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Abstract: In this paper it is explained how Nb-doped SrTiO3 memristors could be integrated
into classical Hopfield neural networks (HNN), and how a working simulated model could be
designed. The performance of this model was tested and compared to the performance of a
linearised version, non-memristor version and a modern continuous HNN. The performances of
the models are measured on the MNIST data-set by classifying the converged patterns with a
secondary feed forward network. From the experiment, it can be concluded that a memristor
HNN model can have an adequate accuracy. The accuracy of the (linearised) memristor HNN
ranged from 63.6% to 89.4%, dependent on the amount of noise added to the images. It is shown
that the linearised version of the memristor based HNN performs slightly better and that the
memristor based HNNs perform worse than the continuous HNN model for higher magnitudes
of noise.

1 Introduction
Hopfield networks are a classic example of a neu-

ral network. In this paper, the classical Hopfield
networks, as described by John Hopfield, are going
to be explained. More modern versions of this type
of neural network are going to be touched upon as
well, including a type of Hopfield network able to
accept continuous input patterns. A relatively new
type of electrical circuit component, called a “mem-
ristor”, is going to be discussed after that. A mem-
ristor, or memristive device, is a kind of electrical
component, of which the resistance can be modified
by applying voltage pulses. This innovative device
may allow for advances in the field of neuromorphic
computing. In this project it is going to be inves-
tigated how memristors might be integrated into
Hopfield networks.

1.1 Classical Hopfield network

“Neurons that fire together, wire together” [1] has
become a familiar phrase in the field of neuropsy-
chology. After research by Little in 1974 [2], a re-
searcher named John Hopfield used this idea to cre-
ate a model of associative memory [3], later known
as the Hopfield neural network (HNN). A classical
HNN is a single layer recurrent neural network able

to store multiple binary patterns, which can later
be individually retrieved by presenting only part of
the pattern.

The first notable attribute of a HNN, is that
the single layer of neurons is both the input and
the output of the network. A classical HNN typi-
cally has symmetric weights and does not have any
self connections. Eq. 1.1 shows a simple example of
weight calculations for a HNN.

Wij = Wji =

{∑N
s=1(2V si − 1)(2V sj − 1) if i 6= j

0 if i = j

(1.1)
Where Wij is the weight from node i to j, Wji is
the weight from node j to i and N is the num-
ber of patterns to be stored. Vs is a specific binary
pattern vector that is stored inside the network rep-
resenting pattern s, and V si is the activation level
(0/1) of node i in pattern s. This vector could be
interpreted as a set of neurons either firing (=1) or
not firing (=0).

Eq. 1.1 is used to calculate the final weights ac-
cording to the “neurons that fire together, wire
together” principle. This can be seen in Fig. 1.1,
which shows an example of some weight calcula-
tions of a HNN.
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Figure 1.1: An example showing how the weights are
updated. In this example the weights are updated with
a given binary pattern of size 5: [1, 1, 0, 0, 0].

The storing of the patterns does not necessarily
have to be done using a set formula, but can also be
achieved by using online neuron learning methods.
One could for example use Hebbian learning [1] or
Oja learning [4] to obtain weights that allow the
user to, for example, restore images [5].

When one wants to converge from a query pat-
tern to a stored pattern, the start value of every
neuron unit of the network is set to the value of
the query pattern. The units can then be updated
one unit at a time using Eq. 1.2.

si =

{
1 if

∑m
j=0Wjisj ≥ 0

0 Otherwise
(1.2)

Where si is the chosen unit to be updated, m is
the total number of of neurons in the HNN and∑m
j=0Wjisj is the weighted sum of the activation

values of other neurons afferent to node si. The
update rule for converging from a query pattern to
a stored pattern/attractor can be done sequentially,
changing one bit at a time, or in parallel, where
multiple bits get changed at each update iteration,
as is tested in [6].

1.2 Modern and continuous Hopfield
networks

An important problem of the classical HNN is that
the storage capacity is linear with respect to the
number of pixels per pattern/ dimensions (around
0.14 patterns per extra dimension can be stored
[7]). This problem was largely solved by the de-
velopment of modern Hopfield networks by Krotov
and Hopfield [8], also known as dense associative
memories. The way classical Hopfield networks con-

verged, was by considering an energy for each state
of the network, as is shown in Eq. 1.3 [3].

E = −1

2

m∑
i=0

m∑
j=0,j 6=i

Wijsisj (1.3)

When using the update rule given by Eq. 1.2, this
energy will monotonically decrease for each update.
The energy landscape of a trained classical Hopfield
network has local minima to which the query pat-
tern will converge when updated using Eq. 1.2. To
increase the storage capacity, a new energy function
was introduced by Krotov and Hopfield [8]:

E = −
N∑
µ

F (ξµi σi) (1.4)

Where N is again the number of patterns stored, ξ
denotes a stored pattern, σ denotes the current con-
figuration of the neurons (either 0 or 1), and F(x)
is some smooth function (summation over index i
is assumed). This is further extended by Demir-
cigil and colleagues [9], where the function exp(x)
is chosen for F(x). This new energy function could
be rewritten to:

E = exp(lse(1,XT · ξ)) (1.5)

Where X is a matrix of stored pattern column
vectors concatenated to each other {x1,x2, ...,xn},
and lse is the log-sum-exp function:

lse(β, z) =
1

β
log

(
d∑
i=1

exp(β · zi)

)
(1.6)

Where d is the number of dimensions (or rows in
2D) of z and β is a chosen hyper parameter. β can
be seen as a temperature parameter: When a lower
β value is used, the resulting pattern will be more
likely to be an average of multiple patterns close
to the query pattern, whereas a higher β value will
cause the HNN to converge to a single pattern clos-
est to the query pattern.

