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Abstract: Bench-Capon (1993) showed that high accuracies on an open texture classification
task does not necessarily mean that the reasoning of the model making the prediction is sound.
In that paper it was shown that an in-depth analysis of the decision making process of an MLP
can indicate the discrepancies in the models understanding, or rationale, of the domain that was
trained on. This paper first replicated the original paper by Bench-Capon and then extended that
paper with a more in-depth analysis of the domain, new machine learning systems and improved
hyperparameter optimization. The MLP, Random Forest classifier and XGBoost classifier were
all compared in their performance and rationales on the same domain. The conclusions from the
paper by Bench-Capon were reaffirmed, with the primary conclusion from the extension being
that the Random Forest and XGBoost classifiers are not capable of learning completely sound
rationales for the welfare domain, despite being more optimized and being trained on larger
datasets.

1 Introduction

1.1 Theoretical background

Neural networks, as explained in Zou, Han, and
So (2008), are used for a wide array of applica-
tions in which they are often used as black box
models that predict outcomes when given a set
of input variables. In such black box systems,
the information inside of the model, which its
decisions are based on, is often unknown. The
outcome and performance are frequently only of
importance, whereas the decision making process
behind a decision is not. This is especially the
case in deep learning models. However in some
fields the outcome actually has to be explained,
such as when AI systems are used in law. The
paper by Atkinson, Bench-Capon, and Bollegala
(2020) gives an overview of explainable AI in law,
concerning itself with identifying many different
approaches towards explaining model outcomes.
Explanation can be achieved by taking a look
at the decision making process of a black box
system to find out why a neural network is making
decisions with regards to the output; the decision
making process henceforth being called a rationale.

The paper by Bench-Capon (1993) assesses

the soundness of the rationale given by a neural
network when trained on an open texture domain.
The neural network, specifically a multi-layer-
perceptron (MLP), was trained and tested on a
dataset which was based on six rules from the
welfare domain, resulting in a boolean outcome
variable. The welfare domain concerns itself with
defining if a person visiting a patient is eligible
for a welfare benefit. Specifically, the results were
analyzed to see if the MLP was capable of forming
a sound rationale. The rationale was extracted
from the MLP through the use of graphs. Criti-
cally, the accuracies of the MLP were often high
but Bench-Capon found that it was not capable of
perfectly recognizing rules that consisted of non-
straightforward combinations of factors. Which
showed that the MLP was not capable of forming
a sound rationale with regards to the defined open
texture system. The paper concludes by warning
against usage of neural networks which report
high accuracies because it does not equal a sound
rationale.

The primary concern of the machine learning
models in this paper is the formation of sound
rationales when learning for a classification task.
In general a sound rationale consists of a model
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being capable of forming a sound decision making
process with regards to the outcome produced. A
decision making process can be analyzed in differ-
ent ways, but will primarily be analyzed through
graphs and accuracies in this paper. It is important
to note that high accuracies do not equate to a
sound rationale, as was found by Bench-Capon:
A machine learning model can output the right
results, but for the wrong reasons. In the case of
the research by Bench-Capon a sound rationale for
the entire welfare domain could only be formed
when all rules were learned correctly by the MLP.

To formulate model decision making, Lund-
berg and Lee (2017) introduced SHapley Additive
exPlanations (SHAP): a framework for interpreting
the results of a machine learning system when
trained on a learning task. In the paper it is first
proposed that the model itself is always the best
explanation for the results, but sometimes, such as
in deep learning or in ensemble models, the models
are too complex be used as the explanation. SHAP
explains the outcome of a model by showing the
different features and in how much they contribute
to the outcome. It does this by forming a power
set of the features that determine the outcome. All
possible combinations of features are considered as
models. The connections between the models, can
give information about the marginal contributions
of their features. For example by comparing a
model with only one variable to a model that
has that variable in combination with another
variable. To form a final conclusion about the
importance of a feature, all marginal contributions
of a feature are combined and compared to that
of a single marginal contribution. In doing so the
prediction is compared to that of the null model,
showing the effect of a specific feature compared
to a baseline. SHAP attempts to solve the tension
between accuracy and accountability by providing
easy to understand explanations that are widely
applicable in machine learning systems. SHAP is
especially relevant to this paper as it has the same
goal of explaining decision making in machine
learning models.

Several others have replicated the paper by
Bench-Capon in different settings. Možina, Žabkar,
Bench-Capon, and Bratko (2005) attempted to
find a sound rationale by use of inductive logic

programming. Možina et al. used the same welfare
domain as used by Bench-Capon which they used
to show that their rationale found four of the
six rules that defined the result of the outcome
variable. Another approach was taken by Wardeh,
Bench-Capon, and Coenen (2009), who employed
a case based reasoning system to form a dialogue
between two agents that would determine the
final result and more importantly, which rules had
an effect on the final result. Their system, called
PADUA, was able to get an accuracy of over 90%.

