

inter_add.new <- which(matrix(rep(1,n*n),nrow=n) - diag(1,n,n) - incidence_
new - ancestor_new >0)

add.new <- matrix(numeric(n*n),nrow=n)
add.new[inter_add.new] <- 1
add.new[,which(colSums(incidence_new)>fan.in -1)] <- 0

58

num_addition_new <- sum(add.new)

number of neighbour graphs obtained by edge reversals I - (I^t * A)^
t

inter_rev.new <- which(incidence_new - t(t(incidence_new)%*% ancestor_new)
==1)

re.new <- matrix(numeric(n*n),nrow=n)
re.new[inter_rev.new] <- 1
re.new[which(colSums(incidence_new)>fan.in -1) ,] <- 0 # CORRECTED!!!???!!!
num_reversal_new <- sum(re.new)

total number of neighbour graphs:
total_new <- sum(num_deletion_new ,num_addition_new ,num_reversal_new)

proposal probability:
proposal_new <- 1/total_new

BGe Score for the new graph
P_local_num_new <- P_local_num
P_local_den_new <- P_local_den
n_nodes_new <- which(incidence_new[,child]==1)

P_local_num_new[child] <- (-(length(n_nodes_new)+1)*m/2)*log(2*pi) + ((
length(n_nodes_new)+1)/2)*log(v/(v+m)) + c_function ((length(n_nodes_new)
+1),a)-c_function ((length(n_nodes_new)+1),a+m)+ (a/2)*log(det(as.matrix(
T_0[sort(c(n_nodes_new ,child)),sort(c(n_nodes_new ,child))])))+ (-(a+m)/
2)*log(det(as.matrix(T_m[sort(c(n_nodes_new ,child)),sort(c(n_nodes_new ,
child))])))

if(sum(incidence_new[,child]) >0){ # if child at least one parent
P_local_den_new[child] <- (-(length(n_nodes_new))*m/2)*log(2*pi) + (length(

n_nodes_new)/2)*log(v/(v+m)) + c_function(length(n_nodes_new),a)- c_
function(length(n_nodes_new),a+m)+ (a/2)*log(det(as.matrix(T_0[n_nodes_
new ,n_nodes_new])))+ (-(a+m)/2)*log(det(as.matrix(T_m[n_nodes_new ,n_
nodes_new])))

}
else{ # if child has no parents
P_local_den_new[child] <- 0
}

if (operation ==1){ # if single edge operation was
an edge reversal

n_nodesP <- which(incidence_new[,parent]==1)
P_local_num_new[parent] <- (-(length(n_nodesP)+1)*m/2)*log(2*pi) + ((length

(n_nodesP)+1)/2)*log(v/(v+m)) + c_function ((length(n_nodesP)+1),a)-c_
function ((length(n_nodesP)+1),a+m)+ (a/2)*log(det(as.matrix(T_0[sort(c(n
_nodesP ,parent)),sort(c(n_nodesP ,parent))])))+ (-(a+m)/2)*log(det(as.
matrix(T_m[sort(c(n_nodesP ,parent)),sort(c(n_nodesP ,parent))])))

if(sum(incidence_new[,parent]) >0){ # if parent at least one parent
P_local_den_new[parent] <- (-(length(n_nodesP))*m/2)*log(2*pi) + (length(n_

59

nodesP)/2)*log(v/(v+m)) + c_function(length(n_nodesP),a)- c_function(
length(n_nodesP),a+m)+ (a/2)*log(det(as.matrix(T_0[n_nodesP ,n_nodesP])))
+ (-(a+m)/2)*log(det(as.matrix(T_m[n_nodesP ,n_nodesP])))

}
else{ # if parent has no parents
P_local_den_new[parent] <- 0
}
}
bge_new <- (sum(P_local_num_new))-(sum(P_local_den_new))

L1[[1]] <- incidence # initial graph
L2[[1]] <- bge_old # and it‘s BGe score

acceptance <- min(1, exp((bge_new + log(proposal_new)) - (bge_old + log(
proposal))))

rand <- runif (1)

if(acceptance > rand){
incidence <- incidence_new
bge_old <- bge_new
P_local_num <- P_local_num_new
P_local_den <- P_local_den_new
proposal <- proposal_new
ancest1 <- ancestor_new
total <- total_new
num_deletion <- num_deletion_new
num_addition <- num_addition_new
num_reversal <- num_reversal_new
add <- add.new
re <- re.new
}

