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Abstract

In this paper, a spiking-neuron model of human working memory by Pals et al. (2020) is
adapted to use Nb-doped SrTiO3 memristors in the underlying architecture. Memristors are
promising devices in neuromorphic computing due to their ability to simulate synapses of ar-
tificial neuron networks in an efficient manner. The spiking-neuron model introduced by Pals
et al. (2020) learns by means of short-term synaptic plasticity (STSP). In this mechanism neu-
rons are adapted to incorporate a calcium and resources property. Here a novel learning rule,
mSTSP, is introduced, where the calcium property is effectively programmed on memristors.
The model performs a delayed-response task. Investigating the neural activity and performance
of the model with the STSP or mSTSP learning rules shows remarkable similarities, meaning
that memristors can be successfully used in a spiking-neuron model that has shown functional
human behaviour. Shortcomings of the Nb-doped SrTiO3 memristor prevent programming the
entire spiking-neuron model on memristors. A promising new memristive device, the diffusive
memristor, might prove to be ideal for realising the entire model on hardware directly.

1 Introduction
In recent years it has become clear that computers are using an ever-increasing number of resources.
Up until 2011 advancements in the semiconductor industry followed ‘Moore’s law’, which states
that every second year the number of transistors doubles, for the same cost, in an integrated circuit
(IC). Transistors, the building blocks of a computer, have had to become progressively smaller to en-
able tighter semiconductor integration. Nowadays, transistors are built on the scale of 5 nanometers,
thus leading us into the quantum domain, where quantum effects such as quantum tunneling start to
be relevant to the precision of computation (Bate, 1988). The end of ‘Moore’s law’ comes at a time
where the demand for computational resources is increasing exponentially. Currently, computers,
data centers, and networks consume over 10% of global electricity (Mills, 2013).

The combination of the end of ‘Moore’s law’, and the enormous resource usage, calls for a radi-
cal new way of computing, which may lower our ecological footprint. Luckily we have an example
of a very efficient computational device nearby: namely, our brain. A human brain consumes only
about 20 watts and is estimated to be competitive with a modern supercomputer in regards to the
floating-point operations per second (FLOPS) it can carry out (Bostrom & Sandberg, 2008).

Traditionally, computers make use of billions of transistors as implementation of Boolean logic.
Memristors, first discoverd by Chua (1971), are electrical components, and could be used to imple-
ment the same logic. Memristors are a promising device in neuromorphic computing – computing
where information is processed in a way that mimics the brain’s neural architecture. The synapses in
an artificial neural network (ANN) can be realised on memristors. Typically, memristors and ANNs,
are pretrained for a specific task, e.g. Yao et al. (2020), B. Li et al. (2014), Ebong & Mazumder
(2011). However, if we would want to use memristors in a true cognitive computer, we would need
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to create a flexible memory system, which would make the system capable of adapting to a variety
of tasks. Since the brain is so efficient, we can use strategies that have evolved as an inspiration to
create a cognitive computer.

One of the main memory systems in the brain is working memory (WM). WM is crucial for
reasoning and the guidance of decision-making and behaviour, and therefore interesting for creating
a cognitive computer. In this paper, memristors will be used in the underlying architecture of an
ANN to perform a delayed-response task, which shows that memristors could be used as building
blocks in a flexible memory system to perform a cognitive experiment.

The remainder of the introduction discusses transistors, memristors, and ANNs, followed by an
introduction of activity-silent working memory. Lastly, an overview of the experiments conducted
in this study is provided.

1.1 Transistors
Transistors are semiconductor devices used to amplify or switch electronic signals and electrical
power. They are composed of at least three terminals: base (B), collector (C), and emitter (E). For
illustrating purposes, a Negative-Positive-Negative (NPN) transistor is shown in Figure 1. The base,
which can be thought of as a gate, is responsible for controlling whether current can flow freely
through the transistor when power is applied. If the voltage of the base rises, the resistance be-
tween the collector and emitter decreases, allowing current to flow. In this state, where the transistor
becomes saturated, the transistor is “ON”. If the base voltage is low the resistance between the col-
lector and emitter rises allowing no current to flow through the circuit. In this case, the transistor is
switched “OFF”.

There are some inherent problems with the transistor. Keeping the transistor “ON” requires
maintaining it under tension. In the “OFF” state there is a small leakage of current. Since billions
of transistors are used in everyday devices, the energy consumption given by normal operation in
addition to the efficiencies can be quite demanding. The need for new computing devices becomes
clear.

1.2 Memristors and ANNs
There has been an ongoing search for alternatives to the transistor. In the 1970s a new fundamental
circuit element was discovered, which was named the memristor (Chua, 1971). A device exhibiting
the theorised properties was only fabricated in 2008 at HP Labs (Strukov et al., 2008). Unlike the
three-terminal transistor, the memristor only has an input and an output channel and is thus classified
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Figure 1: Diagram of NPN transistor. If the voltage of the base (B) increases, it allows the current
between the collector (C) and the emitter (E) to flow freely (Moscote, 2013).

as a two-terminal device. The current flowing into the memristor directly changes the resistance of
the material, without the need for an additional gate. In an ideal memristor, this resistance does not
change when no current is passed through the circuit, thus acting as a “memory” of the past injected
current, however, in a practical memristor we have to account for leakages. Specific resistances can
be used to indicate an “ON” or “OFF” state for digital computing, but intermediate states can also be
used to infer information, as we show in this paper. The fact that the state of the memristor changes
due to the inherent properties of the material makes the memristors a very efficient analogue com-
putation device.

1.3 Efficient computation using memristors
A limitation of traditional computing paradigms is the separation between memory and computa-
tion. The limited throughput between the central processing unit (CPU) and memory, also called the
‘Von Neumann bottleneck’, restricts the computational power. An alternative computing paradigm
is an ANN, which demonstrates colocation of memory and computation. ANNs are comprised of
many entities called neurons that are connected via synapses, as can be seen in Figure 2. The input
to the network is transformed by the ANN into a certain output, e.g. an image is transformed into
an image classification. If the ANN is used in a supervised fashion in a classification problem, the
correct labels describing the data are used as the ground truth. The output is compared to the ground
truth, and via a backwards pass, called back-propagation, the synaptic weights are adjusted in or-
der to better represent the correct labels. Although we are not guaranteed that the ANN ends up at
the perfect solution, also known as the global minimum, we are ensured that it moves towards one
of the possible (sub-)optimal solutions (local minima) (Rumelhart et al., 1986). Consequently, the
synaptic weights in the model learn to represent the desired input to output mapping, known as the
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transformation function, effectively combining memory and computation.

