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Abstract

Clustering is one of the most significant tasks nowadays, but the mathematics
behind defining clusters are vastly different depending on the choice of metric. Thus,
this thesis will focus on density-based clustering which usually fails to give good quality
clustering result in high dimensions. We improve the classical density-based clustering
into two varying fields of mathematics: geometry and topology. This thesis begins with
geometric clustering approach called enhanced mode clustering (EMC). This approach
will be provided with some enhancements to mode clustering. Following this, we present
topological clustering approach that combines the classical hill climbing algorithm and
topological persistence. That is, topological mode analysis tool (ToMATo). Lastly, two
implementations of the ToMATo and EMC will be presented in high dimensional data
to see if these clustering methods improved the remaining problem from the classical
density-based clustering.
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1 Introduction

In the present day, analysing large and complex data sets has become one of the most
challenging tasks to solve, and the data available nowadays has become more complex and
has more missing data. In this thesis, we will discuss how geometry and topology can make
contributions to the analysis of clustered data particularly. Geometry and topology are
very fundamental tools in data analysis since geometry is a study of distance and shape,
and topology is a study of continuous deformation and shape.

Clustering is especially one of the most important tasks. It has a broad range of applica-
tions in various scientific fields such as biology, finance, and medicine [33]. Since there is no
concrete definition of cluster there are many different clustering approaches that attempt to
define similarity using different notions. Informally, clustering refers to the task of partition-
ing a set of objects into a number of groups. With regard to finite metric spaces, clustering
simply means that the data points in the same cluster are closer to one another than the ones
in other clusters. Based on metric, we can construct different schemes of clustering [6], but
this thesis will particularly discuss mode clustering and persistence-based clustering, which
are subsets of density-based clustering. In density-based clustering, clusters are defined as
areas of higher density than the rest of the data set [22].

Here, topological data analysis (TDA) can contribute a significant role in clustering due
to homology. That is, topological invariant. In short, TDA is a relatively new branch of
data analysis technique whose premise is that the shape of data matters. The intuition of
TDA might underestimate its difficulty, but the shape is a somewhat indefinite concept in
mathematics as it is difficult to formalise and measure. What makes TDA so interesting is
the idea of homology. Basically, the dimension of the n-th dimensional homology group is the
number of the n-th dimensional holes. For example, the dimension of the 0-th dimensional
homology group is the number of the connected components, which can also be interpreted
as the number of the clusters. One of many TDA implementations in clustering is called
Topological Mode Analysis Tool (ToMATo) but this thesis will focus exclusively on the
ToMATo algorithm for the topological approach of clustering.

The intuitive ideas of ToMATo is to measure the significance, i.e., prominence, of the density
peaks using topological persistence [11]. In conventional TDA, we are interested in the n-th
dimensional homology of simplicial complexes since constructing simplicial complexes using,
for example, Vietoris-Rips complex is one of the easiest ways to transform discrete data into
a continuous form. However, when it comes to density-based clustering, we are interested
in the super of sublevel sets of the density function. The ToMATo improves a classical hill-
climbing algorithm introduced in [21] whose problem arises in its perturbation management.
In practice, managing the small perturbations is one of the most significant tasks since only
data points drawn from the true density function are known while the true density function
is unknown. These perturbations bother to understand the structure of the density function.
The improvement comes from topological persistence. The idea of this improvement is to
take the whole family of level sets of the density function. We call this family of level sets
the level set filtration. For example, if we take the superlevel filtration, we are interested in
tracking the evolution of topology throughout the filtration of superlevel sets of the density
function. By doing so, the ToMATo offers less sensitivity to perturbations. As the ToMATo
is insensitive to perturbations, the choice of density estimator only makes a subtle difference
in its results whereas other clustering methods tend to have high dependency on the choice
of density estimator. In this thesis, the distance to a measure introduced in [9] is chosen
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for the density estimator. For more choices of density estimators, see [11]. While the choice
of density estimator only makes a subtle contribution on the result, the choice of a graph
remains a non-trivial task. This thesis will only use δ-Rips graph. If one is interested in the
choice of a neighbourhood graph in detail, please have a look at [1, 11].

As mentioned above, this thesis will also study the mode clustering proposed in [13]. There is
room for improvement in mode clustering: 1. Mode clustering is a branch of hard clustering.
Which implies that the connectivity between clusters cannot be measured. 2. The choice
of bandwidth parameter of kernel density estimator is unclear in practice. 3. In high
dimensions, the variance creates small clusters in the kernel density estimator, which bothers
the performance of mode clustering. Hence, this thesis will suggest a solution called enhanced
mode clustering (EMC) to these problems followed from [12, 13, 24, 27, 33]. Here, both
methods assume that the true density function is a Morse function to guarantee the result
clusters are disjoint [25]. However, since this thesis will not go deep into Morse theory, the
reader can find more information from [25, 26].

Following the theory of the mode- and persistence-based clustering methods, we will im-
plement both the EMC and ToMATo in the three different datasets that can be found in
[3, 15, 16]. The goal of the implementation is to compare two introduced clustering methods
and k-means using adjusted Rand index introduced in [29] so that we observe how well these
clustering methods perform in the high dimensional setting. Here, we chose k-means while
it is a centroid-based clustering to objectify the adjusted Rand index of two other clustering
methods, i.e., comparing only two methods might lead to violating observer bias. Since it
was claimed in [13] that the persistent homology is inappropriate to merge small clusters
into significant clusters especially in high dimensions, we would like to check whether this
claim is true or not.

The primary goal of this thesis is to provide a clear analysis of mathematics behind EMC
and ToMATo. That is, to provide the improvements of the classical mode clustering and the
hill climbing algorithm respectively. Also, we motivate these clustering methods so that, for
example, the readers can clearly understand why the TDA suggests homology to analyse
the data and why we consider the superlevel filtration for the ToMATo algorithm. For
transparency, the codes used for implementations and generating plots will be included.
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2 Geometric Mode Clustering

Clustering is a huge topic, which implies that it has a broad range of branches using different
notions of clusters. This section will consider mode clustering, which is a branch of density
clustering. Additionally, some enhancements to mode clustering from [13] will be provided.
The key information of this section is the notions and properties of mode clustering, soft
(mode) clustering, measuring cluster connectivity, and consistency of mode estimation. The
following concepts are drawn from [12, 13, 24, 27, 33].

2.1 Mode Clustering

The idea of mode clustering is to identify clusters by using the gradient flow of a density
function, or equivalently we identify clusters by basins of attraction of the peaks of the
density function. A basin of attraction is the domain of all points flowing into the same local
maximum where the flows are defined by the gradient of the density function. Throughout
the thesis, we consider a n-dimensional Riemannian manifold X and assume that the density
function f : X → R is a Morse function and f always has compact support K ⊂ X. Note
that k-means clustering, which is the most commonly used clustering method, assumes that
the data is convex, i.e., k-means fails to give good performance of clustering when the data
is non-convex. Unlike k-means clustering, the mode clustering does not need to assume
the shape of the clusters and it does not require prior-specification of the number of the
clusters1.

Definition 2.1 (Morse function). The function f is a Morse function if the Hessian2 is
nonsingular at each critical point.

Suppose that f has k local modes (or peaks) M = {m1, . . . ,mk}. Assume that f has
gradient g and Hessian H. Note that x is a critical point if g(x) = (0, . . . , 0)T . Thus, the
modes mj for j = 1, . . . , k satisfies g(mj) = (0, . . . , 0)T . Given arbitrary x ∈ X, if we follow
the unique gradient ascent path starting at x, we will eventually reach one of the modes mj

unless x is in a set of Lebesgue measure 0. That is, mj is the destination of x. In order
to introduce a rigorous definition of destination, let us first introduce a path or also called
integral curve.

Definition 2.2 (Path). A path πx : R→ X that leads from x to a mode is defined by the
differential equation

π′x(t) = ∇f(πx(t)), πx(0) = x. (1)

According to Morse in [25], paths never intersect at critical points, hence paths can be used
to partition the space. As each x will reach one of the destinations, i.e., modes, we define
the destination as follows.

Definition 2.3 (Destination). A destination for the path starting at x is defined by

dest(x) = lim
t→∞

πx(t) = mj (2)

for some mode mj except for x ∈ E where E with Lebesgue measure 0.

1This does not mean that the density-based clustering always gives the correct number of the clusters
2Hessian is a square matrix of second-order partial derivatives of a scalar-valued function, or scalar field.
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As mentioned above, the basin of attraction of the mode mj is the domain of all points
flowing into mj .

Figure 1: The center-line gives the separation between basins of attraction of two peaks of
the density function [11]

Figure 1 shows that the center-line separates the basins of attraction of the two peaks and
x ∈ X corresponding this center-line has Lebesgue measure 0. Again according to Morse in
[25], these two basins of attraction are disjoint.

Definition 2.4 (Basin of attraction). A basin of attraction of mj is defined by

B(mj) = {x : dest(x) = mj}, j = 1, . . . , k. (3)

In practice, density-based methods for clustering assumes that data points are drawn from
an unknown density function f , so we need to estimate it. In order to estimate the density,
we use one of the classical estimators called the kernel density estimator (KDE).

Definition 2.5 (Kernel density estimator). Let X1, . . . , Xn be i.i.d.3 samples drawn from
the density f , and K be a smooth and symmetric kernel function. The KDE with bandwidth
h > 0 is defined by

f̂h(x) =
1

nhd

n∑
i=1

K

(
‖x−Xi‖

h

)
. (4)

The modes of f̂h are given by

M̂ =
{
m̂1, . . . , m̂k̂

}
(5)

and d̂est(x) is the path destination under the density f̂h of any x ∈ X. Both the modes and
destinations are easily found by a mean shift algorithm proposed by Comaniciu and Meer
in [14]. In detail, we can find the destination (in our case, mode) of the initial point x(0)

along the path by

x(t+1) =

∑n
i=1XiK

(
‖x(t)−Xi‖

h

)
∑n
i=1K

(
‖x(t)−Xi‖

h

) . (6)

3independent and identically distributed
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Thus, the convergent point of (6) is a local mode of f̂h of any initial point x ∈ X. The
convergence of the mean shift algorithm has been studied in [2]. The mean shift algorithm
can be computationally expensive as its time complexity is given by O(n2) where n is the
number of observations.

By using the mean shift algorithm, we can define the sample basin of attraction.

Definition 2.6 (Sample basin of attraction). A sample basin of attraction of m̂j ∈ M̂
is defined by

B̂(m̂j) =
{
x : d̂est(x) = m̂j

}
, j = 1, . . . , k̂. (7)

2.2 Soft Mode Clustering

The classical mode clustering is a branch of hard clustering. That is, partitioning a set
of points into a number of groups such that each point is only assigned to one cluster.
Meanwhile, soft clustering methods [23] does not yield a binary answer, i.e., a point can
be assigned to one or more than one clusters. This is usually done by introducing a (soft)
assignment vector, which is a probability distribution over clusters. For instance, let us
denote a(x) is the assignment vector where aj(x) is the probability of x belonging to cluster j.
Suppose that the assignment vector of a point x is given by a(x) = (0.7, 0.02, 0.2, 0.05, 0.03).
Then, we say that there is high chance that x belongs to cluster 1, but the chance that x
might belong to cluster 3 is not negligible. This section will illustrate the idea of soft mode
clustering and introduce the exact notion of soft assignment vector to obtain soft mode
clustering in a rigorous manner.

As mentioned above, one characteristic of soft clustering is soft assignment vector. Then,
recall that the density function is given unknown in practice, so the soft assignment vector
is also unknown. To estimate the soft assignment vector, consider a Markov chain starting
at x ∈ X. Then, j-th entry of the soft assignment vector can be defined by the conditional
probability that the diffusion starting at x firstly arrives in mode j given that the diffusion
starting at x is absorbed in one of the modes. More precisely, we can consider this diffusion
process as a Markov process. Let

{
m̂1, . . . , m̂k̂, X1, . . . , Xn

}
be the state space and the

jump probability to x given starting at y is given by

qh(y|x) =
Kh(x, y)∫
Kh(x, y) dy

(8)

where Kh(x, y) = K

(
‖x− y‖

h

)
. Note that the first k̂ states are absorbing states since we

are never left once we reach one of the modes. Thus, the transition probability from state
Xi is given by

P(Xi → m̂`) =
Kh(Xi, m̂`)∑n

j=1Kh(Xi, m̂j) +
∑k̂
`=1Kh(Xi, m̂`)

P(Xi → Xj) =
Kh(Xi, Xj)∑n

j=1Kh(Xi, Xj) +
∑k̂
`=1Kh(Xi, m̂`)

(9)
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for i, j = 1, . . . , n and ` = 1, . . . , k̂. Then, the transition probability matrix P is given by

P =

[
Ik̂ ok̂×n
S T

]
(10)

where I is the identity matrix of size k̂, ok̂×n is the k̂× n zero matrix, S is an n× k̂ matrix
with the (i, j)-th element Sij = P(Xi → m̂j) and T is a n × n matrix with the (i, j)-th
element Tij = P(Xi → Xj). Then, the soft assignment estimator can be written with
respect to the absorbing probability from Xi to m̂j .