#
###

#
##

for (z in 2:((iterations/step_save)+1)){
for (count in 1:step_save){

############## sampling a new graph (or rather sampling an edge to shift)
sample one of the three single edge operations
random <- sample (1:total ,1)

operation <- 0 # memorise , if the single edge
operation is (will be) an edge reversal

if (random > total - num_reversal){

60

operation <- 1}

shifting of the incidence matrix
incidence_new <- incidence

if (random <= num_deletion){ # if edge deletion was sampled
if(length(which(incidence >0)) >1){
new_edge <- sample(which(incidence >0) ,1)} # sample one of the existing

edges
else
{new_edge <- which(incidence >0)}
incidence_new[new_edge] <- 0} # and delete it

if (random > (total - num_reversal)){ # if edge reversal was sampled
if(num_reversal >1){
new_edge <- sample(which(re==1) ,1)} # sample one of the existing edges

where a reversal leads to a valid graph
else{
new_edge <- which(re==1)}
incidence_new[new_edge] <- 0 # delete it
junk <- matrix(numeric(n*n),nrow=n) # creating a matrix with all

entries zero
junk[new_edge] <- 1 # an only a "1" at the entry of

the new (reversed) edge
incidence_new <- incidence_new + t(junk)}# sum the deleted matrix and the "

junk -matrix"

if (random <= (total - num_reversal) & random > num_deletion){ # if
edge addition was sampled

if(num_addition >1){
new_edge <- sample(which(add ==1) ,1)} # sample one of the existing edges

where a addition leads to a valid graph
else{
new_edge <- which(add ==1)}
incidence_new[new_edge] <- 1 # and add it
}

Updating the ancestor matrix

creating a matrix with dimensions of the incidence matrix and all entries
zero except for the entry of the chosen edge

help_matrix <- matrix(numeric(n*n),nrow=n)
help_matrix[new_edge] <- 1

numbers of the nodes that belong to the shifted egde
parent <- which(rowSums(help_matrix)==1)
child <- which(colSums(help_matrix)==1)

updating the ancestor matrix (after edge reversal)

61

edge deletion
ancestor_new <- ancest1
if (operation ==1){
ancestor_new[c(child ,which(ancest1[,child]==1)),] <- 0 # delete all

ancestors of the child and its descendants
#

top_name <- des_top_order(incidence_new , ancest1 , child)
for (d in top_name){
for(g in which(incidence_new[,d]==1)) {
ancestor_new[d,c(g,(which(ancestor_new[g ,]==1)))] <- 1
}
}

anc_parent <- which(ancestor_new[child ,]==1) # ancestors of the
new parent

des_child <- which(ancestor_new[,parent]==1) # descendants of the
child

ancestor_new[c(parent ,des_child),c(child ,anc_parent)] <- 1
}

updating the ancestor matrix (after edge deletion)
if (random <= num_deletion){
ancestor_new[c(child ,which(ancest1[,child]==1)),] <- 0 # delete all

ancestors of the child and its descendants
#

top_name <- des_top_order(incidence_new , ancest1 , child)
for (d in top_name){
for(g in which(incidence_new[,d]==1)) {
ancestor_new[d,c(g,(which(ancestor_new[g ,]==1)))] <- 1
}
}
}

updating the ancestor matrix (after edge addition)
if (random <= total - num_reversal & random > num_deletion){
anc_parent <- which(ancest1[parent ,]==1) # ancestors of the new

parent
des_child <- which(ancest1[,child]==1) # descendants of the

child
ancestor_new[c(child ,des_child),c(parent ,anc_parent)] <- 1
}

####### ... the number of neighbour graphs/proposal probability for the
proposed graph

1.) number of neighbour graphs obtained by edge deletions
num_deletion_new <- sum(incidence_new)

number of neighbour graphs obtained by edge additions 1- E(i,j) - I(
i,j) - A(i,j)

62

inter_add.new <- which(matrix(rep(1,n*n),nrow=n) - diag(1,n,n) - incidence_
new - ancestor_new >0)

add.new <- matrix(numeric(n*n),nrow=n)
add.new[inter_add.new] <- 1
add.new[,which(colSums(incidence_new)>fan.in -1)] <- 0
num_addition_new <- sum(add.new)

number of neighbour graphs obtained by edge reversals I - (I^t * A)^
t

inter_rev.new <- which(incidence_new - t(t(incidence_new)%*% ancestor_new)
==1)

re.new <- matrix(numeric(n*n),nrow=n)
re.new[inter_rev.new] <- 1
re.new[,which(colSums(incidence_new)>fan.in -1)] <- 0
num_reversal_new <- sum(re.new)

total number of neighbour graphs:
total_new <- sum(num_deletion_new , num_addition_new , num_reversal_new)

proposal probability:
proposal_new <- 1/total_new

BGe Score for the new graph
P_local_num_new <- P_local_num
P_local_den_new <- P_local_den
n_nodes_new <- which(incidence_new[,child]==1)

