
Efficient and secure elliptic curves

Abstract

In this paper, we study various factors that affect the efficiency of elliptic curve cryp-

tosystems for fixed security levels of 128, 192 and 256 bits of security, with a focus

on elliptic curves over finite fields Fp with p elements, where p is a prime number.

Since elliptic curve cryptography involves many algebraic operations over the field Fp,

it is important to choose p for which modular arithmetic is relatively efficient. The

most important factor regarding efficiency is the model of the curve. Group operations

such as addition, inversion, and doubling are more effective in some models. We in-

troduce the Weierstrass model, the (twisted) Edwards model, the Montgomery model

and the Hessian model. We then compare their cryptographic efficiency and security.

We mainly focus on the 2016 paper of Bos, Costello, Longa and Naehrig, in which the

authors present efficient and secure elliptic curve families for each model. After this

analysis, we present explicit examples of elliptic curves suitable for cryptography, in

terms of efficiency and security.
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Notation

Fp a field with p elements where p is prime

Fq a field with q elements

F×
q the multiplicative group of Fq

K an algebraic closure of a field K

O(g(x)) a function bounded by Mg(x) for a constant M > 0 and all x sufficiently large

o(g(x)) a function bounded by Mg(x) for all constants M > 0 and all x sufficiently large

Ln[a, b] the function exp((b+ o(1))(lnn)a(ln lnn)1−a) for 0 ≤ a ≤ 1 and b > 0



1 Introduction

We begin with a short historical background of modern public-key cryptography. Before
public-key cryptography, methods of encryption were constrained to private-key crypto-
graphic methods in which distinct parties were required to exchange some predetermined
secret key through insecure means, be that through in-person meetings or courier pigeons.
Already, the logistic burden of private-key methods is evident. With this in mind, many
attempted to develop methods of producing a shared secret key over a public channel. The
first hint of this was in 1874 when William Jevons published The Principles of Science in
which he wrote:

“Can the reader say what two numbers multiplied together will produce the number
8616460799? I think it unlikely that anyone but myself will ever know.”[1, p. 141]

To William’s dismay, even a poorly optimised implementation of Lenstra’s elliptic curve
factorisation algorithm yields

8616460799 = 89681 · 96079.

Nevertheless, it is impressive that Jevons proposed the problem whose difficulty ensures
the security of what would, almost a century later, become one of the most well-known
methods of public-key cryptography: i.e. the RSA cryptosystem [2], which was published
in 1973, whose security relies on the difficulty of integer factorisation.

Only a year preceding the release of the RSA cryptosystem, another method of public-
key cryptography was introduced, which is now known as the Diffie-Hellman key exchange
protocol [3]. Though both the RSA cryptosystem and Diffie-Hellman key exchange protocol
are methods of securely exchanging secret keys over public channels, they have notable and
important differences. As already mentioned, the security of the former is reliant on the
difficulty of integer factorisation, an easily posed problem with currently no easy solution.
With the rapid improvement of hardware on which one may perform integer factorisation,
as well as the rapid development of quantum computing, the RSA cryptosystem has fallen
out of favour over the previous few decades, with the Diffie-Hellman key exchange protocol
taking its place. This is in part due to the problem on which the security of the latter
relies, that of computing discrete logarithms. There is no good reason to believe that the
discrete logarithm problem is one whose potential weaknesses will be made clear in the
near future.

The Diffie-Hellman key exchange protocol makes use of computing integer multiples (or
integer exponents if the group in question is multiplicative) in a cyclic group (G,+, 0). One
should take G such that computing integer multiples are efficient. As for the security of
performing the Diffie-Hellman key exchange protocol, one would ideally choose G such that
the discrete logarithm problem in G is difficult to solve: i.e. given P and Q = [k]P , one
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should not be able to find the smallest positive integer k satisfying this equality easily. To
satisfy both criteria, one might earlier have looked to the multiplicative group of integers
modulo some prime p but with the development of the index calculus algorithm and its
adaptations, this is not advised. Convenient alternatives are groups determined by elliptic
curves over finite fields.

Why elliptic curves?

To convince someone that they should consider elliptic curves over finite fields for the Diffie-
Hellman key exchange protocol, one should present both efficient methods of computing
integer multiples in elliptic curve groups and should be able to show that the discrete
logarithm problem in elliptic curve groups is sufficiently difficult to solve, which is precisely
what will be considered in this paper.

Elliptic curves over finite fields have other uses. For example in the Lenstra elliptic curve
factorisation method [4], a sub-exponential running time integer factorisation algorithm,
or in primality testing algorithms such as the Atkin-Morain elliptic curve primality test
algorithm [5].

Outlook

We begin with a list of preliminaries of projective geometry, required to introduce elliptic
curves in sufficient detail. Then, the chord-tangent law is applied to elliptic curves in order
to derive the elliptic curve addition law, which in turn will act as the group law. Integer
multiplication in elliptic curve groups is then considered, with some efficient methods for
computing such integer multiples in a general elliptic curve group. The underlying group
structure is then treated, including bounds on the group order and some isomorphism
relations. We detail the Diffie-Hellman key exchange protocol over elliptic curve groups
and the difficulty of solving the discrete logarithm problem in such groups. Methods
of securely computing large integer multiples are discussed with a particular interest in
omitting vulnerabilities to side-channel attacks. After this, well known elliptic curve models
are considered, with an analysis of the efficiency of algorithms for addition on elliptic curves
in such models, along with the security of posing the discrete logarithm problem. We
conclude by constructing elliptic curves in the Weierstrass model that attain 32, 64 and 96
bits of security along with an explanation the construction process.

2 Preliminaries

To provide a sufficiently detailed introduction to elliptic curves, we must first discuss the
relevant preliminary theory. We begin by defining two-dimensional affine space and then
two-dimensional projective space, on which we embed elliptic curves.
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2.1 The two-dimensional affine and projective spaces

Definition 2.1. The two-dimensional affine space A2(K) over a field K is the set of all
tuples in K×K, i.e.

A2(K) = {(x, y) : x, y ∈ K}.

Definition 2.2. The two-dimensional projective space P2(K) over a field K is the set of
equivalence classes of K3\{(0, 0, 0)} under the equivalence relation ∼ where
(x1, y1, z1) ∼ (x2, y2, z2) if and only if there exists a non-zero scalar λ ∈ K such that
(x1, y1, z1) = (λx2, λy2, λz2).

The equivalence class of a tuple (x, y, z) ∈ K3\{(0, 0, 0)} is the projective point (x :
y : z) ∈ P2(K). In A2(K) lines intersect at a unique point if and only if they are not
parallel. The construction of P2(K) helps to ensure that parallel lines in projective space
intersect at a unique point. Embedding A2(K) in P2(K) can be done by mapping each
affine point (x, y) ∈ A2(K) to the projective point (x : y : 1) ∈ P2(K). Projective points
of the form (x : y : 0) can be thought of as points at infinity, forming a line at infinity given
by the equation z = 0, which all lines in P2(K) intersect. The notion of points at infinity
will prove useful later on when we consider elliptic curve group structure. With this in
mind, P2(K) can be thought of as A2(K) along with the line at infinity. Though affine
coordinates provide an advantage in their intuitive interpretation, there are computational
processes where the use of projective coordinates proves to be more efficient [6].

2.2 Projective curves

Definition 2.3. Given a field K a non-constant polynomial F (x1, . . . , xn) ∈ K[x1, . . . , xn]
is homogeneous of degree d if the sum of the exponents of each monomial of F (x1, . . . , xn)
is d.

Note that for a homogeneous polynomial in three variables F = F (x, y, z) of degree d
we necessarily have F (λx, λy, λz) = λdF (x, y, z) for all λ ∈ K. A convenient consequence
of this is that if (x1, y1, z1) ∼ (x2, y2, z2) then (x1, y1, z1) is a zero of F if and only if
(x2, y2, z2) is a zero of F .

Definition 2.4. A projective curve C over a field K is the set of zeros in P2(K) of a
non-constant homogeneous polynomial in three variables F (x, y, z) ∈ K[x, y, z] whose set
of K-rational points on C is given by

C(K) := {(x : y : z) ∈ P2(K) : F (x, y, z) = 0},

where F (x, y, z) is irreducible over K.

Notation 2.1. For the remainder of this paper, we write C/K to denote a projective curve
C given by a polynomial whose coefficients are in a field K.
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Another property we are required to discuss before introducing elliptic curves is that
of singular points of projective curves.

Definition 2.5. For a field K a singular point on a projective curve C/K : F (x, y, z) = 0
is a point P = (x : y : z) ∈ C(K) at which

∂F

∂x
(P ) =

∂F

∂y
(P ) =

∂F

∂z
(P ) = 0,

where ∂
∂xx

n = nxn−1 for all n ∈ Z and the usual rules of derivatives apply. We call a
projective curve C/K : F (x, y, z) = 0 non-singular if its set of K-rational points contains
no singular points, otherwise we call C/K singular.

A consequence of the property non-singularity is that the polynomial F (x, y, z) of degree
d, by which a non-singular projective curve C over a field K is given, necessarily has d
distinct zeros in K.

Example 2.1. For a field K the projective curve C/K given by

F (x, y, z) = x3 − y2z

has a singular point at (0 : 0 : 1). Since (0 : 0 : 1) is K-rational we have that C/K is
singular.

Example 2.2. A Montgomery curve MA,B is a projective curve over a field K given by

F (x, y, z) = x3 +Ax2z + xz2 −By2z

where A,B ∈ K such that B(A2−4) 6= 0. After computing the necessary partial derivatives,
it is clear that MA,B/K is non-singular.

2.3 Birational equivalence

With the introduction of projective curves in place, we can now consider an important
notion of ‘equivalent’ projective curves: birationally equivalent projective curves.

Definition 2.6. Projective curves C1/K and C2/K over a field K are birationally equiv-
alent if there exists a rational map ψ : C1(K) → C2(K) defined at all but finitely many
points in C1(K) such that an inverse rational map ψ−1 : C2(K)→ C1(K) exists defined at
all but finitely many points in C2(K). Such a map ψ is referred to as a birational map.

It is not immediately clear from the definition, nor even the explicit form of a given
birational map, but birational maps preserve the underlying structure of a projective curve.
As such, we think of birationally equivalent projective curves C1/K and C2/K as, in a sense,
the same. We will see later on that birational maps come in handy when comparing the
efficiency of arithmetic on birationally equivalent elliptic curves.
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Example 2.3. Given a Montgomery curve MA,B/K over a field K given by

By2 = x3 +Ax2 + x,

the map

ψ : (x, y) 7→
(
x

y
,
x− 1

x+ 1

)
= (X,Y )

defines a birational map MA,B → ξa,d, with change of coefficients a = A+2
B and d = A−2

B ,
where ξa,d is the (twisted) Edwards curve given by

aX2 + Y 2 = 1 + dX2Y 2,

with inverse map ξa,d →MA,B given by

ψ−1 : (X,Y ) 7→
(

1 + Y

1− Y ,
1

X
· 1 + Y

1− Y

)
= (x, y).

As such, any Montgomery curve is birationally equivalent to a (twisted) Edwards curve,
and vice versa.

2.4 Elliptic curves

Now that the preliminary theory is in place, we are able to provide a suitably detailed
definition of an elliptic curve.

Definition 2.7. Up to birational equivalence, an elliptic curve E/K is a non-singular
projective curve over a field K of genus 1 with a fixed base point O ∈ E(K).

Remark 2.1. The genus g of a projective curve C/K over a field K defined by a polynomial
of degree d is given by the genus-degree formula

g =
1

2
(d− 1)(d− 2)− s

where s is the number of singularities of C/K.

A more detailed explanation of the genus of a projective curve can be found in [7,
p. 67-86].

Example 2.4. Montgomery curves, discussed in Example 2.2, have degree 3 and no sin-
gular points and so their genus is 1, according to the genus-degree formula. We see that a
Montgomery curve, with the fixed base point OM = (0 : 1 : 0), is an elliptic curve.

A common misconception of elliptic curves is that they are necessarily given by poly-
nomials of degree 3, but this is not always the case; for example (twisted) Edwards curves
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which are discussed in Section 7.3. Such a misconception can be accredited to the following
theorem.

Theorem 2.1. An elliptic curve E1/K over a field K is birationally equivalent to an
elliptic curve E2/K over K given by a long Weierstrass equation

y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3

for a1, a2, a3, a4, a6 ∈ K with base point O = (0 : 1 : 0).

Proof. Consider Proposition III.3.3 of [8].

The motivation behind the base point O = (0 : 1 : 0) is as follows. For an elliptic
curve E/K over a field K, a projective point (x : y : z) ∈ E(K) with z 6= 0 can be
‘dehomogonized’ to obtain an affine point (x/z, y/z) ∈ A2(K). The set of all such points
can be thought of as the ‘affine part’ of E(K). The only points on E(K) that remain
are of the form (x : y : 0) with x and y not both zero, which lie on the line at infinity.
Substituting any point on the line at infinity into a long Weierstrass equation yields x3 = 0
and so x = 0. Since the curve intersects the line at infinity at three points, all of which are
the same, we have only one point at infinity. As such, the only point that we are unable
to ‘dehomogenize’ is (0 : y : 0) = (0 : 1 : 0). This point is clearly K-rational and a brief
calculation shows that it is non-singular, and so O = (0 : 1 : 0) ∈ E(K).