This energy function, and a found update rule
that minimises this energy function for every step,
allows the network to have a storage capacity of
around 2d/2, which is far better than a linear stor-
age capacity with regards to dimensions as is the
case with the classical Hopfield network.

Another problem of the classical HNN, but also
the modern HNN, is that they only accept bi-
nary/discrete patterns. A HNN that could accept
continuous patterns would therefore be useful to,

2



for example, restore non-binary images [10, 11]. A
recent design for a continuous HNN has been pub-
lished in the paper “Hopfield Networks is All You
Need” [12]. In this paper a new energy function and
update rule is described, having many parallels to
the attention mechanisms described in “Attention
is All You Need” [13]. These attention mechanisms
were originally used for language translation tasks,
but seem to have useful properties for HNN pur-
poses. The energy function from [12] is as follows:

E = −lse
(
β,XT · ξ

)
+

1

β
logN +

1

2
(M2 + ξT · ξ)

(1.7)
Where N is the number of stored continuous pat-
terns and M is the largest norm of all patterns.

This energy function is dependent on the state
pattern ξ and has two components: a concave term
and a convex term. A method was found to de-
rive an update rule that could minimise a concave-
convex function such as this energy function [14],
which results in the following update rule [12]:

ξnew = Xsoftmax
(
βXT ξ

)
(1.8)

This update rule allows the energy of the network
to always decrease with every update and keep
the exponential storage capacity and often single
update convergence, similar to using the energy
function supplied by Demircigil and colleagues [9]
shown in Eq. 1.5. A visualisation of this algorithm
is shown in Fig. 1.2.

In Fig. 1.3 an example is shown for the stored
patterns, query pattern and converged pattern of a
continuous HNN, using different values for β. In the
example, 8 RGB images are stored inside the net-
work. One of the 8 images is taken and distorted
using Gaussian noise. The continuous network is
initialised with this distorted image and Eq. 1.8
is used to restore the image to its original state.
Higher β values could be used to converge to a sin-
gle image, whereas lower β values could be used to
converge to a prototype of an image type.

Figure 1.2: First the input pattern matrix X is cre-
ated, and the network state pattern ξ is initialised to
the query pattern r. The second step is to calculate the
dot product of X with ξ. The third step is to calculate
the softmax of the result of step 2. Finally, the con-
verged pattern y is then the dot product of X with the
result of step 3.
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Figure 1.3: Example of how images converge using a
continuous HNN with different values for β. Images are
taken from [15] and compressed to 30x30 pixels.

1.3 Memristors

In 2008, members of an HP lab realised an electrical
component [16] whose measured properties could
be explained by the memristor theory of Chua, pub-
lished in 1971 [17]. The resistance of a memristor
can be altered in a continuous way by applying ana-
logue voltage pulses [18]. Changing the resistance of
such a memristive device, modifies the voltage drop
across the device according to Ohm’s law [19]:

Rmemristor =
V

I
(1.9)

If such a device were to be used in an artificial
neural network, its resistance state could repre-
sent the weight between the neurons and, more-

over, directly implement changes in this without
any external control. One could configure a larger
set of memristors in such a way that a dot prod-
uct between a vector (input voltage pulses) and a
weight matrix (resistance values of a set of memris-
tors) produces an output vector (output currents).
Dot products are important in artificial neural net-
works, because they are used in the forward pass of
feed-forward networks (FFNs) and can also be used
in the convergence process of a HNN. This config-
uration has already been realised and is called a
“hybrid CMOS-memristor crossbar array”, which
could heavily speed up computation times of dot
products [20, 21]. The memristors could be pre-
modified with some learning algorithm, and could
later be used to represent weights, allowing for ef-
ficient computation of dot products [22]. This ar-
chitecture for a HNN using memristors has already
been used to demonstrate some useful applications
such as object recognition [23, 24].

1.4 SrTiO3 Memristors

An example memristor is the Niobium-doped stron-
tium titanate (Nb-doped SrTiO3) memristor. The
applicability of this memristor type has been de-
scribed in [25]. The memristor has a maximum and
a minimum resistance, and the decrease of the resis-
tance after repeated application of positive voltages
is not linear, but exponential [26]. These SrTiO3

memristors are well-behaved at room temperature
and do not require electroforming before being used
[26, 27]. The base mechanism of this memristor, and
other memristors, is “resistive switching”. This is a
phenomenon where the resistance of the material
changes under the influence of a sufficiently high
magnitude voltage pulse. This process is reversible,
which means the memristor can be re-used after re-
sistance has already been modified. The process is
also non-volatile, which means that even when no
current flows through it, the resistive state remains
the same. This could allow for energy efficient appli-
cations such as a memory device, as only the read-
ing and writing costs energy [28]. A voltage can be
applied to the memristor in forward or reverse bias.
For this project, the most important detail is that
a positive voltage pulse (forward bias) decreases
the resistance of the memristor, whereas a negative
voltage pulse (reverse bias) increases the resistance
of the memristor. More details about the behaviour
of these memristors is given in the method section
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of this paper (Section 2).

1.5 Aim of this paper

Hopfield networks are shown to be a useful tool in
restoring images [5] and classifying objects [24], and
because memristors provide a way to efficiently cal-
culate dot-products, which are very useful in neu-
ral network applications, it would be useful to find
out how we could combine memristors and Hopfield
networks.

