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Abstract
Multi-source district heating is a network of heat producers and heat consumers connected to
each other by underground water pipelines. This system is used to incorporate green energy
sources. However, these green energy sources output fluctuate more than the output of the
coal based heat producers. In order to control this fluctuating supply in the multi-source
district heating network, a controller is needed that requires short term prediction of the
heat demand of the consumers. In this thesis a prediction algorithm is made based on the
thermal physical system of the consumers, for example the outdoor temperature of the houses
and the flow of water through the radiator. As well as the social behaviour of the consumers,
for example is the consumer willing to save energy or not. In order to test the prediction
algorithm designed, numerical simulations are carried out with a suggested controller. This
resulted in the conclusion that when accurate values for the thermal physical system and the
social behaviour of the consumer are imported, a feasible prediction for the load demand of
the consumers can be made.
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Table 1: Overall parameters

Symbol Description Unit
qin Flow into the pipe m3

s

qout Flow out of the pipe m3

s

q Flow in the pipe m3

s

Tin Temperature of the water going into the pipe C°
Tout Temperature of the water going out of the pipe C°
T Temperature of the water in stored C°
M Mass kg
cw Specific heat of water J

kgC°

ρw The density of water kg
m3

qhs Flow in the hot stream m3

s

qcs Flow in the cold stream m3

s

Ths Temperature in the hot stream C°
Tcs Temperature in the cold stream C°
Vhs Volume hot stream side m3

Vcs Volume cold stream side m3

T in
hs or T out

hs Temperature of the hot stream going into or out of the heat exchanger C°
T in
cs or T out

cs Temperature of the cold stream going into or out of the heat exchanger C°
qincs or qoutcs Flow into or out of the radiator m3

s

T in
cs or T out

cs Temperature into or out of the radiator C°
Tamb The ambient temperature C°
Trad Temperature in the radiator C°
Troom Temperature in the room C°
Vrad Volume of water within the radiator m3

Vroom Volume of air within the room m3

qpipe,i Flow in the pipe i m3

s

Tpipe,i Temperature in the pipe i C°
Vpipe,i Volume in the pipe i m3

Tnode,i Temperature in the node i C°
Vnode, i Volume in the node i m3
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1 Introduction
In this chapter an introduction to multi-source district heating system is given. A focus is
first given on the motivation on this research. In the next section, the relevant literature is
given and knowledge gaps are marked. In the last two sections the goal of this research is
given and the organisation of its chapters.

1.1 Motivation

In order to reduce green houses gases, district heating networks are expected to switch from
their fossil power plants to multiple green energy sources (Machado et al., 2020, Lund et al.,
2014, Saletti et al., 2020, Dominković et al., 2020). As a result, the distribution network
changes from a tree-like structure to a more meshed topology (Lund et al., 2014, Wang et al.,
2017). District heating is capable of including multiple sources of heat producers into its
system, for example geothermal or solar-thermal, which can be seen in Figure 1. With the
produced heat, the system is able to supply a town, neighborhood or city. The district heating
network exists out of heat producers, consumers and a distribution network. The producers
generate hot water, referred to as heat, which is distributed by a network of underground
pipes towards the consumers. This type of network is schematically visualised by Figure 1.
Once arrived at the consumers, heat exchangers are used to transfer the heat from the closed
loop distribution network to the local network of each consumer.

Figure 1: Distribution network (Machado et al. (2020))
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1.2 Literature Overview

In order to regulate all the flows through the multi-source network, a control system is needed
(Machado et al., 2020). Preliminary research has been done in Machado et al. (2020, 2021)
to developed a control system for the distribution network. This control system needs mul-
tiple information into its system, one being the short term prediction of the heat demand.
Previous studies showed that this positively affects the performance of the control system
(Ma et al., 2017). This is due to the ability to deal with the time delay, because the heat
needs to travel through the long pipes of the distribution network (Dotzauer, 2002, Guelpa
et al., 2019b)

Research into prediction models proved that outdoor temperature and the behaviour of
building occupants have the greatest influence on the demand (Dotzauer, 2002). Furthermore
Dotzauer (2002) stated that the information acquired by a simplified short term prediction
model is sufficient for the control system to function. The reason to pick simplified short term
prediction model, over an extended long term prediction model, even when the information
produced is the same, is the smaller computational time for the simplified models. Moreover,
the short term is the hourly prediction of demand, which is needed to tackle the time delay
by the distribution network.

In order to predict the heat demand, one approach suggests that the thermal physical
dynamics of the consumer network is needed as well as the thermal physical dynamics of the
distribution network (Ma et al., 2017, Dotzauer, 2002, Bäumelt and Dostál, 2020, Nielsen
and Madsen, 2006). To model the thermal physical dynamic model of the consumer, grey-
box modelling is used in Bäumelt and Dostál (2020), Nielsen and Madsen (2006) to attain
the model structure by physical principles and estimating the parameters by experimental
data. According to Bäumelt and Dostál (2020), grey-box modelling is effective due to a rela-
tively low time-consumption during creation, compared to other methods and exact or near
physics-based interpretation. Moreover, the overall system can be described using ordinary
differential equations (Nielsen and Madsen, 2006).

Existing literature does not include social aspects, which have a great influence on the
demand (Dotzauer, 2002). In (Heydarian et al., 2020), a general literature study is preformed
looking at how the social behaviour values influence the demand of a consumer. Since this
is a literature study it focuses on a lot of different factors of the behaviour. In (Feng et al.,
2020), a human physical system framework existing of human behaviour, social norms and
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physical systems is developed for electrical systems. Moreover, Feng et al. (2020) focuses on
energy saving behaviour and identifies two major values that affects energy saving behaviour;
egoistic values and bioshperic values. These are unknown values and need to be identified,
because estimating the unknown parameters of the consumers is important to make a good
prediction of their demand (Namazkhan et al., 2019, Nielsen and Madsen, 2006, Pinto, 2016).

1.3 Contribution

This thesis is aimed at combining the thermal physical part discussed in Machado et al.
(2020, 2021) with the social aspects of the consumers discussed in Feng et al. (2020) and
Namazkhan et al. (2019), into a short term prediction model of the heat demand for district
heating. This contribution is tested by carrying out a case study with numerical simulations.
In this testing a special focus is put on the unknown parameters of the consumers and their
influence on the prediction of the load for the consumers.

1.4 Organisation of the thesis

This paper is organized as follows. In Chapter 2, the system behind the thermal physical
dynamics of the network is explained and the thermal physical dynamics of the consumer
are developed. Furthermore, the social behaviour is explained and a contribution is made by
incorporating this behaviour into the thermal physical dynamics of the consumer. In Chap-
ter 3, the identification of the unknown parameters of the consumer is performed and the
case study explained. In addition, a controller for this case study is suggested. In Chapter
4, the results of the simulations are presented and finally Chapter 5 the thesis ends with a
conclusion and an advise for future research.

Notation: An n-vector of ones is written as 1n, whereas the identity matrix of size n is
represented by In. Any vector x ∈ Rn, in which R denotes a set of real numbers, is denoted
by ⟨x⟩ as a diagonal matrix with elements x in its main diagonal. For any time-varying signal
w, w̄ represents its steady-state value, if it exists.
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2 System Model
In this chapter the modelling of the district heating network and all its parts is discussed.
Moreover, the social behaviour of the consumers is introduced and incorporated into state
space equations to make a set of equations for the whole system. At last in the problem
formulation the goal for the suggested controller and the unknown parameters are discussed.

2.1 Single pipe

A closed, water-based district heating system is considered, with multiple heat producers
and consumers interconnected through a common meshed distribution network as showed
in Figure 1. The system would realistically include storage tanks. These tanks store the
generated heat when the production is higher than the demand, and release the heat when
the demand is higher than the production. However, for simplification matters the prediction
model will not include storage tanks. The consumers and producers are modelled with basic
hydraulic devices as valves, pipes and pumps, as in (Machado et al., 2020). The thermal
physical dynamics of the producers and consumers are modeled with a simple heat exchanger
between the distribution network and network in the building of the producer or house of
the consumer according to (Grassi et al., 2021). This is shown in Figure 2.

Figure 2: Heat exchangers of producers and consumers
(Machado et al., 2021),(Scholten et al., 2015),()

In order to model the heat exchanger, first the model of one single pipe is created, as
shown in Figure 3 with its parameters explained in Table 2. This is modeled with a basic
heat equation (1), according to (Nielsen and Madsen, 2006). This equation describes the
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heat exchanger as a regular pipe, with the heat going into the pipe as power in, and the heat
going out of the pipe as power out. The heat stored, or rather exchanged to another network,
is the difference between the heat going in to the pipe and the heat going out of the pipe.

Figure 3: Single pipe

d(Heat stored)
dt

= ΣPower in− ΣPower out (1)

The stored heat per mass unit can be described by cw T M , where cw is the specific heat
of water, T is the temperature of water and M the mass of water. When substituting this in
equation (1), equation (2) is determined.

d

dt
(McwT ) = ρwqincwTin − ρwqoutcwTout (2)

Table 2: Parameters of single pipe

Symbol Description Unit
qin Flow into the pipe m3

s

qout Flow out of the pipe m3

s

q Flow in the pipe m3

s

Tin Temperature of the water going into the pipe C°
Tout Temperature of the water going out of the pipe C°
T Temperature of the water in stored C°
M Mass kg
cw Specific heat of water J

kgC°
ρw The density of water kg

m3
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2.2 Heat Exchanger

In order to model the heat exchanger between the distribution network and the consumer
network, the heat conduction between two pipes should be modeled. This is schematically
visualised in Figure 4 and with is parameters explained in Table 3. The dashed line repre-
sents the wall where heat conduction takes place between the two flows of the distribution
network and the consumer network. qhs and Ths, represent the flow of the hot stream and the
temperature of the hot stream accordingly. At the consumer side, qcs and Tcs represent the
flow of the cold stream and the temperature of the cold stream accordingly. The distribution
network is the side with the hot water and the consumer network the side with the cold
water. In the heat exchanger at the distribution side, a temperature of water flows in with
T in
hs and a temperature of water flows out as T out

hs , with T in
hs > T out

hs . At the consumer side a
temperature of water flows in with T in

cs and a temperature of water flows out as T out
cs , with

T out
cs > T in

cs .

Figure 4: Heat exchanger

Table 3: Parameters heat exchanger

Symbol Description Unit
qhs Flow in the hot stream m3

s

qcs Flow in the cold stream m3

s

Ths Temperature in the hot stream C°
Tcs Temperature in the cold stream C°
Vhs Volume hot stream side m3

Vcs Volume cold stream side m3

T in
hs or T out

hs Temperature of the hot stream going into or out of the heat exchanger C°
T in
cs or T out

cs Temperature of the cold stream going into or out of the heat exchanger C°
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In Figure 5, a heat exchanger is visualized up close with its parameters explained in Table
3. In this figure the cold stream is regarded as the consumer network, which gains heat when
flowing through the heat exchanger. The hot stream is regarded as the distribution network,
which loses heat when flowing through the heat exchanger. Important to notice is that the
volume of at both sides of the heat exchanger remains the same level, so that: V in

hs = V out
hs ,

V in
cs = V out

cs . Out of which can be concluded that there is a volume for the cold stream Vcs

and a volume for the hot stream Vhs.

Figure 5: Heat exchanger zoomed in (van der Schaft and
Jeltsema, 2020)

Modelling the equation for the heat exchanger, a start is made with the conservation
of mass. Setting up two equation, one for the cold stream and one for the hot stream.
Represented by equation (3) and equation (4) accordingly.

dMcs

dt
= ρw(q

in
cs − qoutcs ) (3)

dMhs

dt
= ρw(q

in
hs − qouths ) (4)

M is the mass of water, which can be calculated by multiplying the density of water ρw
with the volume V . Since the volume is constant, as well as the density of water, due to the
flow being incompressible, it can stated that: qinhs = qouths = qhs q

in
cs = qoutcs = qcs q is calculated

by the density ρ multiplied with the the flow rate q the following equation can be obtained,
in which ρ is equalised out.

qhs = qouths = qinhs (5)

qcs = qoutcs = qincs (6)

Using these principles, the change in mass inside of the heat exchanger can be stated by
the flow qhs multiplied by the density of water ρw. The change of mass consists out of the
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density of water ρw and the volume V . For the hot stream and the cold stream the following
equations are provided:

ρw Vhs = ρw qhs (7)

ρw Vcs = ρw qcs (8)

Furthermore, introducing the heat of the flow by stating the conservation of energy and
setting up two equations. One for the cold stream and one for the hot stream, represented
by equation (9) and equation (10) accordingly.

dρw cw M Tcs

dt
= ρw cwq

in
cs T

in
cs − ρw cw qoutcs T out

cs − UAh

ρw cw
(Ths − Tcs) (9)

dρw cw M Ths

dt
= ρw cw qinhsT

in
hs − ρw cw qouths T

out
hs − UAh

ρw cw
(Tcs − Ths) (10)

In these equation cw is the specific heat of water and T the temperature. Multiplying
these variables results in the heat gain or loss. The fraction and the difference in temperature
models the heat conduction through the conduction wall. ρw is the density of water, this
can be crossed out since it is in every part of the equation. In the fraction, Ah is the area
were conduction takes place and lastly the heat conduction rate U . This equation can be
simplified by stating that all of the parameters of the fraction are constant. Therefore the
constant λ is introduced. This simplification results in the following equations for the cold
and hot stream:

d cw Tcs

dt
= cw(T

in
cs − T out

cs )− λ(Ths − Tcs) (11)

d cw Ths

dt
= cw(T

in
hs − T out

hs )− λ(Tcs − Ths) (12)

Substitution the equations of the flow equation (7) and equation (8) into the heat equa-
tions of the cold stream and hot stream formulates the following two equations for the cold
and hot stream:

ρw cw VcsṪcs = qcs(T
in
cs − T out

cs )− λ(Ths − Tcs) (13)

ρw cw VhsṪhs = qhs(T
in
hs − T out

hs )− λ(Tcs − Ths) (14)
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2.3 Producer

For the control system of the producer, equation (15) is taken from Scholten et al. (2015):

P =
U Ah

cw ρw
(Tcs − Ths) (15)

In this equation P represents the heat transfer rate, which is a manipulable power injection
from the hot stream towards the cold stream. cw the specific heat of water, ρw as the density
of water and U the heat conduction. The temperatures of the producers or consumers are
represented here by Te and the temperature of the network by T. Substituting the power into
the conduction equation for the heat exchanger x, gives equation (16).

