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Abstract
This thesis focusses on the map T (x) = 1

2 (x− 1
x ). It originates from Newton’s method of finding

the zeros of z2 + 1 on the real line. The dynamics of the dynamical system are investigated.
Different definitions of chaos are considered and we prove that T is chaotic according to some of
these definitions. Furthermore, using ergodic theory, we find the probability density function for
the invariant measure. Using Birkhoff’s ergodic theorem we determine the Lyapunov exponent.
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Introduction
This thesis investigates the dynamics of the map T (x) = 1

2 (x− 1
x ). Let us begin at the start, where

does it come from?

It is often useful to know the zeros of a function f(z), i.e. the values of z for which f(z) = 0. For
polynomial functions of degree 1 or 2, they are easy to compute. Even for degrees 3 and 4, there
have been methods developed to find the zeros. For degrees ≥ 5, there is no method to find the
zeros. Luckily, in 1669, Newton found a method to approximate the zeros for any differentiable
(complex) function [19]. For this method, we need an initial value z0 and recursive iterations:

zn+1 = zn −
f(zn)

f ′(zn)
.

This sequence zn converges to a limit z, which is a zero of f. Functions can have multiple zeros
and different initial values lead to different zeros of f(z). In that case, we can define the basin
of attraction of each zero. The basin of attraction is the set of initial values converging to that
specific zero. Now let us consider:

fc(z) = z2 + c

We can find the zeros of fc by hand:

fc(z) = 0⇒ z =


±
√
−c if c < 0

0 if c = 0

±i
√
c if c > 0

Let us also consider Newton’s method for this example. For c < 0 the basins of attraction of
±
√
−c are respectively {z ∈ R : z > 0} and {z ∈ R : z < 0}. For c = 0, the basin of attraction is

all of R, all points converge to 0 by Newton’s method. For c > 0, we have imaginary zeros, and
the basins of attraction lie in the complex plane. The basin of attraction of i

√
c is the upper half

complex plane {z ∈ C : Im(z) > 0} and the basin of attraction of −i
√
c is the lower half complex

plane: {z ∈ C : Im(z) < 0}. We can for example look at the convergence of Newton’s method for
f1(z) = z2 + 1. Below are the iterations for initial value z0 = 1 + 0.5i, which lies in the basin of
attraction of +i. Indeed, after 4 iterations, we are already getting close to i:

z0 = 1 + 0.5i

z1 = 0.1 + 0.45i

z2 = −0.1853 + 1.2838i

z3 = −0.0376 + 1.0234i

z4 = −0.0009 + 0.9996i

...
zn ≈ i

A computer can determine basins of attraction by calculating the convergence for all initial values.
In the case of fc, the basins of attraction are simple, but for some functions they are really com-
plicated, and give spectacular images if we colour each basin in a different colour. These images
are called fractals and they are not the focus of this paper. More information about this can be
found in, for example, these papers: [16, 2].

Going back to our function fc, we can ask the question of what happens if we apply Newton’s
method with an initial value that is not in either basin of attraction, for example z0 ∈ R for
f{c>0}? In that case, the iterations do not converge, but they jump around chaotically on the real
line. To investigate this behaviour, we will consider the discrete dynamical system that arises from
this problem. From now on, we will focus on the real line, so we will change the notation from z to x.

A discrete dynamical system is an iterative procedure of a continuous function f : X → X with
initial values in X. We will denote this initial value by x0 and the sequence of iterates will look
like:

x0, f(x0), f(f(x0)), . . . , fn(x), where xn = fn(x0)

4



(a) c = 5. (b) c = −1. (c) c = 0. (d) c = 1. (e) c = 5.

Figure 1: Nc(x) = 1
2 (x− c

x ) for different values of c in red and diagonal y = x in blue.

Such a sequence of iterations is called the orbit of x0. The goal of dynamical systems is to under-
stand what happens after a number of iterations. There are some preliminaries that we need to
mention. We say x is a periodic point x of period n if fn(x) = x. A periodic point of period 1 is
called a fixed point. A periodic point x of period n is said to be repelling if | d

dxf
n(x)| > 1 and attract-

ing if | d
dxf

n(x)| < 1. Note that if x is a periodic point of period n, then f(x), f2(x), . . . , fn−1(x)
are also periodic points of period n. This set of points {x, f(x), . . . , fn−1(x)} is called the period
n obit. We often draw f(x) together with a diagonal line y = x such that the intersection points
show where the fixed points are. Note that intersections between the fn(x) and the diagonal give
the periodic points of period n. This diagonal is also a tool to visualize iterations. There is an
example in figure 2, the vertical lines show (xi, xi) → (xi, f(xi)) = (xi, xi+1) and the horizontal
lines show (xi, xi+1)→ (xi, f(xi)) = (xi+1, xi+1).

Newton method forms a dynamical system in the following way. We can write the iterations
as the so-called Newton function [20]:

N(x) = x− f(x)

f ′(x)
, where xn = Nn(x0).

In the case of fc(x) = x2 + c, the Newton function is given by:

Nc(x) = x− x2 + c

2x

=
2x2

2x
− x2 + c

2x

=
1

2

(
x− c

x

)
Now we have our dynamical system, given by Nc : R→ R. Note that iterations of Nc converge to
attracting fixed points of Nc. These fixed points are equal to the zeros of fc. We have seen that
the zeros of fc are different, depending on c. As a direct result, the dynamics of Nc also differ for

(a) initial condition −4.5. (b) initial condition 0.15.

Figure 2: Iterations of N−1(x) = 1
2 (x+ 1

x ).
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different values of c. Figure 1 shows Nc for different values of c together with the diagonal. The
fixed points are found by solving:

x =
1

2
(x− c

x
)

=⇒x = ±
√
−c

For c ≤ 0, the dynamics are simple, there are two fixed points at ±
√
−c. We can check that they

are attracting using the derivative:

N ′c(x) =
1

2
(1 +

c

x2
).

Indeed, |N ′c(±
√
−c)| = 0 < 1. Figure 2 shows some iterations for N−1(x). The iterations converge

to the fixed points ±
√
−c, as expected. For c = 0, Nc(x) reduces to N0(x) = x

2 , which has one
attracting fixed point at x = 0. Indeed, N ′0(x) = 1

2 < 1. For c > 0, the fixed points of Nc are
imaginary. Figure 1d and 1e show that there are indeed no real fixed points. In both cases, the
iterations cannot converge to anything and the dynamics look very interesting. In figure 3b, we
see some iterations going from very large numbers back to small values and back to large numbers
again. In the rest of this thesis, we will focus on:

N1(x) =
1

2
(x− 1

x
) = T (x).

We will investigate the dynamics of T . We will start of with some basic properties. We will see
a topological conjugacy with the doubling map, and use this to find the periodic points and some
other properties of T . Then we will consider different definitions of chaos and we will try to prove
that T is chaotic, and finally we will look at T from an ergodic point of view.

(a) 27 iterations. (b) 219000 iterations.

Figure 3: Iterations of N1(x) = 1
2 (x− 1

x ) with initial value 1
2 .
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1 Properties of the map

Figure 4: The map T with a diag-
onal.

We consider the following map, shown in figure 4:

T (x) =
1

2

(
x− 1

x

)
. (1)

Note that T is anti-symmetric, since T (−x) = 1
2 (−x + 1

x ) =
−T (x). There is an asymptote at x = 0, showing a disconti-
nuity at x = 0. The map is continuous in the rest of R.

Corollary 1. The map T : R\{0} → R\{0} is continuous.

Proof. A map f is continuous at a if limx→a f(x) = f(a).
Clearly, T is not continuous at x = 0, as limx→0+ T (x) = −∞
and limx→0− T (x) = ∞ and T (0) is undefined. For all other
a limx→a T (x) = 1

2 (a − 1
a ) = T (a) So T is continuous at

R\{0}.

In fact, we need to exclude not only {0} from the domain, but
all points that eventually map to 0. When looking at orbits
of T , we do not want to find any discontinuities. These points
form a countable set:

KT = {x ∈ R : Tn(x) = 0 for some n ∈ N}.

Taking this into account, we find that Tn : R\KT → R\KT is also continuous and we have a
dynamical system:

xn = Tn(x), x0 ∈ R\KT , (2)

In this section, we will investigate the dynamics of this system. We will start with the topological
conjugacy between T and the well-known doubling map. We will then use it to find the periodic
points of the dynamical system and to investigate the set KT .

1.1 Topological Conjugacy

Figure 5: Cotangens
h(θ) = cot θ.

We want to find a way to investigate what happens to T after n it-
erations. If we look at the second iteration, we already find a long,
complicated formula:

x2 = T 2(x) =
1

2

(
1

2

(
x− 1

x

)
− 1

1
2

(
x− 1

x

)) .
Imagine what the nth iteration would look like! Luckily, there is another
way to express xn [20]. Consider h : (0, π)→ R, shown in figure 5, given
by:

h(θ) = cot θ (3)

Note that the cotangens is periodic with period π, we will focus only on
(0, π). Furthermore, note that hmaps to all of R. So for all x0 ∈ R, there
is θ ∈ (0, π) such that x0 = cot θ. We can use the simple trigonometry
double-angle formula: cot 2θ = 1

2 (cot θ− 1
cot θ ) to find a new expression

for Tn(x):

x1 =
1

2

(
x0 −

1

x0

)
=

1

2

(
cot θ − 1

cot θ

)
= cot 2θ

xn = cot 2nθ ∀n ∈ Z≥0
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If xi = h(θ), then the angle θ has doubled in the next iteration, namely xi+1 = h(2θ). Since the
next iteration can also be written as xi+1 = T (xi), we find a relation between T and the doubling
map g(θ) = 2θ mod π:

T (xi) = xi+1

T (h(θ)) = h(2θ)

= h(g(θ))

Recall that we excluded the set of points KT from the domain of T . As a result, the points
θ ∈ (0, π) such that x0 = cot θ ∈ KT can be excluded from (0, π). We will call this set of points
Kg. Note that Tn(x) = cot 2nθ = 0 is equivalent to 2nθ = arccot 0 = π

2 . The set Kg is given by:

Kg = {θ ∈ (0, π) : xn = cot 2nθ = 0 for some n ∈ N}

= {θ ∈ (0, π) : gnθ =
π

2
for some n ∈ N}.

This relationship between T and the doubling map is called a topological conjugacy. It is shown
in figure 6.

(0, π)\Kg (0, π)\Kg

R\KT R\KT

h

g

T

h

Figure 6: Conjugacy between the doubling map g to T .

Definition 1. Let f : X → X and g : Y → Y be dynamical systems. We say f and g are
topologically conjugate if there exists a homeomorphism h : X → Y such that h ◦ f = g ◦ h.

Proposition 1. The map h : (0, π)\Kg → R\KT given by h(θ) = cot θ is a homeomorphism, i.e.
it is continuous, bijective and has a continuous inverse.

Proof. We can easily see that h is bijective. For continuity consider the topological space (R, Td)
where Td is the usual topology on R, namely the family of all d-open subsets of R. We use the
metric d(x, y) = |x− y|. Consider also the topological space ((0, π), Td). Then h̃ : (0, π) → R and
h̃−1 : R→ (0, π) are continuous. See also appendix A.1.2. Then the subset (0, π)\Kg ⊂ (0, π) gives
the subspace topology

T(0,π)\Kg = {(0, π)\Kg ∩ U : U ∈ Td}.
The inclusion map i : (0, π)\Kg → (0, π) is defined by i(a) = a ∀ a ∈ (0, π)\Kg. The inclusion
map is continuous[21]. The map h : (0, π)\Kg → R is a composition h = h̃ ◦ i and since h̃ and i
are continuous, h must also be continuous. The proof of h−1(x) = arccotx being continuous in
(0, π)\Kg is similar. So h is bijective, continuous and has a continuous inverse, which makes it a
homeomorphism.