This paper aims to design a Hopfield network
using simulated spiking neurons and memristors to
represent the weights of the recurrent connections
of the HNN. The main research question of this
paper is: “Is it possible to design and simulate an
accurate classical Hopfield network that utilises Nb-
doped SrTiO3 memristors?”.

Considering the benefits of a modern HNN, or
even a continous HNN, one might wonder why a
classical HNN is chosen. According to John Hop-
field and Dimitri Krotov, the continuous HNN de-
scribed in [12] would be biologically implausible [29]
as it would require more than two neurons par-
ticipating in a synaptic connection. Because this
project focuses on simulating the HNN using neu-
rons, the more logical choice would then be a clas-
sical HNN.

The HNN will be modeled and simulated using
a Python package called “Nengo” [30], which is a
framework used for simulating large scale spiking
neural networks. The memristors simulated in this
paper are Nb-doped SrTiO3 memristors, which are
the same as the memristors used in [26].

First the performance of the network will be
analysed, with the standard memristor resistance
decrease behaviour. Next the natural exponential
behaviour of the memristors are compared to lin-
earised behaviour. Third, the network will be com-
pared to a similar model that does not utilise mem-
ristors. Finally the network will be compared to
a continuous HNN similar to the one described in
[12]. The networks will be trained on the MNIST
data-set [31].

Section 2 will very generally explain how the Nb-
doped SrTiO3 memristors behave, how the perfor-
mance of a HNN is evaluated, and will show the ex-
perimental setups. Section 3 will show the results of
the experiments. Section 4 will explain the meaning
and relevance of the results. Finally section 5 will
give a conclusion to this research.

2 Method
2.1 SrTiO3 Memristors

As stated in Section 1, the type of memristors used
for this project are Nb-doped SrTiO3 memristors.
The way these memristors can be created, is ex-
plained in [27]. In that same paper an experiment
has been performed to study the behaviour of these
specific memristors. Voltage pulses of +0.1V with
a duration of 1 second were applied to the memris-
tor after which the resistance was measured. The
resistance decrease of the memristor from this ex-
periment can be seen in Fig. 2.1. The decline of the
resistance of a memristor over the pulses can be
described using a formula of the following form:

R(n, V ) = R0 +R1 · na+bV (2.1)

Here, R(n, V ) is the resistance value of the memris-
tor after n voltage pulses with a voltage magnitude
of V , R0 is the lowest resistance value the memris-
tor can reach, and R0 + R1 is the highest possible
resistance value of the memristor. “a” gives the de-
cline of the memristor’s resistance independent of
the voltage, whereas “b” signifies the decrease of
the memristor’s resistance dependent on the volt-
age magnitude of the pulse. The values for these
constants where found in [26] by applying multiple
voltage pulses to the memristor with different mag-
nitudes. This gives rise to the following estimate
formula for the resistance of the SrTiO3 memris-
tors:

R(n, V ) = 200 + 2.3 · 108 · n−0.093−0.53V (2.2)

As can be seen in Eq. 2.1, the voltage depends on
the number of pulses already applied to the memris-
tor. The number of voltage pulses already applied
to the memristor can be calculated with the follow-
ing formula from [26]:

n =

(
R(n, V )−R0

R1

) 1
a+bV

(2.3)

Where R(n, V ) is the current voltage and R0, R1,
a and b are all the same value as in Eq. 2.2, which
gives the final formula for calculating the pulse
number:

n =

(
R(n, V )− 200

2.3 · 108

) 1
−0.093−0.53V

(2.4)
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The simulated decrease of the resistance of mem-
ristors, based on these equations, for multiple dif-
ferent voltage pulse magnitudes, can be seen in Fig.
2.1. As mentioned before, this figure also shows the
measured values of the resistance after each pulse
from [26].

Figure 2.1: Decrease of resistance over voltage pulses
for multiple voltage magnitudes. Figure A shows the
resistance measured after each pulse from the paper by
Tiotto and colleagues [26]. Figure B shows the decrease
of the resistance for a simulated memristor using Eq.
2.2.

One can gain more control over the memristors
when it is known what voltage is necessary to bring
the memristor to a desired resistance. It is possi-
ble to iteratively find the voltage necessary to de-
crease the current resistance of a memristor to a
desired resistance using a method called “Halley’s
method”, which is explained in appendix A. This
allows the user to control the decrease of the mem-

ristor to, for example, linearise the decrease of the
memristance over time. Linearising would be useful
here, because linear decrease makes it so that the
order of presenting the pattern does not matter as
much anymore, because each pattern will have an
about equal effect on the weights.

Because multiple different magnitudes of voltage
pulses can be applied to the memristor, the idea of
the pulse number “n” has to be generalised. The
pulse number is needed when one wants to calcu-
late the effect of a single pulse on the memristor’s
resistance. It should be viewed as the number of
pulses of a single voltage necessary to get from the
starting resistance to the current resistance.

It is also important to note that in our simula-
tions, at every step, the resistance of the memristor
can be measured without modifying the actual re-
sistance value. This can be done in practice as well
by applying a “read” voltage pulse that has a mag-
nitude low enough to not modify the resistance of
the memristor. The resistance can then be calcu-
lated with the use of Ohm’s law, and the measured
currents through the memristor.

To stay true to this concept of a threshold be-
low which voltage does not affect the memristor,
a threshold of 0.1 V inclusive has been arbitrarily
chosen to be the lowest voltage at which the resis-
tance of the memristor will still be modified accord-
ing to Eq. 2.2. This limits the control of the mem-
ristor at higher resistances as we can not modify
the resistance with high precision anymore, which
makes the simulation more realistic.

