
University of Groningen

Master’s thesis

Recognising Darknet Market Vendors
using Author Verification Methods

Artificial Intelligence

Author:
L.N. Faber, s2500523

Internal supervisor: Dr. M.A. Wiering (Bernoulli Institute)
External supervisor: Drs. M. van der Ree (Web-IQ)

June 28, 2021

Bernouilli Institute for Mathematics, Computer Science and Artificial Intelligence
University of Groningen, the Netherlands

Web-IQ, the Netherlands

Contents

1 Introduction 5

2 Text Representation 7
2.1 Count Vectorization . 7
2.2 Word Embeddings . 7

2.2.1 Latent Semantic Analysis . 8
2.2.2 Word2Vec . 8
2.2.3 GloVe . 11
2.2.4 FastText . 13

3 Classification 14
3.1 Support Vector Machine . 14
3.2 Decision Tree . 16
3.3 Random Forest . 16
3.4 Neural Networks . 16

3.4.1 Recurrent Neural Networks . 16
3.4.2 Siamese Neural Networks . 17

4 Experimental Setup 18
4.1 Data Acquisition and Analysis . 18

4.1.1 PAN 2020 . 18
4.1.2 Darknet . 18

4.2 Data Encoding . 20
4.2.1 Stylometric Features . 20
4.2.2 Embeddings . 21
4.2.3 Meta-features . 22
4.2.4 Pre-processing . 22

4.3 Models . 22
4.3.1 Handcrafted Features . 23
4.3.2 Siamese Neural Network . 24

5 Results 26
5.1 Handcrafted Features . 26

5.1.1 Support Vector Machines . 26
5.1.2 Decision Trees . 27
5.1.3 Random Forests . 27

5.2 Siamese Neural Networks . 28

1

5.2.1 GloVe Embeddings . 28
5.2.2 FastText Embeddings . 28

5.3 Model Comparison . 29
5.4 Influence of Meta-features . 31

6 Discussion and Conclusion 32
6.1 Discussion . 32

6.1.1 Research Questions . 32
6.1.2 Future Work . 34

6.2 Conclusion . 34

References 35

Appendices 40

2

Abstract

The web can be used for anything, and people with malicious intent have found ways to
exploit its countless possibilities. The dark web has provided criminals with new ways of
selling their illegal goods. Law enforcement agencies are continuously trying to lift some of
the anonymity provided by onion routing in order to run investigations and prosecute these
individuals. One approach to this challenge is to find links between multiple profiles managed
by a single person in the hope of discovering revealing information on one of them. We will
support this endeavor by applying machine learning techniques to link profiles by means of
author verification.

Several classification algorithms trained on handcrafted stylometric features are compared
with Siamese neural networks relying on two types of word embeddings. To assess the ca-
pabilities of these models, they are evaluated using data scraped from the dark web, created
by various numbers of authors, as well as texts provided for a well-known public shared task
on author verification. Additionally, the benefit of adding meta-features to the input of some
models is experimented with.

A support vector machine trained on handcrafted features performed best when dealing
with texts written by a small set of authors. The Siamese neural network-based approach
delivered the highest scores in many-author scenarios and comes with an additional bene-
fit when applied in production. Furthermore, meta-features have shown to be significantly
improving results.

Our research shows that applying machine learning techniques for author verification on
Darknet market advertisements is feasible and that there are many development possibilities.
Suggestions for future research include: experimenting with more types of text representa-
tions, the addition and transformation of meta-features, and the combination of handcrafted
features with word embeddings. A system implementing such improvements could be success-
fully applied to link profiles of dark web users and help law enforcement agencies in tracking
down vendors of illegal goods.

Acknowledgements

I want to thank my primary supervisor, Dr. Marco Wiering, who helped me find an inter-
esting research topic and provided me with directions and advice whenever I needed them.
Furthermore, my gratitude goes out to my external supervisor Michiel van der Ree. He
was constantly available despite the work-from-home situation and taught me many practi-
cal lessons that are and will be of great use during my career. I would like to express my
appreciation for the support and patience of my colleagues, friends, and family. Finally, I
want to thank my girlfriend, Anne, for always being there and supporting and motivating me
throughout my research.

List of Figures

2.1 The two Word2Vec architectures as introduced in [1], taken from [2]. 9

3.1 The Support Vector Machine (taken from [3]) 15

4.1 Histograms of word counts on the datasets. 19
4.2 The distribution of dark marketplace advertisements. 20
4.3 The structure of the Siamese neural network employed for author verification. 24

5.1 ROC curves for each dataset. The curves are produced by the model types that
performed the best on each particular dataset. The types of these models are
specified in table 5.6. In each figure, the blue line represents the mean ROC
curve, while the transparent areas resemble the difference between the upper
and lower ROC curves of the models tested during 5-fold cross-validation. . . 30

1 The distribution of meta-feature values in the datasets. 41
2 A visualisation of hyper-parameter optimization experiments of SVMs per-

formed on the PAN 2020 dataset. The left figure shows SVMs with a linear
kernel. The right figure shows SVMs with an RBF kernel. In red are the AUC
scores of the best performing models. 42

3 A visualisation of hyper-parameter optimization experiments of SVMs per-
formed on the DN10 dataset. The left figure shows SVMs with a linear kernel.
The right figure shows SVMs with an RBF kernel. In red are the AUC scores
of the best performing models. 42

4 A visualisation of hyper-parameter optimization experiments of SVMs per-
formed on the DN100 dataset. The left figure shows SVMs with a linear kernel.
The right figure shows SVMs with an RBF kernel. In red are the AUC scores
of best performing models. 43

5 A visualisation of hyper-parameter optimization experiments of SVMs per-
formed on the DN1000 dataset. The left figure shows SVMs with a linear
kernel. The right figure shows SVMs with an RBF kernel. In red are the AUC
scores of the best performing models. 43

6 A visualisation of hyper-parameter optimization experiments of decision trees
performed on the PAN 2020 dataset. In red is the AUC score of the best
performing model. 44

7 A visualisation of hyper-parameter optimization experiments of decision trees
performed on the DN10 dataset. In red is the AUC score of the best performing
model. 44

1

8 A visualisation of hyper-parameter optimization experiments of decision trees
performed on the DN100 dataset. In red is the AUC score of the best perform-
ing model. 45

9 A visualisation of hyper-parameter optimization experiments of decision trees
performed on the DN1000 dataset. In red is the AUC score of the best per-
forming model. 45

2

List of Tables

4.1 Definitions of handcrafted features. 21
4.2 Parameter search space for the SVM classifier. 23
4.3 Parameter search space for the decision tree classifier. 23
4.4 Parameter search space for the random forest classifier. 24
4.5 Parameter search space for the Siamese neural network. 25

5.1 Parameters and results of the best performing SVM models on the four datasets. 27
5.2 Parameters and results of the best performing decision tree models on the four

datasets. 27
5.3 Parameters and results of the best performing random forest models on the

four datasets. 28
5.4 Parameters and results of the best performing Siamese neural network models

with GloVe embeddings on the four datasets. 28
5.5 Parameters and results of the best performing Siamese neural network models

with FastText embeddings on the four datasets. 29
5.6 Scores and types of the best performing models overall on the four datasets. . 29
5.7 AUC scores of the best performing Siamese neural network models after em-

beddings of meta-features have been added as initial states for the GRUs that
are the base of these models. In bold are the best performing models. 31

1 Complete list of hyper-parameter optimization experiments of random forest
classifiers performed on the PAN 2020 dataset. In bold is the AUC score of
the best performing model. 46

2 Complete list of hyper-parameter optimization experiments of random forest
classifiers performed on the DN10 dataset. In bold is the AUC score of the
best performing model. 47

3 Complete list of hyper-parameter optimization experiments of random forest
classifiers performed on the DN100 dataset. In bold is the AUC score of the
best performing model. 48

4 Complete list of hyper-parameter optimization experiments of random forest
classifiers performed on the DN1000 dataset. In bold is the AUC score of the
best performing model. 49

5 Complete list of hyper-parameter optimization experiments of Siamese GRU
models with GloVe and FastText embeddings performed on the PAN 2020
dataset. In bold are the AUC scores of best performing models. 50

3

6 Complete list of hyper-parameter optimization experiments of Siamese GRU
models with GloVe and FastText embeddings performed on the DN10 dataset.
In bold are the AUC scores of best performing models. 51

7 Complete list of hyper-parameter optimization experiments of Siamese GRU
models with GloVe and FastText embeddings performed on the DN100 dataset.
In bold are the AUC scores of best performing models. 52

8 Complete list of hyper-parameter optimization experiments of Siamese GRU
models with GloVe and FastText embeddings performed on the DN1000 dataset.
In bold are the AUC scores of best performing models. 53

4

Chapter 1

Introduction

Although the internet has proven its great value for humanity, it has also become apparent
that the anonymity it can provide to its users has created new opportunities for people with
malicious intent. Ever since the first devices were connected to the web, people and their
digital, as well as real-world properties, have become victims of many forms of cybercrime. A
large portion of these crimes can be brought in connection with the dark web, a part of the
internet that is not indexed by search engines such as Google and on which users are provided
a higher level of anonymity by the use of onion routing [4]. Law enforcement agencies aim to
lift some of this anonymity to allow for investigations and prosecution of criminals. Linking
multiple dark web profiles and combining the information gathered from them creates one
opportunity to demystify the identity of dark web users. This thesis aims to support this
effort by determining what methods are most suitable to link dark web accounts using the
advertisements posted by them.

While the dark web can be used for lawful causes, such as journalism and opinion sharing
without censorship, it has become infamous as a tool for criminals that facilitates the sale of
drugs, weapons, and illegal services online. Many so-called Darknet marketplaces have risen
and fell in recent years, with the best-known example being the Silk Road. This marketplace
was shut down in 2013 and resurfaced as Silk Road 2.0 a month later. After this marketplace
was also shut down in 2014 as part of operation Onymous1, other marketplaces filled the
gap that their predecessors left behind in continuous succession [5]. The reasons for the
disappearance and reappearance of dark marketplaces vary. While some are shut down by
law enforcement agencies, others are taken offline by their administrators as part of an exit
scam or because their owners think they can no longer guarantee the anonymity of themselves
or their clients.

Illegal vendors often continue their business by migrating to new marketplaces as their
predecessors are shut down. While doing so, a vendor might decide to use a different account
name. A reason for this might be to divide their business and thus spread risks. Another
reason could be to impersonate well-known accounts to gain the trust of potential customers.
The result of this behavior is that multiple accounts can be mapped to single distinct sellers [6].

This poses a challenge for law enforcement agencies: to be able to create a complete
record of suspects it is necessary to identify these persons through all of their accounts, even
if different account names are used. The anonymity-centered nature of the dark web makes

1https://www.europol.europa.eu/newsroom/news/global-action-against-dark-markets-tor-

network

5

this an arduous task, but its necessity has been shown in the past: the founder of the Silk
Road, Ross Ulbricht, better known under his alias Dread Pirate Roberts, was caught because
authorities were able to link multiple of his accounts, and information found on one of them
ultimately led researchers to his real identity [7].

Various techniques can be used to connect online profiles and complete records of suspects
of online crimes. An obvious approach would be to link profiles with identical or highly similar
account names. Another approach could be to use the PGP keys shared by vendors [8], or
a combination of both [9]. These methods can serve as decent heuristics, but are susceptible
to impersonation attacks, as nothing would stop users from copying names and PGP keys
already used by others [6]. An attempt has been made to maintain a database that could also
be used to track vendors through multiple marketplaces, but it appears such an undertaking
comes at too high human operating cost [10].

