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Abstract
This thesis is dedicated to the development of a non-linear position based attitude
controller for a small satellite. A typical small satellite is subject to numerous non-
linear disturbances causing undesired torque exertion on the satellite. This can
cause the satellite to abandon its desired attitude and thus malfunction. By im-
plementing a non-linear controller based solely on position, an efficient trajectory
following stabilization method with low noise generation is reached. The controller
will make use of the port-Hamiltonian framework in combination with the quater-
nion representation. These respectively have the advantages to be easily compared
to other control strategies based on energy usage, and to solve singularity problems
encountered with rotational matrices. Thereafter, passivity based control is applied
to guarantee asymptotic stability of a developed error system, thus following desired
trajectory.

This thesis is written as the final project of BSc Industrial Engineering and Manage-
ment (IEM), at the University of Groningen, Netherlands, Faculty of Science and
Engineering.
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Satellite attitude control

1 Introduction
A satellite in orbit has a specific desired orientation (attitude) for different reasons
such as, for example, antennas that need a certain position to communicate with
the earth or solar cells that need to face the sun to produce energy [1]. Moreover,
the sensors and actuators of the satellite are subject to possible hinders as a result
from an undesired attitude [1]. Thus, the attitude is subject to numerous constraints
which result in a desired attitude. To maintain this desired attitude, satellites rely on
their Attitude Determination and Control Systems. Since research on these (ADCS)
is volatile, is there a “maximum” to be reached, or are there still lots of points of
improvement to be made? “The sky is not the limit”, would be an unsatisfactory
answer, and there is much more improvement on the horizon with respect to for
instance power-, propulsion- and guidance systems in the satellite [2]. What all
these system improvements on the horizon have in common, is their dependency on
a highly efficient ADCS [2]. Moreover, small satellites are often subject to constraints
with respect to mass and energy and therefore equipping them with as less attitude
sensors as possible, is often seen as a requirement [3]. When a satellite is equipped
with numerous sensors, simultaneous use of all sensors is often impossible because
of operational limitations [3]. Moreover,
Because of all the different addressed constraints and requirements, the development
of a controller that operates with small steady state error to attain the desired
trajectory while being faster and therefore consuming less energy, is of interest for
both satellite operators and producers that work with state of the art ADCS. Such
a controller is useful for not only spacecraft, but also underwater vehicles, ground
vehicles, and robotic systems [4].
Currently, the state of the art of ADCS consists of both linear- and non-linear
controllers. A large number of ADCS use Kalman filters for attitude estimation
[5–7], where after the estimates serve as an input in the Linear Quadratic attitude
controllers. The estimation in the latter named linear nature is less accurate than
doing so non-linearly, as the separation principle used, does not generally hold for
nonlinear systems [8], as is often the nature of the dynamics of satellites [9].

Non-linear state of the art ADCS are found in [4, 10–13]. In [11], an energy
shaping control method for the rotational motion of a fully rigid body is used.
Reference [12] uses a nonlinear adaptive controller for a satellite with two vector
measurements for gyro bias estimation and asymptotic attitude tracking and [13]
incorporates adaptive passivity-based controller. In [10,14], a quaternion representa-
tion is used to describe the attitude of a rigid body type spacecraft. The controller
of the quaternion system is handled with port-Hamiltonian system [14]. For this
system, the angular velocity Ω and position measurement is used. Moreover, a sim-
ulated environment is developed to test a controller. For the state variable r, the
distance from the spacecraft to the center of the earth is chosen to have a value
of (r = 1) [14]. This makes the simulation highly unrealistic. However, when one
simulates the attitude in the order of centimeters, and the distance to the earth
in the order of kilometers, the controller will become unstable. Therefore, the sys-
tem of the satellite rigid body control problem is a fast-slow system, in which some
state variables are very slow e.g. large, and other state variables are very fast e.g.
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small [15].
What [10–14] have in common, is that they rely on the available attitude and the
angular velocity.

However, controlling the satellite without velocity measurement would be desir-
able, since velocity measurement generates noise [4, 16] and measurement tools to
track speed, add on extra weight on the satellite, causing a higher energy usage.
Therefore, it is an improvement in efficiency to only track position. In [4, 16], the
controller uses only position measurements, by a dynamic extension of the Port-
Hamiltonian system used in [14], thus without speed measurement, as is required in
the proposed controller of [10–14].
Because of all the different constraints mentioned above, the attitude control based
on the measurement of only one sensor would be an advantage. This paper therefore
aims to develop a non-linear ADCS for a small satellite, controllable by one input
variable, tested for real-world application in a realistic simulated environment by in-
tegrating the proposed controller from [14] and [4], by implementing the dynamical
extension for the port-Hamiltonian framework of [16] for position-based trajectory
tracking into the proposed non-linear controller of [14], and thereafter solving short-
comings in the simulation parameters used in [14] controller using slow-fast system
theory, to test this integrated controller in a realistic simulated environment.
The project will start with the required preliminaries about rotational kinemat-
ics, rigid body dynamics, the Port-Hamiltonian framework and the control theory,
containing the mathematical explanation of the controller of [14]. Thereafter, the
problem analysis, containing the system description and the problem statement,
is provided, followed by the design goal. Thereafter, the results are be presented,
ending with a discussion and future research perspective.
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2 Preliminaries

2.1 Rigid Body Dynamics
For determining the attitude, two different reference frames have to be defined. The
first one, the inertial frame (I-frame), has its origin in the center of the earth, its
z-axis pointing towards the north pole, and its x-axis pointing in the direction of
the Vernal Equinox, e.g. when the sun is exactly above the Equator, and its y-axis
completing the right handed coordinate system [1] .The body frame (B-frame) is the
fixed reference frame that is attached to the satellite body. The axes of the B-frame
are chosen as the satellite’s principal axes of inertia. The body as observed with
respect to the B-frame is thus stationary [1]. This is summarized in Figure. 1 [17],
in which the subscript letters i and b belong to the axes of the I-frame and the
B-frame, respectively. The I- and B-frames are used to determine the orientation of
the satellite. To determine the angle of a spacecraft, both the angle of the B-frame
and the angle of the I-frame are required. What follows are the Euler angles, with
which a rotation matrix can be constructed [18].

Figure 1: The B-frame and the I-frame visualized

2.2 Disturbances
In this project we consider four different disturbances (perturbations) that con-
tribute to external torques that can lead to an undesired attitude. These include
gravity force, atmospheric drag, the J2-effect and solar radiation. A more thorough
definition of the disturbances is given below.

2.2.1 Gravity

Gravity is a non-linear disturbance [18]. Its formula is given by

Tgg = 3µ
R3

0
ô3(J × ô3) (1)

3



2.3 Quaternions Satellite attitude control

where µ is the Earth’s gravitational coefficient, R0 is the distance to Earth’s center,
ô3 is the unit vector towards nadir, which is the direction of the force of gravity, and
J is the spacecraft’s inertia tensor [18].