P_local_num_new[child] <- (-(length(n_nodes_new)+1)*m/2)*log(2*pi) + ((
length(n_nodes_new)+1)/2)*log(v/(v+m)) + c_function ((length(n_nodes_new)
+1),a)-c_function ((length(n_nodes_new)+1),a+m)+ (a/2)*log(det(as.matrix(
T_0[sort(c(n_nodes_new ,child)),sort(c(n_nodes_new ,child))])))+ (-(a+m)/
2)*log(det(as.matrix(T_m[sort(c(n_nodes_new ,child)),sort(c(n_nodes_new ,
child))])))

if(sum(incidence_new[,child]) >0){ # if child at least one parent
P_local_den_new[child] <- (-(length(n_nodes_new))*m/2)*log(2*pi) + (length(

n_nodes_new)/2)*log(v/(v+m)) + c_function(length(n_nodes_new),a)- c_
function(length(n_nodes_new),a+m)+ (a/2)*log(det(as.matrix(T_0[n_nodes_
new ,n_nodes_new])))+ (-(a+m)/2)*log(det(as.matrix(T_m[n_nodes_new ,n_
nodes_new])))

}
else{ # if child has no parents
P_local_den_new[child] <- 0
}

if (operation ==1){ # if single edge operation was an
edge reversal

n_nodesP <- which(incidence_new[,parent]==1)
P_local_num_new[parent] <- (-(length(n_nodesP)+1)*m/2)*log(2*pi) + ((length

(n_nodesP)+1)/2)*log(v/(v+m)) + c_function ((length(n_nodesP)+1),a)-c_

63

function ((length(n_nodesP)+1),a+m)+ (a/2)*log(det(as.matrix(T_0[sort(c(n
_nodesP ,parent)),sort(c(n_nodesP ,parent))])))+ (-(a+m)/2)*log(det(as.
matrix(T_m[sort(c(n_nodesP ,parent)),sort(c(n_nodesP ,parent))])))

if(sum(incidence_new[,parent]) >0){ # if parent at least one parent
P_local_den_new[parent] <- (-(length(n_nodesP))*m/2)*log(2*pi) + (length(n_

nodesP)/2)*log(v/(v+m)) + c_function(length(n_nodesP),a)- c_function(
length(n_nodesP),a+m)+ (a/2)*log(det(as.matrix(T_0[n_nodesP ,n_nodesP])))
+ (-(a+m)/2)*log(det(as.matrix(T_m[n_nodesP ,n_nodesP])))

}
else{ # if parent has no parents
P_local_den_new[parent] <- 0
}
}
bge_new <- (sum(P_local_num_new))-(sum(P_local_den_new))

acceptance <- min(1, exp((bge_new +log(proposal_new)) - (bge_old +log(
proposal))))

rand <- runif (1)

if(acceptance > rand){
incidence <- incidence_new
bge_old <- bge_new
P_local_num <- P_local_num_new
P_local_den <- P_local_den_new
proposal <- proposal_new
ancest1 <- ancestor_new
total <- total_new
num_deletion <- num_deletion_new
num_addition <- num_addition_new
num_reversal <- num_reversal_new
add <- add.new
re <- re.new
}
}

L1[[z]] <- incidence
L2[[z]] <- bge_old
}
return(list(L1 ,L2))
}

#
###

child <- function(edges ,n){ # input: the numbers of the edges in
the incidence matrix and the number of nodes

p <- ceiling(edges/n)
return(p)
}

64

parent <- function(edges ,n){
ch <- edges + n - child(edges ,n)*n
return(ch)
}

top_order <- function(incidence){
n <- nrow(incidence)
Order <- numeric(n)
fan_in <- numeric(n)
no_fan_in <- numeric (0)
m <- 1
for (p in 1:n){ # number of parent

nodes at the beginning
fan_in[p] <- sum(incidence[,p])
}
no_fan_in <- which(fan_in==0)
while (length(which(Order ==0)) >0){ # as long as there is

a node without an order
fan_in[which(incidence[no_fan_in[1] ,]==1)] <- fan_in[which(incidence[no_fan

_in[1] ,]==1)] - 1
no_fan_in <- c(no_fan_in, c(which(incidence[no_fan_in[1] ,]==1),which(fan_in

==0))[duplicated(c(which(incidence[no_fan_in[1] ,]==1),which(fan_in==0)))
])

Order[m] <- no_fan_in[1]
no_fan_in <- no_fan_in[-1]
m <- m+1
}
return(Order)
}

#
###

order.edges <- function(incidence){
top.order <- top_order(incidence)
n <- length(top.order)
edges <- which(incidence!=0)
children <- child(edges ,n)
parents <- parent(edges ,n)
m <- length(edges)
ordered_edges <- numeric(m)
incidence_n <- incidence
tog <- matrix(c(edges ,parents ,children ,ordered_edges),ncol=4, byrow=FALSE)

k <- 1
while(any(tog [,4]==0)){
node1 <- top.order[which(colSums(incidence_n[,top.order]) >0)][1] #

first node in top. order that has at least one parent
par1 <- tog[which(tog [,3]== node1) ,2] # find the parents of

