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1 Introduction

1.1 Xsens

Xsens Technologies B.V. is a company that specializes in 3D motion tracking technology, using

inertial measurement units (IMUs). Their products are used in fields such as film industry, sports

science and rehabilitation centers. The company was founded in 2000, in Enschede,The Nether-

lands. Since then, it has expanded to four locations in Los Angeles, USA , in Hong Kong and in

Shanghai. Since 2017, Xsens is part of mCube, a company that provides the world’s smallest and

lowest power MEMS motion sensors.

The company focuses on capturing movement, both for industrial applications and human move-

ment. Xsens portfolio is divided into three parts [1]. First, are the 3D body motion capturing so-

lutions: MVN Awinda and MVN Link, Figure 1a. MVN AWinda, consists of 17 wireless sensors

that can be attached to the body with straps. The MVN Link uses the same 17 sensors however, the

sensors are placed on a full body Lycra suit, achieving even more accurate data recording. Second,

are the inertial sensor modules called the MTi series, Figure 1b. The MTi series includes a variety

of products having several integration levels and are mostly used for industrial applications. Last,

the Xsens DOT, Figure 1c, a wearable sensor module meant to analyse and report human kinemat-

ics. Moreover, the user can combine different DOTs for more accurate complex motion tracking

data.

(a) MVN Awinda - MVN Link (b) MTi series. (c) Xsens DOT

Figure 1: Xsens portfolio.

1.2 Problem description

As mentioned above Xsens is based on IMUs systems for motion capturing motion. An IMU con-

sists of clusters of accelerometers, which measure static and/or dynamic forces of acceleration,
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gyroscopes, which measure angular velocities, and sometimes (even) magnetometers, which mea-

sure the magnetic field. The IMU’s components are normally Micro Electro Mechanical Systems

(MEMS), which are suitable for many application because of their small size, their low power con-

sumption, as well as their low cost. Unfortunately, these systems have deterministic errors, due to

their physical nature . These errors include non zero biases, non accurate scaling, cross axis sen-

sitivity and sensor axis misalignments. The process of identifying these quantities is referred to as

IMU calibration (parameter estimation). As defined in [2] Calibration is the process of comparing

instrument outputs with known reference information and determining coefficients that force the

output to agree with the reference information over a range of output values.

Currently, Xsens relies on a calibration method using industrial robotic arms. Each sensor is be-

ing placed on the robotic arm calibration, and then the arm follows a predetermined trajectory.

Afterwards, we determine the coefficients that force the sensor’s output to agree with the known

trajectory within an acceptable range.The inconvenience of this procedure is that the process takes

much time to complete and needs to be repeated several times. Furthermore, the choice of the

trajectory that the robot follows is based on experience. Hence, as the production of sensors and

sensor variants increase, there is a need for a new calibration method for each type, which not

only satisfies our accuracy requirements but also using the robot resource as little as possible. In

other words, we want to be able to calculate an optimal calibration procedure, satisfying sensor,

and system-specific constraints. In literature, this procedure is referred to as optimal experimental

design (OED).

Generally, the aim of OED is the design of optimal experimental setups which results in obtaining

more ”informative” data during an experiment, that is, data that can reveal more information on

the desired parameters, in comparison to a less educated input. For more details about OED please

refer to [3] and [4].

The objective of this work is to provide an optimal signal trajectory for calibration of MEMS

sensors, that yield measurement data resulting in estimates of the unknown model parameters with

a minimal statistical uncertainty. The procedure that we will follow is summarized by the flow chart

in Figure 2. First, we will perform the parameter estimation of the sensor using a random signal

trajectory. Given the estimated parameters, the OED is implemented to determine the optimal

signal input. Finally, we repeat the parameter estimation using the optimal input signal and we

compare the performance of the estimations.
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Figure 2: Flow chart of the parameters estimation and optimal experimental design process.