Figure 2: A schematic representation of an artificial neural network. The round circles are neurons,
and the grey arrows represent synapses. In this specific schema the ANN consists of an input layer,
two hidden layers, and an output layer (Karpathy, 2016).

ANNs are mostly computed on traditional Von Neumann architectures, that do not enjoy the
benefits of coupled memory and computation. There is interest in using memristors within ANNs –
as investigated by Thomas (2013), and Adhikari et al. (2012) – since combining multiple memris-
tors into a crossbar array allows one to program ANNs directly on the memristors. The individual
memristors can be used as weights in the network as introduced in e.g., Hu et al. (2012). Physical
colocation of memory and computing can lead to an efficient ANN, which may be run natively on
the computational architecture, instead of a Von Neumann architecture, where the ANN is effec-
tively simulated.

Memristors have been used in different types of networks illustrate this benefit. Using mem-
ristors as connections in a long-short term memory (LSTM) network shows that the memristor is a
promising low-power and low-latency hardware platform (C. Li et al., 2019). They are able to carry
out the fundamental mathematical operations underpinning an ANN in an efficient manner, which
is the ability to carry out parallel vector-multiplication. This follows from Ohm’s law I = V G and
Kirchoff’s current law I j = ∑ Ii. The input is voltage V , the output is current I, and the weight corre-
sponds to the conductance G. By using the memristors in a crossbar array the vectors containing the
properties of the individual memristors, which make up the connection weights, can be directly cal-
culated in parallel using Ohm’s law. Other applications of the memristor as connections in an ANN
have been in edge detection, a notoriously resource-intensive algorithm (Prodromakis & Toumazou,
2011).
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Since the resistance of the ideal memristor does not change when no current is passed through
the material, the state of the memristor is ‘saved’ even when it is not activated. Due to no energy
being needed to maintain its state, the memristor is energy efficient. In a practical setting, mem-
ristors have already been used in working random-access computer memory (ReRAM; Moon et al.
2019). A binary CNN accelerator on a digital ReRAM-crossbar has shown to be “296 times more
energy-efficient than a high-end GPU” (Ni et al., 2017).

Over the years different types of memristors have been developed. This paper will use a sim-
ulation of Nb-doped SrTiO3 memristors, which have been used to create a model that is a general
function approximator (Tiotto & Goossens, 2020). The memristance properties of these memristors
follow the power law, exhibiting exponential behavior. In addition, they show low reading currents
at room temperature, which makes them ideal as neuromorphic hardware in everyday use. The non-
linear conductance dynamics ensure a large range of resistances (Brivio et al., 2018). The minimum
and maximum resistance values are approached in a gradual manner due to soft-bounded behavior,
guaranteeing slower learning and, symmetrically, longer memory retention. These effects may lead
to a more robust learning performance (Frascaroli et al., 2018).

1.4 Working memory
In this research, the aforementioned Nb-doped SrTiO3 memristors are used to simulate human work-
ing memory (WM). WM is a capacity-limited memory system that can hold information temporarily.
WM plays an essential role in fluid intelligence: the ability to reason and solve problems in unique
and novel situations. It is important for reasoning and the guidance of decision-making and be-
haviour (Diamond, 2013). Simulating WM by memristors would lead the way to a cognitive system
capable of responding to a plethora of novel situations – just like our brain – while having a very
efficient, low-energy underlying architecture.

It was always thought that when storing information in WM there had to be persistent firing of
neurons, as found in Fuster & Alexander (1971). Interestingly, recent studies have shown that in-
formation can be stored in activity-silent states, i.e., without neuronal activity. This is of particular
relevance since the combination of memristors and activity-silent states would present an even more
efficient, low-energy, way of storing information. Mongillo et al. (2008) propose a model that ex-
emplifies activity-silent states by a mechanism called short-term synaptic plasticity (STSP; Stevens
& Wang, 1995). This model is engineered by Pals et al. (2020) is able to approximate human be-
havioural and neuronal data. In the STSP mechanism synapses can be temporarily strengthened
(facilitated), due to a build-up of ions in calcium-mediated presynaptic channels. The residual cal-
cium effectively leaves a ‘synaptic trace’ of the information in WM. When probed, the strengthened
connections will facilitate the firing of certain neurons, leading to the stored information being ex-
pressed again. This presents a credible alternative mechanism to that of persistent firing.
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Figure 3: Short-term synaptic plasticity mechanism (STSP). Reprinted with permission from Pals et
al. (2020).

The mechanism is further illustrated in Figure 3. The top panel shows spikes in the presynaptic
neuron. In the middle panel, it is shown how the spikes lead to an increase of calcium (u) and a
decrease of the resources (x) available to the presynaptic neuron. In the bottom panel, the resulting
induced postsynaptic voltage is shown. After the first spike train, the resources are depleted. How-
ever, after the later spike, the postsynaptic voltage is much steeper than during the first spike train.
This indicates that the presynaptic neuron has been facilitated due to the calcium build-up in the
presynaptic channel.

1.5 Nengo
The model by Pals et al. (2020) is built in the Nengo framework (Bekolay et al., 2014). Nengo is a
Python library designed to simulate large-scale neural models, using the Neural Engineering Frame-
work (NEF) (Eliasmith, 2013). It has been used to create biologically plausible neural networks
using unsupervised and supervised learning (e.g. Bekolay et al. (2013)). A notable project using
Nengo is Spaun, a 2.5 million neuron model of the brain that is able to capture and demonstrate
complex behavior on eight diverse tasks (Eliasmith et al., 2012).
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NEF is in essence a neural compiler. If the properties of the neurons, the values to be represented,
and the functions to be computed are specified, the compiler solves for the connection weights be-
tween components that will perform the desired functions. Typically these components are groups
of neurons, called ensembles. An example of the inner workings of NEF when input is given to an
ensemble is shown in Figure 4. Neurons in these ensembles are sensitive to a particular input, as
shown in the left figure, where a specific input value x results in a higher firing rate (spikes/s). The
middle figure shows the neural spikes in response to an input signal. The summation of these spikes
over time constitutes the decoded output, as seen in the rightmost figure. In a simple example, the
summation of spikes can be used to perform the identity function f : x→ x.

