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Abstract: In adaptive driving, control over the vehicle is dynamically divided between the driver
and an intelligent system. In order to develop a system that adapts its degree of control to the
mental state of the driver, a robust method of measuring their cognitive load is required. This
study focuses on pupillometry as a possible predictor for cognitive load, which is here defined as a
combination of working memory load (WML) and visuospatial demands. We expected to find a
positive correlation between cognitive load and pupil size. Additionally, we were interested in the
effect of cognitive load on speed-keeping efforts, as measured by eye fixations on the speedometer.
We expected to find a negative correlation between cognitive load and speedometer checking.

To investigate this, a simulated-driving experiment with eye-tracking was conducted in which
WML and visuospatial demands were manipulated separately. In the simulation participants drove
on a straight highway for 60 minutes. WML was manipulated by an n-back task (n = 0, 1, 2, 3, 4),
performed by means of speed regulation. Visuospatial demands were manipulated by a change in
the driving environment: a construction site with reduced lane width, increasing driving difficulty.

Results indicate that pupil size is a predictor for WML, but not for visuospatial demands. We
conclude that in order to fully capture cognitive load while driving, pupillometry should be used
in combination with a measure of visuospatial demands. Moreover, a negative correlation between
WML and number of fixations on the speedometer was found. This highlights speed-keeping aid
as an application for adaptive automation based on cognitive load.

1 Introduction

Driving a car is a challenging task. It involves pro-
cessing a large number of stimuli and constantly
updating a mental model of the environment. Not
to mention, operating a vehicle requires making ap-
propriate decisions to ensure the safety of both the
driver and other road users. Driving is even more
challenging for young and novice drivers. They are
more prone to a high level of mental workload than
experienced drivers due to their low level of oper-
ating skills, lack of driving experience (Gregersen
& Bjurulf, 1996) and not fully-matured prefrontal
cortex (Ross et al., 2014). This in turn is one of the
causes for the relatively large number of traffic ac-
cidents that young drivers are involved in (Sena et
al., 2013). And indeed, more generally, human fail-
ure is the cause of the majority of traffic accidents
(De Waard, 1996).

An often proposed solution to this issue is au-
tomated driving, which refers to the vehicle being
operated by an intelligent system (Cabrall, Janssen,
& De Winter, 2018). However, human supervision
is necessary even in fully automated driving to han-

dle abnormal situations (Brookhuis & De Waard,
2007). Situations where the human operator must
suddenly take back manual control then pose a
serious risk. The driver is likely to respond inade-
quately due to their reduced attentional awareness
and the erosion of their operating skills (Dijkster-
huis, Stuiver, Mulder, Brookhuis, & De Waard,
2012). This is where adaptive automation comes
into play.

In adaptive automation the division of control
between the machine and the human operator is
not static. Rather, it is based on changes in the
physical environment or the condition of the op-
erator (Sheridan, 2011). An important facet of
this is adaptive automation based on the human
factor of mental workload. An intelligent car that
counteracts the negative effects of a high cognitive
load on driving performance can greatly benefit
the driver’s safety.

We must first ask what the concept of cognitive
load means. Let us define cognitive load as the
level of perceived cognitive effort when performing
a task. Two elements to cognitive load are most
important in the context of driving: central and
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visual demands (De Waard, 1996).

Central demands have to do with working mem-
ory load (WML). In driving, working memory plays
an important role in remaining focused on the task
at hand; in other words, maintaining cognitive con-
trol (Wood, Hartley, Furley, & Wilson, 2016). It is
also important in maintaining task goals, whether
high-level (e.g., planning a route) or low-level (e.g.,
planning an overtaking manoeuvre).

The task of driving has some intricate visual de-
mands as well. Visuospatial attention is required
to process the movement of objects in traffic such
as cars, pedestrians and traffic signs (Zheng, Yang,
Easa, Lin, & Cherchi, 2020). This is a reflected
by a number of studies on road accidents, link-
ing reduced visuospatial attentional abilities –due
to for example old age– to deteriorating driving
performance (for a review see Owsley & McGwin,
2010). In practice, the requirement of visuospatial
attention means that drivers must continuously
scan their environment since criticial visual events
can occur anywhere at any time.