1.2 Extended rationale analysis

This paper will extend the research by Bench-
Capon by performing the same analysis but
with two alternative machine learning systems:
the Random Forest classifier and the XGBoost
classifier. These two machine learning systems
are chosen because they usually perform well in
classifying decision processes and to analyze if this
improved performance helps in forming a better
explanation of the decision making process.

Random Forests (Breiman, 2001) consist of a
number of decision trees (Kamiński, Jakubczyk,
and Szufel, 2018) which are first formed randomly.
The decision trees in the forest are trained by su-
pervised bootstrapping; sub-sampling parts of the
training data to decision trees. The training works
well because in each decision tree, a node does not
take the best predictor, but a random predictor,
which establishes more diversity. After the initial
set of trees is made and the model is trained, the
Random Forest can predict a classification task
by averaging the result of the different trees in
the forest. The averaging is why it deals with the
core features of the prediction task well. Random
Forests can be used in a wide variety of learning
settings, such as regression or classification. One
of the distinguishing characteristics of a Random
Forest is how well it adapts to new or unexpected
data; the averaging causes new training data to
have little effect which leads to robustness.

XGBoost (Chen and Guestrin, 2016) is a Random
Forest based algorithm centered around extreme
gradient boosting. The XGBoost models are
trained by iteratively adding new trees to the
forest with their leaves and nodes based on those
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of combined previous models. The new leaves and
nodes are based on minimizing predicted residual
error from those previous models. New models keep
being added until there is no more improvement in
the performance, resulting in a final model; with
the new models minimizing the loss by using the
gradient descent algorithm. Besides being very fast
compared to other machine learning systems due
to its distributed computing and parallelization,
it is also widely applicable in many different
classification tasks. This wide applicability is due
to the scalability of the boosting of each model
and its basis in supervised learning.

1.3 Research description

This paper will first replicate the analysis done by
Bench-Capon to reaffirm the conclusions of that
paper. The research by Bench-Capon will then be
extended. The extension includes new specialized
datasets, that can be used to further analyze sep-
arate rules in the welfare domain. The machine
learning system used in that paper, the MLP, will
also be improved by optimizing parameters through
halving grid search. The MLPs performance will
also be compared with two new machine learning
systems: the Random Forest classifier and the XG-
Boost classifier. Both of these new machine learning
systems will also have improved parameter search.
It is then particularly interesting to analyse the ra-
tionales of these different machine learning systems,
which leads to the research question:
How do the rationales of different machine learn-
ing systems, with similar performance, compare in
terms of soundness?

2 Methods

2.1 Welfare domain

For the replication of the paper by Bench-Capon,
the artificial welfare domain is used. The domain
is concerned with defining if a person is allowed to
get a welfare benefit to pay for the trip of visiting
a spouse in the hospital. There are six rules that
defined the domain:

1. The person should be of pensionable age (60
for a woman, 65 for a man)

2. The person should have paid contributions in
four out of the last five relevant contribution
years

3. The person should be a spouse of the patient
4. The person should not be absent from the UK
5. The person should have capital resources not

amounting to more than 3000 pounds
6. If the relative is an in-patient the hospital

should be within a certain distance: if an out-
patient, beyond that distance

It is important to note that some rules are more
complex than simply stating a boolean condition.
For example rule one changes the boolean condi-
tion based on the gender of the visitor. It is also
possible to translate the rules for the welfare do-
main to simple predicate logic. Rules 1-6 can be
found in Table 2.1 as rules R1(x)-R6(x). It should
be noted that only the combination of all the rules
being true leads to eligibility for a welfare benefit.

2.2 Dataset generation

Variable Type Range
Age Numerical 0-100
Resource Numerical 0-10000
Distance Numerical 0-100
Contribution 1 Numerical 0-1
Contribution 2 Numerical 0-1
Contribution 3 Numerical 0-1
Contribution 4 Numerical 0-1
Contribution 5 Numerical 0-1
Residency Boolean Yes | No
Spouse Boolean Yes | No
Type Boolean In | Out
Gender Boolean Male | Female
Noise Numerical 0-100

Table 2.2: Dataset generation definition.