Definition 2.7 (Soft assignment estimator). A soft assignment estimator is defined by

âj(Xi) = Âij (11)

where Aij is the (i, j)-th element of the absorbing probability matrix A

Â = S(Ik̂ − T )−1. (12)

2.3 Cluster Connectivity

Classical mode clustering based on mean shift algorithm in [14] is a hard clustering, hence
the result of this algorithm yields the binary answer, i.e., a point is only assigned to one
cluster. This creates a cluster uncertainty since a point can be related to multiple clusters,
e.g., a point placed near the boundary of two basins of attraction is not only related to one
but two clusters. In order to capture this cluster uncertainty, Chen et al in [13] introduced
the enhanced mode clustering. One of many attributes of enhanced mode clustering is cluster
connectivity that measures the connectivity between two different clusters.

Consider the density function f : X → R and suppose that f has k local modes M =
{m1, . . . ,mk}, thus there are k clusters B(m1), . . . , B(mk) corresponding to the local modes
m1, . . . ,mk.

Definition 2.8 (Connectivity). Given soft assignment vector a(x) : X→ Rk, the connec-
tivity between cluster i to cluster j is defined by

Ωij =
1

2

(
E[ai(X)|X ∈ B(mj)] + E[aj(X)|X ∈ B(mi)]

)
=

1

2

∫
B(mj)

ai(x)f(x) dx∫
B(mj)

f(x) dx
+

1

2

∫
B(mi)

aj(x)f(x) dx∫
B(mi)

f(x) dx

(13)

Connectivity between cluster i and j is high if clusters i and j are close. Since the density
is usually unknown in practice, we need to define the connectivity estimator.

Definition 2.9 (Connectivity estimator). An estimator of Ωij is defined by

Ω̂ij =
1

2

(
1

Nj

n∑
`=1

âi(X`)1B̂(m̂j)
(X`) +

1

Ni

n∑
`=1

âj(X`)1B̂(m̂i)
(X`)

)
, i, j = 1, . . . , k̂ (14)

where Ni =

n∑
`=1

1B̂(m̂i)
(X`) is the number of sample in cluster B̂(m̂i).

The connectivity estimator Ω̂ is a consistent estimator of the connectivity Ω by the result
in Chazal et al [10] (see chapter 4.1).
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2.4 Consistency

This section will describe the consistency of local mode estimation. That is, when the data is
large enough (desirably infinitely many points), the estimation of the local modes converges
in probability4 to the true local modes. Unlike the consistency for global mode estimation
[10], the consistency for estimating local mode is still elusive. Thus, we are interested how
close two sets (where one set contains the true local modes and the other set contains the
local modes of the density estimator) are. It is a nontrivial question to ask what is the
closeness of two sets since we have multiple points to measure the distance. Hence, as
illustrated in [13], the consistency of local mode estimation will be described with respect
to the Hausdorff distance. Hence, let us first define the Hausdorff distance.

Definition 2.10 (Hausdorff distance). Let A and B be two non-empty set. Then, their
Hausdorff distance is defined by

dH(A,B) = inf {ε ≥ 0 : A ⊆ Bε and B ⊆ Aε} (15)

where Aε = {y : minx∈A ‖x− y‖ ≤ ε}.

In order to understand the intuition of the Hausdorff distance, consider sets A and B and
expand both the set A and set B such that A ⊆ Bε and B ⊆ Aε where Aε is the extension
of the set A by ε. We want to find the smallest ε but still satisfying A ⊆ Bε and B ⊆ Aε.
Then, this yields the distance between two sets A and B.

Let K(α) denote the α-th derivative of K and BCr denote the collection of functions with
bounded continuously derivatives up to r-th order.

Remark. The following assumption and theorem are directly taken from [13].

Assumption 2.1. This thesis will assume that the kernel function satisfies two following
conditions:

(i) The kernel function K ∈ BC3 is symmetric, non-negative and∫
x2K(α)(x) dx <∞,

∫ (
K(α)(x)

)2
dx <∞

for all α = 0, 1, 2, 3.

(ii) The kernel function satisfies condition K1 of Gine and Guillou [17]. That is, there
exists some A, v > 0 such that for all 0 < ε < 1, supQN(K, L2(Q), CKε) ≤

(
A
ε

)v
where N(T, d, ε) is the ε-covering number for a semi-metric space (T, d) and

K =

{
u 7→ K(α)

(
x− u
h

)
: x ∈ Rd, h > 0, |α| = 0, 1, 2, 3

}
.

Note that ε-covering number for a semi-metric space (T, d) is the smallest number of
B(x; ε∗)5 covering T where x ∈ T and ε∗ < ε.

Assumption 2.1 (i) guarantees the smoothness of the kernel function and Assumption 2.1
(ii) controls the complexity of the kernel function. That is, controlling the degree of a
polynomial of the kernel function.

4if for all ε > 0, limn→∞ P(|Xn −X| > ε) = 0, Xn converges in probability to X
5ball of radius ε∗ and centered at x

11



Theorem 2.2 (Consistency of local modes estimation). Suppose f ∈ BC3 and the kernel
function K satisfies Assumption 2.1. Let B3 be the bound for the partial derivatives of f up
to the third order and M̂n ≡ M̂ be the collection of local modes of the KDE f̂n and M be
the local modes of f . Let k̂n be the number of estimated local modes and k be the number of
true local modes. Assume

(a) There exists λ∗ > 0 such that

0 < λ∗ ≤ |λ1(mj)|, j = 1, . . . , k

where λ1(x) ≤ · · · ≤ λd(x) are the eigenvalues of Hessian matrix of f(x).

(b) There exists η1 > 0 such that

{x : ‖∇f(x)‖ ≤ η1, 0 > −λ∗/2 ≥ λ1(x)} ⊂ Mλ∗/2dB3

where λ∗ satisfies 0 < λ∗ ≤ |λ1(mj)| defined in assumption (a).

If h is sufficiently small and n is sufficiently large,

1. (Modal consistency) there exits some constants A,C > 0 such that

P(k̂n 6= k) ≤ Ae−Cnh
d+4

2. (Location convergence) the Hausdorff distance between local modes and their estimators
satisfies

dH(M,M̂n) = O(h2) +OP

(√
1

nhd+2

)
.

Proof. See page 235 – 238 in [13].

An intuitive explanation for result 2 is the following: w.l.o.g. assume that d is fixed and let

g1(h) ∈ O(h2) and g2(h) = O
(√

1
hd+2

)
. Then, (2) can be written as:

dH(M,M̂n) = g1(h) + g2(h) ·Xn (16)

where Xn is a random variable. That is,

P(|Xn| >
c√
n

)
n→∞−→ 0 (17)

where c is a constant.

Result 1 (modal consistency) is derived as follows: the idea is that if the gradient and

Hessian of f̂ is sufficiently close to the gradient and Hessian of the true density f , each local
mode mj corresponds to m̂j , i.e., if∥∥∥∇f −∇f̂∥∥∥

∞
,
∥∥∥∇∇f −∇∇f̂∥∥∥

∞
(18)

are small enough, the true modes and estimated modes are the same.
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Result 2 (location convergence) is derived as follows: note that ∇f(mj) = ∇f̂(m̂j) = 0.
Then, by Taylor expansion, we have

∇f̂(mj) = ∇f̂(mj)−∇f̂(m̂j) (19)

= ∇∇f̂(m̂j)(mj − m̂j) + o(‖mj − m̂j‖). (20)

Also, we can expand ∇f̂(mj) as

∇f̂(mj) = ∇f̂(mj)−∇f(mj) (21)

= O(h2) +OP

(√
1

nhd+2

)
. (22)

by the rate of pointwise convergence in nonparametric theory in [30]

Hence,

∇f̂(mj) = ∇∇f̂(m̂j)(mj − m̂j) + o(‖mj − m̂j‖) (23)

= O(h2) +OP

(√
1

nhd+2

)
. (24)

This follows

‖mj − m̂j‖ = O(h2) +OP

(√
1

nhd+2

)
. (25)

Therefore,

dH(M,M̂n) = max
j=1,...,k

‖mj − m̂j‖ = O(h2) +OP

(√
1

nhd+2

)
. (26)
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2.5 Bandwidth Selection
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Figure 2: The KDE with different values of the bandwidth parameter.

The choice of bandwidth parameter h is a very important task in density estimation, hence
also in mode clustering. The idea of bandwidth parameter is that the bandwidth changes
the gradient of the density function, e.g., if the bandwidth is increased, the absolute value
of the gradient of the density decreases around the sample points, i.e., smoothing the kernel
density estimation (see Figure 2). Hence, in order to optimise the value of bandwidth,
we want to minimise the difference between the estimated gradient and the true gradient.
Chacón et al [7] suggested a classical performance measure for kernel density estimation
called mean integrated square error (MISE). The MISE for the gradient of the density f is

MISE(∇f̂n) = E
[∫ ∥∥∥∇f̂n(x)−∇f(x)

∥∥∥2
2

dx

]
= O(h4) +O

(
1

nhd+2

)
. (27)

Hence, the asymptotically optimal bandwidth is

h = Cn−
1
d+6 (28)

for some constant C. However, it is usually not clear what the optimal value is for bandwidth
h since C is unknown in practice. Due to such practical issue, there are a few methods to
automatically choose a bandwidth parameter. One widely used method is called Silverman’s
rule of thumb (or normal reference rule) [13]. Silverman’s rule of thumb computes an optimal
bandwidth parameter h by assuming that the kernel is normally distributed.

hSR = S̄n ·
(

4

d+ 4

) 1
d+6

n−
1

n+6 (29)

with

S̄n =
1

d

d∑
j=1

Sn,j . (30)

where Sn,j is the sample standard deviation with respect to j-th coordinate. Note that the
Silverman’s rule of thumb assumes that the kernel is normally distributed. Meaning that
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the Silverman’s rule of thumb will yield a highly inaccurate smoothing parameter h if the
density is not close to a normal distribution.

The Silverman’s rule of thumb has two major advantages. One advantage is, according to
[31], the Silverman’s rule of thumb tends to over-smooth when the standard Gaussian kernel
is given. Over-smoothing is usually good for clustering. The reason is that we can merge
the small clusters into the significant clusters, especially in the high dimensions. The other
advantage is that high dimensions do not affect computation of the bandwidth. Usually
the computation becomes more expensive in higher dimensions, however the computation
of the Silverman’s rule of thumb 29 stays rather simple with respect to d. By normalising
the data, the mean of the sample standard deviation in (30) becomes 1. Hence, normalising
the data reduces the Silverman’s rule of thumb to

hSR =

(
4

d+ 4

) 1
d+6

n−
1

n+6 . (31)

2.6 Denoising Small Clusters

Denoising small clusters is not a big issue in low dimensions. However, it becomes a major
task to solve in high dimensions since the variance, especially in high dimensions, creates
small noises in KDE, hence the location convergence becomes slower (see 2 of Theorem 2.2
for further information). We have a question regarding denoising small clusters, that is how
do we merge (or eliminate) noises during mode clustering? To do this, we can simply set a
cluster size6 threshold, and for simplicity, let us call it a denoising threshold n0. To obtain
only significant clusters, we merge every clusters of size less than a given denoising threshold
n0.
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Figure 3: (left) 4 clusters, 800 data points drawn from a Gaussian distribution with Σ =
0.1I; (right) the size of clusters plot of the 4 Gaussian mixture dataset with the denoising
threshold.

Choosing the denoising parameter can be obtained by trial-and-error since there exists no
theory behind of choosing the parameter n0. Due to this issue, we use the recommended

6the number of data points within the cluster
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denoising parameter from [13], which is given by

n0 =

(
n log(n)

20

) d
d+6

. (32)

The left plot of Figure 3 illustrates two dimensional projection of 4 Gaussian clusters in 8
dimensions where each cluster contains 200 point. The right plot shows the ordered size of
clusters plot of 4 Gaussian clusters with the denoising threshold given in (32). Note that the
smoothing bandwidth parameter h is chosen by the Silverman’s rule of thumb in (29). From
the ordered size of clusters plot in Figure 3, we can conclude that there are 4 significant
clusters since there are 4 clusters with size larger than the denoising threshold (purple line).

An increment of the sample size follows the significantly longer computation time, which
can be observed from the time complexity of the mean shift algorithm O(n2) where n is
the sample size. However, the computation time is not affected by the increment of the
dimensions, but the accuracy of the algorithm. This is explained as: 1. the computation
of the Silverman’s rule of thumb in 29 does not become more expensive by increasing the
dimension; 2. the location convergence from Theorem 2.2 2 states that the higher dimension
implies the larger distance between local modes and their estimators, which does affect the
accuracy of the clustering result. In case of 4 Gaussian mixture, the computation took 26.810
seconds for 800 data points. But by increasing the sample size to 1200, the computation
took 45.688 seconds and by decreasing the sample size to 200, the computation took 1.568
seconds.
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3 Topological Mode Clustering

The goal of this section aims at explaining what topological data analysis (TDA) is, and
how TDA makes contributions to analysis of mode clustering. In order to do this, let us
give an intuition of what TDA is, and give an introduction of TDA clustering algorithm
such as Topological Mode Analysis Tool (ToMATo), which will naturally give an idea of the
concept of clustering powered by TDA. Compared to EMC, the ToMATo performs with
less steps, thus the computation time is less than the computation time of EMC. The total
computation time of ToMATo is O(n+m log(n)) where m is the number of the edges from
δ-Rips graph [11]. In practice, m = O(n) as δ is usually taken small enough. Also, notice
that the ToMATo algorithm is not affected by the choice of density estimator, which is an
advantage of using ToMATo instead of EMC.