2.2.2 Drag Force

Atmospheric drag can be contributed to atmospheric friction acting in the opposite
direction of the orbital motion of the satellite and it is the largest disturbance on
the attitude of the satellite next to Gravity [18]. It is given by

Fatmos = 1
2ρCDS‖vrel‖vrel (2)

where ρ is total atmospheric mass density, CD is the dimensionless drag coefficient,
S is the spacecraft area, projected along the direction of motion, vrel the velocity of
the spacecraft relative to the atmosphere [18]. The torque is consequently given by

Tatmos = Fatmos (rcp − rCoM) (3)

2.2.3 J2 Force

Because of the oblate spheroid shape of the earth, which makes the radius at the
Earth’s equator 21 km larger than the earth’s radius around the poles, the rotation
of the earth causes J2 force, another dominant disturbance. The formula of J-2 force
is given by

TJ2 = −3µJ2R
2
0

2‖r‖4 r

(
1− 5r2

z

‖r‖

)
(4)

2.2.4 Solar Radiation

Solar radiation is a relatively small disturbance on the attitude of the satellite.
Because the photons in solar radiation travel at light speed, they have some mo-
mentum which they exert on other objects. This causes a increase in velocity [19].
The formula for solar radiation is as follows

Tsp = (1 + ρs)
S

c
A (rep − rCoM) (5)

where ρs is the reflecting factor, S is the solar constant, c is the speed of light, A is
the surface area and rcp is the location of the center of solar, and rCoM the center
of gravity [18].
The formula for the total disturbances is thus given by [18]

Td = Tgg + Tdrag + TJ2 + Tsp (6)

2.3 Quaternions
A quaternion is a rotational transformation of a rigid body about a normalized
rotating axis. Quaternions represent the attitude of a rigid body globally. Another
way of representing the attitude is with a rotational matrix using Euler angles.
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However, this method has a disadvantage, in that it has undesirable singular points,
which are in which the partial derivative is zero. This could be of harm to the
project, when the satellite makes certain angles which correspond to the singular
points. Consider the vector q = [a b c d]T , with a, b, and c as the vector part of
the quaternion, about which the rotations are performed, and d can as the scalar
part, that specifies the magnitude of rotations. The vector part of the quaternion
can then also be described by a rotation about the Euler eigenaxis e (e = [e1e2e3]T )
with the rotation angle theta θ ∈ R as follows

q = [q1 q2 q3 q4]T =
[
e1 sin θ2 e2 sin θ2 exp3 sin θ2 cos θ2

]T
(7)

Multiplying quaternions to a given vector is equivalent to rotating it, with the
following constraint always satisfied√

q2
1 + q2

2 + q2
3 + q2

4 = 1 (8)

Furthermore, for ω = [ω1 ω2 ω3]T ∈ R3, the angular velocity of the satellite, the
kinematic equation of a rigid body via a quaternion, where Ω(q) ∈ R4×3, is defined
as

d

dt


q1
q2
q3
q4

 = 1
2


q4 −q3 q2
q3 q4 −q1
−q2 q1 q4
−q1 −q2 −q3


ω1
ω2
ω3

 = 1
2Ω(q)

ω1
ω2
ω3

 (9)

which will be used later for definition in the port-Hamiltonian framework.
Moreover, the error quaternion can be calculated, by

qerror = Ω(qd)T ∗ q =


qd4q1 − qd3q2 + qd2q3 − qd1q4
qd3q1 + qd4q2 − qd1q3 − qd2q4
−qd2q1 + qd1q2 + qd4q3 − qd3q4
qd1q1 + qd2q2 + qd3q3 + qd4q4 − 1

 (10)

which will be used in the controllers that will be demonstrated.

2.4 port-Hamiltonian framework
The port-Hamiltonian framework provides an efficient tool to describe physical sys-
tems in an environment and the interactions between them [20]. It does so in
terms of their power ports, the energy variables and their interconnection struc-
ture. The transfer of energy between the physical system and the environment is
given via energy-dissipating elements, which Hamiltonian systems disregard [21], to-
gether with power preserving ports [20]. PH-systems are an extension of the classical
Hamiltonian equations and they are formed by the geometric notion of Dirac struc-
ture [21], which allow to describe dynamical systems with algebraic constraints [22]
that can be useful for the project, with the additional advantage that the PH method
preserves the PH structure for the closed-loop system [20] used in this project. The
general Hamiltonian system for a physical system is given by
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ẋ = (J(x, t)−R(x, t)) ∂H(x, t)T
∂x

+ g(x, t)u (11)

y = g(x, t)T ∂H(x, t)T
∂x

(12)

where u and y ∈ Rm, x ∈ Rn, where J is a skew symmetric matrix, which represents
the energy in the system. R is a symmetric semi-positive definite matrix in which
damping faced by the system is representedHis the total sum of kinetic and potential
energy of the physical system and g is the input matrix for the system [23].
To demonstrate the port-Hamiltonian framework, the example of a magnetic levi-
tation system is considered. Figure 2 resembles a simplified system of a magnetic
levitation system.

Figure 2: A magnetic Levitation System

The flux, generated by the current through the coil in the middle of the figure, closes
through space between the the coil and the iron ball. This air space has variable
reluctance and so the system tries to close it. This counteracts the downwards
motion caused by gravity force. [24] The equations of motion are

λ̇ = −ri+ u

mv̇ = Fm +mg

ẏ = v

where λ = L(y) is the linkage flux, r is the resistance of the coil, and Fm the magnetic
force, given by

Fm = ∂Wc

∂y

Wc = 1
2
∂L

∂y
i2
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is the magnetic co-energy L(y) is a function of the air gap, y. An approximation for
L, only for systems with a with small y is

L(y) = k

a+ y

with k a constant. The system can be expressed as a port-Hamiltonian system with
the state variables

x = [λ, p = mv, y]T

as Hamiltonian variables, and the Hamiltonian function given by

H(x) = 1
2k (a+ p)λ2 + 1

2mp2 −mgy

such that

ẋ =


0 0 0

0 0 −1
0 1 0


︸ ︷︷ ︸

J

−

r 0 0
0 0 0
0 0 0


︸ ︷︷ ︸

R


∂H

∂x
+

1
0
0


︸︷︷︸

g

u

y =
[
0 1 0

] [∂H
∂x

]
(13)

2.5 Modelling
The modelling of the non-linear controller will be done in MATLAB. The model uses
a trajectory for the desired values, and not a set point, implying that the desired
state values keep changing with respect to time. The error between the desired
trajectory and the current state therefore also changes with respect to time. The
schematic overview of the closed loop system that is applicable to the project, with
a non-linear control algorithm, is given in Fig. 3

Figure 3: the closed loop feedback system for attitude control used in MATLAB
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3 Problem Analysis

3.1 System description
In Figure. 3, the system of the project is shown. The red-dotted line represents
the technical sub-system that is the controller proposed in [14]. The blue dotted
line represents the scope of the project and the opportunity that is created when
integrating the dynamic extension for the Port-Hamiltonian system proposed by
[2] into the improved controller of [14]. Out of this integration, a novel trajectory
control system for the rigid body satellite could be developed. In Figure. 3, the
interrelation of the different stakeholders, that are outside the scope of this project,
with respect to the technical part of the project is also shown. As is also shown in
Figure. 3, the project will use quaternions to represent the attitude of the rigid body,
in combination with the Port-Hamiltonian framework, with a dynamic extension
provided by [2] for position based control. Thereafter, a passivity based control
strategy will be used to develop a novel controller for the rigid body attitude.