Remark 2.2. For an elliptic curve E/K : F (x, y, z) = 0 over a field K we write E(K) in
affine form as

E(K) := {(x, y) ∈ A2(K) : f(x, y) = 0} ∪ {O}
where f(x, y) = F (x, y, 1) for all projective points (x : y : z) with z 6= 0.

For this paper, it is enough to consider only the affine form of the equation by which
an elliptic curve is given. As such, we write a long Weierstrass equation in affine form as

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

with a1, a2, a3, a4, a6 ∈ K, and O = (0 : 1 : 0) left implicitly defined.
A consequence of the property of non-singularity of elliptic curves is that any elliptic

curve E/K over a field K given by y2 + a1xy + a3y = x3 + a2x
2 + a4x + a6 has non-zero

discriminant given by
∆E := −b22b8 − 8b34 − 27b26 + 9b2b4b6,

where b2 = a21+4a2, b4 = 2a4+a1a3, b6 = a23+4a6 and b8 = a21a6+4a2a6−a1a3a4+a2a
2
3−a24.

For a field K of characteristic 2, the shortest form the equation by which an elliptic curve
E/K is given can take is as in Theorem 2.1. Fortunately, over a field K of characteristic
not 2, an elliptic curve E1/K is birationally equivalent to an elliptic curve E2/K given by
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an equation consisting of fewer terms than that in Theorem 2.1, eliminating the need for
the a1xy and a3y terms.

Lemma 2.1. An elliptic curve E1/K over a field K of characteristic not 2 given by

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

is birationally equivalent to an elliptic E2/K given by

Y 2 = X3 +AX2 +BX + C

with A,B,C ∈ K.

Proof. Adding an additional term to both sides and completing the square yields the desired
result, as shown in [9, p. 10].

For a field K of characteristic not 2 or 3, an elliptic curve E/K is birationally equivalent
to an elliptic curve EA,B/K given by an equation consisting of fewer terms than in Lemma
2.1, eliminating the need for the aX2 term.

Lemma 2.2. An elliptic curve E/K over a field K of characteristic not 2 or 3 given by

Y 2 = X3 +AX2 +BX + C

is birationally equivalent to an elliptic curve Ea,b/K given by a short Weierstrass equation

y2 = x3 + ax+ b

with a, b ∈ K.

Proof. Consider [9, p. 10].

As might be expected, the number of terms in the discriminant of an elliptic curve
given by a short Weierstrass equation, E/K : y2 = x3 + ax + b, reduces heavily, yielding
only two terms and is given by

∆EA,B
:= 4a3 + 27b2.

The importance of this expression is made clear when considering j-invariants of an
elliptic curves given by a short Weierstrass equation.

Remark 2.3. Strictly speaking, the discriminant includes an additional factor and is of
the form −16(4a3 + 27b2), but since the field over which an elliptic curve given by a short
Weierstrass equation is taken is of characteristic not 2 or 3 we see that the inclusion of
this factor has no effect on whether or not the discriminant is non-zero (and so whether
or not E/K is non-singular), so it is usually left unwritten.

7



2.5 Elliptic curve group structure

Before describing elliptic curve group structure we discuss the geometric interpretation of
elliptic curve addition, a process in which we take two points on an elliptic curve to produce
a third point on the curve, which in turn is the elliptic curve group law. We then derive
explicit formulae for elliptic curve addition on an elliptic curve given by a long Weierstrass
equation.

The chord-tangent law

Historically, given a projective curve C/K over a field K, it has been of interest to try to
find a way of using known K-rational points P and Q to find additional K-rational points
in C(K). To do this, Bézout’s theorem for plane curves is utilised.

Theorem 2.2. If C1/K and C2/K are projective curves over a field K given by polynomials
of degrees d1 and d2 respectively, which do not have a common ‘sub-curve’, then the number
of intersections of C1/K and C2/K is d1d2.

Proof. Consider [10].

With Bézout’s theorem in mind, given K-rational points P and Q on an elliptic curve
E/K over a field K, a line L1 through P and Q must intersect E(K) at a third, not
necessarily distinct, point R. If P = Q then L1 is taken to be the line tangent to E at
P . Otherwise L1 is the necessarily unique line passing through the distinct points P and
Q. In either case, L1 intersects E(K) at P , Q and a third point R. Using this third point
R we construct the line L2 through R and O which intersects E(K) at R, O and a third
point S.

L1

L2

P

Q

R

P +Q

O
L1

L2

P

R

P + P

O

L1

L2

P

Q

R = O P +Q = O

From here Elliptic curve addition, which we denote by +, can be defined as follows.
Given K-rational points P and Q, along with the third point of intersection R of the line
L1 we require that

P +Q+R = O,
i.e. we require that the line passing through P , Q and R intersects E(K) precisely these
three points and O. As such, the third intersection S of the line L2 through R and O is
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precisely the sum P +Q. Note that if R = O then L2 is the line at infinity from O to itself
which will only intersect E(K) at O and so P +Q = O. Otherwise R = (x, y) is an affine
point and P +Q = −R is also affine.

Explicit formulae for elliptic curve addition

For an elliptic curve E/K over a field K given by

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, (1)

let P and Q be K-rational points on E. In order to derive explicit formulae for the sum
P + Q in E(K), we first discuss the third intersection S = −R of the line L2 through a
K-rational point R and O.

If R = O then L2 is the line at infinity and so the third point of intersection is simply
−R = O. Otherwise R = (x1, y1) and −R = (x2, y2) are affine and the line L2 through R
and O is given by x = x1 which we substitute into (1) to obtain

y2 + (a1x1 + a3)y + (−x31 − a2x21 − a4x1 − a6) = 0. (2)

Since y1 and y2 are roots of (2), Vieta’s formulae yield

y2 = −y1 − a1x1 − a3.

Hence, the third point of intersection of L2 in E(K) is given by −R = (x2, y2) where

x2 = x1

y2 = −y1 − a1x1 − a3.

From here we can easily derive a formula for P + Q with P 6= Q. The case P = O is
detailed precisely above, and so, without further explanation, we have P + Q = Q. A
similar argument is made for the case Q = O which yields P +Q = P .

If P = (x1, y1) and Q = (x2, y2) are affine and x1 = x2 then the intersections in E(K)
of the line L1 through P and Q are P , Q and R = O. In this case the line L2 through R
and O is the line at infinity and so P + Q = O. Otherwise P = (x1, y1) and Q = (x2, y2)
are affine and x1 6= x2 then the line L1 through both points is given by

y = λ(x− x1) + y1 (3)

where λ = (y2− y1)(x2− x1)−1. To find the third point of intersection R = (x3, y3) on L1,
we substitute (3) into (1) to obtain

(λ(x− x1) + y1)
2 + (a1x+ a3)(λ(x− x1) + y1) = x3 + a2x

2 + a4x+ a6. (4)
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Since x1, x2 and x3 are roots of (4), Vieta’s formulae yield

x3 = λ2 − x1 − x2 + a1λ− a2

and so
y3 = λ(x3 − x1) + y1.

Finally, the line L2 through R = (x3, y3) and O intersects E(K) at R, O and
P +Q = (x3, y3) where

x3 = λ2 − x1 − x2 + a1λ− a2
y3 = λ(x1 − x3)− y1 − a1x3 − a3,

by Bézout’s theorem.
We now consider the case P = Q in which computing the sum P +Q = P + P can be

thought of as doubling P . If P = Q = O then drawing any line through P and O yields
the line at infinity and so P + Q = O. If P = Q = (x1, y1) is affine then the line L1 is
taken to be the line tangent to E(K) at P given by

y = λ(x− x1) + y1 (5)

where

λ = (∂F/∂x)(∂F/∂y)−1 = (3x3 + 2a2x+ a4 − a1y)(2y + a1x+ a3)
−1.

Upon substituting (5) into (1) we once again have

(λ(x− x1) + y1)
2 + (a1x+ a3)(λ(x− x1) + y1) = x3 + a2x

2 + a4x+ a6. (6)

Since x1 is a double root and x3 is a root of (6), Vieta’s formulae yield

x3 = λ2 − 2x1 + a1λ− a2

and so
y3 = λ(x3 − x1) + y1.

Finally, the line L2 through R = (x3, y3) and O intersects E(K) at R, O and
P +Q = (x3, y3) where

x3 = λ2 − 2x1 + a1λ− a2
y3 = λ(x1 − x3)− y1 − a1x3 − a3,

by Bézout’s theorem.
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We summarise the formulae for elliptic curve addition on elliptic curves given by a long
Weierstrass equation in affine coordinates in Algorithm 1.

Algorithm 1: Addition in (E(K),+,O), in affine coordinates where
E/K : y2 + a1xy + a3y = x3 + a2x

2 + a4x+ a6.

Input: P,Q ∈ E(K) such that P = (x1, y1) and Q = (x2, y2).
Output: P +Q ∈ E(K).

1 if P = Q then
2 if P = O or y1 = 0 then
3 return O
4 λ← (3x21 + 2a2x1 − a1y1 + a4)(2y1 + a1x1 + a3)

−1 // this step invokes the

extended Euclidean algorithm

5 x3 ← λ2 − 2x1 + a1λ− a2
6 y3 ← λ(x1 − x3)− y1 − a1x3 − a3
7 return (x3, y3)

8 else
9 if P = O then

10 return Q

11 if Q = O then
12 return P

13 if x1 = x2 then
14 return O
15 λ← (y2 − y1)(x2 − x1)−1 // this step invokes the extended Euclidean algorithm

16 x3 ← λ2 − x1 − x2 + a1λ− a2
17 y3 ← λ(x1 − x3)− y1 − a1x3 − a3
18 return (x3, y3)

Remark 2.4. For an elliptic curve E/K over a field K and points P,Q ∈ E(K), we
will refer to the act of computing P + P as point doubling and computing P +Q as point
addition.

Example 2.5. Consider the elliptic curve E/F1447 : y2 = x3 + 748x + 255 and points
P = (217, 981) and Q = (1335, 405). It is easily verified that P,Q ∈ E(F1447) and easily
seen that P 6= Q and 217 6= 1335, so by Algorithm 1 we begin by computing

λ = (405− 981)(1335− 217)−1 = 871 · 1118−1 = 1330.

From here we are able to directly compute the coordinates of P +Q as

x3 = 13302 − 217− 1335 + 0 · 1330− 0 = 561

y3 = 1330(217− 561)− 981− 0 · 561− 0 = 198
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and so P +Q = (561, 198).

Lemma 2.3. Given an elliptic curve E/K over a field K, (E(K),+,O) is an abelian
group.

Proof. Let E/K be an elliptic curve over a field K given by

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Commutativity of elliptic curve addition in E(K) is immediately clear from its geometric
interpretation and associativity can be proven both geometrically [11, chapter 2] and alge-
braically [12], but such a proof is rather exhaustive and so is left unwritten. Note then that
O is the additive identity in E(K) which is clear from both the geometric interpretation as
well as Algorithm 1. Finally, we see that O is its own additive inverse by Algorithm 1 and
that the additive inverse −P of an affine point P ∈ E(K) is given by the third intersection
of the line L2 through P and O which resides in E(K) by Bézout’s theorem.

Remark 2.5. Given an elliptic curve E/K over a field K,

E(K) ⊂ E(K)

is a subgroup. This can be seen directly from the elliptic curve addition formulae in which
all operations are made over K and that, by Vieta’s formulae, if a polynomial of degree 3
has two K-rational roots then its third root is also K-rational.

3 Elliptic curves over finite fields

One might question why in cryptography we only consider elliptic curves over Fq as opposed
to other extensively studied fields. A disadvantage of elliptic curves over fields such as Q,
R and C is precision. It is well known that representing real or complex numbers can
result in problems with floating point precision and memory limitations, causing rounding
errors, which is naturally inappropriate for cryptography. The latter renders elliptic curve
addition for elliptic curves over such fields impractical. After only a few additions the
number of bits required to store the numerators and denominators of the coordinates of
such points is far too high. In contrast, working over Fq is ‘clean’ in the sense that the
number of bits required to store points is known precisely and properties of the underlying
group itself, such as the order of elements and the group order, are far easier to analyse.
Not only that, but arithmetic in Fq is far faster than arithmetic in Q, R or C.

As for which finite fields are appropriate for cryptographic purpose, historically, a
mixture of binary fields F2m and prime fields Fp have been used. Recently though, binary
fields have fallen out of favour after progress was made in solving the discrete logarithm
problem on elliptic curves over such fields. As such, for simplicity, we will only consider
elliptic curves E/Fp over fields of prime order.
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3.1 Integer multiplication

Before discussing properties pertaining to the structure of E(Fp) for an elliptic curve E/Fp,
we briefly discuss efficient methods of computing large integer multiples of points in E(Fp).

Definition 3.1. If E/Fp is an elliptic curve and P ∈ E(Fp) then, for a non-negative
integer n, the integer multiple [n]P of P is the sum of P and itself n-many times, i.e.

[n]P = P + · · ·+ P︸ ︷︷ ︸
n-many times

and the empty sum is simply [0]P = O.

To compute such a sum, one could consider manually taking the sum of P and itself
n-many times using Algorithm 1. If n is relatively large then such an approach is naive,
as the computational costs grow to unfeasible amounts. Fortunately, there are far faster
methods for integer multiplication, such as the binary method in which we write n using
its binary representation as

n = n0 + 2n1 + 22n2 + · · ·+ 2rnr

with ni ∈ {0, 1} for i = 0, . . . , r and compute [n]P as

[n]P = [n0]P + [2n1]P + [22n2]P + · · ·+ [2rnr]P.