The internship report is structured as follows. In Chapter 2 we will introduce a mathematical

framework for parametric estimation. Chapter 3 introduces the mathematical model and a calibra-

tion method of the sensor. In Chapter 4 the optimization method based on the covariance matrix is

presented and the benefits of the proposed method are highlighted with simulated results. Chapter

5 summarizes the obtained results.
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2 Mathematical background

In this chapter, the method of least squares is introduced for the estimation of system parame-

ters based on [5]. Least squares is an estimation procedure that was developed in 1795, by Carl

Friedrich Gauss, and mainly used for astronomical computations. Since that time the method has

been applied for the solution of many problems with the most important application in data fit-

ting. In general, least squares method attempts to estimate parameters by minimizing the squared

discrepancies between observed data, on the one hand, and their expected values on the other.

2.1 Least squares approach

A non-linear least-squares parametric estimation problem is an optimization problem in the form

minimize
p ∈ Rnp

f(p)

subject to gi(p) = 0, i = 1, . . . , n.

(1)

The function f is called an objective function, with p ∈ Rnp is denoted the unknown parameters

that need to be estimated and the functions gi are called constraint and are the condition that the

solution must satisfy.

Let the function h(p) represent the model response, and y represent the measurement values. The

difference between the model function and the measured value called residual and is denoted by

r(p). Let M be the number of samples, then r is the vector function

r(p) =
[
r1(p) r2(p) . . . rM(p)

]T
.

Our purpose is to find the value of p, denoted by p̂, that minimizes the sum of squares of the

residuals. Therefore, the objective function can be written as

f(p) =
1

2

M∑
i=1

(yi − hi(p))2 =
1

2

M∑
i=1

r(p)2 =
1

2
r(p)T r(p) =

1

2
||r(p)||2,

Hence, the optimization problem (2) can be formulated as

p̂ = min
p∈Rnp

1

2
||r(p)||2,
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and the least-squares problem can be interpreted as trying to find the point p̂ in parametric space

Rnp that corresponds to the point r(p̂) in observation space Rm that is the closest to zero.

2.2 Weighted least-squares problem

In many cases the measurement values y ∈ Rm are polluted by additive noise, i.e. ỹi = yi + εi,

where the εi are assumed to be independent and zero - mean Gaussian distributed N (0,Σy) with

Σy ∈ Rm×m the covariance matrix. We define the weighting matrix Σ−1
y as the inverse of the

covariance matrix of the noise. Then, the weighted least-squares is of the form

minimize
p ∈ Rnp

1

2
||r(p)||2

Σ−1
y

subject to gi(p) = 0, i = 1, . . . , n.

(2)

where gi are the constraints imposed by the problem. For instance, in our problem, we need the

optimal trajectory to be physically realizable.
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3 Calibration - Parameter Estimation

This chapter introduces a calibration method of a sensor. In this project, we consider only ac-

celerometers. This calibration method is based on least squares estimation and the goal of this

process is to determine the bias, the scale factor along with the state of the sensor. First, the sensor

model is described followed by the formulation of the parameter estimation problem. Thereafter,

the results are illustrated and lastly, an evaluation of the results is performed to assess the quality

of the calibration.

3.1 Sensor model

This section presents the error model for the accelerometer. The sensor error model describes the

process of measurement from the actual physical quantity to the sensor output.

The simplest acceleration model for a single axis sensor considers only a scale factor and a constant

bias. Then the single axis sensor model can be described as,

y(t) = kα(t) + b,

where y(t) ∈ R represents the output of the accelerometer, k ∈ R is the scale factor, b ∈ R denotes

the bias, and α(t) ∈ R stands for the acceleration.

A MEMS triaxial accelerometer is composed of three single axis orthogonally mounted accelerom-

eters, each of them measures the acceleration on each axis. The generalization of the single axis

model axis, for triaxial accelerometers, which accounts for scale factors and bias reads as,

y(t) = Kα(t) + b,

where K ∈ R3×3 is a diagonal matrix that includes the scale factors, b ∈ R3 represents the bias.

α(t) ∈ R3 denotes the acceleration and y(t) ∈ R3 represents the measured acceleration that com-

ing out of the sensor.

In the ideal case, the matrix K is the identity matrix, the b is a null vector. Moreover, in practice

the set of single axis accelerometer is not orthogonally mounted, however we assume that there is.

To complete the sensor error model we assume that the output measurements are affected by Gaus-

sian noise. Thus the model employed is

y(t) = Kα(t) + b + ν,
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where ν ∼ N (0,Σν).