TDA is an approach to analyse data by assigning topological invariants to data. Loosely
speaking, we take a look at the shape of the data. However, data is typically given as
a discrete sample whose topology is rather uninteresting [5]. Hence, the data must be
transformed into a continuous form. For now, it is enough to see that topology is interesting
enough to be used in (typical) discrete data. This section will firstly demonstrate some
key definitions and theorems to understand TDA from scratch, and investigate how TDA
makes contributions to analysis of mode clustering. In the later sections, such techniques
will eventually be simulated with real dataset in Comparison on Simulated and Real Dataset
section 4. In order to keep the consistency, the concepts in the following subsections are
introduced in [4, 5, 6, 18, 20, 33].

3.1 Simplicial Complexes

The first question one might ask is why do we consider simplicial complexes in TDA? Loosely
speaking, simplicial complex provides a good representations of topological structures in
computers as the continuous spaces need to be transformed into a discrete form again before
we apply it in computer, and this is done by means of simplicial complexes [5]. Before we
define simplicial complex, let us discuss what simplices are.

3.1.1 Simplices

Definition 3.1. A set of points {p0, . . . , pn} ⊂ Rd is said to be geometrically indepen-
dent7 if for any (real) scalars {ti}ni=0, the equations

n∑
i=0

ti = 0,

n∑
i=0

tipi = 0 (33)

imply that t0 = t1 = · · · = tn = 0. It is straightforward to verify that p0, . . . , pn are geomet-
rically independent if and only if the vectors p1 − p0, . . . , pn − p0 are linearly independent.

Definition 3.2 (Simplex). Let {p0, . . . , pn} be geometrically independent set in Rd. We
define the n-simplex σ spanned by the points pi to be the set of all points x ∈ Rd of the
form

x =

n∑
i=0

tipi (34)

7it is also called affinely independent
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where
∑n
i=0 ti = 1, and ti ≥ 0 for all i. The point x is a convex combination of the

points p0, . . . , pn, and the uniquely determined numbers ti are called the barycentric co-
ordinates.

Figure 4: Simplices of dimension zero, one, two and three. [4]

From definition 3.2, one might already observed that a 0-simplex is a point, a 1-simplex is
a line segment, a 2-simplex is a triangle, 3-simplex is a tetrahedron and so on (Figure 4).
Note that the points p0, . . . , pn that span a simplex σ are called the vertices of σ, and the
number n is the dimension of σ. Lastly, we define the boundary of σ as the union of the
proper face8 of σ, and let us denote the boundary of σ as ∂σ.

3.1.2 Simplicial Complexes

A topological spaces called simplicial complex can be constructed by gluing simplices along
faces, and the definition is given by the following.

Definition 3.3 (Simplicial complex). A simplicial complex K in some Euclidean space
Rd is a finite collection of simplices in Rd such that

(i) Every face of a simplex in K is in K, i.e., if σ is a simplex of K and τ is a face of σ,
then τ is a simplex of K.

(ii) The non-empty intersection of any two simplices of K is a common face of each of
them.

Note that the dimension of K is the maximum dimension of its simplices, and a subcomplex
L of K is a subset of K that is a simplicial complex. The p-skeleton of K denoted by Kα

is the union of all simplicies of K of dimension at most p.

Since the precise geometry of simplicial complex does not take a crucial role in this thesis, we
will restrict ourselves to abstract simplicial complex. That is in brief, a purely combinatorial
construct of simplicial complex. Hence, if it is said a simplicial complex in this thesis, it
indicates an abstract simplicial complex.

Definition 3.4 (Abstract simplicial complex). An abstract simplicial complex is a finite
collection A of finite non-empty sets, such that if α is an element of A, then so is every
nonempty subset of α.

We will use one of the most widely used simplicial complexes in TDA called Vietoris-Rips
complex as we will implement this complex later of this thesis.

8τ is a proper face of σ if τ ⊂ σ, i.e., τ 6= σ
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Definition 3.5 (Vietoris-Rips complex). Given a set of points P = {p0, . . . , pn} and a
metric diam9, the Vietoris–Rips complex of P at scale ε is the simplicial complex

VRε(P ) = {σ ⊆ P : diam(σ) ≤ 2ε}. (35)

ε is often called as distance threshold.

3.2 Persistent Homology

3.2.1 Simplicial Homology

This section will present the basic notions and properties of simplicial homology. But before
that, let us dive into why homology is interesting in TDA. One of the most well-known
example in topology is that donut and mug are homeomorphic, which is clear that they have
the same shape in terms of their surfaces are homeomorphic. But in reality, it is notoriously
hard to show that there exists a homeomorphism between two topological spaces (in our
case, it would be between two simplicial complexes). Then, one might ask how can we
show whether two or more spaces are homeomorphic or not? or you can rephrase it into
how can we show whether the shapes of objects are the same or not? To this question,
algebraic topology suggests an approach called homology, which is a topological invariant.
Hence, if two spaces have different homology groups, we can conclude that two spaces are
not homeomorphic. Loosely speaking, the dimension of homology groups gives ideas of
connectedness, loops and cavities, which are different dimensional holes. Which implies
that to define the homology, we need to describes holes in a rigorous manner.

In order to define holes rigorously, we must discuss a boundary operator. The following
definitions will firstly be served as preliminaries for the boundary operator and ultimately
for homology groups.

Definition 3.6. Let S be a finite set and k be an arbitrary field. Then, a free k-vector
space generated by S is the vector space F (S) with elements given by formal linear com-
binations

∑
si∈S aisi where each ai ∈ k and si ∈ S.

Definition 3.7 (n-chains). Let n ≥ 0 be an integer and K be a finite simplicial complex.
The vector space of n-chains in K is the free Z2-vector space Cn(K) generated by the
n-simplices of K.

By defining the boundary of a n-simplex to be the formal sum of its (n − 1)-dimensional
faces, we get a linear transformation ∂n : Cn(K)→ Cn−1(K). The formal definition of the
boundary operator is the following.

Definition 3.8 (Boundary operator). The boundary operator ∂n : Cn(K) → Cn−1(K)
is the linear transformation defined on simplicies by

∂n({p0, . . . , pn}) =

n∑
i=0

{p0, . . . , p̂i, . . . , pn} (36)

where {p0, . . . , p̂i, . . . , pn} denotes the (n− 1)-simplex obtained by omitting the vertex pi.

Trivially we have ∂0 : C0(K)→ 0, thus we have the following relationship:

· · · ∂n+1−−−→ Cn(K)
∂n−→ Cn−1(K)

∂n−1−−−→ · · · ∂2−→ C1(K)
∂1−→ C0(K)

∂0−→ 0.

9recall that the diameter of a subset σ ⊆ P is diam(σ) = maxpi,pj∈P ‖pi − pj‖
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The following lemma is the fundamental property that makes it useful to look at homology.
Essentially, it tells that a boundary has no boundary.

Lemma 3.1. The composition ∂n ◦ ∂n+1 = 0 for all n ≥ 0.

Proof. By linearity it is sufficient to show that ∂n ◦∂n+1(σ) = 0 where σ is a (n+1)-simplex
given by σ = {p0, . . . , pn+1}. Then,

∂n ◦ ∂n+1(σ) = ∂n

(
n+1∑
i=0

{p0, . . . , p̂i, . . . , pn+1}

)
=
∑
i

∂n({p0, . . . , p̂i, . . . , pn+1})

=
∑
i

∑
j 6=i

{p0, . . . , p̂i, . . . , p̂j , . . . , pn+1}

For i 6= j we see that the (n−1)-simplex {p0, . . . , p̂i, . . . , p̂j , . . . , pn+1} appears precisely two
times in the sum. Since we are working over Z2, ∂n ◦ ∂n+1(σ) = 0.

Definition 3.9 (Cycles and boundaries). We say that c ∈ Cn(K) is a n-cycle if ∂n(c) = 0
and we denote the associated vector space of n-cycles by

Zn(K) := ker ∂n = {c ∈ Cn(K) : ∂n(c) = 0}. (37)

The image of ∂n+1 for some d ∈ Cn+1(K) is a n-boundary and we denote the associated
vector space of n-boundaries by

Bn(K) = Im∂n+1 = {∂n+1(d) : d ∈ Cn+1(K)}. (38)

Note that lemma 3.1 guarantees that Bn(K) ⊆ Zn(K). Thus, we now have all the material
to define homology.

Definition 3.10 (Homology and Betti numbers). The n-th simplicial homology vector
space of a simplicial complex K is the quotient space

Hn(K) = Zn(K)/Bn(K). (39)

The n-th Betti number represents the dimension of the n-th simplicial homology vector
space, i.e., βn(K) = dimHn(K) = dimZn(K)− dimBn(K) for some simplicial complex K.

Note that 0-th Betti number β0 represents the number of connected components, first Betti
number β1 represents the number of loops, i.e., one-dimensional holes second Betti number
β2 represents the number of voids, etc. However, we rather want to focus only on 0-th Betti
number β0 since our primary goal is to analyse cluster data and we can view clusters as
connected components. To use the fact that β0(K) is equal to the number of path-connected
components of |K|10, we must introduce the following lemma.

10Let |K| denote the subset of Rd given by the union of all the simplices in K, equipped with the subspace
topology.
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Lemma 3.2. β0(K) equals the number of path-connected components of |K|.

Proof. Intuition. If n = 0, a cycle is a linear combination of 0-simplices in K, and a
boundary is a linear combination of 0-simplices lying in the same connected component of
K such that the sum of their coefficients is zero. So Z0/B0 is precisely the free abelian
group on the connected components of K.

More rigorous proof. Let us order the connected components of |K| from 1 to u and let{
pi1, . . . , p

i
mi

}
be the vertex set of the i-th path-connected component for i = 1, . . . , u.

want. dimZ0(K)− dimB0(K) = u.

Note that Z0(K) = ker ∂0 = {c ∈ C0(K) : ∂0(c) = 0} and C0(K)
∂0→ 0. Hence, the basis for

Z0(K) is given by

u⋃
i=1

{
pi1, p

i
2 + pi1, . . . , p

i
mi + pi1

}
. (40)

Also, note that B0(K) = Im∂1 = {∂1(d) : d ∈ C1(K)} and C1(K)
∂1→ C0(K). Similarly,

path-connectivity implies that there cannot be a 1-chain c whose boundary is contained in{
p11, . . . , p

u
1

}
. Therefore, dimZ0(K)− dimB1(K) = u.

3.2.2 Persistent Betti Numbers

In the previous section, it is motivated that homology is an important tool as it is a topo-
logical invariant that measures connectedness in a given dimension, i.e., the dimension of
the n-th dimensional homology group is the number of n-dimensional holes the space has.
However, the Betti numbers have a vital issue. That is, for a point set P ⊆ Rd, the Betti
numbers βi(Pr) are notoriously unstable under small perturbations of the point set.

Figure 5: Union of balls
⋃n
i B(Xi, r), approximately 60 data points with circularity, with

r = 0.03, 0.10, 0.30. [33]

That is to say, a slight change of scale r possibly follows totally different Betti numbers.
In Figure 5, the 0-th Betti numbers of the left circle must be 60 as all data points are not
connected, i.e., there are 60 connected components. However, by increasing scale r, we have
completely different 0-th Betti numbers (the right circle has only one connected component).
Moreover, there does not exist a perfect scale parameter r that can give robustness to per-
turbation. Due to this reason, applied algebraic topology proposes a tool, which guarantees
robustness to perturbation and scale-free. In order to compute the persistent Betti numbers,
we do not only consider a single simplicial complex, but a nested family of subcomplexes of
some fixed simplicial complex K called a filtration (or a filtered simplicial complex ).
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Definition 3.11 (Simplicial filtration). A filtration of a simplicial complex K is given by

K0 ⊆ K1 ⊆ · · · ⊆ Kn = K (41)

where {Ki}0≤i≤n−1 are subcomplexes of K.

From the filtration, we get maps f i,j∗ : Hk(Ki)→ Hk(Kj) for all i ≤ j, that is vector spaces.
This property will allow us to apply persistent Betti number for density functions in the
mode clustering.

Definition 3.12 (k-th persistent Betti numbers). Consider a filtration {Ki}0≤i≤n. Then,
the k-th persistent Betti numbers are given by

βi,jk = dim Imf i,j∗ . (42)

Note that βi,ik = βik = βk(Ki). Hence, we can always redeem the ordinary Betti numbers
while using persistent Betti numbers.

In TDA, computing the persistence diagram is done in almost everywhere in TDA since
we want to graphically represent the persistent homology. The persistence diagram is a
neat graphical representation as it shows the significant (high dimensional) topological and
geometric information in two dimensional setting. Intuitively, a point (i, j) ∈ N×N11 of the
persistence diagram indicates a topological feature that is born at Ki and dies at Kj when
the simplicial filtration is given by K in (41).
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Figure 6: (left) 60 data points generated from two circles; (right) the persistence diagram
corresponding to the two circles dataset. Black dots represent the 0-th persistent Betti
numbers and red triangles represent the first persistent Betti numbers.