Example 3.1. Consider an elliptic curve E/Fp and let P ∈ E(Fp). Suppose that we would
like to compute [62]P . The binary representation of 62 is (1, 1, 1, 1, 1, 0)2 and so computing

[62]P = [25]P + [24]P + [23]P + [22]P + [2]P

using the binary method requires only 5 point doublings and 4 point additions, as opposed
to 61 point additions had we computed the sum naively.

In practice, the binary method requires dlog2(n)e = r point doublings and on average 1
2r

point additions. Adaptations to the binary method include the (sliding-) window method
[13] and the Montgomery ladder [14], the latter of which is an example of a constant-time
algorithm whose purpose is to mask the number of point doublings and point additions
made in computing [n]P , as to reduce vulnerability to timing or power consumption side-
channel attacks [15] which we discuss in Section 6.2. We can do better than this, allowing
for point subtractions, using the ternary representation of n,

n = n0 + 2n1 + 22n2 + · · ·+ 2rnr

for ni ∈ {−1, 0, 1} for i = 0, . . . r. It turns out that on average around two thirds of the
coefficients in the ternary representation of an integer are 0, and so integer multiplication
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using the ternary representation of n uses r or r + 1 point doublings and on average ≈ 1
3r

point additions. As such, the ternary method requires the same number or one more point
doubling as the binary method but on average ≈ 1

6r less point additions.

Example 3.2. Consider an elliptic curve E/Fp and let P ∈ E(Fp). To compute [62]P
using the ternary method, note that the ternary representation of 62 is (1, 0, 0, 0, 0,−1, 0)t
and so computing

[62]P = [26]P − [2]P

using the ternary method requires 6 point doublings and 1 point addition, which in general
is less computationally expensive than 5 point doublings and 4 point additions as in the
binary method.

3.2 Hasse’s theorem

An important result regarding the number of points on an elliptic curve E/Fp is Hasse’s
theorem on elliptic curves over finite fields.

Theorem 3.1 (Hasse). For an elliptic curve E/Fp we have the following inequality

|#E(Fp)− (p+ 1)| ≤ 2
√
p

where #E(Fp) denotes the number of elements in E(Fp).

Proof. One can prove this by considering the Frobenius endomorphism φ, mapping E(Fp)
to itself given by

φ : (x, y) 7→ (xp, yp),

and noting that if P ∈ E(Fp) then P ∈ E(Fp) if and only if φ(P ) = P . From here it is
clear that E(Fp) = ker(1− φ) and so

#E(Fp) = # ker(1− φ) = deg(1− φ).

An appropriate use of a Cauchy-Schwarz inequality yields the desired result.

Methods of obtaining the number of points #E(Fq) on an elliptic curve E/Fp were
relatively slow in the early stages of the development of the theory of elliptic curves,
until 1985 when René Schoof developed what is now known as Schoof’s algorithm. Until
then, methods of counting the number of points on an elliptic curve were probabilistic and
consisted of using the baby-step giant-step algorithm, detailed later on. Schoof’s algorithm
was the first deterministic polynomial time algorithm for counting the number of points
on an elliptic curve, making use of the Frobenius endomorphism [9, p 98], and is detailed
in [16].
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3.3 The Frobenius trace

Definition 3.2. For an elliptic curve E/Fp we define the Frobenius trace t as

t = #E(Fp)− (p+ 1).

Note that by Hasse’s theorem we have |t| ≤ 2
√
p. We will see later on that an elliptic

curve E/Fp should be chosen in a way such that its Frobenius trace t is not a value that
would render particular problems posed on E(Fp) vulnerable to certain attacks. When
discussing the elliptic curve discrete logarithm problem in Section 5, we will see that elliptic
curves with Frobenius trace 0 and 1 are particularly weak, and so are not considered suitable
for cryptographic purpose.

3.4 Isomorphism relations

An important result pertaining to the underlying structure of an elliptic curve group is the
following.

Lemma 3.1. Given an elliptic curve E/Fp we have that E(Fp) is cyclic or isomorphic to
the direct product of two cyclic groups.

Proof. Since E(Fp) is a finite abelian group we may write

E(Fp) ∼= Zd1 × · · · × Zdr

for some integer r ≥ 1 such that di|di+1 for i = 1, . . . , r. Given some i ∈ {1, . . . , r} we
observe that Zni has n1 elements whose order divides n1 and so E(Fp) must have nr1
elements dividing n1. Since [ni]P = O has at most n2i solutions in E(Fp) we conclude that
r ≤ 2 which yields the desired result.

We will see later on in Sections 4 and 5 that the property of an elliptic curve E/Fp

being cyclic is handy in defining and implementing Diffie-Hellman key exchange and the
discrete logarithm problem.

4 Diffie-Hellman key exchange

The basis of modern public-key cryptography is the Diffie-Hellman key exchange protocol,
developed in the 1970s allowing distinct parties to securely communicate over a public
channel. Before Diffie-Hellman key exchange, methods of communicating securely over
public channels required parties to first communicate a secret key in person. As such,
methods of communicating secret keys can be expensive in a sense, involving constraints
far harder to satisfy than the constraints of the Diffie-Hellman key exchange protocol,
which we now detail.
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4.1 The Diffie-Hellman key exchange protocol

Consider distinct parties A and B that would like to securely communicate a secret key
over a public channel. The Diffie-Hellman key exchange protocol between A and B is
described as follows.

• A chooses a positive integer k1, a finite multiplicative cyclic group G and generator
g ∈ G. A computes the first public key pA = gk1 and sends the group structure G,
the generator g and pA to B.

• B chooses a positive integer k2, computes the second public key pB = gk2 and sends
pB to A. B computes the shared secret key s = pk2A = gk1k2 .

• A computes the shared secret key s = pk1B = gk1k2 .

In practice, both A and B may agree beforehand to hash the secret key in some way, for
an added layer of security. Both parties may then communicate securely over any public
channel using the hashed secret key.

Remark 4.1. For the remainder of the paper we refer to the Diffie-Hellman key exchange
protocol as Diffie-Hellman.

Upon seeing Diffie-Hellman for the first time, one may propose the idea of simply taking
the ‘logarithm’ of gk1 or gk2 , however such a process may be performed in G, to obtain at
least one of the secretly kept integers k1 or k2. If an adversary E were able to do this then
E could easily obtain the shared secret key by direct computation. As such, the security of
Diffie-Hellman is solely dependent on the difficulty of computing such discrete logarithms
in G.

Public parameters:
p prime, E/Fp and P ∈ E(Fp)

Party A Party B

k1 ∈ {2, . . . , p− 2} k2 ∈ {2, . . . , p− 2}

Q = [k1]P Q
R = [k2]P

R
K = [k1]R = [k1k2]P K = [k2]Q = [k1k2]P

Private parameters:
k1, k2 and K = [k1k2]P ∈ E(Fp)
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Given an elliptic curve E/Fp we can perform Diffie-Hellman in E(Fp) as written in
Section 4.1 with generator P ∈ E(Fp). In this case, the shared secret key is some (ideally
large) integer multiple [k1k2]P . The suitability of Diffie-Hellman in E(Fp) is due to the
difficulty of solving the discrete logarithm problem in E(Fp), which we discuss in Section
5.

4.2 Brute force attacks and key-space size

As the name suggests, the method of brute force breaks a cryptographic algorithm by at-
tempting every possible key in the corresponding key-space. This method is easily avoided
by ensuring that the key-space size is suitably large with respect to the rate at which an
attacker could perform such an attack. Though such a method seems to lack any ingenuity
or even thought, it is still worth taking into account. Given current available hardware, a
key-space size of at least 2128 is considered sufficiently large. Even so, some are skeptical
that the development of quantum computers may fuel the need for larger key-space sizes
of public-key cryptographic algorithms. Algorithms such as Grover’s algorithm [17] could
reduce key-size spaces from 2128 to 264; a significant reduction which would yield a system
far more vulnerable to brute force attacks.

To understand the level of security that a cryptographic algorithm offers we consider the
associated key-space size. The key-space size is the least upper-bound on a cryptographic
algorithm’s level of security, measuring the logarithm of the complexity of the best known
algorithm that ‘breaks’ the cryptographic algorithm. To better define this we introduce
n-bit security.

Definition 4.1. A cryptographic algorithm C is n-bit secure if the best known algorithm
to break C has complexity O(2n).

Roughly put, we say that an algorithm breaks a cryptographic algorithm C if it exploits
C in a way such that its running time is less than brute force. Many cryptosystems
are designed in such a way that, on release, they attain some level of security, say 256
bits of security. It may be the case that later on an algorithm designed to break such a
cryptographic algorithm is developed, with average running time far less than 2256 steps,
say around 2128 steps. In this case, we say that the cryptographic algorithm in question
offers 128 bits of security.

4.3 Small subgroup attacks

Typically, the order of an elliptic curve group on which we would like to perform elliptic
curve Diffie-Hellman is the product of a small cofactor h and a large prime r: i.e.
#E(Fp) = h · r. Suppose E is an adversary that listens in on an exchange of secret keys
between A and B and that B has no process of verifying received points, accepting any
offered. If E sends a point of small order P to B then, oblivious to the attack, B computes
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and sends [k2]P to E, as in the exchange. Then, E may simply compute the small number
of possible integer multiples of P and see which matches [k2]P , yielding k2 (mod ordP ).
With the structure of the order of E(Fp), #E(Fp) = h·r, as long as B chooses k2 uniformly
randomly then this attack reduces the number of possibilities of k2 to r. In this case, E’s
best option is to resort to Pollard’s rho algorithm.

Example 4.1. Suppose the elliptic curve in question is E/Fp : y2 = x3 − 3x + 19 with
p = 1447 and that B chooses the secretly kept integer k2 = 703. E may send the points
P2 = (313, 0) and P3 = (218, 1337), of orders 2 and 3 respectively, to B. In response to
this, oblivious to any attempt of an attack, B computes and sends Q2 = [703]P2 = (313, 0)
and Q3 = [703]P3 = (218, 1337) to E. From this, E notices that Q2 = [1]P2 and Q3 = [1]P3

which yields k2 ≡ 1 (mod 2) and k3 ≡ 1 (mod 3), and so k2 ≡ 1 (mod 6) by the Chinese
remainder theorem. Knowing that k2 = 1 + 6j for some positive integer j, E may continue
with a brute force attack computing the integer multiples [1+6k]P until the desired collision
is met. In this particular example, the computational cost of a brute force attack is reduced
from 703 integer multiples of P to b703/6c = 117.

In implementation, B can avoid this by simply ensuring that [h]P 6= O for any proposed
base point P ∈ E(Fp).

4.4 Invalid-curve attacks

A more elaborate attack, which also makes use of the Chinese remainder theorem, is
the invalid-curve attack. In the invalid-curve attack, an adversary E utilises the fact
that addition on elliptic curves given by short Weierstrass questions is independent of the
coefficient b where y2 = x3 + ax+ b is the equation by which the elliptic curve in question
is given.

Suppose B is performing elliptic curve Diffie-Hellman on the elliptic curve E/Fp given
by y2 = x3 + ax+ b. E may send a point P = (x, y) on a distinct curve y2 = x3 + ax+ c
from which B computes and sends [k2]P to E, completely oblivious to the attack. With
this idea in mind, E may choose a series of points P2, P3, P5, . . . , Pr of small prime orders
2, 3, 5, . . . , r respectively. Upon receiving the integer multiples Q2 = [k2]P2, Q3 = [k2]P3,
Q5 = [k2]P5, . . . , Qr = [k2]Pr, E is easily able to find k2 (mod 2), k2 (mod 3), k2 (mod 5),
. . . , k2 (mod r) from which k2 may be partially, or even fully, constructed using the Chinese
remainder theorem.

This is a clear improvement on the attack detailed in Section 4.3, as we can choose
various ‘fake’ curves Ea,c/Fp : y2 = x3 + ax+ c such that Ea,c(Fp) contains points of small
prime order, which are not guaranteed to exist in Ea,b(Fp).

Example 4.2. Suppose, as in Example 4.1, that parties A and B are performing elliptic
curve Diffie-Hellman on the Weierstrass curve E−3,19/Fp : y2 = x3−3x+19 with p = 1447.
As in Example 4.1, an adversary E may send the points P2 = (313, 0) and P3 = (218, 1337)
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and analyse Q2 = [k2]P2 and Q3 = [k2]P3 from B to see that k2 ≡ 1 (mod 2) and
k2 ≡ (mod 3). The adversary can then send the points P5 = (1143, 1310) and P7 =
(606, 871) on the ‘fake’ curves E−3,5/Fp : y2 = x3−3x+5 and E−3,27/Fp : y2 = x3−3x+27
respectively, the first with order 5 and the second with order 7. Completely oblivious to the
fact that these are not points on the originally proposed curve, B responds by sending E
the points Q5 = (1429, 66) ∈ E−3,5(Fp) and Q7 = (1380, 1426) ∈ E−3,27(Fp). E is then
easily able to compute and see that Q5 = [3]P5 and Q7 = [3]P7 which yields k2 ≡ 3 (mod 5)
and k2 ≡ 3 (mod 7). All together, with the help of the Chinese remainder theorem, E
knows that k2 ≡ 73 (mod 210) and so k2 = 73 + 210k for some positive integer k. All
together, this process has reduced the cost of a brute force attack to the computational cost
of computing 3 integer multiples of P .