2.2 Hopfield network performance

There are multiple ways to measure the perfor-
mance of a Hopfield network. For this project, the
MNIST data set [31] is used as training and testing
data. This data set consists of around 60,000 gray-
scale images of handwritten digits. The images are
compressed from 28x28 pixels (px) to 14x14 px by
taking the average value of every 2x2 px square.
Each pixel of every 14x14 px image is rounded up
to be a white pixel (1.0) if its gray-scale value is
above 60/255, otherwise it becomes black (0.0).
Here 60/255 is arbitrarily chosen to make the im-
ages still look like digits. These processed images
are then stored in the HNN network. A visualisa-
tion of this process is shown in Fig. 2.2.

The function of the network is to take a digit im-
age with a percentage of the bits flipped, and make
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Figure 2.2: The processing of the MNIST images. The
images are first compressed, and then binarised.

it converge to a digit without noise that is classi-
fied with the same label as the given digit. Because
of some storage capacity limitations of the classical
HNN that were discussed in Section 1, only a sub-
set of digit images are stored in the HNN at a time.
After storage of 10 random images from {1, 2, 3, 5,
8, 10} different labels into the network, a random
processed input digit image is retrieved with the
same label as a stored image, from which {0, 5, 10}
percent of the bits are flipped. The noisy image is
then presented to the network and the network will
converge to a final image using a dot product and
a threshold.

To evaluate the performance of the network on
its task of converging the given noisy digit image to
a correct representation of the digit, another type
of network will be used. A feed-forward network
(FFN) will first be trained on the MNIST data set,
and can then be used to classify the converged digit
image. This FFN is trained on 60,000 processed
images and has an accuracy of around 97.5%.

The FFN classifies the converged image and gives
a value between 0 and 1 for each label, based on its
confidence that it is the correct label. If the FFN
classifies the converged image to have the same la-
bel as the provided label of the input image, it
means the HNN has converged to an image close
to the original digit, and thus has a good perfor-
mance. The performance of the HNN is then the
accuracy, given by the proportion of correctly clas-
sified digit images.

For this project, the model will be tested for 100
iterations. For each iteration, the network is trained
only once using a set of digit images. After the net-
work is trained, in each iteration, 100 query images
will be presented to the network and they will con-
verge using the network’s weights. The accuracy
of the iteration is then the proportion of correctly

classified converged images. The final accuracy of
the model is then the average of the accuracy of
each iteration. The standard deviation of iteration
accuracies will also be calculated.

2.3 Neuron based HNN

As is stated in Section 1, the HNN’s are simulated
in Nengo [30]. With this framework, multiple neu-
rons can be simulated over time. To start making
a Nengo model for this project, an input node is
created with 196 dimensions. Nodes provide non-
neural input to other objects in Nengo, and these
will be used to represent the input patterns/ digit
images. An input node of 196 dimensions will be
necessary, because there are 14x14 (=196) pixels
in each image. Each node dimension will provide a
constant signal to a single neuron, thus there are
also 196 neurons. This signal provided by the input
node will have a value that is either -2 for a black
pixel or 2 for a white pixel. The neurons are used
to temporarily represent the pixels. While a neu-
ron is fed a signal of 2, it will keep spiking. While
the neuron is fed a signal of -2 it will not spike at
all. Because there are multiple images that must be
stored in the network, the value of the input node
will change over time, and thus so will the neuron
spiking. All the images to be stored inside the net-
work are shuffled, and will be shown in cycles of one
second each, for 10 cycles. An example of a single
cycle of three input nodes feeding pixel informa-
tion of three images to the set of neurons is shown
in Fig. 2.3.

Figure 2.3: The input nodes’ values and the neuron
spiking as result of the input nodes feeding their signal
to the neurons. The images represented by the input
nodes from top to bottom are as follows: [0, 1, 1], [1, 1,
0], and [0, 0, 1].

Now that there are neurons that fire when they
represent a white pixel or do not fire when they rep-
resent a black pixel, a recurrent connection must
be added for the HNN to function. Every neuron
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in the ensemble is connected to every other neuron
in the ensemble and to itself. To learn the weight
values that can represent the set of images that
must be stored in the HNN, some kind of learning
rule must be used. The connections between neu-
rons are represented by the conductance values of
a set of 1962 positive memristors and 1962 negative
memristors. Each weight is represented by a sin-
gle positive-negative memristor pair. Because only
forward bias is used to influence a memristor’s re-
sistance, two memristors are used, so the weight
can be increased or decreased by pulsing the pos-
itive or negative memristor respectively. How the
weights are calculated, is shown in Eq. 2.5:

W = γ

[(
1

Rpos
− 1

R0

1
R1 −

1
R0

)
−

(
1

Rneg
− 1

R0

1
R1 −

1
R0

)]
(2.5)

Where Rpos and Rneg are the current resistance
value of the positive memristor and negative mem-
ristors respectively, R0 and R1 are the minimum
and maximum possible resistance values of the
memristor, and γ is the gain. The resistance of the
positive and negative memristors are initialised to
be 108 Ω.

An often used learning rule is Hebbian learning
[1]. The weight change is simply the outer product
of the post- and pre-synaptic activity:

∆W = yxT (2.6)

Where y is the post-synaptic activity vector, x
is the pre-synaptic activity vector and W is the
weight matrix.