ρw cw VxṪx = qx(T
in
x − T out

x ) + Px (16)

2.4 Consumer

For the consumer, a contribution is made by modelling a network with a room, radiator and
ambient temperature. This is schematically visualised in Figure 6, according to Grassi et al.
(2021), with its parameters explained in Table 4. For the variables presented in Figure 6,
Tamb is the ambient temperature and is viewed as a constant in the system. This due to the
control system having a faster response compared to a change in the ambient temperature.
Moreover, the radiator is modeled by the temperature of the radiator Trad and the volume of
the radiator Vrad. The flow within this network is constant, and since no heat loss is set in
the pipe network, the temperature is the same: T out

cs = T in
cs,rad and T in

cs = T out
cs,rad.

Figure 6: Heat network consumer
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It should be noticed that, for simplifying the mathematical calculations, the house is de-
fined as one room, with the temperature of the room Troom and the volume of the radiator
Vroom. Therefore, there is not heat transfer within the room. Besides this simplification, both
the structure of the model as well as the qualitative properties for consumers are the same.

Table 4: Parameters heat network consumer

Symbol Description Unit
qincs or qoutcs Flow into or out of the radiator m3

s

T in
cs or T out

cs Temperature into or out of the radiator C°
Tamb The ambient temperature C°
Trad Temperature in the radiator C°
Troom Temperature in the room C°
Vrad Volume of water within the radiator m

Vroom Volume of air within the room m3

In order to write the equation for the radiator, the conservation of mass and heat are
used. Note however a crucial difference compared to the heat exhanger; the room is filled
with air instead of a fluid. This changes the density and the specific heat, since this is differs
for air and water. Therefore, the density and the specific heat can not be crossed out:

ρw cw VradṪrad = ρw cw qcs(T
out
cs − T in

cs )− λ2(Troom − Trad) (17)

In equation (17), ρw is the density of water and cw the specific heat of water. Important
to state is that λ2 is here a different constant since the area A and the heat conduction U ,
are different in this radiator, in comparison to the heat exchanger. Regarding the room, it
is important to take into account that the room actually has four walls. This is visualised in
Figure 7, with its paramters explained in Table 4.
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Figure 7: Room from above

In order to model the equation for the room, first the heat gain by the radiator is taken
from equation (17). Then, the heat loss from the conduction with the ambient temperature
has to be added. Combining these two additions, the heat control system for the room has
been formed:

ρa ca VroomṪroom = λ2(Trad − Troom)− λ3(Tamb − Troom) (18)

In this equation, ρa is the density of air and ca the specific heat of air. λ3 is different in
comparison with λ2, due to the different areas of the the four walls. To sum up all equations
of the heat exchanger streams, the radiator and the room the following four equations are
stated:

ρw cw VcsṪcs = ρw cw qcs(T
in
cs − T out

cs )− λ1(Ths − Tcs) (19)

ρw cw VhsṪhs = ρw cw qhs(T
in
hs − T out

hs )− λ1(Tcs − Ths) (20)

ρw cw VradṪrad = ρw cw qcs(T
out
cs − T in

cs )− λ2(Troom − Trad) (21)

ρa ca VroomṪroom = λ2(Trad − Troom)− λ3(Tamb − Troom) (22)

It can be concluded from these equations that the heat a consumer uses from the distri-
bution network is stated by λ1(Tcs − Ths), which is from the distribution network side it’s
heat loss. Therefore in steady state the following equation (23) is stated:

λ1(Tcs − Ths) = λ3(Tamb − Troom) (23)
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2.5 Distribution Network Control System

The distribution network exists out of nodes and pipes. In Figure 8, a node is shown at the
left and a pipe at the right. The water flows in the pipe from the source node i, to the target
node j. In the node of Figure 8, the variables volume Vnode,i and a temperature Tnode,i are
present. In the pipe, a flow qpipe,i, a volume Vpipe,i and a temperature Tpipe,i are present. Due
to the water flowing from i to j, the parameters are taken from the source node.

Figure 8: Junctions and pipe (Machado et al., 2020)

Table 5: Parameters junction and pipe

Symbol Description Unit
qpipe,i Flow in the pipe i m3

s

Tpipe,i Temperature in the pipe i C°
Vpipe,i Volume in the pipe i m3

Tnode,i Temperature in the node i C°
Vnode, i Volume in the node i m3

It is assumed that in pipe i the variation of temperature is uniform. Therefore, the
temperature at target node j is equal to the temperature in the middle of the pipe: Tpipe =
Tpipe,j. Using the same mass and heat balances as for the consumer, results in equation (24).

ρw cw Ṫpipe,i = ρw cw qpipe,i(Tnode,i − Tpipe,i) (24)

In order to model the control system of the distribution network, the following equation
(25) can be taken from (Machado et al., 2020). The only difference is that the ρ and cw are
not canceled out. This equation makes it possible to calculate power balance (the volume
and temperature) at every node. In this equation, kג is the set of edges whose streams target
to node k ϵ N . According to (Machado et al., 2020): Vnode,i = 0, due to the very small volume
at junctions in comparison to pipelines. As a consequence, the right side of the equation can
be set to zero. This is represented in equation (26).
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ρw cw Vnode,i Ṫnode,i =
∑
s ϵ kג

ρw cw qnode,jTnode,j −

(∑
s ϵ kג

ρw cw qnode,i

)
Tnode,i (25)

0 =
∑
s ϵ kג

ρw cw qnode,jTnode,j −

(∑
s ϵ kג

ρw cw qnode,i

)
Tnode,i (26)

2.6 Overall district heating network

To model the overall district heating network, graph theory is used. In order to explain this
an example is made. In this example, N is set as nodes and e as edges between the nodes,
with e1 and e2 as producers, e3 and e4 as consumers and the other edges as distribution pipes.
The total graph exists out of all nodes connected by edges. The modelling is preformed for
Figure 9a, a graph with 8 nodes, 10 edges and the flows in these edges indicated by the purple
lines. For simplicity the graph remains small, two producers and two consumers and pipes
and valves are not included. For the flows, it is important to node that no flow dynamics are
considered. This means that in the system no pressure losses are considered. However, to be
able to describe all the flow directions, mass conservation dictates that some flows must be
linearly dependent with respect to other flows.

(a) Graph district heating network (b) Spanning tree

Figure 9: Graphs of the DH network

The first step to identify the minimum set of independent flows is to identify the set of
chords in the graph (Machado et al., 2020). This set of chords exists out of edges that needs
to be removed in order to end up with a reduced graph. This reduced graph contains the
same nodes as the original, but does not have any loops. The reduced graph, without the
chords, is called a spanning tree of the original graph. This spanning tree may not be unique
(Hillier and Lieberman, 2006), and therefore different sets of chords can exist.
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To create the spanning tree the chords are selected as followed: all the consumer pipes
are chords and all but one producer are chords. This is caused by the fact that all flows in
the chords are viewed as control inputs. As result all the consumer flows have to be control
inputs. This leads to one of the producer edges not being a chord. Moreover, it is impor-
tant to note that it is assumed for simplification, that their are no loops in the cold or hot
layer of the graph. Therefore, e3, e4 and e2 are selected as chords, with each flow viewed
as a control input. This way the spanning tree results in Figure 9b. When adding back one
of the named chords, a loop arises immediately. These loops are called fundamental loops, L.

To write this fundamental loops in a matrix, use is made of the following, e+j and e−j . e+j is
given when the flow in the edge is in agreement with the orientation of the flow of the added
back in chord and e−j is given when the flow in the edge is in disagreement with the orientation
of the flow of the added back in chord. Having three chords gives three fundamental loops,
stated as followed:

Le,2 = {e+2 , e+7 , e−6 , e−5 , e−1 , e−8 , e−9 , e+10}

Le,3 = {e+3 , e+8 , e+1 , e+5 }

Le,4 = {e+4 , e+9 , e+8 , e+1 , e+3 , e+6 }

The fundamental loop matrix, denoted by F ∈ Rnch×ne is identified by the fundamental
loops. In this matrix, nch is the number of chords and ne is the number of edges in the
original graph. To create this matrix F , denoted by Machado et al. (2020) the identification
of the fundamental loop matrix Fij is created.

Fij =


1 if edge ej is in Le,i and orientations agree,

−1 if edge ej is in Le,i and orientations disagree,

0 if edge j is not in Le,i.

F =


e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

Le,2 −1 1 0 0 −1 −1 1 −1 −1 1

Le,3 1 0 1 0 1 0 0 1 0 0

Le,4 1 0 0 1 1 1 0 1 1 0


The use of this fundamental loop matrix F is to identify the flow rate of all the edges

in the graph with qch ∈ Rnch (Machado et al., 2020). The conservation of flows from the
Kirchhoff’s laws resulting in equation (27). In this equation, qe are all the flows through all
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the edges qe = {qe,1, qe,2, . . . , qe,ne} ∈ Rnch , F T is the fundamental loop matrix and qch is the
flow through the chords.

qe = F⊤qch (27)

To sum up, the following node-edge incidence matrix is introduced with B0,ij as the
following and the incidence matrix concluding out of it.

B0,ij =


1 if edge ej targets node i,

−1 if edge ej originates from node i,

0 otherwise.

B0 =



e1 e2 e3 e4 e5 e6 e7 e8 e9 e10

N1 1 0 0 0 −1 0 0 0 0 0

N2 0 0 −1 0 1 −1 0 0 0 0

N3 0 0 0 −1 0 1 1 0 0 0

N4 0 1 0 0 0 0 −1 0 0 0

N5 −1 0 0 0 0 0 0 1 0 0

N6 0 0 1 0 0 0 0 −1 1 0

N7 0 0 0 1 0 0 0 0 −1 −1

N8 0 −1 0 0 0 0 0 0 0 1


To be able to link the thermal interaction to this graph network, a correction must be

made regarding the flows, since the temperatures are related to the flow direction in the
edges. In the graph in Figure 9a, the flows of e6 and e9 can differ when one of the producers
produces more heat. In order to correct the flows in the graph system when this situation
occurs, the matrix B0 is corrected by creating the matrix B.

B = B0 · diag
(
sign

(
q⊤e
))

(28)

When combining this graph theory with the equations 31, 21 from section 2.5, a set of all
the differential equations can be written in matrix form, according to (Machado et al., 2020).

[
diag(Ve) 0

0 diag(VN)

][
Ṫe

ṪN

]
=

[
−diag(|qe|) diag(|qe|)S⊤

T diag(|qe|) −diag(T |qe|)

][
Te

TN

]
+BprPpr −BcPc

In this matrix form, Bpr and Bc are properly sized coefficient matrices. Moreover, T
represents all edges of the target node and S represents all the edges of the origin of the flow.
They can be identified by the following equation:

T =
1

2
(B + |B|) , S =

1

2
|B − |B|| .
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2.7 Heating comfort regarding social behaviour

In the work of Feng et al. (2020), an approach is provided to write the social behaviour
of consumers for power systems. This approach is used in this thesis to write the social
behaviour of consumers for district heating. In order to use the method provided Feng et al.
(2020), it is first analysed. Therefore, first a degree of fulfillment of the desired load is stated.
This variable lies within 0 ≤ zs ≤ 1. With zs being closer to 0 when the consumer is more
climate consciously. The value of zs can be multiplied with the load of the consumer. For
example a consumer has a desired load of 100. However, his social behaviour affects him to
consume less heat because this creates pollution. Therefore, his zs is 0.7 giving his total load
as 100 ∗ 0.7 = 70. The change of zs can be calculated with the following equation:

żs = ai(ps − zs − hsss) (29)

In this equation, ss is the financial incentives, for example a lower energy bill for the
consumer when he uses less energy. hs is the degree of influence of the financial incentives.
This can be indicated by egoistic values, stating that a more egoistic consumer has a higher
value of hs, where 0 ≤ hs ≤ 1. This concludes that a more egoistic person is more affected
by financial incentives. The values of ss can variate between 0 ≤ ss ≤ ps

hs
. The limit for ss

prevents the financial incentives at steady state to be unrealistically high. Lastly the whole
right side is multiplied by ai. This indicates the time constant of the behaviour. In this
equation, pi are the personal norms of the consumer. These norms can have values between
0 ≤ ps ≤ 1. The change of these personal norms are calculated with the use of egoistic
and biospheric values, according equation (30). In this thesis the approach from Namazkhan
et al. (2019) is used for acquiring the pegos and pbios with the use of questionnaires and surveys.
These values are multiplied by ci and di for the egoistic and bishopric values respectively.
These values are take such that ci ≥ 0 and di ≥ 0 with ci + di > 0. This indicates that a
very large value for ci makes the consumer strongly dependent on the egoistic values, and
vice versa.

ṗi = (cip
ego
i + dip

bio
i )/(ci + di) (30)

As stated in (Feng et al., 2020), the social behaviour zs influences the load desired by the
consumer. In this thesis the desired load of the consumer has a certain range, in which the
consumer still thinks that the temperature is comfortable. This range is set as the following:
Tmin
room ≤ T ideal

room ≤ Tmax
room. In the center the most ideal temperature is represented. The Tmin

room

and Tmax
room represents the border temperature in which the consumer is still comfortable. The

border temperatures, min and max will be received by surveys or questionnaires (Namazkhan
et al., 2019).
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2.8 Incorporating the social behaviour

In order to be able to incorporate the social behaviour into the thermal physical system, some
assumptions and simplifications need to be made. First of all the thermal physical system
of the consumer needs to be presented as a producer. This will simplify the incorporation of
the social behaviour, since equation (31) of the cold stream can be taken.

ρw cw VhsṪhs = ρw cw qhs(T
in
hs − T out

hs )− λ1(Tcs − Ths) (31)

In this equation, the change in temperature is the flow multiplied with the temperature
difference between the incoming water and the outgoing water, minus the heat conduction.
Secondly, this section elaborates on an assumption is made regarding the controller. More-
over, a range is stated in which the consumer still finds the temperature in the room as
comfortable. Afterwards, the social behaviour can be incorporated

In Sleptsov et al. (2021), simulations of the control system are performed with a time step
of 1 minute. As a result the control system runs every one minute. Since this is very fast the
control signal in Sleptsov et al. (2021) is maintained constant. In Guelpa et al. (2019a) a time
step of 10 minutes is used. When the proportional integral controller suggested in the system
model has such a small time step, it is sufficiently fast to assume that some information
inputs to the controller are constant. For the suggested design of the proportional integral
controller in this thesis, two information inputs can be set constant. The first information
input is the flow of the cold stream in the system of the consumer, qcs. qcs has been set as
a control input in the system model. Since the proportional integral controller is sufficiently
fast, the following can be stated regarding the flow of the cold stream:

qcs = qnew,cs
d

dt
(32)

The second information input is the temperature of the room. The temperature of the
room is set the same as the temperature of the room desired, Troom= T desired

room , since the
proportional integral controller is sufficiently fast. Implementing this to the steady state
equation gives the following:

λ1(Tcs − Ths) = λ3(Tamb − T desired
room ) (33)

Substituting this into equation (31) gives the following equation, which combines all the
thermal physical dynamics of the consumer:

ρw cw VcsṪcs = ρw cw qcs(T
in
cs − T out

cs )− λ3(Tamb − T desired
room ) (34)
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In section 2.7 it is stated that the social behaviour influences the range the consumer
finds temperature the room comfortable. This range was defined as the following: Tmin

room ≤
T ideal
room ≤ Tmax

room.The social behaviour zs can be defined according to section 2.7 in the following
equation, with 0 ≤ zs ≤ 1:

zs =

1 consumer max comfort

0 consumer min comfort
(35)

In order to link the social behaviour to the range of comfortable temperature of the
consumer, an interpolating linear function is used. This method is used to define a straight
line between the two points. In Figure 10, an example of this method is shown, two vectors
a and b have a straight line between them with the red x as the centre of this line. x can be
found by the following equation: x = tb + (1− t)a with t as 0 ≤ t ≤ 1.