Before giving the definition of persistence diagram, let us introduce the following notation
with regard to Definition 3.12: For i, j ∈ N ∪ {−1} with j > i,

N i,j
k =

{
0, if i = −1

βi,j−1k − βi,jk , otherwise.
(43)

11N = N ∪∞
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Note that βb,dn is the number of classes born before or at Kb that last until Kd. Hence, N b,d
n

the number of classes born before or at Kb that die at Kd is equal to the number of classes
born before or at Kb that last until Kd−1 subtracted by the number of classes born before
or at Kb that last until Kd (as classes die at Kd means that they last until d − 1), i.e.,
βb,d−1n − βb,dn , and N b,d

n denotes the number of classes born before or at Kb that die at Kd.
Similarly, N b−1,d

n the number of classes born before Kb that die at Kd is βb−1,d−1n − βb−1,dn .
Therefore, the number of classes born at Kb that die at Kd is N b,d

n −N b−1,d
n .

Definition 3.13 (Persistence diagram). Let K be a filtration. Then, the corresponding n-th
persistence diagram Dgmn(K) is a finite multi-set of N×N where a point (b, d) ∈ N×N
with d > b. Each point appears at (b, d)

µb,dn = N b,d
n −N b−1,d

n (44)

if N b,d
n > N b−1,d

n . Conventionally, b is called a birth and d is called a death.

Depending on the context, the birth and death can imply the index of the filtration, time,
or even level of the function. But here we assume that the birth and death are the indices
of the given filtration.

From the persistence diagram in Figure 6, we can conclude that there is one significant
connected component and two significant loops.

3.3 TDA in Mode Clustering

There are sufficiently many ways of identifying clusters in clustering analysis such as using
distances, hierarchy, etc. As this thesis solely focuses on density clustering, we identify
clusters by basins of attraction of the peaks of the density function. Intuitively, consider
density function as a terrain. Then, a basin of attraction is the domain of all points flowing
into the same local maximum where the flows are defined by the gradient of the density
function [11]. Koontz et al already proposed such technique in [21], and in 2002, Comaniciu
and Meer followed this notion of clusters and proposed a mean shift algorithm [14], which
is one of the most widely-using mode seeking algorithms. However, these techniques have
one major flaw.

Figure 7: (a) The center-line gives the separation between basins of attraction of two peaks
of the density function f ; (b) a piecewise-linear approximation and the separating lines of
the basins of attraction. [11]
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That is, it is highly sensitive to perturbations of the density function. This problem will
arise in practice since density-based methods for clustering assumes that data points are
drawn from an unknown density function f , thus we have to rely on an estimator f̂ [11].
See Figure 7. It is noticeable that the basins in the piecewise-linear interpolation of f are
not necessarily corresponding to the basins in the true density function f .

This section will consider topological persistence to solve the problem that is proposed above.
This thesis focuses on density clustering, which means that we would rather look into the per-
sistent homology of the superlevel sets filtration instead of simplicial filtration. A well-known
approach is to consider the connected components of the superlevel set Fα = f−1([α,+∞))
for some fixed threshold α as clusters and the rest as noise. However, this technique is not
highly responsive to hierarchical dataset due to the fixed threshold [11]. To this problem,
persistence offers an answer by ranging α from +∞ to −∞ instead of a fixed level α. The
following concepts and notions are drawn from [5, 11, 33]

Our ultimate goal is to distinguish which clusters are significant and not significant, and thus
be regarded as noise. In density-based clustering, we call this significance as prominence. In
other words, our goal is to estimate the prominence of clusters, or equivalently in density-
based techniques, the prominence of the density peak. It is questionable how to compute
the prominence of the density peak, so let us consider the following figures to figure this
out.

Figure 8: (a) a new connected component, which is born in Fα = f−1([α,∞)) when α = p,

and C dies in Fα when α = s; (b) a piecewise-linear approximation f̂ of f . [11]

It is easily observable from Figure 8 (a) that there are two prominent clusters (or density
peaks). Let C denote a new connected component, which is born in Fα = f−1([α,∞))
when α = p, and C dies in Fα when α = s. Hence, the prominence of the density peak p
is simply the height difference between birth and death values of C. Obviously, it follows
that the larger the height difference between birth and death values is, the more prominent
the density peak is. In case of Figure 8, the density peak q is more prominent than p. As
mentioned above, the primary goal of clustering is to understand the structure of the density
function f while f is unknown. In practice, we thus have an approximation f̂ of f (Figure
8 (b)). Here is an issue to determine the prominence of the density peak. Since now there

are more than one local minimum in f̂ , a connected component born in Fα when α = p′
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seems not dying when α = s′. But it actually dies when α = s′ by the elder rule. The elder
rule states “precedence is given to the class with the earliest birth time” [5] and this rule
guarantees to remove the noise from the approximation.

3.4 ToMATo

This thesis will specifically implement a clustering scheme called Topological Mode Analysis
Tool (ToMATo). ToMATo of Chazal et al [11] pairs the classical hill climbing algorithm12

[21] with persistent homology. As already mentioned above, the hill climbing algorithm
proposed by Koontz et al [21] is highly sensitive to perturbations of the density function f .
This major flaw of hill climbing algorithm can be improved by computing the persistence
diagram. Since topological persistence can capture the perturbations arisen from a density
estimator f̂ , computing the persistence diagram can distinguish the prominent and non-
prominent density peaks of f̂ .

In section 2, enhanced mode clustering has a mathematical threshold n0 for cluster size
given in (32), which let us determine which clusters are actually prominent (or significant)
with regards to the size of clusters. Then, one might ask is there a threshold for persistence
to detect the prominent clusters? Unlike in enhanced mode clustering, ToMATo does not
suggest a merging threshold based on the size of clusters, but ToMATo suggests a merging
threshold based on the prominence of clusters. That is, we merge a basin of attraction with
prominence less than the merging threshold into a neighbour basin of attraction. In practice,
we firstly run ToMATo with the merging threshold (or prominence threshold) τ = +∞ so
that merge every cluster in the dataset. Then based on the computed persistence diagram
in the first run, we set an appropriate τ and run ToMATo again to compute the modes and
their basins of the attraction. Since the persistence diagram clearly indicates the number
of connected components regardless of the dimensions of the data, choosing the merging
threshold τ is not a challenging task unless the data is given with much noise. The running
time of ToMATo is O(n log(n)) where n is the number of the data points, thus we can
consider the algorithm is highly efficient. However, Paris and Durand in [28] presented that
the TDA in mode clustering does not achieve good performances in higher dimensions since
the topology changes at some saddle points and finding such saddle points is computationally
expensive.

In the following sections, we will firstly discuss the continuous case of the ToMATo algorithm.
That is, we take the true density function as an input. It will give more intuition of
the prominence of the peak without worrying about the density estimation. Secondly, we
consider the discrete setting, which is more common in practice. Here, we study the ToMATo
algorithm with discrete data points, so we will also study the density estimator as an input
in the discrete setting.

3.4.1 The continuous setting

Consider the density function f : X → R is a Morse function where X is a n-dimensional
Riemannian manifold as assumed in section 2. Suppose that f has k local modes M =
{m1, . . . ,mk}. As mentioned already, we consider the superlevel sets of the density function.

12The mean shift algorithm is a hill climbing algorithm that seeks modes of a density iteratively instead
of explicitly finding a density function [34]
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Definition 3.14 (Superlevel sets filtration). A filtration of superlevel sets Fα = f−1([α,+∞))
is given by

{Fα}α∈R (45)

for α ranging from +∞ to −∞13.

Since we take the superlevel sets filtration, the birth level is always larger than death level.
Hence, the persistence diagram is drawn in lower diagonal, but the idea behind does not
change from Definition 3.13.

For any α ∈ R and x ∈ X, C(m,α) ⊆ Fα denotes the connected component containing
m at level α. For example, let mp and mq be local maximums of the density f that born
when α = p and α = q respectively in Figure 8. Also let b(mp) and d(mp) denote the birth
and death times of the peak mp (similarly for mq). Then at α = d(mp), the connected
component C(mp, α) will be merged to C(mq, α) by the elder rule. Formally, we can write
it as m(mp) = mq where r is a merging map.

Definition 3.15 (Merging map). If C(mp, α) is merged to C(mq, α), a merging map
M : X→M is defined by

M(mp) = mq. (46)

The prominence can be measured as the following manner.

Definition 3.16 (Prominence). Let mα be the mode of the density function f at level α.
Then, the prominence of the mode mα is defined by

τ = b(mα)− d(mα) ≥ 0. (47)

That is, the difference between the birth and death times. We say that mα is τ -prominent.

For convenience, let Mτ (mi) = mj if the prominence of mi is smaller than τ . Note that we
can iterate Mτ until it reaches some peak with prominence at least τ , thus let M∗τ be the
converged map, i.e., M∗τ maps to some peak with prominence at least τ .

As briefly mentioned above, merging threshold restricts the prominence of the peak. More
precisely, if we set the merging threshold τ , the peaks of f with prominence at least τ are
only considered as significant peaks. Hence, the basin of attraction with merging threshold
τ can be defined as the following:

Definition 3.17 (Merging basin of attraction). A merging basin of attraction of mj

with merging threshold τ is defined by

Bτ (mq) =
⋃

M∗
τ (mp)=mq

B(mp) (48)

where the basin of attraction of the peak mp B(mp)
14 is defined in (3).

Note that B(mp) = B0(mp) ⊆ Bτ (mp) for any mp ∈ M and τ ≥ 0 and also note that for
some point m, M∗τ (m) is unique.

13A filtration of sublevel sets can be obtained by taking α from −∞ to +∞
14The basin of attraction in (3) is equivalent to the ascending region in [11]
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3.4.2 The discrete setting

As mentioned above, the true density is not given in practice. Hence, we need to estimate
the density and there are numerous ways to obtain this estimate. In this thesis, we use the
one of the many methods proposed in [11] called δ-Rips graph (or δ-neighborhood graph).
Note that the Rips graph is equivalent to the 1-skeleton of VRδ(P ) when P is the given set
of points.

As already motivated, the topology is rather uninteresting when the data is given discrete.
Thus, we want to construct a graph so that the given discrete points are transformed into
a continuous form. Consider δ-Rips graph Rδ(J ) whose vertex set corresponds to the given
point set J = {1, . . . , n} ⊂ X. Then, each vertex of Rδ(J ) represents the estimated value

of the density f at that point, e.g., a vertex i of Rδ(J ) represents the value of f̂(i) where

f̂ is the estimated density. Hence, the pipeline is the following:

1. (Clustering) We sort J = {1, . . . , n} ⊂ X so that f̂(1) ≥ f̂(2) ≥ · · · ≥ f̂(n). Then,

we iterate over every vertex of Rδ(J ) in the decreasing order of f̂ -value to find the
clusters. Note that before merging with respect to merging threshold, every peak
represents a cluster. If the set of neighbours of the vertex i with the indices smaller
than i is empty, i is the peak of f̂ within Rδ(J ). Consequently, we obtain a forest of
Rδ(J ) where each tree starting from the peak is considered as a basin of attraction of
the peak.

2. (Merging) Let U be a union-find data structure whose entry containing the vertex i is
ei. Then, note that, in graph theory, the merging map defined in (46) is equivalent to
the root. Hence, the root of an entry ei is denoted by M(ei), i.e., M(ei) is assigned to

the vertex with the highest f̂ -value in ei. We again iterate over every vertex of Rδ(J )

in the decreasing order of f̂ -value. Then, there are two cases:

(a) If the vertex i is the root of the tree Ti, i is attached to the entry ei in U , where
Ti is stored.

(b) If the vertex i is not the root of the tree Ti, i.e., i belongs to some tree Tj already
stored in ej , we want to check if ej can be merged into other entries. Iterating
over ` ∈ N where N is the set of neighbours of the vertex i in Rδ(J ) with

f̂(`) ≥ f̂(i), we merge e` into ej if f̂(M(e`)) < min
{
f̂(M(ej)), f̂(i) + τ

}
. In

other words, we merge e` into ej if the peak M(e`) is lower than the peak M(ej)
and the prominence of M(e`) is less than τ . Similarly, we merge ej into e` if

f̂(M(ej)) < min
{
f̂(M(e`)), f̂(i) + τ

}
The following algorithm is copied from [11], which contains both the clustering and merging
processes.
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Algorithm 1: ToMATo

Input: simple graph Rδ(J ) where J = {1, . . . , n} is a given point set, n-dimensional

vector f̂ , merging threshold τ ≥ 0.
1 Sort J so that f̂(1) ≥ f̂(2) ≥ · · · ≥ f̂(n);
2 Initialise a union-find data structure U and two vectors g, r of size n;
3 for i = 1 to n do
4 Let N be the set of neighbours of i in Rδ(J ) that have indices lower than i ;
5 if N 6= ∅ then

// if vertex i is a peak of f̂ within Rδ(J )
6 Create a new entry e in U and attach vertex i to it;

// r(e) stores the root vertex associated with the entry e
7 M(e)← i;

8 else

// if vertex i is not a peak of f̂ within Rδ(J )
// g(i) stores the approximate gradient at vertex i

9 g(i)← argmaxj∈N f̂(j);

10 ei ← U.find(g(i));
11 Attach vertex i to the entry ei;
12 for j ∈ N do
13 e← U.find(j);

14 if e 6= ei && min
{
f̂(M(e)), f̂(M(ei))

}
< f̂(i) + τ then

15 U.union(e, ei);

16 M(e ∪ ei)← argmax{M(e),M(ei)} f̂ ;

17 ei ← e ∪ ei;
18 end

19 end

20 end

21 end

Output: the collection of entries e of U such that f̂(M(e)) ≥ τ .

