
University of Groningen

Bachelor’s Thesis

ReverseRADEX: a tool to quickly gauge
global physical conditions of a gas cloud.

Supervisor:
Prof. Dr. Floris F.S. van der Tak (Kapteyn Astronomical Institute, University of Groningen)

2nd Examiner:
Dr. Kateryna Frantseva (Kapteyn Astronomical Institute, University of Groningen)

Author:
Filip van der Mooren (S3804011)

Abstract: Molecular emission line observations of interstellar gas clouds harbor
information about the global physical components like kinetic temperature and den-
sities. Current software to extract this information in a quick and practical manner
is scarce and due for improvement. RADEX is used as the underlying radiative
transfer code based on escape probability methodology, requiring molecular collision
data following the format of the Leiden Atomic and Molecular Database (LAMDA).
RADEX input consist of physical components and outputs line spectra and required
inversion. Accordingly, a set of python wrappers for Fortran written RADEX was
compared and SpectralRadex chosen. ReverseRADEX takes molecular spectral lines
as input and optimizes for physical components using an algorithm chain consisting
of three parts; a Brute-force method to estimate initial physical parameters, subse-
quently the Levenberg-Marquardt (LM) algorithm refines the parameter estimates,
culminated by an Monte Carlo Markov Chain (MCMC) algorithm in order to deter-
mine parameter uncertainties. ReverseRADEX is available online and the design of
ReverseRADEX is described here, with exemplifying tests showcasing the software’s
capabilities and limitations as a practical program to obtain physical parameter and
uncertainty estimates quickly.

July 2, 2021

https://www.rug.nl/research/kapteyn/
https://www.rug.nl/research/kapteyn/

Contents

Page

1 Introduction 4

2 Theory 6
2.1 Radiative transfer . 6

2.1.1 Equation of radiative transfer . 6
2.1.2 Gas emission . 7
2.1.3 Escape probability . 7

2.2 Algorithms . 9
2.2.1 The Brute-force method . 9
2.2.2 Levenberg–Marquardt . 10
2.2.3 MCMC . 10

3 MAGIX 12
3.1 Incorporating MAGIX . 12
3.2 Results . 13

4 RADEX 14
4.1 Capabilities useful for ReverseRADEX . 14
4.2 Limitations and Assumptions . 15

5 Wrapper comparison 16
5.1 SpectralRadex . 17
5.2 ndRADEX . 17
5.3 pyradex . 18
5.4 Miscellaneous wrappers . 18

5.4.1 pythonradex . 18
5.4.2 myRadex . 19
5.4.3 radexgrid . 19

6 ReverseRADEX 21
6.1 Inverting RADEX . 21

6.1.1 Input . 21
6.1.2 Output . 22

6.2 Results . 24
6.2.1 Single run . 24
6.2.2 Comparison . 27

7 Discussion 29
7.1 Parameter degeneracy . 29
7.2 MCMC . 31

7.2.1 Chains . 31
7.2.2 Distributions . 32

7.3 MAGIX . 33
7.3.1 Latent MAGIX . 33

page 2 of 100

7.3.2 MAGIX results . 33
7.4 Wrapper comparison . 33
7.5 ReverseRADEX . 34

7.5.1 Limitations and Assumptions . 34
7.5.2 Figures . 35
7.5.3 Fitting . 35
7.5.4 Code . 35
7.5.5 User interface . 36

8 Conclusion 37

Acknowledgements 38

References 39

Appendices 42
A ReverseRADEX . 42

A.1 main.ipynb . 42
A.2 Output . 43

B Wrapper comparison code . 47
C ReverseRADEX (main program code) . 54

C.1 main . 54
C.2 user input . 61
C.3 fitting . 80
C.4 save plot . 92

page 3 of 100

Chapter 1 INTRODUCTION

1 Introduction

Most astronomical observations are made with radiation, covering a large range of the electromag-
netic spectrum. Specific parts of the spectrum are useful to study various objects, due to spectral
line transitions of molecular1 species appearing as emission or absorption on top of the continuum.
The mid- and far-infrared (3 µm; 300 µm), (sub)millimeter (0.3 mm; 3 mm), and radio (0.3 cm; 30
cm) parts of the spectrum house diagnostic molecular spectral lines to study interstellar gas, both
with Earth- and space-based telescopes.
Currently the most active fields within astrochemistry are protoplanetary disks, nurturing stellar
and planetary formation within, among other interests like cataloging chemical constituents of dif-
fuse and translucent clouds. For an overview of astrochemical study interests and their challenges
e.g. see van Dishoeck 2017. Astrochemistry concerns itself with how molecules form and their influ-
ence on the surrounding medium, often determined from physical conditions revealed only through
molecular line observations. Current state of the art observing instruments like the Atacama Large
Millimeter Array provide such molecular line observations, and will be joined by upcoming instru-
ments like the Large Latin American Millimeter Array, providing new research possibilities regarding
astrochemistry. See e.g Mendoza et al. 2021 discussing; early universe chemistry, star forming re-
gions, and asymptotic giant branch stars and circumstellar envelopes.

Observations however do not directly contain information about the physical conditions of the
source and radiative transfer codes are required to interpret observations. One of such codes is
RADEX (van der Tak et al. 2007), which can be used to compare molecular observations with a
modeled spectrum. RADEX is an “intermediate-level” radiative transfer code, requiring the “basic-
level” assumptions but in addition solves for the statistical equilibrium (SE) of (de-)excitation rates
from and to a given state. The “basic-level” (e.g. “population diagram method” - Goldsmith et al.
1999) requires observations of molecular line strengths2, which are then fit as a function of upper
level energy. The excitation is described by a single temperature Tex [K], often under the assump-
tion of local thermodynamic equilibrium (LTE), in which case Tex = Tkin, the kinetic temperature
(van der Tak 2011). And in the case of similar beam sizes and low optical depths, or appropriate
corrections are applied, physical conditions of the interstellar cloud can be determined.
Not assuming LTE, the “intermediate” level requires knowledge about molecular collision rates,
somewhat limiting the usefulness of the method, for many species do not have (accurate) collisional
rates available. RADEX utilizes molecular data, following the data file format of the Leiden Atomic
and Molecular Database (LAMDA) (Schöier et al. 2005), also including quality labels for the molec-
ular collisional data, presented in a recent update also mentioning prospects of the database (van
der Tak et al. 2020). The SE is solved in RADEX using the escape probability approximation
(Rybicki 1985), which assumes no information about internal structure variation, treating the gas
cloud as a global entity.
The “sophisticated-level” forgoes the approximation of local excitation and solves for line strengths
using both the depth into the cloud, as well as the velocity. An example of such a method is the
Accelerated Lambda Iteration (ALI) method, incorporated e.g. into the LIME radiative transfer
method (Brinch et al. 2010), where the local contribution to the radiation field is decoupled from
the total radiation field by representing the cloud as a grid of points. Similarly, Monte Carlo based
methods solve for radiative transfer by representing the cloud as an ensemble of cells, sending pho-