Figure 10: Interpolating linear function

Using equation (36) for combining of the comfortable temperature of the consumer and
the social behaviour. When substituting zs = 0, implying that the consumer desires minimum
comfort, the result will be Tmin

room. Furthermore, when zs = 1, implying that the consumer
desires maximum comfort the result will be Tmax

room.

T desired
room = zsT

max
room + (1− zs)T

min
room (36)

Substituting this equation into equation (31) and simplifying it further gives the following
equation of the thermal physical dynamics of the consumer with the social behaviour included:

ρw cw VcsṪcs = ρw cw qcs(T
in
cs − T out

cs )− λ3(Tamb − Tmin
room) + λ3zs(T

min
room − Tmax

room) (37)
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2.9 State Space Equations

In order to model the equation of the combined model of the district heating network, a
state space equation is used, combing two ordinary differential equations. The state space
description is defined in the standard form, which has been used in (Bäumelt and Dostál,
2020, Nielsen and Madsen, 2006, Kim et al., 2019).

Ẋ = Ax(t) +Bu(t) (38)

Y = Cu(t) +Du(t) (39)

equation (38) represents a continuous time system and equation (39) a district time ob-
servation. Y is a vector of the measurement input. According to Bäumelt and Dostál (2020),
the longer the time step for Y , the more complex the equation becomes. The time-varying
parameter used in this state space equation is the outdoor temperature. Although multiple
other parameters are used in Bäumelt and Dostál (2020) and Nielsen and Madsen (2006),
this research only accounts the outdoor temperature since Dotzauer (2002) stated that this,
together with the social behaviour, will give an accurate prediction.

In order to state the total open loop system of the social system and the thermal physical
system in these state space equations, first all the important equations are stated.

ρw cw VcsṪcs = ρw cw qcs(T
in
cs − T out

cs )− λ3(Tamb − Tmin
room) + λ3zs(T

min
room − Tmax

room) (Consumer)

ρw cw VxṪx = qx(T
in
x − T out

x )− Px (Producer)

ρw cw Ṫpipe,i = ρw cw qpipe,i(Tnode,i − Tpipe,i) (Pipe)

0 =
∑
s ϵ kג

ρw cw qnode,jTnode,j −

(∑
s ϵ kג

ρw cw qnode,i

)
Tnode,i (Node)

żs = ai(ps − z − s− hsss) (Social Component)

ṗs = ci(p
ego
s − ps) + di(p

bio
s − ps) (Personal Norms)

Important to state is that the social component is different for every consumer. Moreover,
it is stated in Feng et al. (2020) that the social behaviour of consumer is influenced by other
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consumers. In this research, influence by consumers on consumers is disregarded due to sim-
plification of the system. In order to incorporate these equations into state space equations,
sets of different parameters are made. Stating that all the temperatures are represented by
T = (Tproducer, Tconsumer, Tpipes), where Tconsumer includes the temperature of the radiator,
cold stream and ambient. In addition Ṫ is the overall change in temperature.

All the flows in the system are included in the vector q and the prior discussed three
lambda’s are included in the set λ. The volumes of the model are represented by the matrix
Vx. The producer is included by the power it produces from equation (17) and damb is an
appropriate constant vector that codifies outdoor temperature. The matrices, A and B and
the vector d will depend on the topology of the system. The social equations are taken from
Feng et al. (2020). Combing these terms into one state space equation gives the following
tree equations:

VxẊ = A(q, λ)(X) +B Pp +D(z)T desired
room + damb (40)

ż = ai(ps − zs − hsss) (41)

ṗ = ci(p
ego
i − pi) + di(p

bio
i − pi) (42)
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2.10 Problem formulation

This thesis is concerned with the main objective of combining the thermal physical dynamics
with the behaviour of the consumers to a prediction of their short term heat demand. To
achieve this, the load of the consumers should get regulated to the point where the temper-
ature in the room is equal to the desired temperature of the consumer:

lim
t→∞

Troom = T desired
room

This desired temperature can be regulated through the flows of the consumers. Therefore,
the flow is designed such that the consumers achieve their desired temperature. In section
2.8, the social behaviour of the consumer is incorporated into the the thermal physical dy-
namics, which is already a contribution to the existing knowledge.

In order to test this result a numerical case study is made. To run the simulation of
the case study, a controller needs to be suggested with the goal to get the consumers the
temperatures they desire. Moreover, all the unknowns from the state space equations need
to be identified. This is stated as a secondary objective. The main and secondary objective
both provide a contribution to heat demand prediction.

The case study exists of two producers and two consumers. The number of producers
and consumer system is small and therefore simplifies the simulations. However, the same
approach can be used for larger numbers of producers and consumers. In the next chapter,
Chapter 3, the case study will be explained.
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3 Setup Simulations
In this chapter the setup of the simulations for the case study is discussed. In the first sub-
section the unknown parameters are identified. The second subsection explains the taken
distribution grid for the simulations and all it’s thermal dynamics. In the following subsec-
tions the controller used in the simulations is explained.

3.1 Identification of the Unknowns

In this thesis multiple variables are used for modelling the thermal physical system and the
social behaviour of the consumer. In order to let the model work for practical systems and
make a case study to validate this, all these variables which are currently unknown must be
identified. It is however important to note that the control system will run without knowl-
edge of these unknowns. However, its prediction will not be that precise.

Regarding state space equations, the thermal physical system has the following unknowns
stated: λ3 and the desired temperature. However, this is affected by the social behaviour
as discussed in section 2.7. λ3 is the heat conduction between the temperature of the room
Troom and the outside temperature Tamb. This value can be identified according to the study
done in Nielsen and Madsen (2006), which identifies the heat dynamics of buildings using
stochastic differential equations.

The steps taken in Nielsen and Madsen (2006), can be explained using an example, with
the state variable Ẋ = ax. In this example, a is the unknown that needs to be identified.
This is done by looking at the measurements taken. In this thesis these measurements are
preformed by temperature gauges and flow gauges, measuring the ambient, room, radiator,
nodes and edges. In order to identify the a Nielsen and Madsen (2006) puts all his mea-
surements in a graph, visualised by Figure 11a. Then, to identify a, a line is drawn which
connects all the measurement points as accurately as possible, as can be seen in Figure 11b.
By using this approach on every consumer, λ3 can be identified for every house of the con-
sumer.

For this simulation, a representative value from Pinto (2016) is taken. In this paper Pinto
did a research to typical buildings in Groningen and their conductivity. This study stated
that most of the buildings in Groningen are high rise buildings. Therefore, it is assumed
in this thesis that a high rise building has two walls which face the outside, with each wall
having a width of 5 meters and a height of 3 meters. This makes the total surface area of
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(a) Measurement points (b) Line to give a

Figure 11: Example graphs

the wall facing the outside 30 m2. In his paper, Pinto (2016) states values for the different
materials and their conductivity in the exterior wall. This value is the heat transfer rate U

in W/m2K. To combine all these materials into one value for the whole wall, the follow-
ing sum is made: ( 1

8.8
+ 1

6.7
+ 1

18.3
)−1 = 3.14W/m2K. This value is then used to calculate

the conductivity of the wall by multiplying it with the total area of 30 m2. This gives:
3.14W/m2K ∗ 30m2 = 94, 2W/K, which is the value for λ3.

Regarding state space equations, the social behaviour has the following unknowns pegos

and pbios . To identify these unknowns the work of Namazkhan et al. (2019) is used. In this
study it is identified, that the values of social behaviour which affect the settings of the room
temperature. By using this study, the social behaviour of every consumer can be identified
using surveys and questionnaires. On a scale of -1 till 7, Namazkhan et al. (2019) found a
median value for pegos and pbios , 1.94 and 5.17 respectively. In this thesis a scale of 0 till 1 is
used. Calculating the values for the scale of this thesis gives 0.37 and 0.77 respectively.
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3.2 Numerical case study

In order to test the system model suggested in this thesis, a numerical simulation is carried
out. The simulation exists of a district heating system which contains two heat producers
(npr = 2) and two consumers (nc = 2), that are interconnected by a meshed distribution grid.
The distribution grid does not contain any pumps or valves to simplify the system. Figure
12 illustrates the grid for the numerical simulation.

Figure 12: Distribution grid

In Figure 12, the blue lines indicate the cold stream pipes and the red lines indicate the
hot stream pipes. Almost all of the directions of the flows can be identified, since the heated
water flows from the producers to the consumers. When the heated water is used by the
consumer, the cold water flows back to the producer. However, the flow at qd2 and qd4 can
not directly be identified. These flows can stream both ways, depending on the flows in the
producers and the consumers. When producer two produces more heat than producer one
and both consumers desire an equal amount of heat, the flows in qd2 are positive since it flows
from note c to point b. For this example, the flow of qd4 is negative, from node b’ to node c’,
since producers two needs a faster stream of cold water to maintain its higher production.

According to the system model qch is set as independent variables qch = [ qc1, qc2, ppr2]
= [qe3, qe2, qe4]. Hence, qpr1 = qe1 is linearly dependent on them. Therefore, the following
equation can be set:

qpr1 = qc1 + qc2 − qpr2 (43)
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equation (43) makes the combined flows of the producers equal to the combined flow of
the consumers. Moreover, the nominal operation conditions should maintain qpr1 ≥ 0. With
the use of mass balances the following equations of the flow at each node are defined:

qpr1 = qd1 (Note a)

qd1 + qd2 = qc1 (Note b)

qd3 = qd2 + qc2 (Note c)

qpr2 = qd3 (Note d)

qpr1 = qd4 (Note a’)

qc1 = qd5 + qd4 (Note b’)

qc2 + qd5 = qd6 (Note c’)

qpr2 = qd6 (Note d’)

Note here that the temperatures at the nodes in the distribution grid are stated according
to node a with temperature Ta. The temperature dynamics of the system can now be identi-
fied. Since qc1, qc2 and ppr2 are the independent variables, all of the flows in the temperature
dynamics should be stated in these three flows, using the equations of the flows in the nodes
above. This gives the following equations:

0 =(qc1 + qc2 − qpr2)Tpr1 − (qc1 + qc2 − qpr2)Ta (Node a)

0 =(qc1 + qc2 − qpr2)Tpr1 + (qc2 − qpr2)Tb − qc1Tc1 (Node b)

0 =(qc2 − qpr2)Tb + qc2Tc2 − qpr2Tpr2 (Node c)

0 =qpr2Tpr2 − qpr2Td (Node d)

0 =(qc1 + qc2 − qpr2)Tpr1 − (qc1 + qc2 − qpr2)Ta′ (Node a’)

0 =qc1Tc1 − (qc2 − qpr2)Tb′ − (qc1 + qc2 − qpr2)Ta′ (Node b’)

0 =qc2Tc2 + (qc2 − qpr2)Tb′ − qpr2Tpr2 (Node c’)

0 =qpr2Tpr2 − qpr2Tc′ (Node d’)

Vpr1Ṫpr1 = (qc1 + qc2 − qpr2)(Tpr1,in − Tpr1,out) + Ppr1 (Producer 1)

Vpr2Ṫpr2 = qpr2(Tpr2,in − Tpr2,out) + Ppr2 (Producer 2)
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ρw cw Vc1Ṫc1 = ρw cw qc1(T
in
c1 − T out

c1 )− λ3,c1(Tc1,amb − Tmin
c1,room)

+ λ3,c1 zs,c1(T
min
c1,room − Tmax

c1,room) (Consumer 1)

ρw cw Vc2Ṫc2 = ρw cw qc2(T
in
c2 − T out

c2 )− λ3,c2(Tc2,amb − Tmin
c2,room)

+ λ3,c2 zs,c2(T
min
c2,room − Tmax

c2,room) (Consumer 2)

vd1Ṫd1 =(qc1 + qc2 − qpr2)(T
in
d1 − T out

d1 ) (Pipe 1)

Vd2Ṫd2 =(qc2 − qpr2)(T
in
d2 − T out

d2 ) (Pipe 2)

Vd3Ṫd3 =qpr2(T
in
d3 − T out

d3 ) (Pipe 3)

Vd4Ṫd4 =(qc1 + qc2 − qpr2)(T
in
d4 − T out

d4 ) (Pipe 4)

Vd5Ṫd5 =(qc2 − qpr2)(T
in
d5 − T out

d5 ) (Pipe 5)

Vd6Ṫd6 =qpr2(T
in
d6 − T out

d5 ) (Pipe 6)

Important to note is that the temperatures in the pipe is equal to the node the water is
flowing from, since no heat is lost within the pipes and nodes. However, for pipe 2 and pipe
4 this will depend on the flow direction. When the flow is negative or positive, the in and
out direction changes, together with the node the temperature will come from.