In practice, this is easily avoided by verifying that any point that B receives is a point
on the chosen curve. In performing elliptic curve Diffie-Hellman, A and B may agree to
exchange points P = (x, y) ∈ E(Fp) in the form (x,±1) where (x, 1) corresponds to the
point (x, y1) ∈ E(Fp) where y1 ∈ {p+1

2 , . . . , p − 1} and (x,−1) corresponds to the point

(x, y2) ∈ E(Fp) where y2 ∈ {0, . . . , p−12 }.

5 Discrete logarithms

The use of Diffie-Hellman key exchange over a group G makes it clear that the discrete
logarithm problem in G should be sufficiently difficult to solve. To understand the discrete
logarithm problem, its definition in a general group is given.

Definition 5.1. Let G be a cyclic multiplicative group and let g ∈ G. The problem of
finding the smallest positive integer k such that

h = gk (7)

for some h ∈ 〈g〉 is the discrete logarithm problem in 〈g〉 ⊂ G.

Example 5.1. The group F×p is cyclic and a generator can be easily found, for example

by some brute force search. Consider the discrete logarithm problem in F×257 given by

2 ≡ 3k (mod 257).

It is easily verified that 3128 ≡ −1 (mod 257) and so 3 is a generator of F×257. To understand
the ‘random look’ of exponents modulo a prime consider the exponents of 3 modulo 257 :

k 1 2 3 4 . . . 9 10 11 12

3k (mod 257) 3 9 27 81 . . . 151 196 74 222

With such a small modulus methods of brute force are not unreasonable, and can be used
to see that the smallest integer solution is k = 48.
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Solving the discrete logarithm problem in F×q through brute force has O(q) running
time, which is far too computationally expensive when q is sufficiently large. Naturally,
methods far faster than brute force for solving the discrete logarithm problem in extensively
studied groups, such as F×q , have been developed, an example of which is the index calculus
algorithm.

5.1 The index calculus algorithm

The index calculus algorithm, which we abbreviate by index calculus, is an algorithm
with sub-exponential running time that solves the discrete logarithm problem in F×q whose

complexity is Lq[1/3, (64/9)1/3] and is described as follows.
Consider the discrete logarithm function L such that for the discrete logarithm problem

(7) we have L(h) ≡ k (mod p− 1). The discrete logarithm function L acts similarly to the
traditional logarithm function in that it ‘turns multiplication into addition’, i.e. if we have
h1 ≡ gk1 (mod p) and h2 ≡ gk2 (mod p) then

gL(h1h2) ≡ h1h2 ≡ gL(h1)gL(h2) ≡ gL(h1)+L(h2) (mod p)

and so
L(h1h2) ≡ L(h1) + L(h2) (mod p− 1).

Index calculus makes use of this property by first choosing a ‘factor base’

B = {−1, p1, . . . , pr}

and storing the set
S = {L(−1), L(p1), . . . , L(pr)},

where pi is the ith prime starting with p1 = 2 and r is a positive integer to be chosen.
From here, we choose various values of j until h · gj (mod p) is the product of elements in
B, i.e. we search for a positive integer j satisfying

h · gj ≡
n∏
i=1

bi (mod p) (8)

such that bi ∈ B for i = 1, . . . , n. Applying the discrete logarithm function L to both sides
of (8) yields

L(h) + j ≡ L
( n∏
i=1

bi

)
≡

n∑
i=1

L(bi) (mod p− 1)
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and so the discrete logarithm of h is given by

L(h) ≡
n∑
i=1

L(bi)− j (mod p− 1),

which can be quickly computed since L(bi) ∈ S for i = 1, . . . , n.

Example 5.2. Consider the discrete logarithm problem as in Example 5.1,

2 ≡ 3k (mod 257),

in which k ≡ L(2) (mod 256). First, we choose the factor base B = {−1, 2, 3, 5} and note

that ord(3) = 256 and so L(−1) ≡ 3
p−1
2 ≡ 128 (mod 256) and L(3) ≡ 1 (mod 256). From

here, we compute exponents of 3 whose only prime factors are 2 and 5. We have

339 ≡ 25 · 5 (mod 256)

323 ≡ −1 · 22 · 5 (mod 256)

which yields
39 ≡ 5L(2) + L(5) (mod 256)

152 ≡ 2L(2) + L(5) (mod 256).

Solving these linear equations yields L(2) ≡ 48 (mod 256) and so k = 48, as desired. Note
that in this example h ≡ 2 (mod 257) was small enough to not have to perform the final
step of finding a positive integer j such that h · gj is the product of elements of B, which is
not often the case.

The choice of a suitable factor base is key to the efficiency of index calculus. If the
factor base is too small then it may be that finding a positive integer j as in (8) takes an
unreasonable amount of time, while if the factor base is too large then there may be too
many cases to cover before progressing through the various stages of the algorithm.

Index calculus and its abundance of adaptations make the discrete logarithm problem
relatively straight forward in F×q . We will see later on that in certain cases, a relatively
difficult-to-solve discrete logarithm problem in an elliptic curve group can be reduced to a
discrete logarithm problem in F×q , which in general is easier to solve.

5.2 The baby-step giant-step algorithm and Pollard’s rho algorithm

In a general group G, the discrete logarithm problem has, so far, no easy solution and it is
clear that for n = #G sufficiently large, brute force is impractical. With this in mind, we
consider the baby-step giant-step algorithm, which we abbreviate by baby-step giant-step;
a space-time trade-off algorithm used to compute discrete logarithms in an arbitrary cyclic
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multiplicative group G with n elements, whose running time is O(
√
n). Given such a group

G and a generator g ∈ G, baby-step giant-step utilises the fact that if

h = gk

with h ∈ G for a positive integer k, then we may write k in base m := d√ne as

k = im+ j

at which point we see that
gj = h · (g−m)i.

Note that g, h and g−m are fixed and so need to be computed only once. With this in mind,
we can compute gj for various values of j and then compute (g−m)i for various values of i
in hope that we find a collision.

We summarise the baby-step giant-step algorithm in Algorithm 2.

Algorithm 2: Discrete logarithm in an arbitrary finite cyclic subgroup 〈g〉 ⊂ G.

Input: A finite cyclic group G, g ∈ G and h ∈ 〈g〉 with ord(g) = n.
Output: A positive integer k such that h = gk.

1 m = dne
2 S = ∅
3 for j = 0, . . . ,m− 1 do
4 S ← S ∪ {(j, gj)}
5 λ← g−m // this step invokes the extended

Euclidean algorithm

6 for i = 0, . . . ,m− 1 do
7 for γ = 0, . . . ,m− 1 do
8 if (γ, h(g−m)γ) ∈ S then
9 return im+ γ

10 else
11 λ← λg−m

Example 5.3. Consider the discrete logarithm problem as in Example 5.1,

2 ≡ 3k (mod 257)

in the group F×257, whose solution has already been demonstrated to be k = 48. Writing k
in base m = d

√
257− 1e = 16 yields k = 16i + j. From here, g−m ≡ 32 (mod 257) and

so we search for collisions of 3j and 2 · 32i modulo 257 for various values of i and j in
{0, 1, . . . , 15}. In computing 3j modulo 257 for j = 0, . . . , 15 we find:

j 0 1 2 3 . . . 12 13 14 15

3j (mod 257) 1 3 9 27 . . . 222 152 199 83

Computing 2 · 32i modulo 257 for i = 0, . . . , 15 until we reach a collision, we find:

i 0 1 2 3

2 · 32i (mod 257) 2 64 249 1
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We see that a collision occurs at i = 3 and j = 0 and so k = 16 · 3 + 0 = 48, as desired.

With O(
√
n) running time, baby-step giant-step might appear an attractive option

when looking to solve the discrete logarithm problem in well known groups, such as F×q ,
but this can be easily avoided by taking q sufficiently large. If, for example, we take
q around 2256 then baby-step giant-step solves the discrete logarithm problem in F×q in

around
√

2256 = 2128 steps, which is unfeasible. This emphasises the need for algorithms
specially fit for a group in question, such as index calculus for F×q . Not only that, the
memory required to store the exponents of g can be monstrously large. If #G = n and
each exponent of g requires k bits to store then storing every exponent of g would require
k · √n bits. For example if #G = 2128 and each exponent required 64 bits of storage then
storing every exponent of g would require 1.18 · 1021 bits, over 130000 Petabytes.

To avoid this, while maintaining a running time of O(
√
n), one can use Pollard’s Rho

algorithm, which we abbreviate by Pollard’s algorithm. The implementation of Pollard’s
algorithm is slightly more tricky than baby-step giant-step, though its running time is the
same and avoids the need more enormous amounts of memory. As such, when assessing
the security of the discrete logarithm problem in an arbitrary group, we consider Pollard’s
algorithm instead of baby-step giant-step. An accurate estimate for the complexity of
Pollard’s algorithm is O(

√
π
4 ·#E(Fp)).

5.3 Elliptic curves with Frobenius trace 0 or 1

As for an elliptic curve E/Fp, the discrete logarithm problem is to find the smallest positive
integer k such that

Q = [k]P (9)

with P ∈ E(Fp) and Q ∈ 〈P 〉 ⊂ E(Fp).
Examples of classes of elliptic curves known to be explicitly vulnerable to attack are

supersingular curves, anomalous curves and certain elliptic curves over binary fields. An
elliptic curve E/Fp is supersingular if the Frobenius trace of E(Fp) satisfies t ≡ 0 (mod p),
which is equivalent to t = 0 when p > 5. The vulnerability of such curves is due to
algorithms such as the MOV attack [18]. In this case, the discrete logarithm problem in
E(Fp) can be reduced to a discrete logarithm problem in F×pm for m ∈ {2, 3, 4, 6}. In the

worst case scenario the problem is reduced to a discrete logarithm problem in F×
p6

which,
in general, is easier to solve. If p ≥ 5, as is often the case, the problem is reducible to a
discrete logarithm problem in F×

p2
, which is far easier to solve. A similar statement can be

made for anomalous curves, elliptic curves E/Fp with Frobenius trace t = 1. There exist
algorithms for the discrete logarithm problem in anomalous curve groups far faster than
O(
√
n) and even the MOV attack for supersingular curves. As for elliptic curve E/F2m

over binary fields, where m is not prime, major vulnerabilities in the discrete logarithm
problem over such curves is due to Weil descent attacks [19].
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With such weaknesses in mind, it seems only natural to avoid the use of supersingular
and anomalous curves and elliptic curves over binary fields when choosing elliptic curves
suitable for cryptographic purpose. With this in mind, it seems only natural to ask what
must be taken into account when one would like to make the discrete logarithm problem
in an elliptic curve group difficult; how does one choose the coefficients of the elliptic curve
and what finite fields Fp are suitable?

5.4 Rigidly constructing efficient and secure elliptic curves

It should be clear that having an elliptic curve E/Fp be secure is not enough for implemen-
tation, as it could be that computing integer multiples of points on such a curve is rather
slow. A similar statement can be made for elliptic curves on which computing integer
multiples is efficient. Namely that the curve is not necessarily secure, with the discrete
logarithm problem being potentially easy to solve on such a curve. As such, in practice we
require that an elliptic curve E/Fp is both secure, in that the discrete logarithm problem
in E(Fp) is difficult to solve, and efficient, in that computing integer multiples in E(Fp)
can be performed sufficiently quickly and ideally even on ‘primitive’ hardware.

In practice, one could opt to use elliptic curves published in a standard by a trusted
entity. For example, in 1999 NIST published a document discussing the curve parameters
for a set of elliptic curves they deemed fit for cryptographic use. In this document NIST
detailed the ‘desirable’ properties of their curves and their approach in determining the
parameters of curves yielding these properties. Controversy arose when it was noticed that
the seed(s) of some parameter(s) pertaining to their suggested elliptic curves was not left
unjustified. This is an example of a set of elliptic curves that are not fully rigid : i.e. their
generation process is not made completely clear for potential users. From that point, many
considered this standard to be influenced in a way such that NIST (or the NSA who had
a say in these choices) could exploit implicit weaknesses of the curves in question.

As such, the construction of efficient and secure elliptic curves would ideally be fully
rigid: i.e. the seed of each parameter pertaining to the curve is explained in sufficient detail,
as to ensure that the curve has not been influenced in such a way that it omits implicit
weaknesses. As for how to generate efficient and secure curves, one considers a large list
of criteria. In practice, the generation of a curve is rarely constructive. One example of
where a parameter is chosen constructively is in the Weierstrass model in which a field
operation may be saved in point doubling by taking a = −3. Thus, when generating an
efficient elliptic curve in the Weierstrass model, one may choose a = −3 specifically and
look to meet the overall criteria through their choice of b and p alone. Typically, the
remainder of the search is done by brute force. For example running some while loop over
various candidates for the remaining parameters until all criteria pertaining to efficiency
and security is met. This is discussed and exemplified in Section 8.
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6 Efficiently and securely computing integer multiples

Factors that contribute to the efficiency of arithmetic on an elliptic curve E/Fp are pri-
marily the model in which addition is performed and the prime p corresponding to the
underlying field Fp. In this section we consider prime numbers that offer fast reduction in
Fp. We then consider some ‘desirable’ properties of algorithms or procedures that parties
should consider when performing Diffie-Hellman, including point validation and offline-
computation based addition.