In order to develop a system that adapts to the
driver’s cognitive load it is essential to find a robust
method of measuring cognitive load. Changes in
an individual’s cognitive load are reflected by a
number of physiological measures including heart
rate variability, brainwave levels (as measured by
for example an electroencephalogram, EEG), skin
galvanic response and pupillary response (Haa-
palainen, Kim, Forlizzi, & Dey, 2010). The current
study focuses on the latter as a predictor for cogni-
tive load. We attempt to find whether the current
level of cognitive load, defined as a combination of
working memory load and visuospatial demands,
can be predicted by pupil size.

Following results by Palinko, Kun, Shyrokov, and
Heeman (2010) we expect that pupillometry can
provide a viable estimation for cognitive load while
driving. Furthermore, results by Scheunemann,
Unni, Ihme, Jipp, and Rieger (2019) suggest an
interaction between central and visual demands
during driving at the brain level. This interaction
effect between the two components of cognitive
load is expected to be reflected in pupil size.

Additionally, we are interested in the effect of
cognitive load on speed-keeping. A relationship
between cognitive load and speed-keeping perfor-
mance would reveal that speed-keeping is a nec-
essary application of adaptive automation. That
is, if a high cognitive load leads to diminished
speed-keeping performance, then adaptive automa-
tion should aid the driver with keeping their speed
when under high load. In this study we will use
eye fixations on the speedometer as a measure of
speed-keeping efforts. We therefore ask whether
the number of eye fixations on the speedometer
correlates with the current level of cognitive load.

Based on the notion of limited cognitive resources
(as described by De Waard (1996)) we expect there
to be negative correlation between cognitive load
and fixations on the speedometer. As an exam-
ple consider an easy driving task which requires
little cognitive resources to be spent. This then
leaves plenty of cognitive resources for checking the
speedometer. In contrast, a driving task with high
visuospatial or central demands allows little “men-
tal space” to concern oneself with the speedometer.
This hypothesis is supported by Salvucci and Taat-
gen (2011), who suggest that drivers perform less
control updates (such as checking the speedometer)
when engaging in a demanding secondary task.

Alongside these eye-tracking measurements we
are interested in how driving performance is in-
fluenced by cognitive load. We will examine two
measures linked to lateral control of the vehicle and
therefore driving performance: lane-keeping and
steering wheel reversal (Knappe, Keinath, Bengler,
& Meinecke, 2007). Following Savino (2009) we
expect a positive correlation between cognitive load
and deviation from the center of the lane, as well as
a positive correlation between cognitive load and
rate of steering wheel reversal.

In order to test our hypotheses a simulated-
driving experiment with eye-tracking was con-
ducted in which central and visual demands were
manipulated separately. It largely follows the ap-
proach of Scheunemann et al. (2019) who stud-
ied the interaction between working memory load
(WML) and visuospatial demands while driving.
Their experiment involved participants driving a
car on a highway in a realistic simulation.

WML was manipulated through a slightly modi-
fied n-back task. Considered a standard measure of
working memory in cognitive neuroscience, a classic
n-back task requires participants to decide whether
the stimulus they are currently seeing matches the
one presented n items ago (Kane, Conway, Miura,
& Colflesh, 2007). In the current experiment the
task was integrated into the driving process by
means of speed regulation, meaning participants
were instructed to drive according to the speed sign
that occurred n signs ago.

Visuospatial demands were manipulated by con-
trasting two driving environments: construction
and non-construction. In the non-construction con-
dition participants drove on a regular three-lane
highway. In the construction condition the leftmost
lane was closed off by a continuous row of pylons
and the remaining two lanes were of reduced width,
which increases driving difficulty (Liu, Wang, &
Fu, 2016).
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Figure 2.1: The driving simulation for the non-construction condition. The orange arrow on the
left of the dashboard is the indicator that blinks three times once the participant presses the
indicator. The number at the center of the dashboard shows the current driving speed. At the
top and on both sides of the screen are mirrors in which the participant can see the autocar when
it is behind them.