In this thesis, we will contribute to the endeavor of linking profiles by researching the
feasibility of applying machine learning algorithms to recognize authors by means of their
writing styles. Known as author verification, the task at hand is to confirm whether a suspect
is or is not the author of a document in question [11]. Author verification has been a subject
of research for many years, and various techniques have been introduced to verify the authors
of documents such as emails [11; 12], social media posts [13], and even novels from the 2nd-
century [14].

We will investigate which author verification technique is most suitable for application on
Darknet market data. More specifically, this research aims to answer the following question:

How well can authors of Darknet market advertisements be recognized using the
available text and metadata?

This question can be decomposed into the following sub-questions:

• What combination of representation and classification methods can most accurately
verify authors of short texts?

• Can metadata collected from Darknet market advertisements be of use in an author
verification system?

The research will be conducted at Web-IQ. This company assists authorities in stopping
criminal activities by providing smart solutions to extract intelligence from online data. Per-
forming author verification could be an interesting addition to their solutions. Web-IQ has
gathered much dark web data by means of scraping over the past years, and the resulting
datasets at their disposal provide an interesting opportunity for this research.

We search for the best approach to author verification on Darknet market data by com-
paring three well-known machine learning algorithms with a neural network-based classifier.
The former will be trained on handcrafted stylometric features and the latter will be fed with
more recently developed text representations. A dataset not related to the dark web will be
experimented with as well to allow for a better comparison of the various classification and
representation methods.

6

Chapter 2

Text Representation

A major challenge in the field of Natural Language Processing (NLP) is the representation
of text. Various methods have been developed to convert words and sentences into numerical
forms that preserve some form of meaning. These methods should produce a vector that
can be used in statistical or machine learning models. This chapter discusses two types of
methods applied in authorship verification: count vectorization and word embedding.

2.1 Count Vectorization

A representation method well-known in the field of NLP named Bag of Words (BoW) is
based on counting. The term Bag in this case refers to the fact that words are counted
without considering their relative position in the text. Texts are represented by vectors of
vocabulary length |V | on which the occurrence of each word is stored using counts or binary
values resembling their presence or absence. These vectors were originally described as Vector
Space Models (VSM) [15], and combined with linear classifiers provided an early approach to
text classification [16]. Extensions of these models such as term frequency-inverse document
frequency (tf-idf), which compares the occurrence rate of a word in a document relative to
that of the word in an entire corpus, have shown to be particularly useful in information
retrieval [17; 18].

BoW-type vectors can become highly dimensional as the size of the corpus increases.
Furthermore, information is lost due to the fact that the order of words and their semantics
are ignored. Another disadvantage of the BoW approach is that vectors are highly dependent
on text topic, reducing effectiveness for authorship analysis [19].

Several other types of features applicable for authorship analysis are based on count
vectorization. Many lexical, syntactical, structural, and content-specific features have been
addressed [20; 19; 21]. While much research has been done on the challenge of finding the op-
timal set of features [22; 23; 24; 25], performance is influenced by data domains, preprocessing
steps, and classifiers used as well, making it difficult to select a general solution.

2.2 Word Embeddings

Texts can also be represented by dense representations. As opposed to count vectors, these so-
called embeddings provide a more efficient way of representing text and allow for the capture
of meaning in the form of semantic or syntactic relationships between sentences, words, or

7

characters. The semantic relationships are discovered through the distributional hypothesis,
which states that words that occur in similar contexts have similar meanings [26]. This
hypothesis became popular being summarized as “You shall know a word by the company it
keeps” [27]. Two model families can be distinguished: global matrix factorization methods,
and local context window methods [28]. In this section we first discuss two methods, one of
each family, with a substantial history in research, followed by two improvements upon these
models that have been experimented with during our research.

2.2.1 Latent Semantic Analysis

A popular early method named Latent Semantic Analysis (LSA) [29] combines the BoW prin-
ciple with the distributional hypothesis. Being a global matrix factorization-type method, the
idea behind this method is to create a term-document matrix in which the columns represent
documents and the rows represent words. The term-frequencies in this matrix are typically
transformed into tf-idf scores. After dimension reduction using a reduced-rank singular value
decomposition (SVD), the result is a k-dimensional approximation of the original matrix, in
which each document and term is represented by a k-dimensional vector in the space de-
rived by the SVD [30]. The document-document, document-term, and term-term similarity
can then be determined using cosine-similarity. LSA was originally designed for information
retrieval, sometimes described as Latent Semantic Indexing (LSI). While it can leverage sta-
tistical information and capture some semantic relation between words, choosing the right
value for k significantly influences performance, and other methods have outperformed LSA
in recent years. These models are discussed in the remainder of this section.

2.2.2 Word2Vec

Neural Network Language Models (NNLM) have gained much attention after the first model
based on a feed-forward neural network was introduced in [31] and the power of pre-trained
word embeddings was signified in [32]. However, using neural networks for word representation
learning has really become a common practice after Mikolov et al. introduced two novel local
context window-based architectures wrapped in a framework called Word2Vec in [1; 33].
The central idea behind the two architectures named Continuous Bag of Words (CBOW)
and Continuous Skip-gram (CSG) is to remove the non-linear hidden layer used in NNLM
architectures to reduce computational complexity.

Continuous Bag of Words

The CBOW architecture aims to predict a target word wt from C context words, wI . This
is achieved by employing a neural network with a single layer of size N , as illustrated in
figure 2.1a. The network input consists of C one-hot encoded vectors x ∈ RV , where V is the
length of the vocabulary. These vectors are fed through weight matrix W ∈ RV×N , in which
each row represents a word in the input layer with vector vw ∈ RN .

One-hot encoding implies that for every input word only one of V elements {x1, ..., xV }
will be 1. This means that in the case of a single context word (C = 1), the activation function
of the hidden layer is

h = vTwI
(2.1)

8

Input layer

Hidden layer
Output layer

WV×N

WV×N

WV×N

W'N×V yjhix2k

x1k

xCk

C×V-dim

N-dim
V-dim

(a) Continuous Bag of Words.

Input layer
Hidden layer

Output layer

WV×N

W'N×V

C×V-dim

N-dim

V-dim

xk hi W'N×V

W'N×V

y2,j

y1,j

yC,j

(b) Continuous Skip-gram.

Figure 2.1: The two Word2Vec architectures as introduced in [1], taken from [2].

With larger context windows (C > 1), the vectors are averaged, and the activation function
becomes

h =
1

C

C∑
c=1

vTwI,c
(2.2)

From the hidden layer to the output layer, a different weight matrix W′ ∈ RN×V = {w′ij}
is used to calculate score uj for each word in the vocabulary. The vector v′wj

consists of
weights w′ij from hidden unit i to output unit j. With v′wj

as the j-th column in W′, we
define

uj = v′wj

T
h (2.3)

Finally, the Softmax function is employed to produce the posterior distribution of words:

p(wj |wI,1, ..., wI,C) = yj =
exp(uj)∑V
j′=1 exp(uj′)

(2.4)

Given the input context words {wI,1, ..., wI,C}, the goal of the training procedure is to maxi-
mize the probability of the actual output word wO. Applying log probabilities, this translates
to

max p(wO|wI,1, ..., wI,C) = max log yj∗

= uj∗ − log

V∑
j′=1

exp(uj′),
(2.5)

where j∗ is the index of of the actual output word in the output layer. The loss function to
minimize consequently becomes

E = − log p(wO|wI,1, ..., wI,C) (2.6)

9

Applying back-propagation, we first take the derivative of E with regard to uj and obtain

∂E

∂uj
= yj − tj := ej , (2.7)

where tj is 1 if j = j∗, 0 otherwise, and ej is the prediction error of the j-th word in the
output layer. Next, the derivative on w′ij is taken to obtain the gradient on the hidden →
output weights:

∂E

∂w′ij
=
∂E

∂uj
· ∂uj
∂w′ij

= ej · hi (2.8)

Finally, stochastic gradient descent is utilized to form the updating equation for the hidden
→ output weights:

v′(new)
wj

= v′(old)wj
− η · ej · h for j = 1, 2, ..., V, (2.9)

where η > 0 is the learning rate. After updating the values in W ′, we proceed by finding
the update equations for W. First, the derivative of E on the output of the hidden layer is
calculated using

∂E

∂hi
=

V∑
j=1

∂E

∂uj
· ∂uj
∂hi

=
V∑
j=1

ej · w′ij := EHi, (2.10)

where hi is the output of the i-th unit in the hidden layer and EH ∈ RN is the sum of the
output vectors of all words in the vocabulary, weighted by their prediction error ej as defined
in (2.7). Since hi is defined by

hi =
V∑
k=1

xk · wki, (2.11)

and its derivative with respect to wki therefore is xk, we subsequently acquire the derivative
of E with regard to each element of W:

∂E

∂wki
=
∂E

∂hi
· ∂hi
∂wki

= EHi · xk = xTEH (2.12)

Only C elements of x are non-zero, and it follows that just the vectors of their correspond-
ing context words are updated in W:

v(new)
wI,c

= v(old)
wI,c
− 1

C
· η · EHT for c = 1, 2, ..., C, (2.13)

where η > 0 is the learning rate, and vwI,c is called the embedding of context word wI,c.

Continuous Skip-gram

As shown in figure 2.1b, the CSG model is the opposite of CBOW, with the target word at
the input layer and the context words at the output layer. The objective is to predict context
words given some target word.

With just one input word, h is defined as in (2.1). On the output layer, instead of the
posterior distribution for one word, we now have C posterior distributions:

p(wc,j = wO,c|wI) =
exp (uc,j)∑V
j′=1 exp (uj′)

= yc,j (2.14)

10

where wI is the input word, wO,c is the actual c-th word in the output context words, and
yc,j is the output for the j-th unit of the c-th context word. The loss function is therefore
transformed to

E = − log p(wO,1, ..., wO,C |wI)

= − log

C∏
c=1

exp (uc,j∗c)∑V
j′=1 exp (uj′)

= −
C∑
c=1

uj∗c + C · log

V∑
j′=1

exp (uj′)

(2.15)

The update equation for the hidden → output matrix W ′ is similar to (2.10), except that
we now consider the error for every context word:

v′(new)
wj

= v′(old)wj
− η ·

C∑
c=1

Ec,j · h for j = 1, 2, ..., V. (2.16)

Conversely, the update equation for the input → hidden weights in (2.13) is tailored to suit
a single input word and becomes

v(new)
wI

= v(old)
wI
− η · EHT . (2.17)

An advantage of CSG over CBOW can be that embeddings of context words are not
averaged during prediction, which prevents those of rare words from being smoothed away
by more frequent examples throughout training. This allows for better representations of
these words. However, since CSG involves multiple word classifications for every input word,
complexity is increased, resulting in longer training times.

Negative Sampling

Mikolov et al. in [33] introduced negative sampling to reduce training times for CBOW and
CSG models. The idea is to only update a sample of the output vectors in each iteration to
save computations. The actual output word wO always gets updated, as well as some random
other words sampled through an arbitrarily chosen probabilistic distribution. Essentially
being a simplified form of Noise Contrastive Estimation [34], the new training objective is
defined as

E = − log σ(v′wO

T
h)−

∑
wj∈Wneg

log σ(−v′wj

T
h), (2.18)

where σ is the softmax function and h is the output of the hidden layer for either CBOW or
CSG.

2.2.3 GloVe

Pennington et al. in [28] argue that since local context window methods such as CBOW and
CSG are only trained on separate local context windows, they do not effectively utilize global
corpus statistics. However, methods such as LSA (discussed in 2.2.1) aimed at doing so, show
indications of a sub-optimal vector space structure. GloVe (Global Vectors) was introduced
to combine the best of both worlds, in order to create word embeddings that perform well

11

in word analogy, similarity, and named entity recognition tasks while efficiently leveraging
statistical information.