Figure 4: Inner workings of NEF illustrated by a response of an ensemble to an input signal. Left-
most figure: firing rate response of individual neurons to an input signal (tuning curve). Right
figure: spikes in response to an input signal. Bottom figure: input signal and the decoded output of
the ensemble (Eliasmith (2013), p.45)
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1.6 Current study
The model engineered by Pals et al. (2020) provides an opportunity to use the resistance properties
of the memristor in a flexible memory system. This entails simulating the memristance proper-
ties, modifying them via a learning rule, and using the conductance of the memristors as network
parameters. In similar research, memristors have been utilized in a model employing spike-timing-
dependent plasticity (STDP) (Serrano-Gotarredona et al., 2013). Here the strength of the synapse
is dictated by the precise timing of individual pre-and/or post-synaptic spikes. Serrano-Gotarredona
et al. (2013) show that there is no need for global synchronization, and learning happens asyn-
chronously and on-line. This paves the way to other neuronal learning mechanisms based on mem-
ristors.

To summarize, in this research, a simulation of Nb-doped SrTiO3 will be used in the architecture
of a model by Pals et al. (2020) which has shown that information is maintained in activity-silent
states. This model, created in Nengo, is used to perform a cognitive task, known as the delayed-
response task. If the results were satisfactory this may lead to developing a flexible memory system
based on memristors which could be an important step towards realising a true cognitive computer.
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2 Methods
The model by Pals et al. (2020) shows that the STSP mechanism as proposed by Mongillo et al.
(2008) results in effective, and functional human behavior, where both the behaviour as well as its
neural representations are in agreement with human data. They integrated the STSP mechanism into
a large-scale spiking-neuron model that can perform a delayed-response task.

In the following sections the experiment and model by Pals et al. (2020) will be explained in
more details. Subsequent sections will focus on the learning rules in their experiment, as well as in
this research. The last section of the Methods will delve into the current experiments.

2.1 Delayed-response task
As mentioned above, the model by Pals et al. (2020) is used to perform a delayed-response task. A
delayed-response task is a task widely used for studying the maintenance of information in WM,
where a briefly presented memory item is followed by a delay period, after which the items are
queried. In this specific delayed-response task, as shown in Figure 5, two randomly oriented grat-
ings are presented during each trial. After a fixation period, a cue is shown which indicates which
of the gratings must be kept in memory. Then, an impulse is presented which acts as a high-contrast
stimulus. This stimulus activates all synapses but due to its non-characteristic nature does not alter
the memory representation. This helps to maintain the stimulus for a longer time, and the ensuing
neural activity following the stimulus reveals what is currently held in an activity-silent state (Wolff
et al., 2017). Lastly, a probe is presented which shows another visual grating. The participants are
asked to indicate if the grating had moved clockwise or counter-clockwise.

Figure 5: The retro-cue delayed-response task. Reprinted with permission from Pals et al. (2020).

Wolff et al. (2017) conducted experiments where human participants were asked to perform the
delayed-response task. EEG data recorded during the task shows that indeed information was main-
tained in activity-silent states. Hereby the orientation of the grating was effectively kept in memory.
The spiking-neuron model by Pals et al. (2020) performed the same task. Comparing the repre-
sentation in the activity-silent states to the representation maintained by the spiking-neuron model
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showed remarkable similarities.

2.2 Model architecture
In this research the same model architecture was used as in the model created by Pals et al. (2020).
The following section focuses on its inner workings.

The spiking-neuron model consists of several groups of neurons (ensembles), as shown in Figure
6. The input is passed to the sensory ensemble, which in turn has a connection to the memory and
comparison ensemble. The memory ensemble is critical for storing the presented input via a recur-
rent connection. This all-to-all connection between neurons is where the connection weights will
be adjusted via a learning rule. To increase the biological plausibility some noise (X) is randomly
drawn from a Gaussian distribution, X ∼N (µ, σ2) , and inserted into the memory ensemble. Here µ
is 0 and σ is 0.010. The comparison ensemble compares the output of the sensory ensemble, where
the presented input has been encoded, with the output of the memory ensemble, which produces a
neural representation of the orientations of the probe. Finally, the decision ensemble processes the
different orientations of both the probe and the memory item, and decides if the memory item has
been rotated clockwise, or counter-clockwise. The model parameters are attached in the Appendix
(Table 22).

Figure 6: Model architecture. Reprinted with permission from Pals et al. (2020).

2.3 Learning rule
In the model by Pals et al. (2020), learning happens in the memory ensemble, using an all-to-all
recurrent connection. The neurons in this ensemble are adapted leaky fire-and-integrate neurons,
incorporating the STSP mechanism. Each neuron has resources (x) and calcium (u) and is updated
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each timestep by the following equations:

x = x+(dt ∗ (1− x)
τx

−u∗ x∗output) (1)

u = u+(dt ∗U−u
τu

+U ∗ (1−u)∗output) (2)

Here τx and τu are the relaxation time of respectively the resources and the calcium. U is the starting
value of the calcium (0.2). If the neuron has spiked; the output is 1000, if not, it is 0.

The connection weights are updated based on the calcium and resources of the model, by the
following equation:

∆ωi =
uixi

Ui
∗ω0,i−ωi (3)

Here ω0,i is the initial weight, and ωi is the current weight of connection i.

The recurrent connection uses decoded values as input to the ensemble. In a practical setting: if
the ensemble were to represent the identity function ( f : x→ x), and the input would be a constant
value of 0.5, the recurrent connection would solve for the most fitting connection weights to repro-
duce the value 0.5 at each time step.

As mentioned in Section 1.3, memristors have successfully been used as the connection weights
in ANNs. Consequently, we chose to implement a learning rule that directly alters the connection
weights. The physical properties of the memristor used in this research make it difficult to incorpo-
rate learning rules that result in volatile connection weights, as will be explained more thoroughly
later on. As a result of this we settled for a straightforward learning rule based on Hebbian learning,
which was first introduced by Bienenstock et al. (1982).

