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Abstract: Problems with complex machine learning models have led to growing concerns and
a spiking interest in responsible artificial intelligence. An important subfield of responsible AI,
explainable AI (XAI), has already led to the development of techniques capable of explaining
the decision-making of these black-box systems, yet this is not enough; after all, as demonstrated
in previous research, machine learning techniques may appear to perform well, obtaining high
accuracy levels scores with test data, while actually reasoning with an unsound rationale. Using
complex self-learning systems that unknowingly reason with an unsound rationale can have
devastating real-world effects. This study therefore further explores the issues concerning the
rationale of these complex machine learning systems. Using a new artificial domain, based on
real-world conditions, this study confirms the result that neural networks can achieve high levels
of performance in terms of classification accuracies, while not learning the conditions that define
the data sets. It is demonstrated that the standard techniques, such as using more data, deeper
networks or less noise, do not aid in solving this problem. Additional experiments, focused on
finding more responsible practices, do reveal that using synthetic training data built upon domain
knowledge can help to improve the rationale while maintaining high levels of accuracy.

1 Introduction

Despite their widespread use, many advanced AI
models still function as black boxes (Ribeiro et al.,
2016). These models can obtain great results in, for
example, classification tasks but offer no clear ex-
planations. However, understanding and interpret-
ing the reasoning behind the predictions made by
such systems is crucial for establishing trust for
users, combating problems such as biased systems,
and having the ability to use these techniques in
decision-making (Akata et al., 2020). In addition,
it can help designers to transform untrustworthy
models into trustworthy ones (Ribeiro et al., 2016).

Considerable work has already been conducted on
interpreting and explaining the predictions of com-
plex black-box models. This has led to the devel-
opment of explainable AI (XAI) techniques. The
goal of these techniques is to add explanations of
the reasoning, while maintaining high levels of per-
formance (Gunning, 2017). Recently, the focus of

the XAI techniques has shifted toward explaining
(1) the training process, 2) the relationship of the
models to the training material, and 3) the rea-
soning behind the underlying algorithms (Akata
et al., 2020). Considering the last point, a popular
XAI technique that is used to interpret the ratio-
nale of complex machine learning models is SHAP.
SHAP (SHapley Additive exPlanations) is argued
to be the most accurate and consistent method for
explaining the output of machine learning mod-
els (Lundberg and Lee, 2017). SHAP computes
shapley values (originating from classic cooperative
game-theory) for each feature in a data set; these
values then indicate the influence that each feature
has on the predictions of a model.

Our ability to explain the predictions of complex
machine learning models is an important step in de-
veloping trust and making AI more responsible, yet
this is not enough. An important problem remains,
namely that these complex models can appear to
make correct decisions, obtaining high accuracies,
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without actually using a correct rationale. This is
clearly demonstrated in the study of Bench-Capon
(1993), in which an artificial problem in the law do-
main was used to discover the rationale of neural
networks. The problem considered was a classifica-
tion task for the eligibility of welfare benefits. By
using a fictional data set, containing 12 relevant fea-
tures and 52 additional noise attributes, it was re-
vealed that excellent results could be obtained (ap-
proximately 99% classification accuracies) without
the networks using a fully correct rationale. Inves-
tigations into the rationale of the networks revealed
that, in fact, only four of the six conditions required
for making correct classifications were considered
by the neural networks. This suggests that strong
performance does not necessarily correspond to a
sound rationale. Furthermore, other research using
the same artificial domain has demonstrated that
other algorithms can achieve similarly high accura-
cies without using a fully correct rationale (John-
ston and Governatori, 2003; Možina et al., 2005).
In addition, a recent study has revealed the same
effect for neural networks and decisions tree algo-
rithms by using different artificial data sets (Steg-
ing et al., 2019). Thus, even when using XAI tech-
niques to explain the predictions of a model, the ex-
planations given can still be irrational if the model
reasons with an incorrect rationale.

Working with machine learning algorithms that use
such an incomplete or incorrect rationale can have
dramatic effects. A recent real-world example of the
devastating impact of these complex self-learning
AI techniques can be seen in the Netherlands: In
the so-called “benefits scandal” (in Dutch: toesla-
genaffaire), the Dutch tax authorities had incor-
rectly and harshly prosecuted thousands of fam-
ilies as fraudulent applicants for childcare bene-
fits. As stated in the investigative reports of this
scandal, the tax authorities used a complex self-
learning risk-classification model to determine po-
tential fraudulent applicants (Tweede Kamer, 2020;
Autoriteit Persoonsgegevens, 2020). Additionally,
the reports state that this risk-classification model
had an in-proper and discriminatory working and
that the employees handling the risk classifications
could not see on the basis of which indicators an ap-
plication had been given a certain risk score. These
incorrect classifications, combined with tough pros-
ecution and many mistakes in addressing the prob-

lem, eventually led to the resignation of the entire
Dutch cabinet.

The Dutch benefits scandal demonstrates the need
for responsible AI that is both explainable and rea-
sons in a sound fashion. With the rapid develop-
ment of AI and the increasing usage of AI models
by both governments and companies, this need is
extremely high. This research therefore further ex-
plores the issues concerning the rationale of these
complex machine learning models. As it is impos-
sible to study the wide range of machine learn-
ing techniques in only one paper, this study fo-
cuses on neural networks, as they are considered to
be among the least explainable machine learning
techniques, while achieving the highest accuracies
(Gunning, 2017).

The goal of this study is to further explore the is-
sues concerning the rationale of neural networks.
As Bench-Capon revealed in his 1993 paper, these
neural networks can achieve high classification ac-
curacies without actually reasoning with a correct
rationale. The first step is to replicate the study
of Bench-Capon (1993) to determine how these re-
sults compare with the current neural network tech-
niques. As already demonstrated by Steging (2018),
replicating the study should lead to similar results.
Following this, several additional experiments are
performed on the original domain to assess how the
findings hold when using different neural networks,
more data, less noise, or state-of-the-art XAI tech-
niques.