Datasets are generated to provide training and
testing data for the experiment. In total there are
twelve variables resulting from the domain. Each
rule in the welfare domain concerns itself with a
number of boolean and/or numerical variables, a
definition of all the variables in the domain is given
in Table 2.2. Some things that should be noted
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Eligible(x) ⇔ R1(x) ∧ R2(x) ∧ R3(x) ∧ R4(x) ∧ R5(x) ∧ R6(x)
R1(x) ⇔ (Gender(x) = Female ∧ Age(x) ≥ 60) ∨ (Gender(x) = Male ∧ Age(x) ≥ 65)
R2(x) ⇔ | Con1(x), Con2(x), Con3(x), Con4(x), Con5(x) | > 3
R3(x) ⇔ Spouse(x)
R4(x) ⇔ Residency(x)
R5(x) ⇔ Resource(x) ≤ 3000
R6(x) ⇔ (Type(x) = In ∧ Distance(x) ≤ 50) ∨ (Type(x) = Out ∧ Distance(x) > 50)

Table 2.1: Rules for the welfare domain expressed logically.

when studying Table 2.2: the resource variable is
always set in steps of ten and the noise variable
is always included 52 times for each datapoint
with each separate noise variable having a new
randomly generated value. It should also be noted
that the in or out patient distance threshold is set
to 50, all numerical variables are always integers
and any numerical variable has a randomly gener-
ated value based on a uniform distribution of the
range. If that variable is supposed to fail, then the
range is adapted and the value is also generated
based on a uniform distribution over the failing
range.

In general for the replication, training of the
MLPs is done on datasets comprising 2400 data-
points with 50 percent eligibility, each datapoint
having 64 variables; 52 noise variables, and the
12 domain variables. Testing is done on datasets
comprising 2000 datapoints, with the same char-
acteristics as the training datasets.

Four different types of datasets are generated
in the replication to train the MLPs and test them.
The standard dataset is the multiple fail dataset
(A). In this dataset the datapoints would not be
eligible due to multiple rules being false, instead
of just one rule. This dataset is used because it is
the most common version of the welfare domain,
as most visitors will fail on multiple rules from
the domain, not just one. The amount of rules
that a datapoint fails on is randomly decided,
with a minimum of 2 and a maximum of 6.
The rules that are failed on are also randomly
decided, with no rule being selected multiple times.

Another dataset that is used to test and train the
MLPs is the single fail dataset (B), which was
made in response to the multiple fail dataset. It

was made in response to the multiple fail dataset,
because that dataset got relatively high accuracies,
as shown by Bench-Capon; the single fail dataset
could give an indication as to if the MLP was
capable of understanding all the rules of the
domain separately. In the single fail dataset, the
datapoints would not be eligible, but only because
it failed on a single rule from the domain. This
rule is randomly picked from the six rules, for each
datapoint. Two more datasets were introduced as
rationale evaluation datasets for the replication.

2.3 Rationale evaluation datasets

There are six different types of datasets that can
be used to evaluate the rationale of the system.
Two of those are used in the replication, with
the other four being introduced in the extension.
Specifically, datasets are generated in the repli-
cation to test rules 1 and 6 only, whereas in the
extension the datasets to evaluate the remaining
rules are added as well. These rationale evaluation
datasets are introduced because they can tell a
lot more about if a machine learning system is
capable of learning a specific rule. If the machine
learning system is capable of performing well on
a rationale evaluation dataset, it is capable of
learning that rule from the welfare domain. In
the rationale evaluation datasets, the datapoints
will only fail on the specified rule, with all the
other rules evaluating to true. Which ensures that
each rationale evaluation dataset tests a machine
learning system’s ability to learn only one specific
rule, without being influenced by the other rules.

The two datasets used in the replication, the
age/gender (1) and distance/type (6) datasets are
designed to further analyze the inner workings of
the MLPs. Datapoints in the age/gender dataset
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are designed to fail on only the first rule from
the domain. In essence this means that the age
of every datapoint is randomly generated to be
a number between 0 and 100. It is important to
note that this meant that the eligibility was only
37.5%, contrasting datasets A and B, which both
had 50% eligibility rates. The resulting eligibility
of 37.5% is due to the fact that only 40% of all
females and 35% of all males will be eligible with
the uniformly randomized age values; With there
being a 50% split of males and females.

The distance/type dataset that is used to only
test the MLPs is the second of the two rationale
evaluation datasets from the replication. This
dataset is set to only fail on the sixth rule from
the domain, for every datapoint. The datapoint
has a distance value randomly set between 0 and
100. The in or out patient distance threshold for
rule six is defined to be 50, hence the eligibility for
this type of dataset is 50%.

With the definition of the rationale evalua-
tion datasets used in the replication, it is then
possible to define all the different training and test-
ing datasets used for the MLPs in the replication,
as is visible in Table 2.3.

Name Type Size Eligibility
A Train 2400 50%
A Test 2000 50%
B Train 2400 50%
B Test 2000 50%
1 Test 2000 37.5%
6 Test 2000 50%

Table 2.3: Dataset definition for the replication.