Similar to LSA, the idea is to first construct a co-occurrence matrix X. While this matrix
in LSA consists of term-document counts, entries Xij for GloVe represent the number of times
word j occurs in the context of word i. Therefore,

Pij = P (j|i) =
Xij

Xi
(2.19)

embodies the probability that word j appears in the context of word i. Recalling that words
that appear in similar contexts have similar meanings, we can use probe words k to learn
about the relationship between words i and j. That is, if Pik is similar to Pjk, i.e. Pik/Pjk is
close to one, k is related to both i and j, or to neither.

Taking these ratios of co-occurrences as a starting point, the model takes the form

F (wi,wj , w̃k) =
Pik
Pjk

, (2.20)

where w ∈ Rd are word vectors and w̃ ∈ Rd are context words vectors. Since the goal of
constructing word vectors is to represent analogies between words, F should depend on the
difference between two target words. Furthermore, to prevent the mixing of vector dimensions
as occurs in neural network-based algorithms, Pennington et al. argue that F should merely
take the dot products of its arguments. We consequently define

F ((wi −wj)
T w̃k) =

Pik
Pjk

(2.21)

Then, after assuming F is a homomorphism between groups (R,+ and (R>0,×), we can
write

F ((wi −wj)
T w̃k) =

F (wT
i)w̃k

F (wT
j)w̃k

, (2.22)

which by (2.21) is solved by

F (wT
i w̃k) = Pik =

Xik

Xi
. (2.23)

The rationality behind this transformation is that the roles of target and context words can
be exchanged, which requires F to be invariant under the relabeling of w↔ w̃ and X ↔ XT

Finally, after solving this equation by applying F = exp and adding biases b̃k and w̃k,
GloVe becomes a global log-bilinear regression model, of which the cost function is posed as
a least squares problem:

J =

V∑
i,j=1

f(Xij)(w
T
i w̃j + bi + b̃j − logXij)

2, (2.24)

where

f(x) =

{
(x/xmax)α if x < xmax

1 otherwise.
(2.25)

The authors in [28] found that setting xmax = 100 and α = 3/4 delivers the best results
and have made a multitude of models trained on large datasets publicly available.

12

2.2.4 FastText

Another shortcoming of Word2Vec models is that since the algorithm learns vector repre-
sentations for words as a whole, the internal structure of these words is ignored. This can
pose a problem when systems have to deal with morphological variations of words that have
not been seen during training. Bojanowski et al. in [35] propose a new approach, named
FastText, in which words are represented as a bag of character n-grams. This allows models
to compute word representations for words that were not previously encountered.

FastText is highly similar to Word2Vec with negative sampling as discussed in 2.2.2.
Instead of using full words, each word is represented by a combination of its character n −
grams and the full word itself. If n = 4 for example, a word such as selling would be
represented as

<sel, sell, elli, llin, ling, ing>, <selling>

All character n-grams for 3 ≤ n ≤ 6 are extracted. Then, if we take Gw ⊂ {1, ..., G} as the set
of n-grams comprised in word w, and the vector representation zg for each n-gram g, a word
is is represented by the sum of the vectors of the n-grams it contains. The scoring function
for a word is therefore defined as

s(w, c) =
∑
g∈Gw

zTg vc (2.26)

Much memory would be required for the storage of all character n-grams, which is circum-
vented by the use of a hashing trick.

Although the original version of FastText was already seen as a solid improvement to
Word2Vec, opportunities for development were taken in [36] by changing the architecture to
resemble the CBOW method instead of CSG. This architecture could be slightly improved
by the addition of position-dependent weighting as introduced in [37]. Furthermore, instead
of only considering uni-grams that are insensitive to word order, the improved version of
FastText merges some word n-grams during training as in [33] to further improve the quality
of the learned word representations.

13

Chapter 3

Classification

Classification is one of the most common tasks in machine learning. The goal for this task is
to automatically specify which category k some input belongs to [38]. For author verification,
the input consists of a pair of texts, which should be categorized as either same-author or
different-author. In this chapter, we discuss some classic classification algorithms as well as
neural network-based techniques that have been applied to author verification and have been
experimented with for this thesis.

3.1 Support Vector Machine

Support Vector Machines (SVM) [39] are classifiers that aim at finding an optimal separating
hyperplane between two input vectors to distinguish between two groups. Only the data
points closest to the separating hyperplane, named support vectors, are considered in this
process. As shown in Figure 3.1, the optimal separating hyperplane maximizes each support
vector’s distance to the hyperplane. This distance is referred to as the margin.

Finding a separating plane in the form of wx − b = 0 with classes clearly separated by
a margin is only feasible in case of a linearly separable problem. Since this is often not the
case, two tricks have been introduced. The first trick is known as the soft-margin hyperplane,
and its idea is to permit some degree of error while constructing the separating hyperplane.

For the unforgiving hard-margin SVM, a set of labeled training samples

(y1,x1), ..., (y`,x`), yi ∈ {−1, 1} (3.1)

would only be considered linearly separable if there exists vector w and a scalar b such that
the following holds:

wxi + b

{
≥ 1

≤ −1

if yi is 1,

if yi is − 1.
(3.2)

Given this inequality can be written as:

yi(wx + b) ≥ 1, i = 1, ..., ` (3.3)

14

Figure 3.1: The Support Vector Machine (taken from [3])

the introduction of slack variable ξi creates constraints that are satisfiable while permitting
some errors in the training data.

yi(wx + b) ≥ 1− ξi, i = 1, ..., `

ξi ≥ 0, i = 1, ..., `
(3.4)

Finally, to maximize the margin 2
||w|| , the cost function of the soft-margin SVM is defined

as

1

2
w2 + CF (

∑̀
i=1

ξσi) (3.5)

subject to the constraints in 3.4, and where F (u) is a monotic convex function and C is a
tuneable parameter. C controls the level error that is allowed during training. Increasing C
will increase the penalty for misclassifications during training. The hyperparameter therefore
influences the level of under- or overfitting, and is often an important hyperparameter to
optimize.

Another trick employed by the SVM to allow for more accurate separation of non-linearly
separable data is the possibility of replacing its kernel function. An example of a commonly
used kernel function is the Radial Basis Function (RBF), which can be defined as

exp(−γ||xi − xj ||2), (3.6)

where γ is another tuneable hyperparameter. The value of γ controls the influence of single
examples on the curvature of the polynomial decision surface, which might also have an effect
on the generalization capacities of the model. No specific value for γ works for every dataset
and the value is therefore often subject to optimization procedures as well.

15

3.2 Decision Tree

A method much more resemblant to the human decision-making process is known as the
decision tree [40]. The idea behind it is to learn simple decision rules that together allow the
model to make accurate predictions on complex data.

Each tree consists of a root node that represents the entire population. The training
procedure is aimed at splitting this root node into branches, at the end of which are so-called
leaves that contain samples separated by their class. The splits are based on single features
that are strategically chosen based on properties such as impurity or information gain. The
complexity of the model is in relation to the depth of the constructed decision tree. More
splits and therefore deeper decision trees can more precisely model training data, but come
with the risk of overfitting on this data.

Decision trees have shown to be capable of accurate classification in many scenarios. A
much-appreciated property of decision trees is that they are completely white-box, in the
sense that their decisions can be fully tracked. A weakness of decision trees however is that
the risk of overfitting on training data is relatively high.

3.3 Random Forest

Random forests were introduced to mitigate the risk of overfitting decision tree models [41].
The essence of the random forest is to combine multiple decision trees into a single model. In
these decision trees, a random subset of features is selected for each split, resulting in different
decision trees. The trees are then averaged and can complement each other [42], acting as an
ensemble.

Random forests unsurprisingly outperform decision tree models in most cases, mainly
decreasing the chance of overfitting. The number of decision trees out of which the forest
is constructed can be varied and is often subject to optimization procedures. Usually, more
trees result in more accurate representations of data, but using many trees comes at the cost
of significantly increased training times.

3.4 Neural Networks

Ever since the introductions of the perceptron [43] and back-propagation [44], neural networks
have been applied to perform a wide variety of tasks. In this section, we will discuss the neural
network-based techniques that are experimented with for this thesis.

3.4.1 Recurrent Neural Networks

For sequential data, time is an essential feature to the capture of much the information
it holds. Natural language for example would lose much of its meaning when the words
would not be presented in order. To capture time-based relations, research has led to the
development of various types of neural networks capable of learning such relations. These
networks, called Recurrent Neural Networks (RNN), aim to stay informed about previous
inputs before processing the next.

An RNN does this by using its activation in a previous timestep for that of the current

16

step. More specifically, the activation is defined as

ht =

{
0 if t = 0

Φ(ht−1,xt) otherwise,
(3.7)

where Φ is a nonlinear function such as composition of a logistic sigmoid with an affine
transformation [45].

A problem that arises in the original RNNs is that as more time steps are taken, the
gradient to be used for updates becomes increasingly small, and the training procedure of the
network takes much time. This problem is known as the vanishing gradient problem [46], and
new types of RNN networks were introduced to deal with it.

One example of such a network is named the Gated Recurrent Unit (GRU) [47]. Instead
of processing all information seen in the past, as in the original RNN, the GRU implements
an update gate zjt , which allows it to selectively remember information that is considered
necessary for solving a problem. The activation of the j-th GRU unit in a network at time t
is influenced by zjt , and is an interpolation between the previous activation and a candidate
activation h̃jt :

hjt = (1− zjt)h
j
t−1 + zjt h̃

j
t . (3.8)

This capability, essentially the capability to ’forget’ information that has been seen in the
past, has led to improved results on various tasks [45].

3.4.2 Siamese Neural Networks

Many classification tasks, such as facial comparison, signature verification, and author verifi-
cation, require some form of comparison. Siamese neural networks were designed to handle
such tasks more naturally, by means of two identical sub-networks that share weights and are
joined at their outputs [48]. Each sub-network learns features from two inputs, after which
the difference between these features is used to make predictions.

The original Siamese neural networks were implemented with Time-Delay Neural Net-
works [49], but the sub-networks can be replaced by other types of architectures such as
dense neural networks, convolutional neural networks (CNN), and GRUs. The Siamese neu-
ral network basically learns to embed its inputs such that the produced vectors of similar
samples are close together in vector space, while unequal samples are not. After training a
Siamese neural network, it is possible to detach the distance-calculating head from the sub-
networks, allowing these networks to produce representations of inputs that hold information
regarding their identity.

17

Chapter 4

Experimental Setup

This chapter describes the data and methodology used to answer the research questions
mentioned in the introductory section. Section 4.1 describes the two datasets and presents
some exploratory analysis. Section 4.2 discusses the trialed encoding techniques and clarifies
the handcrafted features used in some of the models. Finally, section 4.3 describes the models
and parameters employed during the classification of the encoded data.

4.1 Data Acquisition and Analysis

4.1.1 PAN 2020

The first dataset was acquired from the International Workshop on Plagiarism Analysis,
Authorship Identification, and Near-Duplicate Detection (PAN). This workshop is held every
year since 2007 and comprises various shared tasks related to NLP. The specific dataset
used in this thesis originates from the PAN authorship verification task of 2020. The texts
are stories crawled from fanfiction.net1: a website where users share stories in numerous
thematic categories referred to as fandoms. There are 52601 pairs constructed from 93662
unique texts, written by 52655 unique authors. In total, there are around 367 million words.
As shown in figure 4.1a, most texts contain between 3500 and 4500 words. Only a few texts
contain more than 5000 words, with the largest extreme outlier reaching 55433 words. There
are 27834 positive and 24767 negative samples, meaning the dataset is fairly balanced.