The study of Bench-Capon uses a fictional “welfare
benefit” domain with highly specific conditions and
data sets; it is therefore interesting to discover how
the results generalize to a domain with different
conditions, based on a real-world benefits example.
The subsequent step in this study thus involves us-
ing the methods of the Bench-Capon study on a
new domain, one that uses real-life conditions that
are based on eligibility for a Dutch childcare bene-
fit. This domain is selected because problems with
these childcare benefits led to the Dutch benefits
scandal. Although it is impossible to replicate the
risk-classification algorithm that was used, the in-
vestigative reports of this scandal are used to make
informed assumptions about data sets, conditions,
and preprocessing techniques to study the rationale
of neural networks in a more real-life setting and as-
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sess how the results compare with the findings of
the Bench-Capon study.

This study hereby aims to contribute to the existing
research by creating a better understanding of the
rationale of neural networks and possibly discover
new methods that can aid in making our use of
these complex models more responsible.

2 Neural Networks and Open
Texture

This chapter provides an extensive summary of the
1993 paper “Neural Networks and Open Texture”
by Bench-Capon, as the methods of the paper func-
tion as a starting point for this study.

2.1 Domain

In his 1993 paper, Bench-Capon aimed to test the
potential of neural networks for open texture prob-
lems in the law domain. In particular, his goal was
to investigate three questions: whether these neu-
ral networks could obtain a high degree of success,
whether, in that case, they also used a correct ra-
tionale, and whether he could discover that ratio-
nale. Even though his paper was written nearly 30
years ago, these questions are still relevant today,
as the same problems concerning the rationale and
explainability of these black-box systems remain.

To be able to answer these three questions, Bench-
Capon created an artificial domain. A real domain
would be impractical, because when a real domain
is not understood perfectly, it is impossible to effec-
tively evaluate the rationale of the networks. The
problem he created was an eligibility test for a fic-
tional welfare benefit, which is supposedly paid to
pensioners to visit their spouse in the hospital. To
be eligible for this benefit, a person must satisfy
each of the following six conditions, as described
by Bench-Capon (1993):

C1. The person should be of pensionable age (60
for a woman, 65 for a man);

C2. The person should have have paid contribu-
tions in four of the last five relevant contribu-
tion years;

C3. The person should be a spouse of the patient;

C4. The person should not be absent from the UK;

C5. The person should have capital resources not
amounting to more than 3,000 pound;

C6. If the spouse is an in-patient (living in the hos-
pital), the hospital should be within 50 miles.
If the spouse is an out-patient, the hospital
should lie beyond this distance.

(C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5 ∧ C6) → Eligible

These conditions were selected because they consist
of a combination of typical conditions used in data
sets. The conditions vary over Boolean conditions
(C3, C4), continuous variables (C2, C5), and condi-
tions in which the satisfiability depends on multiple
variables (C1, C6), which is supposed to be slightly
more difficult to discover for a neural network.

To evaluate a person’s eligibility using these six
conditions, 12 different features are needed, as the
first and sixth conditions depend on two features,
while the second condition depends on five separate
features. In addition, 52 noise features were added
to each instance in the data sets. This was done
to test whether the inclusion of irrelevant factors
would influence the results, as noise also occurs in
real data sets.

2.2 Methods

Bench-Capon used these features to create several
different data sets to evaluate both the performance
and the rationale of the networks. He assumed that
a real-life data set would most likely be one in
which cases can fail on multiple conditions simul-
taneously. Thus, he began by creating a data set in
which each ineligible case would definitely fail on
one condition while randomly generating the values
for the other features, thus leading to cases failing
on multiple conditions. Another data set was then
used to study the rationale of the networks: In this
data set, each ineligible case would fail on only one
specific condition. This allows for the rationale to
be studied, as each failing case then tests for a single
specific condition. These two data sets are referred
to as the multiple fail set and single fail set, re-
spectively. Moreover, two additional data sets were
used by Bench-Capon to graphically depict the per-
formance on the two most difficult conditions: C1
and C6, whose satisfiability depends on two differ-
ent features interacting. The multiple and single fail
sets are split into both train and test sets. Train sets
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were comprised of 2,400 different cases, while test
sets were comprised of 2000 cases. To summmarize,
this would lead to the following data sets:

• Multiple fail set: In the multiple fail set, each
ineligible instance can fail on multiple condi-
tions. Half of the instances satisfy all six con-
ditions and are thus considered to be eligible
cases. These eligible cases are generated by
varying the values of each feature values ran-
domly over their eligible range. The ineligible
cases specifically failed on at least one of the
six conditions (divided equally), and the other
values were generated randomly over their full
range.

• Single fail set: This set is likewise split equally
with eligible and ineligible cases. The eligible
cases are generated in the same way as in the
multiple fail set. The ineligible cases, however,
now fail on exactly one of the six conditions.
The number of failing cases for each condition
is divided equally.

• Age set: A set in which all conditions except
the age condition (C1) are satisfied. This way,
a network that has not learned the age condi-
tion correctly will not perform well on this Age
set. The age set is created by varying the age
feature from 0 to 100 in steps of five, for both
men and women. This yields both eligible and
ineligible cases and allows for the age effect to
be plotted graphically.

• Distance set: Similar to the age set, but now
the ineligible cases fail only on the distance
condition (C6). The distance set is created by
varying the distance feature in steps of five
from 0 to 100, for both in- and out-patients.

Finally, Bench-Capon employed three different neu-
ral networks in his study. All three networks use the
conventional triangular shape, in which the num-
ber of nodes are decreases over the different layers.
The networks have an input layer with 64 nodes,
corresponding to the 64 features used, and a single
output node representing the eligibility label. They
networks vary with respect to the number of nodes
and hidden layers:

• One hidden layer: 12 nodes in the hidden layer.

• Two hidden layers: 24 nodes in the first hidden
layer, and 6 nodes in the second hidden layer.

• Three hidden layers: 24 nodes in the first, 10
in the second and 3 in the third hidden layer.