To extend the work of Bench-Capon, several new
testing datasets are included. Rules 2-5 did not
have rationale evaluation datasets in the original
experiment, so new rationale evaluation datasets
are generated to analyze those rules. All the
extended datasets have an eligibility percentage of
50. The other 50 percent will fail on a specific rule
from the welfare domain.

There are four new testing datasets introduced
in the extension. For the contribution dataset
(2), the datapoint will fail on two or more of the

contribution variables. For the spouse dataset (3),
the datapoint will fail on the spouse variable. For
the residency dataset (4), the datapoint will fail
on the residency variable. For the resource dataset
(5), the datapoint will fail on the capital resource
variable, with it being 3000 or lower.

In the replication, the training datasets have
a size of 2400 datapoints and the testing datasets
have a size of 2000 datapoints. For the extension
the sizes of those datasets are increased. The
training and testing datasets in the extension have
a size of 50000 datapoints. For the extension it
is then also possible to give an overview of the
datasets that are used, as is visible in Table 2.4.

Name Type Size Eligibility
A Train 50000 50%
A Test 50000 50%
B Train 50000 50%
B Test 50000 50%
1 Test 50000 37.5%
2 Test 50000 50%
3 Test 50000 50%
4 Test 50000 50%
5 Test 50000 50%
6 Test 50000 50%

Table 2.4: Dataset definition for the extension.

2.4 Multi-layer perceptrons

The neural networks used, as defined by Bench-
Capon, are triangle structured MLPs. All MLPs
consist of an input layer consisting of 64 nodes, an
amount of hidden layers with a different number of
nodes in each one and an output layer consisting of
a single node, which signifies the boolean outcome
of assessing the input variables, for a specific dat-
apoint. There were three different types of MLPs
used by Bench-Capon, the amount of nodes in each
hidden layer for each MLP is specified as follows:

1. One hidden layer with 12 nodes
2. Two hidden layers with 24 and 6 nodes
3. Three hidden layers with 24, 10 and 3 nodes

Version 0.24.2 of the scikit-learn (Pedregosa et al.
2011) Python library is used to implement the
MLPs for the replication. As it was not defined in
the paper by Bench-Capon, the hyperparameters
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for the three different MLPs were found empiri-
cally. The hyperparameters for the three MLPs are
the same: 3000 max iterations, a logistic activation,
learning rate initialized to 0.001 and a batch size of
50. Any parameters that need to be set for a scikit-
learn MLP but are not named, are kept at their
defaults, which can be reviewed in the documenta-
tion.

2.5 Learning systems

Three different types of learning systems are
trained on different training datasets, A or B, and
then compared in their accuracies and the ratio-
nales that they form in determining a result for a
testing dataset. The first type of learning systems
is the same one as from the replication, the MLP.
In the extension there will only be one version of
the MLP used: the MLP with three layers. This
MLP version is used because it had the best and
most consistent performance over all the datasets.
A halving grid search algorithm is used to find the
optimal hyperparameters, within computational
limits. Halving grid search entails that first all
possible candidate sets of hyperparameters are
evaluated with a low amount of resources and on
each new iteration the best candidates get more
resources The hyperparameters found for the MLP
in the extension through the halving grid search
algorithm are as follows: logistic activation, an
alpha regularization value of 0.00008, a learning
rate initialization of 0.008, a batch size of 26 and
a maximum number of iterations of 3000. Any
hyperparameters not named were kept at their
defaults.

The second type of learning system is a Ran-
dom Forest classifier. For this learning system the
halving grid search algorithm is applied as well,
to find the best hyperparameters. The resulting
hyperparameters are as follows: 16 estimators,
max depth of 19, 17 as the maximum number of
leaf nodes, a minimum samples split of 6 and a
random state of 0. Other hyperparameters are kept
at their default values and are not computed due
to irrelevance to the classification task or a lack of
computational power.

The third type of learning system is an XG-
Boost classifier. The halving grid search algorithm

is again applied to find the best hyperparameters.
The resulting hyperparameters are as follows:
16 estimators, a max depth of 7, an objective
based on minimizing the squared error, a learning
rate of 0.25 and a gamma value of 0.5. Any
hyperparameters not named were again kept at
their default values due to the same reasons as for
the Random Forest classifier. As opposed to the
Random Forest classifier and the MLP classifier,
the XGBoost classifier was not developed by
scikit-learn so a separate library was used for it
(Chen and Guestrin, 2016).

For all learning systems, the same type of
preprocessing is used. The boolean variables are
first converted to numerical variables and all the
variables are then scaled using a min max scaler.
The min max scaler scales every value in each
datapoint in the dataset to a value between 0 and
1.