65

first child in the top. order that has an unordered edge incident
into it

g <- par1[which(par1 >0)]
f1 <- numeric(length(g))

for (i in 1: length(g)){
f1[i] <- which(top.order ==g[i])
}

par2 <- g[which.max(f1)] # find the highest
ordered node that has an edge leading into node1

tog[which(tog[,2]== par2 & tog[,3]== node1) ,4] <- k
k <- k + 1
incidence_n[tog[which(tog[,2]== par2 & tog[,3]== node1) ,1]] <- 0 #

delete the edge in the "incidence" matrix
tog[which(tog[,2]== par2 & tog[,3]== node1) ,2] <- 0
}
to <- matrix(c(edges ,parents ,children ,tog[,4]),ncol=4,byrow=FALSE)

return(to) # return the whole
matrix , the order is the fourth column

}

#
##

DAG -to-CPDAG algorithm
+1 if the edge is "compelled"
-1 if the edge is "reversible"
###
cpdag <- function(incidence){
z <- order.edges(incidence)
new_mat <- cbind(z,numeric(nrow(z))) # edges , parents , children , order ,

zeros
n_mat <- new_mat[order(new_mat[,4]) ,] # sort the edges by its order
vec <- numeric(nrow(z))
while(any(vec ==0)){ # while there are

unlabeled edges l.3
if (length(vec) >1){ # if there are at

least 2 edges
first <- which(n_mat [,5]==0) [1] # first EDGE that

ist labeled "unknown" (0) l.4
parent1 <- n_mat[first ,2] # x parent NODE
child1 <- n_mat[first ,3] # y child NODE
comp1 <- n_mat[which(n_mat [,3]== parent1 & n_mat [,5]==1) ,2] # w

NODES that have an edge incident into the parent labeled compelled)
}
if (length(vec)==1){

first <- which(n_mat [5]==0) # first edge that ist
labeled "unknown" (0)

parent1 <- n_mat [2] # x parent
child1 <- n_mat [3] # y child
comp1 <- numeric (0)

66

}
for (j in comp1){ #

l.5
if (incidence[j,child1]==0){ # if w is not a

parent of the child l.6
n_mat[first ,5] <- 1 # label x -> y

compelled l.7
n_mat[which(n_mat[,3]== child1) ,5] <- 1 # label every edge

incident into y compelled l.7
vec[first] <- 1
vec[which(n_mat[,3]== child1)] <- 1
break

}
if (incidence[j,child1]!=0) {
n_mat[which(n_mat[,2]==j & n_mat[,3]== child1) ,5] <- 1 # label w -> y

compelled l.10
vec[which(n_mat[,2]==j & n_mat[,3]== child1)] <- 1
}

}
if (length(vec) >1){
if(n_mat[first ,5]==0){

moep <- n_mat[which(n_mat[,3]== child1 & n_mat[,2]!=parent1) ,2] #
other parents of the child

if(length(moep) >0){ #
l.11

for(o in moep){
if(incidence[o,parent1]==0){

vec[first] <- 1
vec[which(n_mat[,3]== child1 & n_mat [,5]==0)] <- 1
n_mat[first ,5] <- 1 # label x ->

y compelled
n_mat[which(n_mat[,3]== child1 & n_mat [,5]==0) ,5] <- 1 # label all

"unknown" edges incident into y compelled
break
}

if(all(incidence[moep ,parent1]!=0)){
vec[first] <- -1
vec[which(n_mat[,3]== child1 & n_mat [,5]==0)] <- -1
n_mat[first ,5] <- -1 # label x ->

y reversible
n_mat[which(n_mat[,3]== child1 & n_mat [,5]==0) ,5] <- -1 # label all

"unknown" edges incident into y reversible
}

}
}
if(length(moep)==0){

vec[first] <- -1
vec[which(n_mat[,3]== child1 & n_mat [,5]==0)] <- -1
n_mat[first ,5] <- -1 # label x ->

67

y reversible
n_mat[which(n_mat[,3]== child1 & n_mat [,5]==0) ,5] <- -1 # label all

"unknown" edges incident into y reversible
}

}
}

if (length(vec)==1){
n_mat[5] <- -1 # label x -> y

reversible
vec <- -1

}
}
return(n_mat)
}

#
###

cpdag_list <- function(list.inc ,E){ # E: end of burnIn phase
L <- list()
G <- list()
nodes <- dim(list.inc [[1]]) [1]
mat.sum <- matrix(numeric(nodes*nodes),nrow=nodes)

for (i in E:length(list.inc)){
k <- cpdag(list.inc[[i]])
dummy <- matrix(numeric(nodes*nodes),nrow=nodes)
if(length(nrow(k))!=0){
dummy[k[,1]] <- k[,5]