2.3 Results and Discussion

Bench-Capon begins by evaluating whether the
networks can obtain a high degree of success on
his artificial problem. This is done by training and
testing the networks with the multiple fail set. The
following classification accuracies are obtained:

• One hidden layer: 99.25%

• Two hidden layers: 98.90%

• Three hidden layers: 98.75%

As stated by Bench-Capon (1993): “this was a very
encouraging level of performance and might be con-
sidered acceptable, even in a legal application” (p.
294).

Next, he investigates the rationale of the neural net-
works by testing the trained networks with the sin-
gle fail data set, yielding the following results:

• One hidden layer: 72.25%

• Two hidden layers: 76.67%

• Three hidden layers: 74.33%

These are surprising results, as the low accuracies
reveal that although the performance of the net-
works appears to be good, the rationale used by
the networks is actually incomplete. If the net-
works would have learned all the six conditions,
they would be able to correctly classify the cases
in the single fail set. This incomplete rationale is
clearly expressed when Bench-Capon uses the the
special age- and distance sets to plot the effect on
these conditions. The distance graph is a straight
line at an output of one for all three networks,
indicating that the networks do not consider this
conditions at all when determining the eligibility
of an instance. Meanwhile, the age graph reveals
that the one- and two-layered networks consider
ages starting at 20–30 to be satisfiable, which is
far lower than the actual ages of 60 for women and
65 for men. Moreover, the three-layered network is
a straight line at an output of one again.

Hereby, Bench-Capon has demonstrated that neu-
ral networks with apparently good levels of per-
formance can actually rely on an inadequate ratio-
nale. This hypothesis, however, depends on strong
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assumptions regarding the nature of the training
data used. Thus, to further analyze these results,
he uses the single fail set to train the networks.
This yields the following accuracies when tested on
the multiple fail set again (the three-layered neural
network now not longer converges):

• One hidden layer: 99.25%

• Two hidden layers: 99.0%

Again, he investigates the rationale by testing with
the single fail test set:

• One hidden layer: 97.91%

• Two hidden layers: 98.08%

Both networks achieve high accuracies on the mul-
tiple fail set. This time, however, high accuracies
are likewise obtained on the single fail test set, in-
dicating an improved rationale. This is confirmed
when the age effect is plotted again, which indi-
cates that ages of around 45–50 are now considered
to be eligible, which suggests an improved, though
still imperfect, rationale.

The results of Bench-Capon indicate that the per-
formance of neural networks on test data is not a
clear guide for the correctness of the rationale, es-
pecially if one’s domain knowledge is limited. The
results achieved with the single fail set, however,
reveal that with the right training data, the ratio-
nale can be improved, while maintaining high per-
formance on the original test data. Yet, preparing
such training data critically depends on one’s do-
main knowledge.

3 Replication Study: Welfare
Benefits Domain

Prior to implementing the new child benefits do-
main, a replication of the study of Bench-Capon
is performed. This is done to get a further grasp
of the problem, to determine how the results com-
pare with our current technologies, and to imple-
ment several additional experiments on the origi-
nal domain. As already demonstrated by Steging
(2018), a replication should lead to the same gen-
eral findings, but small differences in the accuracies
can occur, as several assumptions must be made re-
garding the original domain. These assumptions are

discussed in the methods section, after which the
results are discussed, and additional experiments
are performed.

3.1 Methods

In the original study, six conditions determine a
person’s eligibility for the fictional welfare bene-
fit, and 12 features are needed to evaluate these
conditions. In addition, each instance in the data
sets includes 52 noise features. A list of all features
and their ranges of values are provided in Table
3.1. The range of values for each feature was not
specified precisely by Bench-Capon, therefore some
small differences might exist here. Appendix A.1 in-
cludes a logical representation of the six conditions
for the welfare benefit problem using the features
of Table 3.1.

Table 3.1: The features used in the data sets of
the welfare benefit domain

Feature Range

Age 0-100
Gender Male/Female
Paid contributions: five
separate features

True/False

Spouse True/False
Residence True/False
Capital resources 0-10,000
Patient type in/out
Distance from hospital 0-100
Noise variables: 52 sepa-
rate features

0-100

Next, alongside the data sets presented in Section
2.2, this replication study uses four additional data
sets to evaluate the exact performance of the net-
works on all six conditions, instead of evaluating
the performance on only the age and distance con-
ditions. Table A.1 in Appendix A.2 precisely out-
lines the structure and cases in each data set.

Furthermore, Bench-Capon mentions that he im-
plements the three neural networks with the–now
outdated–Aspirin software (Leighton and Wieland,
1991), therefore several assumptions and alter-
ations are made here: First, the networks are im-
plemented with the Scikit-learn Python library, in
which the standard MLP classifiers are used. Sec-
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ond, as explained in the replication study of Ste-
ging (2018), the sigmoid activation function was
the most common activation function at that time,
so this is used here, as well. Furthermore, as Ste-
ging also demonstrated, the type of gradient de-
scent had little influence on the results, thus the
common mini-batch approach is used. Other pa-
rameters such as the learning rate and batch size
are found through a hyperparameter optimization
process. A summary of the exact settings of the
networks is presented in Appendix A.3.

3.2 Results and Discussion

The networks are trained with the multiple- and
single fail sets again. As done in the original study,
the trained networks are then tested on all the test
sets. Tables 3.3 and 3.4 present the resulting accu-
racies when averaged over 100 runs (as is the case
for all results in this study). Table 3.2 presents the
accuracies as reported by Bench-Capon again, for
comparison.

The accuracies of Tables 3.3 and 3.4 confirm the
results of the original study. When trained with the
multiple fail set, the networks can obtain a high
level of performance (98+% average accuracies on
the multiple fail test set), while they reason with
an incomplete rationale (74+% accuracies on the
single fail test set). Moreover, when trained with
the single fail set, the performance remains high,
although slightly lower than in the original study,
while the rationale has improved considerably to
accuracy scores of around 90% on the single fail
set.