To facilitate the use of meta-features, the fandoms in which texts were written have been
provided as well. There are 1600 unique fandoms, with examples such as Sherlock Holmes,
Psych, and Hunger Games. An illustration of the distribution of meta-features can be found
in the Appendix.

4.1.2 Darknet

The Darknet market data is provided by Web-IQ and was collected by scraping 17 Darknet
markets between 2014 and 2020. It consists of millions of advertisements offering a wide
range of illegal goods such as drugs, weapons, and counterfeit money. Since over 96% of the
advertisements are written in English, we will not consider other languages. To investigate the
influence of the number of unique authors on the performance of author verification methods,
3 datasets were constructed using texts written by 10, 100, and 1000 unique authors.

1https://www.fanfiction.net/

18

(a) PAN 2020. (b) Darknet.

Figure 4.1: Histograms of word counts on the datasets.

For an author verification algorithm to be trained, pairs of text with positive, i.e. written
by the same author, and negative examples are required. We follow [50] and create positive
examples under the assumption that texts posted using a single username on one marketplace
are written by one individual. A particularity of Darknet market advertisements however is
that multiple advertisements written by one user might show extreme resemblance, as only
a few terms are changed: sellers often use separate advertisements to offer various quantities
of the same drug, append the same long disclaimer to multiple few-word offerings, or use
template texts for every post. To exclude pairs of highly similar texts from our datasets, we
employ the Jaccard similarity

J(A,B) =
|A ∩B|
|A ∪B|

(4.1)

over the words as a heuristic. It was empirically determined that setting J(A,B) < 0.2
establishes text pairs that cannot be effortlessly matched by word counts and for which an
author verification algorithm could provide a valuable solution.

Figure 4.2 shows the distribution of all advertisements in the Darknet market data. Most
users post less than 50 advertisements. For each author, we calculate the possible number
of positive examples P that could be generated under restriction J(A,B) < 0.2, and pick
random authors with similar values for P for each of the three datasets. We define the range
for P such that at least the required amount of authors can be selected for each dataset.
This means that for the 10 authors dataset, from hereon named DN10, we select authors
with 3500 < P < 3600. For DN100 we take 1300 < P < 1400 and for DN1000 choose
200 < P < 300. After generating every possible positive pair for author A, we create negative
examples by combining random texts of A with some random text of another author B until
P is matched. As noted in [51], there is a possibility that B is in fact an alias of A. However,
this is unlikely and if it is the case, will not enhance the results.

The DN10 dataset contains 71163 pairs, constructed from just 529 unique texts. It com-
prises around 15.4 million words. The DN100 dataset is built out of 3541 unique texts,
forming 270895 pairs with around 53 million words. For DN1000, there are 18093 unique
texts combined in 494840 pairs, containing a billion words. As shown in figure 4.1b, most
texts in all three datasets consist of less than 200 words.

The Darknet market dataset contains many meta-features detailing the forum posts, such
as extracted product prices, product tags, and product categories. However, since these

19

Figure 4.2: The distribution of dark marketplace advertisements.

properties are often missing because they could either not be extracted or were not present
at all, we will only utilize the property normalized shipping to. This property was extracted
for every forum post and describes to what regions sellers want to ship their products. This
information could be valuable to an author verification system, as sellers will most likely
determine where to send their products based on their personal beliefs about risks and costs
imposed by sending to specific countries: some countries might be too far away from the
senders own location, making shipping too expensive, while the laws and their enforcement in
other countries around certain illegal goods might make sending them to these countries not
worth the risk. There are 60 possible values for normalized shipping to, and their distribution
is visualized in the Appendix.

4.2 Data Encoding

4.2.1 Stylometric Features

As mentioned in section 2.1, much research has been done on finding optimal sets of stylomet-
ric features to identify authors. We acknowledge these efforts, and instead, focus our research
on finding a promising combination of representation and classification methods for author
verification on Darknet market advertisements. Therefore we limit our set of handcrafted
features to just nine different features that are known to be effective and are not domain -or
topic-dependent [52]. The features are described in table 4.1. All features are joint features,
which means they are single values calculated by comparing properties of two input texts.

For word and sentence tokenization we employ word tokenize from the Natural Language
Toolkit (NLTK) [53] and NLTK’s Punkt tokenizer respectively. For the two features based
on character n-grams, we take M = 100 and calculate the scores for uni, bi, and tri-grams,

20

Feature name Description

Character n-gram dissimilarity The dissimilarity between two normalized character n-gram dis-
tributions. The score is defined as

∑M
i=1(2 · (f1,i − f2,i)/(f1,i +

f2,i))
2, where f1 and f2 are the normalized frequencies of the top

M most occurring n-grams (taken from [54]).

Character n-gram SPI The Simple Profile Intersection [52] score of two character n-gram
distributions. The score is defined as |F1 ∩ F2|, where F1 and F2

are the sets of the M most frequent character n-grams for both
texts (taken from [54]).

Character count difference The absolute difference between the number of characters in each
text.

Word count difference The absolute difference between the number of words in each text.

Sentence count difference The absolute difference between the number of sentences in each
text.

Punctuation similarity The cosine similarity between two vectors with normalized counts
of punctuation marks [, .?!;− :′] in both texts (taken from [54]).

Word lengths difference The absolute difference between the average lengths of the words
in both texts.

Sentence lengths difference The absolute difference between the average lengths of sentences
in both texts.

Uppercasing difference The absolute difference between the relative amount of upper-
cased characters in both texts.

Table 4.1: Definitions of handcrafted features.

which after combination with the other features lead to a 12-dimensional feature vector.

4.2.2 Embeddings

To confine the number of experiments done for this thesis, we only perform experiments using
pre-trained word embeddings. The motivation behind this choice is that the quality of word
embeddings highly depends on the amount and quality of the data they were trained on [55].
Considering the number of texts in the PAN 2020 dataset is small, and the uncurated posts
on Darknet market forums are often full of noise, word embeddings pre-trained on other more
commonly used datasets will most likely be of better quality.

For GloVe, we take 100-dimensional vectors trained on an English Wikipedia dump from
2014 and Gigaword 5 [56], a dataset containing newswire texts. In total, this training set
consists of 6 billion tokens, of which the 400.000 most common words were used to create the
co-occurrence matrix the algorithm relies upon. During training, a context of 10 words to
the left and 10 words to the right was used while applying a decreasing weighting function
such that word pairs that are d words apart contribute 1/d to the total count. The model
was trained for 50 iterations.

The FastText embeddings were trained on texts provided by Common Crawl, an initiative
that crawls the web for its full-text contents. More specifically, 2 million word vectors were
trained using the 600 billion tokens in a Common Crawl dump of May 2017. The 300-

21

dimensional model was trained using CBOW with position weights, character n-grams of size
5, a window size of 5, and 10 negative samples. We convert the model to dimension 100 using
the reduce model.py script that is provided by the authors of [55].

4.2.3 Meta-features

We will research what influence features outside of texts can have by adding these meta-
features to the inputs of our Siamese neural network architectures. For both datasets, this
means we will transform the categorical feature into a one-hot encoded vector. This results
in vectors of length 1600 and 60 for PAN 2020 and the Darknet market datasets respectively.
We will specify how these vectors are used by the models in section 4.3.2.

4.2.4 Pre-processing

Because stylometric features are often expressed in details of texts, commonly used pre-
processing methods such as lowercasing, stemming, and stop word removal would only limit
the capture of author characteristics and thus negatively impact results. Therefore we use
the raw texts as our input. For the Darknet market datasets, we prepend the title of each
advertisement to its content to capture as much of each author’s writing as possible.

As the models based on handcrafted features require their inputs to be standardized,
we transform the 12-dimensional input feature vectors using Scikit-learn’s StandardScaler to
center their values around 0.

4.3 Models

This section describes the parameters of each predictive model that was experimented with
and the methods used to find the optimal values for these parameters. First, we perform a
grid search using GridSearchCV from Scikit-learn to search for the optimal parameters for
each model. We use 60% of the data for training, 20% for validation, and 20% for testing,
split by pair or author for the PAN 2020 and Darknet market datasets respectively. Given the
PAN 2020 dataset consists of texts written by many different authors and only a handful of
authors contributed more than two texts to the dataset, we can split the data by pair without
risking that our model fits on specific authors. For the Darknet market datasets, written by
just 10, 100, and 1000 authors, this risk does exist. Therefore we split this data by author
to allow us to evaluate how well our models perform when dealing with texts of unknown
authors. As discussed in 4.1.2, the datasets were constructed such that the number of text
pairs is roughly the same for each author, which results in pair counts being proportionate to
the author count in each split. During hyperparameter optimization, the validation set is only
used as a means of determining an early stopping point for the Siamese neural network-based
model: we stop training if the validation loss has not decreased in the last 4 epochs.

For the experiments with models with optimized parameters, we employ 5-fold cross-
validation as implemented in Scikit-learn’s KFold to minimize the risk of overfitting on subsets
of the data. This means that 80% of the data will be used for training, and 20% for testing.

The receiver operating characteristic (ROC) curve and its area under the curve (AUC) are
used for evaluation. Originally developed for operators of military radar receivers, hence its
name, the ROC curve is a plot of the true positive rate (TPR) against the false positive rate
(FPR). The AUC is the probability that a model ranks a randomly chosen positive sample

22

higher than a randomly chosen negative one [57]. A randomly guessing model would achieve
an AUC score of 0.5, while 1.0 would be considered a perfect score. The main advantage of
AUC over other measurements such as accuracy is that there is no need to define a decision
boundary for evaluation, as the class probabilities can be used directly. While there are some
drawbacks to using AUC [58], we follow the organizers of PAN 2020 [59] and consider it a
suitable method for evaluating authorship verification models.

4.3.1 Handcrafted Features

Three well-known classification algorithms are experimented with to assess the potency of
models based on handcrafted features in author verification systems.

Support Vector Machine

Scikit-learn’s SVC is employed as implementation for the SVM. As discussed in section 3.1,
the parameters most influential on the SVM’s performance are the kernel, the regularization
parameter C, and the level of influence of single training samples, Gamma. We note that for
the linear kernel, Gamma is not applicable and will therefore not be specified if a model with
a linear kernel appears in the final results. Table 4.2 displays the sets of parameters that are
experimented with for this thesis.

Parameter Values

Kernel linear, RBF

C 1e−3, 1e−2, 1e−1, 1, 10

Gamma 1e−3, 1e−2, 1e−1, 1

Table 4.2: Parameter search space for the SVM classifier.

Decision Tree

The DecisionTreeClassifier from Scikit-learn serves as our model for decision tree classifiers,
and we optimize two parameters that control the structure of the tree, which are listed in
table 4.3. Max. depth is the maximum depth of the tree, which can limit the complexity and
influence the generalization capabilities of the model. Min. samples split is the minimum
number of samples required to split an internal node. This value affects whether a model
under- or overfits as a decision tree that contains splits based on too few samples might
model relations that are highly specific to a training set, while insufficient splitting might
prevent models from learning crucial relations at all.

Parameter Values

Max. depth 10, 100, 1000

Min. samples split 2, 5, 10

Table 4.3: Parameter search space for the decision tree classifier.