Chazal et al [11] argued that we do not have to take δ-Rips graph as a neighbourhood graph
and the choice of a graph remains a non-trivial task. They introduced some neighbourhood
graphs such as k-nn graph, and Delaunay graphs, which have pros and cons. If one is
interested in the choice of a neighbourhood graph in detail, please have a look at [1, 11]. In
this thesis, δ-Rips graph will be primarily used for every experiment.

As we can see from Algorithm 1, ToMATo take three inputs: the simple neighbourhood
graph Rδ(J ), the n-dimensional density estimator f̂ , and the merging threshold τ . Since it
is already introduced how the neighbourhood graph works and how the merging threshold
is obtained, we now study the choice of density estimator for ToMATo. In short, the
choice of density estimator does not affect the result of the ToMATo algorithm unlike other
clustering methods that have high dependency on the choice of density estimator. Thus, we
can choose an arbitrary density estimator. However, based on many experiments, there are
two recommendations of the density estimator in [11]: a truncated Gaussian estimator and
the distance to a measure introduced in [9].
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Definition 3.18 (Truncated Gaussian estimator). Let X1, . . . , Xn be i.i.d. samples from
the density f . Then, the truncated Gaussian estimator with bandwidth h > 0 is defined
by

f̂h(x) =
1

n

n∑
i=1

K(‖x−Xi‖) (49)

where K(·) is defined by

K(‖x−Xi‖) =

{
exp
(
−‖x−Xi‖

2

2h

)
, if ‖x−Xi‖ ≤ h

0, otherwise.
(50)

Definition 3.19 (Distance to a measure). Let X1, . . . , Xn be i.i.d. samples from the density
f . Then, the distance to a measure of the k nearest neighbours is defined by

f̂k(x) =

√√√√1

k

k∑
i=1

‖x− pi‖2 (51)

where pi is the i-th nearest neighbour of x among the given samples {Xi}1≤i≤n.

Note that the distance to a measure f̂k(x) is a distance not a density. Hence, −f is taken
as an input for ToMATo since high density indicates small nearest-neighbor distances.

3.4.3 Application on Synthetic Data

Figure 9: (left) spiral dataset with density (114, 561 points); (middle) 2 dimensional projec-
tion of the spiral dataset; (right) persistence diagram computed with τ = +∞.

In this section, we consider spiral dataset consisting of 114, 561 data points sampled from
two spirals in R3. Note that the data lays on R3, not R2 since it also includes the density
information, which can be observed from Figure 9 (left). As already mentioned in Algorithm

1, the ToMATo took three inputs: neighbourhood graph Rδ(J ), density estimator f̂ , and
merging threshold τ . In the first run, we took δ = 10 for δ-Rips graph, and τ = +∞
(the true density is already given, hence no need to use density estimator). As a result,
we could compute the persistence diagram. As shown in Figure 9 (right), there are two
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points infinitely far, thus we can conclude that there are two prominent clusters in the
spiral dataset. We re-run the algorithm but with the merging threshold τ = 10−3 based on
the persistence diagram in the first run.

Figure 10: (left) clustered spiral dataset with density; (middle) 2 dimensional projection of
the clustered spiral dataset; (right) persistence diagram computed with τ = 10−3.

From Figure 10, one can observe that the prominence of two points are larger than τ = 10−3

and the prominent clusters are well separated from the noise. As already mentioned in the
beginning of 3, the total computation time of ToMATo is O(n + m log(n)) and m = O(n)
when δ of δ-Rips graph is small enough. Since we took δ = 10, we can assume that the time
complexity of the algorithm is approximately O(n log(n)).
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4 Comparison on Real Dataset

In order to compare the performance of each clustering methods that we discussed in section
2 and section 3, we need to decide which metrics to use to measure the quality of clustering.
In practice, it is not a trivial task to assess the performance of clustering since the clustering
analysis is widely used in unsupervised learning, i.e., the clustering analysis mainly deals
with the unlabelled data. To prevent such a problem, the dataset used in this section
is limited to the data with ground truth labels. Hence, to compare the performance of
clustering methods, we can use the adjusted Rand index (ARI) introduced in [29]. In short,
the adjusted Rand index measures the similarity of two different assignment of labels to the
clusters. Thus, the higher value of the adjusted Rand index indicates the more similar of
two label assignments are, e.g., if ARI is equal to 1, then two assignments are exactly the
same. Note that ARI ranges from −1 to +1. Negative ARI between the result assignment
and ground truth labels implies worse performance of the clustering than random partition.
Meaning that it is pointless to use the clustering. For more rigorous definition of the adjusted
Rand index, given a set S with |S| = n, let X = {X1, . . . , Xp} and Y = {Y1, . . . , Yq} be
the partitions of S. Let nij be the number of overlapping elements of Xi and Yi, i.e.,
nij = |Xi ∩ Yj |. For simplicity, let ai =

∑q
k=1 nik and bj =

∑p
k=1 nkj . Consider the

following contingency table:

Y1 Y2 · · · Yq sums

X1 n11 n12 · · · n1q a1
X2 n21 n22 · · · n2q a2
...

...
...

. . .
...

...
Xp np1 np2 · · · npq ap

sums b1 b2 · · · bq n

Then, the adjusted Rand index is defined by

ARI =

∑
ij

(
nij
2

)
−
(∑

i

(
ai
2

)∑
j

(
bj
2

))
/
(
n
2

)
1
2

(∑
i

(
ai
2

)
+
∑
j

(
bj
2

))
−
(∑

i

(
ai
2

)∑
j

(
bj
2

))
/
(
n
2

) . (52)

To dive into the intuition behind the adjusted Rand index, let us define the Rand index

RI =
a+ b

a+ b+ c+ d
=
a+ b(
n
2

) (53)

where

• a is the number of pairs of elements that are both in the same respective cluster of
each partition X and Y ;

• b is the number of pairs of elements that are both in the different respective cluster of
each partition X and Y ;

• c is the number of pairs of elements that are both in the same respective cluster of
partition X, but in the different respective cluster of partition Y ;

• d is the number of pairs of elements that are both in the same respective cluster of
partition Y , but in the different respective cluster of partition X.
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In short, a + b is the number of agreements between X and Y and c + d is the number of
disagreements between X and Y . However, the Rand index cannot consider the possibility
of agreement by chance between X and Y [8]. To improve this problem, Hubert and Arabie
[19] found E[RI]. That is, the expectation of the Rand index when the partitions are
random. Then, (52) can be written with respect to E[RI]:

ARI =
RI − E[RI]

1− E[RI]
. (54)

For example, assume that two partitions are equal, i.e., X = Y = {X1, . . . , Xr}. Then, we
have

nij =

{
|Xi| if i = j

0 if i 6= j.

ai = bi = nii for i = 1, . . . , r

Hence, we have

ARI =

∑
ij

(
nij
2

)
−
(∑

i

(
ai
2

)∑
j

(
bj
2

))
/
(
n
2

)
1
2

(∑
i

(
ai
2

)
+
∑
j

(
bj
2

))
−
(∑

i

(
ai
2

)∑
j

(
bj
2

))
/
(
n
2

)
=

∑
i

(
nii
2

)
−
(∑

i

(
nii
2

)∑
i

(
nii
2

))
/
(
n
2

)∑
i

(
nii
2

)
−
(∑

i

(
nii
2

)∑
i

(
nii
2

))
/
(
n
2

) = 1.

Therefore, we check that if two partitions are exactly the same, the ARI value is equal to 1.

More information of the adjusted Rand index can be found in [19, 29, 32].

This section will implement both the enhanced mode clustering (EMC) and Topological
Mode Analysis Tool (ToMATo) in the three different datasets used in [13]. The ultimate
goal of this section is to reproduce the results from [13] and show how ToMATo works in
high dimensions settings. Note that before we run both the EMC and ToMATo, the data is
always normalised to use the simplified Silverman’s rule of thumb (31) and for the fairness,
i.e., ToMATo does not use the Silverman’s rule of thumb, however it might affect the result
if I do not normalise the data for the ToMATo but for EMC.

In the following experiments, the EMC implementation was done in R and the ToMATo
implementation was done in C++. In each run, only one core was used and the specification
of the computer used in the following experiments is: Processor is 1.6 GHz dual core Intel
core i5 and 8 GB of RAM. Notice that the two implementations of EMC and ToMATo are
done in different programming languages (R and C++), thus it is rather uninteresting to
compare the time of computations in the following experiments. Hence, please have a look
at the time complexity of two methods mentioned in Section 2 and Section 3.

4.1 Olive oil data

In this section, we will apply both the EMC and ToMATo to the olive oil data in [16]. The
olive oil data is 10 dimensional data with 572 observations. Since this data already consisted
of ground truth labels (produced areas) and the information of the produced regions such
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as north and south, the clustering analysis was done with the other 8 attributes: palmitic,
palmitoleic, stearic, oleic, linoleic, linolenic, arachidic, eicosenoic.

Figure 11: The size of clusters plot of the olive oil dataset with the denoising threshold
n0 = 19.54 and bandwidth parameter h = 0.587.

According to Figure 11, by the denoising threshold (32), insignificant clusters are merged to
the closest significant clusters. After the denoising process, the EMC yielded 7 remaining
significant clusters while there are 9 true clusters: North-Apulia, Calabria, South-Apulia,
Sicily, Inland-Sardinia, Coast-Sardinia, East-Liguria, West-Liguria, Umbria.
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Figure 12: (left) 2 dimensional projection of the clustered olive oil data by EMC. It is the
projection on first and second columns; (right) the connectivity plot of the olive oil data.
Note that the thicker line between two clusters implies the higher connectivity between two
clusters.

For Figure 12 (left), one can visualise performing PCA instead of projecting on the first
and second column. However due to the high dimensions of the dataset, it does not change
the visual representation too much. Thus, this thesis visualised the clustering result by the
projection on two columns of the given dataset.

The connectivity plot from Figure 12 (right) shows that there are high connectivity between
cluster 1, 2, 3 as Sicily is spread out over cluster 1, 2, 3. Also, it is illustrated in Figure 12
(right) that East-Liguria is spread out over cluster 4, 5, 6, 7 though it is mostly assigned to
cluster 5.

Confusion matrix (EMC):

Area 1 2 3 4 5 6 7

Calabria 0 51 5 0 0 0 0
Coast-Sardinia 0 0 0 33 0 0 0
East-Liguria 0 0 0 1 32 11 6
Inland-Sardinia 0 0 0 65 0 0 0
North-Apulia 23 2 0 0 0 0 0
Sicily 6 18 12 0 0 0 0
South-Apulia 0 0 206 0 0 0 0
Umbria 0 0 0 0 0 51 0
West-Liguria 0 0 0 0 0 0 50

The above confusion matrix (area versus cluster) gives more precise understanding of the
connectivity. From the matrix, one can observe that 6 points from cluster 1, 18 points from
cluster 2, and 12 points from cluster 3 are from Sicily while cluster 1, 2, 3 are mostly assigned
to North-Apulia, Calabria and South-Apulia. We could conclude that this happened due
to the produced region of these areas, i.e., North-Apulia, Calabria and South-Apulia are
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located at the south side of Italy. The other 4 clusters are commonly located either at the
north side of Italy or Sardinia.

Figure 13: (left) 2 dimensional projection of the clustered olive oil data by ToMATo; (right)
the persistence diagram of the olive oil data. Rips parameter δ = 1 for the Rips graph,
k = 5 for the distance to a measure, τ = 1.8 for the merging threshold.

Note that Figure 13 (left) is similar to Figure 12. Meaning that two methods separated
the data into the similar clusters. From Figure 13 (right), we do observe that there are 8
prominent peaks (i.e., clusters) and the merging threshold τ could separate the 8 prominent
peaks from topological noise. Here, it is not very clear how to set τ . This thesis distinguished
the topological noise near the diagonal line and the noise chunk whose birth level is near 0.
For more details, let us have a look at the confusion matrix of the ToMATo algorithm.

Confusion matrix (ToMATo):

Area 1 2 3 4 5 6 7 8

Calabria 0 33 13 2 0 0 0 0
Coast-Sardinia 0 0 0 0 5 28 0 0
East-Liguria 37 0 0 0 0 0 2 0
Inland-Sardinia 0 0 0 0 64 0 0 0
North-Apulia 20 0 0 0 0 0 0 0
Sicily 6 18 1 5 0 0 0 0
South-Apulia 0 1 0 183 1 0 0 0
Umbria 46 0 0 0 0 0 0 5
West-Liguria 0 0 0 0 0 0 37 0

From the result of ToMATo, Sicily is again spread out over cluster 1, 2, 3, 4. However, one
can observe that cluster 1, 2, 3, 4 correspond to Unbria, Calabria, Calabria, South-Apulia
respectively, which does not show any correspondence between the produce areas and regions
(although Apulia is located at the south side of Italy and Liguria is at the north side of Italy,
cluster 1 contains both Apulia areas and east-Liguria). However, ToMATo could separate
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Sardinia areas from the areas located at north side better than the result of EMC. Lastly,
the confusion matrix also captures the small connectivity between west-Liguria and east-
Linguria. This suggests that both methods could capture hidden region information and
produce area based on the chemical measurements.

