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Abstract

Modern engineering systems are increasingly more complex as they are generally the
result of the interconnection of a large number of components. Motivated by this,
a mathematical framework for comparing dynamical systems is required, in order to
define specifications on such components and to allow for the replacement of com-
ponents. The notion of simulation provides such a framework for continuous-time
linear systems. This notion is a powerful tool for non-deterministic linear systems
and leads to a notion of external equivalence which is finer than equality of external
behaviour. Using geometric control theory, the notion of simulation is characterized
for linear systems. In addition, it is shown that the property of simulation passes
over to interconnected linear systems for various types of interconnections. Moreover,
assume-guarantee contracts are introduced, which can be regarded as characteriza-
tions of system specifications. These contracts consist of a pair of assumptions, which
describe expected input behaviour of a linear system, and guarantees, which repre-
sent desired output behaviour of a linear system when interconnected with relevant
environments. These contracts define a class of compatible environments and imple-
mentations, and in this paper, conditions are established for the existence of such
implementations of assume-guarantee contract.
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Chapter 1

Introduction

Modern engineering systems are becoming increasingly more complex. This complexity
is often caused by the fact that these systems are generally the result of the intercon-
nection of many components. One can think for example of the manufacturing of a
car. During this process, many individual subsystems are interconnected in order to
make sure that no errors occur during the production of the car. Due to the increase in
complexity of these engineering systems, analysis of the total system becomes nearly
impossible. Therefore, the analysis of these types of systems needs to be done using a
modular approach, that is, based on the individual components. This type of analysis
does however raise some questions.

First of all, one may wonder what would happen to the total system if one would
replace a specific component with another subsystem. However, this leads to the
question whether two systems can be said to be equal. This question is an important
one within the fields of Systems and Control and Theoretical Computer Science. As
the notion of equivalence for linear systems is not easily defined, the notion of external
equivalence is investigated, instead. The main idea behind this notion is the fact that
we can only distinguish between two systems from ’the outside’, that is, we can only
distinguish between two systems if the distinction can be detected by some external
system interacting with these systems (Van der Schaft 2004).

An important framework established in the investigation of external equivalence
is the notion of simulation, which provides a mathematical framework that allows us
to express whether a given system is externally equivalent to another. This notion
originates from a similar notion in the field of Computer Science and is discussed in
more detail in (Haghverdi, Tabuada, and Pappas 2003). This notion provides a way
to compare linear systems by comparing the external behaviour of both systems.

One of the problems that occasionally arises in the construction of complex engi-
neering systems that consist of many interconnected components is the fact that these
components are manufactured independently. This may lead to inconsistencies when
assembling these subsystems. For example, it might not be possible to interconnect
some components, and even if we are able to interconnect them, the total system
might not have the desired external behaviour. In order to overcome these problems,
a framework is needed that provides us with the tools to give specifications to these
components. Contract theory is such a framework. This framework finds its origin
is the field of Computer Science, as for example is established in (Benveniste et al.
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2018). The notion of contract theory centers about the concept of assume-guarantee
contracts, which can be seen as a pair of assumptions and guarantees which provide
expected input behaviour of a system and desired output behaviour of a system when
interacting with its environment.

Even though the notion of contract theory is developed in the field of Computer
Science, there is no complete contract theory for continuous-time linear systems. This
paper will provide the first steps towards such a framework by using the notion of
simulation as a tool to compare linear systems. Aside from defining the most important
concepts within this framework, conditions will be established to determine whether
a given system satisfies the specifications imposed by a given contract.

In Chapter 2, the key notion of a simulation relation will be defined. Furthermore,
it will be explained when a linear system is simulated by another, and how one can
find such a simulation relation. In this chapter we will also look at the notion of
simulation in the context of linear systems with constraints on the dynamics of the
system. Lastly, a brief introduction into the somewhat stronger notion of bisimulation
will be provided. In Chapter 3, the results obtained with regards to simulation of single
systems will be applied to interconnected linear systems, where it will be investigated
whether the notion of simulation naturally passes over from single to interconnected
linear systems. Then, in Chapter 4, assume-guarantee contracts are defined as ways
to impose specifications on linear systems, where the notion of simulation is used as
a way to compare systems. In this chapter, terms as compatibility, implementation
and consistency will be defined, and it will be investigated under which conditions
a linear system can serve as an implementation of a contract. Furthermore, a brief
introduction into the notion of contract refinement will be given. Lastly, Chapter 5
will conclude this paper.
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Chapter 2

Simulation

In this chapter, the notion of simulation will be defined for continuous-time linear
systems. This notion of simulation provides a mathematical framework which expresses
when all possible state trajectories of a linear system can be externally simulated by
a state trajectory of another system, in the sense that the input-output data for both
systems coincide for all time. In Section 2.1 the key notion of a simulation relation
will be established, and in Section 2.2 it will be explained how one can determine
the largest simulation relation between to linear systems. Then, in Section 2.3, the
notion of simulation will be defined for linear systems with constraints, a class of linear
systems that have, aside from the dynamics of the system, also algebraic constraints on
the state trajectories of the system. Aside from the notion of simulation, there is also
the notion of bisimulation, which can be regarded as a two-sided version of the notion
of simulation. In Section 2.4 the fundamentals for this notion will be established.

2.1 Simulation Relations

For the majority of this article, we will consider linear systems of the following form:

Σi :

{
ẋi = Aixi +Biui + Eidi, xi ∈ Xi, ui ∈ Ui,
yi = Cixi, di ∈ Di, yi ∈ Yi.

(2.1)

It is assumed that Xi, Ui, Di and Yi are finite-dimensional linear spaces over R, and
for notational convenience we define T := [0,∞). Moreover, it will be assumed that
the function classes of admissible input functions ui : T → Ui, the function classes of
admissible disturbance functions di : T → Di, as well as the function classes of state
trajectories xi : T → Xi and output trajectories yi : T → Yi are all of class C∞. For
two systems of the form (2.1), a notion of a simulation relation can be defined, as can
be found in the following definition.
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Definition 2.1. Consider two systems Σ1 and Σ2 of the form as in (2.1). A
simulation relation of Σ1 by Σ2 is a linear subspace S ⊂ X1 × X2 that satisfies
the following property: If (x0

1, x
0
2) ∈ S, and u1(·) = u2(·) is any joint input func-

tion, then for any disturbance function d1(·) there exists a disturbance function
d2(·) such that the resulting state trajectory x1(·) with x1(0) = x0

1, and the state
trajectory x2(·) with x2(0) = x0

2 satisfy the following properties:

(i) (x1(t), x2(t)) ∈ S for all t ∈ T ; (2.2a)

(ii) y1(t) = y2(t) for all t ∈ T . (2.2b)

From this definition, it can be seen that if S is a simulation relation of Σ1 by Σ2, Σ2

has a richer input-output behaviour than Σ1. Namely, every input-output trajectory
of Σ1 can be matched by an input-output trajectory of Σ2, but only if the pair of
initial conditions for these trajectories are contained in S. If this statement holds for
any possible state trajectory of Σ1, implying that for every possible x0

1 there exists a
x0

2 such that (x0
1, x

0
2) ∈ S, we say that Σ1 is simulated by Σ2.

Definition 2.2. Consider two systems Σ1 and Σ2 as given in equation (2.1). Then
Σ1 is called simulated by Σ2, denoted by Σ1 � Σ2, if there exists a simulation
relation, S, of Σ1 by Σ2 that satisfies πX1(S) = X1, where πX1 denotes the canonical
projection of X1×X2 to X1. In this case, we call S a full simulation relation of Σ1

by Σ2

The notion of simulation is a very useful tool, as it provides a way to compare
linear systems. By comparing the external behaviour of linear systems with each
other, we can construct a notion of external equivalence which is much finer than
equality of external behaviour. From the definition of a simulation relation, together
with theory from controlled invariant subspaces, which can for example be found in
(Trentelman, Stoorvogel, and Hautus 2012), it becomes possible to establish linear
algebraic conditions which express when a linear subspace is a simulation relation,
making it significantly easier to check whether a linear system is a simulation relation.
The results of the following lemma are a first step towards this.

Lemma 2.3. Consider two systems Σ1 and Σ2 as given in equation (2.1). A
subspace S ⊂ X1 ×X2 is a simulation relation of Σ1 by Σ2 if and only if for every
(x1, x2) ∈ S and all u ∈ U1 ∩ U2 the following properties hold:

(i) for all d1 ∈ D1 there exists a d2 ∈ D2 such that

(A1x1 +B1u+ E1d1, A2x2 +B2u+ E2d2) ∈ S; (2.3a)

(ii) C1x1 = C2x2. (2.3b)

Proof. (⇒) Suppose S is a simulation relation of Σ1 by Σ2. Let (x0
1, x

0
2) ∈ S and

let u ∈ U1 ∩ U2. Then by the definition of a simulation relation it is given that for
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every disturbance function d1(·), there exists a disturbance function d2(·) such that
the resulting state trajectories x1(·) with x1(0) = x0

1 and x2(·) with x2(0) = x0
2 satisfy

the properties in equation (2.2a) and (2.2b). Since S is a linear subspace, and the
property in equation (2.2a) is satisfied, it can be concluded that for every d1(·) there
exists a d2(·) such that(

1

t

(
x1(t)− x0

1

)
,
1

t

(
x2(t)− x0

2

))
∈ S for all t ∈ T .