L[[i]] <- dummy
}
if(length(nrow(k))==0 && length(k) >0){

dummy[k[1]] <- k[5]
L[[i]] <- dummy

}
mat.com <-matrix(numeric(nodes*nodes),nrow=nodes)
mat.re <- matrix(numeric(nodes*nodes),nrow=nodes)
com <- which(L[[i]]>0)
re <- which(L[[i]]<0)
mat.com[com] <- 1
mat.re[re] <- 1
mat <- mat.com + mat.re + t(mat.re)
G[[i]] <- mat

mat.sum <- mat.sum + mat
}

return(list(L,G, (mat.sum/(length(list.inc)- E+1))))
}

68

m_obs: number of samples
var_noise: variance of Gaussian distributed noise terms

make_test_Data <- function(m_obs , var_noise){
edges <- 20
a1 <- runif(edges ,0.5 ,2)
a2 <- sample(c(-1,1),edges , replace=TRUE)
a <- a1*a2 # vector with regression coefficients for the 20 edges

1. pip3
x_pip3 <- rnorm(m_obs , sd=1)
pip3 <- (x_pip3 - mean(x_pip3))/sd(x_pip3)

2. plcg
x_plcg <- a[1]* pip3 + rnorm(m_obs , sd=sqrt(var_noise))
plcg <- (x_plcg - mean(x_plcg))/sd(x_plcg)

3. pip2
x_pip2 <- a[2]* pip3 + a[3]*plcg + rnorm(m_obs , sd=sqrt(var_noise))
pip2 <- (x_pip2 - mean(x_pip2))/sd(x_pip2)

4. pkc
x_pkc <- a[4]* pip2 + a[5]*plcg + rnorm(m_obs , sd=sqrt(var_noise))
pkc <- (x_pkc - mean(x_pkc))/sd(x_pkc)

5. pka
x_pka <- a[6]* pkc + rnorm(m_obs , sd=sqrt(var_noise))
pka <- (x_pka - mean(x_pka))/sd(x_pka)

6. jnk
x_jnk <- a[7]* pkc + a[8]* pka + rnorm(m_obs , sd=sqrt(var_noise))
jnk <- (x_jnk - mean(x_jnk))/sd(x_jnk)

7. p38
x_p38 <- a[9]* pkc + a[10]* pka + rnorm(m_obs , sd=sqrt(var_noise))
p38 <- (x_p38 - mean(x_p38))/sd(x_p38)

8. raf
x_raf <- a[11]* pkc + a[12]* pka + rnorm(m_obs , sd=sqrt(var_noise))
raf <- (x_raf - mean(x_raf))/sd(x_raf)

9. mek
x_mek <- a[13]* pkc + a[14]* pka + a[15]* raf + rnorm(m_obs , sd=sqrt(var_

noise))
mek <- (x_mek - mean(x_mek))/sd(x_mek)

10. erk
x_erk <- a[16]* pka + a[17]* mek + rnorm(m_obs , sd=sqrt(var_noise))
erk <- (x_erk - mean(x_erk))/sd(x_erk)

69

11. akt
x_akt <- a[18]* pip3 + a[19]* pka + a[20]* erk + rnorm(m_obs , sd=sqrt(var_

noise))
akt <- (x_akt - mean(x_akt))/sd(x_akt)

daten <- cbind(pip3 , plcg , pip2 , pkc , pka , jnk , p38 , raf , mek , erk , akt)

return(t(daten))
}

#
###

##################### function for plotting the ROC curve

library(limma)
library(ROC)

draw_ROC <- function(postP , trueEdges , steps =0.01){

n1 <- numeric (0)
for(i in 1:dim(postP)[1]){

for(j in 1:dim(postP)[2]){
if (abs(i-j) >0){
n1 <- c(n1 , postP[i,j])
}
}

}

n2 <- numeric (0)
for(i in 1:dim(trueEdges)[1]){

for(j in 1:dim(trueEdges)[2]){
if (abs(i-j) >0){
n2 <- c(n2 , trueEdges[i,j])

}
}

}

sp <- sort(n1) # posterior probabilities
st <- n2[order(n1)] # true ordered by posterior probabilities

rocc.obj <- rocdemo.sca(n2, n1 , rule=NULL , cutpts=NA)#seq(0,1,steps))

return(list(plot((1-rocc.obj"spec"),
rocc.obj"sens", type="l",las=1, xlab="1 - specificity", ylab="sensitivity
", main=’ROC curve’), abline(0,1, lty=2)))

70

}

#
###

make_true_Net <- function (){

NETWORK <- matrix(numeric (11*11) ,11,11)