Proposition 2. There is a conjugacy between the doubling map g(θ) = 2θ mod π and T .

Proof. Following definition 1, we have two dynamical systems (R\KT , T ) and ((0, π)\Kg, g), and
a homeomorphism h(θ) : (0, π) → R\KT given by h(θ) = cot θ. We need to check the following
quality:

T ◦ h(θ) = h ◦ g(θ)

T (cot θ) = h(2θ mod π)

T (x1) = cot 2θ

x2 = x2,

so, indeed T and the doubling map g are topologically conjugate.
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Note that we can write f = h ◦ g ◦ h−1. Then fn = h ◦ g ◦ h−1 ◦ · · · ◦ h ◦ g ◦ h−1 = h ◦ gn ◦ h−1

holds for all n. As we will see, a topological conjugacy preserves many dynamical properties. In
the next section, we will use the conjugacy to find the periodic points.

1.2 Periodic points
Recall that periodic points of period n can be found where Tn intersects the diagonal line y = x.
In figure 7, we see such graphs showing the periodic points of period 1,2,3,4. Figure 7a shows that
there are no fixed points,

(a) T (x) (b) T 2(x)

(c) T 3(x) (d) T 4(x)

Figure 7: Graphs of iterations of T (x) with a diagonal y = x.

Figure 7b shows that there are two periodic points of period 2. We can calculate them analytically:

T 2(x) =
1

2

(
1

2

(
x− 1

x

)
− 1

1
2

(
x− 1

x

)) = x

1

2

(
x− 1

x

)2

− 2 = 2x

(
x− 1

x

)
3x4 + 2x2 − 1 = 0

=⇒x2 =
1

3
or x2 = −1

=⇒x = ±
√

1

3

The two periodic points at ±
√

1
3 are both repelling since d

dxT
2
(
±
√

1
3

)
= 4 > 1. For periodic

points of higher order, it becomes increasingly difficult to compute them by hand. Figure 7c shows
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(a) x0 = cot θ with x1 =
cot 2θ

(b) x0 = cot θ with x2 =
cot 4θ

(c) x0 = cot θ with x3 =
cot 8θ

Figure 8: Graphs x0 in green and x1, x2, x3 in red.

6 periodic points of period 3, and figure 7d shows 14 periodic points of period 4. This trend
suggests that T has 2n−2 periodic points of period n. Furthermore, the graphs in figure 7 suggest
that all periodic points are repelling. A periodic point x is repelling if | d

dxT
n(x)| > 1, i.e. the

tangent line at x has a slope larger than 1. The tangent line of all periodic points is steeper than
the diagonal with slope 1, indicating that the periodic points are repelling. With the topological
conjugacy, we can prove these conjectures.

1.2.1 Using the conjugacy

We can use the conjugacy to find the periodic points. Suppose we have a periodic point of g such
that gn(θ) = θ. Then h(θ) is a periodic point of T :

Tn ◦ h(θ) = h ◦ gn(θ)

Tn(h(θ)) = h(θ)

So if θ is a periodic point of g then h(θ) = cot(θ) is a periodic point of T of the same period. For

example, θ = π
3 and θ = 2π

3 are the periodic points of period 2 of g. Indeed, cot π3 =
√

1
3 and

cot 2π
3 = −

√
1
3 are exactly the periodic points of T .

Determining the periodic points of T was quite difficult. Fortunately, the periodic points of
g(θ) = 2θ mod π are easier to find. Note that if θ

π is rational, then θ is (eventually) periodic
[20]. If θ

π is irrational, we have a non-periodic orbit. Non-periodic orbits can be chaotic, this will
be investigated later on.

Recall that xn can be written as xn = cot 2nθ. A point is periodic if x0 = xn, so a way to find
periodic points of period n is to look for intersections in the graphs of x0 = cot θ and xn = cot 2nθ.
In figure 8 we see such graphs. In figure 8a, we see that x0 and x1 have no intersection points, as
expected. Figure 8b shows that x0 = cot θ and x2 = cot 4θ intersect in two points. These are the
two periodic points at π

3 ,
2π
3 . Figure 8c shows 6 periodic points of period 3 at π

7 ,
2π
7 , . . . ,

6π
7 . These

correspond to the 6 periodic points in figure 7c. This method of comparing cot θ with cot 2nθ can
be used to find all the periodic points of T :

Proposition 3. The map T = 1
2 (x− 1

x ) has 2n − 2 points of period n. For n = 2, 3, . . . they are

10



given by

cot

(
π

2n − 1

)
, cot

(
2π

2n − 1

)
, cot

(
3π

2n − 1

)
, . . . , cot

(
(2n − 2)π

2n − 1

)
.

Proof. A periodic point of period n is found when x0 = xn. Let m := 2n, then:

x0 = xn

h0(θ) = hn(θ)

cot θ = cotmθ

cos θ sinmθ = sin θ cosmθ.

By the angle sum and difference identities:

sin(mθ ± θ) = sinmθ cos θ ± cosmθ sin θ

sin(mθ + θ) + sin(mθ − θ) = 2 sinmθ cos θ

sin(mθ + θ)− sin(mθ − θ) = 2 cosmθ sin θ.

Now we can solve:

sin(mθ + θ)− sin(mθ − θ) = sin(mθ + θ) + sin(mθ − θ)
sin (m− 1)θ = 0

⇒ θ =
π

m− 1
,

2π

m− 1
, . . . ,

(m− 2)π

m− 1

So indeed, for all n = 2, 3, . . . , there are m − 2 = 2n − 2 values of θ such that x0 = xn. Finally,
x = cot θ gives the periodic points of T , finishing the proof.

We can write the set of all periodic points of T as follows:

Per(T ) =

∞⋃
n=2

2n−2⋃
k=1

cot
kπ

2n − 1

The periodic points of g can easily be found with the conjugacy. This set can be written as:

Per(g) =

∞⋃
n=2

2n−2⋃
k=1

kπ

2n − 1

Note that the periodic points of g are evenly distributed in (0, π). We can prove that set of periodic
points is dense. First let us recall the definition:

Definition 2. A subset A ⊂ X is dense in X if for any point x ∈ X, any neighbourhood of x
contains at least one point of A.

Proposition 4. Per(g) is dense in (0, π)\Kg.

Proof. Consider a point θ ∈ (0, π)\Kg. Let x, y be two periodic points of period n such that they
are of consecutive k. The distance between them is:

dn(x, y) =

∣∣∣∣ kπ

2n − 1
− (k + 1)π

2n − 1

∣∣∣∣ =
π

2n − 1
.

Note that dn(x, y) → 0 as n → ∞. Let Bε(θ) be an open ball around θ of radius ε > 0. For all
ε > 0 there exists a value of n such that dn(x, y) < ε. Therefore, there exists a periodic point x
of period n, such that dn(x, θ) ≤ dn(x, y) < ε. Hence, there must be at least one periodic point
inside the open ball, making Per(g) a dense subset of (0, π)\Kg.

The periodic points of T are not evenly distributed in its domain. As we saw in figure 7 the
periodic points are mostly centered around 0. As n increases, the periodic points move away from
0, but the periodic points around 0 stay closer together than those further away. This is because
of the nature of h(θ) = cot(θ) and the fact that R is not bounded. We can see in figure 5 that h
maps values θ ∈ (π4 ,

3π
4 ) to (−1, 1), values of θ ∈ (0, π4 ) are mapped to (1,∞), and θ ∈ ( 3π

4 , π) are
mapped to (−∞,−1). So if we have a certain distance d(θ, θ̃) between two periodic points θ and
θ̃ of g, then d(h(θ), h(θ̃)) gets larger as θ is closer to 0 or π.

11



Theorem 1. All periodic points of g and T are repelling.

Proof. Consider the doubling map g. A periodic point of period n is repelling if | d
dθg

n(θ)| > 1.
This is the case since |2n| > 1 for n ≥ 2. The topological conjugacy preserves this quality of the
periodic points, as we can see below:

d
dθ
Tn ◦ h(θ) =

d
dθ
h ◦ gn(θ)

d
dh(θ)

Tn(h) · dh(θ)

dθ
=

d
dgn(θ)

h(gn(θ)) · dg
n(θ)

dθ
(θ)

If we consider this at a periodic point θ0 = θn = gn(θ0), we find:

d
dh(θ0)

Tn(h(θ0)) · h′(θ0) = h′(θ0) · 2n

| d
dx
Tn(x)| = 2n for x = h(θ0).

Indeed, periodic points of g and T are periodic.

1.3 Set of points that map to zero KT

Recall that the domain of T is R\KT where KT = {x ∈ R : Tn(x) = 0 for some n}. In this section
we will investigate this set KT . For any x ∈ KT we have Tn(x) = 0 for some n. Such a point x is
mapped to ±∞ by the next iteration, and then again to ±∞ for all future iterations:

T (0) = lim
x→0±

1

2
(x− 1

x
) = ∓∞,

T (±∞) = lim
x→±∞

1

2
(x− 1

x
) = lim

x→±∞

x

2
= ±∞.

Let us take a look at the zeros of Tn for n = 1, 2, 3, 4 in figure 7. The points where Tn(x) = 0,
are of course found on the intersections with the x−axis. Note that if T i(x) = 0, then there is an
asymptote at x for iteration Tn for all n > i.

The first point in KT is x = 0. For n = 0, we find T 0(x) = x, which is of course 0 at x = 0. Figure
7a shows that T (x) has an asymptote at x = 0 and two new zeros at ±1. These new zeros can be
computed with the inverse of T (see also appendix A.1):

T−1
± x = x±

√
x2 + 1

Note that this is a double inverse, the pre-image of any points consists of two points. To find the
points of KT , we need to look at the pre-image of 0. Indeed, we find the two zeros T−1(0) = ±1.
We can do this again to find the four zeros of T 2:

T−1
± (±1) = ±1±

√
2.

Indeed, figure 7b shows four zeros and 3 asymptotes at −1, 0, 1. Using the same method, we can
calculate that the zeros of T 3 are ±(1 +

√
2) ±

√
4 + 2

√
2 and ±(1 −

√
2) ±

√
4− 2

√
2. Indeed,

figure 7c shows 8 zeros and 7 asymptotes. Lastly, figure 7d shows the 16 zeros and 15 asymptotes
of T 4. In theory, we can find all the zeros using the inverse, but it would take too much time. We
can however conclude how much zeros and asymptotes there are.

Proposition 5. The set KT is countable and consists of ∪∞n=02n points. Each graph of Tn has
2n − 1 asymptotes.

Proof. Tn has 2n zeros for any n, given by T−n(0). The zeros turn into asymptotes in the next
iteration, so the number of asymptotes is just the sum of all previous zeros:

∑n−1
i=0 2i = 1 + 21 +

22 + 23 + · · · + 2n−1. We can prove by induction that this sum equals 2n − 1 For n = 1 both are
equal to 1. Next, assume this holds for n = k:

∑k−1
i=0 2i = 2k − 1 and prove it for n = k + 1:

k∑
i=0

2i = 2k +

k−1∑
i=0

2i

= 2k + 2k − 1 = 2 · 2k − 1 = 2k+1 − 1.