Furthermore, since S is a linear subspace of X1×X2, it is closed and therefore we also
have that

(ẋ1(t), ẋ2(t)) = lim
t→0

(
1

t

(
x1(t)− x0

1

)
,
1

t

(
x2(t)− x0

2

))
∈ S for all t ∈ T .

With the use of the expressions for ẋ1(t) and ẋ2(t), and by evaluating at every time
instance t ∈ T with x1 = x1(t), x2 = x2(t), u = u1(t) = u2(t), d1 = d1(t) and
d2 = d2(t) we see that for every d1 ∈ D1 there exists a d2 ∈ D2 such that

(A1x1 +B1u+ E1d1, A2x2 +B2u+ E2d2) ∈ S.

Therefore, we have shown that (2.3a) is satisfied. The validity of (2.3b) follows straight
from the definition and the expressions for the outputs y1(t) and y2(t).

(⇐) For the other direction assume that a subspace S satisfies the property that
for every (x1, x2) ∈ S and all u ∈ U1 ∩ U2 the equations (2.3a) and (2.3b) are sat-
isfied. By property (2.3a), it is implied that for all d1(·) there exists a d2(·) such
that (ẋ1(t), ẋ2(t)) ∈ S for all t ∈ T for which the derivative exists. Then, by the
reverse reasoning above, we must have that for every d1(·) there exists a d2(·) such
that (x1(t), x2(t)) ∈ S for all t ∈ T . Furthermore, since equation (2.3b) is satisfied, it
can be concluded that for all (x1, x2) ∈ S it is given that

y1(t) = C1x1(t) = C2x2(t) = y2(t)

for all t ∈ T . Therefore, the conditions of the definition of a simulation relation are
satisfied, from which it can be concluded that S is a simulation relation of Σ1 by
Σ2.

The results of Lemma 2.3 can be used to state and prove the following theorem,
which gives concrete algebraic conditions that need to be satisfied in order for a linear
subspace to be a simulation relation.
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Theorem 2.4. Consider two systems Σ1 and Σ2 as given in equation (2.1). A
subspace S ⊂ X1 × X2 is a simulation relation of Σ1 by Σ2 if and only if the
following properties hold:

(i) S + im

[
E1

0

]
⊂ S + im

[
0
E2

]
; (2.4a)

(ii)

[
A1 0
0 A2

]
S ⊂ S + im

[
0
E2

]
; (2.4b)

(iii) im

[
B1

B2

]
⊂ S + im

[
0
E2

]
; (2.4c)

(iv) S ⊂ ker
[
C1 −C2

]
. (2.4d)

Proof. (⇒) Assume S is a simulation relation of Σ1 by Σ2. Therefore, by Lemma 2.3,
it is given that for every (x1, x2) ∈ S and every u ∈ U1∩U2 the properties in equations
(2.3a) and (2.3b) are satisfied, which makes it possible to prove the statements in
equations (2.4a), (2.4b), (2.4c) and (2.4d).

Proof of (2.4a): It is obvious that S ⊂ S + im

[
0
E2

]
. Now, let (x1, x2) = (0, 0)

which is in S as S is a linear subspace, and let u = 0. Then, from (2.3a) it follows
that for all d1 ∈ D1 there exists a d2 ∈ D2 such that

(E1d1, E2d2) ∈ S.

From this it can be seen that

im

[
E1

0

]
⊂ S + im

[
0
E2

]
.

Therefore, we have proven that

S + im

[
E1

0

]
⊂ S + im

[
0
E2

]
.

Proof of (2.4b): Let (x1, x2) ∈ S, and let u = 0 and d1 = 0. Then there exists a
d2 ∈ D2 such that

(A1x1, A2x2 + E2d2) ∈ S.

From this, it can be seen that[
A1 0
0 A2

] [
x1

x2

]
∈ S + im

[
0
E2

]
.

As (x1, x2) ∈ S was chosen arbitrarily, this shows that[
A1 0
0 A2

]
S ∈ S + im

[
0
E2

]
.
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Proof of (2.4c): Let u ∈ U1 ∩ U2. Furthermore, let (x1, x2) = (0, 0) and d1 = 0.
Then there exists a d2 ∈ D2 such that

(B1u,B2u+ E2d2) ∈ S.

This implies that [
B1

B2

]
u ∈ S + im

[
0
E2

]
,

from which it can be concluded that

im

[
B1

B2

]
⊂ S + im

[
0
E2

]
.

Proof of (2.4d): Let (x1, x2) ∈ S. Then, by property (2.3b), it is given that

C1x1 = C2x2,

from which it can easily be seen that

(x1, x2) ∈ ker
[
C1 −C2

]
.

Therefore, it can be concluded that

S ⊂ ker
[
C1 −C2

]
.

As the statement in (2.4a), (2.4b), (2.4c) and (2.4d) are proven to be satisfied, it
has been shown that this direction of the proof is true.

(⇒) Suppose the properties in (2.4a), (2.4b), (2.4c) and (2.4d) are satisfied for
some subspace S ⊂ X1 ∩ X2. Let (x1, x2) ∈ S, u ∈ U1 ∩ U2 and let d1 ∈ D1. In order
to prove this direction, Lemma 2.3 will be used, for which it is needed to prove that
there exists a d2 ∈ D2 such that

(A1x1 +B1u+ E1d1, A2x2 +B2u+ E2d2) ∈ S,

or written equivalently in matrix-vector form,[
A1 0
0 A2

] [
x1

x2

]
+

[
B1

B2

]
u+

[
E1

0

]
d1 +

[
0
E2

]
d2 ∈ S.

First of all, by property (2.4b) there exists (a1, a2) ∈ S and c1 ∈ D2 such that[
A1 0
0 A2

] [
x1

x2

]
=

[
a1

a2

]
+

[
0
E2

]
c1.

Moreover, by property (2.4c) there exists (b1, b2) ∈ S and c2 ∈ D2 such that[
B1

B2

]
u =

[
b1

b2

]
+

[
0
E2

]
c2.
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By property (2.4a) there exists (e1, e2) ∈ S and c3 ∈ D2 such that[
E1

0

]
d1 =

[
e1

e2

]
+

[
0
E2

]
c3.

Substituting these expression above into[
A1 0
0 A2

] [
x1

x2

]
+

[
B1

B2

]
u+

[
E1

0

]
d1 +

[
0
E2

]
d2,

the following expression is obtained[
a1

a2

]
+

[
0
E2

]
c1 +

[
b1

b2

]
+

[
0
E2

]
c2 +

[
e1

e2

]
+

[
0
E2

]
c3 +

[
0
E2

]
d2.

For d2 = −(c1 + c2 + c3) ∈ D2, it can be seen that the above expression simplifies
to [

a1

a2

]
+

[
b1

b2

]
+

[
e1

e2

]
,

which is in S since S is a linear subspace. This means that for all (x1, x2) ∈ S,
u ∈ U1 ∩ U2 and d1 ∈ D1 there exists a d2 ∈ D2 such that

(A1x1 +B1u+ E1d1, A2x2 +B2u+ E2d2) ∈ S.

Furthermore, from property (2.4d) it is straightforward that (2.3b) holds. Therefore,
Lemma 2.3 can be used to conclude that S is a simulation relation of Σ1 by Σ2.

This concludes the proof of this theorem.

To illustrate the importance of this theorem when determining whether a system
is simulated by another, consider the following example, where the systems Σ and Σ′

are given by

Σ :



[
ẋ1

ẋ2

]
=

[
0 0

0 1

][
x1

x2

]
+

[
1

0

]
u;

y =
[
1 0

] [x1

x2

]
,

Σ′ :



[
ẋ′1
ẋ′2

]
=

[
0 0

0 1

][
x′1
x′2

]
+

[
1

0

]
u′;

y′ =
[
0 1

] [x′1
x′2

]
.

Note that for both these systems we have that E = E ′ = 0, and thus there is no
influence from the non-deterministic variable on the system. For these two systems, it
can be seen that Σ is not simulated by Σ′. To show this, suppose that it is the case
that Σ is simulated by Σ′, and let S be a full simulation relation of Σ by Σ′. Therefore,
by property (2.4d) we must have that

S ⊂ ker
[
C1 −C2

]
= ker

[
1 0 0 −1

]
= span




0
1
0
0

 ,


0
0
1
0

 ,


1
0
0
1


 .
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Furthermore, by property (2.4c) we must have that

im

[
B1

B2

]
⊂ im


1
0
1
0

 ⊂ S.
However, the above two statement can only hold simultaneously if S = {0}, which is
in contradiction with the fact that S is a full simulation relation. Therefore, we have
shown that Σ is not simulated by Σ′. However, by adjusting the linear systems a little,
we can solve this problem. Namely, if we change the linear systems into,

Σ :



[
ẋ1

ẋ2

]
=

[
0 0

0 1

][
x1

x2

]
+

[
1

0

]
u;

y =
[
1 0

] [x1

x2

]
,

Σ′ :



[
ẋ′1
ẋ′2

]
=

[
0 0

0 1

][
x′1
x′2

]
+

[
1

0

]
u′;

y′ =
[
1 1

] [x′1
x′2

]

we see that

S :=




1
0
1
0

 ,


0
1
0
0




satisfies the properties of Theorem 2.4. Therefore, S is a full simulation relation of Σ
by Σ′, thus implying that Σ is simulated by Σ′.

With the results obtained from the previous lemma and theorem, the following
lemma can be proven. This lemma tells us that the property of simulation is actually
a preorder, in the sense that this property is both reflexive and transitive. The fact
that the notion of simulation is a preorder is very useful, as it enables us to use it as a
means of comparing the external behaviour of two systems. The proof of the following
lemma can be found in Appendix A.