Figure 4: System description of the project and the scope of the research

3.2 Problem analysis
Small satellites are often subject to constraints with respect to energy and mass.
Therefore, equipping them with as less attitude sensors as possible is often seen as
a requirement [10]. Moreover, simultaneous use of all sensors is often impossible
because of operational limitations. A smaller amount of attitude sensors also means
a smaller amount of inputs in the ADCS. A controller with only one input, meaning
only one sensor, would therefore be an improvement for a satellite in orbit. Cur-
rently, the state of the art ADCS include both linear- and non-linear controllers.
Linear controllers have an estimation profile of which its linear nature is less accu-
rate than non-linear controller. If this profile were to be improved with a non-linear
controller, less energy would be consumed, and thus the satellite would be more effi-
cient. A non-linear controller could also provide a more accurate way of estimating
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the non-linear disturbances provided in the preliminaries. However, the non-linear
controllers addressed all rely on two or more inputs, meaning two or more sensors.
A clear and well-functioning non-linear controller is proposed in [4]. This paper uses
quaternions to represent the orientation, in combination with the port-Hamiltonian
framework. The desired trajectory is fed into a closed loop feedback system trans-
forming the port-Hamiltonian system in an error system that describes the behavior
of the tracking error of the original port-Hamiltonian system. In this paper, there is
a problem. A simulated environment is developed to test a controller, for which the
state variable r, the distance from the spacecraft to the centre of the earth, is said
to have a value of r = 1 [4]. This makes the simulation highly unrealistic. However,
when one simulates the attitude in matter of centimetres, and the distance to the
earth in kilometres, the controller will become unstable. Therefore, the system of
the satellite rigid body control problem is a fast-slow system, in which some state
variables are very slow e.g. large, and other state variables are very fast e.g. small
[7]. To prove proper functioning in real-life scenarios, this simulated environment
has to be enhanced to a realistic form. A second problem is also embedded in the
nature of the proposed controller of [4], being that it depends on both the angular
velocity w- and the position measurement of the rigid body. When the angular
velocity is required, not only is the satellite heavier and more energy-consuming
because of extra measurement tools, but also speed measurements create noise that
requires extra filtering- and estimation algorithms [6]. A non-linear controller that
uses only position measurements, by a dynamic extension of the Port-Hamiltonian
system used in [14], thus without speed measurement, is given in [4]. However, this
technique is applied to rigid joint robots, and not to ADCS of a satellite.

3.3 Problem statement
After a thorough problem analysis and system description, a clear idea of the prob-
lem statement is developed. The problem statement is given by

Small satellites are subject to energy- and mass constraints, demanding a minimum
of on-board sensors and weight. Currently, both linear- and non-linear algorithms
are often used for the control of rigid bodies in orbit. Linear controllers estimate
the disturbances gravity, atmospheric drag, J-2 and solar radiation, less accurate
than non-linear controllers, and are thus more energy consuming, making non-linear
controllers preferred. However, investigated non-linear controllers rely on multiple
input variables, causing the need for more measurement sensors and therefore more
energy consumption and mass on-board. Small satellite control is therefore in need
of a non-linear controller, controllable with only one input variable, tested in a
realistic environment to proof real-world application.

9
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4 Theoretical Background
To get greater sense of understanding of the controllers and frameworks that are
used, some mathematical background is required. What is important to get familiar
with, is the mathematics that translate the dynamical equations of the satellite into
the port-Hamiltonian framework, as this framework will also serve as the core frame-
work of which the transformation will lead to the non-linear controller. After first
introducing the translation from the dynamical equations to the port-Hamiltonian
framework, the operations that lead to the non-linear controller are presented.

4.1 Dynamical Equations to port-Hamiltonian framework
Similar to the previous example about the magnetic levitation system, the physical
system of the satellite can be summarized by four dynamical equations, given by

ṙ = −ω × r + v (14)

mv̇ +mω × v = f (15)
Iω̇ + ω × Iω = ρ× f + u (16)

q̇ = 1
2Ω(q)ω, (17)

where r = [r1 r2 r3]T ∈ R3 is the position, ω = [ω1 ω2 ω3]T ∈ R3 is the angular
velocity, v = [v1 v2 v3]T ∈ R3 is the tangential velocity, m ∈ R is the mass, f =
[f1 f2 f3]T ∈ R3 is the external force, I ∈ R3×3 denotes the inertia tensor, u =
[u1 u2 u3]T ∈ R3 is the external torque, and ρ = [ρ1 ρ2 ρ3]T ∈ R3 is the vector
from the center of mass to the action point. Moreover, we also define the angular
momentum and linear momentum, given by

p = Iω (18)
s = mv (19)

where p is defined as p = [p1 p2 p3]T ∈ R3 and s, is defined as s = [s1 s2 s3]T ∈ R3.

The state vector is then defined as x = [rT , qT , sT , pT ]T , which gives us

x =


r1
r2
...
p2
p3

 (20)

In (20), x is a vector consisting of 13 elements.
From the momenta, (18) and (19), the port-Hamiltonian is derived, which is equal
to the total energy, being the sum of the kinetic energy and potential energy. In
this case, no potential energy is present, which means

H(p, s) = 1
2p

T I−1p+ 1
2s

Tm−1s (21)

10
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Now, the partial derivative of H(p, s) is differentiated with respect to the previously
defined state vector x = [rT , qT , sT , pT ]T , which results in

∂H(p, s)
∂x

= [01×3 01×4
1
2s

T ((m−1)T +m−1) 1
2p

T ((I−1)T + I−1)] (22)

= [01×3 01×4 v ω], (23)

Next, the four dynamical equations of motion (14) - (17) can be rewritten in terms

of
∂H(p, s)
∂x

. Here, Ei×i ∈ Ri×i is defined as the identity matrix, 0i×j ∈ Ri×j is the
zero matrix of which its dimensions are given in the framework, and the ã, for a
vector ã = [a1 a2 a3] ∈ R3, stands for the cross multiplication matrix given by

ã =

 0 −a3 a2
a3 0 −a1
−a2 a1 0


The four equations of motion are now translated into the port-Hamiltonian frame-
work by

ṙ = −ω × r + v (14)

=

−r3w2 + r2w3 + s1m
−1

r3w1 − r1w3 + s2m
−1

−r2w1 + r1w2 + s3m
−1

 =

1 0 0
0 1 0
0 0 1


s1m

−1

s2m
−1

s3m
−1

+

 0 −r3 a2
r3 0 −r1
−r2 r1 0


w1
w2
w3



= E3×3
∂H(p, s)T

∂s
+ r̃

∂H(p, s)T
∂p

(24)

mv̇ +mω × v = f (15)

ṡ = mv̇ = f −mω × v =

f1
f2
f3

−m
ω2v3 − ω3v2
ω3v1 − ω1v3
ω1v2 − ω2v1

 = E3×3f −mw̃

v1
v2
v3



= E3×3f −mw̃
∂H(p, s)T

∂s
= −E3×3

∂H(p, s)T
∂r

+ E3×3f −mw̃
∂H(p, s)T

∂s
(25)

Iω̇ + ω × Iω = ρ× f + u (16)