12



(a) cot θ (b) cot 2θ (c) cot 4θ (d) cot 8θ

Figure 9: Graphs of cot 2nθ for n = 0, 1, 2, 3

So indeed, KT consists of a countable number of points, a collection of 2n zeros in each iteration
of Tn and each graph of Tn has 2n − 1 asymptotes.

Figure 7 also shows that most zeros are centered around 0, but as n increases, they slowly move
further away from 0. We will consider the outer asymptotes and see how far they can move away
from 0. Since T is anti-symmetric we can focus on only the most right asymptote, which we find
by iterating the inverse with the + sign: T−1

+ x = x+
√
x2 + 1. Let an be the most right asymptote

for some n, and consider the sequence {an} defined by an+1 = T−1(an). Consider the ratio:∣∣∣∣an+1

an

∣∣∣∣ =

∣∣∣∣∣an +
√

1 + a2
n

an

∣∣∣∣∣
=

∣∣∣∣∣1 +

√
1

a2
n

+ 1

∣∣∣∣∣ > 1 ∀n.

According to the ratio test, this means that this sequence is divergent. This shows that as n→∞,
the outer asymptotes will move to ±∞. The set of asymptotes has no bound and neither does the
set of periodic points, since all periodic points lie between the outer asymptotes. This is something
we already knew, since we computed all of the periodic points in the previous section.

1.3.1 KT using the conjugacy.

It turned out to be very time-consuming to calculate all points in KT , but again, we can use the
conjugacy to find them. Recall that:

Kg = {θ ∈ (0, π) : xn = cot 2nθ = 0 for some n ∈ N}

= {θ ∈ (0, π) : gnθ =
π

2
for some n ∈ N}.

Figure 9 shows the graphs of cot 2nθ for n = 0, 1, 2, 3. Figure 9a shows no asymptotes in (0, π)\Kg,
but one zero at π

2 . Note that this corresponds to the zero we found for n = 0 as x = cot π2 = 0.
Figure 9b shows one asymptote at π

2 and two zeros at π
4 ,

3π
4 . Indeed, cot π4 = 1 and cot 3π

4 = −1
Figure 9c shows 3 asymptotes and 4 zeros and figure 9d shows 7 asymptotes and 8 zeros. This
corresponds exactly to what we found for T .

13



More generally, we can find all points for which gn(θ) = π
2 for some n. This is equivalent to

saying h(gn(θ)) = cot 2nθ = h(π2 ) = 0:

0 = cot 2nθ

0 =
cos 2nθ

sin 2nθ
0 = cos 2nθ

⇒2nθ =
π

2
+ kπ for k ∈ N

θ =
π

2n+1
+
kπ

2n
=

(1 + 2k)π

2n+1
.

Now we know that:

Kg =

∞⋃
n=0

2n−1⋃
k=0

(1 + 2k)π

2n+1
,

and:

KT =

∞⋃
n=0

2n−1⋃
k=0

cot
(1 + 2k)π

2n+1
.

1.4 Relation between T and the Logistic map
There is a link between T and the logistic map Fµ(x) = µx(1 − x) for µ = 4. Recall that T
comes from the Newton’s method when trying to find the zeros for x2 + 1 on the real line. The
iterations yn = x2

n+ 1 show how Newton’s method moves over the vertical axis [20]. We substitute
xn+1 = 1

2 (xn − 1
xn

) to find that:

yn+1 = x2
n+1 + 1

=
1

4

y2
n

yn − 1

And then a second substitution z = 1
y gives us the quadratic equation:

yn+1 =
1

4

y2
n

yn−1

zn+1 = 4zn(1− zn)

The details of this computation and more information about the link between T and F4 can be
found in Appendix A.1.3.

Figure 10: Feigenbaum diagram
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Note that:
zn =

1

x2
n + 1

(4)

is not a homeomorphism, so we do not have a topological conjugacy between the logistic map and
T , but the chaotic properties of the logistic map are extensively studied and might give us an idea
of the chaotic dynamics of T .

The logistic map has different dynamics for different values of µ. In figure 10, we find the Feigen-
baum diagram, which is the bifurcation diagram for the logistic map. On the horizontal axis we
find values for µ and on the vertical axis values of x ∈ [0, 1]. The bifurcation diagram shows all
attracting periodic points for all values of 0 < µ < 4. We can see that for 0 < µ < 1, there is only
one attracting periodic point at x = 0. At µ = 1, there is a bifurcation and for 1 < µ < 3 there
are two periodic points. The one at x = 0 is now repelling and the other one is attracting. At
µ = 3, there is another bifurcation point and for µ > 3, the situation becomes more complicated
and eventually become chaotic around µ ≈ 3.6. For µ ≥ 4, the logistic map is also chaotic, but it
will have a different kind of chaos.

In the next section we will investigate different definitions of chaos and try to prove that T and
the logistic map are chaotic.

2 Chaos
In this section we will try to answer the question of whether T (x) = 1

2 (x − 1
x ) is chaotic. As

mentioned before, there are different definitions for chaos. We will start at the beginning. Edward
Lorenz was one of the pioneers of chaos theory. In a book written by him, "The Essence of Chaos",
he describes chaos as something looking random but not being random. In fact, in a deterministic
dynamical system there is no randomness [13]. Every next iteration of an evolution is precisely
defined by the dynamical system. When Lorenz worked on weather predictions, he once noticed
that a slight difference in initial conditions led to a completely different outcome of his calculations.
It is interesting how a deterministic system can have behave this way. This phenomenon is known
as ’sensitive dependence on initial conditions’ and it is an important characteristic of chaos. Even
though there exist different definitions of chaos, they all agree on this.

For the map T , we can plot iterations Tnx vs n to see what happens if we slightly change the initial
condition. This is shown in figure 11a for initial conditions x0 = 0.5 and x0 = 0.50000001. The
iterations are similar for the first 20 iterations, but after that they start to differ and around the
58th iteration, there is a spike in the orange line but not in the blue line. If we look at the same
perturbation for initial condition x0 = 20, we see that it takes longer for the iterations to differ.
The iterations are similar for the first 30 iterations and again we see that their behaviours be-

(a) I.c. 0.5 (orange) and i.c. 0.50000001 (blue). (b) I.c. 20 (orange) and i.c. 20.00000001 (blue).

Figure 11: Iterations for different initial conditions (i.c.)
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come completely different. We will investigate different definitions of chaos and we will investigate
whether these definitions are satisfied by the map T.

2.1 Li and Yorke Chaos
In 1975, Li and Yorke published the well-known paper "Period Three Implies Chaos". They
investigated a non-periodic orbit of a continuous map f on an interval. They proved that if f has
a periodic point of period 3, then there exist periodic points of all periods. Furthermore, there will
exist an uncountable set which contains no asymptotically periodic points. If this is the case, we
say f has Li-Yorke chaos:

Theorem 2. Let J be an interval and let f : J → J be continuous. Assume there is a point a ∈ J
for which the points b = f(a), c = f2(a) and d = f3(a), satisfy

d ≤ a < b < c (or d ≥ a > b > c).

Then

1. for every k = 1, 2, . . . there is a periodic point in J having period k.

2. there is an uncountable set S ⊂ J (containing no periodic points), which satisfies the following
conditions:

a) For every p, q ∈ S with p 6= q,

lim sup
n→∞

|fn(p)− fn(q)| > 0

and
lim inf
n→∞

|fn(p)− fn(q)| = 0

b) For every q ∈ S and periodic point p ∈ J ,

lim sup
n→∞

|fn(p)− fn(q)| > 0.

Proof. Li and Yorke [12].

Note that the existence of a periodic point of period 3 satisfies the condition for this theorem. The
first consequence of having periodic points of all periods is actually a special case of Sarkovskii’s
theorem. We will not prove it here, the proof can be found in [7]. Below is Sarkovskii’s theorem
written, note that if we take k = 3, then 3 . l for all l and indeed, there are periodic points of all
periods l.

Theorem 3. Consider the Sarkovskii ordering of natural numbers, first list all the odd numbers
except 1, then 2 times all odd numbers except 1 etc, then left are all powers of 2, which are listed
at the end of the ordering in decreasing order:

3 . 5 . 7 . · · · . 2 · 3 . 2 · 5 . · · · . 22 · 3 . 22 · 5 . . . . · · · . 23 . 22 . 2 . 1

Suppose f : R → R is continuous. Suppose f has a periodic point of period k. If k . l in the
Sarkovskii ordering, then f also has a periodic point of period l.

The second consequence of Li and Yorke’s theorem is the existence of an uncountable set S ⊂ J
of points that are not asymptotically periodic. This set S is also known as the scrambled set. Li
and Yorke define an asymptotically periodic point in the following way:

Definition 3. A point x ∈ J is asymptotically periodic if there is a periodic point p for which

|fn(x)− fn(p)| → 0 as n→∞.

This is equivalent to the better known definition of asymptotically periodicity:

Definition 4. We say that x ∈ J is asymptotically periodic if there exists a periodic point p ∈ J ,
of period k, such that

d(fn(x), {p, f(p), . . . , fk−1(p)})→ 0 as n→∞. (5)
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Recall that the distance between a point x ∈ R and a set A ⊂ R is defined as

d(x,A) = inf{|x− a| : a ∈ A}.

In particular, we have that

d(fn(x), {p, f(p), . . . , fk−1(p)}) = min{|fn(x)− f i(p)| : i = 0, . . . , k − 1}.

Note that taking a minimum instead of an infimum is justified since we are dealing with a finite
set. The proof is found in appendix A.2.1.

Property 2b of Li and Yorke’s theorem states that no point q in S is asymptotically periodic.
The distance between fn(p) and fn(q) cannot converge to 0, for any periodic point p, since the
supremum of this distance is larger than 0. Property 2a states that for any two points p, q in S,
their orbits will never converge. However, at some point in the orbit, fn(p) and fn(q) might be
close together, since the infimum of this same distance is zero.

We know that T has a period 3 orbit, namely cot(π7 ) → cot( 2π
7 ) → cot( 4π

7 ) → cot( 8π
7 ) ≡ cot(π7 ).

This would imply Li-Yorke chaos, but unfortunately, T is only defined on R\KT , which is not an
interval, and if we would consider T on all of R, it is not continuous. Therefore, we cannot use this
theorem to prove chaos.

An example of a map that we can apply this theorem to is the logistic map Fµ(x) = µx(1− x) on
[0, 1], which was also investigated in Li and Yorke’s paper. The requirements of the theorem are
met, as we have a continuous map on an interval. For certain values of µ, the logistic map has
Li-Yorke chaos. When writing their paper, Li and Yorke did not know exactly for which µ there are
points that are not asymptotically periodic. They show that at least up till µ = 1 +

√
6 ≈ 3.449,

each point in [0, 1] is asymptotically periodic [12]. Later, it was found that the onset of chaos is at
µc ≈ 3.56995... [9]. Recall that in the Feigenbaum diagram in figure 10, the dynamics of Fµ seem
to become very chaotic around µc.

The first orbit of period 3 occurs at µ = 1 + 2
√

2 ≈ 3.8284... [8]. Figure 12 shows this orbit
of period 3, starting at x0 = 0.159929. Figure 12a shows the orbit together with Fµ, it shows
clearly that x3 = x0. Next to that, in figure 12b we see the orbit together with F 3

µ , such that we
can see that the period 3 orbit intersects with the diagonal exactly where F 3

µ also intersects the
diagonal.

According to Li and Yorke’s theorem, we need a periodic orbit of period 3 in order to have Li-
Yorke chaos, so how can we have chaos before the first period 3 orbit? There are values before
µ = 1 + 2

√
2 for which there is an orbit of period 6, for example at µ ≈ 3.627. In this case the

theorem can be applied to F 2
µ . If there exist points for F 2

µ that are not asymptotically periodic,
then the same is true for Fµ. The same reasoning with F 3

µ , F
4
µ , . . . , leads to the onset of chaos at µc.