Lemma 2.5. Let Σ1, Σ2 and Σ3 be linear systems of the form as given in equa-
tion (2.1). Then the following hold:

(i) Σ1 � Σ1 for all Σ1; (2.5a)

(ii) if Σ1 � Σ2 and Σ2 � Σ3, then Σ1 � Σ3. (2.5b)

In this section, we have defined the notion of simulation for two linear systems.
The key concept within this notion is that of a simulation relation. Furthermore, in
Theorem 2.4 we have determined necessary and sufficient algebraic conditions for a
linear subspace to be a simulation relation. However, it has not been explained how
one can find a simulation relation for two linear systems, or how one can determine
whether such a simulation relation even exists. The solutions of these problems will
be established in the following section.
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2.2 Maximum Simulation Relation

Similarly as with controlled invariant subspaces (Trentelman, Stoorvogel, and Hautus
2012), one can establish an algorithm to find the largest or maximum simulation
relation for two linear system. From this maximum simulation relation, one can very
easily check whether a linear system is simulated by another. The aim of this section
is to describe this algorithm.

In order to define the maximum simulation relation algorithm mentioned above,
consider two systems Σ1 and Σ2 of the form as given in (2.1). For notational conve-
nience, we introduce the following maps:

Ā :=

[
A1 0
0 A2

]
, Ē1 :=

[
E1

0

]
,

Ē2 :=

[
0
E2

]
, C̄ :=

[
C1 −C2

]
.

(2.6)

Now, consider the following sequence of linear subspaces of X1 ×X2, where j ∈ N:

S0 = X1 ×X2,

S1 = {x ∈ S0 | x ∈ ker C̄},
S2 = {x ∈ S1 | Āx+ im Ḡ1 ⊂ S1 + im Ḡ2},

...

Sj = {x ∈ Sj−1 | Āx+ im Ḡ1 ⊂ Sj−1 + im Ḡ2}.

For this sequence of linear subspaces, there is the following theorem.

Theorem 2.6. The sequence of subsets S0,S1,S2, ... as defined above satisfies the
following properties:

(i) for all j ≥ 0, Sj is a linear subspace or empty; (2.7a)

(ii) for each j ≥ 0 we have that Sj ⊃ Sj+1; (2.7b)

(iii) there exists a k <∞ for which Sk = Sk+1 := S∗. Moreover,

we have that Sj = S∗ for all j ≥ k; (2.7c)

(iv) S∗ is either empty of equals the largest subspace of X1 ×X2

that satisfies properties (2.4a), (2.4b) and (2.4d). (2.7d)

Proof. As this theorem, as well as the proof of this theorem, are almost identical to that
corresponding to the controlled invariant subspace algorithm (Trentelman, Stoorvogel,
and Hautus 2012), only a sketch of the proof will be given. Statements (i) and (ii)
follows immediately from the way each Sj is defined. Furthermore, statement (iii)
follows from the finite-dimensionality of X1 × X2 and from statement (ii). Therefore,
only statement (iv) will be proven in more detail.

Assume that Sk = Sk+1 = S∗ is nonempty. First of all, it will be proven that S∗
satisfies (2.4a), (2.4b) and (2.4d). Since S∗ = Sk = Sk+1 we have that

ĀS∗ + im Ḡ1 = ĀSk+1 + im Ḡ1 ⊂ Sk + im Ḡ2 = S∗ + im Ḡ2
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which shows that ĀS∗ ⊂ S∗+im Ḡ2, and thus statement (2.4b) is satisfied. Moreover,
from the above reasoning, it can be seen that im Ḡ1 ⊂ S∗ + im Ḡ2, so also

S∗ + im Ḡ1 ⊂ S∗ + im Ḡ2

from which it can be concluded that (2.4a) is true. Lastly, S∗ ⊂ S1 = ker C̄ and thus
also (2.4d) is satisfied.

To prove that S∗ is the largest subspace of X1×X2 that satisfied these properties,
let S be any subspace satisfying (2.4a), (2.4b) and (2.4d). Then, by induction, it can
be shown that S ⊂ Sj for all j ≥ 0, and thus it is also given that S ⊂ S∗. This shows
that S is the largest subspace of X1 × X2 that satisfies properties (2.4a), (2.4b) and
(2.4d).

With the use of this algorithm, it becomes very easy to check whether a linear
system is simulated by another. As we already have that S∗ is a linear subspace, and
we have that it satisfies (2.4a), (2.4b) and (2.4d), S needs to additionally satisfy (2.4c)
and πX1(S∗) = X1 in order to be a full simulation relation. If this is the case, we have
found a full simulation relation of Σ1 by Σ2, implying that Σ1 is simulated by Σ2. This
result is also stated in the following corollary.

Corollary 2.7. Consider two linear system Σ1 and Σ2. Then Σ1 is simulated by
Σ2 if and only if S∗ satisfies (2.4c) together with the fact that πX1(S∗) = X1.

In order to further clarify the algorithm with which one can find the maximum
simulation relation, consider the following linear systems:

Σ :



[
ẋ1

ẋ2

]
=

[
0 0

1 1

][
x1

x2

]
+

[
1

0

]
u;

y =
[
1 0

] [x1

x2

]
,

Σ′ :



[
ẋ′1
ẋ′2

]
=

[
1 0

0 0

][
x′1
x′2

]
+

[
0

1

]
u′;

y′ =
[
0 1

] [x′1
x′2

]
.

By applying the maximum simulation relation algorithm, we find that S0 = R4 and

S1 = ker
[
C1 −C2

]
= ker

[
1 0 0 −1

]
= span




1
0
0
1

 ,


0
1
0
0

 ,


0
0
1
0


 .

Furthermore, we find that

S2 = S1 = span




1
0
0
1

 ,


0
1
0
0

 ,


0
0
1
0


 = S∗.

Now, since we have that

im

[
B1

B2

]
= im


1
0
0
1

 ⊂ S∗,
as well as the fact that πR2(S∗) = R2, we have that S∗ is a full simulation relation of
Σ by Σ′, and thus we also have that Σ is simulated by Σ′.
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2.3 Linear Systems with Constraints

In the previous sections, the notion of simulation has been studied for a general type
of linear system without any constraints on the dynamics of the system. However, for
some applications, this type of linear system will not be applicable, as there are some
predetermined requirements or constraints on the system. However, for these type of
systems it is possible to establish the notion of simulation too, as will be shown in this
section. The establishment of the notion of simulation for this class of linear systems
will be proven to be relevant when introducing the framework of contract theory, as
can be seen in Chapter 4.

In order to generalize the notion of simulation to linear systems with constraints,
consider the following type of linear system

Σi :


ẋi = Aixi + Eidi

wi = Cixi

0 = Hixi

, (2.8)

where xi ∈ Xi denotes the state, wi ∈ Wi is a variable denoting the external be-
haviour of the system and di ∈ Di is a variable denoting the non-determinism of the
system. Just as before, Xi,Wi and Di are finite-dimensional linear subspaces and the
trajectories xi(·), di(·) and wi(·) are of class C∞.

Aside from the dynamics and external behaviour of Σi, equation (2.8) provides
algebraic constraints on the state trajectories of the system, which are represented by
the last equation of the system. Therefore, not all initial conditions will lead to a state
trajectory that satisfies the dynamics and external behaviour of the system (Besselink,
Johansson, and Van der Schaft 2019). This leads to the introduction of the consistent
subspace, V∗i , which we define to be the set of all initial conditions x0

i such that there
exists a function di(·) such that the resulting state trajectory xi(·) with xi(0) = x0

i

satisfies the constraint Hixi(t) = 0 for all t ∈ T . This consistent subspace can also be
characterized as the largest subspace Vi ⊂ Xi such that

AiVi ⊂ Vi + im Ei, Vi ⊂ ker Hi,

see (Megawati and Van der Schaft 2018).

Using the consistent subspace, it is possible to define simulation relations for two
systems of the form (2.8).
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Definition 2.8. Consider two linear systems Σ1 and Σ2 as given in (2.8). A linear
subspace S ⊂ X1×X2 satisfying πXi

(S) ⊂ V∗i for i ∈ {1, 2} is a simulation relation
of Σ1 by Σ2 if for all (x0

1, x
0
2) ∈ S the following properties hold:

(i) for all d1(·) such that x1(·) with x1(0) = x0
1 satisfies x1(t) ∈ V∗1 for all

t ∈ T there exists a d2(·) such that x2(·) with x2(0) = x0
2 satisfies

(x1(t), x2(t)) ∈ S for all t ∈ T ; (2.9a)

(ii) w1(t) = w2(t) for all t ∈ T . (2.9b)

We say that Σ1 is simulated by Σ2, denoted by Σ1 � Σ2, if there exists a simulation
relation of Σ1 by Σ2 that satisfies πX1(S) = V∗1 .

When comparing the above definition and the one as given in Definition 2.1, it
can be seen that the definitions are very similar. The only difference between the two
definitions is the fact that we require the restriction of a simulation relation S onto
Xi to be contained in the consistent subspace of Σi. This additional requirement is a
consequence of the constraints on the dynamics of the system, causing not every initial
condition in Xi to lead to a state trajectory satisfying the dynamics in (2.8). As we are
interested in matching every possible state trajectory of Σ1 by a state trajectory of Σ2,
we only need to take into account the initial conditions that lead to a state trajectory
that is compatible with the dynamics of the system and the constraints imposed on
these dynamics. By adding this requirement, we ensure that only the initial conditions
for which this is the case are included in the simulation relation.