1. pip3

2. plcg
NETWORK [1,2] <- 1

3. pip2
NETWORK [1,3] <- 1
NETWORK [2,3] <- 1

4. pkc
NETWORK [2,4] <- 1
NETWORK [3,4] <- 1

5. pka
NETWORK [4,5] <- 1

6. jnk
NETWORK [4,6] <- 1
NETWORK [5,6] <- 1

7. p3B
NETWORK [4,7] <- 1
NETWORK [5,7] <- 1

8. raf
NETWORK [4,8] <- 1
NETWORK [5,8] <- 1

9. mek
NETWORK [4,9] <- 1
NETWORK [5,9] <- 1
NETWORK [8,9] <- 1

10. erk
NETWORK [5 ,10] <- 1
NETWORK [9 ,10] <- 1

71

11. akt
NETWORK [1 ,11] <- 1
NETWORK [5 ,11] <- 1
NETWORK [10 ,11] <- 1

return(NETWORK)
}

#
###

##################### function for computing the AUROC value and plotting
the ROC

library(limma)
library(ROC)

compute_AUROC <- function(postP , trueEdges , steps =0.01){

n1 <- numeric (0)
for(i in 1:dim(postP)[1]){

for(j in 1:dim(postP)[2]){
if (abs(i-j) >0){
n1 <- c(n1 , postP[i,j])
}
}

}

n2 <- numeric (0)
for(i in 1:dim(trueEdges)[1]){

for(j in 1:dim(trueEdges)[2]){
if (abs(i-j) >0){
n2 <- c(n2 , trueEdges[i,j])

}
}

}

sp <- sort(n1) # posterior probabilities
st <- n2[order(n1)] # true ordered by posterior probabilities

rocc.obj <- rocdemo.sca(n2, n1 , rule=NULL , cutpts=NA)#seq(0,1,steps))

return(auROC(st ,sp))

}

72

#
###

Extrahiere das CPDAG des wahren Netwzerks

extract_cpdag_of_dag <- function(true_incidence){

L <- list()

nodes <- dim(true_incidence)[1]

k <- cpdag(true_incidence)

dummy <- matrix(numeric(nodes*nodes),nrow=nodes)

if(length(nrow(k))!=0){
dummy[k[,1]] <- k[,5]
L <- dummy

}

if(length(nrow(k))==0 && length(k) >0){
dummy[k[1]] <- k[5]
L <- dummy

}

mat.com <- matrix(numeric(nodes*nodes),nrow=nodes)
mat.re <- matrix(numeric(nodes*nodes),nrow=nodes)

com <- which(L>0)
re <- which(L<0)

mat.com[com] <- 1
mat.re[re] <- 1
mat <- mat.com + mat.re + t(mat.re)

return(mat)
}

Listing 1: HOI?

A.2 Code to perform the structure MCMC algorithm for sample size 10

#function that takes as input Data_2017 and randomises 10 obs and then runs
structure MCMC and then takes edgesaveragethreshold as final

eveytime change in the end number of edgesaveragethreshold , 3times

#generate random vector with 10 integers , ranging from 0 tot 2017

73

randomvec=floor(runif(10, min=1, max =2018))

#select 10 columns of the randomvec
Data_10obs=Data_2017 obs[,randomvec]

#call it Data , because is used in algorithm
Data=Data_10obs

no. of network nodes
n_nodes <- nrow(Data)

Total no. of MCMC iterations per run
#20000 default
iterations <- 80000
Thin -out by a factor of 100
step_save <- 100

start_incidence <- matrix(0,n_nodes ,n_nodes)

Sim_1 <- strMCMC(Data , start_incidence , iterations , step_save)
Sim_2 <- strMCMC(Data , start_incidence , iterations , step_save)
Sim_3 <- strMCMC(Data , start_incidence , iterations , step_save)

The graphs:
Sim_1[[1]]

The scores:
Sim_1[[2]]

Exercise 3
n_1 <- length(Sim_1[[2]])
n_2 <- length(Sim_2[[2]])
n_3 <- length(Sim_3[[2]])

plot (1:n_1,Sim_1[[2]] , type="l", ylab="log P(D|G)", xlab="graphs", main="
Trace Plots")

lines (1:n_2,Sim_2[[2]] , col="blue")
lines (1:n_3,Sim_3[[2]] , col="red")
cpdags_1 <- cpdag_list(Sim_1[[1]] ,100)
cpdags_2 <- cpdag_list(Sim_2[[1]] ,100)
cpdags_3 <- cpdag_list(Sim_3[[1]] ,100)
edges_mat_1 <- cpdags_1[[3]]
edges_mat_2 <- cpdags_2[[3]]
edges_mat_3 <- cpdags_3[[3]]
edges_mat_1
edges_mat_2
edges_mat_3

Arrange the marginal edge posterior probability matrices as vectors:

