
Improving the Learning Performance of a

Simulated Memristor Neural Network Using

Optimisation Algorithms

Bachelor’s Project Thesis

Luuk van Keeken, s3512290, l.van.keeken@student.rug.nl
Supervisors: MSc T.F. Tiotto & Dr J.P. Borst

Abstract: A memristor is a relatively novel electronic component which has the property that
its resistance can be adjusted, and that it can retain that new resistance. In contrast to the von
Neumann architecture used in most modern computers, this opens up the possibility of co-locating
memory and computation, as such mimicking the way in which the brain works. This allows for a
decrease of computation time, an increase of energy efficiency, and a more brain-like computational
substrate for artificial neural networks. Previous research has explored the use of Nb-doped
SrTiO3 memristors in differential pairs as weights of a simulated spiking neural network. The
simulated model was capable of showing adequate performance in learning transformations of
periodically time-varying input signals. The current research builds on that work by exploring the
use of optimisation techniques based on Simulated Annealing and Stochastic Gradient Descent
with Momentum. The implemented optimisation methods were found to significantly increase the
learning performance of the simulated model.

1 Introduction

1.1 Problems of modern computing

For more than half a century, the standard in com-
puting has been the ”von Neumann architecture”,
first developed by John von Neumann (Von Neu-
mann, 1945/1993). The two pillars of this archi-
tecture are the memory (where data and program
instructions are stored) and the central processing
unit or CPU (where data manipulation occurs).
Even though there have been major advancements
in developing these components, as the demand
for the use of artificial neural networks (as well
as computing power and data storage in general)
is increasing rapidly we are starting to run into
the limitations of this architecture (Sangwan and
Hersam, 2020).

One obstacle inherent to the von Neumann ar-
chitecture is that memory and the CPU are not
co-located. As a result there is a limit to how much
data can be transferred between these components
at a time, and a limit to how much time one trans-
fer takes. This has been known for a few decades
already, and has been called the ”von Neumann
bottleneck” (Backus, 1978). An important con-
sequence is that developments of individual com-
ponents will have no use anymore, as the overall
performance is always limited by the von Neumann
bottleneck as the weakest link.

Another downside of the von Neumann ar-
chitecture and the use of complementary metal-
oxide-semiconductor (CMOS) materials is energy-
inefficiency. Jeong et al. (2016) calculated that,
looking at the current trends in computation de-
mands, in 2040 the energy required to satisfy to
computation demand will be about 1027 Joule.
This is higher than the prospected worldwide en-
ergy production at that time.

These obstacles have stimulated a search for a
new architecture that takes inspiration from prop-
erties of the brain. A major field of research asso-
ciated with this search is neuromorphic computing
(Schuman et al., 2017). Next to increasing compu-
tation speeds and energy-efficiency, an additional
benefit specific to artificial neural networks (ANNs)
is that such an architecture could remove the cur-
rent incongruence between simulating ”brain-like”
ANNs using hardware that in itself is very different
from the brain.

1.2 Memristors

One example of techniques and materials being
developed in the field of neuromorphic comput-
ing are memristors. A memristor is an electronic
component which (among others) has the property
that its resistance can be adjusted, and that it
can retain that new resistance (which is why its
name is a contraction of ”memory” and ”resistor”).

1



It was already theorised in the ’70s (Chua, 1971)
and brought into reality for the first time in 2008
(Strukov et al., 2008).

Memristors can be used in the construction of
networks that are similar to neuronal structures in
the brain. Just like synapses (with their adjustable
connection strengths), memristors allow for mem-
ory and computation to be co-located. That is,
because resistances can be adjusted and retained,
values can be stored at the same location as they
are processed. One consequence of this co-location
is that there is no von Neumann bottleneck. Addi-
tionally, hardware implementations of ANNs can
be made, as such allowing for a computational sub-
strate that is much more brain-like (Adhikari et al.,
2012; Yao et al., 2020).

Various possible applications of memristors have
been and are being explored. One such application
is to arrange memristors in a so-called crossbar ar-
ray architecture. One property of this architecture
is that it allows for doing matrix multiplication,
arguably the most important operation in neural
network learning algorithms. Additionally, ana-
logue sensor signals can be applied directly, which
means the energy costly conversion between ana-
logue and digital signals (and vice versa) does not
have to occur (Xia and Yang, 2019).

There are various techniques, materials, and
principles that underlie the various types of mem-
ristors. Each type shows resistive switching be-
haviour, but each also has its own characteristics
and properties that make it suitable for different
applications. Some types, such as the ones based
on ionic movement between electrodes (Hu et al.,
2018), on phase switching between amorphous/non-
crystalline (high resistance) and crystalline states
(low resistance) (Kuzum et al., 2011), or on electric
field control of ferroeletric materials (Kim and Lee,
2019), have been studied quite extensively and have
been explored in various applications. Memristors
based on adjusting properties of the interface be-
tween a metal and a semi-conductor have also been
studied (Sawa, 2008; Goossens et al., 2018), but
have not been explored in actual applications as
much.