Further evaluating the rationale through the use of
the special data sets for each condition expresses
these results more clearly. The accuracies on the
special condition test sets in Table 3.3 reveal that
the easier Boolean conditions are learned relatively
well, though these still have lower accuracies than
expected (around 86%). Meanwhile, the other con-
ditions all have accuracy scores below 80%, with
the distance condition accuracy of 50% being the
lowest. In his paper, Bench-Capon concludes that
theoretically, one could obtain accuracy levels of
around 99% on the multiple fail set, while learn-
ing only four of the six conditions. However, the
results of the replication demonstrate that the net-
works do not even learn any of the conditions per-

fectly when trained with the multiple fail set, while
still obtaining high accuracy levels of 98+%. This
suggests that the networks might have learned a
different–possibly more difficult–pattern from the
data.

As seen in Table 3.4, when the networks are trained
with the single fail set, the results on the condi-
tion test sets have improved considerably to accu-
racies of 85-96%, indicating that the networks have
learned the underlying structure of the data much
better.

The same trends can be presented graphically: Fig-
ure 3.1a illustrates that when the networks are
trained with the multiple fail set, the effect for the
distance condition (C6) is a straight line at 1, which
likewise occurred in the original study. Figure 3.1b
then displays the improved rationale after training
with the single fail set, which more closely resem-
bles the plot of a perfect rationale in Figure 3.1c.

3.3 Additional Experiments

Before moving on to the new domain, several addi-
tional experiments are implemented on the original
domain of Bench-Capon in order to further analyze
the problem. As our knowledge of neural networks
and our technology has improved considerably over
the past decades, it is interesting to assess how the
results compare with those achieved using deeper
neural networks and more training data. In addi-
tion, the models are analyzed using the state-of-
the-art XAI technique SHAP (Lundberg and Lee,
2017), and the effect of noise is studied.

• Neural networks: Bench-Capon does not
discuss how the neural networks were selected
and optimized. Thus, a question that could be
raised is whether the problem of an incomplete
rationale still exists when using a state-of-the-
art neural network that is deeper (in terms of
both layers and neurons) and optimized for all
parameters. This, however, does not turn out
to be the solution. When using deeper net-
works with the same number of hidden lay-
ers and training with the multiple fail set, the
accuracies on the single fail test set increase
slightly to a maximum of around 80%, com-
pared to the 74+% accuracies of the original
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Table 3.2: Accuracy scores on the test sets in the original study, when trained with the
multiple- and single fail sets respectively (Bench-Capon, 1993)

Neural network Multiple fail Single fail Multiple fail Single fail

1 hidden layer 99.25 72.25 99.25 97.91
2 hidden layers 98.90 76.67 99.0 98.08
3 hidden layers 98.75 74.33 X X

Table 3.3: Accuracy scores on all test sets, when trained with the multiple fail set

Neural network
Multiple
fail

Single
fail

Age
(C1)

Contribu-
tions (C2)

Spouse
(C3)

Residence
(C4)

Capital
(C5)

Distance
(C6)

1 hidden layer 98.64 74.21 59.15 76.87 84.48 85.18 78.77 50.53
2 hidden layers 98.27 74.75 63.18 76.58 88.10 88.68 80.74 50.25
3 hidden layers 98.66 74.44 59.22 78.35 86.35 87.023 79.99 50.27

Table 3.4: The accuracy scores on all test sets, when trained with the single fail set

Neural network
Multiple
fail

Single
fail

Age
(C1)

Contribu-
tions (C2)

Spouse
(C3)

Residence
(C4)

Capital
(C5)

Distance
(C6)

1 hidden layer 96.13 90.24 85.73 92.80 96.05 96.06 88.30 86.14
2 hidden layers 96.16 90.37 85.93 93.01 96.10 96.11 88.40 85.07
3 hidden layers 96.31 89.83 84.86 92.93 95.87 95.90 88.13 81.05

(a) Trained with multiple fail set (b) Trained with single fail set (c) Perfect rationale

Figure 3.1: Plots of the output on the distance test set (C6) using the best-performing,
3-layered, neural network

networks, but the incomplete rationale prob-
lem still clearly exists. When using deeper net-
works in terms of layers, the networks do not
even converge when run on the same data sets.

• More data: A well-known solution in the
world of machine learning is to use more data,
which, with the current technologies, is much
easier to implement than at the time of Bench-
Capons’s original study. Using more data influ-
ences the results considerably. As seen in Fig-

ure 3.2a, when the amount of data in the multi-
ple fail train set is increased, the performance
on the single fail set improves, as accuracies
reach about 90%. This indicates an improved,
although still incomplete, rationale.

When training with the single fail set, a sim-
ilar increase in performance on both test sets
can be observed. As illustrated in Figure 3.2b,
when using 100,000 datapoints in the single fail
set, the underlying conditions are learned al-
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most perfectly by the networks. However, the
same effect, that of the networks obtaining
higher accuracies on the multiple fail test set
than on the single fail test set, is still visible.

• XAI techniques: At the time of the orig-
inal study, no sophisticated and easily im-
plementable XAI techniques were available.
Bench-Capon attempts to explain the predic-
tions by inverting the networks so that the
input factors become the output, and he can
use the output numbers to study their signif-
icance. Inverting the networks revealed that
the Boolean features and the five contribu-
tion features all have a positive influence, while
the capital feature has a strong negative influ-
ence, thus confirming some of his findings. The
two features necessary for evaluating the dis-
tance condition do not appear among the most
significant features, but this could occur even
when the networks used a perfect rationale, as
the distance feature can both negatively and
positively impact the decision. Bench-Capon
then concludes that using this explainable AI
technique to study the rationale of a network
would be useful only if one has complete do-
main knowledge and would know which values
are missing or should not be appearing among
the most significant features.