23

Random Forest

We train random forest models using Scikit-learn’s RandomForestClassifier. The ratio of
features to be considered at each split is set at the default value

√
N , where N is the total

number of features. The parameters prone to optimization are shown in table 4.4. We take
larger values for Min. samples split than in the decision tree classifier, as an ensemble of
decision trees should have a reduced risk of overfitting in comparison to a single tree. Lastly,
we vary the number of estimators that are allowed in the ensemble.

Parameter Values

Max. depth 10, 50, 100, 200

Min. samples split 2, 5, 10

Estimators 10, 100, 1000

Table 4.4: Parameter search space for the random forest classifier.

4.3.2 Siamese Neural Network

We model the comparative nature of author verification tasks using a Siamese neural network,
shown in figure 4.3. The Keras framework [60] is used for its implementation. First, we
tokenize both texts using Keras’ built-in tokenizer. The embeddings of the tokens are then
retrieved from the pre-trained GloVe or FastText models. Next, these embeddings are passed
through a GRU, of which the final state is the input to a dense layer on each side of the
network. The network is trained by means of the contrastive loss function as described
in [61]. This loss function is designed to decrease the euclidean distance between the output
vectors of equally labeled samples while increasing it for unequally labeled pairs, making it
suitable for tasks that are of comparative nature. In a production environment, the output
of the network can be a Euclidean distance value, which can be thresholded such that text
pairs are classified with preferred levels of sensitivity and specificity.

The possible benefit of using meta-features in author verification systems is investigated
by adding them to the inputs of the Siamese neural network-based models. As mentioned
in section 4.2.3, this is done by first transforming each meta-feature into a one-hot encoded

Figure 4.3: The structure of the Siamese neural network employed for author verification.

24

vector. Some Darknet advertisements have multiple values for normalized shipping to, but
only the first value will be used during our experiments. The one-hot encoded vector is
embedded by a dense layer with the same dimensions as the hidden layer in the GRU. The
resulting vector is used as the initial state in the GRU.

The Adam optimizer [62] is employed for optimization. We use a batch size of 128. As
mentioned earlier, during grid search we use the validation data to determine the number of
epochs to train the network for the final experiments. We use the stopping point from the
best-performing model in the grid search as the stopping point in the subsequent experiments.

During hyperparameter optimization, we vary the number of hidden units in the GRU, the
dropout ratio within the GRU, and the number of output units in the dense layer following
the GRU. Table 4.5 displays the values in the search space.

Parameter Values

Hidden units 32, 64, 128

Output units 32, 64, 128

Dropout 1e−1, 2e−1, 4e−1

Table 4.5: Parameter search space for the Siamese neural network.

25

Chapter 5

Results

This chapter describes the results of the experiments as described in the previous chapter.
Section 5.1 will present results obtained through models that were trained using handcrafted
features. Next, section 5.2 displays the performance of Siamese neural network-based models
utilizing GloVe and FastText embeddings, after which the influence of adding a meta-feature
will be presented in section 5.4. Finally, we compare the results from each model type in
section 5.3.

As the experiments performed for this thesis were extensive, only the results of the models
that were selected after an optimization procedure will be shown in this chapter. The full
list of results can be found in the Appendix. As mentioned in the previous chapter, all AUC
scores presented in this section were obtained through 5-fold cross-validation. In bold are
the highest scores achieved for each dataset.

5.1 Handcrafted Features

In this section, we present the results of models trained using vectors constructed using
handcrafted features. For each dataset, we show the best-performing parameters found during
grid searches and the scores that were produced using these parameters.

5.1.1 Support Vector Machines

The results obtained using SVM models are displayed in table 5.1. For three of the four
datasets, the best performing models are trained with parameter C set at 10, the largest
value in the search space, while for DN10 a C value of 1 returned the highest AUC. Setting a
high value for C, such as 10, implies an SVM will favor the correct classification of individual
training samples over a large margin while constructing its separating hyperplane. Since the
largest value was selected in all but one case, it appears the search space was not broad
enough, and higher values for C should have been experimented with. Very high values for C
however could result in overfitting, and it should be noted that K-fold cross-validation during
grid search could have led to different outcomes.

For the DN100 dataset, a linear kernel performed best. A Gamma value of 0.01 returns the
best performing models for all models with an RBF kernel. The SVM delivers its highest AUC
on the PAN 2020 dataset. For the Darknet market datasets, the performance is comparable
for 10, 100, and 1000 authors, but it should be noted that the AUC for 10 authors is worst.

26

Dataset C Gamma Kernel AUC

PAN 2020 10 1e−2 RBF 0.853
DN10 1 1e−2 RBF 0.718
DN100 10 linear 0.752
DN1000 10 1e−2 RBF 0.745

Table 5.1: Parameters and results of the best performing SVM models on the four datasets.

This is in line with expectations, as training on texts written by just six authors will most
likely not allow a model to generalize well enough to make accurate predictions on texts
written by two other authors. However, as the boldfacing gives away, none of the other tested
models is able to outperform the SVM on the DN10 and DN100 datasets.

5.1.2 Decision Trees

Table 5.2 shows the selected parameters and their results for decision tree models. For the
DN10 dataset, the best results during optimization were obtained using a model with depth
one and Min. samples split set at 10, but after cross-validation, this seems to have a negative
effect on performance. A decision tree of depth 1 allows just one feature to be considered
before a decision is made. It is plausible that this single feature accurately discriminates texts
of the two authors selected as a test set during hyperparameter optimization, but fails to do
so for other pairs of authors encountered during cross-validation.

The texts in the Darknet market datasets were written without any guidelines and are full
of noise, which is disadvantageous to decision tree classifiers, as they are susceptible to minor
changes in data. This is exemplified by the AUC scores being lower than those achieved by
the SVM on the same data.

Dataset Max depth Min samples split AUC

PAN 2020 10 2 0.803
DN10 1 10 0.580
DN100 10 5 0.686
DN1000 10 5 0.698

Table 5.2: Parameters and results of the best performing decision tree models on the four
datasets.

5.1.3 Random Forests

The selected parameters and results for random forest classifiers can be found in table 5.3.
For these classifiers, the optimal number of estimators seems to be related to the number
of authors: for the Darknet datasets these numbers match, and for the PAN 2020 dataset
the highest number of estimators has been selected, as this dataset contains texts written by
many authors. More experiments with differents author counts should however be performed
before this correlation can be assumed.

The random forest classifier outperforms the decision tree classifier on every dataset.
This was expected, since the random forest classifier is an ensemble of decision trees, and as

27

Dataset Max depth Min samples
split

Estimators AUC

PAN 2020 50 2 1000 0.854
DN10 10 10 10 0.691
DN100 10 10 100 0.750
DN1000 200 2 1000 0.743

Table 5.3: Parameters and results of the best performing random forest models on the four
datasets.

mentioned in section 3.3 was designed to decrease the risk of overfitting decision tree-based
models.

5.2 Siamese Neural Networks

5.2.1 GloVe Embeddings

Table 5.4 displays the selected parameters and results obtained by Siamese neural networks
based on GRUs that were fed GloVe embeddings. The number of epochs needed for training
seems to be related to the lengths of the texts, as the stopping point for PAN 2020, with its
average text length of 4000 words, is reached after 19 epochs while the validation loss stopped
increasing much earlier when training on Darknet market data.

While a pattern seems to be visible in the increasing values for dropout as the number of
authors of the Darknet market datasets increases, further inspection of the grid search result
as presented in the Appendix reveals this pattern is highly likely to be coincidental.

The Siamese neural network-based model performs well on the PAN 2020 set, with a
promising AUC score of 0.889, outperforming all other model types. This indicates that word
embeddings and GRUs can be capable of representing writing styles when fed with enough
examples. Looking at the lower scores for DN10 and DN100, the necessity for these examples
to be diverse is concretized.

Dataset Hidden
units

Output
units

Dropout Epochs AUC

PAN 2020 128 32 2e−1 19 0.889
DN10 32 128 1e−1 6 0.605
DN100 128 128 2e−1 4 0.660
DN1000 32 128 4e−1 6 0.766

Table 5.4: Parameters and results of the best performing Siamese neural network models with
GloVe embeddings on the four datasets.

5.2.2 FastText Embeddings

We present the selected parameters and results obtained using the Siamese neural network-
based model combined with FastText embeddings in table 5.5. The number of epochs needed
for training shows a similar pattern as for the GloVe-based model, albeit with an even larger

28

Dataset Hidden
units

Output
units

Dropout Epochs AUC

PAN 2020 64 64 2e−1 31 0.860
DN10 64 32 2e−1 6 0.674
DN100 32 64 4e−1 5 0.633
DN1000 32 32 4e−1 5 0.769

Table 5.5: Parameters and results of the best performing Siamese neural network models with
FastText embeddings on the four datasets.

amount of epochs needed for the PAN 2020 dataset. No pattern is discovered in the network
parameters.

For DN1000, the model slightly improves on the GloVe-based model, as well as outper-
forming all other model types with an AUC of 0.769. Furthermore, the FastText-based model
improves on GloVe for DN10 but performs worse on DN100. Performance on both DN10 and
DN100 can be considered weak, further strengthening the belief that more diverse training
data is needed for neural network-based models to become successful.

5.3 Model Comparison

The best performing model types with their mean AUC scores and standard deviations are
summarized in table 5.6. We only consider the models trained without the use of meta-features
for a fair comparison. Figure 5.1 visualizes the ROC curves of each model.

Siamese neural network-based models outperform models relying on handcrafted features
for PAN 2020 and DN1000. We note however that the difference in performance with SVM
and random forest models is small. For DN10 and DN100, the lack of diverse examples
impacts the performance of the neural network-based models, and the SVM and random
forest models surpass these models in terms of AUC scores. Scores are not the only matter
to consider when selecting models for author verification in production environments, as we
will further discuss in section 6.1.

The standard deviations and ROC curves of the best performing models show that not
just the scores, but also the variation within these scores are clues for the difficulty of training
well-generalizing models on data containing little diversity. For PAN 2020, performance across
all folds is practically equal. The same applies to DN1000, which is to be expected, as the
data in both of these datasets is constructed using texts written by many authors. This allows
models to learn to represent writing styles in general, irrespective of particular sets of authors
by which the texts in the training set were written. Recalling that these sets of authors

Dataset Model type AUC SD

PAN 2020 GRU + GloVe 0.889 0.005
DN10 SVM 0.718 0.120
DN100 SVM 0.752 0.025
DN1000 GRU + FastText 0.769 0.004

Table 5.6: Scores and types of the best performing models overall on the four datasets.

29

(a) PAN 2020. (b) DN10.

(c) DN100. (d) DN1000.

Figure 5.1: ROC curves for each dataset. The curves are produced by the model types that
performed the best on each particular dataset. The types of these models are specified in
table 5.6. In each figure, the blue line represents the mean ROC curve, while the transparent
areas resemble the difference between the upper and lower ROC curves of the models tested
during 5-fold cross-validation.

comprise a mere 6 and 60 authors for DN10 and DN100 respectively, the higher deviations in
scores are logical.

Another observation is that the AUC scores on average are higher for PAN 2020 than for
the Darknet market datasets. Actual participation in the PAN shared task failed because of
deadlines that came too early in our research, denying our models to be tested on the hidden
test set. However, what the higher AUC scores do tell us is that Siamese neural networks
based on word embeddings can be capable of representing author writing styles, and the lower
scores on the Darknet market data are not necessarily caused by weak model architectures.