1 In this thesis, the term “molecule(s)” refers to molecular, mono-atomic and ionic species.
2 In this thesis, line strengths refers to both intensity TR [K], and fluxes F [K km s−1] and F [erg cm−2 s−1].

page 4 of 100

Chapter 1 INTRODUCTION

ton packages in random directions from each cell (Hogerheijde 2000). For an overview of these
“model-levels” see e.g. (van der Tak 2011) as well as e.g. (van Zadelhoff et al. 2002) for numerical
performance and convergence characteristics for the non-LTE methods.

RADEX however takes the physical conditions sought after as input and outputs line strengths
which can then be compared to observations. The inversion of this process is what ReverseRADEX
offers by making multiple calls to RADEX with varying input parameters until a convergent solution
is found, where model and observations agree best. A few programs3 have already attempted this to
various levels of accessibility. The need for such a program thus exists already and ReverseRADEX
aims to serve as a quick and reliable tool to determine global physical conditions of observed inter-
stellar clouds. Specifically, the following parameters can be determined if enough lines (parameters
+ 1) are observed; the kinetic temperature Tkin [K], the molecular column density Nmol [cm−2] and
volume densities of collision partners ncol [cm−3].
The source code of RADEX is written in Fortran77 with bits of Fortran90 and hence runs fast.
Over the years however, Fortran has not kept up as the primary programming language in the field
of astronomy at 28 ± 2 % compared to python’s 67 ± 2 % (Momcheva et al. 2015). Additionally,
python is a prevalent language to teach freshman students. To abide by this raise in popularity of
python, the Fortran source code is “wrapped” to allow for easy interfacing with python, as if the
source code is a part of the python language, without losing the speed of Fortran. No new wrapper
is developed specifically for this thesis, for various wrappers already exist and will be discussed in
Section 5.
ReverseRADEX utilizes the SpectralRadex (Holdship et al. 2020) wrapper to make multiple calls
on RADEX models which are compared to observational data, and determine the parameter and
uncertainty estimates for the accompanying physical conditions of the interstellar gas that minimize
the χ2 statistic. In view of open science, the program is freely available at gitlab.astro.rug.nl/
mooren/ReverseRADEX under the MIT license.

The thesis is structured as follows. Section 2 will briefly discuss the theory behind the formal-
ism of RADEX to analyze observations. Section 3 discusses our attempt of incorporating MAGIX
(Möller et al. 2013) into ReverseRADEX. Section 4 will provide a summary of RADEX for parts of
the interest for ReverseRADEX. Section 5 examines the different python wrappers of RADEX and
why SpectralRadex is chosen for use in ReverseRADEX. Section 6 covers the inversion process for
RADEX and showcases results. Section 7 offers a discussion and prospects for various aspects of
the thesis. Finally concluding the thesis in Section 8 with a summary of the thesis and prospects
for ReverseRADEX.

3 Listed here in no particular order: pyradexnest, radexcee, pyradex mcmc specifically for (Kamenetzky et al. 2018).

page 5 of 100

https://gitlab.astro.rug.nl/mooren/reverseradex
https://gitlab.astro.rug.nl/mooren/reverseradex
https://github.com/jrka/pyradexnest
https://github.com/richteague/radexcee
https://github.com/avantyghem/pyradex_mcmc

Chapter 2 THEORY

2 Theory

This section is split in two subsections; firstly discussing the radiative transfer formalism applied
to (Reverse)RADEX, and thereafter the algorithms used in Reverse(RADEX) for convergence are
detailed.

2.1 Radiative transfer

The following section has been largely derived using (Draine 2011; Rybicki et al. 2004), unless
specifically referenced otherwise. This section briefly discusses the formalism derived form the
theory of radiative transfer adopted into (Reverse)RADEX. For a more in-depth look into the for-
malism used in (Reverse)RADEX to analyze molecular line observations see van der Tak et al. 2007.

2.1.1 Equation of radiative transfer

Radiative transfer is described by the emission, absorption and scattering of photons along a straight
path from source to observer. Therefore, the specific intensity, Iν [erg cm−2 s−1 Hz−1 sr−1], is used
for it is a quantity that is conserved along its path in the absence of any local absorption or emission,
in addition to having a well defined direction of travel. Combining the specific intensity with the
absorption αν [cm−1] and emission jν [erg cm−3 s−1 Hz−1 sr−1] coefficients, thus provide us with
all components required to describe radiative transfer in the following differential form,

dIν
ds

= −ανIν + jν [erg cm−3 s−1 Hz−1 sr−1]. (1)

This equation shows how the specific intensity varies as a function of absorption αν and emission
jν and follows the conservation criteria when absorption and emission are absent or in equilibrium.
Subsequently dividing through the absorption coefficient, the source function, Sν = jν/αν [erg cm−2

s−1 Hz−1 sr−1] (describing the emissivity per unit optical depth), and optical depth in differential
form along an infinitesimally thin path, dτν = ανds, can be defined and used to express the equation
of radiative transfer in integral form,

Iν = Iν(s = 0)e−τν +

∫ τν

0
Sν(τ ′ν)e−(τν−τ

′
ν)dτ ′ν [erg cm−2 s−1 Hz−1 sr−1] (2)

where Iν now describes the incoming radiation along the line of sight and Iν(0) describes the
“background” radiation entering the medium. Equation (2) is valid for both continuum radiation,
covering a large bandwidth, and spectral lines, referring to drastic local absorption and emission
alterations, covering a tiny frequency interval. The integral form of the radiative transfer equation
is also usually the form used in radiative transfer codes (van Zadelhoff et al. 2002).