2.4 BCM
The BCM update rule is a form of Hebbian learning, as the update depends on the pre- and post-
synaptic activity:

∆ωi j = αiα j(α j−Θ)∗µ (4)

Here Θ is the modification threshold, which in this case is the average synaptic activity. If the post-
synaptic activity, α j, is greater than Θ, the synaptic weight ωi j will be potentiated, in a process
called long-term potentiation (LTP). Conversely, if α j is smaller than Θ, the synapse will undergo
long-term depression (LTD). The modification threshold reflects the expectation of a cell’s activity.
The idea is that cells that are driven above their average activity E(α j) must play an important role
so their afferent synapses become potentiated (Bekolay et al., 2013). In Nengo the modification
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threshold is enabled by a low-pass filter, and Equation 1 is multiplied by the learning rate µ. A low-
pass filter is used to filter-out high-frequency components, this can be seen as a type of averaging.

2.5 Memristor-based BCM
In order to use the BCM learning rule in conjunction with Nb-doped SrTiO3 memristors, the BCM
rule was adapted into a discretised version called mBCM, which operates under the constraints of the
memristive material. The resistance of the memristors changes due to applied voltage. To simulate
the memristors, the behavior is modelled in response to SET pulses (of +0.1V) (Tiotto & Goossens,
2020). The behavior can be described by an exponential equation:

R(n,V ) = R0 +R1na+bV (5)

Here V represents the amplitude of the SET pulse, n the pulse number, R0 the lowest value that the
resistance could reach, and R0 +R1 the highest value. Given that only SET pulses of +0.1V are
applied, we can calculate V = 1

a+bV . The estimated best fit for the memristor behavior is found by:

R(n) = 200+2.3∗108n−0.146 (6)

Instead of directly altering the connection weights by Equation 4, the sign of the calculated
connection weight change (∆ωi j) is used. If ∆ωi j is positive, a SET pulse of 0.1V is given to the
simulated memristor. Tiotto et al. (2020) used a pair of memristors in their experiment. One of
the memristor was initialized with a low resistance, and the other with a high resistance. Taking
the difference in conductance between the two memristors, and pulsing them separately, allowed
for positive and negative increases of the connection weights. Considering we only want to learn a
pattern, and not unlearn it, we only have to increase the connection weights between neurons that are
active due to the input pattern, and a single memristor suffices. The resulting weights are calculated
by transforming the resistance values into conductances, multiplicated by the hyperparameter gain
(γ). γ functions in the same way as the learning rate µ in Equation 4.

2.6 Current experiments
The goal of this research is to substitute the STSP learning mechanism in the model by Pals et al.
(2020), from here on referred to as Pals model, with a memristor-based learning rule. In Pals model
the neurons in the memory ensemble are adapted to contain a calcium and a resource property. The
learning rule utilizes the levels of calcium and resources to update the connection weights. The re-
current connection in the memory ensemble consists of an all-to-all decoded neuron connection.

To create a model utilizing a memristor-based learning rule multiple experiments are devised.
The first part of the experiments focuses on exploring the learning capabilities of BCM and mBCM
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and its limitations. Subsequent experiments use an adapted STSP mechanism based on memristors.
Lastly, a comparison is made between the results of STSP and the memristor-based STSP mecha-
nism.

In order to compare the results of STSP and the memristor-based STSP mechanism, identical
experiments are conducted as by Pals et al. (2020), from here on further referred to as Pals ex-
periment. First the neural representations of the model is examined by simulating one trial of the
delayed-response task. The spiking activity and contents of calcium and resources are recorded and
visualized. Pals model shows that information is maintained in activity-silent states. To examine
which orientations share the most similarity with the vector in the memory ensemble, the absolute
normalized cosine similarity between the memory items and probe is calculated, averaged over 100
trials. During each trial the orientation of the memory item and probe are respectively 0◦and 42◦.
Crucially, this is not the case in the full experiment, where the orientations of the memory item
and probe are uniformly drawn from seven different angles (3◦, 7◦, 12◦, 18◦, 25◦, 33◦, 42◦), both
clockwise and counter-clockwise. The experiment shows that the neural connections representing
the memory item are indeed facilitated. The full experiment consists of 30 sets of 1,344 trials, that
match the 30 participants in the human experiment conducted by Wolff et al. (2017).

As mentioned above, the aforementioned experiments are repeated with the memristor-based
STSP learning mechanism1. In this mechanism the resulting calcium is dependent on SET pulses
to the memristors, and the gain (i.e. learning rate). The experimentally derived gain that shows the
most resemblance to the original STSP mechanism is reported, and applied across the experiments.

Since the Pals model has shown to resemble the human data from Wolff et al. (2017), we com-
pare the performance of the memristor-based STSP model with the STSP model directly. If both
models show comparable behaviour, we can surmise that the memristor-based STSP model displays
plausible functional human behaviour.

1Code for experiments provided at https://github.com/JoppeBoekestijn/WM-memristors
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3 Results
As mentioned in Section 1.3, the literature has focused on ANNs where the connection weights are
directly and successfully realised on memristors. For that reason the first goal of this research was
to create a learning rule from which the connection weights would be realised on memristors. In
the following sections the learning capabilities, which are essential for encoding the neural repre-
sentation of the input grating, of BCM and the memristor-based mBCM will be investigated. Both
the learning rules have shortcomings, ultimately resulting in a novel learning rule (mSTSP). This
learning rule will be applied to the experiments conducted by Pals et al. (2020). The result of the
experiments are compared to the results of Pals et al. (2020).

3.1 BCM learning
In the delayed-response task a memory item needs to be kept into memory. Thus the learning rule
that we apply also needs to be able to learn, and reproduce a pattern. First, we use BCM in a basic
spiking-neuron model. Instead of a recurrent connection, which is used in Pals model, we use a
direct connection between two ensembles of 15 neurons, pre, and post, as depicted in Figure 7. A
direct connection means that the neural activation is used in the connection, instead of the decoded
values. The learning rate is set to µ = 5e−11 (Equation 4). Input to the pre ensemble is a sine wave
for 30 seconds. Input to the post ensemble is also a sine wave, but only for the first 15 seconds of
the simulation, afterwards the input is disabled, as can be seen in the top panel of Figure 8. Both
ensembles try to mimic their input patterns, essentially applying the identity function f : x→ x. The
direct connection between the pre and post ensembles use the BCM learning rule. As the middle
panel of Figure 8 shows, the post ensemble keeps outputting the sine wave, even after the input to
that specific ensemble is disabled.