(a) Fµ(x). (b) F 3
µ(x)

Figure 12: Three orbit of Fµ, with µ = 1 + 2
√

2.
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For µc < µ ≤ 4, the logistic map has Li-Yorke chaos. Note that for µ > 4, certain orbits
start to leave [0, 1], so we cannot talk about Fµ : J → J anymore. For µc < µ ≤ 4, there are
periodic points of all periods and drawing all these periodic points gives the very dark section
in the Feigenbaum diagram. Furthermore, there exists an uncountable scrambled set of points
that are not asymptotically periodic. It is difficult to pinpoint this scrambled set. Of course the
(eventually) periodic points are not in the scrambled set. The union of the nth pre-images of all
periodic points form the set of eventually periodic points. Excluding this countable set from the
domain gives an uncountable set of points that could very well be the scrambled set.

2.2 Marotto
In 1978, Marotto expanded on Li and Yorke’s theorem. He defined a so-called snap-back repeller for
multi-dimensional maps and proves that if a dynamical system contains such a snap-back repeller,
then it is Li-Yorke chaotic.
Below is the exact definition of a snap-back repeller, [15]:

Definition 5. Suppose x̃ is a fixed point of differentiable map f : Rn → Rn with all eigenvalues
of Df(x̃) exceeding 1 in magnitude, and suppose there exists a point x0 6= x̃ in a repelling neigh-
bourhood of x̃, such that xM = x̃ and det(Df(xk)) 6= 0 for 1 ≤ k ≤M , where xk = fk(x0). Then
x̃ is called a snap-back repeller of f .

This is a fascinating result as you would not expect points repelled away from a fixed point to
return to it. This result makes it possible to prove chaos for a differentiable map using a repelling
fixed point. Note that f cannot be invertible. If there exists an inverse map f−1 such that
f−1(f(x)) = x, then for a fixed point, we would also find that f−1(x) = x, and the only point
in the pre-image of repelling fixed point x is x itself. If f is not injective, the pre-image consists
of multiple values, and we might be able to find a snap-back repeller. In that case, the following
propostition states:

Proposition 6. Let f : Rn → Rn be differentiable. If f possesses a snap-back-repeller then f is
chaotic in the sense of Li and Yorke.

Proof. [14]

Note, that although Marotto expands on Li and Yorke’s theorem, there is a slight difference in the
function requirements. Li and Yorke require a continuous function on an interval, while Marotto
requires a differentiable function on Rn. It is not a problem to consider a subset of Rn, but it is
unclear if this subset needs to be an interval. In the following subsections, we will find snap-back
repellers for F4 and T .

2.2.1 Snap-back repeller of the logistic map

In this example, we will show that there exists a snap-back repeller of the logsitic map for µ = 4.
F4(x) = 4x(1 − x) has fixed points x = 0 and x = 3

4 , and we will focus on x = 3
4 . Note that the

derivative |F ′4( 3
4 )| = 2 > 1 shows that this fixed point is repelling. The inverse of F4 is:

F−1
4,±(x) =

1

2
± 1

2

√
1− x.

Note that F is not injective, as this is a double inverse, F−1
4,+( 3

4 ) = 3
4 and F−1

4,−( 3
4 ) = 1

4 . With
the inverse function we can find a sequence of points {x−1, x−2, . . . }. This sequence is called the
backward orbit of x0. Note that there are many possible backward orbits {x−n}, by using F−1

4,−
and F−1

4,+ in different orders. Note that T i(x−n) = x0 for all i > n. To find a backward orbit of
the fixed point 3

4 , we first have to use F−1
4,− to find its first value x−1. Then we use the inverse

to find more points in the backward orbit until for some M , x−M is close to 3
4 . In this case, the

iterations of X−M first repell away from 3
4 , but eventually, after M iterations, the orbit reaches

the fixed point x = 3
4 , and so, the repelling fixed point 3

4 is a snap-back repeller.
Figure 13 shows such an orbit. The first dotted line is at the fixed point 3

4 and the second dotted
line is at the value at 0.761.... Note that the iterations are first clearly repelled away from 3

4 and
then are snapped back to 3

4 exactly.
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Figure 13: Snap-back repeller for F4.

There exist snap-back repellers for more values of µ. Recall from the previous section that the
logsitic map Fµ has Li-Yorke chaos for µ > µc ≈ 3.5699. Marotto shows that Fµ is chaotic by
finding snap-back repellers for µ > 3.680. He also applies this method to F 2

µ and finds chaos for
µ > 3.595. It is likely that if we continue this process for F 4

µ , F
8
µ , . . . we will find the same chaos

onset at µc.

2.2.2 Snap-back repeller of T

Recall that T has no fixed points, so we will apply this theorem to T 2. The fixed points of T 2

are found at ± 1√
3
. We already know that all periodic points of T are repelling, and we know the

inverse:
T−1x = x±

√
x2 + 1

Figure 14 shows that 1√
3
is a snap-back repeller. The first dotted line is at the fixed point 1√

3
≈

0.577. The second dotted line is at 0.594... and we see again that the iterations are first repelled
away from the fixed point and then snapped back to the fixed point.
We need to keep in mind that T is not defined on all of R, which is something that Marotto assumes.
So although we have found a snap-back repeller, we cannot say for sure that T has Li-Yorke chaos,
but we can secretly suspect it.

2.3 Devaney Chaos
In 1989, Robert L. Devaney also gave a definition for chaos. He stated that a chaotic map has the
following three properties [7]:

Definition 6. Let X be a metric space. A continuous map f : X → X is said to be chaotic on X
if

1. f has sensitive dependence on initial conditions

2. f is topologically transitive

3. periodic points of f are dense in X

Devaney says that a chaotic system has three ingredients: unpredictability, undecomposability and
an element of regularity. Sensitive dependence on initial conditions gives a sense of unpredictability.
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Figure 14: Snap back repeller at 1√
3
for T 2x

Topologically transitivity makes f undecomposable, which means that it cannot be broken down
into two invariant open subsets which do not interact under f . Lastly, the dense periodic points
give an element of regularity.

Definition 7. A map f : X → X has sensitive dependence on initial conditions if there exists
δ > 0 such that, for any x ∈ X and any neighborhood B(x) of x, there exists y ∈ B(x) and n ≥ 0
such that |fn(x)− fn(y)| > δ.

Definition 8. A map f : X → X is said to be topologically transitive if for any pair of open sets
U, V ⊂ X there exist k > 0 such that fk(U) ∩ V 6= 0.

It has been proven in 1992, by Banks, that properties 2 and 3 imply property 1 [1]. Although this
means we do not have to prove sensitive dependence on initial conditions, it is such an important
characteristic of chaos that we will explore it. A map has sensitive dependence on initial conditions
if for every neighbourhoodB(x) of every x, there exists y ∈ B(x) such that for some future iteration,
the distance between the two orbits is at least δ. For the doubling map, this can be proven as
follows:
Take a point x ∈ (0, π)\Kg and y in an open neighbourhood Bε(x) of x, such that d(x, y) < ε. The
doubling map doubles this distance in each iteration, so there exists n such that d(fn(x), fn(y)) =
|fn(x)− fn(y)| = 2n|x− y| > δ.

For T , it is a bit harder to prove. This is because x and y can either diverge or converge, de-
pending on their location in the domain. We can write the distance d(T (x), T (y)) as follows:

|T (x)− T (y)| = |1
2

(x− 1

x
)− 1

2
(y − 1

y
)|

=
1

2
|(x− y) + (

1

y
− 1

x
)|

=
1

2
|(x− y) +

x− y
xy
|

=
1

2
|x− y| · |1 +

1

xy
|.
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π0 1/2 1
U = (1/2, 1)

0 π1 2
g(U)

0 π4-π 2
g2(U)

0 π
g3(U)

Figure 15: Topological transitivity doubling map.

We need to distinguish between |x| < 1 and |x| > 1. If |x| < 1, there exist |y| < 1 in any
neighbourhood B(x) such that |T (x) − T (y)| > |x − y|, which satisfies the definition. If |x| > 1,
we will find that |T (x) − T (y)| < |x − y|, the distance between the orbits decreases. For any
neighbourhood Bε(x), there exists a point y ∈ B(x) such that |x − y| < ε. As long as T i(x) > 1,
the next iteration will bring the orbits of x and y closer together, so we still have |x−y| < ε. When
|x| < 1 at some point, the orbits will diverge in the next iteration, such that |Tn(x)− Tn(y)| < δ
for some δ > 0. The distance between the orbits after n iterations can be expressed by induction:

|T 2(x)− T 2(y)| = 1

2
|T (x)− T (y)| ·

∣∣∣∣1 +
1

T (x)T (y)

∣∣∣∣
=

1

2

(
1

2
|x− y| · |1 +

1

xy
|
)
·
∣∣∣∣1 +

1

T (x)T (y)

∣∣∣∣
...

|Tn(x)− Tn(y)| = |x− y| ·
n−1∏
i=0

1

2

∣∣∣∣1 +
1

T i(x)T i(y)

∣∣∣∣ . (6)

The distance |Tn(x)− Tn(y)| is dependent on T i(x) and T i(y) for all previous i < n. From figure
11 we see that the orbit has |T i(x)| < 1 most of the time. Therefore, we expect this product to be
larger than 1. It is difficult to make this proof rigorous, but hopefully the reader is convinced of the
sensitive dependence on initial conditions. We will see now that T satisfies the other two properties
of definition 6 and thereby also proving that T has sensitive dependence on initial conditions.
To prove that T is topologically transitive, we will use the conjugacy with the doubling map. This
property is conserved by a conjugacy:

Lemma 1. Assume that the maps f : X → X and g : Y → Y are topologically conjugate. If f is
topologically transitive, then so is g.

Proof. Maps f and g are topologically conjugate. This means that there exists a homeomorphism
h : X → Y such that h ◦ f = g ◦ h. Assume that U, V ⊂ Y are open sets. Since h is continuous,
the sets U ′ = h−1(U) and V ′ = h−1(V ) are open in X. Since f is topologically transitive, there
exists n ∈ N such that fn(U ′) ∩ V ′ 6= ∅. This implies that

∅ 6= h(fn(U ′) ∩ V ′) ⊂ h(fn(U ′)) ∩ h(V ′) = gn(h(U ′)) ∩ h(V ′) = gn(U) ∩ V,

which shows that g is also topologically transitive.

To prove that the doubling map g is topologically transitive, take an open set U ∈ (0, π)\Kg. Fig-
ure 15 shows an example of what happens to U after a number of iterations. Suppose U = ( 1

2 , 1),
then g(U) = (1, 2) and g2(U) = (0, 4 mod π) ∪ (2, π) and lastly, g3(U) = (0, 8 mod π) ∪ (4
mod π, π) which covers the whole interval (0, π). If U is smaller it will take more iterations, but
there will always, for any open set U , exist k such that gk(U) covers all of (0, π)\Kg. In that case,
gn(U) must have a non-empty intersection with any other open set V ∈ (0, π)\Kg and hence g is
topologically transitive. By lemma 1, T is also topologically transitive.

The last property of Devaney’s definition is dense periodic points. Proposition 4 already proved
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that the periodic points of the doubling map are dense. This property is also conserved by the
topological conjugacy. Recall that a subset A ⊂ X is called dense in X if for any x ∈ X and any
open neighborhood U of x we have that A ∩ U 6= ∅. The following result states that maps which
are both surjective and continuous preserve dense sets. In particular, homeomorphisms preserve
dense sets.