The specific intensity can then be used to derive the integrated mean intensity over the line profile,

J̄ν =

∫ ∞
0

(
1

4π

∫
IνdΩ

)
φν(v)dv =

∫ ∞
0

Jνφν(v)dv [erg cm−3 Hz−1] (3)

where Jν is the integrated mean intensity over the solid angle, Ω [sr], and v is the velocity [cm s−1].

page 6 of 100

Chapter 2 THEORY

2.1.2 Gas emission

The spectral lines observed as spikes in the continuum spectrum are caused by molecules, either
through emission or absorption. Local spontaneous emission for a molecule in upper level u with
number density nu occurs at a rate of the accompanying Einstein Aul coefficient [s−1], where u and
l stand for upper and lower respectively, and can be linked to the emission coefficient,

jν =
hνul
4π

nuAulφν [erg cm−3 s−1 Hz−1 sr−1] (4)

where h [erg Hz−1] is Planck’s constant, νul [Hz] the central line frequency and φν [Hz−1] the spon-
taneous emission line profile function.

The absorption coefficient is described using the Einstein Bul and Blu coefficients [erg−1 cm3 s−1

Hz], referring to induced emission and photon absorption respectively,

αν =
hνul
4π

(nlBluϕν − nuBulχν) [cm−1] (5)

where ϕν and χν are the line profile functions for absorption, and induced emission respectively (van
der Tak et al. 2007). Notice how the induced emission has a negative contribution to the absorption
coefficient and the line profiles, φ = ϕ = χ, only when collisional excitation dominates.

The collisional excitation can be described with the collision rate coefficient γ [cm−3 s−1] expressed
using the Maxwellian average of the collisional cross section, σ [cm−2],

γul =

(
8kBTkin
πµ

)−1
2
(

1

kTkin

)2 ∫
σEe−E/kTkindE [cm3 s−1] (6)

where kB [erg K−1] is the Boltzmann constant, E [erg] the collisional energy, Tkin [K] the kinetic
temperature, µ [g] the reduced mass. Equation (6) is the downward collisional rate coefficient and
its upward counterpart can be obtained from detailed balance,

γlu = γul
gu
gl

exp

(
−hν
kTkin

)
[cm3 s−1] (7)

where gi is the statistical weight of level i. These rate coefficients can be combined with the number
density of the collision partner, ncol, to find the collision rate (van der Tak et al. 2007),

Cul = ncolγul [s−1]. (8)

2.1.3 Escape probability

The equation of statistical equilibrium can be written in the following compact form4,

dni
dt

= 0 =
N∑
i 6=j

njPji − ni

N∑
i 6=j

Pij [cm−3 s−1] (9)

4 (de Jong et al. 1980; Rybicki 1985; van der Tak et al. 2007)

page 7 of 100

Chapter 2 THEORY

where the destruction, Pij [s−1], and formation, Pji [s−1], coefficients of level i are,

Pij =

{
Aij +Bij J̄ν + Cij for i > j

Bij J̄ν + Cij for i < j
[s−1] (10)

and where, Bij J̄ν is the transition absorption rate.

Equation (9) thus depends on both the level populations, ni and nj , and the local radiation field,
equation (3), which in turn are interdependent on one another, posing a problem when trying to
solve equation (9). The escape probability method mitigates this problem by considering only the
global properties of the gas cloud, decoupling the interdependence by defining the radiation field
in terms of the source function Sν and optical depth dependent, geometrically averaged escape
probability, β(τν), that a photon escapes the medium,

J̄ν ≈ Sν [1− β(τν)] (11)

where the background radiation and any local continuum are ignored, and the relation between β(τν)
and τν is dependent on the adopted geometry, see Section 4 for the geometries provided by RADEX.

Equation (11) is a fundamental first-order relation of the simplest escape probability method (Ry-
bicki 1985). When the gas cloud is completely opaque, the escape probability will equal zero and
the radiation field equals the source function.

page 8 of 100

Chapter 2 THEORY

2.2 Algorithms

To estimate the physical conditions of the observed celestial object, three algorithms are utilized to
constrain the parameters referring to the physical conditions. The algorithms are linked together
in an algorithm chain, see Figure 1, with the first “algorithm” being the Brute-force method used
to find the global minimum, secondly a non-linear least squares algorithm to refine the parameter
estimates, Levenberg-Marquardt, and lastly an MCMC algorithm for uncertainty estimates. The
benefit to chaining algorithms is that it reduces biases and the computation time for the compu-
tationally expensive MCMC algorithm can be reduced, as it will only have to obtain uncertainty
estimates and not search the whole parameter space for the parameter estimates.

Brute method Levenberg-Marquardt

MCMC

Parameter
bounds + values

Initial parameter
estimates

Refined parameter estimatesParameter + uncertainty
estimates

Figure 1: A flow diagram showcasing the algorithm chain used to converge the parameter estimates.

The parameter ranges of RADEX, Section 4.2, can span many orders of magnitude, making it
difficult to define stopping criteria that are meaningful for all parameters. To circumvent this, a
simple log10 scaling is applied to all parameters to be fit, reducing the maximum difference between
parameters in most circumstances to approximately one order of magnitude.
There are also approximate timings taken for each respective algorithm with the following test
parameter ranges; 10 < Tkin [K] < 1000, 1010 < NCO [cm−2] < 1020, 100 < nH2 [cm−3] < 108.
The timings were taken on a 4 core scientific Linux virtual machine running at 4.8 GHz and the
combined run time for all algorithms (essentially the entire program) is . 4.5 minutes.