BCM potentiates active synapses and depresses non-active synapses. During the learning phases,
the synapses that are being activated due to the input to the ensemble are therefore potentiated by
increasing the connection weights between active neurons, in this case the connection weights be-
tween the neurons from the pre and post ensemble. If the original pattern is sufficiently learned,
the ensemble will start to represent that pattern, even when the original pattern is no longer given
as input to the model. The middle panel shows that after 15 seconds the post ensemble can recreate
the sine wave, showing that BCM can be successfully applied to learn a pattern, in a spiking-neuron
model with a direct neuron connection.
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Figure 7: Model architecture. Pre and post ensembles both have a unique input, respectively: input
pre, and input post. Both inputs are a sine wave, after t = 15 seconds input post becomes 0.0. The
post ensembles learns to represent the sine wave, even when input post is disabled.

Figure 8: Nengo model learning to represent the sine wave. Top panel: input signal to the pre
ensemble. Middle panel: decoded values from the pre and post ensemble. Bottom panel: error
between the decoded output of the post ensemble and the sine wave.

3.2 Reactivation with recurrent connection
Instead of a direct connection, we explore the results of BCM using a recurrent connection, as was
used in Pals model. In Pals experiment a cue is shown during the delayed-response task. This cue
functions as a neuron-wide unspecific input that activates neurons, but crucially, does not alter the
information kept into memory. Encoding the contents of neural activation during the cue then shows
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the information that is kept into memory. This then shows if the correct memory item has been effec-
tively learned. In order to investigate if information is successfully kept into memory using BCM,
and can be triggered by a neuron-wide unspecific input, another experiments is devised, where the
neuron-wide unspecific input is simulated by injected a small amount of current into all neurons,
and thereby “reactivating” the neurons.

The idea of reactivation works as following. If sufficient current is injected into an ensemble
some of its neurons will fire. Ideally, these neurons have already been active during the presentation
of the memory item. Due to the increased connection weights between the neurons that make up
the original pattern, the stimulation of some of these neurons results in the same spiking pattern
appearing, which can be interpreted to find out what is kept in memory. However, injecting too
much current might result in the unnecessary firing of neurons, and simultaneously might increase
the connection weights between neurons that do not represent the presented memory pattern.

A non-specific population-wide current of 0.4 ensures that some neurons fire, and due to the
increased connection weights, the original learned pattern also emerges, as shown in Figure 9. How-
ever, the original input of 0.5 does not manifest, which is represented by the grey line. Later sections
will delve into the causes of this behavior.

The level of injected current is dependent on the number of neurons in the ensemble. As the
number of n neurons grow, the number of connection grows with n ∗ n. Due to the multitude of
connections, a smaller current injection suffices to activate the original spiking pattern. Due to the
higher complexity, the injected current in Pals model is much lower (0.02).

3.3 Persistent firing
One of the reasons why the input of 0.5 does not reemerge after reactivation, is because the connec-
tion weights have not been strengthened. However, with a recurrent connection, if the connection
weights become too large, the neurons will just keep firing, which enforces the increase of the con-
nection weights, thus leading to more firing. This behavior of persistent firing directly counters
the idea of activity-silent memory, and hampers the ability to reproduce an input pattern. To avoid
this the connection weights must not become too large during the presentation of memory items. A
few ways to address this behavior are shown below, although they do not result in the sought-after
learning behaviour.

1. BCM with max weights

2. Stop learning

3. Adaptive integrate-and-fire neurons (AdapLIF)
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Figure 9: Spiking of the neurons in the post ensemble (colored). Decoded value from post ensemble
(gray). Current injection of 0.4 at t=26.0

3.3.1 BCM with max weights

First, we tried to limit the connection weights to counter the persistent firing of the neurons. We
adjusted BCM such that the connection weights could not be increased further than a predefined
hyperparamaters λ. This makes the learning rate essentially obsolete: if the learning rate is large
enough that the connection weights reach λ, increasing the learning rate further will only result in
the connection weights becoming saturated sooner. The benefit of this approach is two-fold; firstly
the connection weights can be defined beforehand, instead of having to test different learning rates
to end up at the desired connection weights. Secondly, the spiking during the reactivation phase
does not increase the connection weights further, making it less probable that the neurons start to
persistently fire due to the higher connection weights.

3.3.2 Stop learning

Another way to limit the connection weights is to stop the learning after t seconds. Since we only
want to learn the pattern during the memory item presentation phase, we can adjust the simula-
tion such that it only increments the weights of the connections during that phase. In Nengo this
is done by splitting the simulation into two parts, in which the first part encompasses the memory
item presentation phase (t = 0 until t = 0.25), and the second part the remainder of the simulation
(t > 0.25 until t = 3). In the second part, the learning rate is manually adjusted to 0, limiting the
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connection weight update. This still means that the learning rate has to be carefully chosen such that
the connection weights do not become too large during the memory item presentation phase, but the
reactivation phase cannot result in persistent firing of the neurons. Although this approach stops the
learning, and therefore the increase of the connection weights, still a too low learning rate will not
reproduce the correct pattern, and a too high learning rate results in persistent firing.

3.3.3 AdapLIF

Adaptive integrate-and-fire neurons (AdapLIF) provide a different mechanism to limit the firing of
neurons after being active for a longer period of time. By default ensembles in Nengo consist of
leaky integrate-and-fire neurons (LIF). AdapLIF neurons extend the LIF neuron with an adaptation
parameter. After prolonged constant firing, the adaptation state will increase, and in turn decrease
the current injection to the neurons. In Nengo this is realised by decreasing the current injection in
the neurons by:

τn
dn
dt

=−n (7)

Here τn is the adaptation time constant and affects how quickly the adaptation state decays to zero
in absence of spikes. When a neuron spikes, the adaptation state n is increased by incn. This mech-
anism might allow for a higher learning rate, without the ensuing persistent firing.