An improved version of the Hebbian learning
rule, is the Oja learning rule [4], which is the learn-
ing rule used in this project. This learning rule
is very similar to Hebbian learning, but adds a
“forgetting” component, which ensures that the
weights converge to a stable state. The formula for
Oja learning is as follows:

∆W = yxT − ζWyy (2.7)

Where ζ is a parameter that controls the amount
of forgetting.

The weights are represented by memristor pairs,
which means they can not simply be set to a desired
value. Therefore a matrix must be obtained that
allows us to modify the memristors such that they
converge to some desired weight values. This is done
by creating a matrix that consists of voltage values
that must be applied to the memristor pairs. The

Oja learning rule using memristors will be called
mOja from here on out.

From Eq. 2.5 it can be concluded that the weight
value of a positive-negative memristor pair is in-
creased when the positive memristor resistance is
decreased. It can also be concluded from Eq. 2.5
that the weight is decreased when the resistance
of the negative memristor is decreased. Using this
information, a voltage matrix can be created:

V = sgn(∆W) · 0.1 (2.8)

Where V is the matrix holding the voltage values
that must be applied to the memristors, and sgn(x)
is a function that takes the sign of the given param-
eter. This matrix represents the voltage pulses that
must be applied to the positive-negative memristor
pairs. A value of 0.1 means that a voltage pulse of
+0.1 V must be applied to the positive memristor
of the corresponding weight. A value of -0.1 means
that a voltage of +0.1 V must be applied to the neg-
ative memristor of the corresponding weight. After
these voltages are applied to the correct memris-
tors, the weights will be increased or decreased, ap-
proximating the Oja learning rule.

2.4 Experiment: linearised memris-
tors

In this experiment the decrease of the memristors’
resistances will be linearised to try and negate the
bias of patterns shown earlier in the training cy-
cle, because the resistance of a memristor decreases
more when its resistance is still high. The linearisa-
tion of the memristor resistance decrease can be re-
alised by storing a desired resistance for each mem-
ristor, and each time when the memristor would re-
ceive a voltage pulse, this desired resistance value
would be decreased by a set amount. To get the
memristor to this desired resistance value, the cal-
culations for the required voltage in appendix A
could be used. Because this method for calculating
the correct voltage requires a lot of computations,
which takes very long to run, a simplified method
will be used to linearise the memristors decrease of
resistance (see Fig. 2.5).

In Fig. 2.5, pseudo-code is shown for linearising
the memristor resistance decrease. Boolean pulse is
whether normally a pulse would be applied to the
memristor. R cur is the current resistance of the
memristor, R0 is the minimum resistance, R1 is
the maximum resistance and R des is the desired
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resistance. a, b are -0.093 and -0.53 respectively,
and V is the magnitude of the voltage.

To start this simplified method, a desired resis-
tance value for the memristor will be initialised to
be the current resistance of the memristor. At each
time step, the memristor’s resistance value will be
compared to the desired resistance value, and only
when the memristor resistance is above the desired
resistance, it will receive a pulse of +0.1V. Finally,
at each pulse, the desired resistance is decreased
by a constant c. This simple rule controls the de-
crease of the memristor resistance value, such that
it approximates a linear decrease as can be seen
in Fig. 2.4. Because the minimum magnitude of a
voltage pulse is +0.1V, using Halley’s method (see
appendix A) with high resistance values will not
give any different results to the simplified method
shown in Fig. 2.5. When the resistance is lower,
Halley’s method will allow for better linearisation,
as higher magnitudes could be applied to decrease
the resistance by a constant amount each time step.

Figure 2.4: Example of standard memristor resistance
decrease versus linearised resistance decrease when ap-
plying +0.1 V pulses.

2.5 Experiment: Non-memristor Oja
learning rule

The Nengo package [30] already provides standard
learning rules which can be easily implemented
into a Nengo model. In this project a network
is proposed that uses mOja learning [4], where
weights are represented by positive-negative mem-
ristor pairs. The performance of this network can

Algorithm 2.1 Linearising memristor

Result: updated resistance of memristor
if pulse then

n← calc n(Rcur, R0, R1, a, b)
R des← R des− c
R next← calc R(n+ 1, R0, R1, a, b)
if R next > R des then

R cur = R next
end

end

Figure 2.5: Pseudo-code for linearising memristor.
The calc R function is given by Eq. 2.1, and calc n
is given by Eq. 2.3.

be compared to the performance of a network using
Oja learning (without the use of memristors). This
non-memristor Oja network is using the standard
Oja implementation of Nengo.

2.6 Experiment: Continuous HNN

In Section 1, a new type of continuous HNN is dis-
cussed from [12]. The performance of this network
will also be tested on the MNIST data set. A small
modification will be made to the update rule of the
continuous HNN to increase the performance. Af-
ter some testing with the original continuous HNN
update rule, the network seemed to often converge
to an image with a large norm. To compensate for
this, the original update rule will be modified to
the following:

ξnew = Xsoftmax
(
N� (βXT · ξ)

)
(2.9)

Where X is a matrix of stored patterns
{x1,x2, ...,xn}, N is a vector of the inverse norms
of all stored patterns { 1

‖x1‖
1
‖x2‖ , ...,

1
‖xn‖}, ξ is

the current state of the network, and β is a
hyper-parameter that determines the interpolation
strength between stored patterns. � is an element-
wise product. This new update rule is more similar
to comparing the cosine similarities between the
input pattern and the stored patterns, whereas the
original equation (Eq. 1.8) compares the dot prod-
uct between the input pattern and stored patterns.
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3 Results

3.1 Model performances

From Table 3.1a it can be concluded that the ac-
curacy of the mOja model does not seem to be af-
fected by the number of unique digits stored inside
the network. The noise, however, does seem to have
a negative effect on the performance of the network,
with 86.1% accuracy for 0.00 noise, 77.1% accuracy
for 0.05 noise, and 64.7% accuracy for 0.10 noise.
This seems logical, as more noise would make the
query image less similar to any of the stored images
with the same label, and it would thus be harder
to retrieve an image that will be classified as the
correct label.