6.1 Arithmetic-friendly primes

Certain prime numbers offer faster multiplication and reduction modulo p and hence
faster curve arithmetic. Examples of such primes are (pseudo-) Mersenne primes and
Montgomery-friendly primes, which we discuss in this subsection.

Mersenne primes

A Mersenne prime p is a prime number that can be written as

p = 2α − 1

for some positive integer α. The largest Mersenne prime currently known was discovered
in December of 2018, and is given by 282589933 − 1, though larger Mersenne primes are
continuously searched for. Mersenne primes offer faster modular reductions via Algorithm
3, which has been read and written directly from Algorithm 1 in [20].

Algorithm 3: Reduction modulo a Mersenne prime.

Input: An integer k and a Mersenne prime p = 2α − 1.
Output: An integer l such that 0 ≤ l < p and l ≡ k (mod p).

1 Write k = k12
α + k0

2 r ← k0 + k1
3 r′ ← r + 1

4 if r′ ≥ 2α then
5 r ← r′ (mod 2α)

6 return r

An example of an elliptic curve that employs a Mersenne prime is FourQ; a (twisted)
Edwards curve ξ−1,d/Fp2 : −x2 + y2 = 1 + dx2y2 where d is a non-square in Fp2 with
p = 2127 − 1. Developed by Microsoft Research, FourQ was constructed specifically for
secure key exchange and verification methods such as elliptic curve Diffie-Hellman and
elliptic curve digital signature algorithms.

Pseudo-Mersenne primes

A pseudo-Mersenne prime p is a prime number that can be written as

p = 2α − γ
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where α and γ are positive integers, typically with α a multiple of 64 and γ < 2α/2.
Pseudo-Mersenne primes offer faster modular reduction in Fp than Mersenne primes. We
describe reduction modulo a pseudo-Mersenne prime in Algorithm 4, which has been read
and written directly from Algorithm 2 in [20].

Algorithm 4: Reduction modulo a pseudo-Mersenne prime.

Input: An integer k and a pseudo-Mersenne prime p = 2α − γ.
Output: An integer l such that 0 ≤ l < p and l ≡ k (mod p).

1 Write k = k12
α + k0

2 b← k · γ + k0
3 Write b = b12 + b0
4 r ← b1 · γ + b0
5 r′ ← r + γ

6 if r′ ≥ 2α then
7 r ← r′ − 2α

8 r′ ← r + γ
9 if r′ ≥ 2α then

10 r ← r′ − 2α

11 return r

A well known example of an elliptic curve that makes use of a pseudo-Mersenne prime
is Daniel Bernstein’s Curve25519; developed for elliptic curve Diffie-Hellman offering 128
bits of security and detailed in [21]. Curve25519 is the Montgomery curve M486662,1/Fp

with p = 2255 − 19, hence the name.

Montgomery-friendly primes

Faster field multiplication and reduction in Fp is given by Montgomery-friendly primes,
prime numbers of the form

p = 2α(2β − γ)− 1

for positive integers α, β and γ. Field multiplication and reduction modulo p in Fp for
Montgomery-friendly primes p is more efficient than (pseudo-) Mersenne primes and is
described in detail in [22]. An example of an elliptic curve that utilises a Montgomery-
friendly prime p is Curve448; the (twisted) Edwards curve given by ξ1,−39011/Fp where
p = 2224(2224 − 1)− 1.

6.2 Side-channel attacks

Any attack made on the basis of information attained through the implementation of an
algorithm, for example on some piece of hardware, is what we will call a side-channel
attack. The more popular implementations of side-channel attacks are timing and power
consumption attacks. These methods can be described in a rather intuitive fashion in the
context of computing integer multiples of points on elliptic curves. In practice, given an
elliptic curve E/Fp, a point P ∈ E(Fp) and an integer k, to compute [k]P we can use
the binary or ternary method in which we compute a series of point doublings and point
additions in accordance with the corresponding representation of k. If the hardware on
which these integer multiples are computed perform point doublings and point additions

26



in distinct amounts of time (or consume distinct amounts of power) then one can easily
reconstruct k, by counting the number of times the hardware performs a point doubling or
point addition, and in which order.

Naturally, adaptations of currently used methods of computing integer multiples have
been adapted with side-channel attacks in mind. As mentioned earlier, the Montgomery
ladder is an algorithm for computing integer multiples in which each full computation is
executed in a fixed number of steps, thus rendering timing or power consumption attacks
useless. The Montgomery ladder is described in Algorithm 5.

Algorithm 5: The Montgomery ladder on an elliptic curve.

Input: An elliptic curve E/Fp with base point O, a positive integer
n = (nr, . . . , n1, n0)2 with ni ∈ {0, 1} for i = 1, . . . , r and P ∈ E(Fp).

Output: [n]P ∈ E(Fp).
1 Q← O
2 R← P
3 for i = r, . . . , 0 do
4 if ni = 0 then
5 R← Q+R // this invokes a point addition algorithm in the given model

6 Q← [2]Q // this invokes a point doubling algorithm in the given model

7 else
8 Q← Q+R // this invokes a point addition algorithm in the given model

9 R← [2]R // this invokes a point doubling algorithm in the given model

10 return R

For a more detailed description of side-channel attacks and masking techniques, consider
[15].

6.3 Offline-computation based addition

In practice, one can pre-compute a series of integer multiples of a point P offline in order
to speed up the computation of integer multiples later on. An example of this is wNAF
addition. Before describing an algorithm for wNAF addition explicitly, we consider the
non-adjacent representation of an integer, beginning with its definition.

Definition 6.1. Given an integer k, the non-adjacent form (NAF) of k is a ternary rep-
resentation (kr, kr−1, . . . , k1, k0)t of k such that no non-zero digits occur adjacently.

Example 6.1. We may write 13 = 8 + 4 + 1 in ternary as (1, 1, 0, 1)t, in which two
consecutive non-zero values occur. As such (1, 1, 0, 1)t is not the non-adjacent normal
form of 13. We can instead write 13 = 16 − 4 + 1 as (1, 0,−1, 0, 1)t in which we see that
no consecutive non-zero values appear. As such (1, 0,−1, 0, 1)t is the non-adjacent form of
13.
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To compute the non-adjacent form of an integer, consider Algorithm 6 with window
size w, a positive integer to be chosen.

Algorithm 6: The non-adjacent form of a positive integer.

Input: A positive integer k.
Output: The ternary representation of k written as (kr, . . . , k1)t such that if

kj 6= 0 then kj−1 = kj+1 = 0 for all j = 2, . . . , r − 1.
1 r ← 0
2 while k > 0 do
3 if k ≡ 1 (mod 2) then
4 kr ← k mods 2w

5 k ← k − kr

6 else
7 kr ← 0

8 k ← k/2
9 i← r + 1

10 return (kr−1, . . . , k1, k0)t

As for wNAF addition, given a point P ∈ E(Fp) on an elliptic curve E/Fp, one pre-
computes the set {±P,±[3]P,±[5]P, . . . ,±[2w − 1]P} offline, for some positive integer w
which we call the window size. After which one can quickly compute [k]P by utilising the
non-adjacent form (kr, . . . , k1) as follows.

Algorithm 7: wNAF integer multiplication on an elliptic curve E/Fp.

Input: The non-adjacent form of a positive integer k and a point P ∈ E(Fp).
Output: [k]P ∈ E(Fp)

1 Q← O
2 for j = i, . . . , 1 do
3 Q← 2Q
4 if kj 6= 0 then
5 Q = Q+ kjP

6 return Q

Algorithm 7 makes use of the signed modulo operator mods given by

k mods 2w =

{
(k (mod 2w))− 2w, if k (mod 2w) ≥ 2w−1

k (mod 2w), otherwise

By pre-computing this set of points, one reduces the cost of computing integer multiples
to r point doublings and around r

w+1 point additions, where w is the chosen window size,
by using wNAF addition.

7 Efficient elliptic curve models and their security

In this section we consider some well known elliptic curve models in which curve arithmetic
is known to be efficient. We then discuss criteria that elliptic curves in each model should
satisfy to attain improved efficiency and security.
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7.1 The Weierstrass model

Remark 7.1. For the remainder of this paper it is assumed that the field over which we take
an elliptic curve given by a Weierstrass equation is of characteristic not 2 or 3. As such,
the only curves in the Weierstrass model that we consider are given by short Weierstrass
equations.

Definition 7.1. A curve Ea,b/Fp in the Weierstrass model is an elliptic curve given by

y2 = x3 + ax+ b

where a, b ∈ Fp such that 4a3 + 27b2 6= 0 with base point OE = (0 : 1 : 0).

In Algorithm 1, methods of performing point addition and point doubling on elliptic
curves over a field K given by a long Weierstrass equation were given. In both point
addition and point doubling we saw that a field inversion in K is necessary. In fields such
as Fp, such an inversion is often more computationally expensive than a fair number of
field multiplications. For elliptic curves Ea,b/Fp in the Weierstrass model, we can avoid
this by computing point addition and point doubling using projective coordinates. Point
addition in projective coordinates in the Weierstrass model is detailed in Algorithm 8.

Algorithm 8: Point addition in (Ea,b(Fp),+,OE) in projective coordinates where
Ea,b/Fp : Y 2Z = X3 + aXZ2 + bZ3.

Input: P,Q ∈ Ea,b(Fp) such that P = (X1 : Y1 : Z1) and Q = (X2 : Y2 : Z2).
Output: P +Q ∈ Ea,b(Fp).

1 λ1 ← Y2Z1

2 λ2 ← Y1Z2

3 λ3 ← X2Z1

4 λ4 ← X1Z2

5 if λ3 = λ4 then
6 if λ1 6= λ2 then
7 return OE
8 else
9 return the output of Algorithm 9

10 with input {a, b, p, P}

11 U ← λ1 − λ2
12 V ← λ3 − λ4
13 W ← Z1Z2

14 α← V 2

15 β ← αV
16 γ ← λ4β
17 ω ← U2W − β3 − 2γ
18 X3 ← ωV
19 Y3 ← U(γ − ω)− βλ2
20 Z3 ← βW
21 return (X3 : Y3 : Z3)

We see that the computational cost of point addition in projective coordinates in the
Weierstrass model is 12 field multiplications and 2 field squarings. For an implementation
of Algorithm 8 in Python consider Listing 3. In Algorithm 9 we summarise point doubling
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in projective coordinates in the Weierstrass model.

Algorithm 9: Point doubling on (Ea,b(Fp),+,OE) in projective coordinates
where Ea,b/Fp : Y 2Z = X3 + aXZ2 + bZ3.

Input: P ∈ Ea,b(Fp) such that P = (X1 : Y1 : Z1).
Output: [2]P ∈ Ea,b(Fp).

1 α← aZ2
1 + 3X2

1

2 β ← Y1Z1

3 γ ← βX1Y1
4 δ ← α2 − 8γ
5 µ← β2

6 X2 ← 2βδ
7 Y2 ← α(4γ − δ)− 8Y 2

1 µ
8 Z2 ← 8βµ
9 return (X2 : Y2 : Z2)

We see that the computational cost of point doubling in projective coordinates in the
Weierstrass model is 7 field multiplications and 5 field squarings. In practice, one can take
a = −3 so that in step 1 we have

α = −3Z2
1 + 3X2

1 = 3(X1 − Z1)(X1 + Z1),

omitting the need for 2 field squarings in favour of a field multiplication, reducing the
computational cost to 8 field multiplications and 3 field squarings. For an implementation
of Algorithm 9 in Python consider Listing 3.

Remark 7.2. Usually, when considering the computational cost of an algorithm for point
addition or point doubling, the number of field additions (and subtractions) and field mul-
tiplications by a constant are left uncounted. This is because the computational cost of field
multiplication and field squaring overshadows the cost of other field operations, yielding the
computational cost of these other field operations negligible.

Choosing suitable Weierstrass curves

To choose an efficient Weierstrass curve Ea,b/Fp we take a = −3, as to ensure faster curve
arithmetic in projective coordinates. This imposes a slight restriction on how we choose b.
To ensure a non-zero discriminant it is required that b ∈ Fp\{−2, 2}. Since the choice of b
has no effect on the efficiency of point addition or point doubling, it seems only natural to
choose it in accordance with satisfying the remaining criteria. The final factor for efficiency
is the prime p, for which we choose one of the primes listed earlier; a (pseudo-) Mersenne
prime of a Montgomery-friendly prime.

As far as security is concerned, we require the following:

• the Frobenius trace t of E−3,b(Fp) satisfies |t| > 1.

• #E−3,b(Fp) = r is prime.

• #E′−3,b(Fp) = r′ is prime, where E′ is the quadratic twist of E [9, p 47].
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The motivation for the first point is discussed in Section 5.3. Curves that fail to meet this
property are immediately excluded due to their blatant weakness. The second condition
helps to ensure that choosing a point P 6= OE has large order, namely ord(P ) = r is prime,
and that the E−3,b(Fp) is not vulnerable to subgroup attacks. Similar statements can be
made for the third condition, namely that the discrete logarithm problem should not be
easily solved on the twist of the curve in question.

7.2 The Montgomery model

Definition 7.2. As discussed in Example 2.4, a curve MA,B/Fp in the Montgomery model
is an elliptic curve given by

By2 = x3 +Ax2 + x

with A,B ∈ Fp such that B(A2 − 4) 6= 0 and base point OM = (0 : 1 : 0).