Tiotto et al. (2021) have used such interface-type
memristors. Specifically they performed measure-
ments on, and subsequently modelled, Nb-doped
SrTiO3 memristors, which have the property of
good performance at room temperature, as well
as requiring no forming processes to show resis-
tive switching behaviour. Using the Nengo Brain
Maker framework, they simulated a spiking neural
network where differential pairs of memristors were
organised in a crossbar array architecture, repre-
senting a fully-connected network between pre- and
post-synaptic neurons. They developed a learning
algorithm/rule based on the biologically plausible

Prescribed Error Sensitivity learning rule, adjusted
to account for the discrete resistance updates of
memristors. They showed that the model was ca-
pable of showing adequate performance in learning
transformations of periodically time-varying sig-
nals, even when incorporating noise in initial resis-
tance states and resistance updates (representing
real-life hardware constraints).

The current research builds on the work by
Tiotto et al. (2021). Although they showed suf-
ficient learning performance was attainable, opti-
mal learning was seldom reached. Here, optimisa-
tion techniques based on simulated annealing and
Stochastic Gradient Descent with Momentum are
implemented to explore their possible benefits on
improving learning performance.

2 Methods and Materials

2.1 The Neural Engineering Frame-
work

The Neural Engineering Framework (NEF) is a
mathematical theory of how cognitive functions
are executed by a neural system such as the brain
(Eliasmith, 2013; Stewart, 2012). By represent-
ing neurons at an adequate level of detail, and by
adhering to biological constraints, it can be used
to create large-scale, biologically plausible models
of brain functions. The three principles that the
NEF is based on are ”representation”, ”transfor-
mation”, and ”dynamics”, of which the first two
are especially relevant to this research.

The principle of representation is about how in-
formation is encoded in a neural system and how it
can be decoded. It is proposed that populations of
neurons together represent values. Each neuron has
its own non-linear ”tuning curve”, defining which
input values it is most responsive to in terms of
firing rate. The set of spike trains that the neurons
produce then represents the input signal. In the
process of decoding this representation, the post-
synaptic currents (PSCs) that would be generated
by each spike train are calculated. A weighted aver-
age of all PSCs is then calculated, which results in
an estimate of the input signal. The best weights
are calculated by minimising the squared difference
between the input signal and the decoded estimate.
By this method of weighting each decoding neuron
with a constant and adding them, there is linear
decoding of non-linearly encoded representations.

Transformation in the NEF is essentially a gen-
eralisation of how representations are decoded. In-
stead of finding weights to minimise the squared
difference between the input signal and the decoded
estimate, weights can also be found to minimise
the squared difference between any function of the
input signal (e.g. x2) and the decoded estimate of

2



that function of the input signal. This allows for
incorporating complex, non-linear transformations
in models, while still using linear decoding.

The Nengo Brain Maker framework is a Python
package that can be used to build software models
of neuronal systems, according to the NEF (Beko-
lay et al., 2014). Here, ”Ensembles” are popula-
tions of neurons, that represent vectors of values.
Between entire Ensembles, ”Connections” can be
made, which also can transform the vector. Rel-
evant to the model discussed in this paper, di-
rect connections can also be made between indi-
vidual neurons of two Ensembles. The user can
define learning rules which adjust the connection
weights during a simulation, as opposed to Nengo
pre-calculating the connection weights.

The higher the complexity of a network, and the
larger its size, the longer it takes to simulate it on
a CPU. NengoDL is a framework based on Nengo
and the deep learning framework Tensorflow, which
allows running simulations on a GPU (Rasmussen,
2019). Using this framework, deep learning tech-
niques can be applied to the creation of neural
system models, and deep learning networks can be
created in a neural context. Especially relevant to
this research is that it can significantly decrease
the amount of time needed to simulate models with
large numbers of neurons.

2.2 Nb-Doped SrTiO3 memristors

Tiotto et al. (2021) performed various experiments
on Nb-doped SrTiO3 memristors in order to in-
corporate their behaviour in the simulated model.
By applying positive voltage pulses (SET pulses)
the resistance of a memristor is decreased, and con-
versely by applying negative voltage pulses (RESET
pulses) the resistance is increased. The larger the
amplitude of the pulse, the larger the resistance
update. It became clear that the update behaviour
followed the shape of a power law (see Figure 2.1),
and thus it could be modelled by an equation of
the following form:

R(n, V ) = R0 +R1 · na+b·V (2.1)

where R(n, V ) is the resistance, V is the voltage of
the SET pulse, n is the number of applied pulses,
R0 is the lowest possible resistance, and R0 + R1

is the highest possible resistance. By rewriting this
equation, the number of applied pulses n can be
calculated from the resistance R(n, V ):

n =

(
R(n, V )−R0

R1

) 1
a+b·V

(2.2)

For each of the pulse sizes, the resistance values
found after applying the SET pulses were fitted to
Equation 2.1, resulting in an exponent value for

Figure 2.1: Resistance values after applying se-
quences of SET pulses, for various pulse sizes.
Source: Tiotto et al. (2021)

each pulse size. Linear regression was then used
to find fitting values for the parameters a and b of
the exponent, as can be seen in Figure 2.2. This
resulted in the following update equation:

R(n, V ) = 200 + 2.3 · 108 · n−0.093−0.53·V (2.3)