ṗ = Iω̇ = ρ× f + u− ω × Iω =

ρ2f3 − ρ3f2
ρ3f1 − ρ1f3
ρ1f2 − ρ2f1

+

u1
u2
u3

− ω × p

11
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= −ρ̃f + E3×3u−

ω2p3 − ω3p2
ω3p1 − ω1p3
ω1p2 − ω2p1

 = ρ̃f + E3×3u+ p̃
∂H(p, s)T

∂p

= r̃
∂H(p, s)T

∂r
− Ω(q)T

2
∂H(p, s)T

∂q
+ p̃

∂H(p, s)T
∂p

+ ρ̃f + E3×3u (26)

q̇ = 1
2Ω(q)ω, (17)

q̇ = 1
2


q4 −q3 q2
q3 q4 −q1
−q2 q1 q4
−q1 −q2 −q3


ω1
ω2
ω3

 = 1
2Ω(q)∂H(p, s)T

∂p
(27)

Now, (24) - (27) can be captured in matrix form, leading to the Port-Hamiltonian
framework given by

ẋ =


ṙ
q̇
ṡ
ṗ

 =



03×3 03×4 E3×3 r̃

04×3 04×4 04×3
Ω(q)

2
−E3×3 03×4 −mω̃ 03×3

r̃ −Ω(q)T
2 03×3 ρ̃


∂H(p, s)T

∂x
+


03×3 03×3
04×3 04×3
E3×3 03×3
ρ̃ E3×3


[
f
u

]
(28)

y = g(p, s)T ∂H(p, s)T
∂x

=
[
03×3 04×3 E3×3 −ρ̃
03×3 04×3 03×3 E3×3

]
∂H(p, s)T

∂x
(29)

Now the system is of the form

ẋ = (J(x, t)−R(x, t)) ∂H(x, t)T
∂x

+ g(x, t)u (30)

y = g(x, t)T ∂H(x, t)T
∂x

(31)

From which the properties can be found in Chapter 2.4, In this port-Hamiltonian
framework, dissipation matrix R is not present, because no damping factors are
included yet.

4.2 Trajectory transformation
A crucial point both the non-linear controlled situation and the PD-controlled situa-
tion have in common, is that the scenario that is simulated is unrealistic. Therefore,
a solution and physical interpretation for the position vector for a realistic simulated
scenario is now presented, to be able to have a more valuable comparison between
the linear PD controller and the non-linear controller. To scale up the simulation
to realistic values, is fairly complex. This has to do with two factors; the first factor
that causes trouble when trying to implement a realistic scenario is the position
vector rd, is the current Cartesian coordinate system, which has to be changed to a

12



4.2 Trajectory transformation Satellite attitude control

spherical coordinate system. This is done by transformations given by [25] as shown
in section

x = rcos(φ)sin(θ)
y = rsin(φ)sin(θ)

z = rcos(θ)
(32)

To understand how the new trajectory for the realistic scenario was formed,
and also why a scale up of R0 in position vector v has effect on the velocity and
the acceleration of the system, first it is important to understand how the position
vector r is related to the velocity v and acceleration v̇. In [14], when choosing a
trajectory for r, the trajectories of r, v and v̇, are interconnected by

rd =

r
d
1
rd2
rd3

 =

costsint
1

 (33)

ṙd =

ṙ
d
1
ṙd2
ṙd3

 =

−sintcost
0

 (34)

vd = ṙd + ωd × rd (35)

=

ṙ
d
1
ṙd2
ṙd3

+

ω
d
2r
d
3 − ωd3rd2

ωd3r
d
1 − ωd1rd3

ωd1r
d
2 − ωd2rd1

 (36)

sin (t)
cos (t)

0

+ 1
4
√

3

 1− sin (t)
cos (t)− 1

sin (t)− cos (t)

 (37)

= + 1
4
√

3

 1− (1 + 4
√

3)sin (t)
−1 + (1 + 4

√
3)cos (t)

sin (t)− cos (t)

 (38)

v̇d =

v̇
d
1
v̇d2
v̇d3

 = 1
4
√

3

 (1 + 4
√

3)cos (t)
−(1 + 4

√
3)sin (t)

cos (t) + sin (t)

 (39)

And so, in the same way as the above trajectories are interconnected, for a trans-
formation from the unrealistic Cartesian coordinate system of [14], to a realistic
spherical coordinate system, the transformed trajectories become

rd = [R0cos(φ)sin(θ);R0sin(φ)sin(θ);R0cos(θ)] (40)

vd = (R0 ∗ π/phase)[((cos((θ)).2 − (sin((φ)).2);
2((cos((φ)sin(θ);−sin(θ)] + (R0/(4

√
3)))[cos(θ)− sin(φ)sin(θ);

cos(φ)sin(θ)− cos(θ); sin(θ)sin(φ)− cos(φ)sin(θ)] (41)

13



4.3 PD Controller Satellite attitude control

v̇d = (R0(π2)/(phase2))[−2cos(φ)sin(θ)2((cos(phi)).2)− 2(sin(θ).2)
− cos(θ)] + ((R0pi)/(4

√
3phase))[−2(cos(φ)sin(θ))− sin(φ)

(−((sin(φ)).2) + sin(θ) + (cos(φ)).2)((sin(θ)).2 + 2cos(φ).sin(θ)− (cos(φ)).2)]
(42)

where in addition the angular velocity ω and the quaternions q trajectory is kept
at the trajectory of [14] and thus remains unchanged. The desired position r, desired
velocity v and desired acceleration v̇ are now dependent on θ and φ, both given by

φ = θ = (tπ)/phase (43)

Note that since in this research, only a symmetrical spherical trajectory is used
and so θ and φ are identical.

4.3 PD Controller
A PD-controller, or a proportional derivative controller, is used as a first test con-
troller to see if the dynamics can be controlled to some degree. However, in order
to compare the both controllers later on in this thesis, this PD-controller will be
used for following a trajectory. For the satellite to be controlled entirely, both the
orientation (attitude) and the orbit need to be controlled [ref to paper of Mauricio].
the attitude PD controller will control the quaternions q and angular velocity ω,
while the orbital PD controller will control position vector r and tangential velocity
v. The attitude PD-controller has predefined gains that are tuned beforehand and
are given by Kp0.6 and Kd = 0.1. The formula is given by

u(t) = −Kpqerror −Kdω, (44)

with Kp being the gain of the proportional term, Kd as the derivative term and
qerror is the error quaternion, given by [26]

qerror =


qd4 −qd3 qd2
qd3 qd4 −qd1
−qd2 qd1 qd4
−qd1 −qd2 −qd3


T

q, (45)

for q = [q1 q2 q3 q4]T . Giving us the full formula for the PD controller by

u(t) = 0.6


qd4 −qd3 qd2
qd3 qd4 −qd1
−qd2 qd1 qd4
−qd1 −qd2 −qd3


T

(q − 0.1)I−1p, (46)

In which I is the inertia matrix, p is the angular momentum and gains Kp and Kd

are given by 0.6 and 0.1, respectively
The orbital PD controller is found in [27]. It is similar to the attitude PD controller
and its formula is given by

14



4.4 Non-Linear Controller Satellite attitude control

fr = −Kr(r −R0)︸ ︷︷ ︸
spring force

− DrM
−1p︸ ︷︷ ︸

damping force
(47)

After tuning the gains, they are given by Kr = 4 and Dt = 20.