The motivation behind the base point OM = (0 : 1 : 0) is precisely the motivation of
the base point O = (0 : 1 : 0) on an elliptic curve given by a long Weierstrass equation.

Remark 7.3. If B is a quadratic residue in Fp then a curve MA,B/Fp in the Montgomery
model given by By2 = x3 +Ax2 + x is birationally equivalent to the curve MA,1/Fp in the
Montgomery model given by y2 = x3 +Ax2 + x.

Lemma 7.1. A Montgomery curve MA,B over a field K given by

By2 = x3 +Ax2 + x

is birationally equivalent to the curve Ea,b/Fp in the Weierstrass model given by

Y 2 = X3 + aX + b

with a = 3−A2

3B2 and b = 2A3−9A
27B3 .

Proof. The map

ψ : (x, y) 7→
(
x

B
+

A

3B
,
y

B

)
= (X,Y )

defines a birational map MA,B → Ea,b with change of coefficients a = 3−A2

3B2 and b = 2A3−9A
27B3 ,

where Ea,b is given by
Y 2 = X3 + aX + b.

The addition law on Montgomery curves is practically identical to the addition law
on elliptic curves given by a long Weierstrass curve. As for explicit formulae for point
addition and point doubling on Montgomery curves, the usual approach for deriving these
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is precisely the approach used in deriving explicit formulae for addition on elliptic curves
given by a long Weierstrass equation; looking for intersections of certain lines and the curve
and applying Vieta’s formulae. We omit this derivation and immediately move to detailing
the formulae explicitly. Point arithmetic in affine coordinates in the Montgomery model is
detailed in Algorithm 10.

Algorithm 10: Addition in (MA,B(Fp),+,OM ) in affine coordinates where
MA,B/Fp : By2 = x3 +Ax2 + x.

Input: P,Q ∈MA,B(Fp) such that P = (x1, y1) and Q = (x2, y2).
Output: P +Q ∈MA,B(Fp).

1 if P = Q then
2 if P = OM or y1 = 0 then
3 return OM
4 λ← (3x21 + 2Ax1 + 1)(2By1)

−1

5 x3 ← Bλ2 −A− 2x1
6 y3 ← λ(x1 − x3)− y1
7 return (x3, y3)

8 else
9 if P = OM then

10 return Q

11 if Q = OM then
12 return P

13 if x1 = x2 then
14 return OM
15 λ← (y2 − y1)(x2 − x1)−1
16 x3 ← Bλ2 −A− x1 − x2
17 y3 ← λ(x1 − x3)− y1
18 return (x3, y3)

Unlike other models, the interest of Montgomery curves is not the efficiency of full
addition in projective coordinates or any other coordinate system but of computing the
X and Z coordinates of multiples of points in projective coordinates, which can be done
exceptionally quickly. For convenience let Xk and Zk represent the X and Z coordinates
of an integer multiple [k]P = (Xk : − : Zk) for a point P ∈ MA,B(Fp). Then Xm+n and
Zm+n, corresponding to the X and Z coordinates of [m + n]P in projective coordinates,
are given by

Xm+n = Zm−n((Xm − Zm)(Xn + Zn) + (Xm + Zm)(Xn − Zn))2

Zm+n = Xm−n((Xm − Zm)(Xn + Zn)− (Xm + Zm)(Xn − Zn))2.

The obvious consequence of this is that to compute [m + n]P = (Xm+n : − : Zm+n) we
first need [m − n]P = (Xm−n : − : Zm−n), which we can remedy during the computation
of integer multiples by using the Montgomery ladder. It’s worth noting that the use of the
Montgomery ladder invokes the use of a point addition and a point doubling for each bit
in the binary representation of k.

As for point doubling, X2n and Z2n, corresponding to [2n]P = (X2n : − : Z2n), are
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computed via

4XnZn = (Xn + Zn)2 − (Xn − Zn)2

X2n = (Xn + Zn)2(Xn − Zn)2

Z2n = 4XnZn

(
(Xn − Zn)2 +

(
A+ 2

4

)
· 4XnZn

)
.

It is easily verified that such a doubling costs only 2 field multiplications and 2 field
squarings, which is far faster than the cost of point doubling in the models already con-
sidered. For an implementation of these formulae, as well as the Montgomery ladder and
Y -coordinate recovery, in Python consider Listing 4.

Y -coordinate recovery

Given that the Montgomery ladder returns the X and Z coordinates of an integer multiple
[k]P = (Xk : − : Zk), it is of interest to be able to ‘recover’ the corresponding Y coordinate,
yielding the integer multiple [k]P = (Xk : Yk : Zk) in full. To do this, firstly, if Zk = 0 then
[k]P is simply the point at infinity OM . Otherwise, one may notice that given Xk and Zk
the corresponding Y -coordinate Yk must satisfy

BY 2
k Zk = X3

k +AX2
kZk +XkZ

2
k

and so one may recover Yk by first multiplying by (BZk)
−1 and taking a modular square

root. One could find such a modular square root with the help of the Tonelli-Shanks
algorithm [23]. All together, the computational cost of this can be approximated to m +
n+ 100 field multiplications, where m is the number of bits in the binary representation of
k and n is the number of 1s that appear in the representation. Note that this square root
is guaranteed to exist as Xk and Zk, and thus Yk, correspond to a point on the curve. The
only issue with this method is that taking the modular square root yields two potential
points, corresponding to the two possibilities of the modular square root. Methods more
considerate of a problem such as this are developed and well documented.

Remark 7.4. Since one can always construct a birational map from a Montgomery curve
to a (twisted) Edwards curve, and vice versa, we consider tailoring some Montgomery curve
to be efficient and secure in accordance with tailoring a (twisted) Edwards curve. As such,
we leave the discussion of choosing Montgomery curves to the end of Subsection 7.3 which
considers curves in the (twisted) Edwards model.

7.3 The (twisted) Edwards model

The (twisted) Edwards model was introduced by Daniel Bernstein in 2008 as an adaptation
to the already-known Edwards model. Curves in the (twisted) Edwards model are known
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to have efficient algorithms for point addition and point doubling.

Definition 7.3. A curve ξa,d/Fp in the (twisted) Edwards model is an elliptic curve given
by

ax2 + y2 = 1 + dx2y2

where a, d ∈ Fp such that a 6= d and a · d 6= 0 with base point Oξ = (0 : 1 : 0).

Lemma 7.2. A (twisted) Edwards curve ξa,d/K over a field K is birationally equivalent
to the Montgomery curve MA,B/K where A = 2a+da−d and B = 4 1

a−d .

Proof. This is shown in Example 2.3.

As such, (twisted) Edwards curves are indeed elliptic curves. To obtain the addition law
on (twisted) Edwards curves, we use Cauchy-Desboves’ formulae [24]. Explicit formulae for
arithmetic in affine coordinates in the (twisted) Edwards model is summarised in Algorithm
11.

Algorithm 11: Addition in (ξa,d(Fp),+,Oξ) in affine coordinates where
ξa,d/Fp : ax2 + y2 = 1 + dx2y2.

Input: P,Q ∈ ξa,d(Fp) such that P = (x1, y1) and Q = (x2, y2).
Output: P +Q ∈ ξa,d(Fp).

1 if P = Q then
2 if P = Oξ or x1 = 0 then
3 return Oξ
4 x3 ← (2x1y1)(ax

2
1 + y21)−1

5 y3 ← (y21 − ax21)(2− ax21 − y21)−1

6 return (x3, y3)

7 else
8 if P = Oξ then
9 return Q

10 if Q = Oξ then
11 return P

12 if y1 = y2 then
13 return Oξ
14 x3 ← (x1y2 + x2y1)(1 + dx1x2y1y2)

−1

15 y3 ← (y1y2 − ax1x2)(1− dx1x2y1y2)−1
16 return (x3, y3)

Similarly to Algorithm 1, we see that point addition and point doubling in affine co-
ordinates requires two modular inversions. To avoid this we can instead perform point
addition and point doubling in projective coordinates.
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In Algorithm 12 we detail point addition in projective coordinates in the (twisted)
Edwards model.

Algorithm 12: Point addition in (ξa,d(Fp),+,Oξ) in projective coordinates where
ξa,d/Fp : aX2Z2 + Y 2Z2 = Z4 + dX2Y 2.

Input: P,Q ∈ ξa,d(Fp) such that P = (X1 : Y1 : Z1) and Q = (X2 : Y2 : Z2).
Output: P +Q ∈ ξa,d(Fp) in projective coordinates.

1 A← Z1Z2

2 B ← A2

3 C ← X1X2

4 D ← Y1Y2
5 E ← dCD
6 F ← B − E

7 G← B + E
8 X3 ← AF ((X1 + Y1)(X2 + Y2)− C −D)
9 Y3 ← AG(D − aC)

10 Z3 ← FG
11 return (X3 : Y3 : Z3)

We see that the computational cost of point addition in projective coordinates in the
(twisted) Edwards model is 10 field multiplications and 1 field squaring. For an imple-
mentation of Algorithm 12 in Python consider Listing 5. Point doubling in projective
coordinates in the (twisted) Edwards model is detailed in Algorithm 13.

Algorithm 13: Point doubling in (ξa,d(Fp),+,Oξ) in projective coordinates where
ξa,d/Fp : aX2Z2 + Y 2Z2 = Z4 + dX2Y 2.

Input: P ∈ ξa,d(Fp) such that P = (X1 : Y1 : Z1).
Output: [2]P ∈ ξa,d(Fp) in projective coordinates.

1 B ← (X1 + Y1)
2

2 C ← X2
1

3 D ← Y 2
1

4 E ← aC
5 F ← E +D
6 H ← Z2

1

7 J ← F − 2H
8 X3 ← J(B − C −D)
9 Y3 ← F (E −D)

10 Z3 ← FJ
11 return (X3 : Y3 : Z3)

We see that the computational cost of point doubling in projective coordinates in the
(twisted) Edwards model is 3 field multiplications and 4 field squarings. For an implemen-
tation of Algorithm 13 in Python consider Listing 5.

Choosing suitable (twisted) Edwards and Montgomery curves in parallel

The following is a list comprising the criteria that a pair of birationally equivalent Mont-
gomery and (twisted) Edwards curves should satisfy for the sake of both efficiency and
security.

• take a = −1.

• take A ∈ 2 + 4Z.
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• ensure that #MA,1 = 4r where r is prime.

• ensure that #M ′A,1 = 4r′ where r′ is prime.

The first condition simply ensures that addition in projective coordinates in the (twisted)
Edwards model is efficient. Requiring that A ∈ 2 + 4Z condition ensures that B is a
quadratic residue in Fp and so addition on the MA,B can be reduced to addition on the
Montgomery curve MA,1/Fp : y2 = x3 + Ax2 + x. Since the order of a (twisted) Edwards
curve group is always a multiple of 4, the best that can be done in ensuring that the elliptic
curve group in question is almost-prime is to take our group such that the order is 4r for
a large prime p. This condition helps to ensure security against small subgroup attacks.
The final point is simply to ensure twist security [25].

7.4 The Hessian model

An example of a less well known model in which arithmetic is efficient ‘by design’ is the
Hessian model.

Definition 7.4. A curve HD/Fp, with p ≡ 2 (mod 3), in the Hessian model is an elliptic
curve given by

X3 + Y 3 + Z3 = 3DXY Z

with D ∈ Fp such that D3 6= 1 and base point OH = (1 : −1 : 0).

Though we have defined a Hessian curve as an elliptic curve, it can also be seen from
Lemma 7.3, in which it is shown that a Hessian curve is birationally equivalent to an elliptic
curve given by a long Weierstrass equation.

Lemma 7.3. Consider the elliptic curve E/Fq, with q ≡ 2 (mod 3), given by

Y 2 + a1XY + a3Y = X3

with a1, a3 ∈ Fq, in which an element ε ∈ E(Fq) such that ε3 = −27a3δ
2 − δ3 is assumed

to exist. E/Fq is birationally equivalent to the Hessian curve HD given by

x3 + y3 + z2 = 3Dxyz

with D ∈ Fq such that D3 6= 1.

Proof. The discriminant of E/Fq is given by

∆E = a33(a
3
1 − 27a3) = a33δ,

where δ = a31 − 27a3. Letting µ = 1
3((−27a3δ

2 − δ3)1/3 + δ), we have that

ψ : (X,Y ) 7→
(
a1

2µ− δ
3µ− δX + Y + a3,−a1

µ

3µ− δX − Y,−a1
µ

3µ− δX − a3
)

= (x, y, z)
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defines a birational map E → HD, with change of coefficient D = µ−δ
µ .

To understand the motivation behind the base point OH = (1 : −1 : 0), substitute any
point (x : y : 0) on the line at infinity into the equation by which a Hessian curve is given.
In doing this we obtain x3 + y3 = 0 and so y = −x 6= 0 which yields OH = (1 : −1 : 0).