Figure 2.2: Exponents extracted from fitting
resistance update sequences to Equation 2.4, as
a function of the pulse size. In red, the linear
regression fit for the parameters a and b of the
exponent. Source: Tiotto et al. (2021)

In the simulated network, the weights of the con-
nections between pre-synaptic ensemble neurons
and post-synaptic ensemble neurons are based on
the conductance values of simulated memristors.
Each connection has a corresponding differential
pair of memristors, one ”positive” (M+) and one
”negative” (M−). The reason for using differential
pairs of memristors, and not just single memristors,
is to allow for negative weights. Their conductance
values (the inverse of their resistance values), nor-
malised with regard to the memristors’ minimal
and maximal conductance values, then determine

3



the value of the corresponding weight as follows:

ω = γ

[(
1
R+ − 1

R1

1
R0
− 1

R1

)
−

(
1
R− − 1

R1

1
R0
− 1

R1

)]
(2.4)

= γ

[(
G+ −G0

G1 −G0

)
−
(
G− −G0

G1 −G0

)]
(2.5)

where γ is a gain factor. By applying a pulse of
a positive voltage to one of the memristors in the
pair, that memristor’s conductance is increased,
and the corresponding weight changes accordingly.
Pulsing M+ increases the weight, while pulsing M−

decreases it. The learning rule identifies how a
weight should change based on the error signal,
and thus which memristor should be pulsed.

2.3 The Simulated Model

The model (Tiotto et al., 2021) that was used to
explore the learning performance of a memristor-
based spiking neural network is made up of three
main parts, namely a pre-synaptic ensemble, a post-
synaptic ensemble, and an ensemble that is used
to calculate the error signal E (see Figure 2.3).
The pre-synaptic ensemble takes in a certain input
signal x, and the learning goal of the model is to
represent a certain desired transformation f(x) in
the post-synaptic ensemble.

Each neuron of the pre-synaptic ensemble is
directly connected to each neuron of the post-
synaptic ensemble. The connections represent
memristors organised in a crossbar array neural
network, in which the memristors’ conductance val-
ues represent the weights (Xia and Yang, 2019).
A learning rule is used to adjust the connection
weights, by changing the conductance values of
simulated memristors (see Subsection 2.4).

The learning rule requires as input the error E
between the post-synaptic representation y and the
ideal transformation of the input signal f(x). This
error is calculated in the third ensemble, which
has connections coming in from the pre-synpatic
in post-synaptic ensembles. The signal y is not
transformed on the connection between the post-
synaptic ensemble and the error ensemble, thus
it stays the same. x however is transformed on
the connection between the pre-synaptic ensemble
and the error ensemble, according to the desired
transformation f(x) specified before the simulation.
(Note that Nengo itself automatically calculates
the best weights for this connection before the
simulation, as described in Section 2.1.) The error
signal then is calculated as E = y - f(x), where y
∼ f(x).
The input signal x is a vector that has d dimensions.
Each dimension xd is a sine wave of equal period,
and all waves are uniformly phase-shifted relative

Figure 2.3: The model’s structure. Source:
Tiotto et al. (2021)

to each other:

xd = sin(
1

4
2πt+ i

2π

d
), i ∈ [0, d) (2.6)

To represent the fact that not all memristors
would be identical in their behaviour and initial re-
sistance values, and to account for hardware noise,
randomness was incorporated in two ways. Firstly,
the initial resistance values of the memristors were
sampled from a Normal distribution with as the
mean 1.8 MΩ, and as the standard deviation 15% of
that mean. This mean was chosen based on experi-
ments that were done with the physical memristors
that are modelled here, in which they received a
series of negative voltage pulses that let the re-
sistance values increase and approach this value.
Secondly, the exponents used in the equations that
model the resistance updates after a pulse were
also sampled from a Normal distribution with 15%
noise.

In the performed experiments, the simulation
time is 30 seconds for each run. During the first
22 seconds, the model is learning as it adjusts the
connections weights based on the error signal. After
that time, a fourth ensemble (”Switch” in Figure
2.3) is activated, which inhibits the error ensemble.
As a result, weights are no longer adjusted, and
thus in the last 8 seconds the performance of the
model can be tested. For f(x) and y the mean
squared error (MSE) and the Spearman correlation
coefficient ρ are calculated. These are combined
into one performance metric as ρ

MSE , reflecting
that with a good fit MSE is small and ρ is close
to 1. For Tiotto et al. (2021), simulations using 10
neurons lead to an average learning performance
of 6.8, and simulations using 100 neurons resulted
in an average learning performance of 7.9.

2.4 Learning Rules

What follows is a description of the PES learning
rule, and how it was adjusted by Tiotto et al. (2021)
to work with memristive synapses.

4



2.4.1 PES

Prescribed Error Sensitivity (PES) is a biologically
plausible method for fine-tuning synaptic connec-
tion weights (MacNeil and Eliasmith, 2011; Bekolay
et al., 2013). An important property of this learn-
ing rule is that weights are adjusted not based on
the global error but on local errors. That is, their
individual contributions to the global error. Addi-
tionally, it enables online learning (i.e. adjusting
of weights during the simulation).