For linear systems with contraints on the dynamics, it is possible to construct
algebraic conditions for a linear subspace in order to be a simulation relation, similarly
as with linear systems without any constraints. These conditions are given in the
following lemma of which the proof is omitted, as it is similar to the proof of Lemma 2.3.

Lemma 2.9. Consider two linear system Σ1 and Σ2 of the form as in equa-
tion (2.8). A linear subspace S ⊂ X1×X2 satisfying πXi

(S) ⊂ V∗i for i ∈ {1, 2} is a
simulation relation of Σ1 by Σ2 if and only if the following conditions are satisfied:

(i) for all d1 ∈ D1 such that A1x1 + E1d1 ∈ V∗1 , there exists a

d2 ∈ D2 such that A2x2 + E2d2 ∈ V∗2 and

(A1x1 + E1d1, A2x2 +B2u+ E2d2) ∈ S; (2.10a)

(ii) C1x1 = C2x2. (2.10b)

2.4 Bisimulation

With the obtained framework of the notion of simulation, it becomes possible to de-
velop the framework for the notion of bisimulation. The core idea of bisimulation of
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two linear systems is that both systems have the same set of input-output trajecto-
ries, implying that every input-output trajectory of one system can be matched by an
input-output trajectory of the other, and vice versa. From this, it can be seen that
the concept of simulation is a one-sided version of bisimulation. Therefore, all results
already obtained within the framework of simulation can be adapted into results that
hold for the notion of bisimulation. In order to formally establish the framework of
bisimulation, we first introduce the key concept of a bisimulation relation, as is given
in the following definition.

Definition 2.10. Consider two linear systems Σ1 and Σ2 as given in equation
(2.1). A bisimulation relation between Σ1 and Σ2 is a linear subspace B ⊂ X1×X2

that satisfies the following property: If (x0
1, x

0
2) ∈ B and u1(·) = u2(·) is any joint

input function, then for every disturbance function d1(·) there exists a disturbance
function d2(·) such that the resulting state trajectories x1(·) with x1(0) = x0

1, and
x2(·) with x2(0) = x0

2 satisfy the following two properties:

(i) (x1(t), x2(t)) ∈ B for all t ∈ T ; (2.11a)

(ii) y1(t) = y2(t) for all t ∈ T . (2.11b)

and, conversely, for every disturbance function d2(·) there exists a disturbance
function d1(·) such that the resulting state trajectories also satisfy (2.11a) and
(2.11b).

From this definition, it can be seen that if B is a bisimulation relation between Σ1

and Σ2, both systems have the same set of input-output trajectories, meaning that
every input-output trajectory of Σ1 can be matched to an input-output trajectory of
Σ2 and vice versa, but this only is the case if the pair of initial conditions for these
trajectories are contained in B. Two systems are said to be bisimilar if the above
reasoning holds for any possible state-trajectory, no matter the initial conditions, as
is stated in the following definition.

Definition 2.11. Two systems Σ1 and Σ2 of the form as given in equation (2.1)
are called bisimilar, denoted by Σ1 ∼ Σ2, if there exists a bisimulation relation
B ⊂ X1 ×X2 between them that satisfies

πX1(B) = X1, πX2(B) = X2, (2.12)

where πXi
: X1 ×X2 → Xi for i = 1, 2 denote the canonical projections.

Similarly as with the simulation relation, it is possible to construct necessary and
sufficient algebraic conditions that express when a subspace of X1×X2 is a bisimulation
relation. The following lemma and theorem provide these conditions, but since the
results are almost identical to those of Lemma 2.3 and Theorem 2.4, the proofs will
be omitted. For the proofs of Lemma 2.12 and Theorem 2.13, one can find these in
(Van der Schaft 2004).
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Lemma 2.12. Consider two linear systems Σ1 and Σ2 as given in equation (2.1).
A subspace B ⊂ X1×X2 is a bisimulation relation between Σ1 and Σ2 if and only
if for every (x1, x2) ∈ B and for every input function u ∈ U1 ∩ U2 the following
properties are satisfied:

(i) for all d1 ∈ D1 there exists a d2 ∈ D2 such that

(A1x1 +B1u+ E1d1, A2x2 +B2u+ E2d2) ∈ B; (2.13a)

(ii) for all d2 ∈ D2 there exists a d1 ∈ D1 such that

(A1x1 +B1u+ E1d1, A2x2 +B2u+ E2d2) ∈ B; (2.13b)

(iii) C1x1 = C2x2. (2.13c)

From this lemma the following theorem can be stated, which provides necessary
and sufficient algebraic conditions for a linear subspace to be a bisimulation relation.

Theorem 2.13. Consider two systems Σ1 and Σ2 as given in equation (2.1). A
subspace B ⊂ X1 ×X2 is a bisimulation relation between Σ1 and Σ2 if and only if
the following properties are satisfied:

(i) B + im

[
E1

0

]
= B + im

[
0
E2

]
:= BE; (2.14a)

(ii)

[
A1 0
0 A2

]
B ⊂ BE; (2.14b)

(iii) im

[
B1

B2

]
⊂ BE; (2.14c)

(iv) B ⊂ ker
[
C1 −C2

]
. (2.14d)

Within this chapter, we have established the fundamentals of the notion of simu-
lation for linear systems, both with and without constraints on the dynamics of the
system. This notion, which expresses when any possible input-output trajectory of
a linear system can be matched by an input-output trajectory of another system,
provides a way to compare two linear systems with each other, by comparing the
input-output behaviour of both systems. The fact that this notion can be used as a
way to compare linear systems is considered very useful when working with complex
engineering systems, as will be illustrated later on within this article when introducing
assume-guarantee contracts.

17



Chapter 3

Interconnected Systems

In the previous chapter, the main focus has been on the establishment of the notion of
simulation for single linear systems. Since modern engineering systems are becoming
more complex systems in the sense that they are often build from the interconnection
of multiple smaller subsystems, it is useful to investigate whether the property of
simulation is also applicable for interconnections of linear systems. This chapter will
explore this question by looking at the notion of simulation when applied to various
interconnections of linear systems. Important to note is that all results in this chapter
will be obtained using the notion of simulation, however, similar results can also be
obtained using the notion of bisimulation, see (Kerber and Van der Schaft 2010).

3.1 Series Interconnection

Within this chapter, some concrete forms of interconnections will be investigated by
determining whether the notion of simulation can be passed over to interconnected
linear systems. In other words, the main question that we will try to answer is the
following: if we have linear systems Σ1 and Σ2 which are simulated by Σ′1 and Σ′2
respectively, is it also the case that the interconnection of Σ1 and Σ2 is simulated by
the interconnection of Σ′1 and Σ′2?

The first type of interconnection that will be explored is the series interconnection
of two linear systems Σ1 and Σ2, denoted by Σ1×Σ2 as displayed in the figure below.
This type of interconnection is constructed by using the output of Σ1 as the input of
the system Σ2.

Figure 3.1: The series interconnection, Σ1 × Σ2, of linear systems Σ1 and Σ2.

In order to determine the dynamics of the interconnection Σ1 × Σ2, consider two
linear systems Σ1 and Σ2, together with linear systems Σ′1 and Σ′2 of the following
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form,

Σi :

{
ẋi = Aixi +Biui + Eidi,

yi = Cixi.
Σ′i :

{
ẋ′i = A′ix

′
i +B′iu

′
i + E ′id

′
i,

y′i = C ′ix
′
i.

i = 1, 2.

(3.1)
The series interconnection of Σ1 and Σ2 is characterized by the fact that the output

of Σ1 is used as the input of Σ2, or more specifically y1(·) = u2(·). Therefore, the
dynamics of the series interconnection of Σ1 and Σ2 is given by a linear system of the
following form, denoted by Σ1 × Σ2:

Σ1 × Σ2 :

{
ẋ12 = A12x12 +B12u12 + E12d12,

y12 = C12x12,
(3.2)

with state x12 = (x1, x2) ∈ X1 × X2, input u12 = u1 ∈ U1, output y12 = y2 ∈ Y2 and
driver for non-determinism d12 = (d1, d2) ∈ D1 ×D2. Furthermore, the linear maps in
(3.2) are given by

A12 =

[
A1 0
B2C1 A2

]
, B12 =

[
B1

0

]
,

E12 =

[
E1 0
0 E2

]
, C12 =

[
0 C2

]
.

(3.3)

The series interconnection of Σ′1 and Σ′2, denoted by Σ′1 × Σ′2 can be constructed
similarly. For these interconnections, the following theorem can be proven, which
shows that if Σi is simulated by Σ′i for i = 1, 2, then we also have that the series
interconnection of Σ1 and Σ2 is simulated by the series interconnection of Σ′1 and Σ′2.

Theorem 3.1. Consider the linear systems Σ1, Σ′1, Σ2 and Σ′2 as given in equation
(3.1), such that Σi � Σ′i for i = 1, 2. Then Σ1 × Σ2 � Σ′1 × Σ′2.

Proof. Since Σi � Σ′i for i = 1, 2, there exist full simulation relations S1 and S2 such
that the system Σi is simulated by Σ′i with simulation relation Si. Let

S12 = {(x1, x2, x
′
1, x
′
2) ∈ X1 ×X2 ×X ′1 ×X ′2 | (x1, x

′
1) ∈ S1, (x2, x

′
2) ∈ S2}.