Lemma 2. Let X and Y be topological spaces and assume that the map f : X → Y is both
surjective and continuous. If A is dense in X, then f(A) is dense in Y .

Proof. Let y ∈ Y be arbitrary and let V ⊂ Y be any open set containing y. We need to show that
f(A) ∩ V 6= ∅. Since f is surjective, there exists x ∈ X such that f(x) = y. Since f is continuous,
the set U = f−1(V ) is open in X. In addition, we have that x ∈ U . Since A is dense in X, we
have that A ∩ U 6= ∅, which implies that

∅ 6= f(A ∩ U) ⊂ f(A) ∩ f(U) ⊂ f(A) ∩ V.

This completes the proof

Now we can summarize all these results in the following two propositions:

Proposition 7. If continuous maps f and g are topologically conjugate, and f is chaotic as defined
by Devaney, then so is g.

Proof. If f is chaotic, then it has sensitive dependence on initial conditions, it is topologically
transitive and it has dense periodic points. By the conjugacy, g is topologically transitive and it
has dense periodic points. These two properties imply sensitive dependence on initial conditions,
so g also satisfies all three properties, and is therefore chaotic as defined by Devaney.

Proposition 8. The doubling map g(θ) = 2θ mod π and the map Tx = 1
2 (x− 1

x ) are both chaotic
as defined by Devaney.

Proof. The doubling map satisfies all three properties of definition 6. Because of the topological
conjugacy between g and T , as described in proposition 1.1 and proposition 7, we know that both
g and T are chaotic as defined by Devaney.

Note that this is a different kind of chaos than Li-Yorke chaos. Devaney chaos and Li-Yorke chaos
are both well known and there are many papers on the relation between the two. We will not go
into details, more can be read in for example [18] and [10].

2.4 Dispersion Exponent
Yet another definition of chaos is given by Broer and Takens [4]. They define a dynamical system
as chaotic if it has a positive dispersion exponent. To explain the motivation of a dispersion
exponent, first recall that it is generally agreed upon that sensitive dependence of initial conditions
is characteristic of a chaotic system. Sensitive dependence on initial conditions means that we
cannot accurately predict the future based on the approximate initial condition. Broer and Takens
consider the so-called principle l’histoire se répète, which works as follows: Take a segment of an
orbit {x1, x2, . . . , xn}. To predict future values of this orbit, consider m ∈ [0, 1

2n], such that the
distance d(xn, xm) is minimal. Then according to this principle, iterations in the future, denoted
by x̂, can be approximated like this:

x̂n+s = xm+s.

The idea is that, because xn and xm are so close together, we can approximate xn+s by xm+s.
Of course, in a chaotic dynamical system, this way of predicting the future will not work. From
sensitive dependence on initial conditions, we know that such a small difference does not have to
stay a small difference after a number of iterations. The principle l’histoire se répète leads to the
following definition of the dispersion exponent:

Definition 9. Let (M,f) be a dynamical system. Assume M is a complete metric space with
metric d and that f is continuous. Consider an orbit {xn}, that is positively compact and not
(eventually) periodic.
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1. For s > 0 and for ε > 0 we define

E(s, ε) = sup
0<n<m; d(xn,xm)<ε

d(xn+s, xm+s)

d(xn, xm)

2. For s > 0 we define
E(s) = lim

ε→0
E(s, ε)

3. Finally, we define the dispersion exponent

E = lim
s→∞

1

s
logE(s).

So to determine the dispersion exponent, we consider a single orbit of f and we try to apply
the principle l’histoire se répète. We find points xn and xm on the orbit such that d(xn, xm) is
small. Then we see what the distance between the points is after s iterations. The more they have
diverged, the larger E(s, ε) will be. Then, by letting ε go to zero and s to infinity, we find the
dispersion exponent.

Note that we have to consider an orbit that is not (eventually) periodic. If we do try to cal-
culate E(s, ε) for a periodic orbit, we have to divide by 0 at some point, as d(xn, xm) = 0. For a
chaotic orbit, we will have that xn+s and xm+s will disperse as s increases. In that case E(x, ε) > 1
and we will find a strictly positive disperion exponent E > 0. The more they disperse, the larger
the dispersion exponent will be. We can state that a dynamical system is more chaotic for larger
values of E.

Definition 10. Let (M,f) be a dynamical system such that M is a complete metric space and f
is continuous. An evolution x is called chaotic if the dispersion exponent E is positive.

For some maps, we can calculate the dispersion exponent by hand. In other cases, we can find
it numerically with the matlab functions in the appendix A.2.2. First, the matlab function
compute_sup.m saves a segment of an orbit of length N with initial value x0. Then it calcu-
lates E(s, ε) for a value of s and ε. The matlab function plot_Ese.m calls on compute_sup.m for
different values of s ε and returns a graph of logE(s) as a function of s for different values of ε.
Since we cannot let s really go to infinity with a computer simulation, we will have to make an
approximation. The slope is given by ∆ lnE(s)

∆s . Note that E(0) = 1, because for s = 0, E(s, ε) the
numerator and denominator will be equal. Calculating the slope between s = 0 and a sufficiently
large s, will then approximate the limit as s→∞:

E = lim
s→∞

1

s
lnE(s)

=
lnE(s)

s

∣∣
s=∞

≈ lnE(s)− lnE(0)

s− 0

=
∆ lnE(s)

∆s

In the following sections, we will try to find the dispersion exponent for the doubling map, the
logistic map and for T .

2.4.1 The Doubling map

For the doubling map, we can calculate the dispersion exponent explicitly. The distance between
two points θn and θm on an orbit is given by:

d(θn, θm) = 2m − 2n mod π.

Suppose we have ε < 1
2s and two points θn and θm on an orbit such that d(xn.xm) < ε. Then:

E(s, ε) = sup
0<n<m; d(θn,θm)<ε

d(θn, θm)

d(θn+s, θm+s)

=
2m − 2n

2m+s − 2n+s
= 2s.
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Figure 16: For the doubling map: logE(s) for different values of ε.

This is not dependent on ε, so E(s) = 2s mod π. The limit s→∞ gives:

E = lim
s→∞

1

s
log 2s = log 2

We can also calculate the dispersion exponent numerically. The resulting graph is found in figure
16. Note that we see only one line, even though we calculated it for 4 values of ε. This is because
the dispersion exponent is not dependent on ε, as also seen in the calculation. The slope of this
line is 0.6931..., which corresponds to the dispersion exponent E = log 2.

2.4.2 The Logistic map

The dispersion exponent for the logistic map can also be calculated numerically. In figure 17, we
see that for 1 ≤ s ≤ 10, we have a nice straight line with slope 1.3858... ≈ log 4. For s > 10, the
graph is not a nice straight line anymore. This is because at some point the distance d(xn+s, xm+s)
has reached its maximum, it cannot be larger than 1. As s increases, this distance can decrease
and increase a bit, but it cannot follow the same slope. This shows in figure 17, as the line goes
up and down. Note that matlab has a limit for how small we can make ε. If we take ε smaller, it
will take longer for d(xn+s, xm+s) to reach its maximum.

We can explain this value for the dispersion exponent. The derivative of the logistic map is
F ′4(x) = 4 − 8x and |F ′4(x)| ≤ 4 ∀x ∈ [0, 1]. By the mean value theorem, for any closed interval
[a, b] ⊆ [0, 1], there exists c ∈ [a, b] such that:

f ′(c) =
f(b)− f(a)

b− a∣∣∣∣f(b)− f(a)

b− a

∣∣∣∣ = |f ′(c)| ≤ 4

|f(b)− f(a)| ≤ 4|b− a|
|fs(b)− fs(a)| ≤ 4|fs−1(b)− fs−1(a)| ≤ · · · ≤ 4s|b− a|.
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Figure 17: For the Logistic map: logE(s) for different values of ε.

Now consider one orbit of f and let |fn(x) − fm(x)| < ε and let b = fn(x) and a = fm(x) such
that [a, b] (or [b, a]) is a closed interval. Then we can find an upper bound for E:

|fn+s(b)− fm+s(a)| ≤ 4s|fn(b)− fm(a)|
E(s, ε) ≤ 4s

E ≤ lim
s→∞

1

s
log 4s = log 4.

Now all we have to show is that a dispersion exponent smaller than log 4 cannot be the case.
Consider xn and xm close to 0. The distance between them will expand by almost a factor 4.
For example xn = 0.001 and xm = 0.0011 will give d(xn, xm) = 0.0001 and in the next iteration
d(xn+1, xm+1) = 0.000399. As these points move closer to 0, this expansion factor will converge to
4. Recall that the logistic map is chaotic in Devaney’s sense. The logistic map has a dense orbit
[7]. This means that there must exist a point xn on this dense orbit such that d(xn, 0) < ε. If
ε→ 0, this expansion factor will converge to 4 and thus, E < log 4 is not possible, and log 4 really
is the dispersion exponent.

2.4.3 Map T .

Now it is time to turn our attention to our map T (x) = 1
2 (x− 1

x ). We were able to determine the
dispersion exponent of the doubling map and logistic map. Unfortunately, the dispersion exponent
is not generally conserved by topological conjugacies. For example, there exists a topological con-
jugacy between the doubling map and F4 [7], while they have a different dispersion exponent. We
cannot use the conjugacy with the doubling map to determine the dispersion exponent of T .

We can use equation 6 to express the distance between xn+s and xm+s and find an expression
for E(s, ε):

25



(a) Initial value 0.000004343. (b) Initial value 0.23.

(c) Initial value 0.5442.

Figure 18: Graph of calculating dispersion exponent for T with N = 1500 for different initial
conditions and values for ε.

d(xn+s, xm+s) = |T s(xn)− T s(xm)|

= |xn − xm|
s−1∏
i=0

1

2
|1 +

1

T i(xn)T i(xm)
|

E(s, ε) = sup
0<n<m; d(xn,xm)<ε

s−1∏
i=0

1

2
|1 +

1

T i(xn)T i(xm)
|.

Note that for this map, E(s, ε) does depend on ε. Changing ε has an effect on which xn and xm
are chosen on the orbit which again has an effect on E(s, ε). Because of this, it seems we cannot
determine the limit limε→0E(s, ε). Note that we have seen this product before for sensitive de-
pendence on initial conditions in section 2.3. In that case, we expected this product to larger than
1. In that case, the logarithm will be larger than 0, and the dispersion exponent will be positive.

Let us see if this expectation is confirmed by the numerical results. Figure 18 shows some nu-
merical results for different initial conditions and different values of ε. As expected, ε has a great
effect on the results. Furthermore, there is not a neat straight line to calculate the slope from.
This can be explained by the nature of the map. If two points are close together, the distance
between them blows up by the 1

x term, but then it decreases by the x
2 term until it is small

enough to be blown up again. Indeed, as s increases, E(s) goes up and down. Even though we
cannot determine the exact dispersion exponent, it is clear that there is a positive slope. In fact,
the slope of graphs for ε = 0.0002 and ε = 0.000008 seem to all have approximately the same slope.

To conclude, we cannot determine the dispersion exponent for T exactly. Note that we ignored
the requirement of a complete metric space, as it is not really needed in the calculations. However,
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a complete domain for T might have solved the problem. The real problem is that the domain
is not compact. As a result, Tn(x) can become arbitrarily large in the domain. Recall that for
the doubling map, any iteration is at most twice as large as the one before. For the logistic map,
each iteration is at most four times as large as the one before. The derivative of T has no upper
bound, which shows that iterations can get arbitrarily large, which makes calculating the limit as
s→∞ difficult. The good news is that we were able to write an expression for E(s, ε). It was not
helpful in calculating the dispersion exponent for T , but led to the expectation that the dispersion
exponent must be positive. This expectation was confirmed by the numerical results. This positive
dispersion exponent shows that T is chaotic.