3.3 Controlling the Flow

This section looks into a controller for the flow. Since the numerical case study only has one of
the producers flow as independent variable, the controller can be simplified to a proportional
integral controller. This controller is used for controlling the network of the consumer and
satisfy the desired temperature of the consumer. Since this thesis does not include a stability
analysis, no real controller is designed, but a rational suggestion is introduced and used for
the numerical simulations. The goal of the controller is to get the temperature of the room
of the consumer close or the same as its desired temperature at all times:

lim
t→∞

Troom = T desired
room (44)

In order to achieve this goal, some control laws need to be suggested. These control laws
can then all be added to have an overall controller. A list of the desired variables is made
who need to be controlled in order to carry our the numerical simulations.
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• Controlling the flow of the consumers

• Controlling the flow of the producers

• Including the variables for the social behaviour

• Controlling the power of the producers

• Controlling the power of the consumers

• Adding the control system matrix of the distribution graph network

To start with the flow of the consumers, first some assumptions need to be made. Re-
garding the temperature of the consumer it is stated that the inlet temperature T in

c is always
larger than the outlet temperature of the consumer T out

c . Both of these temperatures can
be decided by the consumer. In view of these assumptions, an auxiliary input variable wc

can be introduced for the consumer in equation (45) and can be substituted in the overall
equation of the consumer, from the state space equations. The result of this substitution is
than visualized in equation (46).

qc =
wc

T ∗
pr − T out

c

(45)

ρw cw VcṪc = wc − λ3(Tamb − Tmin
room) + λ3zs(T

min
room − Tmax

room) (46)

As can be seen, one adjustment is made, T in
c is changed to T ∗

pr. This reduces the number
of sensors in the controller, and simplifies the overall system. This replacement can be made
with the assumption that no heat is lost in the distribution network. To explain why the
neglecting of heat loss in the distribution network leads to T in

c −→ T ∗
pr, Figure 13 is used.

Figure 13: Example grid

In this figure, it can be seen that the output of the producer P is equal to the input of
the consumer C, when no heat is lost in the pipes and nodes. To control equation (45) and
achieve the desired temperature, the following control law is proposed for wc:
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wc =− αc(Tc − T ∗
c ) + Zc (47)

Żc =− βc(Tc − T ∗
c ) (48)

However, a controller is desired with qc as variable, since this is the tool to provide
the consumers with their desired temperature. Therefore, according to equation (45) it is
substituted in equation (48).

qc =
1

Tc − T ∗
c

− αc(T
∗
pr − T out

c ) + zs (49)

Żc =− βc(Tc − T ∗
c ) (50)

The next step is to design a control law for qpr. This is done with inspiration from the
results in Cucuzzella et al. (2019) for the fair load sharing in electrical micro grids. In this
paper, a controller is suggested this is able to adjust the flows in the system. In the following
equations this controller is set according to Cucuzzella et al. (2019). In these equations, Jch
is a symmetrical positive definite matrix. For simplicity, Jch is taken as the identity matrix.
αch, βch, γch and dch are the tuning gains for the chords.

Jchq̇ch = −diag(α(qch − ϕch) + diag(dch,i)Lchθch (51a)

diag(βch)θ̇ = −Lchdiag(dch)qch (51b)

diag(γch) ˙ϕch = −ϕch + qch (51c)

In these equations, the matrix Lch represents the Laplacian matrix of any undirected,
connected communication graphs among devices whose flows are written in the vector qch.
The usage of Lch is based on Simpson-Porco (Sep 2016). This communication between the
cord flows, the two consumers and the second producer, is needed in order to let the consumers
and producers function in one network. The communication network is visualised in Figure
14.

The matrix Lch is defined by the communication lines between qch. This matrix is an
instrumental matrix determined by Lch = Ddegree - A. Ddegree is the degree matrix of 3x3,
that indicates the edges. A is the adjacency matrix, that indicates which nodes are connected.

Lch =


C1 C2 P2

1 2 −1 −1

2 −1 2 −1

3 −1 −1 2


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Figure 14: Communication graph

This instrumental matrix is useful since it has multiple fundamental properties which can
be used to come up with an equation regarding the power output of both producers and their
flows. The first property is that Laplacian matrices are symmetrical and positive, as can be
seen by the pattern in the instrumental matrix. Therefore Lch = LT

ch > 0. The next property
is the kernel of the Laplacian matrix. Specific matrix A has the following identity: When
multiplied with its kernel the indices of matrix A become 0, A*Ker(A) = 0. The kernal
for the laplacian matrix is stated as, Ker(Lch) = 1n. For which 1n a vector of 1’s with the
according dimension n. This indicates that the eigenvalue is equal to 0. Another property is
that Lch is a singular matrix. Therefore there is some vector, x for which x ̸= 0, that Lch x= 0.

In order to link the communication network to the flows, x is set as the chord flows qch.
This flow equilibrium of the independent producer is qch = α1n, for which α is some constant.
Since qch=[qpr2 qc2 qc1 ], the flow equilibrium of the independent producer qpr, can be set as
equal to the same constant multiplied with vector of 1’s with the according dimension n.
qpr2 = α1n. As a consequence, qpr2 = qc2 = qc1 .

In order to allow the equal distribution of the flows in the network between the indepen-
dent chords, a diagonal matrix Ddiagonal is added, in which Ddiagonal = [d1 d2 d3] and dn are all
diagonals for the independent chords. Therefore, Lch Ddiagonal qpr = 0. Out of this equation
it can be concluded that d1qc1 = d2qc2 = d3qpr2 , since the flows are all equal to α1n.

In conclusion, it can be assumed that d1 = 1
Pmax
c1

. Therefore the following equation can
be set up:

qc1
Pmax
c1

=
qc2

Pmax
c2

=
qpr2
Pmax
pr2

(52)

It is important to note that in equation (52) the power of the consumer is equal to the
power they subtracts from the network. In addition the power of the producer is the power
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they add to the network. Moreover, from equation (52) it can be concluded that when the
power for consumer one is larger in comparison to consumer two its flow will be larger as well.

In this thesis, the controller from Cucuzzella et al. (2019) is used to design a controller
for the case study carried out in this thesis. Therefore, qch is changed to Qpr since this is the
only independent variable. Moreover, Jch is replaced by Jpr, αch by α̂pr, Bpr by β̂pr, dch by
dpr, Lch by Lpr and γch by γpr.

JprQ̇pr =− diag(αpr)(Qpr −Q∗
pr) + Zpr (53a)

Żpr =− diag(βpr)(Qpr −Q∗
pr) (53b)

Here Jpr, αpr, βpr and Q∗
pr are all constant tuning parameters. Q∗

pr is the desired value
for the the flow.

3.4 Overall Controller

To conclude, the overall system dynamics in closed-loop graph network for the case study
with the proposed controllers is given by the equations below. In this group of equations,
the matrix ( 54), represents the distribution graph network, as explained in section 2.6. The
equations 55, 56, 57, 58 and 59 are the controller, as mentioned the section 3.3. Equations 58
and 59 are from the social variables. Which are set up in section 2.7 and made suitable for
the numerical case study of two consumer by adding a diagonal matrix. As stated in section
2.9, these equations are different for every consumer and therefore one equation is made per
consumer by the diagonal matrix.

Equations 62, 63 and 64 are the flows of the consumers qc, the power injected by the
producers Ppr and the power consumed by the consumers Pc. The flow of the consumer is
stated in section 3.3. For the power of the producers equation (16) is taken and adjusted
for both producers by the diagonal matrix. For the power consumption of the consumers
equation (37) is taken and made for both the consumers by the diagonal matrix. As previously
mentioned, no stability analysis is carried out in this thesis. However, it can be expected that
this proportional integral controller does function, since the system is simplified and based
on stable controllers from Cucuzzella et al. (2019), Machado et al. (2020), Feng et al. (2020).
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[
diag(Ve) 0

0 diag(VN)

][
Ṫe

ṪN

]
=

[
−diag(|qe|) diag(|qe|)S⊤

T diag(|qe|) −diag(T |qe|)

][
Te

TN

]
+ BprPpr − BcPc (54)

JprQ̇pr = −diag(α(Qpr − ϕpr) + diag(dpr)LprQpr (55)

diag(βpr)θ̇pr = Lprdiag(dpr)Qpr (56)

diag(γpr)ϕ̇pr = −γpr +Qpr (57)

diag(β̂pr)Żpr = −(T in
pr − T out

pr ) (58)

Żc = −diag(βc)(Tc − T ∗
c ) (59)

żs = diag(αs)(ps − zs − diag(hs)ss) (60)

ṗs = diag(cs)(p
ego
s − ps) + diag(ds)(p

bio
s − ps) (61)

qc = diag(T ∗
pr − T out

c )−1(−diag(αc)(Tc − T ∗
c ) + zs) (62)

Ppr = −diag(α̂p)(Tp − T ∗
p ) + Zpr (63)

Pc = diag(λc)(T
min
room − Tamb) + diag(λc)diag(zs)(T

max
room − Tmin

room) (64)

For Tpr the temperature of both the producers and for Tc the temperature of both the con-
sumers are put into matrix form. Recall that these temperatures can be calculated according
to equations 65.

Tpr = Bpr

[
Te

TN

]
Tc = Bc

[
Te

TN

]
(65)
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4 Simulations
In this chapter, the performance of the closed loop district heating system model, with the
suggested overall controller, is tested by numerical simulations. In the three subsections the
results from the three experiments are shown.

For these simulations the data and district heating network from Chapter 3 is used, with
two producers and two consumers and with the same topology as in Figure 12. The identified
unknown from section 3.1 is taken for the conductivity. In this thesis, three experiments are
carried out in MATLAB. The three corresponding codes are provided in the appendix, 7.2,
7.3, 7.4. The goal of these experiments are set as the following:

1. To see if the system goes to a steady state, even after disturbances are inserted.

2. To test the influence of the heat coefficient loss, λ.

3. To test the influence of the social variables.

In these experiments the ambient temperature develops according to a sine from 5°C at
00:00 hour to 10 degrees at 12:00 hour till 5°C at 24:00 hour. The density and specific heat
values are respectively ρw = 975 kg/m3 and cw = 4190 J/kg°C, similar to Machado et al.
(2020).

As stated in 3.3 a target for the temperature of the nodes is required, which is identified
by T ∗. The desired temperature of the nodes can be identified using the work of Machado
et al. (2020). There it is stated that the desired temperature of the nodes in the hot stream
is 85°C and 55°C in the cold stream. Important to note is that the consumer does not have
a temperature of 55°C in its radiator or room. The tuning gains for the controller are taken
as α̂pr=⟨1e4⟩ and β̂pr= 4∗Inpr

⟨α̂pr⟩−2 * ⟨npr, 1⟩ for the producers. For the consumers, αc = 100 ∗ α̂pr

and βc = 4∗Inc

⟨αc⟩−2 ∗ ⟨nc, 1⟩. This section was developed using trial-and-error procedure, which
had the aim to attain a fast equilibrium without much overshooting.

The coming sections provide a detailed explanation of the results of the three experiments,
which are shown in Figure 15, Figure 16, Figure 17 and for experiment 2 some more figures
are provided in Appendix 7.2.
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4.1 Experiment 1, steady state test

In the plot of the first experiment, (Figure 15), the power subtracted by the two consumers
over the time span of a week, an oscillation can be viewed. This is because of the setting
of the ambient temperature which changes during day. During the night, the consumer
is subtracting more heat from the network, in order to maintain its desired temperature.
Important to note is that in this simulation the consumers do not put out the radiator
during the night. In the legend of Figure 15, it can be seen that consumer one has higher
biospheric values and consumer two higher egoistic values. The physical properties of these
consumers are the same, therefore the difference caused by the social behaviour can be seen.
Consumer one has an egoistic values of 0.2 and a biospheric values of 0.2. Consumer two has
an egoistic value of 0.8 and a biospheric values of 0.8. It is important to remember that for
biospheric a value closer to 0 indicates that this consumer has more biospheric values and for
egoistic a value closer to 1 indicates that this consumer had more egoistic values. According to
Figure 15, the more egoistic consumer (two), consumes more power than the more biospheric
consumer(one). During the afternoon of day four, hour 108, a different incentives is modeled.
At this point, the value of the incentives increased from 0.25 to 0.75. Recall that increasing
the incentives results in the energy being more expensive. According to Figure 15, both of
the consumers will consume less heat. The difference in power, ∆P , is however larger for
consumer two in comparison to consumer one, this is in agreement with Feng et al. (2020).
The percentage difference of ∆P is 7.6% and 6.1% respectively. Overall it can be seen that
the controller always tries to reach the desired temperature of the consumer. Even when
the disturbance ss is applied to the model the equilibrium is again researched after a little
overshoot.
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Figure 15: Experiment 1

4.2 Experiment 2, influence of the heat coefficient loss

In the plot of the second experiment, (Figure 16), the same social values of experiment 1 are
used for the consumers. As a result, consumer one again has a higher biospheric value and
consumer two has a higher egoistic value. However, the physical properties change during the
second day in the afternoon, at hour 60. In order to test the influence of the heat conductivity
rate, multiple test are carried out. λ, is increased with 10% (Figure 16), 5% (Figure 20) and
decreased with 10% (Figure 18) and 5% (Figure 19). The increase of the heat conductivity
rate, makes the consumer lose more heat through their walls to the outside temperature.
The decrease of the heat conductivity rate, makes the consumer lose less heat through their
walls to the outside temperature. To these changes, both consumers respond immediately
by consuming more energy for the increase and less energy for the decrease. This response
is because, both consumers want to maintain their desired temperature. The effect of the λ

increase of 10% is for both of the consumers an increase of ∆P = 10%. For the other tests
the the same behaviour was seen, an increase of 5% is for both of the consumers an increase
of ∆P = 5%, a decrease of 10% is for both of the consumers a decrease of ∆P = 10% and a
decrease of 5% is for both of the consumers a decrease of ∆P = 5%. At the afternoon of day
four, hour 108, a different incentive is again modelled. The starting value of the incentives
was 0.25 and this is increased to 0.75. Both consumers again react to this change similar as
in experiment 1.
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Figure 16: Experiment 2, 10% increase of λ

4.3 Experiment 3, influence of the social variables

In the plot of the third experiment, a change is made during the time duration in the social
variables of both the consumers. All the physical properties of both of the consumers do not
change compared to experiment one and two. At first, both of the consumers are equally
egoistic and biospheric. During the second day in the afternoon a change is made to both the
consumers. Consumer one is given more biospheric values and consumer two more egoistic
values. As result, consumer one starts to consumer less power and consumer two starts to
consume more power. This leads to consumer two using 10% more power than consumer one.

Figure 17: Experiment 3
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5 Conclusion and Further Research
In this thesis a framework is formulated to incorporate the social behaviour of the consumer
into the thermal physical system of the consumer for multi-source district heating networks.
This incorporation, is done by defining state space equations, as in section 2.9. With the
help of these state space equations, a case study is done, in section 3.2, on a network of two
producers and two consumers. In order to control this network a suggestion is made for a
controller, in section 3.3. When simulating this model, a simplified short term prediction for
the consumers, in the district heating network, is made.