2 Methods

2.1 Participants

A total of 38 volunteers (23 male, 12 female, 3
other/undisclosed) aged 20–36 (M = 23.1 ± 3.0)
participated in this experiment. They all had a
driver’s license, on average for 4.5 years (± 3.1).
All participants signed an informed consent form
prior to the experiment and were compensated 12
euros for their participation.

2.2 Materials

Participants interacted with the driving simulation
using a steering wheel with indicators and a throt-
tle and brake pedal (Driving Force GT, Logitech,
Lausanne, Switzerland). The steering wheel was
secured to the table in front of the screen and re-
mained in the same location for all participants.
The pedals were placed on the floor such that par-
ticipants could move it closer or further depending
on their level of comfort. An eye-tracking camera
(EyeLink Portable Duo, SR Research, Missisauga,
Canada), placed between the screen and the steer-
ing wheel, was used to continuously record the eye
movements and pupil size of participants. The
method of tracking that we employed was remote
tracking using a target sticker on the participant’s
forehead. This method was chosen because stabi-

lizing the head using a head rest was not feasible
considering the set-up with the steering wheel.

The simulated environment of the experiment
consisted of a straight three-lane highway, as shown
in Figure 2.1. The features of the environment were
minimal. Either side of the road was coloured green,
signifying grass. Traffic consisted of a single other
car on the highway, referred to as the autocar and
represented by a blue rectangle. The autocar would
stick to traffic rules such as overtaking from the
left, staying on the right lane as much as possible,
and following the current speed limit.

The bottom of the screen was filled by a black
dashboard. At the center of the dashboard the
current speed of the car was shown as an integer.
When the left or right indicators were pressed, they
would appear on the dashboard in the respective
sides as orange blinking arrows. The simulation
had three rear-view mirrors: one on the top, one
on the left, and one on the right. The autocar was
visible in the corresponding mirrors depending on
the distance from the car.

In the construction condition the leftmost lane is
closed off by a row of pylons as shown in Figure 2.2.
The lanes were separated by a full yellow line and
were narrower than in the non-construction condi-
tion.

Speed signs that passed were identical to gen-
eral speed signs in The Netherlands: black digits
enclosed by a red circle.
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Figure 2.2: The driving simulation for the construction condition. The leftmost lane is closed off by
a row of pylons and the remaining lanes are more narrow than in the non-construction condition.
The autocar can be seen next to the speed sign.

Figure 2.3: Example of n-back experimental
paradigm to manipulate working memory load
(from Unni et al., 2017).

The n-back task that participants performed
during driving is illustrated best by an example
from Unni, Ihme, Jipp, and Rieger (2017) as shown
in Figure 2.3, which they explain as follows. In
this scenario the participant is about to pass the
80 km/h speed sign and the previous four speed
signs were as shown in the schematic. For the
corresponding n-back task, participants had to
memorize the last n speed signs and drive at the
nth speed sign which occurred previously. For
example, at 1-back, the participant’s target speed
is the previous sign (140 km/h) and has to keep
the current speed sign in memory (80 km/h).

A trial consisted of the participants performing

the speed-regulating task for nine speed signs. The
speeds shown on the signs were randomized in
the range 40–120 km/h in steps of 10 km/h. The
signs appeared at intervals of 20 seconds, with the
first speed sign being passed at 5 seconds. For
n-back tasks with n ≥ 1 there was a so-called
“build-up phase” of n speed signs during which the
participant did not need to regulate their speed
yet. For example, for n = 4, the build-up phase
would be the first four speed signs. They would
then have to start the speed-regulating task at the
fifth speed sign. Because of the build-up phase,
the n-back trials differed in number of speed signs
shown and therefore in duration. It is important
to note here that the build-up phase is excluded
from data analysis since it is not considered a part
of the n-back task.