3 Ergodic theory
So far, we have looked at dynamical systems from a topological viewpoint. Now we are going to
investigate it using ergodic theory. Ergodic theory concerns the statistical properties of determin-
istic dynamical systems, in particular, the behavior of time averages of various functions along
trajectories of dynamical systems. We will study (invariant) measures, the Birkhoff’s ergodic the-
orem and Lyapunov exponents. We will do so for T and the logistic map for µ = 4. From now on
we will drop the subscript and just denote it F .

3.1 Invariant measure
A measure is a function that measures the size of a given (sub)set. For a set X, it is not always
possible to measure the size of every subset in a consistent and meaningful way. Instead, we
consider a collection of subsets. These subsets are called measurable sets and together form the
σ−algebra A. It satisfies the following three conditions:

1. ∅, X ∈ A,
2. if A ∈ A, then X\A ∈ A,
3. if A1, A2, . . . , An ∈ A, then ∪∞n=1An ∈ A.

A measure is a function µ : A → R≥0 that "measures" the size of a measurable set by assigning a
real, nonnegative number to it. A measure satisfies the following conditions:

1. µ(A) ∈ [0,∞) ∪ {∞}
2. µ(∅) = 0
3. if A1, A2, . . . are pairwise disjoint measurable subsets, then µ(∪∞n=1An) =

∑∞
n=1 µ(An)

An example of a measure is the Lebesgue measure. It is the standard way of measuring subsets of
Rn. For n = 1, 2, 3, the Lebesgue measure is equal to the length, area and volume of Rn.

We say that a map S : X1 → X2 is measurable if S−1(E) ⊆ X1 is measurable for every mea-
surable E ⊂ X2. It is possible to have different measures for X1 and X2. Let µi be a measure
on the space Xi. We say that S is measure preserving if µ1(S−1(E)) = µ2(E). If X1 = X2 and
µ1 = µ2, we say that S is a transformation. Lastly, if a measurable transformation S : X → X
preserves µ, then µ is S-invariant.

The map T and the logistic map are measurable transformations. There exist invariant measures
µT and µF such that for all measurable sets E in R\KT and [0, 1] respectively, these measures
satisfy:

µT (T−1(E)) = µT (E), µF (F−1(E)) = µF (E).

To find these invariant measures we need the following definition of a probability density function:

Definition 11. If a measurable function ρ(x) ≥ 0 satisfies µ(E) =
∫
E
ρ(x)dx for any measurable

subset E ⊆ X, then ρ is called a density function. If µ is a probability measure (i.e. µ(X) = 1), ρ
is a probability density function (pdf).

A probability density function ρ(x) says something about the probability that an orbit of a map
will be at value x. If ρ(x) is large for some value of x, we would expect an orbit to visit x more
often than some point y with a smaller ρ(y). Let us consider an orbit of length N and let us
divide the domain in a number of equal parts (’nbins’). Then we will count how many times the
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(a) Tx with nbins = 20001 (b) F with nbins = 60.

Figure 19: Histogram and density functions in the same figure for N = 10000 and x0 = 0.38.

orbit visits each ’bin’ and make a histogram. As N →∞, and nbins →∞, the histogram will take
on the shape of the density function. Such histograms are found in figure 19. For T , the orbit
has most points around 0. For the logistic map, the orbit has most points close to 0 and 1. The
figures also show the density functions, and indeed, we see that the histograms have the same shape.

The pdf and invariant measure of T are given by [6]:

ρT (x) =
1

π(x2 + 1)

µT ([a, b]) =

∫ b

a

1

π(x2 + 1)
dx

=
1

π
(arctan b− arctan a)

The pdf and invariant measure for F are given by:

ρF (x) =
1

π
√
x(1− x)

µF ([a, b]) =

∫ b

a

1

π
√
x(1− x)

dx

= − 2

π
(arcsin

√
1− b− arcsin

√
1− a).

The computations to check that these are indeed pdf’s, and to check that these measures are
invariant can be found in the appendix A.3.1. Now that we have these invariant measures, we need
to consider ergodicity:

Definition 12. Let (X,A, µ) be a probability space. Suppose S : X → X is µ−invariant. Then
S is said to be ergodic if for every measurbale E ∈ A satisfying S−1E = E, we have µ(E) = 0 or
µ(E) = 1.

The logistic map is ergodic [17]. Intuitively, a set E with F−1(E) = E can be the whole domain
[0, 1] or a set of periodic points. The whole domain has measure µF [0, 1] = 1. Recall that F has
a double inverse, every point has a pre-image of two points. So the pre-image of each periodic
point x consists of this point x and another point not equal to x. Suppose we take the union
∪∞i=1F

−i
± (x). Then the pre-image of this union equals this union. The measure of this set is

µF (∪∞i=1F
−i
± (x)) =

∑∞
i=1 µ(F−i± (x)) =

∑
0 = 0. Indeed, F is ergodic. The same reasoning can

be applied to the map T . We can also prove that these two maps are ergodic using the following
proposition:

Proposition 9. If S has a unique probability density function ρ and has ρ(x) > 0 almost every-
where, then S is ergodic.
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Proof. [11]

The map T has a unique pdf. To derive it, we first need to use the Perron-Frobenius operator to
find the pdf of the doubling map and then use a change of coordinates to find the pdf of T . This
Perron-Frobenius operator P defines a sequence of density functions:

ρn+1 = P (ρn) =
∑

y∈f−1(x)

ρn(y)

|f ′(y)|
.

The density function of f is then found with the limit k →∞:

ρ(x) = lim
k→∞

1

k

k−1∑
n=0

ρn(x). (7)

To find the pdf of the doubling map, let ρ0 = 1. The pre-image of θ is { 1
2θ,

1
2 (θ + π)}. Then the

density function is easily found:

ρ1 =
∑

y∈{ 1
2 θ,

1
2 (θ+π)}

1

2
= 1

ρn = 1 ∀n

ρ = lim
k→∞

1

k

k=1∑
n=0

1 = 1.

Note that ρ can be any constant to be a density function for the doubling map, but there is one
unique pdf. Normalizing ρ such that it is a pdf gives us ρg = 1

π . A change of variable [5] then
gives us the pdf of T .

Theorem 4. Let X and Y be random variables such that Y = ϕ(X), where ϕ is a monotonic
function. Define X = {x : ρX(x) > 0} and Y = {y : y = ϕ(x) for some x ∈ X}. Suppose pdf ρX
is continuous on X and that ϕ−1(y) has a continuous derivative on Y. Then the pdf of Y is given
by:

ρY (y) =

{
ρX(ϕ−1(y))

∣∣∣ ddy (ϕ−1(y))
∣∣∣ y ∈ Y

0 otherwise

Proof. [5]

Consider random variables X = g and Y = T . Function ϕ = h(θ) = cot θ is monotonic and
continuous. Since ρg > 0 everywhere, X is the whole domain of g and Y is the whole domain of
T . All requirements of the theorem are met, so the pdf of T is given by:

ρT (x) = ρg(h
−1(x))

∣∣∣∣ ddxh−1(x)

∣∣∣∣ x ∈ R\KT . (8)

We know that h−1(x) = arccotx, and its derivative is − 1
x2+1 . Combining everything gives us

exactly the pdf:

ρT =
1

π
· 1

x2 + 1
.

The map T is ergodic, since its density function is unique and larger than 0 everywhere. We can
apply Birkhoff’s ergodic theorem to ergodic functions. This will be investigated in the next section.

3.2 Birkhoff’s ergodic theorem
Recall that the density function has the same shape as the histogram produced by one orbit. One
important consequence of this is that if we want to calculate the average of a map along an orbit,
we may instead calculate the average over the whole space X. That is, for a map f , we have that
for almost all x, the average of f(T i(x)) as i runs from 1 to n converges to the integral of f(x)ρT (x)
over X, where ρT (x) is the invariant density function. Note that

∫
X
f(x)ρT (x)dx =

∫
X
f(x)dµT .

This is written more formally as the Birkhoff Ergodic theorem, which, according to [6], is the most
fundamental fact in ergodic theory:
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Figure 20: Initial value x0 = π − 3. Convergence of Sum(n) = 1
n

∑n−1
k=0 1(0,1)(T

kx) to the orange
line at µT {(0, 1)} = 1

4 .

Theorem 5. Let (X,µ) be a probability space. If S is µ−invariant and f is integrable, then

lim
n→∞

1

n

n−1∑
k=0

f(Skx) = f∗(x)

for some f∗ ∈ L1(X,µ) with f∗(Tx) = f∗(x) for almost every x. Furthermore, if S is ergodic, then
f∗ is constant and

lim
n→∞

1

n

n−1∑
k=0

f(Skx) =

∫
X

fdµ (9)

Recall that f is integrable if: ∫
X

|f |dµ <∞.

Let f(x) = 1E be the indicator function of a measurable set E, such that f(x) = 1 if x ∈ E and
f(x) = 0 otherwise. Clearly, f is integrable. With this f , the left-hand side of equation 9 is a
time-average, it says how often the orbit of x lies in E. The right-hand side is the average of f in
the state space X. This means that for any µ−invariant, ergodic function S we have:

lim
n→∞

n−1∑
k=0

1E(Skx) =

∫
X

1Edµ = µ(E). (10)

In other words, the sequence { 1
n

∑n−1
k=1 1E(skx)} converges to µ(E) as n goes to infinity. An

example of this is shown in figure 20. For T (x) = 1
2 (x− 1

x ), this convergence is seen for E = (0, 1).
The measure µT (0, 1) = 1

4 , and indeed, we see the sequence converging nicely to it.

3.3 Lyapunov exponent
An application of Birkhoff’s theorem is the computation of the Lyapunov exponent. It is a way to
measure sensitive dependence on initial conditions. Let x, y be two points close together. Then:

|S(x)− S(y)| ≈ |S′(x)| · |x− y|,
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(a) x0 = 0.34 (b) x0 = 23

Figure 21: Convergence of Sum(n) = 1
n

∑n−1
i=1 log |T ′(T ix)| to the orange line at log 2

which gives by induction:

|Sn(x)− Sn(y)| ≈
n−1∏
i=0

|S′(Six)| · |x− y|.

Then we can write this as:

1

n
log |Sn(x)− Sn(y)| ≈ 1

n

n−1∑
i=0

log |S′(Six)|.

Note that we can drop the term 1
n log |x− y| since it converges to 0 as n → ∞. Using Birkhoff’s

ergodic theorem, the right-hand side converges to
∫
X

log |S′|dµ for ergodic, µ−invariant transfor-
mations S.

Definition 13. The number
∫
X

log |S′|dµ is called the Lyapunov exponent of S.

This Lyapunov exponent measures the exponent of the speed of divergence of x and y [6]. A positive
Lyapunov exponent usually indicates that a map has sensitive dependence on initial conditions [3].
The logistic map and the map T are ergodic µ−invariant transformations so we can determine
their Lyapunov exponents. In appendix A.4 are the computations for the Lyapunov exponent for
F and T . Both have a lyapunov exponent of λ = log 2. The convergence of 1

n

∑n−1
i=0 log |T ′(T i(x))|

also shows that the Lyapunov exponent for T is equal to log 2. Figure 21 shows this convergence
for initial conditions x0 = 0.34 and x0 = 23. Both converge nicely to the orange line at log 2.