It is interesting to see how his approach com-
pares with a state-of-the-art XAI technique
such as SHAP (Lundberg and Lee, 2017), in
which the more sophisticated shapley values
somewhat resemble the idea of Bench-Capon’s
significance features. Figure 3.3a presents a
SHAP summary of the three-layered neural
network when trained and tested with the mul-
tiple fail sets. The SHAP summary reveals that
the easier Boolean features and the capital
feature have a strong impact on the output
of the model. Moreover, the incomplete ratio-
nale problem can be clearly observed, as the
shapley values indicate that the distance and
patient-type features needed for evaluating the
distance condition (C6), are not used at all.
Even a random noise feature has a larger im-
pact on the decisions than these two features.
Figure 3.3b presents the improved rationale
when SHAP is used one the three-layered net-
work trained with the single fail set. Now, the

distance and patient-type features are used by
the network, and the impact of other features
more closely corresponds to a correct rationale.

The SHAP figures thus confirm the results
of Bench-Capon, with one addition: By us-
ing SHAP, it is confirmed that the distance
condition is not considered by the networks.
However, the same conclusion remains; namely
that these explainable AI techniques are use-
ful only if one has complete domain knowledge
and can know whether something is missing.

• Noise: Bench-Capon includes 52 noise fea-
tures for each instance in the data sets to
assess “whether performance degrades if ir-
relevant noise factors are included” (Bench-
Capon, 1993, p. 292). By inverting the net-
works, he demonstrates that two noise vari-
ables cause “some degree of spurious correla-
tion” (Bench-Capon, 1993, p. 296), but he does
not present the exact impact of noise levels on
the accuracies. As real data sets almost always
include noise, it is interesting to see the ex-
act impact that noise can have on the ratio-
nale problem and accuracy scores. As already
demonstrated in the replication study of Steg-
ing (2018), noise influences the overall perfor-
mance of the networks in this artificial prob-
lem. Both plots in Figure 3.4 confirm this re-
sult; the accuracy scores on both test sets de-
grade slightly when the noise level is increased.
However, even when all noise features are elim-
inated from the data sets, the rationale prob-
lem still exists, as the accuracy scores on the
single fail test set when trained with the mul-
tiple fail set remain around 85% for all three
networks. Additionally, when the networks are
trained with the single fail set, the results on
the single fail test set are still clearly lower
than on the multiple fail test set.

4 Child Benefits Domain

The study of Bench-Capon uses a fictional wel-
fare benefit problem, which has since been used
in other studies as well (Johnston and Governa-
tori, 2003; Možina et al., 2005; Steging, 2018). As
this domain uses specific conditions and data sets,
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(a) Trained with multiple fail set (b) Trained with single fail set

Figure 3.2: The effect of varying the amount of data instances in the training sets on the
performance of the networks (averaged for the three neural networks)

(a) Trained with multiple fail set (b) Trained with single fail set

Figure 3.3: SHAP summaries displaying the most important shapley values when testing on
the multiple fail set using the best-performing, three-layered, neural network

(a) Trained with multiple fail set (b) Trained with single fail set

Figure 3.4: The effect of varying the number of noise features in the data sets on the perfor-
mance of the networks (averaged for the three neural networks)
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it is interesting to observe how the results gener-
alize to a domain with different conditions, based
on a real-life benefits example. This chapter there-
fore applies similar methods as those used in the
Bench-Capon study to a benefits domain that is
based on eligibility for Dutch childcare benefits.
This domain has been selected because problems
with these childcare benefits resulted in the Dutch
“benefits scandal.” As a complex self-learning risk
classification algorithm used by the Dutch tax au-
thorities was at the root of the entire scandal, the
official investigation reports of this scandal can be
used to make informed assumptions about prepro-
cessing techniques, data sets, and specific features.
Combining these assumptions with real conditions
allows us to study the rationale of neural networks
in a more real-life setting.

This chapter begins by discussing the new child-
care benefits conditions, after which the methods
are discussed, followed by the results and a discus-
sion.

4.1 Domain

Childcare benefits are a financial contribution from
the Dutch government that aids parents in cover-
ing the high costs of childcare. This allowance has
existed since 2005. The most important conditions
for receiving childcare benefits are outlined on the
site of the Dutch Ministry of Finance (Ministerie
van Financiën, nd). Using several simplifications
(discussed below) and disregarding highly specific
situations such as co-parenting or adoption, a per-
son’s eligibility for childcare benefits is determined
by the following six conditions, all of which need
to be satisfied for the person to be eligible for the
benefits:

C1. The person should have Dutch nationality or
a valid residence permit;

C2. The person should receive (general) child ben-
efits;

C3. The person’s child should be registered at a
registered childcare center;

C4. The person should have a written agreement
with the childcare center, specifying the num-
ber of daycare hours (which must be higher
than or equal to 12 hours per week) and the
hourly rate of the center (must be higher than
10 euros per hour);

C5. The person should work, study, follow a tra-
jectory to find work, or follow an integration
course. The same also applies to the person’s
partner (if applicable);

C6. The person’s (or collective income) should
be below 100,000 with one child and below
200,000 with multiple children.

(C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5 ∧ C6) → Eligible

Two conditions have been simplified here: When
applying for the actual benefit, the number of day-
care hours and hourly rate (C3) do not use a thresh-
old for eligibility but instead influence the amount
of benefits received. This is because parents must
pay part of the childcare costs themselves. Sim-
ilarly, the collective income (C6) does not use a
threshold; rather, the specific income and the num-
ber of children influence the amount of benefits that
a person receives.

4.2 Methods

The six eligibility conditions represent a range
of typical conditions, including Booleans, strings,
continuous variables, and more difficult conditions
whose satisfiability depends on the interaction of
multiple variables. Evaluating the six eligibility
conditions for childcare benefits requires a total of
15 features. In addition to these 15 features, 85
noise features are added to each instance in the
data sets. The amount of noise features is based on
the number of features used in the risk-classification
model. A letter from the Dutch State Secretary of
Finance about the results of an investigation by the
Dutch Data Protection Authority states that the
model used approximately 100 indicators, of which
around 20 were significant enough to be used in
the risk assessment (van Huffelen, 2019). The re-
port of the Data Protection Authority also states
that indicators such as a person’s nationality and
the number of children were among the indicators
used by the model, and these two features are also
used in this domain (Autoriteit Persoonsgegevens,
2020, p. 34). The exact features and their range
of values are presented in Table 4.1. Appendix B.1
provides a logical representation of the six eligibil-
ity conditions, using the features from Table 4.1.