2.2.1 The Brute-force method

The Brute-force method used in ReverseRADEX is a simple grid search of the entire (user) specified
parameter space. The complexity is thus O(an) where min(number of evaluations per parameter) =
n > 1 and, number of parameters to be fit = a > 1. The grid adaptively decides how many points
per parameter to evaluate, based on the supplied user bounds and a predetermined difference be-
tween subsequent evaluations, as well as a minimum and maximum to ensure reasonable sampling
and reduce computation time respectively.
Even though this complexity is unfavorable, all the grid search has to do is find reasonable initial
parameter estimates and leave the rest to the next algorithm in the chain. This can be achieved
only if enough observations are available to constrain the parameter degeneracy, see Section 7.1, in
which case the grid does not have to be sampled very finely, for the parameter space has one clear
minimized solution and is thus mono-modal.
Using the example detailed in the last paragraph of Section 2.2, the Brute-force method takes < 1

page 9 of 100

Chapter 2 THEORY

minute to sample the global minimum. This is partially due to the Brute-force method grid search
being complemented by SpectralRadex’s feature set, Section 5.1, utilizing both the built in grid
calculation and multiprocessing capabilities.

2.2.2 Levenberg–Marquardt

After global parameter estimates have been determined by the Brute-force method, the derivative
based LM algorithm (Moré 1978) refines the parameter estimates. The Brute-force method likely
did not reach the optimal parameter combination but got close enough for the LM algorithm to
further optimize the parameter estimates.
The LM algorithm is a non linear derivative least squares solver and implemented in ReverseR-
ADEX through the SciPy python library5 (Virtanen et al. 2020). LM is a robust and efficient
algorithm that optimizes for parameters by estimating the Hessian matrix using the summed outer
products of the gradients (Roweis 1996), but does not support bounds, which in most cases should
not be a problem unless the initial parameter guesses are close to the (user) supplied or RADEX
bounds, possibly causing the subsequent MCMC algorithm to fail or SpectralRadex to fatally fail
respectively.
The LM algorithm had to trade in speed to attain its robustness but compared to the other algo-
rithms used, speed was never a concern for the LM algorithm. Using the test case defined in the
last paragraph of Section 2.2, the obtained run time was consistently found to be < 5 seconds and
in extreme cases < 10 seconds.
One downside to using LM is that you need n + 1 data points to fit n parameters and in the case
of the C atom for example, there are only a maximum of three spectral lines to be observed, of
which all are forbidden and the 3P2—

3P0 has ∆J = 2, making it much weaker and thus significantly
harder to observe than the already forbidden 3P1—

3P0 and 3P2—
3P1 transitions. This means that

you might only have two observed data points and can thus only constrain one parameter for these
kinds of molecules.

2.2.3 MCMC

Now that the parameter estimates of the physical conditions have been established by the two prior
algorithms in the chain, the MCMC algorithm is utilized to obtain parameter uncertainties. The
MCMC algorithms works on the basis of minimizing the posterior distribution build up of the log
likelihood and log prior. Given the observed line strengths yi with uncertainties σi, measured at
frequencies xi, the log likelihood becomes,

ln
[
L(yi|xi, σi,pf ,pc)

]
= −0.5

N∑
i=1

[(
yi −model(xi, pf , pc)

σi

)2

+ 2 ln(σi) + ln(2π)

]
(12)

where pf are the free parameters, pc the constant parameters and model refers to a RADEX model.

A likelihood can however not be used to sample the free parameters outright, for the likelihood
is a probability distribution governing the data yi, conditioned by the parameters pf . To draw
parameter samples, a prior is needed to marginalize over the nuisance parameters (in this case all

5 See for further information: docs.scipy.org/doc/scipy.optimize.least_squares.

page 10 of 100

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.least_squares.html

Chapter 2 THEORY

but pf) (Foreman-Mackey et al. 2013; Sivia et al. 2006). A uniform uninformative prior is used to
marginalize over said nuisance parameters,

ln
[
prior(pf)

]
= pl ≤ pf ≤ pu (13)

where pl and pu are the (user) supplied lower and upper bounds for the free parameters respectively.

Combing equations (12) and (13), the posterior distribution is obtained,

ln
[
p(pf |yi, σi,pc)

]
∝ ln

[
L(yi|xi, σi,pf ,pc)

]
× ln

[
prior(pf)

]
. (14)

Equation (14) is used to optimize the model parameters pf by checking on each iteration if the
combination of parameters minimized the posterior more or less then the previous iteration and
based on that accept or reject the new parameters respectively.

MCMC algorithms vary in how the updated parameters are calculated. The MCMC algorithm
incorporated into ReverseRADEX is that of the emcee python package (Foreman-Mackey et al.
2013), and allows for various update algorithm schemes, referred to as moves. ReverseRADEX
uses the following three moves to update the parameter coordinates; StrechMove (Foreman-Mackey
et al. 2013; Goodman et al. 2010), DEMove (Nelson et al. 2013) and DESnookerMove (ter Braak
et al. 2008) with 70%, 20% and 10% probability respectively. This entails that 70% of the MCMC
walkers in parameter space are updated to the next set of parameters using the StretchMove, and
20% using DEMove and 10% using DESnookerMove, if the next set of parameter coordinates are
accepted that is.
The run time was . 3 min for the test case defined in the last paragraph of Section 2.2.

page 11 of 100

Chapter 3 MAGIX

3 MAGIX

Early on in this project, the solver of choice was the iterating algorithm engine MAGIX (Möller
et al. 2013). Reason being, why develop an iterative solver specifically for this thesis when capable
alternatives already exist.
The major benefit of MAGIX is that it serves as an interface to easily utilize a variety of different
minimization algorithms, as well as smart support for chaining those algorithms. The smart aspect
refers to the case when the first algorithm in the chain has a “BestSiteCounter” option, indicating
multiple sites in parameter space that could be global minima, then the next algorithm in the chain
will run for all those sites, instead of just one, and choose the best site to continue. The algorithm
settings themselves (e.g. number of iterations, χ2 limit, and a few algorithm specific options) are
limited however. In other words MAGIX is a high level interface for iterative algorithms. A similar
algorithm chain as currently implemented in ReverseRADEX, Section 2.2, could be achieved with
MAGIX as well, with the difference being the specific settings of the algorithms.
Additionally, as MAGIX is an external program, it handles its own parallelization and provides
algorithms that can benefit from said parallelization, requiring only that the model to iteratively
solve for is parallelizable. Unfortunately MAGIX was developed on Linux, also supporting MACs
but has not been tested on Windows and therefore is likely not completely supported on Windows.
I have seriously attempted to incorporate MAGIX into ReverseRADEX but the following two sec-
tions will clarify why it has been omitted.