4 Family Nc

Up till now, we have investigated the dynamics of T . Recall that T (x) = N1(x) is one member of
this family:

Nc(x) =
1

2
(x− c

x
), c > 0

In this section, we will return to this family. Figure 22 shows that Nc has the same shape for all
c. None of these maps have fixed points, and we expect to see chaotic iterations for all values of c.
For T , we found a topological conjugacy, with the doubling map. This topological conjugacy can
be extended to all Nc with a

√
c factor:

hc(θ) =
√
c cot θ

Indeed:

Nc ◦ hc =
1

2

(√
c cot θ − c√

c cot θ

)
=

√
c

2

(
cot θ − 1

cot θ

)
=
√
c cot 2θ = hc ◦ g.
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Figure 22: Map Nc for c = 1
4 , 1, 5, 10, 20.

Because of this conjugacy, we will indeed find similar dynamics for Nc. For example, if θ is a
periodic point of the doubling map, then x =

√
c cot θ is a periodic point of Nc. For ergodic theory,

we also find similar results. The pdf and invariant measure for Nc are:

ρNc(x) =

√
c

π(x2 + c)
,

µNc([a, b]) =

∫ b

a

√
c

π(x2 + c)
dx,

=

√
c

π
(arctan

b√
c
− arctan

a√
c
).

Surprisingly, the Lyapunov exponent of Nc is equal to log 2 for all c, see appendix A.4. This
indicates that all maps Nc are equally sensitive to initial conditions.
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Conclusion
The Newton function of the family z2 + c is given by Nc(x) = 1

2 (x− c
x ). In this thesis, the dynam-

ics of the map N1(x) = T (x) have been investigated. There is a topological conjugacy with the
well-known doubling map. Using this conjugacy, we were able to find all the periodic points and
prove that they are repelling. Furthermore, the exact domain of T has been identified.

The iterations of the map seemed chaotic. They do not converge to any attracting periodic point.
Different definitions of chaos have been considered, starting with Li-Yorke chaos. The map T is not
defined on an interval, which was a requirement for this theorem. For the logistic map, this theo-
rem can be applied and indeed, there is Li-Yorke chaos for parameters larger than µc ≈ 3.56995.
Next, we considered an expansion on Li-Yorke chaos, namely Marotto’s snap-back repeller. The
requirements for the domain were a bit unclear as Marotto does not mention the need for an in-
terval. As expected, the logistic map has a snap-back repeller. For T , we also found a snap-back
repeller.

Another well-known definition for chaos is the one by Devaney. Using the conjugacy with the
doubling map, we were able to prove that T is chaotic according to Devaney’s definition. The last
definition of chaos that we considered was the dispersion exponent. The dispersion exponent works
with the l’historire se répète principle. This way of predicting future prediction does not work for
a chaotic dynamical system. For the doubling map and the logistic map, we were able to calculate
the dispersion exponent. For the map T , it was a bit harder. Iterations of T can move from very
small values to very large values, which gives very irregular numerical results. However, there was
a clear upward trend that suggests a positive dispersion exponent.

From these four notions of chaos, we can conclude that the map T is chaotic. It was not al-
ways easy to prove this. For Devaney, we gave an exact proof, and for the other notions of chaos,
we have made it likely that T is chaotic. A compact domain would have been more convenient. In
that case, Li and Yorke’s theorem and Marotto can be applied with no problem. For the dispersion
exponent, a compact domain would mean that the increase between iterations is bounded.

After the topological approach to the map T , we turned to ergodic theory. We found a prob-
ability density function for the logistic map and for the map T . This led to an invariant measure
with which we proved that the maps are ergodic. Next, we took a look at Birkhoff’s ergodic the-
orem. This important theorem of ergodic theory was used to calculate the Lyapunov exponent.
The Lyapunov exponent of both T and the logistic map is log 2. In fact, we were able to calculate
the Lyapunov exponent for all Nc. It is equal to log 2 for all c. This positive Lyapunov exponent
implies sensitive dependence on initial conditions.

This thesis covered many aspects of the dynamics of T , but there is always much left to be
investigated. For instance, other notions of chaos, or the link between the different notions of
chaos. There is for example an overlap between Li and Yorke’s chaos and Devaney’s chaos. It
would be interesting to find out what this overlap is. There are also more ergodic properties that
can be investigated, like entropy and mixing.

References
[1] John Banks, Jeffrey Brooks, Grant Cairns, Gary Davis, and Peter Stacey. On Devaney’s

definition of chaos. The American mathematical monthly, 99(4):332–334, 1992.

[2] Paul Blanchard et al. The dynamics of Newton’s method. In Proc. Symp. Appl. Math,
volume 49, pages 139–154, 1994.

[3] Michael Brin and Garrett Stuck. Introduction to dynamical systems. Cambridge university
press, 2002.

[4] Henk Broer and Floris Takens. Dynamical systems and chaos, volume 172. Springer Science
& Business Media, 2010.

[5] George Casella and Roger L Berger. Statistical inference. Cengage Learning, 2021.

33



[6] Geon Ho Choe. Computational ergodic theory, volume 13. Springer Science & Business Media,
2006.

[7] Robert L. Devaney. An Introduction to Chaotic Dynamical Systems Second Edition. Second
edition, 1989.

[8] William B Gordon. Period three trajectories of the logistic map. Mathematics magazine,
69(2):118–120, 1996.

[9] Peter Grassberger and Itamar Procaccia. Measuring the strangeness of strange attractors. In
The Theory of Chaotic Attractors, pages 170–189. Springer, 2004.

[10] Wen Huang and Xiangdong Ye. Devaney’s chaos or 2-scattering implies Li–Yorke’s chaos.
Topology and its Applications, 117(3):259–272, 2002.

[11] Andrzej Lasota and Michael C Mackey. Chaos, fractals, and noise: stochastic aspects of
dynamics, volume 97. Springer Science & Business Media, 2013.

[12] Tien-Yien Li and James A Yorke. Period three implies chaos. The American Mathematical
Monthly, 82(10):985–992, 1975.

[13] Edward N Lorenz and K Haman. The essence of chaos. Pure and Applied Geophysics,
147(3):598–599, 1996.

[14] Frederick R. Marotto. Snap-back repellers imply chaos in Rn. Journal of mathematical analysis
and application, 63:199–223, 1978.

[15] Frederick R Marotto. On redefining a snap-back repeller. Chaos, Solitons & Fractals, 25(1):25–
28, 2005.

[16] Heinz-Otto Peitgen, Dietmar Saupe, and F v Haeseler. Cayley’s problem and Julia sets.
Universität Bremen. Fachbereiche Mathematik/Informatik, Elektrotechnik . . . , 1983.

[17] Valérie Poulin. A Generalization of the logistic equation. PhD thesis, Carleton University,
2000.

[18] Yuming Shi and Guanrong Chen. Discrete chaos in Banach spaces. Science in China Series
A: Mathematics, 48(2):222–238, 2005.

[19] P Straffin Jr. Newton’s method and fractal patterns. Applications of Calculus, 3:68–84, 1991.

[20] Gilbert Strang. A chaotic search for i. The College Mathematics Journal, 22(1):3–12, 1991.

[21] Wilson A Sutherland. Introduction to metric and topological spaces. Oxford University Press,
2009.

A Appendix

A.1 Inverse functions
A.1.1 Inverse T−1

T has a double inverse, see figure 23a:

T−1
± x = x±

√
x2 + 1

For an inverse T−1 ◦T (x) = T ◦T−1(x) = x has to be true. Identities T ◦T−1
+ (x) = T−1

+ ◦T (x) = x

and T ◦ T−1
− (x) = x are easily checked. For T−1

− ◦ Tx, we need to be careful:
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(a) Green is T−1
+ (x) and blue is T−1

− (x) (b) arccot θ

Figure 23: Inverse functions.

T−1
− ◦ T (x) =

1

2
(x− 1

x
)−

√
(
1

2
(x− 1

x
))2 + 1

=
1

2
(x− 1

x
)−

√
1

4
(x2 − 2 +

1

x2
) + 1

=
1

2
(x− 1

x
)−

√
1

4
(x+

1

x
)2

=
1

2
(x− 1

x
)− |1

2
(x+

1

x
)|

=

{
x if x > 0
1
x if x < 0

T−1
− ◦ T (x) = x only holds for x > 0 since:√

1

4
(x+

1

x
)2 = |1

2
(x+

1

x
)| =

{
1
2 (x+ 1

x ) if x > 0

− 1
2 (x+ 1

x ) if x < 0

So T−1
− and T−1

+ act as a right-inverse to T . For x > 0, we can use T−1
+ as a left-inverse and for

x < 0 we can use T−1
− as a left-inverse.

A.1.2 Inverse cotangent

The inverse cotangent is a function h−1 : R→ (0, π) given by:

h−1(x) = arccotx.

By definition cot ◦ arccot θ = arccot ◦ cot θ = θ. We will consider arccot : R → [0, π]. Figure 23b
shows this function. Note that limx→∞ arccotx = 0 and limx→−∞ arccotx = π. This function is
everywhere continuous.

A.1.3 T and the logistic map

In this section, we find the more elaborate computations of the relation between T and F4. The
fist substitution is xn+1 = T (xn) into yn = x2

n + 1:
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yn+1 = x2
n+1 + 1

=
1

4
(xn −

1

xn
)2 + 1

=
1

4
(x2
n − 2 +

1

x2
n

) + 1

=
1

4
(x2
n + 2 +

1

x2
n

)

=
1

4

(x2
n + 1)2

x2
n

=
1

4

y2
n

yn − 1

The second substitution z = 1
y gives us exactly F4:

yn+1 =
1

4

y2
n

yn − 1

1

yn+1
=

4(yn − 1)

y2
n

=
4

yn
(1− 1

yn
)

zn+1 = 4zn(1− zn)

This relation between T and F4, given by zn = 1
x2
n+1 is not a topological conjugacy, since zn is not

injective. The relation is shown below in figure 24 and in this equation:

zn ◦ T = F4 ◦ zn
1

1
4 (xn − 1

xn
)2 + 1

= 4(
1

x2
n + 1

)(1− 1

x2
n + 1

)

4

(xn + 1
xn

)2
=

4x2
n

(x2
n + 1)2

=
4

(xn + 1
x2
n

)
.

R R

[0, 1] [0, 1]

zn

T

F4

zn

Figure 24: Link with the Logistic map

A.2 Chaos
A.2.1 Li and Yorke

Lemma 3. A point x ∈ J is asymptotically periodic if and only if there exists a periodic point
p ∈ J such that |Fn(x)− Fn(p)| → 0 as n→∞.

Proof. Assume that x ∈ J is periodic, which means that there exists a period-k point p ∈ J such
that equation (5) holds. We claim that there exists an integer 0 ≤ i ≤ k − 1 such that

|Fn(x)− Fn(F i(p))| → 0.
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If such an integer does not exist, then there exists εi > 0 such that |Fn(x) − Fn(F i(p))| ≥ εi for
infinitely many n ∈ N. For ε = min{ε0, ε1, . . . , εk−1} we then have

|Fn(x)− Fn(F i(p))| ≥ ε

for infinitely many n ∈ N and all integers 0 ≤ i ≤ k − 1. But this contradicts equation (5).
Therefore, we have that |Fn(x)− Fn(q)| → 0 for some periodic point q = F i(p).
Conversely, let p ∈ J be a period-k point such that |Fn(x)−Fn(p)| → 0 as n→∞. Using division
with remainder we can write any n ∈ N as n = dk + r with d ∈ N and 0 ≤ r < k − 1. This gives

|Fn(x)− Fn(p)| = |Fn(x)− F dk+r(p)|
= |Fn(x)− F r(p)|
≥ d(Fn(x), {F i(p) ; i = 0, . . . , k − 1}).