From results in section 4 on the numerical simulations of the case study, it can be con-
cluded that the suggested controller makes the system, even with disturbance implemented,
go to an equilibrium. Moreover, the importance of accurately defining the unknowns of the
consumers is underlined. When the heat conductivity rate has an error of 10% increase,
the power also has an error of 10% increase. This behaviour is tested to be linearly, so the
percentage of error in heat conductivity rate is equal to the percentage of error in the power
consumption. For the social behaviour of the consumers, it is again important to accurately
define the unknowns. Identifying the wrong social values for a consumer can lead to 10%
errors in the prediction of the heat demand. Therefore, it can be concluded that the predic-
tion of the heat demand of the consumers, deals with large errors when their unknowns are
wrongly defined. When the method of identification produces these errors, so the errors are
not consumer specific, the overall prediction of the heat demand in the whole district will be
way off.

For further research it would be suggested to do a stability analysis on the controller,
shown in section 3.4. As of now, the system will go to an equilibrium in its current situation.
However, when doing this stability analysis for the controller, stable predictions of the load
demand can be guaranteed. Since the controller exists out of ordinary differential equations
and should remain stable near a point of equilibrium, a Lyapunov stability analysis would be
suggested. Moreover, storage tanks can be included as well as heat loss in the pipes. This
would make the system more realistic and therefore the load prediction of the consumer more
realistic to the real world. At last it would be advised to check whether the system will work
properly on larger grids of consumers and producers as well.
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7 Appendix

7.1 Appendix A - Extra results Experiment 2

Figure 18: Heat conductivity rate 10% decrease

Figure 19: Heat conductivity rate 5% decrease
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Figure 20: Heat conductivity rate 5% increase

7.2 Appendix B - Code Experiment 1

1 %Code 1 Endre Eisenga S3510913 Bache lor IP
2 %A s t a r t o f t h i s code i s from Juan , f u r t h e r more he he lped me

with some s p e c i f i c code when s t a t ed .
3

4 c l e a r a l l
5

6 %% System parameters
7

8 n_pr=2; %number o f produce r s
9

10 n_c=2; %number o f consumers
11

12 n_ch=3; %number o f CHORDS ( or number o f independent f l ows )
13

14 n_e=10; %number o f edges
15

16 n_N=8; %number o f nodes
17

18 rho=975; %den s i t y o f water
19

20 csh_water =4190; %S p e c i f i c heat o f water
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21

22 V_e=rho ∗ csh_water ∗ [ 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ] ; %vec t o r o f edges volumes
23

24 V_n=ze r o s (n_N, 1 ) ; % vec t o r o f node volumes
25

26

27 %% de f i n e the time
28

29 t0=0; %i n i t i a l t ime
30 t f =7∗(24∗60∗60) ; % f i n a l t ime
31 tm=0.64∗ t f ; %%% th i s marks the t r a n s i t i o n in the i n c e n t i v e s_s at

the 5 th day in the a f t e rnoon
32 tu=0.357∗ t f ; %%% th i s marks the po in t were a new va lue f o r U_c or

p^b io and p^ego i s implemented
33

34 tspan=[ t0 t f ] ; %Time span
35

36 %% Matr ixes ac co rd ing to graph theory
37

38 F=[−1 ,1 ,0 ,0 , −1 , −1 ,1 , −1 , −1 ,1;
39 1 , 0 , 1 , 0 , 1 , 0 , 0 , 1 , 0 , 0 ;
40 1 , 0 , 0 , 1 , 1 , 1 , 0 , 1 , 1 , 0 ] ; %fundamental loop matr ix
41

42 calB0 =[1 ,0 , 0 , 0 , −1 ,0 , 0 , 0 , 0 , 0 ;
43 0 ,0 , −1 ,0 ,1 , −1 ,0 ,0 ,0 ,0 ;
44 0 , 0 , 0 , −1 ,0 , 1 , 1 , 0 , 0 , 0 ;
45 0 , 1 , 0 , 0 , 0 , 0 , −1 ,0 , 0 , 0 ;
46 −1 ,0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 ;
47 0 , 0 , 1 , 0 , 0 , 0 , 0 , −1 ,1 , 0 ;
48 0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 , −1 , −1;
49 0 , −1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 ] ; %f i x e i n c i d en c e matr ix
50

51 B_pr=[ eye ( n_pr ) ; z e r o s (n_e+n_N−n_pr , n_pr ) ] ; %c o e f f i c i e n t matr ix
P_pr

52

53 B_c=[ z e r o s ( n_pr , n_c) ; eye (n_c) ; z e r o s (n_e+n_N−n_pr−n_c , n_c) ] ; %
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c o e f f i c i e n t matr ix o f P_c
54

55

56 %% PI temp . reg . producer
57 T_pr_star=85∗ones (n_pr , 1 ) ;
58 alpha_pr_hat=1e4 ∗ [ 1 ; 1 ] ;
59 %beta_pr_hat=1e −6 ∗ [ 1 ; 1 ] ;
60 beta_pr_hat=4∗( eye ( n_pr ) / d iag ( alpha_pr_hat )^−2)∗ ones (n_pr , 1 ) ;
61

62 %% PI f l ow reg . o f chord producer
63 J_pr = [ 1 ] ;
64 alpha_pr = [ 1 ] ;
65 beta_pr = [ 1 ] ;
66 Q_pr_star=1e −4 ∗ [ 0 . 1 ] ;
67

68 %% PI c o n t r o l l e r f l ow q_c
69 gamma_c=1e3∗ ones (n_c , 1 ) ;
70 T_c_star=55∗ones (n_c , 1 ) ;
71 %alpha_c=1e4 ∗ [ 1 ; 1 ] ;
72 alpha_c=100.0∗ alpha_pr_hat ;
73 %beta_c=1e20 ∗ [ 1 ; 1 ] ;
74 beta_c=4∗( eye (n_c) / d iag ( alpha_c )^−2)∗ ones (n_c , 1 ) ;
75

76 T_room_min=18∗ones (n_c , 1 ) ;
77 T_room_max=22∗ones (n_c , 1 ) ;
78 %T_amb = 5∗ ones (n_c , 1 ) ;
79 T_amb=@( t ) 5∗ s i n ( p i /12∗( t /3600) ) +5; %%% th i s f un c t i on depends

only on ’ t ’
80

81

82 %% Parameters ’ s o c i a l dynamics ’
83 a_s=ones (n_c , 1 ) ;
84

85 % Se t t i n g a d i f f e r e n c e f o t s_s f o r the morning and the a f t e rnoon
86 s_s=@( t ) ( ( t0<=t )&&(t<=tm) ) ∗0 .25∗ ones (n_c , 1 ) +((tm<t )&&(t<=t f ) )

∗0 .75∗ ones (n_c , 1 ) ;
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87

88 c_s=ones (n_c , 1 ) ;
89 d_s=ones (n_c , 1 ) ;
90 % p_ego=@( t ) ( ( t0<=t )&&(t<=tu ) ) ∗ [ 0 . 3 7 ; 0 . 3 7 ] . ∗ ones (n_c , 1 ) +(( tu<t )

&&(t<=t f ) ) ∗ [ 0 . 9 ; 0 . 9 ] . ∗ ones (n_c , 1 ) ;
91 % p_bio=@( t ) ( ( t0<=t )&&(t<=tu ) ) ∗ [ 0 . 7 7 ; 0 . 7 7 ] . ∗ ones (n_c , 1 ) +(( tu<t )

&&(t<=t f ) ) ∗ [ 0 . 1 ; 0 . 1 ] . ∗ ones (n_c , 1 ) ;
92 p_ego = [ 0 . 2 ; 0 . 8 ] . ∗ ones (n_c , 1 ) ;
93 p_bio = [ 0 . 2 ; 0 . 8 ] . ∗ ones (n_c , 1 ) ;
94

95 %The green l i n e s are a c t i v a t e d f o r exper iment 3
96

97 h_s = [ 0 . 2 5 ; 0 . 7 5 ] . ∗ ones (n_c , 1 ) ; % a more ego consumer has h i ghe r
v a l e s f o r h_s

98

99 %% Heat t r a n s f e r c o e f f i c i e n t .
100 A_c=30∗ones (n_c , 1 ) ;
101 % U_c=@( t ) ( ( t0<=t )&&(t<=tu ) ) ∗3 .14∗ ones (n_c , 1 ) +(( tu<t )&&(t<=t f ) )

∗40∗ ones (n_c , 1 ) ;
102 U_c=3.14∗ ones (n_c , 1 ) ;
103 % lambda_c=@( t ) d iag (U_c( t ) ) ∗(A_c) ;
104 lambda_c=diag (U_c) ∗A_c ;
105

106 %The green l i n e s are a c t i v a t e d f o r exper iment 2
107

108

109 %% Overa l l c l o s ed−loop dynamics
110 % This i s made with the he lp o f Juan
111

112 T_e=@(x ) x ( 1 : n_e) ;
113 T_N=@(x ) x (n_e+1:n_e+n_N) ;
114 Q_pr=@(x ) x (n_e+n_N+1:n_e+n_N+(n_pr−1) ) ;
115 z_pr=@(x ) x (n_e+n_N+(n_pr−1)+1:n_e+n_N+2∗(n_pr−1) ) ;
116 z_c=@(x ) x (n_e+n_N+2∗(n_pr−1)+1:n_e+n_N+2∗(n_pr−1)+n_c) ;
117 z_s=@(x ) x (n_e+n_N+2∗(n_pr−1)+n_c+1:n_e+n_N+2∗(n_pr−1)+n_c+n_c) ;
118 p_s=@(x ) x (n_e+n_N+2∗(n_pr−1)+n_c+n_c+1:n_e+n_N+2∗(n_pr−1)+n_c+n_c
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+n_c) ;
119 z_pr_hat=@(x ) x (n_e+n_N+2∗(n_pr−1)+n_c+n_c+n_c+1:n_e+n_N+2∗(n_pr

−1)+n_c+n_c+n_c+n_pr ) ;
120 P_c_hat=@(x ) x (n_e+n_N+2∗(n_pr−1)+n_c+n_c+n_c+n_pr+1:n_e+n_N+2∗(

n_pr−1)+n_c+n_c+n_c+n_pr+n_c) ;
121

122 n_x=n_e+n_N+2∗(n_pr−1)+n_c+n_c+n_c+n_pr+n_c ; %s i z e o f the s t a t e
v a r i a b l e

123

124

125 %% The a u x i l i a r y d e f i n i t i o n s acco rd ing to the o v e r a l l c o n t r o l l e r
126 %This i s made with the he lp o f Juan
127

128 T_pr=@(x ) [ eye ( n_pr ) z e r o s ( n_pr , n_e−n_pr ) ] ∗T_e( x ) ;
129

130 T_c=@(x ) [ z e r o s ( n_pr ) eye (n_c) z e r o s (n_c , n_e−n_pr−n_c) ] ∗T_e( x ) ;
131

132 T_c_in=@(x ) [ 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 ;
133 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 ] ∗T_N(x ) ;
134

135 q_c=@(x ) ( eye (n_c) / d iag ( rho ∗ csh_water ∗( T_pr_star−T_c( x ) ) ) ) ∗(−diag (
alpha_c ) ∗(T_c( x )−T_c_star )+z_c ( x ) ) ;

136

137 P_pr=@(x )−diag ( alpha_pr_hat ) ∗(T_pr( x )−T_pr_star )+z_pr_hat ( x ) ;
138

139 P_c=@( t , x ) d iag ( lambda_c ) ∗(T_room_min−[T_amb( t ) ; T_amb( t ) ] )+diag (
lambda_c ) ∗ d iag ( z_s ( x ) ) ∗(T_room_max−T_room_min) ;

140

141 P_ch=@( t , x ) [ [ 0 1 ] ∗P_pr( x ) ; P_c( t , x ) ] ;
142

143 q_ch=@(x ) [Q_pr( x ) ; q_c ( x ) ] ;
144

145 q_e=@(x )F’ ∗ q_ch ( x ) ;
146

147 calB=@(x ) calB0 ∗ d iag ( s i gn (q_e ( x ) ) ) ; %flow−ad ju s t ed i n c i d en c e
matr ix
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148

149 calT=@(x ) 0 . 5 ∗ ( calB ( x )+abs ( calB ( x ) ) ) ; %t a r g e t nodes − edges matr ix
150

151 ca lS=@(x ) 0 . 5∗ abs ( calB ( x )−abs ( calB ( x ) ) ) ; %sou r c e s nodes − edges
matr ix

152

153 %% Overa l l f un c t i on acco rd ing to the o v e r a l l c o n t r o l l e r
154 %This i s made with the he lp o f Juan
155

156 f=@( t , x ) [ [ [ − rho ∗ csh_water ∗ d iag ( abs (q_e ( x ) ) ) ∗T_e( x )+rho ∗ csh_water ∗
d iag ( abs (q_e ( x ) ) ) ∗ ca lS ( x ) ’∗T_N(x ) ;

157 rho ∗ csh_water ∗ calT ( x ) ∗ d iag ( abs (q_e ( x ) ) ) ∗T_e( x )−rho ∗ csh_water ∗
d iag ( calT ( x ) ∗ abs (q_e ( x ) ) ) ∗T_N(x ) ]+B_pr∗P_pr( x )−B_c∗P_c( t , x
) ] ;

158 −diag ( alpha_pr ) ∗(Q_pr( x )−Q_pr_star )+z_pr ( x ) ;
159 −(Q_pr( x )−Q_pr_star ) ;
160 −(T_c( x )−T_c_star ) ;
161 diag ( a_s ) ∗(p_s ( x )−z_s ( x )−diag (h_s ) ∗ s_s ( t ) ) ;
162 diag ( c_s ) ∗( p_ego−p_s ( x ) )+diag (d_s ) ∗( p_bio−p_s ( x ) ) ;
163 −(T_pr( x )−T_pr_star ) ;
164 −(P_c_hat ( x )−P_c( t , x ) ) ] ;
165

166 M=blkd i ag ( d iag (V_e) , d iag (V_n) , d iag ( J_pr ) , d iag ( beta_pr ) , d iag (
beta_c ) , eye (n_c) , eye (n_c) , d iag ( beta_pr_hat ) , d iag (gamma_c) ) ;

167

168 op t i on s=ode s e t ( ’Mass ’ ,M) ;
169

170 %% I n i t i a l c o nd i t i o n s :
171

172 T_e0=20∗ones (n_e , 1 ) ;
173 T_N0=20∗ones (n_N, 1 ) ;
174 Q_pr0=0.5∗ [ Q_pr_star ] ;
175 z_pr0 = [ 0 . 0 ] ;
176 z_c0=ze r o s (n_c , 1 ) ;
177 z_s0=z e r o s (n_c , 1 ) ;
178 p_s0=ze r o s (n_c , 1 ) ;
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179 z_pr_hat0=z e r o s ( n_pr , 1 ) ;
180 P_c_hat0=z e r o s (n_c , 1 ) ;
181