The addition law on Hessian curves can be described through the use of the chord-
tangent law, as seen earlier, while utilising the symmetry about the line given by y = x.
To begin, we derive the coordinates of the additive inverse −P = (x2, y2) for an affine
point P = (x1, y1). The line L1 intersecting OH and P = (x1, y1) in HD(Fq) is given by
y = −x + (x1 + y1). Substituting the equation by which L1 is given into the equation by
which HD is given yields

(3 +D)(x1 + y1)x
2 − (3 +D)(x1 + y1)

2x+ (x1 + y1)
3 + 1 = 0

whose roots are x1 and x2. By Vieta’s formulae we have x2 = y1. Upon substituting
x2 = y1 into the equation by which L1 is given, we see that y2 = x1 and so

−P = (y1, x1),

i.e. that the additive inverse of a point P is simply its reflection across the line given by
y = x. Applying the Cauchy-Desboves’ formulae to the polynomial

F (x, y, z) = x3 + y3 + z3 − 3Dxyz

of a Hessian curve yields the following formulae for addition on Hessian curves for distinct
points P = (x1 : y1 : z1) and Q = (x2 : y2 : z2); [2]P = (x3 : y3 : z3) where

x3 = y1(z
3
1 − x31)

y3 = x1(y
3
1 − z31)

z3 = z1(x
3
1 − y31)

and P +Q = (x4 : y4 : z4) where

x4 = y21x2z2 − y22x1z1
y4 = x21y2z2 − x22y1z1
z4 = z21x2y2 − z22x1y1.

With explicit formulae for Hessian curve addition in place, points of order 2 and 3 on
a Hessian curve HD over Fq are easily found. Points P = (x : y : z) of order 2 must satisfy
P = −P which holds if and only if

(x : y : z) = (y : x : z)
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and so P = (1 : 1 : λ) for λ ∈ Fq. Points (x : y : z) of order 3 must satisfy [2]P = −P
which holds if and only if

(y(z3 − x3) : x(y3 − z3) : z(x3 − y3)) = (y : x : z).

Finding solutions to this equation boils down to solving the equations x3 = 1 and y3 = 1.
In Fq these equations have either one solution, when 3 divides q−1 or three solutions, when
3 is relatively prime to q−1. After some rearrangement, it is seen that for any Fq solutions
in HD(Fq) are (0 : 1 : −1), (1 : 0 : −1) and (1 : −1 : 0). Note that when the finite field in
question has three roots of unity, there exist more points of order 3. We know already that
(1 : −1 : 0) is the additive identity in HD(Fq). As such, when gcd(3, q−1) = 1, (0 : 1 : −1)
and (1 : −1 : 0) are the only points of order 3 in HD(Fq). From here we know that the
number of points on a Hessian curve #HD is a multiple of 6.

As for the efficiency of arithmetic on Hessian curve, consider Algorithm 14 which details
point addition in projective coordinates in the Hessian model.

Algorithm 14: Point addition in (HD(Fp),+,OH) in projective coordinates
where HD/Fp : X3 + Y 3 + Z3 = 3DXY Z.

Input: P,Q ∈ HD(Fp) such that P = (X1 : Y1 : Z1) and Q = (X2 : Y2 : Z2).
Output: P +Q ∈ HD(Fp).

1 λ1 ← Y1X2

2 λ2 ← X1Y2
3 λ3 ← X1Y2
4 λ4 ← Z1X2

5 if λ1 = λ2 and λ3 = λ4 then
6 return the output of Algorithm 15
7 with input {p,D, P}
8 λ5 ← Z1Y2
9 λ6 ← Z2Y1

10 s1 ← λ1λ6
11 s2 ← λ2λ3
12 s3 ← λ4λ5
13 t1 ← λ2λ5
14 t2 ← λ1λ4
15 t3 ← λ3λ6
16 X3 ← s1 − t1
17 Y3 ← s2 − t2
18 Z3 ← s3 − t3
19 return (X3 : Y3 : Z3)

We see that the computational cost of point addition in projective coordinates in the
Hessian model is 12 field multiplications and 3 field squarings.
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For point doubling in projective coordinates in the Hessian model consider Algorithm 15.

Algorithm 15: Point doubling on (HD(Fp),+,OH) in projective coordinates
where HD/Fp : X3 + Y 3 + Z3 = 3DXY Z.

Input: P ∈ HD(Fp) such that P = (X1 : Y1 : Z1).
Output: [2]P ∈ HD(Fp) in projective coordinates.

1 λ1 ← X2
1

2 λ2 ← Y 2
1

3 λ3 ← Z2
1

4 λ4 ← X1λ1
5 λ5 ← Y1λ2
6 λ6 ← Z1λ3
7 λ7 ← λ5 − λ6

8 λ8 ← λ6 − λ4
9 λ9 ← λ4 − λ5

10 X2 ← y1λ8
11 Y2 ← x1λ7
12 Z2 ← z1λ9
13 return (X2 : Y2 : Z2)

We see that the computational cost of point doubling in projective coordinates in the
Hessian model is 6 field multiplications and 3 field squarings.

Efficient point tripling in HD(Fq)

An interesting property of the Hessian model is the efficiency of point tripling: i.e. taking
a point P ∈ HD(Fp) and computing [3]P in fewer steps than first computing [2]P and then
[2]P + P = [3]P . This is achieved in projective coordinates by Algorithm 16, as detailed
below.

Algorithm 16: Point tripling on (HD(Fp),+,OH) in projective coordinates where
HD/Fp : X3 + Y 3 + Z3 = 3DXY Z.

Input: P ∈ HD(Fp) such that P = (X1 : Y1 : Z1).
Output: [3]P ∈ HD(Fp) in projective coordinates.

1 λ1 ← X3
1

2 λ2 ← Y 3
1

3 λ3 ← Z3
1

4 µ1 ← λ3 − λ1
5 µ2 ← λ2 − λ3

6 µ3 ← λ1 − λ2
7 X3 ← 3D(λ2µ1µ3 − λ1µ22)
8 Y3 ← 3D(λ1µ2µ3 − λ2µ21)
9 Z3 ← (λ1 + λ2 + λ3)(µ1µ2 − µ23)

10 return (X3 : Y3 : Z3)

We see that the computational cost of point tripling in projective coordinates in the
Hessian model is 8 field multiplications and 6 field squarings. Thus, tripling requires only
two more field operations than point addition on Hessian curves. This may be utilised by
an adaptation of the ternary method, in which for a given integer k we compute [k]P using
a representation of k in base 3.
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7.5 Mapping between models

Cost of addition in each model

When measuring the computational cost of an addition algorithm, it is also worth con-
sidering the cost of mixed point addition and mixed point doubling in which, for inputs
P = (X1 : Y1 : Z1) and Q = (X2 : Y2 : Z2), at least one of Z1 or Z2 is 1. As one may ex-
pect, in practice, this typically reduces the number of operations needed. The table below
contains the computational cost of (mixed) point addition and (mixed) point doubling in
projective coordinates in each model considered.

Model - Coordinate system Doubling Addition Mixed doubling Mixed addition

Weierstrass - Projective 11 14 11 8

Weierstrass (with A = −3) - Projective 10 14 11 8

Hessian - Projective 8 12 10 6

Edwards - Projective 7 11 10 6

Montgomery - Projective 4 6* 3 6*

Improving efficiency with birational maps

Birational maps between models provide a way of mapping points between models while
preserving the underlying group structure. This is a huge convenience but is not neces-
sarily computationally cheap. Typically, even efficient implementations of birational maps
between models will involve an operation as computationally expensive as a modular in-
version. It also isn’t necessarily the case that a birational map between given models is
easily constructed. For example mapping Weierstrass to Montgomery is conditional: i.e. a
small set of constraints must be satisfied for a birational map to be constructed.

Cost of converting coordinates between models (affine only)

Multiplications Inversions Square roots Conditional?

Weierstrass - Montgomery 3 1 1 Yes

(twisted) Edwards - Montgomery 2 2 0 No

Montgomery - (twisted) Edwards 2 1 0 No

Montgomery - Weierstrass 2 1 0 No

Birational maps between models

Models Coordinate mapping Coefficient mapping

MA,B (affine) to ξa,d (affine) (x, y) 7→ (xy ,
x−1
x+1) (A,B) 7→ (A+2

B , A−2B ) = (a, d)

ξa,d (affine) to MA,B (affine) (x, y) 7→ (1+y1−y ,
1
x
1+y
1−y ) (a, d) 7→ (2a+da−d , 4

1
a−d) = (A,B)

ξa,d (projective) to MA,B (affine) (− : Y : Z) 7→ (Z+YZ−Y ) = (x,−) (a, d) 7→ (2a+da−d , 4
1

a−d) = (A,B)

Given that a birational map is not always easily constructed, an attractive option may
be to work solely in models that are easy to map to a more efficient model. Take for
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example the Montgomery and (twisted) Edwards models; a birational map between both,
in either direction, is easily constructed and costs a total of 1 field multiplication and 1 field
inversion in each case. With this in mind, we are already able to consider faster methods
of computing integer multiples in a given model with the help of birational maps.

For example, consider the problem of having to compute the integer multiple [k]Pξ for
a large integer k and a point Pξ ∈ ξa,d on the (twisted) Edwards curve ξa,d/Fp. Given
that mapping to the corresponding Montgomery curve MA,B/Fp and back is always a
possibility, one may wonder when it is more efficient to first map Pξ to its corresponding
point PM = ϕ(Pξ) using a birational map ϕ, compute [k]PM in the Montgomery model and
then map [k]PM back to the (twisted) Edwards model via [k]Pξ = ϕ−1([k]PM ). Though
an interesting, we leave this as a question for future consideration.

8 Constructing efficient and secure elliptic curves

To finish off, we consider explicit examples of efficient and secure elliptic curves in the Weier-
strass, Montgomery and (twisted) Edwards models. Before this, we discuss the method-
ology taken to explicitly construct efficient and secure elliptic curves, with respect to the
criteria already given, at 32-bits, 64-bits and 96-bits of security.

8.1 Curves in the Weierstrass model

To construct suitable curves Ea,b/Fp : y2 = x3 + ax + b in the Weierstrass model, an
approach similar to as in [22] is taken. For the sake of efficiency, we take a = −3 and a
Montgomery-friendly prime p = 2α(2β − γ) − 1 where α is a multiple of 8, β = 2s − α, γ
is some small positive integer and s is the desired level of security of the curve. With this,
one can use a relatively short script in Magma, using a while loop to increment b by 1,
starting with b = 3, until all criteria is met. To compute the group orders #Ea,b(Fp) and
#E′a,b(Fp), an efficient implementation of SEA in Magma is used. This is equipped with
an early abort feature which aborts the current value of b if either the group order or the
order of its twist is seen to have a small factor. The Magma script used is given below.

alpha := ?;

beta := ?;

gamma := ?;

p := (2^alpha)*(2^beta-gamma)-1;

b := 3;

while b gt 0 do

E := EllipticCurve([GF(p)|-3,b]);

if SEA(E : MaxSmooth := 1) ne 0 then

t := TraceOfFrobenius(E);
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if IsPrime(p+1-t) and IsPrime(p+1+t) and (t gt 1 or -t gt 1) then

break;

end if;

end if;

b +:= 1;

end while;

b;

Note that to find the 32-, 64- and 96- bit Montgomery-friendly primes used for this
construction, Listing 2 in the Appendix was used. We see that once a curve satisfying all
efficiency and security criteria is found, the incrimination stops and returns the correspond-
ing value of b. For explicit examples pertaining 32, 64 and 96 bits of security, consider the
following table.

bits of security prime p b ρ complexity Frobenius trace

32 bits
232(232 − 49)− 1 2375 31.8 142D9309
248(216 − 31)− 1 4604 31.8 17ACE5819
216(248 − 47)− 1 6873 31.8 2EADF711

64 bits
232(296 − 199)− 1 642 63.8 9D9630168CF05133
248(280 − 26)− 1 5912 63.8 5B71448E3F37B76B
216(2112 − 4)− 1 22266 63.8 -1745866B6C66213DD

96 bits 2128(264 − 142)− 1 7050 95.8 -40B4E6A71E36C0941A928B57

For each curve, it can be verified using Magma or Sage that the orders of both the elliptic
curve group and its twist are both prime. In each case, the Frobenius trace t satisfies |t| > 1
and the complexity of Pollard’s rho algorithm, given by log2(

√
π/4 ·

√
#E(Fp)), is roughly

the desired level of security. Due to the computational expense of finding these curves,
security levels of 128, 192 and 256 bits were out of reach. Instead of constructing curves
curves at such security levels ourselves, we consider some already constructed curves given
in [22].

target security level curve name prime p b ρ complexity

128 bits
w-256-mont 2240(216 − 88)− 1 85610 127.8
w-256-mers 2256 − 189 152961 127.8

192 bits
w-384-mont 2376(28 − 79)− 1 27798 191.5
w-384-mers 2384 − 317 −34568 191.8

256 bits
w-512-mont 2496(216 − 491)− 1 99821 255.8
w-512-mers 2512 − 569 121243 255.8

A table containing the Frobenius trace of each curve presented below.
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Curve name Frobenius trace

w-256-mont 3AE8AEC191AF8B462EF3A1E5867A815
w-256-mers 1BC37D8A15D9A39FDF54DFD6B8AE571F

w-384-mont 456480EB358AEDAC85B1232C7583BE25D641B76B4D671145
w-384-mers 29E150E114A2977E412562C2B3C81D859FB27E0984F19D0B

w-512-mont 9C757286D118AFD67F9B550F47B6719E20C2C66AF9B128C46C69D70E81670237
w-512-mers A4C35B046B187CE4B03DA712682F4239C4A974C99F832DBC31EAC0C6FBCCA86B

For each curve, one can verify using Magma or Sage that the orders of the elliptic
curve group and twist in question are prime and that the Frobenius trace t satisfies |t| > 1.
These curves, with respect to the criteria listed in [22], are suitable for cryptosystems used
in practice, i.e. an attacker’s best bet to solving ECDLP on these curves is Pollard’s rho
algorithm. Additionally, arithmetic on these curves is fast.