Table 3.1b shows the results of the linearised
mOja model, and gives very similar results to the
non-linearised mOja results, as the accuracy also
does not seem to be affected by the number of
unique digits stored, but is negatively affected by
noise. When comparing the accuracies of the lin-
earised mOja model to the accuracies of the stan-
dard mOja model, the performance of the linearised
model seems slightly better, with 88.4% accuracy
for 0.00 noise, 80.5% accuracy for 0.05 noise, and
69.2% accuracy for 0.10 noise.

Table 3.1c shows the results of the regular Oja
model, which again gives very similar results: The
model does not seem to be affected by the number
of unique digits stored, but does seem negatively af-
fected by noise. The performance seems to be sim-
ilar to both the standard mOja and the linearised
mOja, but the standard deviation is a bit higher
overall, with a standard deviation of 0.222 for 0.00
noise, 0.198 for 0.05 noise, and 0.227 for 0.10 noise.

Finally, Table 3.1d shows the results for the mod-
ern continuous HNN. The results for this model
seem to differ quite a bit from the other three mod-
els: The performance here actually does seem to be
affected by the number of unique digits stored in-
side the network, as more digits gives a worse per-
formance. It also does not seem to be negatively af-
fected by noise as much as the other three models,
especially for lower number of digits. This model
has 85.0% accuracy for 0.00 noise, 83.1% accuracy
for 0.05 noise, and 79.9% accuracy for 0.10 noise.

(a) mOja HNN

(b) linearised mOja HNN

(c) Oja HNN

(d) continuous HNN

Figure 3.1: Query patterns (left) and the query pat-
terns after convergence by the HNN (right). The ex-
amples are chosen on basis of having three correctly
classified converged images and one incorrect classified
image. Each network is trained using 60 images total,
30 of label “3”, and 30 of label “5”.

3.2 Examples

In Fig. 3.1 we can see some examples of query pat-
terns before and after convergence. In Figures 3.1a,
3.1b and 3.1c some clear similarities can be seen: All
of the correctly classified images have converged to
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(a) Accuracy of mOja HNN

Noise 0.00 0.05 0.10

Digits avg SD avg SD avg SD
1 0.851 0.143 0.785 0.172 0.641 0.213
2 0.853 0.165 0.773 0.197 0.637 0.179
3 0.874 0.166 0.775 0.179 0.659 0.197
5 0.856 0.146 0.762 0.164 0.654 0.193
8 0.862 0.149 0.781 0.171 0.636 0.222
10 0.868 0.141 0.748 0.192 0.657 0.186

total 0.861 0.151 0.771 0.179 0.647 0.198

(b) Accuracy of linearised mOja HNN

Noise 0.00 0.05 0.10

Digits avg SD avg SD avg SD
1 0.890 0.135 0.793 0.177 0.684 0.185
2 0.878 0.135 0.825 0.141 0.716 0.190
3 0.893 0.116 0.810 0.156 0.698 0.220
5 0.867 0.139 0.788 0.169 0.683 0.235
8 0.894 0.145 0.805 0.152 0.701 0.205
10 0.880 0.126 0.807 0.185 0.670 0.187

total 0.884 0.133 0.805 0.162 0.692 0.204

(c) Accuracy of Oja HNN

Noise 0.00 0.05 0.10

Digits avg SD avg SD avg SD
1 0.834 0.225 0.821 0.211 0.718 0.211
2 0.871 0.207 0.794 0.226 0.698 0.220
3 0.896 0.194 0.802 0.202 0.740 0.204
5 0.892 0.201 0.818 0.181 0.706 0.256
8 0.841 0.256 0.834 0.157 0.704 0.252
10 0.851 0.249 0.813 0.212 0.722 0.218

total 0.864 0.222 0.814 0.198 0.715 0.227

(d) Accuracy of Continuous HNN

Noise 0.00 0.05 0.10

Digits avg SD avg SD avg SD
1 0.991 0.027 0.987 0.030 0.995 0.021
2 0.921 0.095 0.916 0.093 0.905 0.103
3 0.876 0.101 0.876 0.111 0.838 0.116
5 0.842 0.126 0.774 0.145 0.748 0.134
8 0.741 0.142 0.732 0.152 0.680 0.161
10 0.732 0.163 0.700 0.161 0.626 0.164

total 0.850 0.109 0.831 0.115 0.799 0.117

Table 3.1: These tables show the average accuracy and standard deviation over the iterations of the four models
for different values of noise and amount of unique digits stored.

the same image for each of the separate networks,
and the incorrectly classified images have converged
to a fully black image. The convergence of the con-
tinuous HNN can be seen in Fig. 3.1d, and shows
very different results. Each of the correctly classi-
fied images shows a different version of an image
that resembles a three. The incorrectly classified
image here is not a fully black image, but an image
resembling a five.