3.1.1 System model

In this project, we used the derivative of acceleration, jerk, to generate smooth trajectories for

the robotic arm. Hence, our system model is jerk - controlled. In order to generate and control

the sensor’s movement, we discretize the time horizon of the motion into N equal time intervals,

[τi, τi+1] for i = 0, 1, . . . , N with time period ∆τ . Let ui ∈ R3 the control input that is applied to

the sensor on each axis, on the interval [τi, τi+1] and xi ∈ R3 denote the state of the sensor with

i = 0, 1, . . . , N . Considering that, the acceleration follows a linear piece-wise trajectory on each

axis, where on each interval [τi, τi+1] the acceleration is given by

αi(τ) = xi + uiτ, for i = 0, 1, . . . , N.

Moreover, since we want the acceleration trajectory to be continuous there is a need to set some

constraints, that is

xi − xi+1 = (ui+1 − ui)τi, for i = 0, 1, . . . , N.

An illustration of such a jerk - controlled acceleration trajectory, with N = 15 time intervals is

given on Figure 3.

Figure 3: Jerk-controlled acceleration trajectory, with N = 15 and ∆τ = 1s.
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3.1.2 Measurement model

Consider M be the total number of measurements of the experiment, at a sampling rate of fs. We

define the vector of the noisy observed data y ∈ R3×M as follows,

y =
[
y1 y2 . . . yM

]
,

and the model response h(·) ∈ R3×M is defined as

h(·) =
[
h1 h2 . . . hM

]
=

[
Kα(t1) + b Kα(t2) + b . . . Kα(tM) + b

]
where the value of the acceleration α(t), is given by the functions αi(τ), depending on the time

interval measurement [τi, τi+1]. More specifically, when tj ∈ [τi, τi+1] then the actual acceleration

is given by

α(tj) = xi + uitj for i = 0, 1, . . . , N and j = 1, 2, . . . ,M.

Finally, for simplicity we define the vector p ∈ R6 which include the unknown parameters that

have to be estimated,

p =
[
bx by bz Kx Ky Kz

]
.

3.1.3 Problem formulation

Parameter estimation is formulated as a non-linear optimization problem, whose objective is to

estimate the parameter values, that minimise a scalar measure of the distance between model pre-

dictions and simulated data. To solve the optimization problem we use the weighted least square

approach which introduced in Section 2, with weights set to the inverse of the experimental noise.

Summing up, the parameter estimation problem can be formulated as follows

minimize
p, x, u

1

2

M∑
k=1

||yk − hk(p, x, u)||2W

subject to xi − xi+1 = (ui+1 − ui)τi, i = 0, . . . , N − 1,

α(t1) = αinitial,

α(tM) = αend,

α(t1) 6= α(tM).

(3)
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where the weighting matrix W is the inverse of the diagonal matrix Σν , which contains the covari-

ance of the measurements. Withα(t1) andα(tM) are denoted the initial and the final acceleration,

respectively. The problem is subject to constraints, the first imposed by the continuity of the ac-

celeration trajectory. Moreover, in order to make the estimation solvable, we have to reduce the

degrees of freedom of the state, therefore the initial and the final acceleration of the sensor must

be known and not equal.

3.2 Numerical Results

Within this section, the simulation results from the parametric estimation are studied. The opti-

mization problem (3) was implemented in MATLAB with the use of CasADi, an open - source

software tool [6]. CasADi provides the possibility to formulate complex symbolic expressions and

generate derivative information efficiently using algorithmic differentiation.

We used the data sheet of the accelerometer Memsic MXD2020U/WTo [7] to simulate the results,

so the bias and the scale factor are assumed Gaussian with standard deviations 0.1 m/s2 and 0.005

respectively. In addition to that, zero-mean additive white Gaussian noise was added to the accel-

eration measurements,with standard deviation of σν = 0.0002 m/s2. In the following, we provide

the calibration results, obtained by solving the optimization problem (3).

Figure 4: Comparison of actual, measured and estimated acceleration, on frequency of 2Hz and
∆τ = 5s.
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In Figure 4 the trajectory in each axis is illustrated. The solid lines depict the true acceleration of

the sensor, while the dots show the sensor’s output sampled on the frequency of 2Hz. As observed

in the plot the estimated trajectory converges to the actual trajectory. Figure 5 illustrates in detail

the convergence of the estimated motion to the actual. In the upper graph the states xi are depicted,

while in the lower graph the controls ui are plotted for i = 0, 1, . . . , 14. Therefore, we estimate the

motion of the accelerometer with an uncalibrated sensor.