182 x0=[T_e0 ;T_N0;Q_pr0 ; z_pr0 ; z_c0 ; z_s0 ; p_s0 ; z_pr_hat0 ; P_c_hat0 ] ;
183

184 %% The ODE s o l v e r
185

186 [ t_sol , x_sol ]= ode15s ( f , tspan , x0 , op t i on s ) ;
187

188 %% Extract the u s e f u l data
189

190 data_T_e= [ ] ;
191 data_T_N= [ ] ;
192 data_q_ch = [ ] ;
193 data_q_e = [ ] ;
194 data_P_pr = [ ] ;
195 data_P_c = [ ] ;
196 data_P_c_hat = [ ] ;
197

198 f o r i =1: s i z e ( t_sol , 1 )
199 data_T_e ( i , : )=T_e( x_sol ( i , : ) ) ;
200 data_T_N( i , : )=T_N( x_sol ( i , : ) ) ;
201 data_q_ch ( i , : )=q_ch ( x_sol ( i , : ) ’ ) ;
202 data_q_e ( i , : )=q_e ( x_sol ( i , : ) ’ ) ;
203 data_P_pr ( i , : )=P_pr( x_sol ( i , : ) ’ ) ;
204 data_P_c ( i , : )=P_c( t_so l ( i ) , x_sol ( i , : ) ’ ) ;
205 data_P_c_hat ( i , : )=P_c_hat ( x_sol ( i , : ) ’ ) ;
206

207 end
208

209

210 %% Plo t s
211

212 f i g u r e ( )
213 p l o t ( t_so l /3600 , data_T_e )
214 y l a b e l ( ’$T_{\mathrm{e}}$ ( $^\ c i r c$C ) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ ) ;
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215 x l a b e l ( ’ $t$ ~( hour ) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ ) ;
216 g r i d o f f
217 l gd=legend ({ ’ edge 1 ’ , ’ edge 2 ’ , ’ edge 3 ’ , ’ edge 4 ’ } , ’ I n t e r p r e t e r ’ , ’

Latex ’ ) ;
218 l gd . FontS ize =8;
219 l gd . Locat ion= ’ NorthEast ’ ;
220

221 f i g u r e ( )
222 p l o t ( t_so l /3600 ,data_T_N)
223 y l a b e l ( ’$T_{\mathrm{N}}$ ( $^\ c i r c$C ) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ ) ;
224 x l a b e l ( ’ $t$ ~( hour ) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ ) ;
225 g r i d o f f
226 l gd=legend ({ ’ node 1 ’ , ’ node 2 ’ , ’ node 3 ’ , ’ node 4 ’ } , ’ I n t e r p r e t e r ’ , ’

Latex ’ ) ;
227 l gd . FontS ize =8;
228 l gd . Locat ion= ’ NorthEast ’ ;
229

230 f i g u r e ( )
231 p l o t ( t_so l /3600 , data_q_e ( : , 1 ) , t_so l /3600 , data_q_e ( : , 2 ) )
232 y l a b e l ( ’ $q_{\mathrm{pr }}$ (m$^3$/ s ) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ ) ;
233 x l a b e l ( ’ $t$ ~( hour ) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ ) ;
234 g r i d o f f
235 l gd=legend ({ ’ ( edge 1) ’ , ’ edge 2 ’ } , ’ I n t e r p r e t e r ’ , ’ Latex ’ ) ;
236 l gd . FontS ize =8;
237 l gd . Locat ion= ’ NorthEast ’ ;
238

239 f i g u r e ( )
240 p l o t ( t_so l /3600 , data_q_ch )
241 y l a b e l ( ’ $q_{\mathrm{ch}}$ (m$^3$/ s ) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ ) ;
242 x l a b e l ( ’ $t$ ~( hour ) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ ) ;
243 g r i d o f f
244 l gd=legend ({ ’ producer 2 ( edge 2) ’ , ’ consumer 1 ( edge 3) ’ , ’ consumer

2 ( edge 4) ’ } , ’ I n t e r p r e t e r ’ , ’ Latex ’ ) ;
245 l gd . FontS ize =8;
246 l gd . Locat ion= ’ NorthEast ’ ;
247
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248 f i g u r e ( )
249 p l o t ( t_so l /3600 , data_P_pr )
250 y l a b e l ( ’$P_{\mathrm{pr }}$ (W) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ ) ;
251 x l a b e l ( ’ $t$ ~( hour ) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ ) ;
252 g r i d o f f
253 l gd=legend ({ ’ producer 1 ( edge 1) ’ , ’ producer 2 ( edge 2) ’ } , ’

I n t e r p r e t e r ’ , ’ Latex ’ ) ;
254 l gd . FontS ize =8;
255 l gd . Locat ion= ’ NorthEast ’ ;
256

257 f i g u r e ( )
258 p l o t ( t_so l /3600 , data_P_c_hat )
259 y l a b e l ( ’$P_{\mathrm{c}}$ (W) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ ) ;
260 x l a b e l ( ’ $t$ ~( hour ) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ ) ;
261 g r i d o f f
262 l gd=legend ({ ’ consumer 1 ( b io ) ’ , ’ consumer 2 ( ego ) ’ } , ’ I n t e r p r e t e r ’ ,

’ Latex ’ ) ;
263 l gd . FontS ize =8;
264 l gd . Locat ion= ’ NorthEast ’ ;
265

266 %% Save the r e l e v an t data .
267

268 d e l e t e data_sim . mat
269 save ( ’ data_sim . mat ’ )
270 d i sp ( ’The data from the s imu l a t i o n s has been c o r r e c t l y saved . ’ )

7.3 Appendix C - Code Experiment 2

1 %Code 2 Endre Eisenga S3510913 Bache lor IP
2 %A s t a r t o f t h i s code i s from Juan , f u r t h e r more he he lped me

with some s p e c i f i c code when s t a t ed .
3

4 c l e a r a l l
5

6 %% System parameters
7

8 n_pr=2; %number o f produce r s
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9

10 n_c=2; %number o f consumers
11

12 n_ch=3; %number o f CHORDS ( or number o f independent f l ows )
13

14 n_e=10; %number o f edges
15

16 n_N=8; %number o f nodes
17

18 rho=975; %den s i t y o f wate
19

20 csh_water =4190; %S p e c i f i c heat o f water
21

22 V_e=rho ∗ csh_water ∗ [ 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ] ; %vec t o r o f edges volumes
23

24 V_n=ze r o s (n_N, 1 ) ; % vec t o r o f node volumes
25

26

27 %% de f i n e the time
28

29 t0=0; %i n i t i a l t ime
30 t f =7∗(24∗60∗60) ; % f i n a l t ime
31 tm=0.64∗ t f ; %%% th i s marks the t r a n s i t i o n in the i n c e n t i v e s_s at

the 4 th day in the a f t e rnoon
32 tu=0.357∗ t f ; %%% th i s marks the po in t were a new va lue f o r U_c at

exper iment 2 or p^b io and p^ego at exper iment 3 i s
implemented , day 2 in the a f t e rnoon

33

34 tspan=[ t0 t f ] ; %Time span
35

36 %% Matr ixes ac co rd ing to graph theory
37

38 F=[−1 ,1 ,0 ,0 , −1 , −1 ,1 , −1 , −1 ,1;
39 1 , 0 , 1 , 0 , 1 , 0 , 0 , 1 , 0 , 0 ;
40 1 , 0 , 0 , 1 , 1 , 1 , 0 , 1 , 1 , 0 ] ; %fundamental loop matr ix
41
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42 calB0 =[1 ,0 , 0 , 0 , −1 ,0 , 0 , 0 , 0 , 0 ;
43 0 ,0 , −1 ,0 ,1 , −1 ,0 ,0 ,0 ,0 ;
44 0 , 0 , 0 , −1 ,0 , 1 , 1 , 0 , 0 , 0 ;
45 0 , 1 , 0 , 0 , 0 , 0 , −1 ,0 , 0 , 0 ;
46 −1 ,0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 ;
47 0 , 0 , 1 , 0 , 0 , 0 , 0 , −1 ,1 , 0 ;
48 0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 , −1 , −1;
49 0 , −1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 ] ; %f i x e i n c i d en c e matr ix
50

51 B_pr=[ eye ( n_pr ) ; z e r o s (n_e+n_N−n_pr , n_pr ) ] ; %c o e f f i c i e n t matr ix
P_pr

52

53 B_c=[ z e r o s ( n_pr , n_c) ; eye (n_c) ; z e r o s (n_e+n_N−n_pr−n_c , n_c) ] ; %
c o e f f i c i e n t matr ix o f P_c

54

55 %% PI temp . reg . producer
56 T_pr_star=85∗ones (n_pr , 1 ) ;
57 alpha_pr_hat=1e4 ∗ [ 1 ; 1 ] ;
58 %beta_pr_hat=1e −6 ∗ [ 1 ; 1 ] ;
59 beta_pr_hat=4∗( eye ( n_pr ) / d iag ( alpha_pr_hat )^−2)∗ ones (n_pr , 1 ) ;
60

61 %% PI f l ow reg . o f chord producer
62 J_pr = [ 1 ] ;
63 alpha_pr = [ 1 ] ;
64 beta_pr = [ 1 ] ;
65 Q_pr_star=1e −4 ∗ [ 0 . 1 ] ;
66

67 %% PI c o n t r o l l e r f l ow q_c
68 gamma_c=1e3∗ ones (n_c , 1 ) ;
69 T_c_star=55∗ones (n_c , 1 ) ;
70 %alpha_c=1e4 ∗ [ 1 ; 1 ] ;
71 alpha_c=100.0∗ alpha_pr_hat ;
72 %beta_c=1e20 ∗ [ 1 ; 1 ] ;
73 beta_c=4∗( eye (n_c) / d iag ( alpha_c )^−2)∗ ones (n_c , 1 ) ;
74

75 T_room_min=18∗ones (n_c , 1 ) ;

University of Groningen 51



76 T_room_max=22∗ones (n_c , 1 ) ;
77 %T_amb = 5∗ ones (n_c , 1 ) ;
78 T_amb=@( t ) 5∗ s i n ( p i /12∗( t /3600) ) +5; %%% th i s f un c t i on depends

only on ’ t ’
79

80

81 %% Parameters ’ s o c i a l dynamics ’
82 a_s=ones (n_c , 1 ) ;
83

84 % Se t t i n g a d i f f e r e n c e f o t s_s f o r the morning and the a f t e rnoon
85 s_s=@( t ) ( ( t0<=t )&&(t<=tm) ) ∗0 .25∗ ones (n_c , 1 ) +((tm<t )&&(t<=t f ) )

∗0 .75∗ ones (n_c , 1 ) ;
86

87 c_s=ones (n_c , 1 ) ;
88 d_s=ones (n_c , 1 ) ;
89 % p_ego=@( t ) ( ( t0<=t )&&(t<=tu ) ) ∗ [ 0 . 3 7 ; 0 . 3 7 ] . ∗ ones (n_c , 1 ) +(( tu<t )

&&(t<=t f ) ) ∗ [ 0 . 9 ; 0 . 9 ] . ∗ ones (n_c , 1 ) ;
90 % p_bio=@( t ) ( ( t0<=t )&&(t<=tu ) ) ∗ [ 0 . 7 7 ; 0 . 7 7 ] . ∗ ones (n_c , 1 ) +(( tu<t )

&&(t<=t f ) ) ∗ [ 0 . 1 ; 0 . 1 ] . ∗ ones (n_c , 1 ) ;
91 p_ego = [ 0 . 2 ; 0 . 8 ] . ∗ ones (n_c , 1 ) ;
92 p_bio = [ 0 . 2 ; 0 . 8 ] . ∗ ones (n_c , 1 ) ;
93

94 %The green l i n e s are a c t i v a t e d f o r exper iment 3
95

96 h_s = [ 0 . 2 5 ; 0 . 7 5 ] . ∗ ones (n_c , 1 ) ; % a more ego consumer has h i ghe r
v a l e s f o r h_s

97

98 %% Heat t r a n s f e r c o e f f i c i e n t .
99 A_c=30∗ones (n_c , 1 ) ;

100 U_c=@( t ) ( ( t0<=t )&&(t<=tu ) ) ∗3 .14∗ ones (n_c , 1 ) +(( tu<t )&&(t<=t f ) )
∗3 .45∗ ones (n_c , 1 ) ;

101 %For the 10% decrease , 3 . 45 i s changed to 2 . 8 3 .
102 %For the 5% decrease , 3 . 45 i s changed to 2 . 9 8 .
103 %For the 5% in c r e a s e , 3 . 45 i s changed to 3 . 2 9 .
104 % U_c= [ 3 . 1 4 ; 3 . 1 4 ] . ∗ ones (n_c , 1 ) ;
105 lambda_c=@( t ) d iag (U_c( t ) ) ∗(A_c) ;
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106 % lambda_c=diag (U_c) ∗A_c ;
107

108

109 %% Overa l l c l o s ed−loop dynamics
110 %This i s made with the he lp o f Juan
111

112 T_e=@(x ) x ( 1 : n_e) ;
113 T_N=@(x ) x (n_e+1:n_e+n_N) ;
114 Q_pr=@(x ) x (n_e+n_N+1:n_e+n_N+(n_pr−1) ) ;
115 z_pr=@(x ) x (n_e+n_N+(n_pr−1)+1:n_e+n_N+2∗(n_pr−1) ) ;
116 z_c=@(x ) x (n_e+n_N+2∗(n_pr−1)+1:n_e+n_N+2∗(n_pr−1)+n_c) ;
117 z_s=@(x ) x (n_e+n_N+2∗(n_pr−1)+n_c+1:n_e+n_N+2∗(n_pr−1)+n_c+n_c) ;
118 p_s=@(x ) x (n_e+n_N+2∗(n_pr−1)+n_c+n_c+1:n_e+n_N+2∗(n_pr−1)+n_c+n_c

+n_c) ;
119 z_pr_hat=@(x ) x (n_e+n_N+2∗(n_pr−1)+n_c+n_c+n_c+1:n_e+n_N+2∗(n_pr

−1)+n_c+n_c+n_c+n_pr ) ;
120 P_c_hat=@(x ) x (n_e+n_N+2∗(n_pr−1)+n_c+n_c+n_c+n_pr+1:n_e+n_N+2∗(

n_pr−1)+n_c+n_c+n_c+n_pr+n_c) ;
121

122 n_x=n_e+n_N+2∗(n_pr−1)+n_c+n_c+n_c+n_pr+n_c ; %s i z e o f the s t a t e
v a r i a b l e

123

124

125 %% The a u x i l i a r y d e f i n i t i o n s acco rd ing to the o v e r a l l c o n t r o l l e r
126 %This i s made with the he lp o f Juan
127