In the NEF, the activity ai of a neuron i is cal-
culated based on the neural non-linearity G (which
depends on the used neural model), a gain param-
eter α, the neuron’s encoding vector e (i.e. its
”tuning curve”), the represented value vector x,
and a bias term b (representing the neuron’s back-
ground current), as follows:

a = G[αe · x+ b] (2.7)

d is the decoder that specifies how the spike trains
from a pre-synaptic ensemble should be averaged
to best estimate the represented vector in a post-
synaptic ensemble. The connection weights ωij are
then calculated as:

ωij = αjejdi (2.8)

for each pre-synaptic neuron i and post-synaptic
neuron j.

Central to PES are two equations which can be
used to calculate at each time step how the de-
coder values, and with that the connection weights,
should be adjusted:

∆di = kEai (2.9)

∆ωij = kαjej ·Eai (2.10)

where k is the learning rate, and E is the global
error between the transformation that should be
represented in the post-synaptic neuron, and that
neuron’s estimate. Note that in essence, the weight
adjustment is only dependent on the local error
ε = αjej · E. If the local error is positive, the
weight should increase; if it is negative, the weight
should decrease. Each individual weight’s update
optimises only the corresponding ”portion” of the
global error.

2.4.2 mPES

mPES is an adjustment of PES that accounts for
the more discrete way in which weights are updated
in a network of memristors. This discreteness is the
result of how the conductances of the memristors
are always adjusted by applying a pulse of +0.1
V. As such, the weight updates can only have cer-
tain sizes (depending on the current conductances
of the memristors in each pair). Additionally, a

network of memristors is different in that there is
uncertainty in the initial conductances and in the
exact change of conductance after a pulse.

mPES contains a gain parameter γ in the trans-
formation from memristor conductances to a weight
value. It resembles a learning rate, but changing
the size of γ only affects the influence of a pulse on
the weight update sizes, not on the conductance
update sizes.

It also contains an error threshold hyperparam-
eter θε. If all local errors are smaller than θε, the
memristors are not updated. The main reason
for doing this is connected to the discrete resis-
tance/weight updates of the memristors. If a mem-
ristor pair that corresponded to a very small, non-
zero local error was to be pulsed, it would be very
likely that the new local error would be bigger, as
the resistance/weight update is not fine-grained
enough. A second reason is that the inhibition
of the error ensemble by the fourth ”switch” en-
semble (at the end of learning) does not bring E
completely down to 0. As a result, without the
use of θε (which is set at 10−5) the learning rule
would continue to adjust weights. In other words,
the learning phase would not be stopped while the
validation phase should commence at that point.

One iteration of mPES is then as follows:

1. The global error E is projected on each neu-
ron’s tuning vector to calculate each neuron’s
local error ε: ε = −ejE.

2. Only if at least one local error is larger than
θε are the memristors updated.

3. From ε and the pre-synaptic activity apre the
∆ matrix is calculated, the entries of which
are analogous to ∆ωij in PES: ∆ = -ε⊗ apre.
apre is filtered such that any spike of a pre-
synaptic neuron is represented as a value of 1
(as opposed to 0), independent of the intensity.

4. Based on the sign of each ∆ matrix entry
it is determined whether the positive or neg-
ative memristor of each corresponding pair
should be pulsed. If the update direction Vij

= sgn(∆ij) is larger than 0, then M+ is pulsed.
If Vij < 0, then M− is pulsed. As such, the
synapses that contribute to E in a positive
way are strengthened, while the ones that con-
tribute to E negatively are inhibited.

5. The new weights are calculated following Equa-
tion 2.5.

2.5 Optimisation Algorithms

What follows is an overview of the optimisation
techniques that were implemented, and how they
were based on existing optimisation methods.

5



2.5.1 Simulated Annealing

When one performs a search through a param-
eter space to find the settings that lead to the
best performance, it is easy to get stuck on a lo-
cal maximum when only neighbouring settings are
considered. Simulated annealing is one example
of an optimisation method that tries to balance
constantly moving towards better neighbouring set-
tings and avoiding to get stuck on local maxima.
The essence of simulated annealing is that it some-
times allows for moves towards worse parameter
settings in order to move away from a local maxi-
mum. As the search progresses, such moves happen
less and less.

Kirkpatrick et al. (1983) introduced the algo-
rithm as an analogy to the process of ”annealing”
in metallurgy, which is performed to make, for
example, a piece of metal more workable. The
material is first heated up and then slowly cooled.
It is important that the temperature is decreased
as slowly as possible, such that large crystals are
formed (the global maximum in simulated anneal-
ing). If the material cools too quickly, the material
solidifies into a structure of small crystals, making
the material more brittle and less ductile (a local
maximum).

In simulated annealing, there is an analogous
”temperature” parameter T that in part controls
whether a worse parameter setting is accepted.
Each iteration a neighbouring parameter setting
is picked randomly. The performance difference
with the previous setting is the difference in ”en-
ergy” ∆E. If ∆E is larger than 0 (i.e. the new
setting is better), then the new setting is accepted.
However, if the new setting is worse in terms of per-
formance, it is accepted only with probability e

∆E
T .

The temperature follows a non-increasing schedule.
As a result, the probability that a similar decrease
in performance will be accepted gets smaller and
smaller as the iterations go on.