Figure 5: Comparison of actual and estimated state and inputs on frequency of 10Hz and ∆τ = 5s.

Next, in order to assess the calibration, we perform the calibration on 50 accelerometers following

piece-wise linear trajectory with N = 14 linear curves, on the frequency of 2Hz. The comparison

between the actual and the estimated parameter errors are depicted in the following graphs. Figure

6 illustrates that the estimated parameter errors, the bias in the left graph and the scale factor in the

right graph, lie very close to the actual values.
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Figure 6: Comparison of actual and estimated parametric errors.

Hence, without knowing the exact motion of the accelerometer we can calibrate both the bias and

the scale factor of the sensor. However, there is still scope for improvement in the accuracy of the

estimation especially in the estimation of the scale factor.
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4 Optimal Experimental Design

In this section, an introduction to an optimal input signal for accelerometer calibration is given

and the formulation of an OED problem for the sensor is provided. The formulation and the

implementation of the OED problem was based on [8], [9] and [10] .

4.1 OED formulation

In sensor calibration, the design of the signal input provided for the system during the procedure

is crucial for the accuracy of the parameter estimation. If a signal is not suitable, the data obtained

during the calibration might not contain enough information on the desired parameters and the

estimation might be inaccurate.

Our goal is to reduce the parameter estimation uncertainty. A way to evaluate the quality of the

estimation results without knowing the true signal is through the covariance matrix [11]. The

estimated parameter covariance matrix is a square, positive semi-definite matrix and its diagonal

contains the parameter variances. Intuitively, higher values of variance entail higher uncertainty.

Hence, the main idea of OED is to use an information function of the covariance matrix Φ(Σp) as

the objective of an optimization problem. Thus, the optimal experimental design problem can be

written generally as

minimize
x, u

Φ(Σp(·))

subject to g(·) = 0,

xmin ≤x ≤ xmax,

umin ≤u ≤ umax.

where xmin, umin, xmax, umax are the lower and the upper bounds of the input and the state. The

constraint g(·) is based on the system dynamics.

There exist several optimality criteria that can be used in the optimization problem with different

features [12]. In this project, we use the so called A-optimality, within the objective of the OED

problem, which seeks to minimize the trace of the covariance matrix of the model coefficient

estimates that obtained from the calibration using random input signal. Therefore, our optimal
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signal input can be obtained from the solution of the following optimization problem

minimize
x, u

Trace(Σp(x, u, p̄))

subject to xi − xi+1 = (ui+1 − ui)τi, i = 1, . . . , N − 1,

xmin ≤x ≤ xmax,

umin ≤u ≤ umax.

(4)

In (4), p̄ is an initial guess of sufficient quality for the true value of p, which can be obtained by

solving the parameter estimation problem that was analyzed in Section 3. However, since in this

problem we are concerned only about the parameters errors, the optimization variables are the bias

and the scale factor and not the movement of the sensor. Thus, the parametric estimation is of the

form

minimize
p, x

1

2

M∑
k=1

||yk − hk(p, x, u, tk)||2W

subject to xi − xi+1 = (ui+1 − ui)τi, i = 0, . . . , N − 1

(5)

where u is a known random initial input signal.

In case further improvement is desired, the OED and the calibration could be repeated based on

the improved estimation results.

4.1.1 Motivation

Before the implementation of the OED is needing to study the behaviour of the objective function

of (4) and examine if indeed there is exist an optimal solution.

In order to visualise the objective, we choose a single axis accelerometer following trajectory with

two time intervals. Therefore the model response is of the form

h(tk) =

k(u1tk + x1) + b, if tk ∈ [τ0 τ1]

k(u2tk + x2) + b, if tk ∈ [τ1 τ2].

for k = 1, 2, . . . ,M .

Next, for several combinations values of input signals u1, u2 we implement the parameter estima-

tion (5) and we calculate the trace of the covariance matrix, the result is represented in Figure

7.

14



Figure 7: The logarithmic trace of the covariance matrix for various input signals u1, u2.