128 T_pr=@(x ) [ eye ( n_pr ) z e r o s ( n_pr , n_e−n_pr ) ] ∗T_e( x ) ;
129

130 T_c=@(x ) [ z e r o s ( n_pr ) eye (n_c) z e r o s (n_c , n_e−n_pr−n_c) ] ∗T_e( x ) ;
131

132 T_c_in=@(x ) [ 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 ;
133 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 ] ∗T_N(x ) ;
134

135 q_c=@(x ) ( eye (n_c) / d iag ( rho ∗ csh_water ∗( T_pr_star−T_c( x ) ) ) ) ∗(−diag (
alpha_c ) ∗(T_c( x )−T_c_star )+z_c ( x ) ) ;

136
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137 P_pr=@(x )−diag ( alpha_pr_hat ) ∗(T_pr( x )−T_pr_star )+z_pr_hat ( x ) ;
138

139 P_c=@( t , x ) d iag ( lambda_c ( t ) ) ∗(T_room_min−[T_amb( t ) ; T_amb( t ) ] )+
diag ( lambda_c ( t ) ) ∗ d iag ( z_s ( x ) ) ∗(T_room_max−T_room_min) ;

140

141 P_ch=@( t , x ) [ [ 0 1 ] ∗P_pr( x ) ; P_c( t , x ) ] ;
142

143 q_ch=@(x ) [Q_pr( x ) ; q_c ( x ) ] ;
144

145 q_e=@(x )F’ ∗ q_ch ( x ) ;
146

147 calB=@(x ) calB0 ∗ d iag ( s i gn (q_e ( x ) ) ) ; %flow−ad ju s t ed i n c i d en c e
matr ix

148

149 calT=@(x ) 0 . 5 ∗ ( calB ( x )+abs ( calB ( x ) ) ) ; %t a r g e t nodes − edges matr ix
150

151 ca lS=@(x ) 0 . 5∗ abs ( calB ( x )−abs ( calB ( x ) ) ) ; %sou r c e s nodes − edges
matr ix

152

153

154 %% Overa l l f un c t i on acco rd ing to the o v e r a l l c o n t r o l l e r
155 %This i s made with the he lp o f Juan
156

157 f=@( t , x ) [ [ [ − rho ∗ csh_water ∗ d iag ( abs (q_e ( x ) ) ) ∗T_e( x )+rho ∗ csh_water ∗
d iag ( abs (q_e ( x ) ) ) ∗ ca lS ( x ) ’∗T_N(x ) ;

158 rho ∗ csh_water ∗ calT ( x ) ∗ d iag ( abs (q_e ( x ) ) ) ∗T_e( x )−rho ∗ csh_water ∗
d iag ( calT ( x ) ∗ abs (q_e ( x ) ) ) ∗T_N(x ) ]+B_pr∗P_pr( x )−B_c∗P_c( t , x
) ] ;

159 −diag ( alpha_pr ) ∗(Q_pr( x )−Q_pr_star )+z_pr ( x ) ;
160 −(Q_pr( x )−Q_pr_star ) ;
161 −(T_c( x )−T_c_star ) ;
162 diag ( a_s ) ∗(p_s ( x )−z_s ( x )−diag (h_s ) ∗ s_s ( t ) ) ;
163 diag ( c_s ) ∗( p_ego−p_s ( x ) )+diag (d_s ) ∗( p_bio−p_s ( x ) ) ;
164 −(T_pr( x )−T_pr_star ) ;
165 −(P_c_hat ( x )−P_c( t , x ) ) ] ;
166
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167 M=blkd i ag ( d iag (V_e) , d iag (V_n) , d iag ( J_pr ) , d iag ( beta_pr ) , d iag (
beta_c ) , eye (n_c) , eye (n_c) , d iag ( beta_pr_hat ) , d iag (gamma_c) ) ;

168

169 op t i on s=ode s e t ( ’Mass ’ ,M) ;
170

171 %% I n i t i a l c o nd i t i o n s :
172

173 T_e0=20∗ones (n_e , 1 ) ;
174 T_N0=20∗ones (n_N, 1 ) ;
175 Q_pr0=0.5∗ [ Q_pr_star ] ;
176 z_pr0 = [ 0 . 0 ] ;
177 z_c0=ze r o s (n_c , 1 ) ;
178 z_s0=z e r o s (n_c , 1 ) ;
179 p_s0=ze r o s (n_c , 1 ) ;
180 z_pr_hat0=z e r o s ( n_pr , 1 ) ;
181 P_c_hat0=z e r o s (n_c , 1 ) ;
182

183 x0=[T_e0 ;T_N0;Q_pr0 ; z_pr0 ; z_c0 ; z_s0 ; p_s0 ; z_pr_hat0 ; P_c_hat0 ] ;
184

185 %% The ODE s o l v e r
186

187 [ t_sol , x_sol ]= ode15s ( f , tspan , x0 , op t i on s ) ;
188

189 %% Extract the u s e f u l data
190

191 data_T_e= [ ] ;
192 data_T_N= [ ] ;
193 data_q_ch = [ ] ;
194 data_q_e = [ ] ;
195 data_P_pr = [ ] ;
196 data_P_c = [ ] ;
197 data_P_c_hat = [ ] ;
198

199 f o r i =1: s i z e ( t_sol , 1 )
200 data_T_e ( i , : )=T_e( x_sol ( i , : ) ) ;
201 data_T_N( i , : )=T_N( x_sol ( i , : ) ) ;
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202 data_q_ch ( i , : )=q_ch ( x_sol ( i , : ) ’ ) ;
203 data_q_e ( i , : )=q_e ( x_sol ( i , : ) ’ ) ;
204 data_P_pr ( i , : )=P_pr( x_sol ( i , : ) ’ ) ;
205 data_P_c ( i , : )=P_c( t_so l ( i ) , x_sol ( i , : ) ’ ) ;
206 data_P_c_hat ( i , : )=P_c_hat ( x_sol ( i , : ) ’ ) ;
207

208 end
209

210

211 %% Plo t s
212

213 f i g u r e ( )
214 p l o t ( t_so l /3600 , data_T_e )
215 y l a b e l ( ’$T_{\mathrm{e}}$ ( $^\ c i r c$C ) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ ) ;
216 x l a b e l ( ’ $t$ ~( hour ) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ ) ;
217 g r i d o f f
218 l gd=legend ({ ’ edge 1 ’ , ’ edge 2 ’ , ’ edge 3 ’ , ’ edge 4 ’ } , ’ I n t e r p r e t e r ’ , ’

Latex ’ ) ;
219 l gd . FontS ize =8;
220 l gd . Locat ion= ’ NorthEast ’ ;
221

222 f i g u r e ( )
223 p l o t ( t_so l /3600 ,data_T_N)
224 y l a b e l ( ’$T_{\mathrm{N}}$ ( $^\ c i r c$C ) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ ) ;
225 x l a b e l ( ’ $t$ ~( hour ) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ ) ;
226 g r i d o f f
227 l gd=legend ({ ’ node 1 ’ , ’ node 2 ’ , ’ node 3 ’ , ’ node 4 ’ } , ’ I n t e r p r e t e r ’ , ’

Latex ’ ) ;
228 l gd . FontS ize =8;
229 l gd . Locat ion= ’ NorthEast ’ ;
230

231 f i g u r e ( )
232 p l o t ( t_so l /3600 , data_q_e ( : , 1 ) , t_so l /3600 , data_q_e ( : , 2 ) )
233 y l a b e l ( ’ $q_{\mathrm{pr }}$ (m$^3$/ s ) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ ) ;
234 x l a b e l ( ’ $t$ ~( hour ) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ ) ;
235 g r i d o f f
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236 l gd=legend ({ ’ ( edge 1) ’ , ’ edge 2 ’ } , ’ I n t e r p r e t e r ’ , ’ Latex ’ ) ;
237 l gd . FontS ize =8;
238 l gd . Locat ion= ’ NorthEast ’ ;
239

240 f i g u r e ( )
241 p l o t ( t_so l /3600 , data_q_ch )
242 y l a b e l ( ’ $q_{\mathrm{ch}}$ (m$^3$/ s ) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ ) ;
243 x l a b e l ( ’ $t$ ~( hour ) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ ) ;
244 g r i d o f f
245 l gd=legend ({ ’ producer 2 ( edge 2) ’ , ’ consumer 1 ( edge 3) ’ , ’ consumer

2 ( edge 4) ’ } , ’ I n t e r p r e t e r ’ , ’ Latex ’ ) ;
246 l gd . FontS ize =8;
247 l gd . Locat ion= ’ NorthEast ’ ;
248

249 f i g u r e ( )
250 p l o t ( t_so l /3600 , data_P_pr )
251 y l a b e l ( ’$P_{\mathrm{pr }}$ (W) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ ) ;
252 x l a b e l ( ’ $t$ ~( hour ) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ ) ;
253 g r i d o f f
254 l gd=legend ({ ’ producer 1 ( edge 1) ’ , ’ producer 2 ( edge 2) ’ } , ’

I n t e r p r e t e r ’ , ’ Latex ’ ) ;
255 l gd . FontS ize =8;
256 l gd . Locat ion= ’ NorthEast ’ ;
257

258 f i g u r e ( )
259 p l o t ( t_so l /3600 , data_P_c_hat )
260 y l a b e l ( ’$P_{\mathrm{c}}$ (W) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ ) ;
261 x l a b e l ( ’ $t$ ~( hour ) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ ) ;
262 g r i d o f f
263 l gd=legend ({ ’ consumer 1 ( b io ) ’ , ’ consumer 2 ( ego ) ’ } , ’ I n t e r p r e t e r ’ ,

’ Latex ’ ) ;
264 l gd . FontS ize =8;
265 l gd . Locat ion= ’ NorthEast ’ ;
266

267 %% Save the r e l e v an t data .
268
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269 d e l e t e data_sim . mat
270 save ( ’ data_sim . mat ’ )
271 d i sp ( ’The data from the s imu l a t i o n s has been c o r r e c t l y saved . ’ )

7.4 Appendix D - Code Experiment 3

1 %Code 3 Endre Eisenga S3510913 Bache lor IP
2 %A s t a r t o f t h i s code i s from Juan , f u r t h e r more he he lped me

with some s p e c i f i c code when s t a t ed .
3

4 c l e a r a l l
5

6 %% System parameters
7

8 n_pr=2; %number o f produce r s
9

10 n_c=2; %number o f consumers
11

12 n_ch=3; %number o f CHORDS ( or number o f independent f l ows )
13

14 n_e=10; %number o f edges
15

16 n_N=8; %number o f nodes
17

18 rho=975; %den s i t y o f water
19

20 csh_water =4190; %S p e c i f i c heat o f water
21

22 V_e=rho ∗ csh_water ∗ [ 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ; 1 ] ; %vec t o r o f edges volumes
23

24 V_n=ze r o s (n_N, 1 ) ; % vec t o r o f node volumes
25

26

27 %% de f i n e the time
28

29 t0=0; %i n i t i a l t ime
30 t f =7∗(24∗60∗60) ; % f i n a l t ime
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31 tm=0.64∗ t f ; %%% th i s marks the t r a n s i t i o n in the i n c e n t i v e s_s at
the 4 th day in the a f t e rnoon

32 tu=0.357∗ t f ; %%% th i s marks the po in t were a new va lue f o r U_c at
exper iment 2 or p^b io and p^ego at exper iment 3 i s

implemented , day 2 in the a f t e rnoon
33

34 tspan=[ t0 t f ] ; %Time span
35

36 %% Matr ixes ac co rd ing to graph theory
37

38 F=[−1 ,1 ,0 ,0 , −1 , −1 ,1 , −1 , −1 ,1;
39 1 , 0 , 1 , 0 , 1 , 0 , 0 , 1 , 0 , 0 ;
40 1 , 0 , 0 , 1 , 1 , 1 , 0 , 1 , 1 , 0 ] ; %fundamental loop matr ix
41

42 calB0 =[1 ,0 , 0 , 0 , −1 ,0 , 0 , 0 , 0 , 0 ;
43 0 ,0 , −1 ,0 ,1 , −1 ,0 ,0 ,0 ,0 ;
44 0 , 0 , 0 , −1 ,0 , 1 , 1 , 0 , 0 , 0 ;
45 0 , 1 , 0 , 0 , 0 , 0 , −1 ,0 , 0 , 0 ;
46 −1 ,0 , 0 , 0 , 0 , 0 , 0 , 1 , 0 , 0 ;
47 0 , 0 , 1 , 0 , 0 , 0 , 0 , −1 ,1 , 0 ;
48 0 ,0 ,0 ,1 ,0 ,0 ,0 ,0 , −1 , −1;
49 0 , −1 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 1 ] ; %f i x e i n c i d en c e matr ix
50

51

52 B_pr=[ eye ( n_pr ) ; z e r o s (n_e+n_N−n_pr , n_pr ) ] ; %c o e f f i c i e n t matr ix
P_pr

53

54 B_c=[ z e r o s ( n_pr , n_c) ; eye (n_c) ; z e r o s (n_e+n_N−n_pr−n_c , n_c) ] ; %
c o e f f i c i e n t matr ix o f P_c

55

56

57 %% PI temp . reg . producer
58 T_pr_star=85∗ones (n_pr , 1 ) ;
59 alpha_pr_hat=1e4 ∗ [ 1 ; 1 ] ;
60 beta_pr_hat=4∗( eye ( n_pr ) / d iag ( alpha_pr_hat )^−2)∗ ones (n_pr , 1 ) ;
61
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62 %% PI f l ow reg . o f chord producer
63 J_pr = [ 1 ] ;
64 alpha_pr = [ 1 ] ;
65 beta_pr = [ 1 ] ;
66 Q_pr_star=1e −4 ∗ [ 0 . 1 ] ;
67

68 %% PI c o n t r o l l e r f l ow q_c
69 gamma_c=1e3∗ ones (n_c , 1 ) ;
70 T_c_star=55∗ones (n_c , 1 ) ;
71 %alpha_c=1e4 ∗ [ 1 ; 1 ] ;
72 alpha_c=100.0∗ alpha_pr_hat ;
73 %beta_c=1e20 ∗ [ 1 ; 1 ] ;
74 beta_c=4∗( eye (n_c) / d iag ( alpha_c )^−2)∗ ones (n_c , 1 ) ;
75