4.4 Non-Linear Controller
The non-linear controller that is used, comes from [14] and developing it involves
three distinctive steps. These steps are now provided in detail, in order to gain a
good understanding of the mathematics behind the non-linear controller. The first
step in the development of the controller starts with the derivation port-Hamiltonian
system, in which the dynamics of the attitude of the satellite are captured. This is
further explained in section 5.1 and ends with the system given in the form

ẋ = (J(x, t)−R(x, t)) ∂H(x, t)T
∂x

+ g(x, t)u (28)

y = g(x, t)T ∂H(x, t)T
∂x

(31)

Thereafter, the port-Hamiltonian framework is transformed by a generalized canoni-
cal transformation to embed trajectory tracking. In other words, the port-Hamiltonian
system is changed to an error system, according to transformation given by

x̄ = Φ(x, t)
H̄ = H(x, t) + U(x, t)
ȳ = y + α(x, t)
ū = u+ β(x, t)

(48)

which transforms the system to the form
˙̄x =

(
J̄(x̄, t)− R̄(x̄, t)

) ∂H̄(x̄, t)T
∂x̄

+ ḡ(x̄, t)ū

ȳ = ḡ(x̄, t)T ∂H̄(x̄, t)T
∂x̄

(49)

In which the new states are given by x̄, the new Hamiltonian is given by H̄, the
new output is given by ȳ and the new input is given by ū. This described transfor-
mation has to satisfy a total of three lemmas. The underlying reasons of why these
three lemmas are essential for a working non-linear controller will be excluded here.
Alternatively, we will provide what these lemmas mathematically entail. Lemma 1
entails that

∂Φ
∂(x, t)

(J −R)∂U
∂x

T

+ (K − S)∂(H + U)
∂x

T

+ gβ

−1

 = 0 (50)

which means that we have to find U , β, α and Φ such that (50) holds. We will
assume that the found U , β, α and Φ in [14] are true and after defining them,
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4.4 Non-Linear Controller Satellite attitude control

continue directly with the mathematical operations that lead to the final controller.
To start, α is defined as

α(t) ≡ −yd(t) =



−(vd1 + ρ3ω
d
2 − ρ2ω

d
3)

−(vd2 + ρ1ω
d
3 − ρ3ω

d
1)

−(vd3 + ρ2ω
d
1 − ρ1ω

d
2)

−ωd1
−ωd2
−ωd3


(51)

Thereafter, U is defined as

U = −pTωd − sTvd + 1
2ω

dT Iωd + 1
2v

dTmvd (52)

However, Lemma 2 states that

(H + U)(x, t) ≥ (H + U)(xd(t), t) = 0 (53)
and if we recall (21), then (H + U) is then given by

(H + U) = 1
2p

T I−1p+ 1
2s

Tm−1s− pTωd − sTvd (54)

which contradicts Lemma 2. Therefore, we have to add another term to U , so that
Lemma 2 is satisfied, giving us

U = −pTωd − sTvd + 1
2ω

dT Iωd + 1
2v

dTmvd (55)

Now that we found U , α, β is defined as

β =



mω3v
d
2 −mω2v

d
3 −mv̇d1

mω1v
d
2 −mω3v

d
1 −mv̇d2

mω2v
d
1 −mω1v

d
2 −mv̇d3

β4
β5
β6


(56)

β4 = p2ω
d
3−p3ω

d
2+p3(mω1v

d
2−mω3v

d
1−mv̇d2)−p2(mω2v

d
1−mω1v

d
2−mv̇d3)−I11ω̇

d
1−I12ω̇

d
2−I13ω̇

d
3

β5 = p3ω
d
1−p1ω

d
3+p1(mω2v

d
1−mω1v

d
2−mv̇d3)−p3(mω3v

d
2−mω2v

d
3−mv̇d1)−I12ω̇

d
1−I22ω̇

d
2−I23ω̇

d
3

β6 = p1ω
d
2−p2ω

d
1+p2(mω3v

d
2−mω2v

d
3−mv̇d1)−p1mω1v

d
2−mω3v

d
1−mv̇d2)−I13ω̇

d
1−I23ω̇

d
2−I33ω̇

d
3

In addition, in (35) K and S are defined as

S = 0 (57)

K =


03×3 03×4 03×3 Kα

04×3 04×4 04×3 04×3
03×3 03×4 03×3 03×3
−KT

α 03×4 03×3 03×3

Kα =



0 ωd2
ω2 − ωd2

(r3 − rd3) ωd3
ω3 − ωd3

(r2 − rd2)
ωd1

ω1 − ωd1
(r3 − rd3) 0 ωd3

ω3 − ωd3
(r1 − rd1)

ωd1
ω1 − ωd1

(r2 − rd2) ωd2
ω2 − ωd2

(r1 − rd1) 0


(58)
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Now finally, the error system can be derived by solving (35), which then gives us

x̄ =


r̄
q̄
s̄
p̄

 =



r1 − rd1
r2 − rd2
r3 − rd3

qd4q1 − qd3q2 + qd2q3 − qd1q4
qd3q1 + qd4q2 − qd1q3 − qd2q4
−qd2q1 + qd1q2 + qd4q3 − qd3q4
qd1q1 + qd2q2 + qd3q3 + qd4q4 − 1

s1 − sd1
s2 − sd2
s3 − sd3
p1 − pd1
p2 − pd2
p3 − pd3



= Φ(x) (59)

Now the system is in the form
˙̄x =

(
J̄(x̄, t)− R̄(x̄, t)

) ∂H̄(x̄, t)T
∂x̄

+ ḡ(x̄, t)ū

ȳ = ḡ(x̄, t)T ∂H̄(x̄, t)T
∂x̄

(60)

where

ḡ = ∂Φ
∂x

g, J̄ = ∂Φ
∂x

(J +K)∂Φ
∂x

T

, R̄ = ∂Φ
∂x

(R + S)∂Φ
∂x

T

(61)

Now that the error system is defined, it is time to apply passivity based control to
guarantee asymptotic stability of error system, causing it to following trajectory.
However at this stage, H̄ is not positive definite [14], which is lemma 3 we need to
satisfy. Therefore, we will add a virtual potential function Ū so that the transformed
Hamiltonian Ĥ = H̄ + Ū will satisfy lemma 3 and thus is positive definite. Ū is a
function of (r̄, q̄), being both positive definite. Then, the transformed Hamiltonian
is given by

Ĥ = 1
2 p̄

T I−1p̄+ 1
2 s̄

Tm−1s̄+ Ū(r̄, q̄) (62)

which gives us the new system

˙̄x = J̄(x̄, t)∂Ĥ(x̄)T
∂

x̄+ ḡ(x̄, t)û (63a)

ŷ = ḡ(x̄, t)T ∂Ĥ(x̄)
∂x̄

(63b)

Now that we have the old transformed system equation (61) and the new system
equation (63), we can obtain the relation of the control inputs, which is given by
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4.4 Non-Linear Controller Satellite attitude control

ū = û− Ḡ−1J̄T12


∂Ū

∂r̄

T

∂Ū

∂q̄

T

 (64)