2.6 Experimental setup

Over both the replication and the extension, the
machine learning systems are trained on datasets A
and B. In the replication there are only four testing
datasets, the same dataset types A and B, and two
special rationale evaluation datasets: 1 and 6. In
the extension four more rationale evaluation testing
datasets are added: the datasets for rules 2-5. An
overview of the scenarios can be found in Table 2.5.

Tested on MF trained SF trained
Multiple Fail AA BA
Single Fail AB BB
Age Gender A1 B1
Contributions A2 B2
Spouse A3 B3
Residency A4 B4
Resource A5 B5
Patient Distance A6 B6

Table 2.5: Scenario overview. The first letter
is the dataset trained on, and the second let-
ter/number is the dataset tested on.

For the results, in both the replication and the
extension, all results are averaged over 100 itera-
tions. On each iteration the models are retrained
and tested on newly generated datasets.
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Model Trained on A Model Trained on B
Tested on MLP Random Forest XGBoost MLP Random Forest XGBoost
A 99.81 ± 0.11 98.32 ± 0.34 99.92 ± 0.02 99.62 ± 0.56 99.91 ± 0.05 99.97 ± 0.02
B 88.23 ± 2.54 72.80 ± 3.13 90.74 ± 0.15 98.72 ± 0.52 90.56 ± 0.55 91.53 ± 1.44
1 76.76 ± 6.79 58.71 ± 13.93 99.53 ± 0.61 99.17 ± 1.21 97.07 ± 2.46 99.99 ± 0.05
2 97.96 ± 1.56 82.51 ± 2.46 94.99 ± 0.69 99.64 ± 0.55 96.81 ± 0.59 97.59 ± 0.92
3 98.38 ± 2.77 62.09 ± 9.67 100.0 ± 0 99.64 ± 0.56 99.06 ± 2.59 99.99 ± 0
4 98.29 ± 2.68 99.94 ± 0.17 100.0 ± 0 99.63 ± 0.55 99.99 ± 0 99.99 ± 0
5 83.02 ± 4.89 77.07 ± 12.92 100.0 ± 0 98.21 ± 0.81 99.85 ± 0.59 99.99 ± 0
6 72.87 ± 4.97 50.02 ± 0.22 50.02 ± 0.22 97.28 ± 1.28 50.02 ± 0.22 51.86 ± 8.43

Table 3.2: Mean accuracies (%) for all learning systems across all scenarios of the extension.

3 Results

3.1 MLP Accuracies

In the replication, the performance of the three dif-
ferent MLPs is measured in the form of accura-
cies and graphs. The accuracies for all the scenarios
used in the replication are visible in Table 3.1.

3.2 Rationale Evaluation

In the replication, scenarios 1 and 6 are analysed in
more detail through the use of graphs. These graphs
are important because they can be used to see if a
rule that consists of a combination of factors can
be learned by the MLPs. Figures 3.1a-3.1b depict
the resulting graphs from scenario 1, while Figures
3.1c-3.1d depict the resulting graphs from scenario
6.

3.3 Extended Accuracies

As was mentioned in section 2.3, the experiment
by Bench-Capon is extended with four new test-
ing datasets. The three layer MLP, with optimized
parameters, the Random Forest classifier and the
XGBoost all have their accuracies measured to as-
sess their performance over the 16 different scenar-
ios. For scenarios 1, 5 and 6 the results are also
expressed as graphs to assess their respective ratio-
nales. The accuracies for these three learning sys-
tems are visible in Table 3.2.

3.4 Extended Rationale Evaluation

For the extension, scenarios 1, 5 and 6 are ana-
lyzed in more detail. Scenario 5 is added to see how

the machine learning systems would perform when
tested on learning a single numerical variable with
a cutoff point, arguably an easier thing to learn
than scenarios 1 and 6, but important nonetheless.
Figure 3.2 shows all the resulting graphs when the
models are trained on either dataset A or B and
tested on the age/gender dataset. Figures 3.3 and
3.4 show the same but when the machine learning
models are tested on the resource dataset and the
distance/type dataset respectively.

Sc. MLP 1 MLP 2 MLP 3
AA 98.33 ± 0.42 98.48 ± 0.39 98.14 ± 0.42
AB 76.67 ± 1.39 78.66 ± 1.45 77.87 ± 1.57
BA 96.32 ± 0.7 95.08 ± 5.22 94.23 ± 8.37
BB 91.00 ± 0.74 89.95 ± 0.82 84.17 ± 10.88
A1 61.30 ± 5.11 66.59 ± 5.39 63.29 ± 6.37
B1 86.35 ± 1.56 85.26 ± 1.46 80.44 ± 12.16
A6 50.35 ± 0.54 50.25 ± 0.29 50.16 ± 0.34
B6 85.67 ± 1.19 83.34 ± 2.73 67.58 ± 11.02

Table 3.1: Mean accuracies (%) for the three
MLPs across all scenarios of the replication.
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(a) MLPs on scenario A1 (b) MLP 3 on scenario B1

(c) MLPs on scenario A6 (d) MLPs on scenario B6

Figure 3.1: Replication graphs for rationale evaluation.