2.3 Experimental Procedure

There are 10 unique combinations of n-back level
and construction condition. Each of these combi-
nations was performed twice, resulting in a total
number of 20 trials. These were divided into two
blocks of 10 trials with a short break in between.

The order of the trials was determined pseudo-
randomly with a few conditions. Firstly, no n-back
level could appear twice in a row. Secondly, the
construction/non-construction conditions were al-
ternated from trial to trial. Thirdly, the order of
the trials in the first block was reversed to form
the order of trials in the second block. These con-
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straints on the randomization were incorporated
with the aim of avoiding habituation effects for the
memory task and the visuospatial demands.

Prior to performing the experiment the partici-
pant was given instructions about the driving and
the memory task. They then performed a practice
round (one 2-back trial with no construction and
a total of 5 speed signs) to get accustomed to the
task, the simulation and the steering wheel. Next,
the eye-tracker was calibrated, which required the
participant to follow a target around the computer
screen with their eyes. This procedure was re-
peated twice: once to calibrate and once to validate
whether that calibration was accurate. If validation
was inaccurate, calibration was repeated.

After calibration, the experiment began. Every
trial (excluding the very first one) was preceded
by an eye-tracking drift correction. This required
the participant to look at a target at the center of
the screen. If the measured eye position deviated
too far from the position of the target, calibration
was performed again. Otherwise the deviation was
automatically taken into account with recording
of the eye position. Following drift correction, a
pop-up message appeared telling the participant
which n-back task they were about to perform.
The percentage of total trials they had already
completed was also shown in the message. The
participant could then start the trial by pressing
an OK button on the steering wheel. Unlike in
the experiment by Scheunemann et al., we did not
include warning messages telling participants to
change their speed when it was incorrect. We did
this to prevent participants guessing the correct
speed.

2.4 Data collection

A number of different variables pertaining to driv-
ing behavior were recorded at a rate of 200 Hz.
The use of the accelerator and brake pedals was
recorded as numbers ranging from 0 (not pressed)
to 1 (fully pressed). The angle of the steering wheel
was recorded as a number ranging from -1 (left)
to 1 (right). In order to measure lane centering,
the position and orientation of the participant’s
car were recorded. Finally, the speed of the partic-
ipant’s car was recorded along with the occurring
speed signs to calculate n-back task performance.

The eye-tracker recorded a number of raw vari-
ables at a rate of 500 Hz, two of which are relevant
for the current study. Eye positions were measured
in x and y coordinates relative to the PC mon-
itor (1920 × 1080 px). Pupil size was measured
in terms of diameter in arbitrary units. The eye-
tracker recorded only one eye (specifically the left)
as this is most common in eye-tracking experiments
(Hutton, 2019).

2.5 Data analysis

All analyses were conducted using the R program-
ming language (R Core Team, 2020).

The raw eye-tracking data were sorted into fix-
ations, saccades and blinks using the eyelinker

R package (Barthelme, 2021). Only the fixations
were used for data analysis as these are the most re-
liable measurements of both pupil size and fixation
location.

To properly compare pupil size within and be-
tween participants, baseline correction is required.
According to Mathôt, Fabius, Van Heusden, and
Van der Stigchel (2018) baseline correction in-
creases statistical power by accounting for ran-
dom fluctuations in pupil size over the course of
an experiment. To this end, the baseline pupil
size is recalculated for each new trial. As a base-
line period we chose the time period between
the start of the trial and the appearance of the
first speed sign. The mean pupil size during this
5 second interval was used to correct the pupil
sizes of the trial. The specific method of base-
line correction that we used is subtractive baseline
correction (corrected pupil size = pupil size −
baseline) as Mathôt et al. (2018) prefer it over di-
visive baseline correction (corrected pupil size =
pupil size/baseline).

In order to analyze fixations on the speedometer
it must be defined as an area of interest (AOI). The
bounds of this AOI could not be universally defined
since the measurement of eye-positions shifted be-
tween and within participants. For this reason we
manually determined the borders of the AOI for
each participant; in other words, we determined
what “counts as” a fixation on the speedometer.
Fixations on the speedometer will be expressed as
a percentage of the total number of fixations during
that trial.