This space clearly is a linear subspace, since S1 and S2 are linear subspaces. To prove
that this subspace is a simulation relation of Σ1×Σ2 by Σ′1×Σ′2, it will be shown that S12

satisfies the conditions of Lemma 2.3. For this, let x = (x12, x
′
12) = (x1, x2, x

′
1, x
′
2) ∈ S12

and let u = u12 = U1 ∩ U ′1.

Proof of (i): Let d = (d1, d2) ∈ D1×D2. Since S1 is a simulation relation of Σ1 by
Σ′1, and d1 ∈ D1, by Lemma 2.3 there exists a d′1 ∈ D′1 such that

(A1x1 +B1u+ E1d1, A
′
1x
′
1 +B′1u+ E ′1d

′
1) ∈ S1. (3.4)

Furthermore, since S2 is a simulation relation of Σ2 by Σ′2 and d2 ∈ D2, together with
the fact that C1x1 = C ′1x

′
1, by Lemma 2.3 there exists a d′2 ∈ D′2 such that

(A2x2 +B2C1x1 + E2d2, A
′
2x
′
2 +B′2C

′
1x
′
1 + E ′2d

′
2) ∈ S2. (3.5)
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Now, let d′ = (d′1, d
′
2) where d′1 and d′2 are as found above. For this d′, it can be seen

that since (3.4) and (3.5) are satisfied we have that

(A12x12 +B12u+ E12d,A
′
12x
′
12 +B′12u+ E ′12d

′) =


A1x1 +B1u+ E1d1

A2x2 +B2C1x1 + E2d2

A′1x
′
1 +B′1u+ E ′1d

′
1

A′2x
′
2 +B′2C

′
1x
′
1 + E ′2d

′
2

 ∈ S12.

Therefore, it has been shown that for every d ∈ D1 × D2 there exists a d′ ∈ D′1 × D′2
such that

(A12x12 +B12u+ E12d,A
′
12x
′
12 +B′12u+ E ′12d

′) ∈ S12.

Proof of (ii): Note that since S2 is a simulation relation, the following holds,

C12x12 = C2x2 = C ′2x
′
2 = C ′12x

′
12,

which shows that C12x12 = C ′12x
′
12.

This proves that S12 is a simulation relation of Σ1×Σ2 by Σ′1×Σ′2. In order to prove
Σ1 × Σ2 � Σ′1 × Σ′2, it still needs to be proven that πX1×X2(S12) = X1 ×X2. However,
this follows straight from the fact that S1 and S2 are full simulation relations, thus
implying that

πX1(S1) = X1, πX2(S2) = X2.

Therefore, it must be the case that πX1×X2(S12) = X1 ×X2, which shows that S12 is a
full simulation relation. This concludes the proof of this theorem.

From the results and the proof of this theorem, it can be seen that a similar result
also holds for the series interconnection of a finite number of linear systems of the form
as in (3.1), as is stated in the following corollary.

Corollary 3.2. Consider n linear systems Σ1,Σ2, ...,Σn of the form as in (3.1).
If there exists n linear systems Σ′1,Σ

′
2, ...,Σ

′
n such that Σi � Σ′i, then the series

interconnection of Σ1, ...,Σn is simulated by the series interconnection of Σ′1, ...,Σ
′
n.

3.2 Feedback Interconnection

Another type of interconnection that can be considered is the feedback interconnection
of two linear systems, as represented in Figure 3.2.
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Figure 3.2: The feedback interconnection, ΣC , of two linear systems Σ1 and Σ2.

For this type of interconnection, it can be seen that for i = 1, 2, Σi has an additional
input represented by ei ∈ Ei, as well as an additional output, given by zi ∈ Zi. With
these additional input and output, the dynamics of the linear systems are of the
following form:

Σi :


ẋi = Aixi +Biui +Giei + Eidi,

yi = Cixi,

zi = Hixi.

Σ′i :


ẋ′i = A′ix

′
i +B′iu

′
i +G′ie

′
i + E ′id

′
i,

y′i = C ′ix
′
i,

z′i = H ′ix
′
i.

(3.6)
When considering the feedback interconnection of Σ1 and Σ2 as shown in Figure 3.2,
which is represented by u1(·) = y2(·) and u2(·) = y1(·), it can be seen that the dynamics
of the feedback interconnection, ΣF , is given by a linear system of the following form:

ΣF :

{
ẋF = AFxF +GF eF + EFdF ,

zF = HFxF ,
(3.7)

with state xF = (x1, x2) ∈ X1 × X2, external input eF = (e1, e2) ∈ E1 × E2, output
zF = (z1, z2) ∈ Z1 × Z2 and driver for non-determinism dF = (d1, d2) ∈ D1 × D2.
Furthermore, the linear maps in (3.7) are given by

AF =

[
A1 B1C2

B2C1 A2

]
, GF =

[
G1 0
0 G2

]
,

EF =

[
E1 0
0 E2

]
, HF =

[
H1 0
0 H2

]
.

(3.8)

The feedback interconnection of Σ′1 and Σ′2, represented by Σ′F , can be constructed in
the exact same way. For these linear systems, there is the following theorem.

Theorem 3.3. Consider the linear systems Σ1, Σ2, Σ′1 and Σ′2 as given in (3.6).
If Σi � Σ′i for i = 1, 2, then ΣF � Σ′F .
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Proof. Since Σ1 � Σ′1 and Σ2 � Σ′2, there exists full simulation relations S1 and S2,
such that for i = 1, 2 the system Σi is simulated by Σ′i with simulation relation Si. Let

SF = {(x1, x2, x
′
1, x
′
2) ∈ X1 ×X2 ×X ′1 ×X ′2 | (x1, x

′
1) ∈ S1, (x2, x

′
2) ∈ S2}

This space clearly is a linear subspace, since S1 and S2 are linear subspaces. To
proof that this subspace is a simulation relation of ΣF by Σ′F , it will be shown that
this subspace satisfies the conditions of Lemma 2.3. For this, let x = (xF , x

′
F ) =

(x1, x2, x
′
1, x
′
2) ∈ SF and let e = (e1, e2) ∈ E1 × E2 ∩ E ′1 × E ′2.

Proof of (i): Let d = (d1, d2) ∈ D1×D2. Since S1 is a simulation relation of Σ1 by
Σ′1, and d1 ∈ D1, we have that C2x2 = C ′2x

′
2, thus by Lemma 2.3 there exists a d′1 ∈ D′1

such that

(A1x1 +B1C2x2 +G1e1 + E1d1, A
′
1x
′
1 +B′1C

′
2x
′
2 +G′1e1 + E ′1d

′
1) ∈ S1. (3.9)

Furthermore, since S2 is a simulation relation of Σ2 by Σ′2 and d2 ∈ D2, we have that
C1x1 = C ′1x

′
1 and thus by Lemma 2.3 there exists a d′2 ∈ D′2 such that

(A2x2 +B2C1x1 +G2e2 + E2d2, A
′
2x
′
2 +B′2C

′
1x
′
1 +G′2e2 + E ′2d

′
2) ∈ S2. (3.10)

Now, let d′ = (d′1, d
′
2) where d′1 and d′2 are as found above. For this d′, it can be seen

that since (3.9) and (3.10) are satisfied, the following holds:

(AFxF +GF e+ EFd,A
′
Fx
′
F +G′F e+ E ′Fd

′) =


A1x1 +B1C2x2 +G1e1 + E1d1

A2x2 +B2C1x1 +G2e2 + E2d2

A′1x
′
1 +B′1C

′
2x
′
2 +G′1e1 + E ′1d

′
1

A′2x
′
2 +B′2C

′
1x
′
1 +G′2e2 + E ′2d

′
2

 ∈ SF .
Therefore, it has been shown that for every d ∈ D1 × D2 there exists a d′ ∈ D′1 × D′2
such that

(AFxF +GF e+ EFd,A
′
Fx
′
F +G′F e+ E ′Fd

′) ∈ SF .

Proof of (ii): Note that since both S1 and S2 are simulation relations, the following
holds,

HFxF = H1x1 +H2x2 = H ′1x
′
1 +H ′2x

′
2 = H ′Fx

′
F ,

which shows that HFxF = H ′Fx
′
F .

This proves that SF is a simulation relation of ΣF by Σ′F . In order to proof SF is a
full simulation relation it still needs to be proven that πX1×X2(SF ) = X1×X2. However,
this follows straight from the fact that S1 and S2 are full simulation relations, thus
implying that

πX1(S1) = X1, πX2(S2) = X2.

Therefore, it must also be the case that πX1×X2(SF ) = X1 × X2. This concludes the
proof of this theorem.
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3.3 Interconnection by External Variables

In this section, we will consider the interconnection of linear systems through the
external variables. For this, we consider two linear systems Σ1 and Σ2 of the following
form

Σi :


ẋi = Aixi + Eidi,

wi = Cixi,

0 = Hixi,

i ∈ {1, 2}. (3.11)

These two linear systems can be interconnected by setting

w1 = w2. (3.12)

When doing this, we denote their composition by Σ1 ⊗ Σ2. The dynamics of this
interconnection is of the following form

Σ1 ⊗ Σ2 :


ẋ⊗ = A⊗x⊗ + E⊗d⊗,

w⊗ = C⊗x⊗,

0 = H⊗x⊗.