4.2 Banknote authentication data

To perform both the EMC and ToMATo, banknote authentication data given in [3] were
used. The banknote authentication data were extracted from the images of both real and
forged banknote examples. To extract the features out of the images, a Wavelet Transform
technique was applied. The banknote authentication data contains 5 variables: variance of
Wavelet Transformed image, skewness of Wavelet Transformed image, curtosis of Wavelet
Transformed image, entropy of image, class. Since the class attribute contains the ground
truth labels: real, forgery, it needs to be excluded before performing the clustering methods.
Thus, the clustering analysis was done with 4 attributes: variance of Wavelet Transformed
image, skewness of Wavelet Transformed image, curtosis of Wavelet Transformed image,
entropy of image.

Figure 14: The size of clusters plot of the bank authentication dataset with the denoising
threshold n0 = 21.97 and bandwidth parameter h = 0.453.

Figure 14 illustrates that there are 5 significant clusters and n0 + 10 term could denoise
the small clusters. Here, instead of the normal denoising threshold n0, n0 + 10 was used
since there was a considerable size difference between the fifth (size: 37) and sixth (size: 16)
clusters.
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Figure 15: (left) 2 dimensional projection of the clustered bank authentication data by
EMC; (right) the connectivity plot of the bank authentication data. Note that the thicker
line between two clusters implies the higher connectivity between two clusters.

From Figure 15 (right), we do observe that the connectivity exists in every cluster. The
connectivity is especially strong between cluster 1, 2, 3 and between cluster 3, 4, 5. From this,
we can hypothesise that although cluster 1, 2 mainly represent the real banknotes, cluster 3
also contains some real banknotes.

Confusion matrix (EMC):

Class 1 2 3 4 5

Real 631 70 59 1 1
Forgery 4 0 390 179 37

From the above confusion matrix (class versus cluster), we can confirm our hypothesis that
cluster 3 contains some real banknotes as 59 real banknotes were assigned to cluster 3.
However, except 59 real banknotes assigned to cluster 3, the real banknotes are overall well
separated from the forged banknotes.
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Figure 16: (left) 2 dimensional projection of the clustered bank authentication data by
ToMATo; (right) the persistence diagram of the bank authentication data. Rips parameter
δ = 1 for the Rips graph, k = 35 for the distance to a measure, τ = 1 for the merging
threshold.

Figure 15 (left) and Figure 16 (left) share very similar separated shape except that the
ToMATo result divided the data into 4 clusters while EMC divided the data into 5 clusters.
From Figure 16 (right) we can observe that there are 4 prominent peaks that are far off the
diagonal line. The merging threshold τ = 1 successfully separated the 4 prominent peaks
from topological noise near the diagonal line.

Confusion matrix (ToMATo):

Class 1 2 3 4

Real 604 97 25 35
Forgery 1 0 191 418

The above confusion matrix (class versus cluster) illustrates that cluster 1, 2 correspond to
the real banknotes and cluster 3, 4 correspond to the forged banknotes. Unlike the result of
EMC, both cluster 3, 4 consists of the real banknotes while they corresponds to the forged
banknotes. However, we can still conclude that cluster 3, 4 are corresponding to the forgery
since cluster 3 consists of 191 forgeries while only 25 are real. Likewise, cluster 4 consists of
418 forgeries while only 35 are real. We can conclude that real and forged banknotes are,
in fact, distinguishable based on Wavelet Transformed images as each class are divided well
in both methods.

4.3 Red wine quality data

To perform both the EMC and ToMATo methods, wine quality data given in [3] were
used. The wine quality data contains both red and white wine samples, thus only red wine
samples are chosen to use due for performance time. The red wine quality data contains
1599 observations and 12 variables: fixed acidity, volatile acidity, citric acid, residual sugar,
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chlorides, free sulfur dioxide, total sulfur dioxide, density, pH, sulphates, alcohol, quality
whereas the quality attribute is the ground truth. Thus, the clustering analysis was done
with 11 attributes: fixed acidity, volatile acidity, citric acid, residual sugar, chlorides, free
sulfur dioxide, total sulfur dioxide, density, pH, sulphates, alcohol. Note that there are 6
different wine quality scores as 3, 4, 5, 6, 7, 8 where higher score indicates the better wine it
is. More information of the wine quality data can be found in [15].

Figure 17: The size of clusters plot of the red wine quality dataset with the denoising
threshold n0 = 62.06 and bandwidth parameter h = 0.599.

Figure 17 yields that there are 4 significant clusters and the normal denoising threshold n0
could denoise small clusters. Unfortunately, 4 significant clusters are much less than 6 true
clusters. The EMC did not perform well in the sense of the number of clusters since the
wine quality score is very subjective, i.e., the score may vary depending on the person who
rates the wine quality. Let us see if the connectivity plot gives more idea of the data.

39



Figure 18: (left) 2 dimensional projection of the clustered red wine quality data by EMC;
(right) the connectivity plot of the red wine quality data. Note that the thicker line between
two clusters implies the higher connectivity between two clusters.

Figure 18 (right) shows that the majority of quality 5 wines are assigned to cluster 1, 2
and also cluster 2 does not contain much high quality wines, e.g., quality 7, 8 wines. This
explains that there is no high connection between cluster 2 and cluster 3, 4.

Confusion matrix (EMC):

Quality 1 2 3 4

3 10 0 0 0
4 49 0 1 3
5 488 135 39 19
6 434 25 91 88
7 68 3 48 80
8 5 0 5 8

As we could already see from Figure 18 (right), cluster 2 does not contain many high quality
wines, but more of middle quality wines such as quality 5 and 6. Cluster 1 does not have a
visible structure as it contains all quality wines. However, cluster 3, 4 tend to contain only
middle-high quality wines.
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Figure 19: (left) 2 dimensional projection of the clustered red wine quality data by ToMATo;
(right) the persistence diagram of the red wine quality data. Rips parameter δ = 2 for the
Rips graph, k = 5 for the distance to a measure, τ = 1 for the merging threshold.

Both Figure 18 (left) and Figure 19 (left) have distinguishable figures since ToMATo could
divide the red wine samples into 7 significant clusters as we do observe from Figure 19 (right).
Figure 19 (right) suggests that there are 7 prominent peaks and the merging threshold τ = 1
separated the 7 prominent peaks from topological noise near the diagonal line and noise
whose birth level is near 0.

Confusion matrix (ToMATo):

Quality 1 2 3 4 5 6 7

3 0 7 0 0 0 0 0
4 6 35 0 2 0 0 2
5 200 342 10 41 6 0 12
6 70 381 1 39 27 13 65
7 3 75 2 6 18 6 74
8 0 9 0 0 0 0 6

Similarly but worse than in EMC, each result cluster does not show any tendency. Only
cluster 2, 7 contain the high quality wines (quality 8), however cluster 2, 7 contain the low
quality wines (quality 4) simultaneously.

4.4 Seed data

To perform both the EMC and ToMATo methods, seed data given in [3] were used. To
extract the features of wheat grains, a soft X-ray technique was used. The seed data
contains 210 wheat grains and each wheat grain belongs to three different varieties: Kama,
Rosa, Canadian. There are 7 attributes from the images taken by the soft X-ray: area,
perimeter, compactness, length of kernel, width of kernel, asymmetry coefficient, length of
kernel groove. The clustering analysis was done with these 7 attributes.
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Figure 20: The size of clusters plot of the seed dataset with the denoising threshold n0 = 8.75
and bandwidth parameter h = 0.613.

Figure 20 yields that there are 3 significant clusters, which exactly correspond to the true
clusters: Kama, Rosa, Canadian. The denoising threshold n0 could denoise one cluster
noise with size of 2. As the third largest cluster has size 64, n0 successfully separated the
significant clusters from cluster noise.

Figure 21: (left) 2 dimensional projection of the clustered seed data by EMC; (right) the
connectivity plot of the seed data. Note that the thicker line between two clusters implies
the higher connectivity between two clusters.

From Figure 21 (right), one can observe that each result cluster of EMC is assigned to one
of varieties, e.g., cluster 1 corresponds to Kama, cluster 2 corresponds to Rosa, and cluster 3
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corresponds to Canadian. Also, it is shown that there exist high connectivity between cluster
pair (1, 2) and cluster pair (1, 3) and cluster 2. These connectivity’s are also illustrated in
Figure 21 (left) as cluster 1 is located in the middle of cluster 2 and cluster 3.

Confusion matrix (EMC):

Variety 1 2 3

Kama 58 3 9
Rosa 3 67 0
Canadian 3 0 67

From the above confusion matrix (variety versus cluster), we can confirm our observation
from Figure 21. Cluster 1, 2, 3 are clearly corresponding to Kama, Rosa, and Canadian
respectively. Note that cluster 1 contains both the wheat grains from Rosa and Canadian,
which explains the connectivity from Figure 21 (right).

Figure 22: (left) 2 dimensional projection of the clustered seed data by ToMATo; (right)
the persistence diagram of the seed data. Rips parameter δ = 1 for the Rips graph, k = 5
for the distance to a measure, τ = 2 for the merging threshold.

Figure 21 (left) and Figure 22 (left) have almost exactly the same clustered shapes. Figure
22 (right) shows that there are 3 prominent peaks, i.e., 3 significant clusters, which exactly
correspond to the given qualities. These three prominent peaks are distinguishable far off
the diagonal line. Meaning that these peaks are highly prominent.

Confusion matrix (ToMATo):

Variety 1 2 3

Kama 57 8 1
Rosa 4 0 64
Canadian 2 66 0

The confusion matrix for ToMATo is similar to the confusion matrix for EMC. Again, cluster
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1, 2, 3 are clearly corresponding to Kama, Canadian, and Rosa and cluster 1 has connectivity
with both cluster 2 and cluster 3.

4.5 Comparison

In this section, we compare the EMC and ToMATo based on adjusted Rand index (ARI)
obtained from the previous experiments. Here, the ARI was computed between the ground
true labels and the result assignment. As the ARI computes the similarity between two
assignments, the higher ARI will directly imply the better performance of the clustering
method.

Dataset/Method EMC ToMATo k-means

Olive Oil 0.826 0.810 0.787
Bank Authentication 0.563 0.571 0.013
Red wine Quality 0.073 0.056 0.052
Seed 0.765 0.794 0.797

The above table contains information of the ARI of both clustering method in 4 different
dataset. In the olive oil data and red wine quality data, the EMC performed better than
ToMATo. In the bank authentication data and seed data, the ToMATo performed better
than EMC. Notice that the olive oil data and red wine quality data are higher dimensional
data compared to bank authentication data and seed data. From this, we do observe that
the EMC performs slightly better than ToMATo in higher dimensions. However, notice
that the difference of the ARI is insignificant between the ARI of the EMC and ToMATo,
thus both methods performed well overall. Our observation (the EMC works better on high
dimensional data than ToMATo) can be explained by saddle points problem mentioned in
[28]. Recall from Section 3.4 that the topology changes at some saddle points and these
changes of topology might affect the performance of clustering.

Compared to k-means, both the EMC and ToMATo performed better in almost every ex-
periments except for the seed data. For k-means, k is set to be equal to the number of
the true clusters from ground truth, which is the optimal value for the k-means. By doing
so, k-means would perform the best so that we can compare the results of the EMC and
ToMATo with the best results of k-means. Thus, the results of k-means have the advantage
of having prior information of the correct parameter while the EMC and ToMATo do not
have. Note that the k-means fails to give good quality result of clustering when the clusters
have non-convex shapes. This disadvantage of the k-means followed poor ARI for the bank
authentication data as the clusters have non-convex shapes in Figure 15 (left) and Figure
16 (left). k-means showed better performance for the seed data due to the convex shapes of
the clusters for the seed data. However, the ARI does not vary too much to conclude that
the k-means outperforms compared to EMC and ToMATo.
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5 Conclusion

Throughout this thesis, classical density-based clustering was improved in two different
directions: Enhanced Mode Clustering and Topological Mode Analysis Tool introduced in
[13] and [11] respectively. The classical density-based clustering methods such as mean-shift
in [14] and classical hill climbing algorithm in [21] have one major disadvantage that we
opted to improve. That is, the density-based clustering fails to give good quality clustering
results in high dimensions. However, the density-based clustering can be used in any shapes
of clusters unlike, for example, k-means that is the most commonly used clustering method.
Two clustering methods introduced in Section 2 and 3 improve this remaining disadvantage
and keep the advantages of the density-based method.

The core contents of this thesis start by giving ideas of mode clustering and enhancements
to mode clustering in Section 2. The enhanced mode clustering from Section 2 focused on
the following rooms for improvement of the mean shift algorithm in [14]: 1. Mode clustering
is a branch of hard clustering. Which implies that the connectivity between clusters cannot
be measured. 2. The choice of bandwidth parameter of kernel density estimator is rather
unclear in practice. 3. In high dimensions, the variance creates small clusters in the kernel
density estimator. Hence, we want to merge these small clusters, especially in the high
dimensional setting. To improve these, Section 2 presented the notions and properties
of (soft) mode clustering, measuring clustering connectivity using soft assignment vectors,
Silverman’s rule of thumb to select the optimal bandwidth of the kernel density estimator,
and denoising threshold to denoise small clusters created in high dimensions. Additionally,
the consistency of estimated modes was studied in Section 2.4. The result of Theorem 2.2
gives two significant results for the enhanced mode clustering. The first result shows that the
number of estimated modes is equal to the number of true local modes asymptotically, i.e.,
the number of estimated modes is closer to the number of true local modes by increasing the
size of the data. The second result shows that the estimated modes are close to true modes
asymptotically distance-wise. Combining two results tells us that if the data is given large
enough, the estimation of the local modes converges in probability to the true local modes.
Before applying it to real datasets, it was applied to synthetic data to see if everything
worked well.