76 T_room_min=18∗ones (n_c , 1 ) ;
77 T_room_max=22∗ones (n_c , 1 ) ;
78 %T_amb = 5∗ ones (n_c , 1 ) ;
79 T_amb=@( t ) 5∗ s i n ( p i /12∗( t /3600) ) +5; %%% th i s f un c t i on depends

only on ’ t ’
80

81

82 %% Parameters ’ s o c i a l dynamics ’
83 a_s=ones (n_c , 1 ) ;
84

85 % Se t t i n g a d i f f e r e n c e f o t s_s f o r the morning and the a f t e rnoon
86 s_s=@( t ) ( ( t0<=t )&&(t<=tm) ) ∗0 .25∗ ones (n_c , 1 ) +((tm<t )&&(t<=t f ) )

∗0 .75∗ ones (n_c , 1 ) ;
87

88 c_s=ones (n_c , 1 ) ;
89 d_s=ones (n_c , 1 ) ;
90 p_ego=@( t ) ( ( t0<=t )&&(t<=tu ) ) ∗ [ 0 . 3 7 ; 0 . 3 7 ] . ∗ ones (n_c , 1 ) +(( tu<t )&&(

t<=t f ) ) ∗ [ 0 . 3 7 ; 0 . 9 ] . ∗ ones (n_c , 1 ) ;
91 p_bio=@( t ) ( ( t0<=t )&&(t<=tu ) ) ∗ [ 0 . 7 7 ; 0 . 7 7 ] . ∗ ones (n_c , 1 ) +(( tu<t )&&(

t<=t f ) ) ∗ [ 0 . 1 ; 0 . 7 7 ] . ∗ ones (n_c , 1 ) ;
92 % p_ego = [ 0 . 2 ; 0 . 8 ] . ∗ ones (n_c , 1 ) ;
93 % p_bio = [ 0 . 2 ; 0 . 8 ] . ∗ ones (n_c , 1 ) ;
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94

95 h_s=@( t ) ( ( t0<=t )&&(t<=tu ) ) ∗ [ 0 . 5 ; 0 . 5 ] . ∗ ones (n_c , 1 ) +(( tu<t )&&(t<=t f
) ) ∗ [ 0 . 2 5 ; 0 . 7 5 ] . ∗ ones (n_c , 1 ) ;

96 % a more ego consumer has h i ghe r v a l e s f o r h_s
97

98 %% Heat t r a n s f e r c o e f f i c i e n t .
99 A_c=30∗ones (n_c , 1 ) ;

100 % U_c=@( t ) ( ( t0<=t )&&(t<=tu ) ) ∗3 .14∗ ones (n_c , 1 ) +(( tu<t )&&(t<=t f ) )
∗40∗ ones (n_c , 1 ) ;

101 U_c=3.14∗ ones (n_c , 1 ) ;
102 % lambda_c=@( t ) d iag (U_c( t ) ) ∗(A_c) ;
103 lambda_c=diag (U_c) ∗A_c ;
104

105 %The green l i n e s are a c t i v a t e d f o r exper iment 2
106

107

108 %% Overa l l c l o s ed−loop dynamics
109 This i s made with the he lp o f Juan
110

111 T_e=@(x ) x ( 1 : n_e) ;
112 T_N=@(x ) x (n_e+1:n_e+n_N) ;
113 Q_pr=@(x ) x (n_e+n_N+1:n_e+n_N+(n_pr−1) ) ;
114 z_pr=@(x ) x (n_e+n_N+(n_pr−1)+1:n_e+n_N+2∗(n_pr−1) ) ;
115 z_c=@(x ) x (n_e+n_N+2∗(n_pr−1)+1:n_e+n_N+2∗(n_pr−1)+n_c) ;
116 z_s=@(x ) x (n_e+n_N+2∗(n_pr−1)+n_c+1:n_e+n_N+2∗(n_pr−1)+n_c+n_c) ;
117 p_s=@(x ) x (n_e+n_N+2∗(n_pr−1)+n_c+n_c+1:n_e+n_N+2∗(n_pr−1)+n_c+n_c

+n_c) ;
118 z_pr_hat=@(x ) x (n_e+n_N+2∗(n_pr−1)+n_c+n_c+n_c+1:n_e+n_N+2∗(n_pr

−1)+n_c+n_c+n_c+n_pr ) ;
119 P_c_hat=@(x ) x (n_e+n_N+2∗(n_pr−1)+n_c+n_c+n_c+n_pr+1:n_e+n_N+2∗(

n_pr−1)+n_c+n_c+n_c+n_pr+n_c) ;
120

121 n_x=n_e+n_N+2∗(n_pr−1)+n_c+n_c+n_c+n_pr+n_c ; %s i z e o f the s t a t e
v a r i a b l e

122

123
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124 %% The a u x i l i a r y d e f i n i t i o n s acco rd ing to the o v e r a l l c o n t r o l l e r
125 %This i s made with the he lp o f Juan .
126

127 T_pr=@(x ) [ eye ( n_pr ) z e r o s ( n_pr , n_e−n_pr ) ] ∗T_e( x ) ;
128

129 T_c=@(x ) [ z e r o s ( n_pr ) eye (n_c) z e r o s (n_c , n_e−n_pr−n_c) ] ∗T_e( x ) ;
130

131 T_c_in=@(x ) [ 0 , 1 , 0 , 0 , 0 , 0 , 0 , 0 ;
132 0 , 0 , 1 , 0 , 0 , 0 , 0 , 0 ] ∗T_N(x ) ;
133

134 q_c=@(x ) ( eye (n_c) / d iag ( rho ∗ csh_water ∗( T_pr_star−T_c( x ) ) ) ) ∗(−diag (
alpha_c ) ∗(T_c( x )−T_c_star )+z_c ( x ) ) ;

135

136 P_pr=@(x )−diag ( alpha_pr_hat ) ∗(T_pr( x )−T_pr_star )+z_pr_hat ( x ) ;
137

138 P_c=@( t , x ) d iag ( lambda_c ) ∗(T_room_min−[T_amb( t ) ; T_amb( t ) ] )+diag (
lambda_c ) ∗ d iag ( z_s ( x ) ) ∗(T_room_max−T_room_min) ;

139

140 P_ch=@( t , x ) [ [ 0 1 ] ∗P_pr( x ) ; P_c( t , x ) ] ;
141

142 q_ch=@(x ) [Q_pr( x ) ; q_c ( x ) ] ;
143

144 q_e=@(x )F’ ∗ q_ch ( x ) ;
145

146 calB=@(x ) calB0 ∗ d iag ( s i gn (q_e ( x ) ) ) ; %flow−ad ju s t ed i n c i d en c e
matr ix

147

148 calT=@(x ) 0 . 5 ∗ ( calB ( x )+abs ( calB ( x ) ) ) ; %t a r g e t nodes − edges matr ix
149

150 ca lS=@(x ) 0 . 5∗ abs ( calB ( x )−abs ( calB ( x ) ) ) ; %sou r c e s nodes − edges
matr ix

151

152

153 %% Overa l l f un c t i on acco rd ing to the o v e r a l l c o n t r o l l e r
154 %This i s made with the he lp o f Juan
155
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156 f=@( t , x ) [ [ [ − rho ∗ csh_water ∗ d iag ( abs (q_e ( x ) ) ) ∗T_e( x )+rho ∗ csh_water ∗
d iag ( abs (q_e ( x ) ) ) ∗ ca lS ( x ) ’∗T_N(x ) ;

157 rho ∗ csh_water ∗ calT ( x ) ∗ d iag ( abs (q_e ( x ) ) ) ∗T_e( x )−rho ∗ csh_water ∗
d iag ( calT ( x ) ∗ abs (q_e ( x ) ) ) ∗T_N(x ) ]+B_pr∗P_pr( x )−B_c∗P_c( t , x
) ] ;

158 −diag ( alpha_pr ) ∗(Q_pr( x )−Q_pr_star )+z_pr ( x ) ;
159 −(Q_pr( x )−Q_pr_star ) ;
160 −(T_c( x )−T_c_star ) ;
161 diag ( a_s ) ∗(p_s ( x )−z_s ( x )−diag (h_s ( t ) ) ∗ s_s ( t ) ) ;
162 diag ( c_s ) ∗( p_ego ( t )−p_s ( x ) )+diag (d_s ) ∗( p_bio ( t )−p_s ( x ) ) ;
163 −(T_pr( x )−T_pr_star ) ;
164 −(P_c_hat ( x )−P_c( t , x ) ) ] ;
165

166 M=blkd i ag ( d iag (V_e) , d iag (V_n) , d iag ( J_pr ) , d iag ( beta_pr ) , d iag (
beta_c ) , eye (n_c) , eye (n_c) , d iag ( beta_pr_hat ) , d iag (gamma_c) ) ;

167

168 op t i on s=ode s e t ( ’Mass ’ ,M) ;
169

170 %% I n i t i a l c o nd i t i o n s :
171

172 T_e0=20∗ones (n_e , 1 ) ;
173 T_N0=20∗ones (n_N, 1 ) ;
174 Q_pr0=0.5∗ [ Q_pr_star ] ;
175 z_pr0 = [ 0 . 0 ] ;
176 z_c0=ze r o s (n_c , 1 ) ;
177 z_s0=z e r o s (n_c , 1 ) ;
178 p_s0=ze r o s (n_c , 1 ) ;
179 z_pr_hat0=z e r o s ( n_pr , 1 ) ;
180 P_c_hat0=z e r o s (n_c , 1 ) ;
181

182 x0=[T_e0 ;T_N0;Q_pr0 ; z_pr0 ; z_c0 ; z_s0 ; p_s0 ; z_pr_hat0 ; P_c_hat0 ] ;
183

184 %% The ODE s o l v e r
185

186 [ t_sol , x_sol ]= ode15s ( f , tspan , x0 , op t i on s ) ;
187
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188 %% Extract the u s e f u l data
189

190 data_T_e= [ ] ;
191 data_T_N= [ ] ;
192 data_q_ch = [ ] ;
193 data_q_e = [ ] ;
194 data_P_pr = [ ] ;
195 data_P_c = [ ] ;
196 data_P_c_hat = [ ] ;
197

198 f o r i =1: s i z e ( t_sol , 1 )
199 data_T_e ( i , : )=T_e( x_sol ( i , : ) ) ;
200 data_T_N( i , : )=T_N( x_sol ( i , : ) ) ;
201 data_q_ch ( i , : )=q_ch ( x_sol ( i , : ) ’ ) ;
202 data_q_e ( i , : )=q_e ( x_sol ( i , : ) ’ ) ;
203 data_P_pr ( i , : )=P_pr( x_sol ( i , : ) ’ ) ;
204 data_P_c ( i , : )=P_c( t_so l ( i ) , x_sol ( i , : ) ’ ) ;
205 data_P_c_hat ( i , : )=P_c_hat ( x_sol ( i , : ) ’ ) ;
206

207 end
208

209

210 %% Plo t s
211

212 f i g u r e ( )
213 p l o t ( t_so l /3600 , data_T_e )
214 y l a b e l ( ’$T_{\mathrm{e}}$ ( $^\ c i r c$C ) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ ) ;
215 x l a b e l ( ’ $t$ ~( hour ) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ ) ;
216 g r i d o f f
217 l gd=legend ({ ’ edge 1 ’ , ’ edge 2 ’ , ’ edge 3 ’ , ’ edge 4 ’ } , ’ I n t e r p r e t e r ’ , ’

Latex ’ ) ;
218 l gd . FontS ize =8;
219 l gd . Locat ion= ’ NorthEast ’ ;
220

221 f i g u r e ( )
222 p l o t ( t_so l /3600 ,data_T_N)
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223 y l a b e l ( ’$T_{\mathrm{N}}$ ( $^\ c i r c$C ) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ ) ;
224 x l a b e l ( ’ $t$ ~( hour ) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ ) ;
225 g r i d o f f
226 l gd=legend ({ ’ node 1 ’ , ’ node 2 ’ , ’ node 3 ’ , ’ node 4 ’ } , ’ I n t e r p r e t e r ’ , ’

Latex ’ ) ;
227 l gd . FontS ize =8;
228 l gd . Locat ion= ’ NorthEast ’ ;
229

230 f i g u r e ( )
231 p l o t ( t_so l /3600 , data_q_e ( : , 1 ) , t_so l /3600 , data_q_e ( : , 2 ) )
232 y l a b e l ( ’ $q_{\mathrm{pr }}$ (m$^3$/ s ) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ ) ;
233 x l a b e l ( ’ $t$ ~( hour ) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ ) ;
234 g r i d o f f
235 l gd=legend ({ ’ ( edge 1) ’ , ’ edge 2 ’ } , ’ I n t e r p r e t e r ’ , ’ Latex ’ ) ;
236 l gd . FontS ize =8;
237 l gd . Locat ion= ’ NorthEast ’ ;
238

239 f i g u r e ( )
240 p l o t ( t_so l /3600 , data_q_ch )
241 y l a b e l ( ’ $q_{\mathrm{ch}}$ (m$^3$/ s ) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ ) ;
242 x l a b e l ( ’ $t$ ~( hour ) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ ) ;
243 g r i d o f f
244 l gd=legend ({ ’ producer 2 ( edge 2) ’ , ’ consumer 1 ( edge 3) ’ , ’ consumer

2 ( edge 4) ’ } , ’ I n t e r p r e t e r ’ , ’ Latex ’ ) ;
245 l gd . FontS ize =8;
246 l gd . Locat ion= ’ NorthEast ’ ;
247

248 f i g u r e ( )
249 p l o t ( t_so l /3600 , data_P_pr )
250 y l a b e l ( ’$P_{\mathrm{pr }}$ (W) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ ) ;
251 x l a b e l ( ’ $t$ ~( hour ) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ ) ;
252 g r i d o f f
253 l gd=legend ({ ’ producer 1 ( edge 1) ’ , ’ producer 2 ( edge 2) ’ } , ’

I n t e r p r e t e r ’ , ’ Latex ’ ) ;
254 l gd . FontS ize =8;
255 l gd . Locat ion= ’ NorthEast ’ ;
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256

257 f i g u r e ( )
258 p l o t ( t_so l /3600 , data_P_c_hat )
259 y l a b e l ( ’$P_{\mathrm{c}}$ (W) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ ) ;
260 x l a b e l ( ’ $t$ ~( hour ) ’ , ’ I n t e r p r e t e r ’ , ’ Latex ’ ) ;
261 g r i d o f f
262 l gd=legend ({ ’ consumer 1 ( g e t s b io ) ’ , ’ consumer 2 ( g e t s ego ) ’ } , ’

I n t e r p r e t e r ’ , ’ Latex ’ ) ;
263 l gd . FontS ize =8;
264 l gd . Locat ion= ’ NorthEast ’ ;
265

266 %% Save the r e l e v an t data .
267

268 d e l e t e data_sim . mat
269 save ( ’ data_sim . mat ’ )
270 d i sp ( ’The data from the s imu l a t i o n s has been c o r r e c t l y saved . ’ )
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