An experiment is conducted that matches Pals experiment in the number of neurons (1000) and
uses an ensemble with a recurrent neuron all-to-all connection. The BCM learning rule is applied to
illustrate the effect of AdapLIF. In the following steps the most fitting hyperparameters are selected:

1. Find lowest learning rate that has persistent activation of neurons

2. Replace LIF by AdapLIF neurons

3. Iteratively increase the learning rate

4. Repeat step 3 until the highest learning rate where there is no persistent firing is found

It is crucial to increase the learning rate as much as possible, to ensure that the input pattern is suffi-
ciently reinforced in the connection weights of the model. Preferably, the learned pattern reemerges
during the reactivation phase. During the learning phase, the input node consistently injects the value
0.5 into an ensemble. In step (1) we find that the lowest learning rate that demonstrates persistent
firing is 7e−13 as illustrated in Figure 10b.

Substituting the LIF neurons for AdapLIF neurons allows for a higher learning rate. Using steps
(3) and (4) we find the highest learning rate of BCM using AdapLIF is 1e− 12, the results are en-
closed in the Appendix (20). Using AdapLIF neurons warrants a higher learning rate. Nonetheless,
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(a) BCM with a learning rate of 6e−13

(b) BCM with 7e−13 learning rate

Figure 10: Neural activity (grey) and spikes per neuron (colored) during simulation.

although there is more activation during the reactivation phase, we do not see that the original input
(0.5) emerge. Figure 21 in the Appendix shows that different values for the hyperparameters taun
and incn deteriorate the performance as opposed to the default values (taun = 0.1 and incn = 0.01).
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3.4 mBCM
A combination of the aforementioned techniques is used in conjunction with the mBCM learning
rule. The same experiment as mentioned above is conducted with mBCM, with early stopping of
learning after t = 1.0 seconds. Through steps 1 to 4, the appropriate hyperparameters for AdapLIF
and the learning rate are discovered. Figure 11 shows the most fitting results with and without
AdapLIF neurons. A subset of neurons does fire during the reactivation phase, but the input pattern
(0.5) is not replicated.

3.5 STSP
It seems that persistent firing has a detrimental effect on the ability of the ensemble to learn a pattern.
All of the aforementioned techniques - AdapLIF, BCM with max weights, and early stopping - do
not counter the problem of persistent firing with the BCM or mBCM learning rules. The same ex-
periment as above is repeated with the STSP mechanism that was used in Pals model. Interestingly,
as Figure 12 shows, this does result in the correct learned pattern to reemerge. The neurons that
fire during the learning phase also become active during the reactivation phase. More interestingly,
the grey line, which indicates the decoded output of the ensemble, becomes around 0.5 during the
reactivation. This means that the neurons that are active in order to represent the input pattern have
been successfully reinforced.

The learning rule impacts the connection weights. STSP and BCM exhibit different behaviour in
updating the connection weights throughout the simulation. In Figure 13 the connection weight of an
active neuron to itself is shown. The right panel shows that with BCM the connection weight keeps
steadily increasing. This may lead to either persistent firing or relatively low connection weights.
With STSP, as can be seen in the left panel, the connection weight is dependent on the calcium and
resources of the neuron. Because the resources of an active neuron quickly deplete, the connec-
tion weight becomes almost zero when the neuron is active. When the neurons get reactivated at
t = 1.050 seconds the relatively high connection weight of neurons that have been active result in
their firing. A plausible explanation for the lack of persistent firing with STSP is that the resources
of the neuron quickly become depleted, decreasing the connection weight, which can not induce
persistent firing of the neurons.

3.6 Calcium mechanism with memristors
Seeing as the previous experiments showed issues with persistent firing, impeding the learning per-
formance, while the STSP learning rule does produce satisfactory behaviour, we decided to adjust
the STSP mechanism to incorporate memristors directly. Figure 14 shows the behavior of the cal-
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(a) mBCM with a gain of 80 and AdapLIF neurons

(b) mBCM with a gain of 79 and AdapLIF neurons

Figure 11: Neural activity (grey) and spikes per neuron (colored) during simulation.

cium and resources of a single neuron in a working model using the STSP learning rule.

As will be explained in further sections, the current memristor model has its limitations. Due
to these limitations, in combination with the fact that we only increase the resulting conductance
of memristors by SET pulses, we only model the increasing part of the calcium mechanism on the
memristors.
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Figure 12: Neural activity (grey) and spikes per neuron (colored) during simulation using the STSP
learning rule. During reactivation the input pattern reemerges.

Figure 13: On the x-axis the time (t) in seconds. On the y-axis the connection weight. Connection
weight during simulation of an active neuron to itself for left: STSP, right: BCM

The STSP learning rule with memristor-based calcium is further referred to as mSTSP. If the
calcium update is positive, a SET pulse of 0.1V is given to the memristor. We do not account for
negative updates of the calcium. Only the increasing part of Equation 2 is used, resulting in:

V (t) = sign(dt ∗ (U ∗ (1−u)∗output)∗0.1 (8)

The STSP connection weight update stays the same as in Equation 3. Likewise, the resources mech-
anism is not altered.
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(a) Calcium (b) Resources

Figure 14: STSP. On the x-axis time (t) in seconds. On the y-axis the level of calcium and resources
of neuron 0.

A SET pulse has a limited effect on the resistance of the Nb-doped SrTiO3 memristors. This is
ideal for representing small values, such as the connection weights in the previous experiments, but
to incorporate the calcium mechanism the memristor must represent values in the range [0.2,1.0].
Two ways to circumvent this problem is pulsing the memristors multiple times when the calcium
increases (adaptive pulses), or adjusting the gain.

3.6.1 Adaptive pulses

Instead of a single SET pulse, the memristor can be pulsed multiple times to increase the conduc-
tance. Different magnitudes of pulse levels are examined. The resulting maximum calcium of an
active neuron is shown in Table 1. As the table shows the resulting calcium will only increase

Pulse levels Maximum calcium

10,000,000 1∗10−5

1,000,000 1.2∗10−5

100,000 8∗10−6

10,000 5∗10−6

1,000 3.5∗10−6

100 2.4∗10−6

1 1.2∗10−6

Table 1: Number of SET pulses in combination with the maximum calcium of an active neuron

slightly even if a multitude of SET pulses are given to the memristor. The resistance of the memris-
tor is initialized at 1 ∗ 108. Every SET pulse decreases the resistance until the lower bound of 200.
Since we convert the resistance to conductance in the last step (G = 1

R ), the resulting output will
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always be a small value, regardless of the resistance of the material.