In a production environment, a threshold would have to be set on the output score of
the Siamese neural network to perform classification. As an example, we chose a threshold of
0.55 and performed classification using the GRU + FastText model trained on 369052 samples
written by 800 authors from the DN1000 dataset. This model was tested on 98788 text pairs
written by 200 different authors from the same dataset. The result was a precision score of
0.679 with a recall score of 0.748, represented by an F1 score of 0.712. Further inspection of
the predictions reveals that the model is capable of recognizing authors successfully if there are

30

related products being sold, if the advertisements show a similar structure, or when sentences
are built up in a similar manner. More problematic are pairs of texts with a negative label that
both consist of fewer than five words, as it appears there is not enough information available
to distinguish among texts, and false positives occur as the Euclidean distance between the
two output vectors is small. In other cases, where one text is long and the other is short, false
negatives occur as the Euclidean distance between the two output vectors is large.

5.4 Influence of Meta-features

Table 5.7 shows that using meta-features as initial states in the GRUs at the base of Siamese
neural networks can significantly affect performance. For the GRU + GloVe model, employing
meta-features leads to a higher AUC score for every dataset. The improvement for PAN 2020
is minor. For the GRU + FastText model, meta-features lead to a decreased AUC. Most
promising are the scores achieved on the DN100 and DN1000 datasets, where the additional
information results in clearly improved scores reaching above 0.9.

Dataset
AUC

GRU + GloVe GRU + FastText
best + meta best + meta

PAN 2020 0.889 0.898 0.860 0.852
DN10 0.605 0.652 0.674 0.647
DN100 0.660 0.942 0.633 0.951
DN1000 0.766 0.929 0.769 0.926

Table 5.7: AUC scores of the best performing Siamese neural network models after embeddings
of meta-features have been added as initial states for the GRUs that are the base of these
models. In bold are the best performing models.

31

Chapter 6

Discussion and Conclusion

6.1 Discussion

This chapter will discuss the outcomes of the experiments presented in the previous chapter.
The questions posed in the introductory section are answered, after which directions for future
research are suggested based on the evaluations of the methods and procedures as they were
experimented with for this thesis.

6.1.1 Research Questions

What combination of representation and classification methods can most accu-
rately verify authors of short texts?

Based on our investigation, we find that when training an author verification system on texts
written by a small set of authors, texts can best be represented by handcrafted stylometric
features, and the SVM and random forest classifiers deliver the most accurate predictions on
these vectors. In scenarios with large sets of authors, such as in the PAN 2020 and DN1000
datasets, models based on Siamese neural networks fed with word embeddings deliver the
best results. These finds are in line with the general belief that deep neural networks are
capable of outperforming classical machine learning methods, given large amounts of data.

No extensive research was done on the particular set of stylometric features to be used
in the classical machine learning classifiers. The fact that some of these classifiers were still
capable of capturing and differentiating author writing styles quite well exemplifies the power
of handcrafted features. On the other hand, GloVe and FastText embeddings combined
with GRUs have shown to be capable of capturing these unique features as well, albeit in
a completely different manner. No significant difference between using GloVe and FastText
embeddings at the base of the network has been found. While for DN1000 the model using
FastText embeddings outperformed the model using GloVe embeddings, the difference in
scores is marginal and could be caused by other network parameters.

Looking at the scenario for which this research was conducted, training a Siamese neural
network to represent writing styles is most appropriate. Given Web-IQ has access to millions
of advertisements posted on the dark web, written by thousands of authors, models can be
trained on vast amounts of generated positive and negative examples. Another advantage of
the Siamese neural network employed during our research is that its two branches both aim
to learn to transform their inputs such that their output embeddings represent the identity

32

of authors. Given the head of the network is just a function that calculates the Euclidean
distance between these embeddings, it can be detached, allowing the network to produce
these identity embeddings for each text on the dark web in advance. These vectors could
then be used in searches and comparisons at any given moment. A downside to using the
Euclidean distance however is that short texts and text pairs with large differences in lengths
can lead to false positives and false negatives respectively. Training a network and performing
classification based on measures that work with angles instead of distances, such as cosine
similarity, might have countered these issues.

Can metadata collected from Darknet market advertisements be of use in an
author verification system?

Our experiments show that meta-features can most certainly be of use in author verification
systems used on the dark web. Given that just a single meta-feature was employed as ad-
ditional input, the score improvement that it has caused for the larger Darknet datasets is
astounding. The significant influence of a single meta-feature is most likely strengthened by
the shortage of information in the short texts of Darknet market advertisements. For the PAN
2020 dataset, we found no significant positive effect, showing that for longer texts, that hold
more information by themselves, the influence of a single almost unprocessed meta-feature is
diminished.

How well can authors of Darknet market advertisements be recognized using
available text and metadata?

The experimental results acquired during this research show that it is possible to accurately
recognize authors of Darknet market advertisements using the available text and metadata.
While models trained on just text do not perform well enough to be of much use in a produc-
tion environment, the addition of just one meta-feature already significantly improves results
to a level that could be considered sufficient.

Considering no cross-validation was performed during grid searches, there is still room for
improvement. It is questionable whether or not the best hyperparameters have been chosen for
the final experiments, as the scores achieved with the best performing hyperparameter settings
during grid search were often not matched by those acquired during the final experiments,
especially for the smaller Darknet market datasets.

The maximum number of authors considered during our experiments was 1000. As the
results show that the performance of the Siamese neural network-based approach improves
with the increase in the number of authors, it could be that even higher scores could be
achieved when models are trained on texts written by much larger sets of authors.

While the results acquired in some experiments are promising, it should be noted that our
experiments were conducted using artificially balanced data. In the real world, examples of
multiple accounts being used by one individual are most likely scarce. It would be interesting
to see how the models tested in our experiments would perform when running in this envi-
ronment, but we acknowledge that evaluating such experiments is difficult, considering no
accurate information on the actual distribution and identity of Darknet market sellers exists
yet.

33

6.1.2 Future Work

The experiments run during this research show that multiple techniques are useful for author
verification systems used on Darknet market advertisements. A direction for future research
could be to increase the resources available during training. It could be interesting to research
the effect of adding texts of more authors to the training data. Furthermore, combining
more meta-features in the inputs of the Siamese neural network could lead to more accurate
representations of the identity of authors.

Adding more resources is an interesting but rather obvious direction for future research.
Changing the way the already available data is used however might lead to stronger models
that could be used regardless of the amount of available training data. The first way in which
this could be achieved is by further experimenting with different types of text representations.
There exist a plethora of stylometric features that could be experimented with, and many
types of new character, word, and sentence embeddings have been introduced in recent years,
each of which might improve the quality of author writing style representations.

Another opportunity lies in the way in which meta-features are used by the model. In this
thesis, the meta-feature was simply used in its categorical form, disallowing the model to use
information that might be contained in the meaning of the meta-feature itself. The current
model does learn some form of meaning in the dense layer to which the one-hot encoded
meta-feature vector is fed, but a more interesting approach would for example be to first
encode meta-features in a way that captures more of their original meaning. For the PAN
dataset, the fandom meta-feature might be represented by word embedding vectors, while for
the Darknet market data, the normalized shipping to meta-feature could be represented by
some embedding representing its geographic location.

Finally, it would be interesting to combine the best of both worlds by adding handcrafted
stylometric features to the input of the Siamese neural network. Our research has shown that
these features are of much use to classical classifiers, and it is most likely the case that they
will complement the word embeddings and meta-features already used in the Siamese neural
network-based model.

6.2 Conclusion

In this thesis, we aimed at finding the most suitable approach for linking profiles of Darknet
market vendors using the texts and metadata of their advertisements. Results show that while
classical representation methods provide the best results in scenarios with a limited number
of authors, a more complex method based on Siamese neural networks and word embeddings
is favorable when dealing with more diverse data. Adding meta-features to the input of these
models significantly improves performance. Steps can be taken to improve upon our results,
and we suggested some future directions of research based on the results acquired and lessons
learned during this research.

34

Bibliography

[1] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word represen-
tations in vector space,” arXiv preprint arXiv:1301.3781, 2013.

[2] X. Rong, “word2vec parameter learning explained,” arXiv preprint arXiv:1411.2738,
2014.

[3] Cyc, “Graphic showing the maximum separating hyperplane and the margin.”
Feb. 2008. [Online]. Available: https://commons.wikimedia.org/wiki/File:Svm max
sep hyperplane with margin.png

[4] M. G. Reed, P. F. Syverson, and D. M. Goldschlag, “Anonymous connections and onion
routing,” IEEE Journal on Selected Areas in Communications, vol. 16, no. 4, pp. 482–
494, May 1998, conference Name: IEEE Journal on Selected Areas in Communications.

[5] A. Baravalle, M. S. Lopez, and S. W. Lee, “Mining the Dark Web: Drugs and Fake Ids,”
in 2016 IEEE 16th International Conference on Data Mining Workshops (ICDMW),
Dec. 2016, pp. 350–356, iSSN: 2375-9259.

[6] X. H. Tai, K. Soska, and N. Christin, “Adversarial Matching of Dark Net Market Ven-
dor Accounts,” in Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining. Anchorage AK USA: ACM, Jul. 2019, pp. 1871–
1880.

[7] T. Hume, “How the FBI caught Ross Ulbricht, alleged creator of Silk Road,” May 2013.
[Online]. Available: https://www.cnn.com/2013/10/04/world/americas/silk-road-ross-
ulbricht/index.html

[8] J. Broséus, D. Rhumorbarbe, C. Mireault, V. Ouellette, F. Crispino, and D. Décary-
Hétu, “Studying illicit drug trafficking on Darknet markets: Structure and organisation
from a Canadian perspective,” Forensic Science International, vol. 264, pp. 7–14, Jul.
2016.

[9] K. Soska and N. Christin, “Measuring the longitudinal evolution of the online anonymous
marketplace ecosystem,” in Proceedings of the 24th USENIX Conference on Security
Symposium, ser. SEC’15. USA: USENIX Association, Aug. 2015, pp. 33–48.

[10] C. Aliens, “The Darknet Search Engine ‘Grams’ is Shutting Down - Deep Dot Web,”
Jan. 2018. [Online]. Available: https://web.archive.org/web/20180124070700/https:
/www.deepdotweb.com/2017/12/15/darknet-search-engine-grams-shutting/

35

[11] F. Iqbal, L. A. Khan, B. C. M. Fung, and M. Debbabi, “E-mail authorship verification
for forensic investigation,” in Proceedings of the 2010 ACM Symposium on Applied
Computing - SAC ’10. Sierre, Switzerland: ACM Press, 2010, p. 1591. [Online].
Available: http://portal.acm.org/citation.cfm?doid=1774088.1774428

[12] M. L. Brocardo, I. Traore, S. Saad, and I. Woungang, “Authorship verification for short
messages using stylometry,” in 2013 International Conference on Computer, Information
and Telecommunication Systems (CITS), May 2013, pp. 1–6.

[13] B. Boenninghoff, R. M. Nickel, S. Zeiler, and D. Kolossa, “Similarity learning for author-
ship verification in social media,” in ICASSP 2019-2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019, pp. 2457–2461.

[14] J. A. Stover, Y. Winter, M. Koppel, and M. Kestemont, “Computational authorship
verification method attributes a new work to a major 2nd century A frican author,”
Journal of the Association for Information Science and Technology, vol. 67, no. 1, pp.
239–242, 2016, iSBN: 2330-1635 Publisher: Wiley Online Library.

[15] G. Salton, A. Wong, and C. S. Yang, “A vector space model for automatic indexing,”
Communications of the ACM, vol. 18, no. 11, pp. 613–620, Nov. 1975.

[16] T. Joachims, “Text categorization with Support Vector Machines: Learning with many
relevant features,” in Machine Learning: ECML-98, ser. Lecture Notes in Computer
Science, C. Nédellec and C. Rouveirol, Eds. Berlin, Heidelberg: Springer, 1998, pp.
137–142.