(a) MLP on scenario A1 (b) Random Forest on scenario A1 (c) XGBoost on scenario A1

(d) MLP on scenario B1 (e) Random Forest on scenario B1 (f) XGBoost on scenario B1

Figure 3.2: All extension machine learning performance graphs for scenario 1.
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(a) MLP on scenario A5 (b) Random Forest on scenario A5 (c) XGBoost on scenario A5

(d) MLP on scenario B5 (e) Random Forest on scenario B5 (f) XGBoost on scenario B5

Figure 3.3: All extension machine learning performance graphs for scenario 5.

(a) MLP on scenario A6 (b) Random Forest on scenario A6 (c) XGBoost on scenario A6

(d) MLP on scenario B6 (e) Random Forest on scenario B6 (f) XGBoost on scenario B6

Figure 3.4: All extension machine learning performance graphs for scenario 6.
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4 Discussion

4.1 Replication

The results from the replication are similar to
those from the original paper by Bench-Capon, as
shown in Table 3.1. It was reaffirmed that all three
types of MLPs have high accuracies in scenario
AA. However, the accuracies are much lower when
those same MLPs, trained on dataset A, are tested
on dataset B; scenario AB. This is exactly the
same as in the original paper by Bench-Capon and
serves to testify to the validity the replication. The
high accuracies of scenario AA can be explained
by the MLPs only having to know a subset of the
rules to assess a datapoint correctly; the MLPs
only learn a number of rules but learning those is
enough to get the right output very often. This is
due to the fact that if a datapoint is ineligible it is
due to a combination of rules, e.g. for a datapoint
to be ineligible only one of the six rules has to
fail, some of which are easier to learn than others.
Which entails that the MLP does not have to
learn the complex rules. In scenario AB this is
different, as the MLPs have a harder learning task,
which is evident from the lower accuracies. The
learning task is much more complicated because
when training on dataset A, it can be difficult for
the MLP to assess which rules the datapoint is
failing on, due to the combination of rules that the
datapoint fails on. Finally, scenarios BA and BB
show that the MLPs are better capable of learning
each individual rule when trained on dataset B.
Opposed to dataset A, in dataset B it is much
easier for the MLP to recognize each individual
rule. This is because each datapoint only fails on
one rule, leading to a much clearer division of the
rules. Which is why the resulting accuracies for
those two scenarios are higher.

The results for scenarios A1 and B1 are dif-
ferent when compared to those of the original
paper by Bench-Capon. The graph in Figure 3.1b
shows that for scenario B1 the three layer MLP
is close to learning rule 1 correctly. However,
despite relatively high accuracies in this scenario,
as shown in Table 3.1, the lines are far from
perfect. Ideally the line would be at 0, go up and
stay at 1 at an age of 60 for women and 65 for
men. However, the graphs show that the MLP

has a hard time mimicking this. From Table 3.1
it can also be concluded that the MLPs have a
hard time learning rule 1 when trained on dataset
A. The graph in Figure 3.1a confirms this finding
as the lines go up too early with a much too
low gradient. It is important to note however,
that both results of scenarios A1 and B1 seem to
attempt to make a difference in output between
men and women, with women having a higher
chance of being eligible. Which would be a desired
effect, considering the difference in eligibility age.
However, in both scenarios the MLPs have a very
hard time of learning this difference between men
and women correctly.

The results for scenarios A6 and B6 are also
different compared to those found by Bench-
Capon; the accuracies in Table 3.1 and the
resulting graphs in Figure 3.1d are less ideal
compared to the original paper. The graph in
Figure 3.1d shows that the MLPs make a solid
attempt towards learning rule 6 correctly, however
the resulting lines are far from perfect. Ideally the
line for the in-patients would stay at 1 until the
distance threshold of 50 is reached, at that point
it should go down in a straight line and take on a
value of 0 for the rest of the range. The line for the
out-patients should ideally be exactly the opposite
compared to that of the in-patients. Figure 3.1d
shows that the line for both the in patients and the
out patients begin to decrease/increase much too
early and also much too slowly. It is also important
to point out the different minimum values between
the two lines, with the out-patients having a
minimum of about 0.2 while the in patients have
the almost correct minimum value of close to 0.
An odd result, as it would be more logical for
the two lines to mimic each other exactly. The
accuracies in Table 3.1 show that for scenario
A6 the accuracies are much too low for the MLP
to have correctly learned the rule. The graph in
Figure 3.1c shows why that is; the MLPs assume
rule 6 to always be correct in scenario A6, hence
causing the accuracy of 50 percent.