In this implementation, simulated annealing’s
temperature schedule was an inspiration for im-
proving the way in which the exponents used in
the resistance update equations are calculated. In
Tiotto et al. (2021) it was already found that per-
formance was the best when these exponents were
sampled from an normal distribution with a mean
equal to the value corresponding to a pulse of 0.1 V
and a standard deviation of 15% (”noise”) of that
mean. The sampling was done once at the start of
each simulation run. Here it is explored whether
letting the noise percentage change according to a
certain schedule, and re-sampling at each time step
leads to a higher performance. The idea is that,
similar to simulated annealing, a higher noise level
at the start allows the weights to sometimes change
to a relatively worse setting in order to escape lo-
cal maxima and get closer to the global maximum.

As the noise decreases, the weights should ideally
settle at the global maximum.

Two schedules were considered in this implemen-
tation, namely a linear one (Algorithm 2.1) and an
exponential one (Algorithm 2.2). In both cases an
initial noise level and a final noise level are set, and
the noise gradually changes from one to the other
according to the schedule. For the linear schedule,
how quickly the noise level changes depends on the
total amount of time steps in the simulation. For
the exponential schedule, this depends on the size
of the base number of the exponentiation.

Algorithm 2.1 Linear schedule

initnoise⇐ noise level at start of simulation
finnoise⇐ noise level at end of simulation
t⇐ current time step
total⇐ total amount of time steps
b⇐ initnoise
a⇐ (finnoise− b)/total
noise⇐ a · t+ b

Algorithm 2.2 Exponential schedule

initnoise⇐ noise level at start of simulation
finnoise⇐ noise level at end of simulation
t⇐ current time step
base⇐ base number of the exponentiation
noise⇐ (initnoise−finnoise)·baset−finnoise

2.5.2 Adaptive Pulsing

In the implementation of Tiotto et al. (2021),
whether the positive or negative memristor of a
memristor pair is pulsed is based on the sign of
the corresponding entry in the ∆ matrix, as this
sign represents whether the corresponding weight
should be increased or decreased. What this does
not make use of is the fact that the size of a ∆
matrix entry reflects how much the corresponding
weight contributes to the global error.

Thomas Tiotto (unpublished) introduced a
method that does make use of this property. In this
method, a certain maximum number of pulses is set.
The number of pulses that a memristor pair receives
stands in approximately the same proportion to
that maximum number as the corresponding ∆ ma-
trix entry stands in proportion to the smallest and
largest ∆ values observed up to and including the
current time step. A larger maximum number of
pulses allows for both larger and more fine-grained
weight adjustments. Whether the positive or the
negative memristor receives the pulse(s) still de-
pends on the sign of the corresponding ∆ matrix
entry.

6



2.5.3 Stochastic Gradient Descent with
Momentum

The weights being updated in relation to their con-
tributions to the global error opens up the possibil-
ity of implementing an optimisation algorithm that
is inspired by Stochastic Gradient Descent (SGD)
with Momentum. In SGD, a model’s weights ω
are updated based on the partial derivatives of
the used loss function F (ω) (i.e. a function that
quantifies how well the model’s predictions fit the
data) with regard to each weight (Amari, 1993).
Taken together, the partial derivatives form a vec-
tor pointing towards the steepest ascent of the loss
function (i.e. the gradient ∇F (ω)). The negative
of this gradient then designates how the weights
should change to move towards the minimum of
the loss function. The weight update in iteration i
then is as follows:

ωi = ωi−1 − α · ∇F (ωi−1) (2.11)

where α is the learning rate.
Stochastic Gradient Descent differs from Gra-

dient Descent in that at each iteration only one
training sample is considered when estimating the
gradient, instead of the complete data set. This
is done to lower computational cost. As a result,
SGD’s individual weight updates can be quite vari-
able (Bottou, 2012). This can be beneficial in terms
of possibly escaping local minima of the loss func-
tion, but can also cause problems with convergence
(i.e. actually finding a minimum and terminating
the search) (Ruder, 2016).

One particular convergence problem in SGD oc-
curs when the curvature of (a part of) the loss
function is much steeper in one dimension than it
is in the perpendicular dimension. What results is
a path of weight updates that has a high degree of
oscillation due to the weight updates making large
jumps in the direction perpendicular to the mini-
mum, and less so in the direction of the minimum.

Momentum aims to decrease the degree of os-
cillation. It does this by adding a fraction of the
previous update vectors to the current update vec-
tor (where an update vector equals the learning rate
time the gradient). The weights are thus updated
as follows:

vi = µvi−1 + α · ∇F (ωi−1) (2.12)

ωi = ωi−1 − vi (2.13)

where µ is the Momentum term with a value on
the range [0, 1]. If µ is smaller than 1, past update
vectors have increasingly less influence as iterations
go on.

As a result of using Momentum, directions that
the update vectors have in common (i.e. towards
the minimum) are amplified, while moves in per-
pendicular directions are averaged out (illustrated

in Figure 2.4). This allows for more rapid conver-
gence.

Figure 2.4: The difference between SGD with
and without Momentum when converging on a
minimum. Source: Ruder, 2016.