Multiple and single fail sets are once again used to
train and test the networks. These sets are gener-
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Table 4.1: The features used in the data sets of
the childcare benefits domain

Feature Range

Nationality 194 strings
Residence permit True/False
Child benefits True/False
Registered centre True/False
Daycare hours 0-30
Hourly rate 0-10
Work True/False
Work hours 0-40
Study True/False
Partner True/False
Work partner True/False
Work hours partner True/False
Study partner True/False
Income 0-500,000
Kids 1-8
Noise features: 85 0-100

ated in the same way as specified in Section 2.2,
so that no specific conditions are over represented
in the data sets. What differs from the replication
study is that the training data sets are now com-
prised of 28,000 cases and the test sets of 2,000
cases (compared with 2,400 and 2,000, respectively,
in the original study). These values are selected
because the risk-classification algorithm was also
trained and tested with a total of 30,000 cases (van
Huffelen, 2019). Special test sets are again used for
testing whether each of the six conditions has been
learned. These test sets use 10,000 cases to create
smoother graphs for the results section. When gen-
erating the instances for the data sets, the feature
“Work hours” is set to false if the feature “Work”
is False. Similarly the features “Study partner” and
“Work hours partner” are set to false when the
“Partner” feature is False and the feature “Resi-
dence permit,” is set to false when the “National-
ity” feature is set to Dutch. Table B.1 in Appendix
B2 precisely outlines the distributions and number
of cases in the data sets.

The same neural networks are used as discussed
in Section 3.1. This is because the investigation
reports reveal no details about the learning algo-
rithms that were used in the benefits scandal, and
this makes it easier to compare the results to those

of the welfare benefit domain. Furthermore, tests
with deeper networks, in terms of both layers and
neurons, again revealed no real improvements in the
accuracy scores of this new domain. Appendix B3
outlines the exact settings of the neural networks.

4.3 Results and Discussion

Table 4.2 presents the results on all the test sets
when the three networks are trained with the mul-
tiple fail set, which is assumed to more likely resem-
ble a real data set. The accuracy of around 98.5%
with the one-layered neural network indicates that
an acceptable performance can be achieved on this
domain. The other columns, however, suggest the
same problem as in the Bench-Capon study: Al-
though the performance is good, the rationale used
by the networks is inadequate. The accuracies on
the single fail set have improved slightly, compared
with the study of Bench-Capon (+-82% versus +-
74.5%) but are around the same level as in the
replication study when the amount of training data
is increased (Figure 3.2). The Boolean conditions
are learned quite well, with accuracies approach-
ing 100%, but when conditions get more difficult,
the performance on the specific test sets decreases.
In the two conditions where the eligibility depends
on multiple features (C3 and C4), the accuracies
for the one-layered are around only 65%, indicating
that these conditions are far from correctly learned.
The same trend be presented graphically when the
condition test sets are used to plot these effects.
When comparing the resulting Figures 4.1a and
4.2a to the to the situation of a perfect rationale,
as illustrated in 4.1c and 4.2c, the inadequate ra-
tionale is clearly visible.

Next, Table 4.3 presents the results when the net-
works are trained with the single fail set. It is seen
that the performance on the multiple fail set re-
mains good, with the one-layered network achiev-
ing accuracies of 98%, but that the rationale has
improved considerably: with accuracy levels well
above 90% for the one- and two-layered networks
when tested on the single fail set. The three-layered
network does not converge here, as was also the
case in the original study of Bench-Capon. The im-
proved rationale can be seen in Figures 4.1b and
4.2b, which more closely resemble the perfect ra-
tionale Figures 4.1c and 4.2c.
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Table 4.2: Accuracy scores on all test sets, when trained with the multiple fail set

Neural network
Multiple
fail

Single
fail

Child
benefits
(C1)

Reg.
center
(C2)

Nationality
(C3)

Hours
& rate
(C4)

Work/
study
(C5)

Income
(C6)

1 hidden layer 98.57 82.92 98.12 98.11 62.85 69.21 85.15 82.83
2 hidden layers 97.69 81.58 96.19 96.14 62.64 69.33 83.02 81.17
3 hidden layers 93.29 77.15 91.98 91.71 57.52 65.12 77.40 77.83

Table 4.3: Accuracy scores on all test sets, when trained with the single fail set

Neural network
Multiple
fail

Single
fail

Child
benefits
(C1)

Reg.
Center
(C2)

Nationality
(C3)

Hours
& rate
(C4)

Work/
study
(C5)

Income
(C6)

1 hidden layer 98.06 94.87 98.73 98.76 90.93 94.84 95.38 92.18
2 hidden layers 96.53 93.81 97.54 97.57 92.77 92.70 93.79 90.66
3 hidden layers 63.50 61.74 64.42 63.23 60.56 60.72 61.71 60.27

(a) Trained with multiple fail set (b) Trained with single fail set (c) Perfect rationale

Figure 4.1: Plots of the output on the income test set (C6) using the best-performing, 1-
layered, neural network

(a) Trained with multiple fail set (b) Trained with single fail set (c) Perfect rationale

Figure 4.2: Plots of the output on the hours test set (C4) using the best-performing, one-
layered, neural network. (When a case fails on only one of the two features, the output is
only averaged into the plot of the feature on which the case fails.)
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(a) Trained with multiple fail set (b) Trained with single fail set

Figure 4.3: SHAP summaries displaying the most important shapley values when testing on the
multiple fail set using the best-performing, 1-layered, neural network

4.3.1 SHAP explanations

To further investigate the rationale, SHAP is run on
the best-performing, one-hidden-layer, neural net-
work. Figure 4.3 presents the resulting SHAP sum-
maries when training with both data sets and test-
ing on the multiple fail set. It can be seen that when
the network is trained with the multiple fail set, the
simpler Boolean and threshold features have the
largest impact on the output decisions and the fea-
tures evaluating the more difficult, interacting, con-
ditions have a much smaller impact; a result sim-
ilar to that of the welfare benefits domain. More-
over, the network considers each of the non-noise
features in its decisions, which is a result that one
would wish to see. This differs from the SHAP re-
sult of the welfare benefits domain, where the fea-
tures evaluating the distance condition were not
considered by the network when trained with the
multiple fail set (Figure 3.3a). However, if one has
insufficient domain knowledge, these explanations
might cause one to more easily accept an unsound
network, as the problem of the inadequate rationale
is not clearly observable in the explanations here.