(a) Calcium (b) Resources

Figure 15: mSTSP with 5∗105. On the x-axis time (t) in seconds. On the y-axis the level of calcium
and resources of neuron 0.

3.6.2 Increasing gain

Alternatively, we increase the gain, essentially scaling the resulting conductance of the memristors.
A SET pulse will still be given to the memristor if the calcium update is positive. The resistance is
calculated according to Equation 6, which for illustrative purposes is also shown here.

R(n) = 200+2.3∗108n−0.146 (9)

From the resistance follows the conductance ( 1
R = G). The resulting conductance is multiplied by

the gain (γ), as was done with the mBCM learning rule. Figure 15 shows the calcium levels of a
single active neuron when a gain of 5∗105 is used. After 1 second the calcium is around 0.6, which
is the same as the calcium level of neuron 0 using the STSP learning rule (Figure 14). A gain of
8.3∗105 results in a calcium level of approximately 1 for an active neuron. This resembles the STSP
calcium level when we only increase the calcium, and omit the decreasing term of the equation. Fig-
ures 23, 24, and 25 in the Appendix show respectively the STSP simulation, mSTSP with a gain of
5∗105, and mSTSP with a gain of 8.3∗105. The left panels of those figures show the mean calcium
and resources over all neurons (1000). With the model using STSP, the calcium is increased during
activity, and decreased during inactivity, while this is not the case with mSTSP. The spiking activity
recorded in all three scenarios shows that the same neurons that fire during learning, are reactivated,
thus the connection weights are correctly facilitated, see Table 2.

3.7 Neural activity
To examine the neural activity, the spiking activity and contents of the calcium and resources are
measured during a single trial, as shown in the top panels of Figure 16a and Figure 16b. In this
singular trial the memory item has an orientation of 0◦. In order to gauge if the neural connections
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Learning rule Learning (0−250ms) Reactivation (1−1,070ms) Combination

STSP 497 504 497

mSTSP, gain: 5∗105 497 504 497

mSTSP, gain: 8.3∗105 497 504 497

Table 2: Number of unique neurons that spike at least once during learning (time period 0−250ms)
and reactivation (time period 1−1,070ms). Last column shows the number of neurons that are both
active during learning and during reactivation.

that are required for the learned orientation are indeed facilitated, the vector in the memory ensemble
is compared with the ideal vector that would have produced the neural activity for the memory items
with different orientations (bottom panels). For the model using mSTSP, a gain of 5 ∗ 105 is used,
which produced the best matching results.

(a) STSP (b) mSTSP with gain of 5∗105

Figure 16: Top: spiking activity during a single trial. Over time (ms) spiking (black dots). Mean cal-
cium (orange), and resources (blue) over all neurons. Bottom: absolute normalized cosine similarity
averaged over 100 trials. Orientation of memory item and probe are respectively 0◦and 42◦.

If we compare the spiking activity, in the top panels, we see similar patterns emerge. In contrast
to the STSP model, we only pulse the memristors, solely allowing the calcium level to rise. This
does not seem to influence the spiking patterns in any significant way. The marginal increase of the
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memristors’ conductances due to the limited effect of SET pulses on the conductance has the effect
of approximating the calcium increase and decrease in the original STSP model. In both cases, the
average calcium at the end of the trial is around 0.5.

(a) STSP (b) mSTSP with gain of 5∗105

Figure 17: Cosine similarity of respectively STSP and mSTSP during impulse presentation.

The average absolute normalized cosine similarity during 100 trials also shows remarkably sim-
ilar behaviour. Figure 17 focuses on the cosine similarity during the impulse presentation. As
expected, the impulse is encoded into the model. However, the correct orientation, 0◦, is dominant
in both models, compared to the other orientations. This is the orientation of the memory item dur-
ing this single trial, showing that indeed the correct orientation is stored in memory.

3.8 Performance
To ascertain if functional behavior arises, the memristor-based mSTSP model is applied to exper-
iment 1 of Pals et al. (2020). 1,344 trials across 30 subjects are simulated in order to match the
experiment conducted by Wolff et al. (2017).

The value in the decision ensemble represents the angular difference between the memory and
probe orientation. Figure 18 shows the represented angular difference averaged across all trials.
The left figure shows the STSP results, and the right figure the mSTSP results. An experimentally
derived gain of 8.3∗105 has demonstrated the best-fitting results.
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(a) STSP (b) mSTSP with gain of 5∗105

Figure 18: Represented difference in the decision population.

The STSP model and the mSTSP model with a gain of 8.3 ∗ 105 have almost identical perfor-
mance. Interestingly, a gain of 5 ∗ 105, which had the best match regarding the neural activity in
the previous experiment, produces unsatisfactory results in the full experiment. Figure 26 in the
Appendix shows that the mSTSP model with 5 ∗ 105 gain is inadequate in finding the differences
between orientations of the memory item and probe.

To investigate whether the model correctly indicates that an memory item has been rotated clock-
wise or counter-clockwise relative to the probe, the proportion of clockwise response dependent on
the angular difference of the memory item and probe is shown in Figure 19. An almost identical
S-shaped curve is found with the mSTSP model as with the STSP model, meaning that both models
are able to distinguish clockwise responses.
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(a) STSP (b) mSTSP with gain of 5∗105

Figure 19: Proportion of clockwise response dependent on the angular difference between the mem-
ory item and input grating.
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4 Discussion
The goal of this research was to use simulated Nb-doped SrTiO3 memristors in the underlying ar-
chitecture of a spiking-neuron model, that is able to approximate data by Pals et al. (2020), which
has shown to resemble functional human behaviour. We started by investigating the performance
of different learning rules, with and without memristors. Eventually we created a novel learning
rule, mSTSP, that uses the short-term synaptic plasticity mechanism but programs the calcium part
on memristors. Then we conducted the same experiments as in Pals et al. (2020), and compared
the results. Since the results are particularly similar, we conclude that simulated Nb-doped SrTiO3
memristors can effectively be used to resemble the calcium part in a working model of WM.