3.1 Incorporating MAGIX

Since MAGIX is an external program, it requires a way to funnel the input from python and does
this for all settings via xml files. This was translated in how the input of ReverseRADEX was
tailored for MAGIX in an attempt to keep the code readable. Some of the code was also present
in other parts of the code base and still remain after the removal of MAGIX from ReverseRADEX.
See Section 7.3.1 for a more detailed discussion on the latent MAGIX code.
Although high level, MAGIX was not easily understood and the incomplete documentation (Möller
et al. 2020) provided some headaches. However, the many examples for each algorithm exemplified
enough of the undocumented settings to get MAGIX operational.
The aim of MAGIX is to be applicable in many situations but in pursuit of this generality suffers
from performance loss. Each iteration of a RADEX model required a random folder to be generated,
the model and input files to be copied there and the output to be copied from there into MAGIX
for the solving, introducing a lot of overhead. This would not be much of an issue if the model
itself would be the bottleneck but the run time of (Spectral)RADEX, see Table 2, is < 10 ms. In
addition to the performance loss, the pursuit of generality likely also introduced the overwhelming
amount of log and data bloat files6.
In the hopes of incorporating MAGIX as a “quick and easy solution” to interface RADEX with
iterative minimization algorithms, it ended up taking significantly more time than the python
native alternatives currently implemented, see Section 2.2 and Appendix C.3 for the code.

6 Depending primarily on the amount of algorithms, it could reach ±25 unnecessary files in ReverseRADEX’s case
for each time the program runs.

page 12 of 100

Chapter 3 MAGIX

3.2 Results

Results obtained with MAGIX gradually improved over the weeks of development but were ulti-
mately deemed unsatisfactory. Table 1 shows how the parameter and uncertainty estimates change
for varying numbers of constraints (observed lines),

Table 1: A comparison using MAGIX of the parameter (+ uncertainty) estimates for Tkin, NCO, and nH2 , with all
other parameters fixed, and using 4/40, 20/40, and 40/40 lines.

Run Available data Tkin [102 K] NCO [1015 cm−2] nH2 [105 cm−3]

Input parameters 1.20 1 1

1 4/40 lines 1.12 ± 0.02 0.278 · · · ± 2× 10−15 2.51189 ± 0.00002
2 20/40 lines 1.1 ± 0.5 0.278 · · · ± 2× 10−10 2.51189 ± 0.00006
3 40/40 lines 1.1 ± 0.5 0.278 ± 0.007 2.51188 ± 0.00008

Table 1 shows a minimum of 4/40 data points for three parameters because the LM algorithm,
Section 2.2.2, requires data points ≥ parameters + 1 in order to work. The results are purposefully
not shown in log10 scale to showcase the absurdity of the uncertainties. Not only in numeric value,
but also in data point dependence, where less data results in a irrationally more constrained pa-
rameter estimate with tiny uncertainties, especially in the case of NCO. The uncertainties of nH2 ’s
remain of the same order of magnitude but are tiny for all three runs. The most realistic numerical
uncertainties are those of Tkin but still follow the wrong uncertainty–data-point relation. Generally
it is expected that the uncertainties become larger when less data are available but the opposite
trend is observed.
Furthermore, the parameter estimates themselves are far from the input parameters and most cer-
tainly do not fall within the tiny uncertainty estimates. Interestingly, the parameter estimates
appear independent of the amount of data available, producing almost equal results for all three
runs. For further discussion of MAGIX results see Section 7.3.1.
All things considered, I decided against implementing MAGIX into ReverseRADEX for it is an
external dependency that is too generalized, slow, inconsistent and produces a lot of bloat as well
as offers no support for the Windows platform.

page 13 of 100

Chapter 4 RADEX

4 RADEX

The model program used to compare with observational data in the iterative algorithm chain is
RADEX. For a more detailed look into how and within what limits RADEX works and what it has
to offer, see van der Tak et al. 2007. RADEX uses the “intermediate” escape probability method
to iteratively solve equation (9) until a consistent solution exist for both the level populations and
the radiation field. The solution is than used to derive other quantities explained later on. In
(Reverse)RADEX, three escape probabilities, for different use cases, are included;

• The large velocity gradient (LVG) escape probability (de Jong et al. 1980; Mihalas 1978),
primarily used for an expanding spherical shell,

βLVG =
1

τν

∫ τν

0
e−τ

′
νdτ ′ν =

1− e−τν

τν
. (15)

• For a spherically symmetric and homogeneous static gas cloud the escape probability (Oster-
brock et al. 2006, Appendix 2) is,

βsphere =
3

2τν

[
1− 2

τ2ν
+

(
2

τν
+

2

τ2ν

)
e−τν

]
. (16)

• For shocks, a plane-parallel “slab” geometry escape probability (de Jong et al. 1975) is in-
cluded,

βslab =
1− e−3τν

3τν
. (17)

4.1 Capabilities useful for ReverseRADEX

RADEX requires the following set of inputs to run, see Table 3a; the molecular file, output file
name, frequency range, kinetic temperature Tkin [K], the collision partners [name], density of colli-
sion partner ncol [cm−3], background radiation temperature Tbg [K], molecular column density Nmol

[cm−2] and line width [km s−1].
RADEX will then make an initial guess by solving equation (9) for the level populations of the
molecular energy levels in the optically thin case, taking into account only the un-shielded back-
ground radiation field. From these initial level populations, the optical depth τ is calculated, in
turn allowing for re-calculation of the the molecular excitation and incorporating the internal radi-
ation field when solving equation (9). This step iteratively continues until a coherent solution exists
between the level populations and radiation field.
When calculations finish, the following output gets returned, see Table 3b; re-iterates input, upper
state energy [Eup], line frequency [GHz], wavelength λ [µm], excitation temperature Tex [K], optical
depth τ , peak radiation temperature TR [K], upper population density nu [cm−3], lower population
density nl [cm−3], line flux F [K km s−1] and line flux F [erg cm−2 s−1]

The important inputs and outputs for ReverseRADEX are; Tkin, Nmol, ncol and TR, F [K km
s−1], F [erg cm−2 s−1] respectively. The output is given as the background subtracted line intensity
of the Rayleigh-Jeans limit equivalent peak radiation temperature,

TR =
c2

2kν2

(
Iemν − Ibgν

)
[K] (18)

page 14 of 100

Chapter 4 RADEX

where c [cm s−1] is the speed of light, and Iν
em and Iν

bg are the total emission and background
emission intensities.
From TR the line fluxes are calculated using,

F =

√
π

2
√

ln 2
TR∆V [K km s−1] (19)

where the fraction converts the square line profile used in calculations to a Gaussian line profile
with ∆V [km s−1] the FWHM of the Gaussian line profile.
and,

F =

√
π

2
√

ln 2
8πν̃3kBTR∆v [erg cm−2 s−1] (20)

where ν̃ = ν/c [cm−1] is the wavenumber and ∆v [cm s−1] the FWHM.