In the simulated memristor network, the ∆ matrix
is analogous to the gradient, in that it reflects by
how much the weights should change. The adaptive
pulsing method already makes use of this property
by basing the numbers of applied pulses on the
∆ values. In the optimisation method inspired
by SGD with Momentum, before adaptive pulsing
is done, a fraction of the previous ∆ matrices is
added to the ∆ matrix calculated in the current
time step. Ideally, opposing ∆ values would av-
erage each other out, and similar ∆ values would
strengthen each other.

2.6 Experiments

Several experiments were carried out to compare
the learning performances when using one of the
optimisation methods to the performances in Tiotto
et al. (2021). In each experiment the input was a
three-dimensional sine wave, and the model had
to learn the function f(x) = x, just as in Tiotto
et al. (2021). Any other parameter values that
are not mentioned here were also kept the same.
Simulations using Nengo were performed with an
Intel Core i7-7500U CPU, and simulations using
NengoDL were performed with an Nvidia Titan
Xp.

2.6.1 Simulated Annealing

For both the linear and exponential noise schedule
types, simulations were performed using various
combinations of initial and final noise levels, all be-
tween 0% and 40%. This range was chosen because
initial tests revealed that combinations contain-
ing higher noise levels never resulted in adequate
learning performance. For the same reason, not all
combinations on this range were considered. The
tested combinations also included cases where the
final noise level was higher than the initial noise
level. For each combination of noise levels the learn-
ing performance was averaged over 50 runs. Each
time the network consisted of 10 memristor pairs.
These simulations were performed using the Nengo
framework.

The reason for also exploring combinations where
the noise level increased is because of how the

7



resistance of a memristor changes as it receives
more pulses. Namely, instead of changing linearly,
the resistance follows a power law, which means
that the more pulses are applied, the smaller the
resistance change after each pulse. In a sense, some
simulated annealing properties are already present
in the nature of the memristor. It was thought
that actually increasing the noise over time might
counteract the decreasing resistance update size in
a positive way.

After these simulations it was found that there
was quite some variability in the results, making it
difficult to find exact relations between noise level
and noise schedule settings, and learning perfor-
mance. For this reason, the simulations were re-
peated, now using 100 memristor pairs. It was the-
orised that using more memristor pairs in the net-
work would possibly decrease the variability in the
results, as 100 memristor pairs/weights would have
a higher representational power. These simulations
were performed in NengoDL, as that framework is
more suitable when doing much larger amounts of
computations (as is the case when using 100 mem-
ristor pairs instead of 10). To make sure that any
found difference between the 10 and 100 memristor
pair simulations would not be because of the differ-
ence in the used framework, the 10 memristor pair
simulations were also repeated using NengoDL.

2.6.2 Adaptive Pulsing

Simulations were performed using several maxi-
mum numbers of pulses, ranging from 10 to 800.
This was done for 10 and 100 memristor pairs.
Again, the learning performance was averaged over
50 runs for each setting. Note that simulated an-
nealing was not used here. That is, the exponents
used in the memristor update equations were set
once at the start of each run (as in Tiotto et al.
(2021)). The NengoDL framework was used.

2.6.3 Stochastic Gradient Descent with
Momentum

As the SGD with Momentum method is built on
top of the adaptive pulsing method, in these simu-
lations the best maximum pulse number from the
adaptive pulsing simulations was used. Simulations
were performed using several Momentum term val-
ues, ranging from 0.05 to 0.95. This was done for
10 and 100 memristor pairs. The learning perfor-
mance was averaged over 50 runs for each setting.
The NengoDL framework was used.

3 Results

Presented here are the results of the simulations
when using the implemented optimisation methods.

3.1 Simulated Annealing

Figures 3.1 and 3.2 show the results for the 10
neuron Nengo simulations and the 100 neuron
NengoDL simulations, respectively. Each coloured
square shows the performance of a certain combi-
nation of starting noise level and ending noise level.
The higher the performance metric, the lighter the
colour of the square, and the better the learning
performance.

What stands out for the 10 neuron simulations
(Figure 3.1) is that the best performance is reached
when using combinations of low-to-intermediate
noise levels. When higher noise levels are used,
performance decreases (although higher starting
noise levels tend to lead to better performance than
ending noise levels of the same size).

Notably, for the 100 neuron simulations (Fig-
ure 3.2) the relation between noise levels and per-
formance seems to have flipped with regard to
the 10 neuron simulations. Now, combinations of
intermediate-to-high noise levels result in the best
performance, instead of combinations of low-to-
intermediate noise levels. Performance decreases
for the highest noise levels here as well, and again
higher starting noise levels tends to lead to better
performance than the same ending noise levels.

Figure A.1 shows the results of the simulations
with 10 neurons and a linear schedule performed
in the NengoDL framework. The patterns of which
noise level combinations lead to the best and the
worst performance are very similar to the 10 neuron
simulations performed in the Nengo framework.

3.2 Adaptive Pulsing and Momen-
tum

Figure 3.3 shows the performance when using adap-
tive pulsing and 10 neurons. Although there is quite
some variability, the performance seems to increase
with the number of pulse levels. Note that for all
pulse levels that were explored, the performance
was better than the 6.8 of Tiotto et al. (2021).