We will focus on three measures relating to the
two variables of interest. Pupil size will be exam-
ined both between and within trials. These two
temporal contexts will provide a detailed image of
how a participant’s pupil size changes over time.
Fixations on the speedometer will be examined be-
tween trials. In order to test the significance of the
results we will use a two-way ANOVA with repeated
measures, with n-back level and construction/non-
construction as independent variables.

3 Results

3.1 Participants

From the 38 individuals that participated in this
experiment 16 were excluded from data analysis
altogether. 8 participants were excluded because
their driving behavior was not indicative of an
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(b) Lane deviation (N = 22).
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(c) Steering reversal rate (N =
7). From Kelapanda (2021).

Figure 3.1: Measures of driving performance. Bars represent standard error.

actual attempt to perform the task. 8 additional
participants were excluded due to an error in the
experiment, leading to the trials being too short.
This altered the task considerably and therefore we
cannot compare the behavior of these participants
to others. Thus, task error (see De Mooij, 2021)
and lane deviation (see Kelapanda, 2021) were
determined for 22 participants.

For eye-tracking analysis specifically, 6 more par-
ticipants were excluded as their eye-tracking data
were incomplete. This leaves us with 16 partic-
ipants for eye-tracking analysis. Finally, for the
analysis of steer reversal rate (see Kelapanda, 2021)
15 participants were excluded because of missing
data, leaving 7 participants for analysis.

3.2 Driving performance

Let us first examine performance on the working
memory task. Figure 3.1a shows a positive corre-
lation between n-back level and the proportion of
errors, confirming that the n-back task indeed gets
more difficult with increasing n. There is no effect
of the construction condition, nor an interaction
between n-back level and construction on the error
rate. This suggests that visuospatial demands do
not impact performance on the working memory
task.

Figure 3.1b shows the average deviation from
the center of the lane. While n-back level has no
significant influence on lane deviation, there is a
significant effect of construction condition. These
results indicate a positive correlation between vi-
suospatial demands and lane deviation, and no
influence of working memory load.

Figure 3.1c shows the rate of steering rever-
sal. We see an increase in steering reversals in
the construction condition compared to the non-
construction condition. No significant effect of
n-back level is found.

3.3 Pupil size

Figure 3.2 shows the mean pupil size over a trial.
There seems to be a correlation between n-back
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Figure 3.2: Mean pupil size during trial (N =
16).

level and pupil size. A two-way ANOVA with re-
peated measures confirms this effect of working
memory load (WML) on pupil size [F (4, 135) =
3.09, p = .018]. No significant effect of visuospatial
demands [F (1, 135) = 1.88, p = .17] nor an inter-
action between WML and visuospatial demands
[F (4, 135) = 0.40, p = .81] is found.

Figure 3.3 shows how the pupil size of partic-
ipants changed within a trial. It is immediately
noticeable that pupil size for speed sign number
0 − n is equal to zero for all n-back levels. This
is explained by our definition of the baseline pe-
riod (the first five seconds of a block) as speed sign
number 0 − n. Hence, the corrected pupil size for
this first “speed sign” is baseline− baseline = 0.

Looking at the changes in pupil size for n = 0, 1
we see a nearly continuous decrease in pupil size
over the trial, indicating a low cognitive load. In
contrast, n = 3, 4 show a larger pupil size, suggest-
ing higher cognitive load.

3.4 Fixations on speedometer

Figure 3.4 shows the number of fixations on the
speedometer as a percentage of the total number of
fixations for a trial. Like this figure suggests, there
is a significant negative correlation between n-back
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Figure 3.4: Number of fixations on the speedo-
meter as a percentage of the total number of
fixations for that trial (N = 16); bars represent
standard error.

level and fixations on the speedometer [F (4, 135) =
51.55, p < .001]. There is no effect of construction
[F (1, 135) = 0.03, p = 0.86] nor an interaction
between n-back level and construction [F (4, 135) =
0.085, p = 0.99].