After looking at more examples, an observation
can be made about the difference between Oja
based HNN’s and the continuous HNN. First, Oja
based HNNs do not seem to store more than one
prototype per label, as they often converge to the
exact same pattern. This suggest a low storage ca-
pacity in contrary to the continuous HNN. Sec-
ond, When an image is incorrectly classified, an
Oja based HNN seems to converge to a black im-
age, and does not converge to an image resembling
a digit at all, whereas a continuous HNN almost
never converges to a fully black image, but to an

image resembling a stored pattern.

In Fig. 3.2 an example of two synapse pairs is
shown. As is explained in the method section, the
patterns to be stored inside the network are first
shuffled, and then presented to the network in cy-
cles of one second each. A problem that may arise
from the standard decrease of the resistance of a
memristor, is that the first pattern that is presented
to the network has a larger effect on the weights, as
the decrease of resistance is lower for lower values
of current resistance (see Fig. 3.2a).

This means the model might be biased towards
the first pattern shown in each cycle and espe-
cially the first pattern shown in the first cycle. This
could explain the improved performance of the lin-
earised mOja HNN as this decreases an approxi-
mately equal amount for each pattern shown (see
Fig. 3.2b). If one wants to solve this bias without
linearising the resistance decrease of the memristor,
it could be partially solved by shuffling the patterns
each cycle, but the effect of the first pattern shown
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might still pose a problem.

Another problem that can noticed in both the
standard and the linearised mOja HNN, is that the
negative memristor does not receive pulses. The
idea of a memristor synapse is that the weight can
be increased and decreased, but in our case the
weight is never decreased, which means the nega-
tive memristor of each pair seems useless. The rea-
son why the weight is never decreased, is because
the forgetting component of the Oja formulas is
never larger than the Hebbian part of the formula
(see Eq. 2.7). This could be solved by removing the
negative memristor, or finding a use for the unused
memristor.

The final problem that will be noted in this sub-
section is that the effect of a voltage pulse on a
memristor’s resistance is minimal when its resis-
tance is already low. Because in this project only
the forward bias is used, and thus the resistance
of a memristor only decreases, it will lead to the
memristor’s resistance to saturate. This problem
was also pointed out in [26], and a resetting scheme
was suggested. A resetting scheme would mean that
when the resistance of one of the memristor of a
synapse pair is below a arbitrary threshold, both
memristors should be reset. The memristors will
be reset to their maximum resistance with neg-
ative voltage pulses, and then voltage pulses will
be applied to one of the memristors such that the
weight represented by the memristor pair remains
the same as it was before the reset. This way the
weight value remains the same, but the memristors
can have a higher resistance than before the reset.

4 Discussion
In this discussion section, the relevance of the

results will first be analysed. Limitations of the
project will be discussed next and finally future re-
search topics will be discussed.

4.1 Relevance of the results

To give an answer to the research question: It is
indeed possible to use Nb-doped SrTiO3 memris-
tors to make an accurate classical HNN. Although
the accuracy seems adequate, it is difficult to com-
pare the performance of this network with models
from other papers, for a number of reason reasons.
The primary reason is the method of testing the
performance of the HNN on the recalling of pat-

(a) mOja HNN

(b) linearised mOja HNN

Figure 3.2: Resistance decrease of memristor-synapse
pairs for standard mOja (a) and linearised mOja (b).
The left image is the self-connection of neuron 90, and
the right image is the connection between neuron 90
and 91. The network is trained, again, using 60 images
total, 30 of label “3”, and 30 of label “5”.

terns differs between papers, such as measuring the
recall rate [32], correct transition probability [33]
and ROC-area under the curve [12]. There would
be little value in comparing the results found in
this project to the results found in other papers as
the method of measuring performance differs. An-
other important difference between this project and
some similar projects using the MNIST data-set,
is that this project pre-processes the images from
the MNIST data-set to be 14x14 instead of 28x28
and makes the images binary instead of gray-scale,
which would make the comparison between perfor-
mances even less meaningful.

4.2 Limitations of this project

In this project there were also some limitations.
First, the computational power available for run-
ning the network is limited. Methods such as the
Halley method discussed in the method section
could have been used if there was more computa-
tional power available and might improve the pre-
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dictability of the memristors, which could bene-
fit the performance of the network. This method
could also be used to pre-calculate the necessary
weights, and set the resistance of each memristor
in a single step such that they correspond to the
pre-calculated weights.

Another limitation of this project is that the for-
mula for memristor resistance decrease (Eq. 2.2) is
not completely accurate. Because there were only
a set amount of test done in [26], the formula does
not describe the actual resistance decrease of a Nb-
doped SrTiO3 memristors. This means that we can-
not accurately simulate the resistance decrease of
such a memristor yet. This formula also only de-
scribes the decrease of the resistance in forward
bias, whereas there might be interesting interac-
tions with the reverse bias that could prove useful
for artificial neural network applications.

4.3 Future research

An important next step for memristors in HNN
would be to implement memristors in a modern
HNN. Modern HNNs have an exponential storage
capacity [8] in contrary to the linear storage capac-
ity of classical HNNs [7]. Integrating memristors
into a continuous HNN like the modern Hopfield
network from [12] is complicated, as it does not
have any weights, but it does use dot products to
converge to an answer. The stored patterns matrix
could be represented by a set of memristors, similar
to how it was done in this project, but instead of us-
ing Oja to learn these memristor resistance values,
they could be set to pre-calculated values (Using,
for example, the method described in Appendix A).