The surface illustrates the logarithmic trace calculated for various inputs signals u1, u2 taking val-

ues within the interval [−0.5 0.5]. We choose an area that is close enough to zero to focus on

the interesting parts of the surface. First, we see that the objective is continuous, except the point

(0, 0), and not constant, thus there are input signals that minimize the trace. Next, we observe that

when both the inputs are close to zero the trace is increased, meaning that the estimation becomes

inaccurate, and specifically when u1 = u2 = 0 the estimation is impossible since the sensor must

be moving to estimate the scale factor. On the other side, when the inputs reach their maximum

absolute values the trace becomes minimum.

In the following section, we analyze in more detail how the optimal signals behave and if indeed

they minimize the accuracy of the calibration.

4.2 Numerical Results

In this section, we used the data-sheet values for accelerometer Memsic MXD2020U/WTo to sim-

ulate the OED described above. The optimization problem (4) were solved using the open-source
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CasADi, in MatLab. The upper and lower bounds on the state and on the input are

xmin = umin = −30 and xmax = umax = 30.

Moreover, the initial trajectory is divided into N = 10 time intervals with period ∆τ = 1s. Lastly,

the measurements results obtained at sampling rate of 10Hz.

In the following, we provide a comparison between the optimal signal and the initial one. Figure

8a shows the optimized inputs in comparison to the initial inputs. As it can be noticed, the absolute

values of the optimal inputs are higher than the initial, meaning that the rate of change of the

acceleration with time is greater than the one in the initial signal. This can be visualized in Figure

8b where the optimal acceleration trajectory is compared with the initial trajectory. We observe that

the absolute value of the optimal acceleration is larger and the rate of change is higher, showing

how the optimized signal is used to intentionally excite different parts of the system and increase

the information content.

(a) Comparison of initial and optimal inputs. (b) Comparison of initial and optimal trajectory.

Figure 8: Results of OED

Next, in order to examine if there is a unique optimal input signal, we repeat the implementation

of OED on 10 accelerometers. The resulting 10 optimal trajectories on each axis are illustrated

in Figure 9. As shown on the graphs, every two optimal signals follow either approximately the

same sinusoidal curve or each symmetric curve with respect to the time axis. Intuitively, since

the optimal acceleration is sinusoidal, the optimal displacement and velocity of the sensor are

changing sinusoidally. Hence, the robotic arm should be initialized at zero speed, then increases
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Figure 9: Optimal trajectories on each axis.

to maximum speed and gradually, its velocity decreasing. When the velocity reaches zero then the

robotic arm changes direction and speeds up to reach the maximum velocity on the opposite side.

The increase in certainty achieved by the experimental design can be illustrated in the following

graphs. We used the optimal signal to generate optimized measurement data and we repeated

the calibration according to Section 3 with otherwise unchanged settings. We implemented the

procedure in 30 accelerometers and we compared the optimal with the initial signal inputs in

terms of variances reduction and convergence of the estimated parameter vector to the true value.

Figure 10 presents the trace of the covariance, which is the sum of the variances of the regression

coefficients. We observe the OED reduces the sum of the bias and scale factor variances to a

single value independent of the initial signal, meaning that the optimization reaches a minima.

Furthermore, the reduction of the uncertainty can clearly be visualized in Figures 11 which depict

the errors of the estimation. Figure 11a, shows the absolute difference between the simulated and

the estimated value of bias on each axis, while Figure 11b depicts the corresponding result for
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Figure 10: Trace of the covariance matrices. Blue colour indicates the results of the calibration
using random signal while red colour indicates the results that obtained using the optimal signal.

the scale factor, where the reduction is greater. These results verify that an optimal design of the

experiment can provide an estimation of parameters with high accuracy both in terms of converging

parameter values and variance.
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(a) Absolute difference between estimated and simu-
lated bias vector.

(b) Absolute difference between estimated and sim-
ulated scale factor.

Figure 11: Comparison between the initial and the optimal signal. Blue colour indicates the results
of the calibration using random signal while red colour indicates the results that obtained using the
optimal signal.

4.3 Addition of process noise

To improve the model’s fidelity for real-world applications, in this section we take into account the

system noise.

The process that is followed is similar to the aforementioned steps the only difference is that in

this case, for each motion interval, the input signal that is sent to the system is subject to noise.