4.2 Limitations and Assumptions

RADEX assumes an isothermal, homogeneous cloud that does not possess a large scale velocity field
and is not in LTE but is in SE. The optical depth is also assumed to be independent of the velocity,
causing the relation between Tex and the line flux to break down for large τ . The ortho-para ratio
of H2 is handled internally by RADEX, if left unspecified, but can be indirectly formulated by the
user when specifying the o–H2 and p–H2 densities. The limits on the input parameters of interest
for RADEX range from the following; 0.1 < Tkin [K] < 104, 105 < Nmol [cm−2] < 1025, 10−3 <
ncol [cm−3] < 1013. The output of RADEX is not limited necessarily but warning is given to not
always trust spectral lines with optically thick, τ & 100, results (van der Tak et al. 2007, sec: 4.1.2)
or for -0.1 . τ (nonlinear amplification), relating to maser lines, which can negatively affect the
non-maser lines (van der Tak et al. 2007, sec: 3.6).
There is also no information about the length scale or geometry of the source, as well as the as-
sumption that the source fills the beam antenna, implying RADEX works with a beam-averaged
column density (Mangum et al. 2015). The source’s peak radiation temperature can then be directly
compared to the observed antenna temperature, corrected for optical efficiency of the telescope.
Collisional excitation is assumed dominant, implying φ = ϕ = χ = 1/∆v, where RADEX utilizes a
rectangular line shape. This is also the reason why optically thick lines are not modeled well, for τ
is assumed constant over the line profile, and not both spectrally and spatially resolved.
The “intermediate” method, and especially the escape probability approximation, assume no knowl-
edge of the internal structure of the cloud, as well as do not account for any dust or free-free opacity
to the escape probability. For wavelengths & 1 mm, dust continuum radiation is negligible, unless
the source region has high column densities like in protoplanetary disks, but cannot be ignored for
wavelengths . 100 µm (van der Tak et al. 2007, sec: 3.6). However, a tabulated dust or free-free
radiation field can be included.
RADEX can only model one molecule (data file) at a time and thus does not support the modeling
of multiple species or isotopologues. This is an issue in certain cases where line overlap occurs and
possibly influence the excitation.
The molecular data files provided by the LAMDA contain collisional rate coefficients in tabulated
form for certain temperatures. Interpolation takes place for all the temperatures in between but
no extrapolation is done to avoid numbers blowing up, and the collisional rate coefficients plateau
beyond the tabulated bounds.

page 15 of 100

Chapter 5 WRAPPER COMPARISON

5 Wrapper comparison

A wrapper serves the purpose of interfacing the RADEX Fortran source code with python to facil-
itate software development. A number of wrappers already exist (see Table 2 for all those found
online), and this section compares their functionality, in order to determine their adaptability for
use in ReverseRADEX. Numerical output is also compared to that of RADEX, in Table 3c, in order
to ensure accurate values are obtained. The motivation behind the comparisons are that it would
be redundant to develop a wrapper specifically for this thesis when capable alternatives are already
available.
The wrapping method varied between; F2PY 7, which wraps Fortran source code to a python callable
module, RADEX binaries where the RADEX executable is called from python, and rewritten python
where the (entire) Fortran source code is ported to python.
Parallelization is also assessed in an effort to speed up the calculations beyond what RADEX is
capable of. The RADEX source code utilizes Fortran77 common blocks, making RADEX not thread
safe (Shults 2002) and thus not fit for parallelization outright. The source code can be recompiled
with the inclusion of the “threadprivate” option for common blocks, to avoid unexpected behavior
(Simulia Corp 2008, sec: 11.9.1) caused by multiple threads writing to the same point in memory
at the same time. But replacing common blocks with modules is the much preferred approach to
modern Fortran programming, seen in the source code for SpectralRadex (Holdship et al. 2020).
Another feature that is preferable is built in grid processing, to be used for the Brute-force method,
Section 2.2.1. A built in grid calculation is likely tailor made to suit the wrappers ecosystem and
efficient beyond what can be achieved if naively implemented after the fact for ReverseRADEX.

Table 2: General description of the wrappers’s capabilities. Timings were obtained for the input parameters listed
in Table 3a and are an average over 1000 runs, see Appendix B for the code.

wrapper author wrapping
method

parallel
processing

built in grid
calculations

timings per
run [ms]

RADEX F.F.S van der Tak, et al. original no no 8.12

SpectralRadex J. Holdship, et al. F2PY yes all parameters 3.96
ndRADEX A. Taniguchi binariesa yes all parameters 86.81d

pyradex A. Ginsburg F2PY nob noc 46.55
pythonradex G. Cataldi rewritten

python
nob no 32.18

myRadex F. Du F2PY nob no xe

radexgrid B. Svoboda binariesa yesb yes x
aThe RADEX binaries get called from python.
bNot proclaimed by author or not (thoroughly) tested.
cGrid processing does not extend beyond a for loop for certain parameters.
dThe timing is taken for 3x as many RADEX runs compared to other timings, see Section 5.2.
e’x’ represents that no timings were conducted.

Timings were obtained, ensuring that the input and output was the exact same, see Appendix B for
the code. The importance of the timings comes down to ReverseRADEX striving to be practical
for scientific use by delivering quick estimates of the physical conditions from the observed cloud.
Another thing of note is that the wrappers in this section and Table 2 are ordered, primarily based
on ease of use and feature set, while no definite qualitative benchmark is followed.