4.2 Testing on extended datasets

For the extension, the three layer MLP, as used
by Bench-Capon is optimized with better hyper-
parameters, which results in better accuracies
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overall. When the accuracies in Table 3.2 are
reviewed, it can be concluded that the MLP is not
able to learn all the rules when trained on dataset
A. Despite the optimized hyperparameters and
a larger training dataset, the accuracies in Table
3.2 show that only some rules are learned almost
perfectly. Specifically, rule 1, 5 and 6 are not
learned correctly. Figure 3.2a shows this in more
detail, the lines are far from ideal, specifically, the
lines go up way too early; detailing the inability
of the MLP to learn the rule correctly. Which is
confirmed by Figures 3.3a and 3.4a. The MLP
seems to attempt to learn a rule, but seems unable
to with the given hyperparameters and training
dataset: not forming a sound rationale. When
reviewing Table 3.2, it can be concluded that the
MLP is able to learn each rule quite well when
trained on dataset B, as opposed to being trained
on dataset A. The standard deviations are low
as well, meaning that over the 100 iterations, the
MLP is often able to find the rule. The graphs in
Figures 3.2d and 3.4d confirm this finding as for
both of them the lines are close to ideal. Figure
3.3d also shows a close to ideal line, the ideal line
being 1 for a resource value from 0 to 3000 and 0
for a resource value beyond the 3000 threshold.

For the Random Forest classifier the resulting
accuracies in Table 3.2 show a limited understand-
ing of most of the rules, when trained on dataset
A. The accuracies show that only rule 4 is learned
nearly correctly. For all the other rules, the rule
is either learned somewhat correctly, for example
rules 2 and 5, or not at all, which includes the
rules left over. Figure 3.2b shows that the Random
Forest classifier is unable to perceive that the
eligibility value can never be positive when the
age value is lower than 60. Figure 3.3b shows a
correct understanding of the rule, up until the
threshold point of 3000, after which the output
seems to converge to 0.5. It is important to note
the high standard deviations on rules 1 and 5,
which signify that the Random Forest classifier is
sometimes able to get better and worse results,
depending on differences in the training dataset.
It is also important to note the differences in
accuracies when comparing rules 3 and 4. They
are logically the same rule, both with a boolean
value that should be true for the datapoint to
be eligible. However, the accuracies differ greatly,

which is an unexpected result. When trained on
dataset B, the Random Forest classifier performs
a lot better. This is evident from the accuracies in
Table 3.2. However, not all rules are learned well,
for example rule 6 is not learned well at all. The
graph for that scenario, in Figure 3.4e, shows that
the rule is always assumed to be satisfied; which
shows a complete misunderstanding of the rule.
On the other hand, all the other rules are learned
quite well when trained on dataset B.

For the XGBoost classifier the resulting accu-
racies in Table 3.2 show promising results when
trained on the dataset A. Rule 2 is learned well,
but somewhat worse than the other machine
learning systems and the classifier is unable to
learn rule 6 correctly, with the output being very
far from the ideal line. Figure 3.4c shows an
interesting result when compared to the result
from the model trained on dataset B; The rule is
not learned at all, the classifier is unable to see
the pattern of the rule, with the output always
set to 1. It is also important to note the relatively
low standard deviations of the XGBoost classifier.
Which means that in all scenarios, except A6, the
XGBoost classifier is able to find the correct rule
with a nearly equal accuracy over all the iterations.
When trained on dataset B, the results are not
very different compared to when the classifier is
trained on dataset A. Only rule 6 is not learned
well at all, while the other rules are learned close
to perfection. The graph in Figure 3.4f shows that
the classifier is making an attempt at learning the
rule, but does not succeed in learning the rule
perfectly. It can be seen that the lines are moving
along the same trend as they are supposed to, as
visible in Figure 3.4d, but to a much smaller degree
and at a too high output value. This result could
be explained by the XGBoost classifier very rarely
making a much better attempt at learning rule
6, judging from the increased standard deviation.
But since this is so rare, it has a small effect on
the final accuracy value, considering the amount
of iterations that were run.
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4.3 Comparison between rationales
extracted by the machine learn-
ing systems

The three different machine learning systems
tested in the extension all form rationales for de-
ciding on eligibility for the welfare domain. When
comparing the rationales that are formed when the
machine learning systems are trained on dataset
A to those that are formed when they are trained
on dataset B, the results are almost always better
when they are trained on dataset B. This is an
expected result, as the division of rules in dataset
B allows the machine learning systems to learn
the rules better, as opposed to the combination
of rules in dataset A. However, it is important to
note that in the case of the XGBoost classifier,
this difference in rationale between training on
dataset A and training on dataset B, is quite
minimal compared to the Random Forest classifier
and the MLP. This might be due to the underlying
principles of the XGBoost classifier, causing it to
learn the rules better. Specifically in comparison
to the rationale extracted by the Random Forest
classifier, when trained on dataset A, the effect
of extreme gradient boosting combined with tree
selection proves very effective.