(3.13)

with state x⊗ = (x⊗1 , x
⊗
2 ) ∈ X1 × X2, external variable w⊗ ∈ W1 ∩W2 and driver for

non-determinism d⊗ = (d⊗1 , d
⊗
2 ) ∈ D1×D2. Furthermore, the linear maps in (3.13) are

given by

A⊗ =

[
A1 0
0 A2

]
, E⊗ =

[
E1 0
0 E2

]

C⊗ =
1

2

[
C1 C2

]
, H⊗ =

H1 0
0 H2

C1 −C2

 , (3.14)

where the last row of the linear map H⊗ restricts the external behaviour of the system
to satisfy the characterization of the interconnection as given in equation (3.12). For
the composition Σ1 ⊗ Σ2, remember that the consistent subspace, V⊗∗ is the largest
subspace V⊗ ⊂ X1 ×X2 that satisfies

A⊗V⊗ ⊂ V⊗ + im E⊗, V⊗ ⊂ ker H⊗.

In the next result, it will be shown that the composition Σ1⊗Σ2 is simulated by both
Σ1 and Σ2. The proof of this lemma can be found in Appendix A.

Lemma 3.4. Consider two linear systems Σ1 and Σ2 of the form as in equation
(3.11), and consider the interconnection through external variables as given in
(3.13) and (3.14). Then the following two statements hold:

(i) for i ∈ {1, 2},Σ1 ⊗ Σ2 � Σi; (3.15a)

(ii) If Σ is a system of the form (3.11) that satisfies Σ � Σi for i ∈ {1, 2},
then Σ � Σ1 ⊗ Σ2. (3.15b)
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With the result of this lemma, we can prove the following theorem, which tells us
that if we have two systems Σ1 and Σ2, which are simulated by Σ′1 and Σ′2 respectively,
then we also have that the interconnection Σ1⊗Σ2 is simulated by the interconnection
Σ′1 ⊗ Σ′2.

Theorem 3.5. Consider the linear systems Σ1, Σ2, Σ′1 and Σ′2, all of the form as
given in equation (3.11). If Σi � Σ′i for i = {1, 2}, then Σ1 ⊗ Σ2 � Σ′1 ⊗ Σ′2.

Proof. For i = {1, 2}, let Σi and Σ′i be linear systems of the form as given in (3.11) such
that Σi � Σ′i. From the first statement of Lemma 3.4 we have that Σ1⊗Σ2 � Σi � Σ′i
for i = {1, 2}. Therefore, we can conclude that Σ1 ⊗ Σ2 � Σ′i. Then, by the second
statement of Lemma 3.4, we can conclude that Σ1 ⊗ Σ2 � Σ′1 ⊗ Σ′2.

In this chapter, we have studied the notion of simulation with respect to various
specific types of interconnected linear systems. For this types of interconnections, we
have shown that the property of simulation passes on to interconnections as well, in the
sense that if two systems Σ1 and Σ2 are simulated by Σ′1 and Σ′2 respectively, we also
have that the interconnection of Σ1 and Σ2 is simulated by the interconnection of Σ′1
and Σ′2. Since modern engineering systems are typically constructed of many compo-
nents, which are interconnected with each other, the results obtained in this chapter
are very useful, as they can be found to be a powerful tool for various engineering
purposes.
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Chapter 4

Contract Theory

A reoccurring problem with modern engineering systems that are comprised of many
interconnected components, is that the manufacturing of these components is done in-
dependently from each other. Due to this, the environment in which these components
will eventually act is often not taken into account. As this environment will eventually
consist of the other components of the system, it might be the case that the individual
components are not consistent with each other, meaning that interconnection of the
subsystems might not be possible. Moreover, it might also be the case that we wish
the total system to have specific properties, which we can only achieve if the individual
components have specific properties or requirements. These aforementioned problems
occurring during the construction of a complex system might be solved by developing
a mathematical framework that allows us to impose specifications onto linear systems,
making it possible to control the dynamics of the components in such a way that
the components are consistent with each other. Contract theory is a framework that
provides this. This framework is built around assume-guarantee contracts, which can
be seen as a way to describe expected input behaviour and desired output behaviour
of a system, thus allowing us to specify the external behaviour of the systems. The
origin of this notion lies within the field of Computer Science, and (Benveniste et al.
2018) provides a framework for contract theory with regards to this field. Within this
chapter, the first steps will be made to define a similar framework in the context of
continuous-time linear systems. This will be done by using the notion of simulation,
as can be seen in Section 4.1. After that, in Section 4.2, the framework of contract
theory will be studied further by looking into the concept of contract refinement.

4.1 Contract Theory

Consider a linear system of the following form:

Σ :

{
ẋΣ = AΣxΣ +BΣuΣ + EΣdΣ,

yΣ = CΣxΣ.
(4.1)

Since Σ is an open system, it interconnects with its surroundings, which provide the
input trajectories of the system. These surroundings can be represented as a linear
system, called the environment, which has the following form:

E :

{
ẋE = AExE + EEdE,

yE = CExE.
(4.2)
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The interconnection between the linear system Σ and its environment E is illustrated
in Figure 4.1. In this figure, it can be seen that the environment provides the input of
the linear system Σ, and that both the input and output of the linear system Σ are
chosen as the output of the interconnected system E × Σ.

Figure 4.1: The interconnection of a linear system Σ with its environment E.

For the linear system Σ and its environment E as given in (4.1) and (4.2) respec-
tively, the dynamics of the interconnected system E × Σ, as illustrated in Figure 4.1,
is given by the following linear system.

E × Σ :

{
ẋEΣ = AEΣxEΣ + EEΣdEΣ,

yEΣ = CEΣxEΣ,
(4.3)

with state xEΣ = (xE, xΣ) ∈ XE × XΣ, driver for non-determinism dEΣ = (dE, dΣ) ∈
DE×DΣ and output yEΣ = (yE, yΣ) ∈ YE×YΣ. Furthermore, the linear maps in (4.3)
are given by

AEΣ =

[
AE 0
BΣCE AΣ

]
, EEΣ =

[
EE 0
0 EΣ

]
, CEΣ

[
CE 0
0 CΣ

]
. (4.4)

Even though it is quite complicated to fully control and steer the input trajectories
of the environment, it is possible to express which properties the output trajectories
of the environment are expected to satisfy. These properties can be represented by a
linear system, A, called the assumptions. This linear system, A, has a similar form as
the environment, E, and can therefore be represented in the following way:

A :

{
ẋA = AAxA + EAdA,

yA = CAxA.
(4.5)

Aside from this, it is possible to express what external behaviour is desired from the
interconnection of a linear system with its environment. This can also be done using a
linear system, called the guarantees, G, which is of the form as given below. Note that
the output of this system consists of two parts, as the output of the interconnection
E × Σ does too.

G :


ẋG = AGxG + EGdG,[
uG

yG

]
=

[
Cu

G

Cy
G

]
xG = CGxG.

(4.6)

The linear systems that describe the assumptions and guarantees together form an
assume-guarantee contract.
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Definition 4.1. An (assume-guarantee) contract, C = (A,G) is a pair of assump-
tions, A, and guarantees, G, where A and G are linear systems of the form as
given in (4.5) and (4.6) respectively.

To put differently, a contract is a pair of linear systems, of which the first describes
which input behaviour is expected from the environment in which the linear system
will act, and the second describes which external behaviour is desired from the in-
terconnection of the system with its environment. From this, it can be seen that a
contract defines two different sets of linear systems. First of all, it defines a set of envi-
ronments of the form as in (4.2) such that these systems satisfy the assumptions, that
is, the set of output trajectories of an environment within this set should be contained
in the set of output trajectories of the assumptions. The second set consists of linear
systems of the form as in (4.1) such that when these linear systems are interconnection
with an environment of the first set, the interconnected system satisfies the guarantees,
and thus the set of output trajectories is contained in the set of output trajectories
of the guarantees. In the following definition, these two sets are described a bit more
precisely.

Definition 4.2. Consider a linear system Σ of the form as is given in (4.1),
together with an environment E as given in (4.2). Furthermore, let C = (A,G) be
a contract. Then there are the following definitions:

1) The environment E is called compatible with contract C if E � A.

2) The linear system Σ is said to implement the contract C if E×Σ � G for all
environment E that are compatible with C. If Σ implements the contract C,
we also refer to Σ as an implementation of C

3) The contract C is called consistent if there exists at least one implementation
of C.

Since the aim of an assume-guarantee contract is to impose specifications on a linear
system by controlling the external behaviour of the system, it is useful to determine
whether there exists a linear system that can satisfy the assumptions and guarantees
of a given contract, or put differently, it is useful to determine whether a contract is
consistent. However, from the definition, it is quite difficult to determine whether a
linear system implements a contract. Fortunately, there is the following lemma, which
provides an easier way to determine this.

Lemma 4.3. Consider a linear system Σ and its environment E as given in equa-
tions (4.1) and (4.2). Then Σ implements the contract C = (A,G) if and only if
A× Σ � G.

Proof. (⇒) Suppose Σ implements the contract C = (A,G). Then, using the definition,
this means that E × Σ � G for all environments E that satisfy E � A. Since A � A
as was shown in Lemma 2.5, it must be the case that A× Σ � G.
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(⇐) Assume that A×Σ � G and let E be an environment such that E � A. Since
Σ � Σ, we have by Theorem 3.1 that

E × Σ � A× Σ.

Therefore, by the transitivity of the property of the simulation relation, see Lemma 2.5,
it is the case that E × Σ � G. This shows that E × Σ � G for all compatible
environments E, and thus by definition we have that Σ implements the contract C.