When comparing this SHAP summary to that of a
network with an improved rationale (trained with
the single fail set), it is seen that the same features
are considered but that the impact of each feature

on the decisions has changed. The lower impact of
the noise features now displays signs of an improved
rationale, but the rationale is still not perfect, as,
for example, the feature of the number of daycare
hours and the feature for work are not really used,
yet they are needed to evaluate the satisfiability of
conditions C3 and C5 respectively. Moreover, the
features nationality and residence permit, required
for evaluating condition C3, have a considerably
larger impact on the output than the other, evenly
important, features. This result again differs from
the situation in the welfare benefits domain, where
after training with the single fail set, most features
had an evenly large impact on the output. How-
ever, the welfare benefits domain did not include
a categorical string feature such as the nationality
feature, which could explain this result.

5 Conclusion

In this study, two artificial domains were used to
investigate the rationale of neural networks. The
results in both domains demonstrate that in using
complex AI techniques, such as neural networks,
strong performance in terms of high accuracy scores
on test data does not necessarily correspond to the
networks using a correct rationale. In the replica-
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tion of the study of Bench-Capon (1993), this is
confirmed by using an artificial domain with six
interacting conditions. By using test data sets for
each condition, it is shown that the problem is even
greater than initially believed, as accuracy scores of
99% are achieved on the test data, but the networks
do not even learn any of the six conditions cor-
rectly and almost completely disregard two of the
six conditions. Additional experiments on the same
domain reveal that commonly used solutions, such
as deeper networks, more training data, or decreas-
ing noise levels can slightly improve the rationale,
but do not fix the problem. With a completely new
domain based on real-life conditions, in addition to
features and methods based on real-life settings, we
see exactly the same effects occurring.

The implications of these results can be severe: If
such complex networks are used in a real-life set-
ting, high accuracies on test data might lead to an
acceptance of the network, but if the underlying
rationale of the networks is actually incomplete or
incorrect, new and possibly different data can re-
sult in completely wrong classifications, with all its
consequences. Plus, both of the domains used in
this study are relatively small, consisting of only
six interacting conditions and 12-15 relevant fea-
tures. The problem of an incomplete or incorrect
rationale could be amplified when using larger or
more difficult domains. Moreover, the artificial data
sets used in both domains are carefully crafted so
that no conditions are missing or over-represented
in the data sets. In real-life settings, where data sets
can have different distributions, the rationale prob-
lem could again be amplified. An example of this is
the use of adversarial images in image classification
tasks, where even slight alterations to pictures, not
visible to the human eye, can result in completely
different classifications (Yuan et al., 2019).

The methods employed in this study do identify
several possibilities for fixing this problem. The
most important result is that domain knowledge
can help in creating synthetic training data that
can be used to improve the rationale of neural net-
works while maintaining high accuracy scores. In
the two domains of this study, this meant using
so-called single fail data sets, where each ineligible
case would fail on only a single specific condition,
compared with the standard data sets consisting of
cases in which conditions failed on multiple vari-

ables simultaneously. In addition, explainable XAI
techniques, such as SHAP, can assist in identifying
an incomplete rationale, but again only if one has
sufficient domain knowledge to know what is miss-
ing or incorrect in the explanations. Otherwise, as
demonstrated with the second domain, SHAP ex-
planations can seem to indicate a complete ratio-
nale, as all of the required and expected features
are used by a network, while the rationale is still
inadequate.

In our quest to achieve responsible AI, these re-
sults are a step forward in increasing our knowl-
edge of the rationale of complex AI techniques. If
we wish to use AI responsibly, it is greatly impor-
tant that next to our ability to explain the pre-
dictions of black-box algorithms, we use techniques
that reason with a correct rationale. The results
demonstrate that this is not as easy as it appears
and that high accuracies are no clear guide in ver-
ifying the rationale of neural networks. Also, pos-
sible solutions, as identified in this study, require
strong, nearly perfect, domain knowledge, yet, com-
plex black-box AI algorithms are not normally used
in situations where one has such domain knowledge.
This suggests that we must be careful in applying
techniques such as neural networks before we can
fully understand how and why these effects occur.

The results and possible solutions found in this
study are limited to the specific domains and learn-
ing algorithms used here. It would therefore be
interesting to use new, larger, domains in combi-
nation with different learning algorithms to study
whether similar effects occur and whether one can
then use domain knowledge to create synthetic
data, which, combined with the original data, can
help to improve the rationale of the algorithms. In
addition, it would be interesting to study these ef-
fects with data sets that include forms of implicit
biases in the data, as the data sets in this study
were carefully crafted as not to include such biases,
which is not necessarily standard in machine learn-
ing problems.
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A Additional information for the welfare benefits domain

Appendix A includes detailed information about the features, data sets and neural networks settings
that are used for the replication study of the 1993 Bench-Capon paper (Chapter 3).