From which û is derived to be

û = −Cŷ = −Cḡ(x̄, t)T ∂Ĥ(x̄)T
∂x̄

= −C∂Φ
∂x


03×3 03×3
04×3 04×3
E3×3 03×3
ρ̃ E3×3


T 

k ∗ r̄
l ∗ q̄
v̄
ω̄

 (65)

where Ĥ = 1
2 p̄

T I−1p̄+ 1
2 s̄

Tm−1s̄+ Ū(r̄, q̄). Where Ū is defined to be

Ū(r̄, q̄) = 1
2(kr̄T r̄ + lq̄T q̄) (66)

and
∂Φ
∂(x) is defined to be

∂Φ
∂x

=


E3×3 03×4 03×3 03×3

04×3
∂Φ
∂q

04×3 04×3

03×3 03×4 E3×3 03×3
03×3 03×4 03×3 E3×3

 (67)

where

∂Φ
∂q

=


qd4 −qd3 qd2 −qd1
qd3 qd4 −qd1 −qd2
−qd2 qd1 qd4 −qd3
qd1 qd2 qd3 qd4

 (68)

Now it is time to solve for Ḡ−1, J̄T12 and


∂Ū

∂r̄

T

∂Ū

∂q̄

T


from (42). Consequently, Ḡ is found to be

Ḡ =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 −ρ3 ρ2 1 0 0
ρ3 0 −ρ1 0 1 0
−ρ2 ρ1 0 0 0 1


(69)

and J̄T12 is taken from the left bottom of matrix J̄ =
(
J̄11 J̄12
−J̄T12 J̄22

)
where J̄ =
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∂Φ
∂x

(J +K)∂Φ
∂x

T

and is given by

J̄ =


E3×3 03×4 03×3 03×3

04×3
∂Φ
∂q

04×3 04×3

03×3 03×4 E3×3 03×3
03×3 03×4 03×3 E3×3





03×3 03×4 E3×3 r̃ +Kα

04×3 04×4 04×3
Ω(q)

2
−E3×3 03×4 −mω̃ 03×3

r̃ −KT
α −Ω(q)T

2 03×3 ρ̃

 (70)


E3×3 03×4 03×3 03×3

04×3
∂Φ
∂q

04×3 04×3

03×3 03×4 E3×3 03×3
03×3 03×4 03×3 E3×3

 (71)

which gives us J̄12 as

J̄12 =

E3×3 r̃ +Kα

04×3
1
2Ω∂Φ

∂q

 (72)

in which Kα is given by

Kα =



0 ωd2
ω2 − ωd2

(r3 − rd3) ωd3
ω3 − ωd3

(r2 − rd2)
ωd1

ω1 − ωd1
(r3 − rd3) 0 ωd3

ω3 − ωd3
(r1 − rd1)

ωd1
ω1 − ωd1

(r2 − rd2) ωd2
ω2 − ωd2

(r1 − rd1) 0



Finally, col
[
∂Ū

∂r̄

T
∂Ū

∂q̄

T
]
is derived to be


∂Ū

∂r̄

T

∂Ū

∂q̄

T

 =
[
kr̄
lq̄

]
(73)

When we now combine everything by filling in (43), we obtain the final non-linear
controller as proposed by [14], which is given by

û = −C


E3×3 03×4 03×3 03×3

04×3
∂Φ
∂q

04×3 04×3

03×3 03×4 E3×3 03×3
03×3 03×4 03×3 E3×3




03×3 03×3
04×3 04×3
E3×3 03×3
ρ̃ E3×3

)T


k ∗ r̄
l ∗ q̄
v̄
ω̄

 =



v̄1 − ρ3ω̄2 + ρ2ω̄3
v̄2 − ρ3ω̄1 + ρ1ω̄3
v̄3 − ρ2ω̄1 + ρ1ω̄2

ω̄1
ω̄2
ω̄3


(74)
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ū = −C(



v̄1 − ρ3ω̄2 + ρ2ω̄3
v̄2 − ρ3ω̄1 + ρ1ω̄3
v̄3 − ρ2ω̄1 + ρ1ω̄2

ω̄1
ω̄2
ω̄3


−



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 −ρ3 ρ2 1 0 0
ρ3 0 −ρ1 0 1 0
−ρ2 ρ1 0 0 0 1



−1

 E3×3 03×4

r̃ +Kα
1
2Ω∂Φ

∂q

 [kr̄
lq̄

]

= −C



v̄1 − ρ3ω̄2 + ρ2ω̄3
v̄2 − ρ3ω̄1 + ρ1ω̄3
v̄3 − ρ2ω̄1 + ρ1ω̄2

ω̄1
ω̄2
ω̄3


−

 E3×3 03×4

(−ρ̃+ (r̃ +Kα))T (∂Φ
∂q

Ω)T

 [kr̄
lq̄

]
(75)

Finally, gains k, l are given in [14] as

k > m(M2

I3
+ M3

I2
+ M3

I1
+ M1

I3
+ M1

I2
+ M2

I1
) +
√

3
µ

( 1
I1

(N2 +N3) + 1
I2

(N3 +N1)

+ 1
I3

(N1 +N2)) + 2
√

3
µ

k(M1 +M2 +M3) + 1
µ
v(µ)TCv(µ)

l > 2mµ(M2

I3
+ M3

I2
+ M3

I1
+ M1

I3
+ M1

I2
+ M2

I1
) + 2

√
3( 1
I1

(N2 +N3) + 2
I2

(N3 +N1)

+ 2
I3

(N1 +N2)) + 4
√

3k(M1 +M2 +M3) + 2v(µ)TCv(µ)

µ > 2
√

3(M1 +M2 +M3)

where v(µ) = [√µ,√µ,√µ, 4
√

3, 4
√

3, 4
√

3]T
For simplicity, the gains are initially chosen to be k=25 and l= 45, after testing

multiple values in the simulated environment of [14].

20



Satellite attitude control

5 Results
Now that all preliminaries and the theoretical background are introduced, the sim-
ulations are run, which includes the system with disturbance Tgg as in (1) and with
PD orbital input control signal f as in (15). For structure, first the control of the
attitude with PD controller and the non-linear controller is presented in the non-
realistic scenario. For this scenario, the scenario provided by [14] is used. This way,
both controllers are tested and prove successful replication of the results of [14].
Thereafter the orbital control with both the PD- and the non-linear is provided in
the non-realistic environment given by [14]. Thereafter, the results of the simula-
tion in the realistic environment are provided. Initiated by background information
about the logic behind the realistic trajectories, the attitude control of the PD- and
the non-linear controller is again first provided, followed by the orbital control of
the PD- and the non-linear controller.

5.1 Attitude control of non-realistic scenario with PD-controller
The PD attitude control with control output u is given by eq. (34). The simulation
shows strong converging behaviour, which is proven by the error in every four di-
mensions of q of eq. (17) converges to a zero steady state error (Figure 5). Figure
6 shows that the angular velocity ω as found in (16) is indeed stabilized as it con-
verges to a steady state value of zero within a 5 sec time frame, which means that
the attitude remains constant.