The above lemma explains which conditions a linear system Σ needs to satisfy in
order to be an implementation of the contract C = (A,G). However, it is not always
the case that there exists an implementation for a contract. The next lemma gives a
necessary condition for a contract to be consistent, and thus whether an implementa-
tion for that contract exists.

Theorem 4.4. Consider a contract C = (A,G), where A and G are given as in
equations (4.5) and (4.6) respectively. The contract C is consistent only if A � Gu,
where Gu describes the input behaviour of the guarantees G and is given by the
following linear system:

Gu :

{
ẋG = AGxG + EGdG;

uG = Cu
GxG.

Proof. Since the proof of this lemma follows a very similar reasoning as the proof of
previous theorems, only a sketch of the proof will be given.
Suppose the contract C = (A,G) is consistent. Then, by Lemma 4.3 there exists a
linear system Σ such that A×Σ � G. Therefore, there exists a full simulation relation
S of A× Σ by G. Now consider the following subspace Su ⊂ XA × G:

Su = {(xA, xG) ∈ XA ×XG | there exists a xΣ such that (xA, xΣ, xG) ∈ S}

Then, it can very easily be seen that this subspace satisfies the properties of Lemma 2.3,
which means that Su is a simulation relation of A by Gu. Furthermore, it can be shown
that πXA

(Su) = XA, thus implying that A � Gu.

Until now, we have only regarded contracts for single linear systems. However, the
framework of contract theory can also be applied to the interconnection of one or more
linear system. Even though this subject is beyond the scope of this article, an example
of a result for interconnected linear systems can be found in the following theorem,
where we recall that ⊗ indicates a interconnection by external variables as represented
in (3.13) and (3.14). The proof of this theorem can be found in Appendix A

Theorem 4.5. Let Σ1 be an implementation of the contract C1 = (A1, G1) and let
Σ2 be an implementation of the contract C2 = (A2, G2). Then the interconnected
linear system Σ1⊗Σ2 is an implementation of the contract C = (A1⊗A2, G1⊗G2).
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4.2 Contract Refinement

An important concept within contract theory is the notion of contract refinement.
This notion makes it possible to compare contracts with each other. The following
definition explains what it means for a contract C1 to refine another contract C2.

Definition 4.6. Let C1 = (A1, G1) and C2 = (A2, G2) be two contracts as in the
form of Definition 4.1. The contract C1 is said to refine the contract C2 if the
following conditions are satisfied:

1) If E is a compatible environment of C2, then E is a compatible environment
of C1;

2) If Σ is an implementation of C1, then Σ is an implementation of C2.

Put differently, this definition says that if a contract C1 refines the contract C2,
it means that C1 specifies stricter guarantees that have to be satisfied under weaker
assumptions. Indeed, if C1 refines C2, C1 allows more compatible environments than
C2, but on the other hand has less implementations than C2. Therefore C1 can be seen
as expressing a stricter specification than C2. From the definition, it can be rather
complicated to determine whether a contract refines another contract. However, it is
possible to construct sufficient conditions under which a contract C1 refines another
contract C2 (Shali, Van der Schaft, and Besselink 2021). Before being able to state these
conditions however, the following lemma needs to be proven. This lemma tells us that
if Σ is an implementation of the contract C = (A,G), then Σ is also an implementation
of the contract C ′ = (A,A⊗G). Recall that the interconnection A⊗G is given by the
following linear system:

A⊗G :



[
ẋA

ẋG

]
=

[
AA 0

0 AG

][
xA

xG

]
+

[
EA 0

0 EG

][
dA

dg

]
,[

uG

yG

]
=

[
CA 0

0 Cy
G

][
xA

xG

]
,

0 =
[
CA −Cu

G

] [xA
xG

]
.

The result of the following lemma plays an important role in the establishment of suffi-
cient conditions for refinement. The proof of this lemma can be found in Appendix A.

Lemma 4.7. Consider the contract C = (A,G) where A and G are given as in
(4.5) and (4.6). If A× Σ � G, then A× Σ � A⊗G.

With the result of this lemma, it becomes possible to establish sufficient conditions
for a contract to refine another. These conditions are stated in the following theorem.
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Theorem 4.8. Consider two contracts C1 = (A1, G2) and C2 = (A2, G2), where
A1 and A2 are of the form as in (4.5) and G1 and G2 are as given in (4.6). Suppose
C1 is consistent. Then C1 refines C2 if A2 � A1 and A2 ⊗G1 � G2.

Proof. In order to prove this theorem, it will be shown that the conditions of Def-
inition 4.6 are satisfied. Suppose that C1 = (A1, G1) is consistent, and let E be a
compatible environment of C2. Therefore, by definition, this implies that E � A2.
However, since the property of simulation is transitive, and A2 � A1, we have that
E � A1, from which we can conclude that E is also a compatible environment of C1.

Furthermore, let Σ be an implementation of C1. By Lemma 4.3, this means that
A1 × Σ � G1. From the previous lemma, we can conclude that we also have that
A1 × Σ � A1 ⊗ G1. Now consider the interconnection A2 × Σ. Since A2 � A1, we
have by Theorem 3.1 that A2 × Σ � A1 × Σ. By the reasoning before, we see that
A2 × Σ � A1 ⊗ G1 � G2, where the last simulation relation follows from one of the
assumptions. Therefore, we have that A2 × Σ � G2, thus showing that Σ is also an
implementation of C2. Since both conditions of Definition 4.6 are satisfied, it can be
concluded that C1 refines C2.

In this chapter, we introduced assume-guarantee contracts for linear systems, which
can be seen as a pair of linear systems describing the expected output behaviour of the
environment in which a linear system will act, as well as describing the desired output
behaviour for the linear system when interconnected with its environment. By intro-
ducing these contracts, we can give precise specifications to the external behaviour of
linear systems. This framework of contract theory, in which the notion of simulation
plays a very important role, proves to be useful when working with complex engi-
neering systems, as it allows us to give precise specifications on system components,
ensuring that the individual components are consistent, in the sense that interconnec-
tion between them is possible and that the total interconnected system satisfies desired
external behaviour.
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Chapter 5

Conclusion

In this paper, we have provided the first steps towards a mathematical framework
of contract theory for continuous-time linear systems. In order to do this, we first
introduced the notion of simulation as a way to compare linear systems. This notion
tells us that a linear system is simulated by another if every state trajectory of the
former system can be matched by a state trajectory of the latter, in the sense that
the input-output data are equal. This notion proved to be a powerful tool in the
framework of contract theory, as it allowed us to determine whether a linear system
satisfied the external behaviour as imposed by the specification of a contract.

In Chapter 3 we applied the notion of simulation to interconnected linear systems
using the results already obtained. We looked at various interconnections and for all
these we found that the following property holds: If Σ1 and Σ2 are simulated by Σ′1 and
Σ′2 respectively, than we also have that the interconnection of Σ1 and Σ2 is simulated
by the interconnection of Σ′1 and Σ′2. This is a powerful result, as this shows us that the
notion of simulation naturally passes over from single linear systems to interconnected
linear systems. Furthermore, this results shows that the notion of simulation can also
be used to compare interconnected linear systems.

Lastly, in Chapter 4, we introduced a way to impose specifications on linear systems
with the use of the notion of assume-guarantee contracts. These can be regarded as a
pair of linear systems: assumptions, which describes the expected input behaviour of
the environment to a linear system, and guarantees, which represent the desired output
behaviour of the system when interacting with its environment. Hence, a contract
defines a set of compatible environments, as well a set of implementations, which
can be seen as linear systems that can adhere to the assumptions and guarantees of
the contract. For these contracts, we have established results which give us conditions
under which a linear system is a compatible environment, as well as an implementation
of the system. Moreover, we determined which conditions a contract needs to satisfy
in order to be consistent, that is, to have an implementation. Lastly, we briefly looked
into the notion of contract refinement, which can be seen as a way to compare contracts
with each other.

This paper can be seen as providing the first steps towards a mathematical frame-
work of contract theory for continuous-time linear systems with the use of the notion of
simulation. Within this paper, we have established that the notion of simulation nat-
urally passes over to interconnected linear systems. Furthermore, we have shown that
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we can construct the concept of assume-guarantee contracts where simulation is used
as a way to compare linear systems. However, not much has been said about contract
theory with regards to interconnected linear systems. As complex systems typically
consist of many interconnected components, this is an interesting and relevant topic
for further research.
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Appendix A

Proofs

Proof of Lemma 2.5. The two parts of this lemma will be proven individually.
Proof of (2.5a): Consider the following subspace:

R = {(x1, x̄1) ∈ X1 ×X1 | x1 = x̄1}.

Let (x1, x̄1) ∈ R, u ∈ U1 and let d1 ∈ D1. When picking d̄1 = d1 we have that

(A1x1+B1u+E1d1, A1x̄1+B1u+E1d̄1) = (A1x1+B1u+E1d1, A1x1+B1u+E1d1) ∈ R.

Furthermore, since (x1, x̄1) ∈ R, we have that C1x1 = C1x̄1 and clearly we have that
πX1(R) = X1. Therefore, we have shown that R is a full simulation relation of Σ1 by
Σ1, which means that Σ1 � Σ1.
Proof of (2.5b): Suppose Σ1 � Σ2 with full simulation relation S12 and that Σ2 � Σ3

with full simulation relation S23. Now, consider the following subspace:

S13 = {(x1, x3) ∈ X1 ×X3 | ∃ x2 ∈ X2 such that (x1, x2) ∈ S12 and (x2, x3) ∈ S23}.