[17] H. P. Luhn, “A Statistical Approach to Mechanized Encoding and Searching of Literary
Information,” IBM Journal of Research and Development, vol. 1, no. 4, pp. 309–317,
Oct. 1957, conference Name: IBM Journal of Research and Development.

[18] G. Salton and C. Buckley, “Term-weighting approaches in automatic text retrieval,”
Information Processing & Management, vol. 24, no. 5, pp. 513–523, Jan. 1988, publisher:
Pergamon.

[19] R. Zheng, J. Li, H. Chen, and Z. Huang, “A framework for authorship identification of
online messages: Writing[U+2010]style features and classification techniques,” Journal
of the American society for information science and technology, vol. 57, no. 3, pp. 378–
393, 2006, iSBN: 1532-2882 Publisher: Wiley Online Library.

[20] O. de Vel, A. Anderson, M. Corney, and G. Mohay, “Mining e-mail content for author
identification forensics,” ACM SIGMOD Record, vol. 30, no. 4, pp. 55–64, Dec. 2001.

[21] N. Cheng, R. Chandramouli, and K. P. Subbalakshmi, “Author gender identification
from text,” Digital Investigation, vol. 8, no. 1, pp. 78–88, Jul. 2011.

[22] F. Mosteller and D. L. Wallace, “Inference in an Authorship Problem,” Journal of the
American Statistical Association, vol. 58, no. 302, pp. 275–309, 1963, publisher: [Amer-
ican Statistical Association, Taylor & Francis, Ltd.].

[23] M. Koppel and J. Schler, “Authorship verification as a one-class classification prob-
lem,” in Proceedings of the twenty-first international conference on Machine learning,

36

ser. ICML ’04. New York, NY, USA: Association for Computing Machinery, Jul. 2004,
p. 62.

[24] M. Koppel, J. Schler, and E. Bonchek-Dokow, “Measuring Differentiability: Unmasking
Pseudonymous Authors,” The Journal of Machine Learning Research, vol. 8, pp. 1261–
1276, Dec. 2007.

[25] J. Li, R. Zheng, and H. Chen, “From fingerprint to writeprint,” Communications of the
ACM, vol. 49, no. 4, pp. 76–82, Apr. 2006.

[26] Z. S. Harris, “Distributional structure,” Word, vol. 10, no. 2-3, pp. 146–162, 1954, iSBN:
0043-7956 Publisher: Taylor & Francis.

[27] J. R. Firth, “A synopsis of linguistic theory, 1930-1955,” Studies in linguistic analysis,
1957, publisher: Basil Blackwell.

[28] J. Pennington, R. Socher, and C. Manning, “GloVe: Global Vectors for
Word Representation,” in Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP). Doha, Qatar: Association for Computational
Linguistics, Oct. 2014, pp. 1532–1543. [Online]. Available: https://www.aclweb.org/
anthology/D14-1162

[29] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman, “Indexing
by latent semantic analysis,” Journal of the American society for information science,
vol. 41, no. 6, pp. 391–407, 1990, iSBN: 0002-8231 Publisher: Wiley Online Library.

[30] S. T. Dumais, “Latent semantic analysis,” Annual review of information science and
technology, vol. 38, no. 1, pp. 188–230, 2004, iSBN: 0066-4200 Publisher: Wiley Online
Library.

[31] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin, “A neural probabilistic language
model,” The journal of machine learning research, vol. 3, pp. 1137–1155, 2003, iSBN:
1532-4435 Publisher: JMLR. org.

[32] R. Collobert and J. Weston, “A unified architecture for natural language processing:
Deep neural networks with multitask learning,” in Proceedings of the 25th international
conference on Machine learning, 2008, pp. 160–167.

[33] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean, “Distributed representations
of words and phrases and their compositionality,” arXiv preprint arXiv:1310.4546, 2013.

[34] M. U. Gutmann and A. Hyvärinen, “Noise-Contrastive Estimation of Unnormalized
Statistical Models, with Applications to Natural Image Statistics.” Journal of Machine
Learning Research, vol. 13, no. 2, 2012, iSBN: 1532-4435.

[35] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word vectors with
subword information,” Transactions of the Association for Computational Linguistics,
vol. 5, pp. 135–146, 2017, iSBN: 2307-387X Publisher: MIT Press.

[36] T. Mikolov, E. Grave, P. Bojanowski, C. Puhrsch, and A. Joulin, “Advances in pre-
training distributed word representations,” arXiv preprint arXiv:1712.09405, 2017.

37

[37] A. Mnih and K. Kavukcuoglu, “Learning word embeddings efficiently with noise-
contrastive estimation,” Advances in neural information processing systems, vol. 26, pp.
2265–2273, 2013.

[38] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning. MIT press
Cambridge, 2016, vol. 1, issue: 2.

[39] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20, no. 3,
pp. 273–297, Sep. 1995.

[40] J. R. Quinlan, “Induction of decision trees,” Machine learning, vol. 1, no. 1, pp. 81–106,
1986, iSBN: 1573-0565 Publisher: Springer.

[41] T. K. Ho, “Random decision forests,” in Proceedings of 3rd international conference on
document analysis and recognition, vol. 1. IEEE, 1995, pp. 278–282.

[42] J. Friedman, T. Hastie, and R. Tibshirani, The elements of statistical learning. Springer
series in statistics New York, 2001, vol. 1, issue: 10.

[43] F. Rosenblatt, “The perceptron: a probabilistic model for information storage and orga-
nization in the brain.” Psychological review, vol. 65, no. 6, p. 386, 1958, iSBN: 1939-1471
Publisher: American Psychological Association.

[44] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-
propagating errors,” nature, vol. 323, no. 6088, pp. 533–536, 1986, iSBN: 1476-4687
Publisher: Nature Publishing Group.

[45] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated recurrent
neural networks on sequence modeling,” arXiv preprint arXiv:1412.3555, 2014.

[46] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with gradient
descent is difficult,” IEEE transactions on neural networks, vol. 5, no. 2, pp. 157–166,
1994, iSBN: 1045-9227 Publisher: IEEE.

[47] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio, “On the properties of neu-
ral machine translation: Encoder-decoder approaches,” arXiv preprint arXiv:1409.1259,
2014.

[48] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, and R. Shah, “Signature verification
using a” siamese” time delay neural network,” Advances in neural information processing
systems, vol. 6, pp. 737–744, 1993.

[49] I. Guyon, P. Albrecht, Y. Lecun, J. S. Denker, and W. Hubbard, “A time delay neural
network character recognizer for a touch terminal,” in Proceedings of the International
Neural Network Conference, Paris, June 1990, 1990.

[50] F. Johansson, L. Kaati, and A. Shrestha, “Detecting multiple aliases in social media,”
in 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis
and Mining (ASONAM 2013). IEEE, 2013, pp. 1004–1011.

[51] M. Spitters, F. Klaver, G. Koot, and M. van Staalduinen, “Authorship Analysis on Dark
Marketplace Forums,” in 2015 European Intelligence and Security Informatics Confer-
ence, Sep. 2015, pp. 1–8.

38

[52] E. Stamatatos, “A survey of modern authorship attribution methods,” Journal of
the American Society for Information Science and Technology, vol. 60, no. 3, pp. 538–
556, 2009, eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/asi.21001. [Online].
Available: http://asistdl.onlinelibrary.wiley.com/doi/abs/10.1002/asi.21001

[53] S. Bird, E. Klein, and E. Loper, Natural language processing with Python: analyzing text
with the natural language toolkit. ” O’Reilly Media, Inc.”, 2009.

[54] M. Hurlimann, B. Weck, E. van den Berg, S. Suster, and M. Nissim, “pan-webis-
de/huerlimann15,” May 2021, original-date: 2015-09-06T06:44:31Z. [Online]. Available:
https://github.com/pan-webis-de/huerlimann15

[55] E. Grave, P. Bojanowski, P. Gupta, A. Joulin, and T. Mikolov, “Learning word vectors
for 157 languages,” arXiv preprint arXiv:1802.06893, 2018.

[56] R. Parker, D. Graff, J. Kong, K. Chen, and K. Maeda, “English Gigaword Fifth Edition,”
type: dataset. [Online]. Available: https://catalog.ldc.upenn.edu/LDC2011T07

[57] T. Fawcett, “An introduction to ROC analysis,” Pattern recognition letters, vol. 27, no. 8,
pp. 861–874, 2006, iSBN: 0167-8655 Publisher: Elsevier.

[58] J. M. Lobo, A. Jiménez[U+2010]Valverde, and R. Real, “AUC: a misleading measure
of the performance of predictive distribution models,” Global ecology and Biogeography,
vol. 17, no. 2, pp. 145–151, 2008, iSBN: 1466-822X Publisher: Wiley Online Library.

[59] M. Kestemont, E. Manjavacas, I. Markov, J. Bevendorff, M. Wiegmann, E. Stamatatos,
M. Potthast, and B. Stein, “Overview of the Cross-Domain Authorship Verification Task
at PAN 2020,” in CLEF, 2020.

[60] F. Chollet and others, Keras, 2015. [Online]. Available: https://keras.io

[61] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction by learning an invariant
mapping,” in 2006 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’06), vol. 2. IEEE, 2006, pp. 1735–1742.

[62] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

39

Appendices

40

Figures

(a) PAN 2020.

(b) Darknet.

Figure 1: The distribution of meta-feature values in the datasets.

41

Full Experiment Results

Figure 2: A visualisation of hyper-parameter optimization experiments of SVMs performed
on the PAN 2020 dataset. The left figure shows SVMs with a linear kernel. The right figure
shows SVMs with an RBF kernel. In red are the AUC scores of the best performing models.

0.001 0.01 0.1 1.0

Gamma

0.001

0.01

0.1

1.0

10.0

C

0.846

LINEAR

0.001 0.01 0.1 1.0

Gamma

0.001

0.01

0.1

1.0

10.0

C

0.858

RBF

0.843

0.844

0.844

0.844

0.844

0.845

0.845

0.845

0.845

0.800

0.810

0.820

0.830

0.840

0.850

Figure 3: A visualisation of hyper-parameter optimization experiments of SVMs performed
on the DN10 dataset. The left figure shows SVMs with a linear kernel. The right figure shows
SVMs with an RBF kernel. In red are the AUC scores of the best performing models.

0.001 0.01 0.1 1.0

Gamma

0.001

0.01

0.1

1.0

10.0

C

0.850

LINEAR

0.001 0.01 0.1 1.0

Gamma

0.001

0.01

0.1

1.0

10.0

C

0.851

RBF

0.840

0.842

0.844

0.846

0.848

0.650

0.700

0.750

0.800

0.850

42

Figure 4: A visualisation of hyper-parameter optimization experiments of SVMs performed
on the DN100 dataset. The left figure shows SVMs with a linear kernel. The right figure
shows SVMs with an RBF kernel. In red are the AUC scores of best performing models.

0.001 0.01 0.1 1.0

Gamma

0.001

0.01

0.1

1.0

10.0

C

0.743

LINEAR

0.001 0.01 0.1 1.0

Gamma

0.001

0.01

0.1

1.0

10.0

C

0.743

RBF

0.741

0.741

0.742

0.742

0.742

0.742

0.742

0.743

0.670

0.680

0.690

0.700

0.710

0.720

0.730

0.740

Figure 5: A visualisation of hyper-parameter optimization experiments of SVMs performed
on the DN1000 dataset. The left figure shows SVMs with a linear kernel. The right figure
shows SVMs with an RBF kernel. In red are the AUC scores of the best performing models.