Following enhanced mode clustering, which is a geometric approach to the mode clustering,
the topological mode analysis tool is presented in Section 3. The topology can be applied to
the mode clustering mainly due to Lemma 3.2. Lemma 3.2 shows that the dimension of 0-th
homology group is equal to the number of connected components. That is, the number of
clusters can be computed by the 0-th homology. The topological mode analysis tool is the
improved result of combining the classical hill climbing algorithm introduced in [21] with
topological persistence. The classical hill climbing algorithm has two major issues: 1. Hill
climbing algorithm is highly sensitive to perturbations. 2. Hill climbing algorithm uses the
absolute height to measure the prominence, i.e., significance, of the clusters. That is a very
unstable measure since the small clusters generated from the density estimation can cause
small bumps that might have high absolute height in the density function, however, it is not
significant. The solutions to these problems are given in persistent homology. From theory,
the topological mode analysis tool is better than enhanced mode clustering with regards to
computation time. However, note that the study of topological data analysis in density-
based clustering is in the early stages. Thus, for example, the choice of hyperparameters
(e.g., the merging threshold τ , the radius of the δ-Rips graph) still needs to be studied in
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the future.

Last but not least, the two mode clustering approaches, which originated from two different
fields of mathematics, were applied to the real datasets and compared with respect to
the adjusted Rand index in Section 4. Unfortunately, two implementations were done in
different programming languages, so comparing the running time is pointless. However,
as the time complexities of the two clustering methods were already given in Section 2
and Section 3, we conclude that the running time in the topological mode analysis tool is
less than in enhanced mode clustering. The adjusted Rand indices gave a broad idea of
clustering quality for two clustering approaches. For all of the experiments, both methods
resulted in similar high adjusted Rand indices. Meaning that the performances of the two
clustering methods are overall good except in the red wine quality data. It was shown
from the bank authentication dataset that both mode- and persistence-based clustering
work effectively with non-convex-shaped clusters while k-means failed to give good quality
clustering output. Both clustering methods yielded a better adjusted Rand index for the
red wine quality data than in k-means, but they still showed poor performance due to the
noisiness of the data. The hyperparameters of the enhanced mode clustering were selected
based on the Silverman’s rule of thumb in (29) and the suggested denoising threshold in
(32) while the hyperparameters (except the merging threshold τ) of the topological mode
analysis tool were chosen by trial-and-error, which is one of the disadvantages compared to
the enhanced mode clustering. Although we choose δ by trial-by-error, it is recommended
to take δ small enough so that the time complexity can be reduced. Finally, we note that
both improved methods of density-based clustering can now show good performances in
the high dimensional setting. Recall that the conventional density-based clustering schemes
such as mean shift and hill climbing algorithms do not scale well with high dimensional data.
However, a series of results presented in Section 4 and the adjusted Rand index show that
the high dimension problem has been fixed. Ultimately, the results obtained in this thesis
contradict the remark from [13] (see page 221) where the authors found that denoising small
clusters using persistence homology is inefficient in high dimensions.
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A Implementation

R implementation of the Enhanced Mode Clustering (EMC) can be found in https://

github.com/yenchic/EMC from the authors of [13]. However, you might encounter some
errors in generating the size of cluster plot (SC-plot). Then, please see https://github.

com/HyunminHong/EMC where the slight adjustment on the SC-plot. For C++ implementa-
tion of the Topological Mode Analysis Tool (ToMATo), ToMATo codes and the introduction
of the codes (written by the authors of [11]) can be found in https://github.com/locklin/

tomato.

A.1 Visualisation

Plots from Figure 6 are generated by:

1 library(TDA)

2

3 # Generate two circles

4 Circle1 <- circleUnif (60)

5 Circle2 <- circleUnif (60, r = 2) + 3

6 Circles <- rbind(Circle1 , Circle2)

7

8 plot(Circles , xlab = "", ylab = "", main = "Two circles")

9

10 maxscale <- 5 # limit of the filtration

11 maxdimension <- 1 # components and loops

12

13 # Compute the persistence diagram of the Rips filtration built on two circles

data

14 DiagRips <- ripsDiag(X = Circles , maxdimension , maxscale ,

15 library = c("GUDHI", "Dionysus"), location = TRUE)

16

17 plot(DiagRips [["diagram"]])

In order to plot the persistence pairs of the superlevel filtration, the following codes are
used:

1 setwd("~/Downloads/ToMATo/")

2

3 library(grDevices)

4

5 diagram <- read.csv("diagram.txt", header = F, sep = " ")

6

7 local_minmax = function(diagram) {

8 ## min_birth = interval min; max_birth = interval max

9 # corresponds to birth level

10 unique_val = unique(diagram [,1])

11 min_birth = min(unique_val)

12 max_birth = max(unique_val)

13

14 ## min_death = non -infinity min of range; max_death = range max

15 # corresponds to death level

16 fin_entry = which(is.finite(diagram [,2]))

17 min_death = min(diagram[fin_entry , 2])

18 max_death = max(diagram[fin_entry ,2])

19

20 return(c(min_death , max_death , min_birth , max_birth))

21 }

22
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23 replace_infinity = function(diagram , inf_delta = 0.618) {

24 # infinite row entry in birth

25 inf_birth = which(is.infinite(diagram [,1]))

26 # infinite row entry in death

27 inf_death = which(is.infinite(diagram [,2]))

28

29 # find local min and max

30 min_death = local_minmax(diagram)[1]

31 max_death = local_minmax(diagram)[2]

32 min_birth = local_minmax(diagram)[3]

33 max_birth = local_minmax(diagram)[4]

34

35 # replace infinity values with more readable value

36 delta = (min_death - max_birth) * inf_delta

37

38 # if all entries of birth are finite , return the original

39 diagram[inf_death , 2] = delta

40

41 return(diagram)

42 }

43

44 display_diagram = function(diagram , tau = NaN , inf_delta = 0.618 , sp = 0.1,

alpha = 0) {

45 # convert infinity values to plotable values

46 diagram = replace_infinity(diagram , inf_delta)

47

48 # find local min and max

49 min_death = local_minmax(diagram)[1]

50 max_death = local_minmax(diagram)[2]

51 min_birth = local_minmax(diagram)[3]

52 max_birth = local_minmax(diagram)[4]

53

54 # increasing sp yields wider plot and vice versa

55 step_size = abs((min_death - max_birth) * sp)

56

57 # range max and min

58 Rmax = max(max_birth + step_size , max_death + step_size)

59 Rmin = min(min_birth - step_size , min_death)

60

61 plot(diagram[,1], diagram[,2], pch = 19, cex = 0.6, col = "blue",

62 xlim = c(Rmin , Rmax),

63 ylim = c(Rmin , Rmax),

64 xlab = "birth level", ylab = "death level",

65 main = "Persistence Diagram")

66

67 abline(a = 0, b = 1, lty = 1, lwd = 0.3)

68 abline(h=0, v=0, lty = 2, lwd = 0.3)

69 abline(h = min(diagram [,2]), lty = 8, lwd = 1, col = adjustcolor("red",

alpha.f = 0.5))

70 polygon(x = c(min(diagram [,2]) - 10*step_size , max(diagram [,2]) + 10*step

_size , min(diagram [,2]) - 10*step_size),

71 y = c(min(diagram [,2]) - 10*step_size , max(diagram [,2]) + 10*step

_size , max(diagram [,2]) + 10*step_size),

72 col = "grey",

73 border = adjustcolor("black", alpha.f = 0.5))

74

75 if (!is.nan(tau)) {

76 clip(x1 = tau , x2 = Rmax + alpha , y1 = 0, y2 = Rmax + alpha)

77 abline(a = -tau , b = 1, lty = 8, lwd = 1)

78 clip(x1 = min(diagram)*10, x2 = max(diagram), y1 = min(diagram)*10,

y2 = 0)
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79 abline(v = tau , lty = 8, lwd = 1)

80 }

81 }

82 # display_diagram(diagram , tau = 2, inf_delta = 0.2, alpha = 1) # example

To change the dotted bar (−∞-line) lower, you can increase the value of inf delta. The
larger value of alpha makes sure the merging threshold τ line longer to the right side.

A.2 Comparison on Real Dataset Plots

Olive oil dataset:

1 setwd("/Users/hyunminhong/Documents/Programmings/R_R studio/Bachelor Thesis/

EMC -master/")

2 source("EMC.R")

3 library(scatterplot3d)

4 library(pdfCluster)

5

6 # import the olive oil data used in Chen et al

7 library(freqparcoord)

8 data(oliveoils)

9

10 olive = scale(oliveoils [ ,3:10]) # extract numeric data

11 # scale the data so that we can use the

simplified Silverman ’s rule of thumb

12

13 # the ground truth labels

14 ground_truth = as.numeric(oliveoils$Area)
15

16 #################################################################

17 ############ EMC ################################################

18 #################################################################

19

20 # Enhanced mode clustering

21 olive_EMC = EMC(olive)

22

23

24 # SC-plot

25 plot(olive_EMC$SC.plot , type = "p", lwd = 2,

26 xlim = c(0,20), ylim = c(0 ,250),

27 xlab = "Index of ordered cluster",

28 ylab = "Size of cluster",

29 main = "SC -plot (Olive Oil)"

30 )

31 abline(h = olive_EMC$size.threshold , lwd = 2, col = "purple") # results that

there are 7 clusters

32 legend("topright", expression ((n*log(n)/20)^{frac(d,d+6)}), col="purple", lwd

=8, cex =1)

33

34

35 # plot clusters

36 n_emc <- 7 # the number of clusters

37 palette_emc <- rainbow(n_emc) # generate n distinct colors to plot the

clusters

38 palette_emc = palette_emc[olive_EMC$labels] # assign each point to the color

where colors represent the clusters

39

40 plot(olive [,1:2], pch = 16, cex = 0.8, col = palette_emc ,

41 xlab = "", ylab = "", xaxt="n", yaxt="n", main = "2d Projection Olive

Oil Clustering (EMC)") # plot clusters (2d projection)
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42

43 scatterplot3d(olive [,1:3], pch = 16, type = "p",

44 cex.symbols = 0.8, color = palette_emc ,

45 xlab = "X", ylab = "Y", zlab = "Z") # plot clusters

46

47 palette <- rainbow(max(ground_truth))

48 palette [3] <- "brown"

49 palette [4] <- "forestgreen"

50

51 plot(olive_EMC , pch=20, cex=0.7,

52 xlab="", ylab="", main="Color by Area",

53 xaxt="n", yaxt="n", txt.pos=4, col=palette[ground_truth])

54

55 legend("topright", levels(oliveoils [,1])[1:4], col=palette [1:4] , pch=rep

(19 ,9),cex=1)

56 legend("bottomright", levels(oliveoils [,1])[5:9], col=palette [5:9], pch=rep

(19 ,9),cex=1)

57

58 # compute the adjusted Rand index

59 adj.rand.index(olive_EMC$labels , ground_truth) # results in 0.8260962

60

61 # confusion matrix

62 confusion_mat_emc <- table(ground_truth , olive_EMC$labels)
63 row.names(confusion_mat_emc) <- levels(oliveoils [,1])

64 colnames(confusion_mat_emc) <- c(1: nrow(olive_EMC$modes))
65 confusion_mat_emc

66

67 #################################################################

68 ############ ToMATo #############################################

69 #################################################################

70

71 ToMATo_labels <- read.csv("/Users/hyunminhong/Desktop/Bachelor Thesis/

Information_TDA/clusters_olive.txt", header = F, sep = " ")

72 ToMATo_labels <- as.numeric(unlist(ToMATo_labels))

73

74 # plot clusters

75 n <- 8 # the number of clusters

76 palette_tom <- rainbow(n) # generate n distinct colors to plot the clusters

77 palette_tom = palette_tom[ToMATo_labels] # assign each point to the color

where colors represent the clusters

78

79 plot(olive [,1:2], pch = 16, cex = 0.8, col = palette_tom ,

80 xlab = "", ylab = "", xaxt="n", yaxt="n", main = "2d Projection Olive

Oil Clustering (ToMATo)") # plot clusters (2d projection)

81

82 scatterplot3d(olive [,1:3], pch = 16, type = "p",

83 cex.symbols = 0.8, color = palette_tom ,

84 xlab = "X", ylab = "Y", zlab = "Z") # plot clusters

85

86 # compute the adjusted Rand index

87 adj.rand.index(ToMATo_labels , ground_truth) # results in 0.8100825

88

89 # confusion matrix

90 confusion_mat_tom <- table(ground_truth , ToMATo_labels)

91 row.names(confusion_mat_tom) <- levels(oliveoils [,1])

92 colnames(confusion_mat_tom) <- c(1:max(na.omit(ToMATo_labels)))

93 confusion_mat_tom

94

95 table(ToMATo_labels , ground_truth)

96

97 #################################################################
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98 ############ k-means ############################################

99 #################################################################

100

101 olive_kmean <- kmeans(olive , 9)

102

103 # compute the adjusted Rand index

104 adj.rand.index(ground_truth , olive_kmean$cluster) # results in 0.7871385

Banknote authentication dataset:

1 library(nonet)

2 library(pdfCluster)

3 setwd("/Users/hyunminhong/Documents/Programmings/R_R studio/Bachelor Thesis/

EMC -master/")