4 Discussion

In this study we sought to answer three questions
related to cognitive load while driving by means
of an eye-tracking experiment. Firstly, can the
current level of cognitive load be predicted by pupil
size? Secondly, does the frequency of fixations on
the speedometer correlate with the current level of
cognitive load? And thirdly, what is the influence
of cognitive load on driving performance? Below
you will find our conclusions based on the results
of the experiment.

First consider the effect of working memory load

(WML) on pupil size. Between trials we found an
effect of WML on pupil size. However, the same
cannot be said for visuospatial demands. Our re-
sults therefore suggest that pupil size is a predictor
for WML, but not for visuospatial demands.

Interestingly, Figure 3.3 shows a decline in pupil
size for n = 4 after the start of the n-back task.
We suggest the following explanation. While par-
ticipants focus their attention on the task at first
(causing their pupil to dilate), they quickly aban-
don the task because of its difficulty, resulting in a
contraction of the pupil. This explanation is sup-
ported by Granholm, Asarnow, Sarkin, and Dykes
(1996) who found that pupil size declines when an
individual is experiencing an overload of working
memory.

Next, results showed that the number of fixa-
tions on the speedometer decreased by WML. We
conclude that as WML increases, fewer cognitive re-
sources are available for speed checking. This is in
line with findings on the effect of secondary tasks
on control updates during driving, as described
by Salvucci and Taatgen (2011). In this context
we again see no influence of visuospatial demands,
suggesting that only WML affects speed-keeping
efforts.

Finally, our findings on lane deviation and steer-
ing reversals can be summarized as a negative cor-
relation between visuospatial demands and driving
performance.

What are then the practical implications of these
results? We have established that pupillometry can
be used to assess working memory load (WML)
during driving, yet reveals little about visuospatial
demands on the driver. It therefore does not suffice
as a robust measure of cognitive load. Instead,
it could be used in combination with a measure
of visuospatial demands. Further research is re-
quired to find this measure and validate its use in
combination with pupillometry while driving.

Moreover, the confirmed correlation between
WML and speed-keeping efforts highlights speed-
keeping as a topic of interest in the field of adaptive
automation. It is important to note that in this ex-
periment, speed-keeping and the n-back task were
closely related. Our conclusion can therefore not be
extended immediately to “regular” speed-keeping.
Rather, it should be evaluated by an experiment
in which the memory task and speed-keeping are
separated.

Lastly, the correlation between visuospatial de-
mands and both lane deviation and steering rever-
sals suggests that these two measures are of interest
to adaptive automation as well.

There are some limitations to this study. Firstly,
the driving set-up consisted of only a computer
screen and a steering wheel with pedals as used
in video games, making it a low-fidelity simulation
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(Knappe et al., 2007). Secondly, the simulation
itself was quite simplistic with concurrent traffic
being limited to one car. These two factors decrease
the statistical power of our results, and future re-
search should seek to employ realistic, high-fidelity
simulations.

Thirdly, the modified n-back task has not been
confirmed to be a measure of working memory load
like the classic n-back has. In the classic n-back
task an individual must compare the current stim-
ulus to the stimulus that occurred n stimuli ago.
This requires them to first encode the current stim-
ulus, then retrieve the previous stimulus from work-
ing memory and finally compare both items. In
contrast, our n-back task did not require compari-
son between stimuli. As a result, participants could
first retrieve the previous stimulus and afterwards
encode the current stimulus. The speed regulation
task might therefore place less demands on working
memory than the classic n-back task. At the same
time, the interstimulus interval (ISI) of the current
experiment could place more demands on working
memory. Whereas other n-back tasks have an ISI
of 1.5 s (Juvina & Taatgen, 2007), 2.5 s (Jaeggi,
Buschkuehl, Perrig, & Meier, 2010; Miller, Price,
Okun, Montijo, & Bowers, 2009) or 3.5 s at most
(Perlstein, Dixit, Carter, Noll, & Cohen, 2003), our
task has an ISI of 20 s. Since the modified task is
substantially different from a classic n-back task,
further research should focus on its validity as a
manipulation of working memory load.
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