Figure 5: The error with respect to the desired trajectory of the quaternions, controlled
by eq. (34). There can be clearly seen a steady state error as it converges to zero. However
it converges less fast and less accurate then the non-linear controlled system
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Figure 6: Angular velocity ω as found in (15) vs Time, where it can be clearly seen the
all dimensions of the angular velocity converge to zero, implying a steady state attitude.
This means that eq. (34) successfully controls the attitude

5.2 Attitude control of non-realistic scenario with non-linear
controller

The non-linear controller is a stronger controller, as can be read in section [4.4] by
looking at the gains of the final controller, that is expected to converge faster and
more accurate to the zero steady state error. Consequently, the quaternions show
proper trajectory following. However, the desired trajectory is not necessarily faster
than with the help of the PD controller. Nonetheless, the zero steady state error
the quaternion error q̄ converges too, is reached fast and accurately. It is proven by
(Figure 7). Moreover, the non-linear controller again shows very strong controlled
behaviour with respect to the angular velocity ω. The angular velocity ω converges
much faster then with the PD controller, namely under 1 second (Figure 8).
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Figure 7: The error with respect to the desired trajectory of the quaternions, with the
non-linear controller. There can be clearly seen a steady state error as it converges to
zero.

Figure 8: Angular Velocity vs Time. It can be clearly seen that all dimensions of angular
velocity ω converge to zero, meaning that the satellite undergoes a steady attitude.
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5.3 Orbital control with the PD controller in the non-realistic
environment

We also see fairly accurately controlled behaviour with respect to position vector r,
controlled by eq. (35). The three dimensions of r all seem to approach the desired
values of the position vector. Figure 9 proves that the errors do not have high values,
and start to converge to a zero steady state error. This means that the PD orbital
controller is able to follow trajectory of [14] with respect to the orbit of the satellite.
When the simulation is ran again with smaller time steps and adjusted gains, the
same outcome occurs. Moreover, the tangential velocity, as given by eq. (15) is
stable, following the trajectory of [14], depicted in Figure 10.

Figure 9: Error with respect to the position vector of the PD controller, controlled by
eq. (35)

.
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Figure 10: Tangential velocity v, as found in eq. (15) of the PD controlled trajectory of
the unrealistic simulation provided by [14]. This is a part of the full trajectory defined by
[14], and the velocity behaves accordingly.

.

5.4 Orbital control with the non-linear controller in the
non-realistic environment

Last, the non-linear controller given by eq. (63) is able to follow accurately the
desired trajectory of position vector r, which is depicted in (Figure 11), where, a
fast converged steady state error of the position vector r shows that the controller
is very accurate. Moreover, the dotted lines in (Figure 13) represent the desired
trajectory of the orbit of the satellite, which is approximated very accurately by
the non-linear controller trajectory. Summarized, the non-linear controller is able to
control both the orbit and the orientation in a accurate and fast converging nature.
In comparison with the PD-controller, the non-linear controller is both more accurate
and converges faster. Last, (Figure 12) shows that the non-linear controller is able
to successfully duplicate the results of [14].
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Figure 11: The error in position vector r vs Time with the non-linear controller. There
can be seen clear converging behaviour, as the steady state error goes to zero

Figure 12: Position Vector r vs Time t. The dotted lines represent the desired trajectory
of the position vector r, and the solid lines represent the controlled trajectory of the
position vector r. It can be seen that the lines coincide
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Figure 13: The velocity v as found in (15) of the non-linear controlled unrealistic simu-
lation, following the trajectory of [14]

5.5 Simulation in a realistic trajectory
After the transformation of rd, as shown in section [4.2], the development of a
realistic scenario requires the radius r to be given by R0 = Rearth+Rorbit = 6.5783e+
06m. Here lies the second complexity of the implementation of the realistic scenario.
The errors in the orbital control become very large, because when the position vector
r is scaled up with a magnitude of 10e6, so do the velocity and the acceleration.
The propagated time, however, stays the same. This causes a highly unrealistic
trajectory and velocity change very short time span, analogous of traveling multiple
times around the world in no less then 5 sec. Therefore, as the trajectory is scaled up
realistically with a factor of 106, the time elapsed is required to be scaled down with
the same magnitude, to keep a realistic velocity and acceleration. To show this, first
the results of the new realistic trajectories and the according transformations are
considered in section [4.2]. Thereafter, three simulations with both the PD-controller
and the non-linear controller provide clear inside into the physical interpretation of
the control of the developed realistic scenario.

Now that the new desired realistic trajectories are transformed, three simulations
are performed, summarized by Table 1.
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Simulation Controller Time Span Phase Gains
1 PD 20 s R0/pi Kp = 3, Kd = 0.5, Dt = 40, Kr = 16
1 Non-Linear 20 s R0/pi C = [90 90 90 10 10 10], k=(1e-12)*12, l=40
2 Non-Linear 10 s pi C = [90 90 90 10 10 10], k=(1e-12)*12, l=40
3 PD 10 s 180000/pi Kp = 3, Kd = 0.5, Dt = 40, Kr = 16
3 Non-Linear 10 s 180000/pi C = [90 90 90 10 10 10], k=(1e-12)*12, l=40

Table 1: Properties of the three different simulations conducted in the realistic simulation

To make clear that complications arise when the realistic trajectory is scaled up
according to R0, simulation 2 of Table 1 is conducted. What is apparent is that the
trajectory is followed, which is shown in figure 14. The dotted lines, resembling the
desired trajectory in every figure, and the full lines coincide, thus it seems that in
this simulation the non-linear controller is following trajectory. However, in figure
15, we still see a fairly large error that is not converging.

Figure 14: Plot of the r-vector in simulation 2 of Table 1 of the non-linear controller. The
trajectory itself is realistic, however the time span is highly unrealistic. Here the blue, red
and green line represent the x, y and z axis respectively. It must be noted that the dotted
and full lines coincide in this plot, showing that the trajectory is properly approximated,
even with the unrealistic time span
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Figure 15: The error in r-vector in simulation 2 of Table 2 of the non-linear controller.
Here the blue, red and green line represent the error in the x, y and z axis respectively.
The errors seem large, however when comparing them to the magnitude of the trajectory,
are relatively small. These large errors arise due to very large changes in r, v and v̇ that
are unrealistic.

The reason for the large errors depicted in 15, is the fact that the speed and the
acceleration are now highly unrealistic. For instance, the z-direction, depicted by the
green line, travels a distance of 14e10m in approximately 7 seconds. The speed and
acceleration required for this trajectory change, are highly unrealistic. Therefore, it
is clear that if r, v and v̇ are up scaled for a realistic simulation, the phase should be
down scaled accordingly, so that the time required for the trajectory also remains
realistic. The next step is thus shown in simulation 3, found in Table 1. Here, the
time t is scaled down by a phase of π/180000, as shown in Table 1. As can be seen
in the Appendix, the trajectory has changed drastically. This is because now only
a very small part of the trajectory has taken place in the elapsed time, compared
to simulation 2. What must be noted, is that the non-linear controller converges
faster and more accurately then the PD controller. When comparing Figure 16 and
Figure 17, it can also be concluded that the position error is much smaller in the
non-linear controlled simulation, then in the PD controlled situation.
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Figure 16: The error in r-vector in simulation 3 of Table 1 of the non-linear controller.
Here the blue, red and green line represent the error in the x, y and z axis respectively.

Figure 17: The error in r-vector in simulation 3 of Table 1 of the PD controller. Here
the blue, red and green line represent the error in the x, y and z axis respectively.