4 source("EMC.R")

5

6 data(banknote_authentication)

7

8 # write.table(banknotes , file = "banknotes_w_o_labels.txt", sep = " ",

9 # row.names = FALSE , col.names = FALSE)

10

11 # the ground truth labels

12 ground_truth = banknote_authentication$class
13

14 banknotes <- scale(banknote_authentication [ ,1:4])

15

16 #################################################################

17 ############ EMC ################################################

18 #################################################################

19

20 # Enhanced mode clustering

21 banknotes_EMC <- EMC(banknotes)

22

23

24 # SC-plot

25 plot(banknotes_EMC$SC.plot , type = "p", lwd = 2,

26 xlim = c(0,15), ylim = c(0 ,600),

27 xlab = "Index of ordered cluster",

28 ylab = "Size of cluster",

29 main = "SC -plot (Bank Authentication)",

30 )

31 abline(h = banknotes_EMC$size.threshold +10, lwd = 2, col = "purple") #

results that there are 5 clusters

32 # used

denoising threshold is 21.97

33 legend("topright", expression ((n*log(n)/20)^{frac(d,d+6) }+10), col="purple",

lwd=8, cex =1)

34

35

36 # plot clusters

37 n_emc <- 5 # the number of clusters

38 palette_emc <- rainbow(n_emc) # generate n distinct colors to plot the

clusters

39 palette_emc = palette_emc[banknotes_EMC$labels] # assign each point to the

color where colors represent the clusters

40

41 plot(banknotes [,1:2], pch = 16, cex = 0.8, col = palette_emc ,

42 xlab = "", ylab = "", xaxt="n", yaxt="n", main = "2d Projection Bank

Authentication Clustering (EMC)") # plot clusters (2d projection)

43

44 palette <- rainbow(max(ground_truth))
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45

46 plot(banknotes_EMC , pch=20, cex=0.7,

47 xlab="", ylab="", main="Color by Real/Forgery",

48 xaxt="n", yaxt="n", txt.pos=4, col=palette[ground_truth])

49

50 legend("topleft", c("Real", "Forgery"), col=palette , pch=rep (19,2), cex=1)

51

52

53 # compute the adjusted Rand index

54 adj.rand.index(ground_truth , banknotes_EMC$labels) # results in 0.563353

55

56

57 # confusion matrix

58 confusion_mat_emc <- table(ground_truth , banknotes_EMC$labels)
59 row.names(confusion_mat_emc) <- c("Real", "Forgery")

60 colnames(confusion_mat_emc) <- c(1: nrow(banknotes_EMC$modes))
61 confusion_mat_emc

62

63 #################################################################

64 ############ ToMATo #############################################

65 #################################################################

66

67 ToMATo_labels <- read.csv("~/Downloads/ToMATo/clusters.txt", header = F, sep

= " ")

68 ToMATo_labels <- as.numeric(unlist(ToMATo_labels))

69

70 # plot clusters

71 n <- 4 # the number of clusters

72 palette_tom <- rainbow(n) # generate n distinct colors to plot the clusters

73 palette_tom = palette_tom[ToMATo_labels] # assign each point to the color

where colors represent the clusters

74

75 plot(banknotes [,1:2], pch = 16, cex = 0.8, col = palette_tom ,

76 xlab = "", ylab = "", xaxt="n", yaxt="n", main = "2d Projection Bank

Authentication Clustering (ToMATo)") # plot clusters (2d projection)

77

78 # compute the adjusted Rand index

79 adj.rand.index(ToMATo_labels , ground_truth) # results in 0.5714921

80

81 # confusion matrix

82 confusion_mat_tom <- table(ground_truth , ToMATo_labels)

83 row.names(confusion_mat_tom) <- c("Real", "Forgery")

84 colnames(confusion_mat_tom) <- c(1:max(na.omit(ToMATo_labels)))

85 confusion_mat_tom

86

87 table(ToMATo_labels , ground_truth)

88

89 #################################################################

90 ############ k-means ############################################

91 #################################################################

92

93 bank_kmean <- kmeans(banknotes , 2)

94

95 # compute the adjusted Rand index

96 adj.rand.index(ground_truth , bank_kmean$cluster) # results in 0.01321583

Red wine quality dataset:

1 library(tidyverse)

2 library(nonet)

3 library(pdfCluster)
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4 setwd("/Users/hyunminhong/Documents/Programmings/R_R studio/Bachelor Thesis/

EMC -master/")

5 source("EMC.R")

6

7 wine <- read.csv("/Users/hyunminhong/Downloads/ToMATo/inputs/wine.txt",

header = T, row.names = 1, sep = ",")

8

9 sort(unique(wine$quality)) # 3 4 5 6 7 8 (ground truth)

10

11 # the ground truth labels

12 ground_truth = wine$quality
13

14 wine <- scale(wine[,-12])

15

16 #write.table(wine , file = "wine_w_o_labels.txt", sep = " ",

17 # row.names = FALSE , col.names = FALSE)

18

19

20

21 #################################################################

22 ############ EMC ################################################

23 #################################################################

24

25 # Enhanced mode clustering

26 wine_EMC <- EMC(wine)

27

28

29 # SC-plot

30 plot(wine_EMC$SC.plot , type = "p", lwd = 2,

31 xlim = c(0,20), ylim = c(0 ,800),

32 xlab = "Index of ordered cluster",

33 ylab = "Size of cluster",

34 main = "SC -plot (Wine Quality)",

35 )

36 abline(h = wine_EMC$size.threshold , lwd = 2, col = "purple") # results that

there are 4 clusters

37 # used denoising threshold is 21.97

38 legend("topright", expression ((n*log(n)/20)^{frac(d,d+6)}), col="purple", lwd

=8, cex =1)

39

40

41 # plot clusters

42 n_emc <- 4 # the number of clusters

43 palette_emc <- rainbow(n_emc) # generate n distinct colors to plot the

clusters

44 palette_emc = palette_emc[wine_EMC$labels] # assign each point to the color

where colors represent the clusters

45

46 plot(wine[,2:3], pch = 16, cex = 0.5, col = palette_emc ,

47 xlab = "", ylab = "", xaxt="n", yaxt="n", main = "2d Projection Wine

Quality Clustering (EMC)") # plot clusters (2d projection)

48

49 palette <- rainbow(length(unique(ground_truth)))

50 palette [1] <- "blue"

51 palette [2] <- "lightskyblue"

52 palette [3] <- "red"

53 palette [4] <- "orange"

54 palette [5] <- "lawngreen"

55 palette [6] <- "purple"

56

57 plot(wine_EMC , pch=19, cex=0.3,

56



58 xlab="", ylab="", main="Color by Wine Quality",

59 xaxt="n", yaxt="n", txt.pos=2, col=palette[ground_truth])

60

61 sort(unique(wine$quality))
62

63 legend("topleft", c("3","4","5","6","7","8"), col=palette[c(1,2,5,4,6,3)],

pch=rep (19,6), cex=1)

64

65

66 # compute the adjusted Rand index

67 adj.rand.index(ground_truth , wine_EMC$labels) # results in 0.07330196

68

69

70 # confusion matrix

71 confusion_mat_emc <- table(ground_truth , wine_EMC$labels)
72 row.names(confusion_mat_emc) <- c(3,4,5,6,7,8)

73 colnames(confusion_mat_emc) <- c(1: nrow(wine_EMC$modes))
74 confusion_mat_emc

75

76 #################################################################

77 ############ ToMATo #############################################

78 #################################################################

79

80 ToMATo_labels <- read.csv("~/Downloads/ToMATo/clusters.txt", header = F, sep

= " ")

81 ToMATo_labels <- as.numeric(unlist(ToMATo_labels))

82

83 # plot clusters

84 n <- 7 # the number of clusters

85 palette_tom <- rainbow(n) # generate n distinct colors to plot the clusters

86 palette_tom = palette_tom[ToMATo_labels] # assign each point to the color

where colors represent the clusters

87

88 plot(wine[,2:3], pch = 16, cex = 0.5, col = palette_tom ,

89 xlab = "", ylab = "", xaxt="n", yaxt="n", main = "2d Projection Wine

Quality Clustering (ToMATo)") # plot clusters (2d projection)

90

91 # compute the adjusted Rand index

92 adj.rand.index(ground_truth , ToMATo_labels) # results in 0.05554523

93

94 # confusion matrix

95 confusion_mat_tom <- table(ground_truth , ToMATo_labels)

96 row.names(confusion_mat_tom) <- c(3,4,5,6,7,8)

97 colnames(confusion_mat_tom) <- c(1:max(na.omit(ToMATo_labels)))

98 confusion_mat_tom

99

100 #################################################################

101 ############ k-means ############################################

102 #################################################################

103

104 wine_kmean <- kmeans(wine , 6)

105

106 # compute the adjusted Rand index

107 adj.rand.index(ground_truth , wine_kmean$cluster) # results in 0.05159205

Seed dataset:

1 library(mclust)

2 library(datasetsICR)

3 library(pdfCluster)

4 library(scatterplot3d)
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5 setwd("/Users/hyunminhong/Documents/Programmings/R_R studio/Bachelor Thesis/

EMC -master/")

6 source("EMC.R")

7

8 data(seeds)

9

10 unique(seeds$variety) # Kama Rosa Canadian (ground truth)

11

12 # the ground truth labels

13 ground_truth = as.numeric(seeds$variety)
14

15 seeds <- scale(seeds[,-8])

16

17 #write.table(seeds , file = "seeds_w_o_labels.txt", sep = " ",

18 # row.names = FALSE , col.names = FALSE)

19

20

21

22 #################################################################

23 ############ EMC ################################################

24 #################################################################

25

26 # Enhanced mode clustering

27 seed_EMC <- EMC(seeds)

28

29

30 # SC-plot

31 plot(seed_EMC$SC.plot , type = "p", lwd = 2,

32 xlim = c(0,10), ylim = c(0 ,100),

33 xlab = "Index of ordered cluster",

34 ylab = "Size of cluster",

35 main = "SC -plot (Seeds)",

36 )

37 abline(h = seed_EMC$size.threshold , lwd = 2, col = "purple") # results that

there are 3 clusters

38 legend("topright", expression ((n*log(n)/20)^{frac(d,d+6)}), col="purple", lwd

=8, cex =1)

39

40

41 # plot clusters

42 n_emc <- 3 # the number of clusters

43 palette_emc <- rainbow(n_emc) # generate n distinct colors to plot the

clusters

44 palette_emc = palette_emc[seed_EMC$labels] # assign each point to the color

where colors represent the clusters

45

46 plot(seeds [,2:3], pch = 16, cex = 0.8, col = palette_emc ,

47 xlab = "", ylab = "", xaxt="n", yaxt="n", main = "2d Projection Seeds

Clustering (EMC)") # plot clusters (2d projection)

48

49 scatterplot3d(seeds [,1:3], pch = 16, type = "p",

50 cex.symbols = 0.8, color = palette_emc ,

51 xlab = "X", ylab = "Y", zlab = "Z", main = "3d Projection Seeds

Clustering (EMC)")

52

53 palette <- rainbow(length(unique(ground_truth)))

54

55 plot(seed_EMC , pch=19, cex=0.7,

56 xlab="", ylab="", main="Color by Seeds",

57 xaxt="n", yaxt="n", txt.pos=4, col=palette[ground_truth])

58

58



59 legend("topleft", levels(seeds$variety), col=palette , pch=rep (19,6), cex=1)

60

61

62 # compute the adjusted Rand index

63 adj.rand.index(ground_truth , seed_EMC$labels) # results in 0.7647773

64

65

66 # confusion matrix

67 confusion_mat_emc <- table(ground_truth , seed_EMC$labels)
68 row.names(confusion_mat_emc) <- levels(seeds$variety)
69 colnames(confusion_mat_emc) <- c(1: nrow(seed_EMC$modes))
70 confusion_mat_emc

71

72 #################################################################

73 ############ ToMATo #############################################

74 #################################################################

75

76 ToMATo_labels <- read.csv("~/Downloads/ToMATo/clusters.txt", header = F, sep

= " ")

77 ToMATo_labels <- as.numeric(unlist(ToMATo_labels))

78

79 # plot clusters

80 n <- 3 # the number of clusters

81 palette_tom <- rainbow(n) # generate n distinct colors to plot the clusters

82 palette_tom = palette_tom[ToMATo_labels] # assign each point to the color

where colors represent the clusters

83

84 plot(seeds [,2:3], pch = 16, cex = 0.8, col = palette_tom ,

85 xlab = "", ylab = "", xaxt="n", yaxt="n", main = "2d Projection Seeds

Clustering (ToMATo)") # plot clusters (2d projection)

86

87 # compute the adjusted Rand index

88 adj.rand.index(ground_truth , ToMATo_labels) # results in 0.794092

89

90 # confusion matrix

91 confusion_mat_tom <- table(ground_truth , ToMATo_labels)

92 row.names(confusion_mat_tom) <- levels(seeds$variety)
93 colnames(confusion_mat_tom) <- c(1:max(na.omit(ToMATo_labels)))

94 confusion_mat_tom

95

96 #################################################################

97 ############ k-means ############################################

98 #################################################################

99

100 seed_kmean <- kmeans(seeds , 3)

101

102 # compute the adjusted Rand index

103 adj.rand.index(ground_truth , seed_kmean$cluster) # results in 0.7974953
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