7 See for further information: numpy.org/doc/stable/f2py.

page 16 of 100

https://numpy.org/doc/stable/f2py/

Chapter 5 WRAPPER COMPARISON

5.1 SpectralRadex

The most recent of the wrappers is SpectralRadex (Holdship et al. 2020), wrapped using F2PY. The
RADEX source code has been modernized substantially, with the major gain being the improved
ability for parallelization, accomplished by forgoing the use of Fortran77 common blocks.
The parallelization functionality is (optionally) utilized by the built in grid processing, through
means of a Pool object like multiprocessing.pool8 from the python standard library. Furthermore,
the use of the Pandas DataFrame9 makes manipulating data a simple task, especially in the case of
the built in grid processing used for the Brute-force method, Section 2.2.1.
Of all the wrappers tested, it is also the fastest wrapper, even beating out RADEX itself with a
∼2 x time speed increase, likely another benefit of the modernized Fortran. It even outperforms
ndRADEX 20 fold for reasons that become clear in Section 5.2.
In Table 3c it is also shown that although the Fortran source code has been modernized, the numer-
ical results remain comparable to RADEX, likely only deviating due to handling the rounding of
the output differently. RADEX rounds most outputs to three decimal digits, whilst SpectralRadex
outputs more digits. The largest variation is ∼0.00308% for the F [erg cm−2 s−1], most definitely
within acceptable deviation.
The recency of SpectralRadex comes accompanied with it being hosted by the UCL astronomy group
and thus expected to receive prolonged support, at the very least beyond that of other wrappers,
primarily backed by a lone author. The documentation reflects this, being ample and explanatory.
In addition, the wrapper is supplied with an additional feature set for spectral modeling (Holdship
et al. 2021) (see Section 7.5.3 for possible prospects of incorporating this into ReverseRADEX) as
well as being the only wrapper claiming OS independence, improving accessibility. Considering all
this, SpectralRadex is the RADEX wrapper utilized in ReverseRADEX.

5.2 ndRADEX

With a similar features set to SpectralRadex, there is ndRADEX (Taniguchi 2019). The primary
difference being that the Fortran source code is left untouched and the RADEX binaries are used
instead of wrapping the source code using F2PY.
Like SpectralRadex, ndRADEX supports parallelization, albeit not as effective as SpectralRadex’s
implementation, utilizing noticeably less processing power during run time. This is reflected in the
timings (see Table 2) for ndRADEX, being the slowest out of all tested codes. This is unexpected
for both pyradex and pythonradex do not claim to posses parallel processing capabilities yet beat
out ndRADEX 2x and 3x respectively. The main reason for this discrepancy is that ndRADEX
returns output for only one spectral line per RADEX run whereas all other codes return the full
output. Naively speaking this amounts to an N times increase in run time, where N is the number
of spectral lines in the molecular file. The timings were obtained using the parameters listed in
Table 3a, with the code listed in Appendix B. The C atom only has three spectral lines in this
case, implying that one run of a RADEX model takes 86.81/3 ≈ 28.94 ms, putting it on par with
pythonradex’s timings. However, this is still approximately a factor 3 slower than native RADEX
at 8.12 ms.
Built in grid calculations are also supported and substantiated by Pandas DataFrames in addition

8 See for further information: docs.python.org/3/multiprocessing.pool.
9 See for further information: pandas.pydata.org/docs/DataFrame.

page 17 of 100

https://docs.python.org/3/library/multiprocessing.html#module-multiprocessing.pool
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html?highlight=dataframe#pandas.DataFrame

Chapter 5 WRAPPER COMPARISON

to a similar DataFrame, xarray’s10. Xarray’s operate similarly to Pandas but enable for “Handy
I/O”, with the particularly useful capability of saving and loading results using netCDF files.
As the RADEX binaries are used directly, it is of no surprise that the results obtained with
ndRADEX and RADEX match to the order of at least ∼ 10−16, see Table 3c, making ndRADEX the
most accurate. The small disparity should be nothing more than verisimilitude and can likely be at-
tributed to a floating point error. The primairy reason for not using ndRADEX in ReverseRADEX
is the unfavorable output limitation of ndRADEX, causing unnecessary significant computational
overhead.

5.3 pyradex

On installation pyradex (Ginsburg 2014) downloads the RADEX Fortran source code, patches it,
compiles the code and wraps it using F2PY. The patches are mostly minor with the exception
of reassigning the ortho/para ratio calculation to python instead of keeping it in Fortran. Which
is a possible cause of the dissimilarity in the numerical results of pyradex compared to RADEX,
see Table 3c. Another cause, as with SpectralRadex, is the different handling of the rounding of
output but certainly producing acceptable results. Using the latest version of pyradex, the fluxes
are not directly computed, although the fluxes seem to be displayed for prior versions, based of the
examples in the documentation. Unfortunately the installation experience for pyradex was the least
user friendly of all the wrappers and prior versions are therefore not tested.
One of the reasons why the comparison is done for the C atom is because pyradex, using the CO
molecule instead, would return 0.0 for the line strengths of higher spectral lines. Obviously this
is unacceptable when these values have to be compared with observations of line strengths that,
albeit tiny in some cases, are never zero. The exact cause, and if the same trend persists for other
molecules, is untested.
Both grid processing and parallelization are not natively supported by pyradex and the timings are
the slowest of all the codes (referring to only a single RADEX model run), see Table 2. Pyradex
does have multiple contributors to the project as well as recent maintenance, in addition to the
inclusion of astropy.units11, ensuring that the output is exactly what is expected. The combination
of the shortcomings however make pyradex unfit for use in ReverseRADEX.

5.4 Miscellaneous wrappers

The following wrappers differ from those above primarily because they solve the radiative transfer
problem differently (pythonradex, myRadex) or are severely outdated (radexgrid). This is also the
reason why no numeric comparison is conducted for these wrappers.