Now, let (x1, x3) ∈ S13, let u ∈ U1 ∩ U3 and let d1 ∈ D1. Since S12 is a simulation
relation, there exists a d2 ∈ D2 such that

(A1x1 +B1u+ E1d1, A2x2 +B2u+ E2d2) ∈ S12.

For this d2, we have that there exists a d3 ∈ D3 such that

(A2x2 +B2u+ E2d2, A3x3 +B3u+ E3d3) ∈ S23,

since S23 is a simulation relation. This however shows that there exists a d3 ∈ D3 such
that

(A1x1 +B1u+ E1d1, A3x3 +B3u+ E3d3) ∈ S13.

Furthermore, since (x1, x3) ∈ S13, there exists a x2 ∈ X2 such that

C1x1 = C2x2 = C3x3.

Therefore, we have shown that S13 is a simulation relation of Σ1 by Σ3. Lastly, since
πX1(S12) = X1 and πX2(S23) = X2, we also have that πX1(S13) = X1. Therefore, we
have shown that Σ1 � Σ3.
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Proof of Lemma 3.4. The two statements in (i) and (ii) will be proven separately.
Proof of (i) The proof of this statement will only be shown for i = 1. The proof for
i = 2 will then following similarly.

Consider the following subspace S ⊂ X1 ×X2 ×X1:

S = {(x⊗1 , x⊗2 , x1) ∈ X1 ×X2 ×X1 | (x⊗1 , x
⊗
2 ) ∈ V⊗∗, x1 = x⊗1 }.

For this subspace it is clear that πX1×X2(S) = V⊗∗. Furthermore, we have that since
x1 = x⊗1 for all (x⊗1 , x

⊗
2 , x1) ∈ S, we also have that πX1(S) = πX1(V⊗∗). Therefore, by

the properties of the consistent subspace and the way the linear maps are defined in
(3.14), we have that

A1πX1(V⊗∗) ⊂ πX1(V⊗∗) + im E1, πX1(V⊗∗) ⊂ ker H1.

This shows that πX1(V⊗∗) ⊂ V∗1 , and thus also πX1(S) ⊂ V∗1 .

The only thing that still needs to be proven is whether S satisfies the properties of
a simulation relation as stated in Lemma 2.9. For this, let (x⊗, x1) = (x⊗1 , x

⊗
2 , x1) ∈ S

and let d⊗ = (d⊗1 , d
⊗
2 ) be such that A⊗x⊗ + E⊗d⊗ ∈ V⊗∗. Since x1 = x⊗1 , it can be

seen that when choosing d1 = d⊗1 , we have that

(A1x
⊗
1 + E1d

⊗
1 , A2x

⊗
2 + E2d

⊗
2 , A1x1 + E1d1) ∈ S.

This indeed ensures that A1x1 + E1d1 ∈ V∗1 , since A1x1 + E1d1 ∈ πX1(S) ⊂ V∗1 by the
reasoning above.

Furthermore, since (x⊗1 , x
⊗
2 , x1) ∈ S, we have that (x⊗1 , x

⊗
2 ) ∈ V⊗∗ and thus also

that (x⊗1 , x
⊗
2 ) ∈ ker H⊗. From the way H⊗ is defined, we see that C1x

⊗
1 = C2x

⊗
2 .

Therefore, and since x⊗1 = x1, we get that C⊗x⊗ = 1
2
(C1x

⊗
1 + C2x

⊗
2 ) = C1x1.

Thus we see that S satisfies all properties of a simulation relation, from which we can
conclude that Σ1 ⊗ Σ2 � Σ1.

Proof of (ii) Let Σ be a system of the form as given in equation (3.11), but it will
be represented without the indices. Furthermore, assume that Σ � Σi with simulation
relation Si, and consider the following linear subspace

S = {(x, x⊗1 , x⊗2 ) ∈ X × X1 ×X2 | (x, x⊗1 ) ∈ S1, (x, x
⊗
2 ) ∈ S2}.

Since S1 and S2 are simulation relations, we can conclude that πX (S) = V∗.

Next, it will be proven that the subspace S satisfies the properties from Lemma
2.9. For this, let (x, x⊗1 , x

⊗
2 ) ∈ S and let d be such that Ax + Ed ∈ V∗. Since S1

is a simulation relation, there exists a d⊗1 such that A1x
⊗
1 + E1d

⊗
1 ∈ V∗1 and (Ax +

Ed,A1x
⊗
1 +E1d

⊗
1 ) ∈ S1. Similarly, there exists a d⊗2 such that A2x

⊗
2 +E2d

⊗
2 ∈ V∗2 and

(Ax + Ed,A2x
⊗
2 + E2d

⊗
2 ) ∈ S2. When combining these two things, we see that there

exists a d⊗ = (d⊗1 , d
⊗
2 ) such that (A⊗x⊗ + E⊗d⊗) ∈ V⊗∗ and

(Ax+ Ed,A⊗x⊗ + E⊗d⊗) ∈ S.

Furthermore, since (x, x⊗1 , x
⊗
2 ) ∈ S, we have that (x, x⊗1 ) ∈ S1, and thus Cx = C1x

⊗
1 .

Similarly, (x, x⊗2 ) ∈ S2 and thus Cx = C2x
⊗
2 . Therefore, we have that

C⊗x⊗ =
1

2
(C1x

⊗
1 + C2x

⊗
2 ) = Cx.
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Now that we have proven that S satisfies the properties of Lemma 2.9, the last
thing that still needs to shown is that πX1×X2(S) ⊂ V⊗∗. From the above reasoning,
we saw that

(Ax+ Ed,A1x
⊗
1 + E1d

⊗
1 , A2x

⊗
2 + E2d

⊗
2 ) ∈ S.

Therefore, we can conclude thatA 0 0
0 A1 0
0 0 A2

S ⊂ S + im

E 0 0
0 E1 0
0 0 E2

 .
From this, we can conclude thatA⊗πX1×X2(S) ⊂ πX1×X2(S)+imE⊗. Now, let (x⊗1 , x

⊗
2 ) ∈

πX1×X2(S) and let x be such that (x, x⊗1 , x
⊗
2 ) ∈ S. Therefore, we have that C1x

⊗
1 =

Cx = C2x
⊗
2 . Furthermore, for i = {1, 2}, (x, x⊗i ) ∈ Si and πXi

(S) ⊂ V∗i , and thus
Hix

⊗
i = 0, so we also have that πX1×X2(S) ⊂ kerH⊗. This shows that πX1×X2(S) ⊂ V⊗∗,

which is what we needed to prove. Therefore, this concludes the end of the proof.

Proof of Lemma 4.7. Assume A × Σ � G, which means that there exists a full
simulation relation S ⊂ XA × XΣ × XG of A × Σ by G. Now, consider the following
linear subspace S ′ ⊂ XA ×XΣ ×XA ×XG:

S ′ = {(xA, xΣ, x̄A, xG) | (xA, xΣ, xG) ∈ S, x̄A = xA}.

From the fact that S is a simulation relation, it can be seen that πXA×XΣ
(S ′) = XA×XΣ,

as well as the fact that πXA×XG
(S ′) ⊂ V∗XA×XG

. The only thing that still needs to be
proven is that S ′ satisfies the conditions of Lemma 2.9. For this, let (xA, xΣ, xA, xG) ∈
S ′, and let dAΣ(dA, dΣ) ∈ DA ×DΣ. Since S is a simulation relation, there exists a dG
such that

(AAxA + EAdA, AΣxΣ +BΣCAxA + EΣdΣ, AGxG + EGdG) ∈ S.

Picking dAG = (dA, dG), we see that we have that

(AAxA + EAdA, AΣxΣ +BΣCAxA + EΣdΣ, AAxA + EAdA, AGxG + EGdG) ∈ S ′.

This shows that the first condition of Lemma 2.9 is satisfied. For the second condition,
we use the fact that πXA×XG

(S ′) ⊂ V∗XA×XG
. From this, we see that CAxA = Cu

GxG =
CAx̄A. Furthermore, since we have that S is a simulation relation, we have that

(CAxA, CΣxΣ) = (Cu
GxG, C

y
GxG).

When combining these two facts, we see that

(CAxA, CΣxΣ) = (Cu
GxG, C

y
GxG) = (CAx̄A, C

y
GxG).

Since all conditions of Lemma 2.9 are satisfied, we have shown that S ′ is a simulation
relation of A× Σ by A⊗G, as thus, we have proven that A× Σ � A⊗G.
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Proof of Lemma 4.5. Let Σ1 be an implementation of the contract C1 = (A1, G1),
and thus we have that A1×Σ1 � G1. Similarly we have that Σ2 is an implementation of
the contract C2 = (A2, G2), and thus A2×Σ2 � G2. Now consider the interconnection
A1 ⊗ A2 × Σ1 ⊗ Σ2. Note that we have by Lemma 3.4 that A1 ⊗ A2 � A1 and
A1 ⊗ A2 � A2. Furthermore, we have that Σ1 ⊗ Σ2 � Σ1 and Σ1 ⊗ Σ2 � Σ2.

Therefore, we see that

A1 ⊗ A2 × Σ1 ⊗ Σ2 � A1 × Σ1 � G1,

and similarly
A1 ⊗ A2 × Σ1 ⊗ Σ2 � A2 × Σ2 � G2.

Therefore, we can conclude that

A1 ⊗ A2 × Σ1 ⊗ Σ2 � G1 ⊗G2.

This shows that Σ1 ⊗ Σ2 is an implementation of the contract
C = (A1 ⊗ A2, G1 ⊗G2).
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