This input noise is a special kind of process noise. The procedure is summarized in the schematic

diagram in Figure 12.

As a remedy to this, as proposed in [8], additional degrees of freedom can be introduced in the

optimization problem. At each interval we add the process noise wi ∈ R3 with i = 0, 1, . . . , N

which depends on the corresponding input signal ui. Specifically, wi follows zero-mean Gaussian

distribution with standard deviation a function of the signal i.e. wi ∼ N (0, σu(ui)).

Therefore, the inputs that actually excite the system are

ūi = ui + wi, for i = 0, . . . , N.
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Figure 12: Flow chart of the parameters estimation and optimal experimental design process under
system noise.

Taking everything into account, the parameter estimation problem becomes

minimize
p, x, w

1

2

M∑
k=1

||yk − hk(p, x, ū)||2
Σ−1

y
+ ||w||2

Σ−1
w

subject to xi − xi+1 = (ui+1 − ui)τi, i = 1, . . . , N − 1.

(6)

where Σw a diagonal matrix with entries the σu(ui).

Consequently, the OED is of the form

minimize
x, u

Trace(Σp(x, u, p̄, w̄))

subject to xi − xi+1 = (ui+1 − ui)τi, i = 1, . . . , N − 1,

xmin ≤x ≤ xmax,

umin ≤u ≤ umax.

where p̄, w̄ the results of the optimization problem (6).

Next, we implement the OED under process noise on 30 accelerometers and we set the lower and

upper bounds as

xmin = umin = −20 and xmax = umax = 20.

In order to evaluate the quality of the results, we compared the performance of the optimal with

the initial signals. Figure 13 depicts the traces of the covariance matrices obtained with the initial
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signal and with the optimal one. We observe that also in this case, where our system model is

more complicated, the uncertainty was decreased by the OED. This result is verified in the plots in

Figure 14, where the absolute differences between the estimated and the actual values of the bias

and the scale factor are illustrated. These results show that it is also possible to retrieve confident

parameter estimates in a more complex model.

Figure 13: Trace of the covariance matrices. Blue colour indicates the results of the calibration
using random signal while red colour indicates the results that obtained using the optimal signal.

(a) Absolute difference between estimated and simu-
lated bias vector.

(b) Absolute difference between estimated and sim-
ulated scale factor.

Figure 14: Comparison between the initial and the optimal signal. Blue colour indicates the results
of the calibration using random signal while red colour indicates the results that obtained using the
optimal signal.
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5 Conclusion

This work can provide a further theoretical understanding of the OED for sensor calibration and its

potential application in realistic experiments. In this project, we have presented an optimal signal

trajectory that maximizes parameters identifiability, by reducing the covariance matrix. The OED

has been carried out for the calibration of a triaxial MEMS sensor. Thus, a suitable non-linear

mathematical model for calibration related to jerk-controlled accelerometer was introduced.

First, we determined the bias and the scale factor of the sensor and identify the sensor motion,

simultaneously. Afterwards, we moved on to the formulation of the OED where the optimized

signal trajectory was obtained by minimized the trace of the covariance matrix of the estimated

parameters. Lastly, for a more realistic model we included process noise.

The simulation results showed that the optimal signals follow similar or symmetric on the time

axis sinusoidal curve. The results obtained comparing the initial signals with the optimal signals

highlight an increase in the accuracy of the parameters identification, which is guaranteed by the

decrease of the variance of the estimated parameter.

From the simulation, we observed minor improvement in the accuracy, this can be interpreted due

to the simplicity of the model. Nevertheless, the results from the implementation of the OED un-

der process noise, give us confidence that in a more complex model the improvement will be more

significant.

An interesting direction of future work is to broaden these results in more realistic sensor mod-

els. For example, by adding the sensor axis misalignment’s error and include the variation of

accelerometer biases with temperature. In addition, more constraints are necessary both for the

motion of the sensor and for a more detailed system. Moreover, the IMU sensors consist of clus-

ters of gyroscopes and accelerometers, therefore there is room for further research to simultaneous

calibration of gyroscope. Lastly, it would be interesting to implement the OED using different

optimization criteria, in order to examine if different criteria give better estimation accuracy.
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