We conclude that equation (5) holds, which means that x is asymptotically periodic.

A.2.2 Dispersion Exponent Matlab

doubling.m:

function g=doubling(x)
% doubling map on interval [0, pi)

g = 2*x;

while (g > pi)
g = g - pi;

end;
while (g < 0)

g = g + pi;
end;

funcT.m:

function y=funcT(x)
y=1/2.*(x-1/x);

logistic.m:

function y=logistic(mu,x)
y=4*x.*(1-x);

line_distance.m:

function d=line_distance(x, y)
% compute distance between two points on the real line

d = abs(x-y);

circle_distance.m:

function d=circle_distance(x, y)
% compute distance between two points on a circle of length pi

d1 = abs(x-y);
d2 = pi-d1;
d = min([d1, d2]);

compute_sup.m:

function Ese = compute_sup(x0 , N, epsilon , s)
%function to calculate E(s,epsilon)
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% compute orbit of length N+s (note: not length N!)
xarray = zeros(1,N+s);
xarray (1) = x0;
for i = 2:(N+s)

xarray(i) = doubling(xarray(i-1));
end

% approximate E(s, epsilon) over a finite orbit segment
Ese =0;
for i = 1:N

for j = (i+1):N
d0 = circle_distance(xarray(i), xarray(j));
if (d0 < epsilon)

ds = circle_distance(xarray(i+s), xarray(j+s));
q = ds/d0;
% find the supremum
if (q > Ese)

Ese = q;
end

end
end

end

% for the logistic map or T change the following
% 1) change "circle_distance" into "line_distance"
% 2) change "doubling" into the appropriate function name

plot_Ese.m:

function y=plot_Ese(x0, N, eps_array , s_array)
%function to make a graph of s vs log(E(s))

for i = 1: length(eps_array)
epsilon = eps_array(i);
y = zeros(1, length(s_array));
for j = 1: length(s_array) % y is sup of ratio so y=E(s,

epsilon)
s = s_array(j);
y(j) = compute_sup(x0 , N, epsilon , s);

end

% plot log(E(s,epsilon)) as a function of s
% for different fixed choices of epsilon
plot(s_array , log(y))
hold on

end

hold off

A.3 Ergodic Theory
A.3.1 Density functions and invariant measure T

The pdf of the map T is:

ρT (x) =
1

π(1 + x2)
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To show that this is in fact a pdf, its integral over the entire domain must equal 1. Note that KT

is a set of single points, and therefore
∫
KT

ρ(x)dx =
∑
k∈KT

∫
k
ρ(x)dx =

∑
0 = 0:∫

R\KT
ρ(x)dx =

∫
R
ρ(x)dx−

∫
KT

ρ(x)dx∫ ∞
−∞

1

π(x2 + 1)
dx =

1

π
arctanx

∣∣∞
−∞

=
1

π
(
π

2
+
π

2
) = 1

Furthermore, µT (T−1([a, b])) must equal µT ([a, b]) for an invariant measure:

µT (T−1([a, b])) =µ([a−
√
a2 + 1, b−

√
b2 + 1]) + µ([a+

√
a2 + 1, b+

√
b2 + 1])

=
1

π
(arctan(b−

√
b2 + 1) + arctan(b+

√
b2 + 1))

− 1

π
(arctan(a−

√
a2 + 1) + arctan(a+

√
a2 + 1))

=
1

π
(arctan b− arctan a).

This last equality holds due tot the arctan sum rule. Let α = b −
√
b2 + 1 and β = b +

√
b2 + 1

(The same works for a):

arctanα+ arctanβ = arctan

(
α+ β

1− αβ

)
arctan(b−

√
b2 + 1) + arctan(b+

√
b2 + 1) = arctan

(
2b

1− (b2 − (b2 + 1))

)
= arctan b.

A.3.2 Density function and invariant measure F

For the logistic map F (x) = 4x(1− x), we have pdf:

ρF (x) =
1

π
√
x(1− x)

.

The integral over the whole domain is 1:∫ 1

0

1

π
√
x(1− x)

dx = − 2

π
(arcsin 0− arcsin 1) = − 2

π
(0− π

2
) = 1

The inverse of F is given by F−1
± (x) = 1

2 ±
1
2

√
1− x.

To check that this measure is invariant, we need to check that:

µF ([a, b]) = µF (F−1
pm([a, b])).

Note that [a, b] is mapped by the inverse to two intervals, namely F−1([a, b]) = [1
2 −

1
2

√
1− a, 1

2 −
1
2

√
1− b] ∪ [ 1

2 + 1
2

√
1− b, 1

2 + 1
2

√
1− a]. This gives:

µ(F−1
± ([a, b])) = µ([

1

2
− 1

2

√
1− a, 1

2
− 1

2

√
1− b]) + µ([

1

2
+

1

2

√
1− b, 1

2
+

1

2

√
1− a])

= − 2

π

(
arcsin

√
1− (

1

2
− 1

2

√
1− b)− arcsin

√
1− (

1

2
− 1

2

√
1− a)

)

− 2

π

(
arcsin

√
1− (

1

2
+

1

2

√
1− a)− arcsin

√
1− (

1

2
+

1

2

√
1− b)

)

= − 2

π

(
arcsin

√
1

2
+

1

2

√
1− b− arcsin

√
1

2
− 1

2

√
1− b

)

− 2

π

(
arcsin

√
1

2
− 1

2

√
1− a− arcsin

√
1

2
+

1

2

√
1− a

)
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We will apply the arcsin difference rule with α =
√

1
2 + 1

2

√
1− b and β =

√
1
2 −

1
2

√
1− b, note

that
√

1− α2 = β and
√

1− β2 = α so:

arcsinα− arcsinβ = arcsin(α
√

1− β2 − β
√

1− α2)

= arcsin(α2 − β2)

arcsin

√
1

2
+

1

2

√
1− b− arcsin

√
1

2
− 1

2

√
1− b = arcsin

(
1

2
+

1

2

√
1− b− 1

2
+

1

2

√
1− b

)
= arcsin

√
1− b

Apply the arcsin difference rule again with α =
√

1
2 −

1
2

√
1− a. Again,

√
1− α2 = β and√

1− β2 = α, so:

arcsin

√
1

2
− 1

2

√
1− a− arcsin

√
1

2
+

1

2

√
1− a = arcsin

(
1

2
− 1

2

√
1− a− 1

2
− 1

2

√
1− a

)
= arcsin(−

√
1− a)

= − arcsin
√

1− a.

And then finally:

µ(F−1[([a, b])) = − 2

π
(arcsin

√
1− b− arcsin

√
1− a) = µ([a, b]).

A.4 Lyapunov Exponent
A.4.1 Logistic map F

The Lyapunov exponent of the logistic map F is given by the following integral. In this section it
is solved.

λF =

∫
X

log |F ′| dµF

=

∫ 1

0

log |4− 8x| dµF

=

∫ 1

0

log 4 + log |1− 2x| dµF

= 2 log 2 +

∫ 1

0

log |1− 2x| dµF

= 2 log 2 +

∫ 1

0

log |1− 2x|
π
√
x(1− x)

dx

The part in the integral is symmetric around x = 1
2 , so:

λF = 2

∫ 1
2

0

log |1− 2x|
π
√
x(1− x)

dx+ 2 log 2

Now put 1−2x = sinφ, 0 ≤ φ ≤ π
2 . Then x = − 1

2 sinφ+ 1
2 and dx = − 1

2 cosφdφ. Note furthermore
that: √

x(1− x) =

√
(−1

2
sinφ+

1

2
)(

1

2
+

1

2
sinφ) =

√
1

4
cos2 φ =

1

2
cosφ.

Lastly, x = 0⇒ φ = π
2 and x = 1

2 ⇒ φ = 0 and sinφ > 0 for these values of φ, so we find:

λF =
2

π

∫ 0

π
2

log(sinφ)
1
2 cosφ

· −1

2
cosφdφ+ 2 log 2

=
2

π

∫ π
2

0

log(sinφ) dφ+ 2 log 2

Using the mean value theorem for harmonic functions we find [6]:

∫ π
2

0

log(sinφ) dφ = − 2

π
log 2

=⇒ λF = − log 2 + 2 log 2 = log 2.
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A.4.2 Family Nc

The Lyapunov exponent of the family Nc is given by the following integral. Note that c = 1 gives
the Lyapunov for T .

λN =

∫
X

log |N ′c| dµN

=

∫ ∞
−∞

log |1
2

(1 +
c

x2
)|dµN

=

∫ ∞
−∞

log
1

2
dµN +

∫ ∞
−∞

log |1 +
c

x2
| dµN

= − log 2 +

√
c

π

∫ ∞
−∞

log |1 + c
x2 |

(x2 + c)
dx

Use the transformation

x =

√
c

tan(−
√
ct)

Note that we get new bounds at x =∞ at t = 0 and x = 0 at t = − π
2
√
c
. Also:

dx =
c

sin2(−
√
ct)
dt.

λN = − log 2 +
2
√
c

π

∫ 0

− π
2
√
c

log |1 + tan2(−
√
ct)|

c
tan2(−

√
ct)

+ c
· c

sin2(−
√
ct)

dt

= − log 2 +
2
√
c

π

∫ 0

− π
2
√
c

log |1 + tan2(−
√
ct)|

cos2(
√
ct) + sin2(

√
ct)

dt

= − log 2 +
2
√
c

π

∫ 0

− π
2
√
c

log |1 + tan2(−
√
ct)| dt

= − log 2 +
2
√
c

π

∫ 0

− π
2
√
c

log |cos2(−
√
ct) + sin2(−

√
ct)

cos2(−
√
ct)

| dt

= − log 2− 4
√
c

π

∫ 0

− π
2
√
c

log | cos(−
√
ct)| dt

Another quick transformation: t = − s√
c
gives new bounds at s = 0 and s = π

2 and dt = − 1√
c
ds:

λN = − log 2 +
4
√
c

π

∫ π
2

0

log | cos(s)| · − 1√
c
ds

= − log 2− 4

π

∫ π
2

0

log | cos(s)|ds

Now consider the analytic function f(z) = log(1 + z). Its real part u(z) = log |1 + z| is harmonic.
Then by the Mean value theorem for harmonic functions:

u(0) =
1

2π

∫ 2π

0

u(0 + reiφ) dφ =
1

2π

∫ 2π

0

log |1 + reiφ| dφ.

Let r → 1, then we find that |1 + eiφ| = 2| cos(φ2 )|:
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0 =
1

2π

∫ 2π

0

log |1 + eiφ| dφ

=
1

2π

∫ 2π

0

log 2| cos
φ

2
| dφ

=
1

2π

∫ 2π

0

log 2 dφ+
1

2π

∫ 2π

0

log | cos
φ

2
| dφ

− log 2 =
1

2π

∫ 2π

0

log | cos
φ

2
| dφ

Let φ = 2t, then dφ = 2dt. If φ = 0, then t = 0, and if φ = 2π, then t = π:

− log 2 =
1

2π

∫ 2π

0

log | cos
φ

2
| dφ

−π log 2 =

∫ π

0

log | cos(t)| dt

−π
2

log 2 =

∫ π
2

0

log | cos t| dt

Combining this with our earlier result gives us:

λN = − log 2− 4

π
· −π

2
log 2 = log 2
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