Moreover, Figure 18 and figure 19 show that the velocity is now behaving in
a realistic way both in the PD-controlled and non-linearly controlled simulation.
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Apart from its initial change staring from the initial conditions, the velocity has a
normal trajectory without unrealistic accelerations and behaves stable.

Figure 18: The velocity plot of simulation 3 of Table 1 of the PD controller. Here the
blue, red and green line represent the error in the x, y and z axis respectively.
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Figure 19: The velocity plot of simulation 3 of Table 1 of the non-linear controller. Here
the blue, red and green line represent the error in the x, y and z axis respectively.

Figure 20 shows that the attitude of the satellite is still controlled properly by
the PD controller, as is also the case with the non-linear controller.

Figure 20: The error in q-vector in simulation 3 of Table 1 of the PD controller. Here,
the blue, green, red and pink lines represent q1, q2, q3 and q4 respectively.
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Lastly, simulation 1, as can be found in Table 1, is the most realistic simulation.
The phase is scaled down with the same magnitude as orbital variables are scaled
up. This means that not only does this simulation follows a realistic trajectory, it
does so in the most realistic time, as can be seen in the Appendix, which shows that
the trajectory hardly changes in the elapsed time. The behaviour is fairly similar to
simulation 3, with Figure 21 and Figure 22 showing the same behaviour as Figure
17 and figure 16. However, this trajectory is more realistic. Since in 10 sec, only a
very small fraction of the total trajectory is completed.

Figure 21: The error in r-vector in simulation 1 of Table 1 of the PD controller. Here
the blue, red and green line represent the error in the x, y and z axis respectively.
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Figure 22: The error in r-vector in simulation 1 of Table 1 of the non-linear controller.
Here the blue, red and green line represent the error in the x, y and z axis respectively.
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6 Conclusion
To conclude, the PD controlled system shows strong controlled and converging be-
haviour with respect to the attitude, described by angular velocity ω and quaternions
q. The orbital control is fairly accurately controlled, and it seems that the trajec-
tory is only followed, and the error is converging to a zero steady state error. The
non-linear controller is also able to control the attitude and the orbit of both the
unrealistic and the realistic simulation. It shows better performance in orbital con-
trol for every scenario and better performance in the attitude control in the realistic
scenario. However, in the attitude control, the performance is not necessarily better.
This could be due to the fact that the non-linear controller with its higher gains,
is better suitable for larger, more realistic values. Overall, both controllers showed
proper results. The realistic transformed trajectory provided a logical and stable
trajectory and was thus transformed properly. To run the entire simulation takes
great computational power, as every time step is divided by a magnitude of 10e6.
For this reason, the total trajectory could not be plotted and interpreted. However,
this small fraction is already enough to conclude that both the non-linear and the PD
controller were able to control in a realistic simulated environment, as was a main
goal of this integration project. Both the PD- and the non-linear controller were
able to simulate the followed trajectory of [14] and perform properly in a developed
realistic environment.

6.1 Future Research
In further research, the simulation, in combination with the modelled dynamics,
should be run by a computationally powerful computer, able to plot the full trajec-
tory, to show and prove that indeed the complete orbital trajectory can be followed,
for both the attitude- and the orbital dynamics. To show that the computer must
have large computational force, Figure 22 must be noted in the Appendix. Last, the
project has not reached the stage of implementing the dynamical extension of [4]
into the model. This way, the non-linear controller would be able to control trajec-
tory with only input measurement as input. When implementing [4] into the model,
and computing the entire trajectory, very interesting results could be accomplished
in future research.
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7 Discussion
By looking at the research goal, there are certainly some factors that the research
project was not able to fulfill. Nonetheless, the results that are obtained tell us
a lot about attitude control. For starters, using a script for the modelling of the
dynamics of a typical satellite and the controllers has hopefully contributed to a
solid foundation for future research projects about attitude control. Moreover, the
collection and thorough explanation of all theoretical parts connected to attitude
and orbital control could provide a lay with a solid foundation to start working on
similar research projects. The controller of [14] is proven to be a powerful controller,
not only in theory, but also in practice. With proper results in a realistic scenario,
and a very thorough explanation of the involved mathematics behind it, this project
could possibly also enhance ones appreciation and understanding of [14]. On the
other hand, there are some important lacks in the research project. First of all, as
discussed before, the dynamical extension of [4] is not yet implemented in the model.
This could however have shown promising and interesting results and complete the
research goal. More detailed, in the attitude control for the realistic simulation, the
trajectory of the quaternions and the angular velocity is kept the same. However,
when we look at eq. (14), one can see that the angular velocity is dependent on
the tangential velocity. In this research, there is chosen to keep the angular velocity
ω constant. However, when we upscale r, ṙ and the acceleration v̇, a change in
the trajectory of the angular velocity ω and thus quaternion vector q might also
occur. When this would be investigated, the trajectory could possible become even
more realistic, and thus for future research this would be something that needs to
be further investigated. Also, in the inequality that hold for the gains of (63) of [4]
should be tested. If they hold, it could give good insight about the boundaries that
the gains for the developed controller should adhere.
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8 Appendix

Figure 23: Plot of the r-vector in simulation 3 of Table 1 of the PD controller. Here,
the blue, red and green line represent the x, y and z axis respectively. The dotted lines
represent the desired trajectory, and as can be seen the controlled measured trajectory
approximates the desired trajectory. It must be noted that the straight line do change
in this plot, however only a very small amount, as it is only a fraction of the full desired
trajectory due to the scaled down phase.
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Figure 24: Plot of the r-vector in simulation 3 of Table 1 of the non-linear controller.
Here, the blue, red and green line represent the x, y and z axis respectively. The dotted
lines represent the desired trajectory, and as can be seen the controlled measured trajectory
approximates the desired trajectory. It must be noted that the straight line do change
in this plot, however only a very small amount, as it is only a fraction of the full desired
trajectory due to the scaled down phase.
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Figure 25: Plot of the r-vector in simulation 1 of Table 1 of the PD controller. Here,
the blue, red and green line represent the x, y and z axis respectively. The dotted lines
represent the desired trajectory, and as can be seen the controlled measured trajectory
approximates the desired trajectory. It must be noted that the straight line do change in
this plot, however only a very small amount, as it is only a fraction of the full desired tra-
jectory due to the scaled down phase. The phase is scaled down with the same magnitude
of R0, making this the most realistic trajectory.
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Figure 26: Plot of the r-vector in simulation 1 of Table 1 of the non-linear controller.
Here, the blue, red and green line represent the x, y and z axis respectively. The dotted
lines represent the desired trajectory, and as can be seen the controlled measured tra-
jectory approximates the desired trajectory. It must be noted that the straight line do
change in this plot, however only a very small amount, as it is only a fraction of the full
desired trajectory due to the scaled down phase. The phase is scaled down with the same
magnitude of R0, making this the most realistic trajectory.

42



Satellite attitude control

Figure 27: The plot of the r-vector in a simulation of a time span of 200 sec of the
non-linear controller. Here the blue, red and green line represent the error in the x, y
and z axis respectively. This shows the simulation of a time span of ten times more then
simulation 1 of Table 1. It shows that even in 200 sec, the trajectory of r makes no
noticeable fluctuations and so to see significant change, it has to run for a time span in
the same order of R0.
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