Figure 3.4 shows the performance when using
both Momentum and adaptive pulsing with the
number of pulse levels that resulted in the best
performance, and 10 neurons. What can be seen
is that performance decreases with larger Momen-
tum terms. A significant range of the explored
Momentum terms result in better than baseline
performance. It should be noted that for almost
all Momentum terms, the performance is worse
than when only using the best adaptive pulsing
parameters.

Figures 3.5 and 3.6 show the results of simu-
lations with the same optimisation methods, but
then performed with 100 neurons. Patterns similar
to the ones visible in Figures 3.3 and 3.4 arise.

8



Figure 3.1: Learning performance for various combinations of noise levels, using the simulated
annealing method and 10 neurons, in the Nengo framework. Top: linear schedule. Bottom:
exponential schedule.

4 Discussion

This research set out to explore the use optimisation
methods in improving the learning performance of
a memristor-based spiking neural network. The
results indicate that, at least with the right param-
eter settings, learning performance can indeed be
increased above the baseline performances of 6.8
(10 neurons) and 7.9 (100 neurons) with the use of
the implemented optimisation methods. Although
this was the case for all of the methods, it should

be noted that the use of Momentum seems to more
often diminish the positive effect of adaptive puls-
ing, rather than improve upon it. It is not entirely
clear why the use of Momentum does not seem to
add much in terms of improving the learning perfor-
mance. One possibility is that perhaps the use of
Momentum is only beneficial when the search space
actually contains many areas where the curvature
is much steeper in one dimension than it is in the
perpendicular dimension. It could be interesting
to look more into the properties of this learning

9



Figure 3.2: Learning performance for various combinations of noise levels, using the simulated
annealing method and 100 neurons, in the NengoDL framework. Top: linear schedule. Bottom:
exponential schedule.

problem’s search space and implement optimisation
methods based on those properties. Alternatively,
one could explore the use of more general optimi-
sation methods that are less dependent on specific
search space properties.

For the simulated annealing method, arguably
the most surprising result was that increasing the
number of neurons affected the relation between
the noise levels and the performance. It was ex-
pected that using 100 neurons instead of 10 neurons
would merely decrease the variability in perfor-
mance scores between similar parameter settings,

as generally larger ensembles can more accurately
represent values. For the 10 neuron simulations the
Nengo framework was used, while for the 100 neu-
ron simulations the NengoDL framework was used.
The fact that the results for the Nengo and Nen-
goDL 10 neuron simulations are very similar (as
can be seen in Figures 3.1 and A.1) indicates that
the change in best performing noise level combina-
tions is purely the result of using different numbers
of neurons. It is not clear why this difference arises.

To further improve the simulated annealing
method, it could be interesting to research more

10



Figure 3.3: Learning performance using adaptive pulsing and 10 neurons

Figure 3.4: Learning performance using adaptive pulsing and Momentum, and 10 neurons

11



Figure 3.5: Learning performance using adaptive pulsing and 100 neurons

Figure 3.6: Learning performance using adaptive pulsing and Momentum, and 100 neurons

12



adaptive noise schedules. That is, instead of let-
ting the noise follow a fixed schedule, it could be
made to be more responsive to how the model is
improving in its learning.

Regarding adaptive pulsing and Momentum, it
should be noted that even though linear regression
of the adaptive pulsing data points indicated that
800 pulse levels might lead to the best performance,
still the numbers of pulse levels that actually re-
sulted in the best performances in the simulations
were used in the Momentum simulations (600 for
the 10 neuron simulations, 350 for the 100 neu-
ron simulations). It was not taken into account
whether those best parameter settings were out-
liers. It would be interesting to explore whether
using 800 pulse levels in the Momentum simula-
tions would lead to different results. Above that,
the linear regression results seem to indicate that
numbers of pulse levels larger than 800 could lead
to even higher performance when using adaptive
pulsing. It is not entirely surprising that larger
maximum pulse numbers result in higher perfor-
mance, as they allow for applying required weight
adjustments in less time steps and with more de-
tail. More simulations should be done to explore
which number of pulse levels results in the very
best performance.

5 Conclusion

It was shown that the use of optimisation methods
based on simulated annealing and Stochastic Gra-
dient Descent with Momentum can significantly
increase the learning performance of a simulated
spiking neural network. The results of this re-
search underscore the potential of memristors as
a more energy-efficient computational device, and
can function as a starting point of more exploration,
in order to attain even better learning performance
and to decrease computation time.

6 Code Availability

The code used in this study is available at
https://github.com/LuukvanKeeken/Improving-
the-learning-performance-of-a-memristor-neural-
network-using-optimisation-techniques

References

Adhikari, S. P., Yang, C., Kim, H., and Chua,
L. O. (2012). Memristor bridge synapse-based
neural network and its learning. IEEE Transac-
tions on Neural Networks and Learning Systems,
23(9):1426–1435.

Amari, S.-i. (1993). Backpropagation and stochas-
tic gradient descent method. Neurocomputing,
5(4-5):185–196.

Backus, J. (1978). Can programming be liberated
from the von Neumann style? A functional style
and its algebra of programs. Communications of
the ACM, 21(8):613–641.

Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf,
T., Stewart, T. C., Rasmussen, D., Choo, X.,
Voelker, A., and Eliasmith, C. (2014). Nengo:
a python tool for building large-scale functional
brain models. Frontiers in Neuroinformatics,
7:48.

Bekolay, T., Kolbeck, C., and Eliasmith, C. (2013).
Simultaneous unsupervised and supervised learn-
ing of cognitive functions in biologically plausible
spiking neural networks. In Proceedings of the
Annual Meeting of the Cognitive Science Society,
volume 35.

Bottou, L. (2012). Stochastic gradient descent
tricks. In Neural networks: Tricks of the trade,
pages 421–436. Springer.

Chua, L. (1971). Memristor-the missing circuit
element. IEEE Transactions on circuit theory,
18(5):507–519.

Eliasmith, C. (2013). How to build a brain: A neu-
ral architecture for biological cognition. Oxford
University Press.

Goossens, A. S., Das, A., and Banerjee, T. (2018).
Electric field driven memristive behavior at the
Schottky interface of Nb-doped SrTiO3. Journal
of Applied Physics, 124(15):152102.

Hu, P., Wu, S., and Li, S. (2018). Synaptic behavior
in metal oxide-based memristors. In Advances
in Memristor Neural Networks - Modeling and
Applications. InTech.

Jeong, D. S., Kim, K. M., Kim, S., Choi, B. J.,
and Hwang, C. S. (2016). Memristors for energy-
efficient new computing paradigms. Advanced
Electronic Materials, 2(9):1600090.

Kim, M.-K. and Lee, J.-S. (2019). Ferroelec-
tric analog synaptic transistors. Nano Letters,
19(3):2044–2050.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P.
(1983). Optimization by simulated annealing.
Science, 220(4598):671–680.

Kuzum, D., Jeyasingh, R. G. D., Lee, B., and
Wong, H.-S. P. (2011). Nanoelectronic pro-
grammable synapses based on phase change ma-
terials for brain-inspired computing. Nano Let-
ters, 12(5):2179–2186.

13

https://github.com/LuukvanKeeken/Improving-the-learning-performance-of-a-memristor-neural-network-using-optimisation-techniques
https://github.com/LuukvanKeeken/Improving-the-learning-performance-of-a-memristor-neural-network-using-optimisation-techniques
https://github.com/LuukvanKeeken/Improving-the-learning-performance-of-a-memristor-neural-network-using-optimisation-techniques


MacNeil, D. and Eliasmith, C. (2011). Fine-tuning
and the stability of recurrent neural networks.
PloS one, 6(9):e22885.

Rasmussen, D. (2019). Nengodl: Combining deep
learning and neuromorphic modelling methods.
Neuroinformatics, 17(4):611–628.

Ruder, S. (2016). An overview of gradient de-
scent optimization algorithms. arXiv preprint
arXiv:1609.04747.

Sangwan, V. K. and Hersam, M. C. (2020). Neuro-
morphic nanoelectronic materials. Nature Nan-
otechnology, 15(7):517–528.

Sawa, A. (2008). Resistive switching in transition
metal oxides. Materials Today, 11(6):28–36.

Schuman, C. D., Potok, T. E., Patton, R. M., Bird-
well, J. D., Dean, M. E., Rose, G. S., and Plank,
J. S. (2017). A survey of neuromorphic com-
puting and neural networks in hardware. arXiv
preprint arXiv:1705.06963.

Stewart, T. C. (2012). A technical overview of
the neural engineering framework. University of
Waterloo.

Strukov, D. B., Snider, G. S., Stewart, D. R., and
Williams, R. S. (2008). The missing memristor
found. Nature, 453(7191):80–83.

Tiotto, T., Goossens, A., Borst, J., Banerjee, T.,
and Taatgen, N. (2021). Learning to approximate
functions using Nb-doped SrTiO3 memristors.
Frontiers in Neuroscience, 14:1456–1472.

Von Neumann, J. (1993). First draft of a report
on the EDVAC. IEEE Annals of the History of
Computing, 15(4):27–75. Original work published
1945.

Xia, Q. and Yang, J. J. (2019). Memristive cross-
bar arrays for brain-inspired computing. Nature
Materials, 18(4):309–323.

Yao, P., Wu, H., Gao, B., Tang, J., Zhang, Q.,
Zhang, W., Yang, J. J., and Qian, H. (2020).
Fully hardware-implemented memristor convo-
lutional neural network. Nature, 577(7792):641–
646.

14



A Appendix

Figure A.1: Learning performance for various combinations of noise levels, using the simulated
annealing method and 10 neurons, in the NengoDL framework.

15


	Introduction
	Problems of modern computing
	Memristors

	Methods and Materials
	The Neural Engineering Framework
	Nb-Doped SrTiO3 memristors
	The Simulated Model
	Learning Rules
	PES
	mPES

	Optimisation Algorithms
	Simulated Annealing
	Adaptive Pulsing
	Stochastic Gradient Descent with Momentum

	Experiments
	Simulated Annealing
	Adaptive Pulsing
	Stochastic Gradient Descent with Momentum


	Results
	Simulated Annealing
	Adaptive Pulsing and Momentum

	Discussion
	Conclusion
	Code Availability
	Appendix