We ascertained that learning rules where the connection weight steadily increases during acti-
vation, i.e. BCM, are not able to learn to represent input patterns in a recurrent all-to-all neuron
connection. In order to successfully facilitate the neurons, the connection weights need to be suf-
ficiently increased. This, however, leads to persistent firing, which does not conform to the idea
of activity-silent states. The interaction between resources and calcium in the STSP model has the
unapparent benefit of countering the persistent firing of neurons during activation, resulting in the
desired behaviour.

The calcium mechanism is thought of being the main contributor to enabling short- and long-
term plasticity. Findings in this paper show that the resource mechanism in this setup is a second
very important factor for creating a working spiking-neuron model. Only the depletion of resources,
and thus the decrease of connection weights, resulted in the ability to keep information in memory.

Due to the limited increase in conductance by SET pulses, the memristor update is constrained,
and the calcium level is only slightly increased. The gain, therefore, becomes the determining factor,
setting the calcium level artificially high. This effectively leads to active neurons with a “high” cal-
cium level and inactive neurons with a “low” calcium level. Given that there is no hierarchy between
which neurons need to fire first during representation, but only the pattern needs to be encoded in
neural representation and be reinforced in the neurons, a model with binary calcium “high” and
“low” calcium will still produce satisfactory behaviour.

Interestingly, we had to use two different gains to resemble the original STSP results. The
calcium of a single active neuron was inspected in order to mimic calcium behaviour during the
experiment. The gain of 5∗105 was chosen considering it enabled the calcium of an active neuron
to rise to 0.6 up until the moment of reactivation, which matched the 0.6 value at that specific time
in the STSP experiment, see Section 3.7. Nonetheless, the calcium in the STSP experiment becomes
1 when the to-be-learned pattern is presented. This is not the case for the memristor-based mSTSP
model, where the calcium gradually increases to 0.6. Since the connection weight in the STSP
learning rule is dependent on both the calcium and the resources, see Equation 3, a lower calcium
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level during the learning phase results in a lower connection weight at the period of reactivation.
Evidently, this will lead to less neural spiking. This may cause detrimental results in the full ex-
periment, where 1,344 trials are conducted across 30 subjects. Increasing the gain to 8.3∗105 does
replicate the findings of Pals et al. (2020). This ensured that the calcium level reaches around 1.0
during the learning phase, which means that the connection weights are comparably incremented.
An alternative explanation for the difference in gain might be due to the fact that the resistance of
the memristors is not actively cleared after each experiment.

In this research, we opted to model only the increasing part of the calcium with memristors,
instead of the entire resources and calcium mechanism. The primary reason for this is that the
memristor-based model used in this research only allows for small changes in the conductance. This
behaviour is not sufficient in order to mimic the volatile dynamics of the resources mechanism,
where the resources are de- and repleted abruptly.

Likewise the decreasing part of the original calcium mechanics is strenuous to implement on the
current memristors, given that only SET pulses are given to a single memristor. Dual memristors
with different initialized resistances, where one memristor is pulsed to incorporate positive changes,
while the other memristor is pulsed for negative changes, might be able to implement the full cal-
cium mechanics.

A promising new type of memristor that could be used to model the entire STSP model is the dif-
fusive memristor. The Ag-in-oxide memristor demonstrates diffusive dynamics (Wang et al., 2017),
which relates to the movement of nanoparticles across the material. These memristors are based
on metal atom diffusion and spontaneous nanoparticle formation. Under zero electrical bias the Ag
atoms regroup, essentially returning the resistance and conductance to a baseline after stimulation.
Wang et al. (2017) have shown that this type of memristor enables a direct emulation of both short-
and long-term plasticity of biological synapses. These memristors may prove to be ideal for both
the calcium as well as the resources mechanism of STSP. In case of the resources, a memristor could
be utilized with a baseline resistance that represents the value 1.0, which is the initialized value of
the resources. If the neuron fires, the memristor can be pulsed, that changes the resistance, in order
to represent a 0.0 value (i.e. depleted resource). If then the neuron stops being active, and as a
consequence of the diffusive dynamics, the resistance would then over time return to the baseline,
representing the value 1.0 again. This would mean that we could integrate positive and negative
changes with just a single memristor. Theoretically, we could then implement the diffusive memris-
tors to represent the connection weights of the STSP mechanism.

If we would truly want to create a cognitive computer that is just as efficient as our brain, we
would need to be able to simulate a flexible memory system, like WM. The hardware that then runs
this simulation should ideally work as energy-efficient as our brain does. Memristors might be such
devices, and this research shows that they can be used in the underlying architecture of a model that
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simulates WM. In this research a subset of the model parameters was implemented on memristors,
specifically the calcium of the neurons. If memristors are that much more efficient than transistors,
we would preferably want the entire network, from input to output, to be represented on memristors.
The simulated memristor used in this research is not sufficient for implementing all these different,
and mostly dynamic, parameters. New types of memristors, like the diffusive memristor, pave the
way for entire energy-efficient models that can be directly realised on the underlying hardware.
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5 Appendix

(a) BCM with a learning rate of 2e−12 with AdapLIF

(b) BCM with a learning rate of 1e−12 with AdapLIF

Figure 20: Neural activity (grey) and spikes per neuron (colored) during simulation.
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Figure 21: Neural activity (grey) and spikes per neuron (colored) during simulation with different
parameters for AdapLIF neurons. All results are using BCM with a learning rate of 1e−12. Top left
figure shows AdapLIF with taun = 0.5 and incn = 0.01. Top right: AdapLIF with taun = 0.01 and
incn = 0.01. Bottom left: AdapLIF with taun = 0.1 and incn = 0.1. Bottom right: AdapLIF with
taun = 0.1 and incn = 0.001.

Figure 22: Reprinted with permission from Pals et al. (2020)
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Figure 23: Simulation with STSP. Left: mean resources and calcium during simulation. Middle:
input to the ensemble. Right: the output of the post ensemble. On the x-axis time (t) in seconds.

Figure 24: Simulation with mSTSP with a gain of 5∗105. Left: mean resources and calcium during
simulation. Middle: input to the ensemble. Right: output of the post ensemble. On the x-axis time
(t) in seconds.
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Figure 25: Simulation with mSTSP with a gain of 8.3 ∗ 105. Left: mean resources and calcium
during simulation. Middle: input to the ensemble. Right: output of the post ensemble. On the x-axis
time (t) in seconds.

Figure 26: Represented difference in the decision population with mSTSP with a gain of 5∗105
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