8.2 Curves in the Montgomery (and (twisted) Edwards) model

Due to the lack of support for Montgomery curves in Magma, if one would like to brute
force search for Montgomery curves satisfying certain criteria then Sage is likely currently
the best option. In practice, for the sake of efficiency and general ease, one only considers
curves MA,B in the Montgomery model with B = 1. As such, one can use Sage’s

EllipticCurve([a1,a2,a3,a4,a6])

with a1 = a3 = a6 = 0, a4 = 1 and a2 = A. That said, the best option for point counting
on elliptic curves in Sage is an implementation of SEA that does not allow elliptic curves
taken over fields of suitably large prime order as input. As such, the explicit construction
of Montgomery curves satisfying the list of criteria mentioned has not been done. Instead,
we discuss some already-constructed efficient and secure Montgomery curves developed by
Microsoft Research, as presented below.

target security level curve name prime p A ρ complexity

128 bits
ed-256-mont 2240(216 − 88)− 1 −54314 126.8
ed-256-mers 2256 − 189 −61370 126.8

192 bits
ed-384-mont 2376(28 − 79)− 1 −113758 190.5
ed-384-mers 2384 − 317 −1332778 190.8

256 bits
ed-512-mont 2496(216 − 491)− 1 −305778 254.8
ed-512-mers 2512 − 569 −2550434 254.8

The coefficient d in the twisted Edwards curves corresponding to these curves can be
computed through the formulae presented earlier. A table containing the Frobenius trace
of each curve presented below.
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Curve name Frobenius trace

ed-256-mont 13AAD11411E6330DA649B44849C4E1154
ed-256-mers 106556A94BD650E6C691EC643BB752C90

ed-384-mont 2A4BE076C762D8C9825225944DFC2407E406C7167336DD94
ed-384-mers 4CA0BB84A976997697B17EE9C7182C6EB8A4A3823EF64630

ed-512-mont CCC0A98C8F32E3CBBF3E7EBB024842CB2099437935363F81733ADE04D1C927EC
ed-512-mers 1606BDFD840951119676E1EC2EDAAE83C8C56803CD1FFC1DAC61CB8D3D283F7A4

Similar to Subsection 8.1, each of these curves satisfies the efficiency and security criteria
for Montgomery and (twisted) Edwards curves stated earlier. Each curve is seen to have
order the product of 4 and a suitably large prime and the Frobenius trace t of each curve
satisfies |t| > 1. As for efficiency, for each (twisted) Edwards curve ξa,d, we have a = −1
to reduce the cost of point addition by 1 multiplication. Similarly, for corresponding
Montgomery curves MA,B, these curves ensure that B is a quadratic residue in Fp to
ensure that one can perform addition on the birationally equivalent Montgomery curve
given by y2 = x3 + Ax2 + x. On top of this, these curves guarantee a ‘minimality’ in how
A and d are taken. Since these curves are intended for efficient arithmetic on both the
(twisted) Edwards curve itself and its corresponding Montgomery curve, the condition of
ensuring small coefficients for both curves is no easy task, and is detailed well in [22].

9 Further discussion

In this paper, we have considered properties pertaining to elliptic curves over finite fields,
some common attacks that exploit poor implementations of the Diffie-Hellman key ex-
change protocol and then the discrete logarithm problem whose difficulty ensures the secu-
rity of a well-posed implementation of Diffie-Hellman. Then, primes p for which multipli-
cation and reduction in Fp is particularly efficient were discussed, as well as some efficient
methods for computing integer multiples of points. Important and well known elliptic
curve models were then overviewed, with a brief analysis of their efficiency, and properties
that the curves in question should satisfy to ensure that the discrete logarithm problem is
sufficiently difficult. The explicit construction of curves in the Weierstrass model attaining
32, 64 and 96 bits of security is then presented, along with a brief analysis of curves that
attain 128, 256 and 512 bits of security whose means of construction were similar.

With the field of elliptic curve cryptography being in its youth, there is naturally a
lot to be done. One might, and arguably should expect notable development over the
next few decades within the field. Whether that development is due to making progress
in solving the discrete logarithm problem on some classification of elliptic curves or strides
made in the efficiency of arithmetic on curves in some (potentially new) model, can only
be answered with time. How this development affects currently implemented elliptic curve
cryptosystems is of similar interest.
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As for us, there are a variety of interesting avenues to pursue. This includes attempts
to improve the efficiency of computing integer multiples on curves in the Weierstrass model
using birational maps or perhaps investigating the efficiency and security implications of
efficient point tripling in the Hessian model. One might also be interested in considering
the applicability of side-channel attacks on methods of improved efficiency in the (twisted)
Edwards model using birational maps to the Montgomery model.
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Appendices

1 from random import randint

2

3 def is_comp(a,n,q,s):

4 if pow(a,q,n) == 1:

5 return False

6 for i in range(s):

7 if pow(a,q*pow(2,i),n) == n-1:

8 return False

9 return True

10

11 def mra(n,k): #probabilistic primality test

12

13 if n in [2, 3, 5, 7, 11]: #special cases

14 return True

15

16 for j in [2, 3, 5, 7, 11]: #trial division

17 if n % j == 0 or n == 1:

18 return False

19

20 s, q = 0, n-1

21 while q % 2 == 0: #rewriting n-1 as q*2^s

22 q >>= 1

23 s += 1

24

25 for i in range(k):

26 a = randint(2,n-2)

27 if is_comp(a,n,q,s):

28 return False

29 return True

Listing 1: Miller-Rabin primality test

1 from miller_rabin import mra

2

3 def s_bit_prime(delta , s): #generate $2s$ -bit Montgomery -friendly prime

4

5 alpha = 8* delta

6 beta = 2*s-alpha

7 gamma = 0

8

9 p = pow(2,alpha+beta) -0*pow(2,alpha)-1

10 while not mra(p,10) or not p % 4 == 3:

11 p -= pow(2,alpha)

12 gamma += 1

13 return p, alpha , beta , gamma

Listing 2: Find s-bit secure Montgomery-friendly prime

48



1 #integer multiplication in the Weierstrass model

2

3 O = [0,1,0]

4

5 def wei_mult_p(m,p,a,b,X,Y,Z):

6 if Z == 0:

7 return O

8

9 Q = O

10 for k in "{0:b}".format(m):

11 Q = wei_double_p(p,a,b,Q[0],Q[1],Q[2])

12 if int(k) == 1:

13 Q = wei_add_p(p,a,b,X,Y,Z,Q[0],Q[1],Q[2])

14 return Q

15

16 def wei_double_p(p,a,b,X,Y,Z): #point doubling

17

18 if Z == 0:

19 return O

20

21 alpha = (a * pow(Z,2,p) + 3 * pow(X,2,p)) % p

22 beta = Y * Z % p

23 gamma = X * Y * beta % p

24 delta = pow(alpha ,2,p) - 8 * gamma

25 mu = pow(beta ,2,p)

26

27 X3 = 2 * beta * delta % p

28 Y3 = (alpha * (4 * gamma - delta) - 8 * pow(Y,2,p) * mu) % p

29 Z3 = 8*beta*mu % p

30

31 if Z3 == 0:

32 return O

33

34 return [X3,Y3,Z3]

35

36 def wei_add_p(p,a,b,X1 ,Y1 ,Z1 ,X2 ,Y2 ,Z2): #point addition

37

38 if Z1 == 0:

39 return [X2 ,Y2,Z2]

40 if Z2 == 0:

41 return [X1 ,Y1,Z1]

42 if [X1,Y1,Z1] == [X2,Y2,Z2]:

43 return wei_double_p(p,a,b,X1,Y1,Z1)

44

45 lam1 = Y1 * Z2 % p

46 lam2 = X1 * Z2 % p

47 lam3 = Z1 * Z2 % p

48

49 t0 = Y2 * Z1 % p

50 u = t0 - lam1

49



51 uu = pow(u,2,p)

52 t1 = X2 * Z1 % p

53 v = t1 - lam2

54 vv = pow(v,2,p)

55 vvv = v * vv % p

56 R = vv * lam2 % p

57 t2 = 2 * R

58 t3 = uu * lam3 % p

59 t4 = t3 - vvv

60 A = t4 - t2

61 t5 = R - A

62 t6 = vvv * lam1 % p

63 t7 = u * t5 % p

64

65 X3 = v * A % p

66 Y3 = (t7 - t6) % p

67 Z3 = vvv * lam3 % p

68

69 return [X3,Y3,Z3]

Listing 3: Integer multiples in projective coordinates for curves in the Weierstrass model
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1 #integer multiplication in the Mongtomgery model

2

3 from mod_sqrt import mod_sqrt

4 from sympy import mod_inverse

5

6 def mont_double_XZ(p, X, Z, A24): #point doubling

7

8 if X == 0:

9 return [0, 0]

10

11 u = X + Z

12 v = X - Z

13 uu = pow(u,2,p)

14 vv = pow(v,2,p)

15 uv = uu - vv

16 t = A24 * uv + vv % p

17

18 X3 = uu * vv % p

19 Z3 = uv * t % p

20

21 return [X3, Z3]

22

23 def mont_add_XZ(p, Xm , Zm , Xn , Zn , X1 , Z1): #point addition

24

25 u = (Xm - Zm) * (Xn + Zn) % p

26 v = (Xm + Zm) * (Xn - Zn) % p

27 w = u + v

28 t = u - v

29 ww = pow(w,2,p)

30 tt = pow(t,2,p)

31 X = ww * Z1 % p

32 Z = tt * X1 % p

33

34 return [X, Z]

35

36 def mont_ladder(k, p, X1 , Z1 , A): #the Montgomery ladder

37

38 if k == 0:

39 return [0, 0]

40

41 A24 = (A + 2) * mod_inverse (4,p)

42 P1 , P2 = X1 , Z1

43 Q1 , Q2 = mont_double_XZ(p, X1 , Z1 , A24)

44 for i in bin(k)[3:]:

45 if int(i) == 1:

46 P1, P2 = mont_add_XZ(p, Q1 , Q2 , P1 , P2 , X1 , Z1)

47 Q1, Q2 = mont_double_XZ(p, Q1 , Q2 , A24)

48 else:

49 Q1, Q2 = mont_add_XZ(p, P1 , P2 , Q1 , Q2 , X1 , Z1)

50 P1, P2 = mont_double_XZ(p, P1 , P2 , A24)

51



51

52 return [P1, P2]

53

54 def y_recover(p,A,B,X,Z): #Y-coordinate recovery

55

56 if Z == 0:

57 return [0,1]

58

59 LHS = B * Z % p

60 RHS = (pow(X,3,p) + A * pow(X,2,p) * Z + X * pow(Z,2,p)) % p

61

62 inv_LHS = mod_inverse(LHS ,p)

63 Y_sq_co = RHS * inv_LHS % p

64

65 Y = mod_sqrt(Y_sq_co ,p)

66

67 x = B * X * inv_LHS % p

68 y = B * Y * inv_LHS % p

69

70 return [x,[y,p-y]] #return both possibilities of (x,y)

Listing 4: Integer multiples in projective coordinates for curves in the Montgomery model
along with Y -coordinate recovery
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1 #integer multiplication in the (twisted) Edwards model

2

3 O = [0,1,0]

4

5 def ted_mult_p(m,p,a,d,X,Y,Z):

6 if Z == 0:

7 return O

8

9 Q = O

10 for k in "{0:b}".format(m):

11 Q = ted_double_p(p,a,d,Q[0],Q[1],Q[2])

12 if int(k) == 1:

13 Q = ted_add_p(p,a,d,X,Y,Z,Q[0],Q[1],Q[2])

14 return Q

15

16 def ted_double_p(p,a,d,X,Y,Z): #point doubling

17

18 if Z == 0:

19 return O

20

21 B = pow(X + Y,2,p)

22 C = pow(X,2,p)

23 D = pow(Y,2,p)

24 E = a * C % p

25 F = E + D

26 H = pow(Z,2,p)

27 J = F - 2 * H

28

29 X3 = (B - C - D) * J % p

30 Y3 = F * (E - D) % p

31 Z3 = F * J % p

32

33 return [X3,Y3,Z3]

34

35 def ted_add_p(p,a,d,X1 ,Y1 ,Z1 ,X2 ,Y2 ,Z2): #point addition

36

37 if Z1 == 0:

38 return [X2 ,Y2,Z2]

39 if Z2 == 0:

40 return [X1 ,Y1,Z1]

41

42 A = Z1 * Z2 % p

43 B = pow(A,2,p)

44 C = X1 * X2 % p

45 D = Y1 * Y2 % p

46 E = d * C * D % p

47 F = B - E

48 G = B + E

49

50 X3 = A * F* ((X1 + Y1) * (X2 + Y2)- C - D) % p

53



51 Y3 = A * G * (D - a * C) % p

52 Z3 = F * G % p

53

54 return [X3,Y3,Z3]

Listing 5: Integer multiples in projective coordinates for curves in the (twsited) Edwards
model
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