0.001 0.01 0.1 1.0

Gamma

0.001

0.01

0.1

1.0

10.0

C

0.733

LINEAR

0.001 0.01 0.1 1.0

Gamma

0.001

0.01

0.1

1.0

10.0

C

0.753

RBF

0.733

0.733

0.733

0.733

0.733

0.733

0.733

0.733

0.733

0.700

0.710

0.720

0.730

0.740

0.750

43

Figure 6: A visualisation of hyper-parameter optimization experiments of decision trees per-
formed on the PAN 2020 dataset. In red is the AUC score of the best performing model.

1 10 100 1000

Max. depth

2

5

10

M
in

.
sa

m
p

le
s

sp
li

t

0.813

0.650

0.675

0.700

0.725

0.750

0.775

0.800

Figure 7: A visualisation of hyper-parameter optimization experiments of decision trees per-
formed on the DN10 dataset. In red is the AUC score of the best performing model.

1 10 100 1000

Max. depth

2

5

10

M
in

.
sa

m
p

le
s

sp
li

t

0.861

0.600

0.650

0.700

0.750

0.800

0.850

44

Figure 8: A visualisation of hyper-parameter optimization experiments of decision trees per-
formed on the DN100 dataset. In red is the AUC score of the best performing model.

1 10 100 1000

Max. depth

2

5

10

M
in

.
sa

m
p

le
s

sp
li

t

0.680

0.610

0.620

0.630

0.640

0.650

0.660

0.670

0.680

Figure 9: A visualisation of hyper-parameter optimization experiments of decision trees per-
formed on the DN1000 dataset. In red is the AUC score of the best performing model.

1 10 100 1000

Max. depth

2

5

10

M
in

.
sa

m
p

le
s

sp
li

t

0.711

0.560

0.580

0.600

0.620

0.640

0.660

0.680

0.700

45

Table 1: Complete list of hyper-parameter optimization experiments of random forest classi-
fiers performed on the PAN 2020 dataset. In bold is the AUC score of the best performing
model.

Max depth Min samples split # Estimators AUC

10 2 10 0.850
10 2 100 0.855
10 2 1000 0.855
10 5 10 0.848
10 5 100 0.855
10 5 1000 0.855
10 10 10 0.849
10 10 100 0.855
10 10 1000 0.855
50 2 10 0.840
50 2 100 0.856
50 2 1000 0.859
50 5 10 0.841
50 5 100 0.857
50 5 1000 0.859
50 10 10 0.841
50 10 100 0.857
50 10 1000 0.858
100 2 10 0.838
100 2 100 0.857
100 2 1000 0.858
100 5 10 0.840
100 5 100 0.856
100 5 1000 0.858
100 10 10 0.843
100 10 100 0.857
100 10 1000 0.858
200 2 10 0.840
200 2 100 0.856
200 2 1000 0.859
200 5 10 0.843
200 5 100 0.857
200 5 1000 0.858
200 10 10 0.840
200 10 100 0.857
200 10 1000 0.858

46

Table 2: Complete list of hyper-parameter optimization experiments of random forest clas-
sifiers performed on the DN10 dataset. In bold is the AUC score of the best performing
model.

Max depth Min samples split # Estimators AUC

10 2 10 0.768
10 2 100 0.832
10 2 1000 0.847
10 5 10 0.832
10 5 100 0.839
10 5 1000 0.844
10 10 10 0.872
10 10 100 0.852
10 10 1000 0.847
50 2 10 0.805
50 2 100 0.846
50 2 1000 0.842
50 5 10 0.794
50 5 100 0.839
50 5 1000 0.839
50 10 10 0.841
50 10 100 0.846
50 10 1000 0.845
100 2 10 0.812
100 2 100 0.846
100 2 1000 0.841
100 5 10 0.799
100 5 100 0.848
100 5 1000 0.842
100 10 10 0.848
100 10 100 0.839
100 10 1000 0.843
200 2 10 0.831
200 2 100 0.848
200 2 1000 0.843
200 5 10 0.809
200 5 100 0.828
200 5 1000 0.845
200 10 10 0.809
200 10 100 0.831
200 10 1000 0.842

47

Table 3: Complete list of hyper-parameter optimization experiments of random forest clas-
sifiers performed on the DN100 dataset. In bold is the AUC score of the best performing
model.

Max depth Min samples split # Estimators AUC

10 2 10 0.707
10 2 100 0.718
10 2 1000 0.720
10 5 10 0.702
10 5 100 0.717
10 5 1000 0.720
10 10 10 0.706
10 10 100 0.723
10 10 1000 0.721
50 2 10 0.705
50 2 100 0.716
50 2 1000 0.716
50 5 10 0.702
50 5 100 0.712
50 5 1000 0.716
50 10 10 0.718
50 10 100 0.718
50 10 1000 0.718
100 2 10 0.711
100 2 100 0.713
100 2 1000 0.716
100 5 10 0.709
100 5 100 0.718
100 5 1000 0.716
100 10 10 0.705
100 10 100 0.712
100 10 1000 0.717
200 2 10 0.707
200 2 100 0.714
200 2 1000 0.716
200 5 10 0.701
200 5 100 0.714
200 5 1000 0.716
200 10 10 0.704
200 10 100 0.714
200 10 1000 0.717

48

Table 4: Complete list of hyper-parameter optimization experiments of random forest clas-
sifiers performed on the DN1000 dataset. In bold is the AUC score of the best performing
model.

Max depth Min samples split # Estimators AUC

10 2 10 0.741
10 2 100 0.746
10 2 1000 0.746
10 5 10 0.740
10 5 100 0.745
10 5 1000 0.747
10 10 10 0.739
10 10 100 0.745
10 10 1000 0.747
50 2 10 0.727
50 2 100 0.750
50 2 1000 0.754
50 5 10 0.728
50 5 100 0.751
50 5 1000 0.753
50 10 10 0.730
50 10 100 0.750
50 10 1000 0.754
100 2 10 0.717
100 2 100 0.750
100 2 1000 0.753
100 5 10 0.725
100 5 100 0.749
100 5 1000 0.753
100 10 10 0.727
100 10 100 0.752
100 10 1000 0.754
200 2 10 0.726
200 2 100 0.752
200 2 1000 0.754
200 5 10 0.730
200 5 100 0.749
200 5 1000 0.753
200 10 10 0.730
200 10 100 0.750
200 10 1000 0.754

49

Table 5: Complete list of hyper-parameter optimization experiments of Siamese GRU models
with GloVe and FastText embeddings performed on the PAN 2020 dataset. In bold are the
AUC scores of best performing models.

AUC

Hidden units Output units Dropout GloVe FastText

32 32 0.1 0.834 0.704
32 32 0.2 0.822 0.726
32 32 0.4 0.822 0.776
32 64 0.1 0.823 0.597
32 64 0.2 0.821 0.724
32 64 0.4 0.824 0.796
32 128 0.1 0.809 0.731
32 128 0.2 0.820 0.719
32 128 0.4 0.809 0.699
64 32 0.1 0.848 0.677
64 32 0.2 0.829 0.701
64 32 0.4 0.841 0.665
64 64 0.1 0.834 0.793
64 64 0.2 0.835 0.855
64 64 0.4 0.847 0.747
64 128 0.1 0.854 0.724
64 128 0.2 0.842 0.792
64 128 0.4 0.846 0.763
128 32 0.1 0.842 0.704
128 32 0.2 0.871 0.730
128 32 0.4 0.852 0.783
128 64 0.1 0.857 0.683
128 64 0.2 0.859 0.731
128 64 0.4 0.865 0.795
128 128 0.1 0.864 0.718
128 128 0.2 0.870 0.726
128 128 0.4 0.853 0.762

50

Table 6: Complete list of hyper-parameter optimization experiments of Siamese GRU models
with GloVe and FastText embeddings performed on the DN10 dataset. In bold are the AUC
scores of best performing models.

AUC

Hidden units Output units Dropout GloVe FastText

32 32 0.1 0.775 0.808
32 32 0.2 0.766 0.753
32 32 0.4 0.727 0.761
32 64 0.1 0.767 0.734
32 64 0.2 0.743 0.784
32 64 0.4 0.773 0.720
32 128 0.1 0.859 0.831
32 128 0.2 0.766 0.850
32 128 0.4 0.726 0.819
64 32 0.1 0.814 0.745
64 32 0.2 0.673 0.855
64 32 0.4 0.640 0.757
64 64 0.1 0.666 0.758
64 64 0.2 0.690 0.830
64 64 0.4 0.724 0.798
64 128 0.1 0.795 0.743
64 128 0.2 0.742 0.567
64 128 0.4 0.697 0.693
128 32 0.1 0.745 0.740
128 32 0.2 0.758 0.734
128 32 0.4 0.806 0.771
128 64 0.1 0.668 0.789
128 64 0.2 0.792 0.641
128 64 0.4 0.845 0.675
128 128 0.1 0.662 0.841
128 128 0.2 0.832 0.797
128 128 0.4 0.636 0.666

51

Table 7: Complete list of hyper-parameter optimization experiments of Siamese GRU models
with GloVe and FastText embeddings performed on the DN100 dataset. In bold are the
AUC scores of best performing models.

AUC

Hidden units Output units Dropout GloVe FastText

32 32 0.1 0.620 0.641
32 32 0.2 0.692 0.602
32 32 0.4 0.684 0.643
32 64 0.1 0.637 0.597
32 64 0.2 0.692 0.647
32 64 0.4 0.695 0.672
32 128 0.1 0.651 0.615
32 128 0.2 0.659 0.646
32 128 0.4 0.676 0.660
64 32 0.1 0.649 0.646
64 32 0.2 0.647 0.626
64 32 0.4 0.668 0.639
64 64 0.1 0.634 0.632
64 64 0.2 0.669 0.625
64 64 0.4 0.669 0.646
64 128 0.1 0.673 0.629
64 128 0.2 0.676 0.616
64 128 0.4 0.650 0.671
128 32 0.1 0.684 0.648
128 32 0.2 0.684 0.641
128 32 0.4 0.649 0.666
128 64 0.1 0.656 0.659
128 64 0.2 0.657 0.642
128 64 0.4 0.684 0.654
128 128 0.1 0.693 0.644
128 128 0.2 0.710 0.656
128 128 0.4 0.682 0.650

52

Table 8: Complete list of hyper-parameter optimization experiments of Siamese GRU models
with GloVe and FastText embeddings performed on the DN1000 dataset. In bold are the
AUC scores of best performing models.

AUC

Hidden units Output units Dropout GloVe FastText

32 32 0.1 0.741 0.754
32 32 0.2 0.753 0.756
32 32 0.4 0.766 0.764
32 64 0.1 0.745 0.752
32 64 0.2 0.760 0.755
32 64 0.4 0.765 0.758
32 128 0.1 0.736 0.754
32 128 0.2 0.753 0.753
32 128 0.4 0.770 0.763
64 32 0.1 0.738 0.743
64 32 0.2 0.765 0.753
64 32 0.4 0.768 0.757
64 64 0.1 0.743 0.748
64 64 0.2 0.746 0.755
64 64 0.4 0.768 0.760
64 128 0.1 0.733 0.752
64 128 0.2 0.750 0.746
64 128 0.4 0.769 0.751
128 32 0.1 0.740 0.733
128 32 0.2 0.751 0.743
128 32 0.4 0.749 0.752
128 64 0.1 0.748 0.736
128 64 0.2 0.749 0.750
128 64 0.4 0.752 0.746
128 128 0.1 0.746 0.733
128 128 0.2 0.763 0.746
128 128 0.4 0.765 0.755

53