One of the largest disadvantages of the continu-
ous HNN that can be seen in the results, is that the
accuracy of the continuous HNN decreases when
more different labels are used. This seems logical
as there is more information to be stored inside of
the HNN, but the other networks do not seem to
perform much worse when more labels are added.
One possible reason for the worse performance com-
pared to the classical HNN could be that the con-
tinuous HNN stores many separate prototypes, as
the storage capacity is much higher than the clas-
sical HNN. There could be prototypes that are on
the edge of being classified as one of multiple la-
bels, but multiple query images could be converged
to this image. This could cause for some miss-
classifications. This might be prevented by using

a lower β value, to instead converge to an average
of multiple stored patterns, instead of converging
to a single stored pattern. This might mitigate the
effect of outliers on the performance. Testing what
effect the β value has on associative memory prob-
lems could be a topic for future research.

The linearisation seems to increase the perfor-
mance of the Oja HNN, but it only works to a cer-
tain degree. As can be seen in Fig. 2.4, the decrease
is very abrupt when the resistance is still high. The
linearisation only works for a certain section of the
resistance decrease, after which the decrease seems
to follow the original curve again. An interesting
topic for future research could be to test what other
ways there are to remove the bias of patterns pre-
sented to the network when the memristor resis-
tances are still high.

Currently the mOja model only works on binary
patterns, which might be able to be improved to
discrete, or even continuous patterns. The algo-
rithm could also be implemented in a more compu-
tationally efficient way, which could allow for using
the MNIST 28x28 px images, instead of having to
compress them to 14x14 px. With more informa-
tion available to the model, it should also be easier
to extract more useful information, and allow for
better performance.

Other weight representations could be tested as
well. In this paper a positive-negative memristor
synapse pair was used to represent the weights,
but there are other representation options as well.
There are multiple options for arranging the mem-
ristors, and one could use one or more memris-
tors to represent a single weight, as is done in
[34, 35, 36].

Another experiment that could be performed, is
testing if there actually is a bias for the first pattern
show in each cycle. Other methods of presenting
the patterns to the model could be found and the
difference in performance could be analysed.

5 Conclusion
This research aimed to find out if it was pos-

sible to design and simulate an accurate classical
HNN utilising Nb-doped SrTiO3 memristors. It was
found that it is indeed possible to design such a net-
work and maintain an adequate accuracy for noise
magnitudes of around 0-5%. The accuracy of the
(linearised) mOja HNN ranges from 63.6% to 89.4%
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dependent on the amount of noise added to the im-
ages. It was found that a HNN using weights rep-
resented by memristor pairs was about equally ac-
curate to a non-memristor based Oja HNN. It was
also found that linearising the memristor decrease
may have a beneficial effect on the accuracy of the
network. Finally, to move forward with using mem-
ristors inside of HNNs, modern HNNs might prove
more useful in practice, as they have a much higher
storage capacity compared to classical HNNs.

Code Availability
All code used in this study is publicly

available on GitHub at https://github.com/

JoryKlaverstijn/public_bachelor_project
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A Appendix
A.1 Voltage magnitude to decrease Resistance by a specified amount

To decrease the resistance of a memristor by a specific amount, a certain voltage is needed. To calculate
the voltage necessary to get the memristor’s resistance from the current resistance to a desired resistance,
a method called ’Halley’s method will be used [37]. This is a method that can iteratively find the value
of a variable needed to obtain the root of an equation. To be able to apply this method, an equation
must exist such that an expression equals 0 in the equation and the expression is differentiable twice.
This equation must include both the desired resistance and the voltage magnitude of the pulse so that
the necessary voltage can be calculated to get the resistance to a desired value after a single pulse. We
use formula 2.1 that is repeated below:

R(n, V ) = R0 +R1 · na+bV (2.1 revisited)

To find the formula for the resistance after an extra voltage pulse is applied, n of formula 2.1 is replaced
by (n+ 1) as follows:

Rdes = R0 +R1 · (n+ 1)a+bV (A.1)

Where n is given by formula 2.3:

n =

(
Rcur −R0

R1

) 1
a+bV

(2.3 revisited)

And can thus can be filled into equation A.1:

Rdes = R0 +R1 ·

((
Rcur −R0

R1

) 1
a+bV

+ 1

)a+bV
(A.2)

To make this equation more easy to differentiate, it will be rewritten as follows:(
Rcur −R0

R1

) 1
a+bV

−
(
Rdes −R0

R1

) 1
a+bV

+ 1 = 0 (A.3)

Now that we have an equation in which the expression equals 0, we can write the expression as a
function f(V ):

f(V ) = Q
1
P −W 1

P + 1 (A.4)

Where Q = Rcur−R0

R1 , W = Rdes−R0

R1 and P = a+ bV .
For Halley’s method we also need the first and second derivative functions:

f ′(V ) = −b · ln(Q) · e
ln(Q)

P

(P )2
+
−b · ln(W ) · e

ln(W )
P

(P )2
(A.5)

f ′′(V ) =
b2 ·Q 1

P · ln(Q)2

P 4
− b2 ·W 1

P · ln(W )2

P 4
(A.6)

Now that the function is known together with its first and second derivative, Halley’s method can be
used to iteratively find the magnitude of the voltage pulse necessary to decrease the memristor from its
current resistance to the desired resistance:

Vn+1 = Vn −
2 · f(Vn) · f ′(Vn)

2 · [f ′(Vn)]2 − f(Vn) · f ′′(Vn)
(A.7)
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Where V0 can be chosen as a an initial estimate of the voltage. For each iteration of this method, the
error between the current calculated voltage estimate and the actual voltage pulse magnitude needed to
decrease the memristor to the desired voltage will decrease. This rate of convergence to the root is cubic
[38].
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