A.1 Logical representation of the six conditions

Using the features from Table 3.1, the eligibility for the six conditions of the welfare benefits can be
described logically:

• C1: (Gender(x) = Male ∧ Age(x) ≥ 65) ∨ (Gender(x) = Female ∧ Age(x) ≥ 60)

• C2: Contribution1(x) - Contribution5(x): at least 4 out of 5 have to be True

• C3: Spouse(x) = True

• C4: Residence(x) = True

• C5: Capital(x) ≥ 3000

• C6: (patientType(x) = in ∧ Distance(x) ≤ 50) ∨ (patientType(x) = out ∧ Distance(x) > 50)

(C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5 ∧ C6) → Eligible

A.2 Data set distributions

Table A.1: Outline of the specific data sets that are used, and a description of the conditions on
which the ineligible cases fail

Data set Cases % Ineligible
% Fail
on C1

% Fail
on C2

% Fail
on C3

% Fail
on C4

% Fail
on C5

% Fail
on C6

Multiple fail train 2400 50 34.92 31.71 28.75 28.71 36.83 29.71
Multiple fail test 2000 50 33.65 33.90 29.10 28.70 36.80 29.95
Single fail train 2400 50 8.33 8.33 8.33 8.33 8.33 8.33
Single fail test 2000 50 8.30 8.30 8.40 8.35 8.35 8.3
Age (C1) 10,000 59.65 59.65 0 0 0 0 0
Contributions (C2) 10,000 50 0 50 0 0 0 0
Spouse (C3) 10,000 50 0 0 50 0 0 0
Residence (C4) 10,000 50 0 0 0 50 0 0
Capital (C5) 10,000 50 0 0 0 0 50 0
Distance (C6) 10,000 50 0 0 0 0 0 50
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A.3 Neural network settings

Table A.2 and A.3 show the optimal parameters found after an hyperparameter tuning process. As
explained in Section 3.1, the number of hidden layers and neurons, the activation function, and mini-
batch setting were all fixed during the tuning process. Moreover, the standard solver ”adam” is used for
all networks.

Table A.2: Parameters used for the neural networks trained with the multiple fail set

Neural network Neurons Activation Batch size Learning rate Max. iterations

1 hidden layer 12 logistic 32 0.01 5000
2 hidden layers 24,6 logistic 64 0.005 1000
3 hidden layers 24,12,3 logistic 50 0.01 150

Table A.3: Parameters used for the neural networks trained with the single fail set

Neural network Neurons Activation Batch size Learning rate Max. iterations

1 hidden layer 12 logistic 50 0.005 5000
2 hidden layers 24,6 logistic 32 0.01 1000
3 hidden layers 24,12,3 logistic 32 0.01 5000

A.4 GitHub repository

A GitHub repository containing all the code used for the replication study can be found at https:

//github.com/BramRijsbosch/Bachelor-Project.
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B Additional information for the childcare benefits domain

Appendix B includes detailed information about the features, data sets and neural networks settings
that are used for the experiments with the childcare benefits domain (Chapter 4).

B.1 Logical representation of the six conditions

Using the features from Table 4.1, the six eligibility conditions for the childcare benefits domain can be
described logically:

• C1: Nationality(x) = Dutch ∨ residencePermit(x) = True

• C2: childcareBenefits(x) = True

• C3: Registered(x) = True

• C4: dayCareHours(x) >= 10 ∧ hourlyRate(x) >= 5

• C5: (Work(x) = True ∧ workHours >= 15) ∨ Study(x) = True) ∧ (IF Partner(x) = True →
((workPartner(x) = True ∧ workHoursPartner >= 15) ∨ studyPartner(x) = True))

• C6: (Children(x) = 1 ∧ Income(x) <= 100,000) ∨ (Children(x) ≥ 2 ∧ Income(x) < 200,000)

(C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5 ∧ C6) → Eligible

B.2 Data set distributions

Table B.1: Outline of the specific data sets that are used, and a description of the conditions on
which the ineligible cases fail

Data set Cases % Ineligible
% Fail
on C1

% Fail
on C2

% Fail
on C3

% Fail
on C4

% Fail
on C5

% Fail
on C6

Multiple fail train 28,000 50 29.25 29.10 18.43 34.42 26.42 37.55
Multiple fail test 2000 50 29.75 29.50 19.15 34.95 26.35 38.75
Single fail train 28,000 50 8.33 8.33 8.33 8.33 8.33 8.33
Single fail test 2000 50 8.35 8.30 8.35 8.3 8.35 8.35
Child benefits (C1) 10,000 50 50 0 0 0 0 0
Registered center
(C2)

10,000 50 0 50 0 0 0 0

Nationality (C3) 10,000 50 0 0 50 0 0 0
Hours & hourly rate
(C4)

10,000 50 0 0 0 50 0 0

Work & study (C5) 10,000 50 0 0 0 0 50 0
Income (C6) 10,000 50 0 0 0 0 0 50
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B.3 Neural network settings

Table B.2 and B.3 show the optimal parameters found after an hyperparameter tuning process. The
number of neurons and hidden layers were set to the same values as in the Bench-Capon Replication
Study and thus fixed during the tuning process. Plus, since the activation function and batching settings
made little difference on the results, both these parameters were also set to the same settings as used
in the replication study. This time, however, the ”lbfgs” solver is used for all networks, as the tuning
process showed the highest accuracies with this setting.

Table B.2: Parameters used for the neural networks trained with the multiple fail set

Neural network Neurons Activation Solver Batch size Learning rate Max. iterations

1 hidden layer 12 logistic lbfgs 32 0.01 5000
2 hidden layers 24,6 logistic lbfgs 50 0.01 1000
3 hidden layers 24,12,3 logistic lbfgs 50 0.005 1000

Table B.3: Parameters used for the neural networks trained with the single fail set

Neural network Neurons Activation Solver Batch size Learning rate Max. iterations

1 hidden layer 12 logistic lbfgs 50 0.001 5000
2 hidden layers 24,6 logistic lbfgs 32 0.01 10,000
3 hidden layers 24,12,3 logistic lbfgs 100 0.005 5000

B.4 GitHub repository

A GitHub repository containing all the code used for the childcare benefits domain can be found at
https://github.com/BramRijsbosch/Bachelor-Project.
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