74

edges_vec_1 <- numeric (0)
edges_vec_2 <- numeric (0)
edges_vec_3 <- numeric (0)

for (i in 1:n_nodes){
for (j in 1:n_nodes){

if (abs(i-j) >0){
edges_vec_1 <- c(edges_vec_1,edges_mat_1[i,

j])
edges_vec_2 <- c(edges_vec_2,edges_mat_2[i,

j])
edges_vec_3 <- c(edges_vec_3,edges_mat_3[i,

j])
}

}
}

PLOT THE RESULTS

par(mfrow=c(2,2))

plot(edges_vec_1,edges_vec_2,pch=4, xlab="Run 1", ylab="Run 2", main="1
versus 2")

lines (0:1 ,0:1, type=’l’, col="red")

plot(edges_vec_2,edges_vec_3,pch=4, xlab="Run 2", ylab="Run 3", main="2
versus 3")

lines (0:1 ,0:1, type=’l’, col="red")

plot(edges_vec_1,edges_vec_3,pch=4, xlab="Run 1", ylab="Run 3", main="1
versus 3")

lines (0:1 ,0:1, type=’l’, col="red")

##

#function that takes average of three matrixes and then takes threshold

#take average marginal edge posterior of the three runs
#edgesaverage =(edges_mat_1+edges_mat_2+edges_mat_3)*(1/3)

#take threshold
#edgesaveragethreshold10=threshold(edgesaverage ,0.55)
data10sample10_1= edges_mat_1
data10sample10_2= edges_mat_2
data10sample10_3= edges_mat_3

#save in .csv file
write.table(data10sample10_1, file="data10sample10_1.csv", row.names=F, sep

=",")
write.table(data10sample10_2, file="data10sample10_2.csv", row.names=F, sep

75

=",")
write.table(data10sample10_3, file="data10sample10_3.csv", row.names=F, sep

=",")

Listing 2: HOI?

A.3 Script for scatterplots different data10samples

#script that makes scatter plots for different data10samples.
#choose if takes average of 3 best or chooses just one
#I have chosen that it takes average of them all
#function that takes average of three matrixes and then takes threshold

#take average marginal edge posterior of the three runs of
#a specific data10sample

averagedata10sample1 =(data10sample1_1+ data10sample1_2+ data10sample1_3)*(1/
3)

averagedata10sample2 =(data10sample2_1+ data10sample2_2+ data10sample2_3)*(1/
3)

averagedata10sample3 =(data10sample3_1+ data10sample3_2+ data10sample3_3)*(1/
3)

averagedata10sample4 =(data10sample4_1+ data10sample4_2+ data10sample4_3)*(1/
3)

averagedata10sample5 =(data10sample5_1+ data10sample5_2+ data10sample5_3)*(1/
3)

averagedata10sample6 =(data10sample6_1+ data10sample6_2+ data10sample6_3)*(1/
3)

averagedata10sample7 =(data10sample7_1+ data10sample7_2+ data10sample7_3)*(1/
3)

averagedata10sample8 =(data10sample8_1+ data10sample8_2+ data10sample8_3)*(1/
3)

averagedata10sample9 =(data10sample9_1+ data10sample9_2+ data10sample9_3)*(1/
3)

averagedata10sample10 =(data10sample10_1+ data10sample10_2+ data10sample10_3)*
(1/3)

Arrange the averagedata100sample matrices as vectors:

avdata10_vec_1 <- numeric (0)
avdata10_vec_2 <- numeric (0)
avdata10_vec_3 <- numeric (0)
avdata10_vec_4 <- numeric (0)
avdata10_vec_5 <- numeric (0)
avdata10_vec_6 <- numeric (0)
avdata10_vec_7 <- numeric (0)
avdata10_vec_8 <- numeric (0)
avdata10_vec_9 <- numeric (0)
avdata10_vec_10 <- numeric (0)

76

for (i in 1:n_nodes){
for (j in 1:n_nodes){

if (abs(i-j) >0){
avdata10_vec_1 <- c(avdata10_vec_1,averagedata10sample1[i,j])
avdata10_vec_2 <- c(avdata10_vec_2,averagedata10sample2[i,j])
avdata10_vec_3 <- c(avdata10_vec_3,averagedata10sample3[i,j])
avdata10_vec_4 <- c(avdata10_vec_4,averagedata10sample4[i,j])
avdata10_vec_5 <- c(avdata10_vec_5,averagedata10sample5[i,j])
avdata10_vec_6 <- c(avdata10_vec_6,averagedata10sample6[i,j])
avdata10_vec_7 <- c(avdata10_vec_7,averagedata10sample7[i,j])
avdata10_vec_8 <- c(avdata10_vec_8,averagedata10sample8[i,j])
avdata10_vec_9 <- c(avdata10_vec_9,averagedata10sample9[i,j])
avdata10_vec_10 <- c(avdata10_vec_10, averagedata10sample10[i,j])

}
}

}

##################

my_list <- list(avdata10_vec_1, avdata10_vec_2,avdata10_vec_3,avdata10_vec_
4,avdata10_vec_5,avdata10_vec_6,avdata10_vec_7,avdata10_vec_8,avdata10_
vec_9,avdata10_vec_10)

#names(my_list) <- c(" avdata10_vec_1", "avdata10_vec_2"," avdata10_vec_3" ,"
avdata10_vec_4"," avdata10_vec_5"," avdata10_vec_6"," avdata10_vec_7","
avdata10_vec_8"," avdata10_vec_9"," avdata10_vec_10")

######################
PLOT THE RESULTS
par(mfrow=c(2,2))
for (i in 1:9){

a=as.numeric(i)+1
for (j in as.numeric(a):n_nodes){

plot(my_list[[i]],my_list[[j]],pch=4, xlab="Run 1", ylab="Run 2", main=
paste("data10sample;",i,"versus", j))

lines (0:1 ,0:1, type=’l’, col="red")
}

}

Listing 3: HOI?