Figures 3.2 - 3.4 are useful in determining
the differences in the rationales extracted from the
datasets. Figures 3.2d - 3.2f show the difference
in the decision making regarding rule 1, when the
machine learning models are trained on dataset B.
Essentially, the MLP is able to infer a difference
between male and female gender, whereas the
Random Forest classifier is not. The XGBoost
classifier performs better than the both of them
by assessing a difference between male and female
and also getting close to perfect threshold points.
Which it is only approximately 5 years removed
from for both male and female genders. From Fig-
ures 3.3d - 3.3f it can be seen that the difference
between the three machine learning systems is less
obvious in those graphs. All of them are able to
get the threshold value, or at least very close to
it; testifying to their ability of extracting a well
formed rationale. However, only the MLP does
not have the desired straight line, showing that in
this case it does not learn the rule 5 completely
correctly. Figures 3.3a - 3.3f show an entirely

different story with regards to rationale extraction.
The Random Forest and XGBoost classifiers are
unable to extract a reasonable rationale. Only the
MLP has a somewhat decent performance, and
in doing so is able to get very close to a sound
rationale for rule 6.

4.4 Weak performance on rule 6

In general, the performance on rule 6 is a lot worse
than initially expected. Across all the machine
learning systems, in both the replication and the
extension, the accuracies for both scenarios A6 and
B6 are lower than expected. It is possible that with
a different setup of hyperparameters, the results
for the different machine learning systems could be
better on rule 6. This is a possibility because for
the MLP it was found empirically that a lower al-
pha regularization parameter lead to better results.
An accuracy value that was previously close to 50
percent would be improved to around 70 percent
with the lowered alpha regularization hyperparam-
eter, with both MLPs trained on dataset A. It is
possible that the same could be true for both the
Random Forest classifier and the XGBoost classi-
fier, with a lower regularization parameter leading
to the systems being able to learn rule 6 more easily,
both when trained on dataset A and B. However,
better performance does not necessarily mean that
the machine learning systems would learn a sound
rationale.

4.5 Comparison with replication

In comparing the replication to the extension, es-
sentially the effects of optimization of the hyperpa-
rameters for the three layer MLP and the extension
of dataset sizes is measured. One of the primary
things that is important to note is that the accura-
cies are higher in general in the extension due to the
larger datasets used, as is evident when comparing
Table 3.1 to Table 3.2. When comparing Figure 3.2a
to Figure 3.1a it also becomes clear that in the ex-
tension, the rationale extracted by the MLP is bet-
ter, as the lines lie closer to the ideal line. When
trained on dataset B the MLP also has a better
rationale in the extension compared to the replica-
tion, as is visible when comparing Figure 3.2d to
Figure 3.1b. When comparing the figures for rule
6, the conclusion is essentially the same, with the
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lines being closer to the ideal line for the extension
when compared to the replication. Higher accura-
cies and better rationales prove the importance of
dataset sizes and model hyperparameters.

4.6 Conclusion

This paper aims to analyze the rationales that dif-
ferent machine learning systems form when trained
on the same domain. The paper by Bench-Capon
has been replicated; the results are different in some
cases, but the overall conclusions are the same. This
paper introduces some extensions, which include
larger datasets, new machine learning systems and
improved hyperparameter optimization. Based on
the results a few things can be concluded:

• Larger datasets and hyperparameter optimiza-
tion lead to higher accuracies for the welfare
benefit classification problem.

• The Random Forest classifier and the XG-
Boost classifier, like the MLP, both do not suf-
fer from weaker performance when noise vari-
ables are included.

• The Random Forest classifier is not capable of
forming a sound rationale for rules consisting
of a combination of factors, such as rules 1 and
6 from the welfare domain. The XGBoost per-
forms better, only being incapable of forming
a sound rationale for rule 6.

• None of the three machine learning systems
are capable of forming sound rationales for
the welfare domain when trained on dataset
A. But when trained on dataset B, the MLP
comes quite close to a perfect rationale for the
welfare domain.

• The three machine learning systems are capa-
ble of forming sound rationales for some of the
separate rules from the welfare domain, when
either trained on dataset A or B, but not all.

Code availability

The code that was written for both the replica-
tion and the extension is publicly available on
GitHub. The repository can be found at the
following link: https://github.com/Sparvriend/
Bachelor-Project-2021.
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