A.4 Script for scatterplots different sample sizes

#avavdata10_vec is average of 10 runs of sample10
avavdata10_vec=(avdata10_vec_1+ avdata10_vec_2+ avdata10_vec_3+ avdata10_vec_

4+ avdata10_vec_5+ avdata10_vec_6+ avdata10_vec_7+ avdata10_vec_8+ avdata10_
vec_9+ avdata10_vec_10)*(1/10)

77

#save in .csv file
write.table(avavdata10_vec , file="avavdata10_vec.csv", row.names=F, sep=",

")

#avdata100_vec is average of 10 runs of sample100
avavdata100_vec=(avdata100_vec_1+ avdata100_vec_2+ avdata100_vec_3+ avdata100_

vec_4+ avdata100_vec_5+ avdata100_vec_6+ avdata100_vec_7+ avdata100_vec_8+
avdata100_vec_9+ avdata100_vec_10)*(1/10)

#save in .csv file
write.table(avavdata100_vec , file="avavdata100_vec.csv", row.names=F, sep=

",")

#avdata500_vec is average of 10 runs of sample500
avavdata500_vec=(avdata500_vec_1+ avdata500_vec_2+ avdata500_vec_3+ avdata500_

vec_4+ avdata500_vec_5+ avdata500_vec_6+ avdata500_vec_7+ avdata500_vec_8+
avdata500_vec_9+ avdata500_vec_10)*(1/10)

#save in .csv file
write.table(avavdata500_vec , file="avavdata500_vec.csv", row.names=F, sep=

",")

#
##

avavdata10_vec=c(avavdata10_vec)
avavdata100_vec=c(avavdata100_vec)
avavdata500_vec=c(avavdata500_vec)

###
#plots
par(mfrow=c(2,2))

plot(avavdata10_vec [[1]], avavdata100_vec [[1]],pch=4, xlab="Run 1", ylab="
Run 2", main="avavdata ;10 versus 100")

lines (0:1 ,0:1, type=’l’, col="red")

plot(avavdata10_vec [[1]], avavdata500_vec [[1]],pch=4, xlab="Run 2", ylab="
Run 3", main="avavdata ;10 versus 500")

lines (0:1 ,0:1, type=’l’, col="red")

plot(avavdata100_vec [[1]], avavdata500_vec [[1]],pch=4, xlab="Run 1", ylab="
Run 3", main="avavdata ;100 versus 500")

78

lines (0:1 ,0:1, type=’l’, col="red")

Listing 4: HOI?

79

B Spotify distributions

Figure 25: Distribution acousticness downloaded from Spotify

Figure 26: Distribution danceability downloaded from Spotify

80

Figure 27: Distribution energy downloaded from Spotify

Figure 28: Distribution instrumentalness downloaded from Spotify

81

Figure 29: Distribution liveness downloaded from Spotify

Figure 30: Distribution loudness downloaded from Spotify

82

Figure 31: Distribution speechiness downloaded from Spotify

Figure 32: Distribution tempo downloaded from Spotify

83

Figure 33: Distribution valence downloaded from Spotify

84

	Introduction
	Introduction Bayesian Networks
	Independence and factorization of the joint probability function

	Data
	Method
	Marginal edge posterior probabilities: A strategy to build-up a graph that fits the data best
	Metropolis-Hastings Structure MCMC sampler: Sampling to efficiently compute all possible graphs of P(graph|data)
	Bayesian Statistics
	BGe scoring metric: How to calculate the last terms
	Convergence Diagnostics
	Trace plot
	Scatter plot

	Work in R

	Results
	Number of iterations needed
	Example of sufficient Trace plot & scatter plot
	The 45 scatter plots between two out of the ten edge scores of the data samples of 10 songs
	The 45 scatter plots between two out of the ten edge scores of the data samples of 100 songs
	The 45 scatter plots between two out of the ten edge scores of the data samples of 500 songs
	The 3 scatter plots of averages of the edge scores of the ten different samples of sizes 10, 100 and 500
	Resulting DAG

	Discussion
	Conclusion
	R Code
	Codes for structure MCMC grzegorczyk
	Code to perform the structure MCMC algorithm for sample size 10
	Script for scatterplots different data10samples
	Script for scatterplots different sample sizes

	Spotify distributions