5.4.1 pythonradex

Pythonradex (Cataldi 2017) is not a wrapper but a purely pythonic implementation of RADEX that
utilizes the ”sophisticated” ALI12 method to solve the system, whilst RADEX iteratively solves for

10 See for further information: xarray.pydata.org.
11 See for further information: docs.astropy.org/units.
12 For further details on how ALI is implemented in pythonradex, see the documentation: pythonradex.

readthedocs.io/accelerated-lamda-iteration-ali

page 18 of 100

https://xarray.pydata.org/en/stable/
https://docs.astropy.org/en/stable/units/
https://pythonradex.readthedocs.io/en/latest/#accelerated-lamda-iteration-ali
https://pythonradex.readthedocs.io/en/latest/#accelerated-lamda-iteration-ali

Chapter 5 WRAPPER COMPARISON

statistical equilibrium until a consistent solution exist for both the level populations and radiation
field (van der Tak et al. 2007, sec: 3.4). Pythonradex has not been explored in great detail, for a
fully pythonic implementation of RADEX, in addition to a more sophisticated solver, is expected
to suffer significant performance losses compared to the Fortran written version. Using the same
comparison method as for the wrappers above (see Tables 2, 3 and Section 5), the timings for
pythonradex are ∼32.18 ms per run, approximately 4x as slow as RADEX and nearly 8x slower
then SpectralRadex.
Pythonradex also has no intrinsic support for grid and parallel processing and further issues are
the inability to reproduce the following essential outputs for ReverseRADEX; TR [K], F [K km
s−1] and F [erg cm−2 s−1]. The absence of these outputs likely also affects the run time, making it
appear faster than it would be if the same output were to be calculated and compared. One reason
for this inability is that pythonradex calculates the line flux directly, radiation originating from the
cloud only, whereas RADEX calculates what would be observed and output by a telescope; both
the cloud, background and foreground radiation13.
It does however have desirable features, lacking in RADEX or the other wrappers like; the ability
to use molecular files that lack frequency data by calculating the frequencies from the energy levels,
as well as more geometries to choose from, to name but a few features. Additionally, since the
source code is 100% python and not also partially Fortran, and astronomers are more familiar with
python than Fortran (Momcheva et al. 2015), it makes pythonradex more accessible towards user
modifications to fit their needs and possibly implement as future contributions. And strengthening
this accessibility is the inclusion of proper documentation.

5.4.2 myRadex

Also not a wrapper, myRadex (Du 2014), which is a software that solves the same problem as
RADEX with one major difference. The difference being that myRadex utilizes an ODE solver that
evolves the system towards statistical equilibrium, as opposed to RADEX’s iterative method.
The source code is written in Fortran and there is both a command line, and F2PY wrapped version.
Further things of note are the absence of built in parallel, and grid processing. Due to these defi-
ciencies, the difference of approaches to solving the system and the lack of documentation, myRadex
was deemed unfit for use in ReverseRADEX and hence no timings were performed either.

5.4.3 radexgrid

Radexgrid (Svoboda 2013) is the only wrapper that I was unable to get operational and therefore no
timings are available. Reason being, radexgrid appears to be written in python 2 and after the initial
release in 2013, has not seen an update past 2014. Radexgrid benefits from code from pyradex but as
the name suggests and unlike pyradex, it does support grid processing for all parameters, excluding
the geometry. Additionally, radexgrid also claims to support parallelization but the effectiveness is
untested and likely not as profound, given that it wraps the RADEX binaries without meaningful
modification to address the thread safety, like ndRadex.

13 See for further information: pythonradex.readthedocs.io/difference-between-pythonradex-and-radex.

page 19 of 100

https://pythonradex.readthedocs.io/en/latest/#difference-between-pythonradex-and-radex

Chapter 5 WRAPPER COMPARISON

T
a
b

le
3:

N
u
m

er
ic

w
ra

p
p

er
co

m
p
a
ri

so
n

w
it

h
R

A
D

E
X

a
s

a
b
a
se

li
n
e.

S
ee

A
p
p

en
d
ix

B
fo

r
th

e
co

d
e

a
n
d

S
ec

ti
o
n

4
.1

fo
r

a
b
ri

ef
ex

p
la

n
a
ti

o
n

o
n

th
e

co
lu

m
n
s.

(a
)

In
p
u
t

p
a
ra

m
et

er
s

fo
r

th
e

n
u
m

er
ic

w
ra

p
p

er
co

m
p
a
ri

so
n

a
n
d

ti
m

in
g
s.

m
ol

ec
u

le
T

k
in

[K
]

N
C

[c
m

-2
]

n
H

2
[c

m
-3

]
T

b
g

[K
]

d
v

[k
m

s-
1
]

g
eo

m
et

ry

C
at

om
a

10
0.

0
1
.0

e1
4

1
.0

e5
2
.7

3
1
.0

u
n

if
o
rm

sp
h

er
e

a
(K

le
in

et
a
l.

1
9
9
8
;

S
ch

ro
d
er

et
a
l.

1
9
9
1
;

Y
a
m

a
m

o
to

et
a
l.

1
9
9
1
)

a
n
d
N
I
S
T

fo
r

A
-v

a
lu

es
.

L
A

M
D

A
a
cc

es
se

d
:

2
5
/
0
4
/
2
1
.

(b
)

R
A

D
E

X
o
u
tp

u
t

fo
r

th
e

in
p
u
t

p
a
ra

m
et

er
s

li
st

ed
in

T
a
b
le

3
a
.

T
ra

n
si

ti
on

E
u
p

[K
]

ν
[G

H
z]

T
e
x

[K
]

τ
T

R
[K

]
n
u

[c
m

-3
]

n
l

[c
m

-3
]
F

[K
k
m

s-
1
]
F

[e
rg

cm
-2

s-
1
]

3
P
1

—
3
P
0

2.
36

e+
01

4.
92

e+
02

4.
86

e+
0
1

1
.8

6
e-

0
4

7
.0

2
e-

0
3

4
.4

7
e-

0
1

2
.4

2
e-

0
1

7
.4

7
e-

0
3

1
.1

5
e-

0
8

3
P
2

—
3
P
1

6.
25

e+
01

8.
09

e+
02

4.
46

e+
0
1

2
.1

8
e-

0
4

6
.0

9
e-

0
3

3
.1

1
e-

0
1

4
.4

7
e-

0
1

6
.4

8
e-

0
3

4
.4

2
e-

0
8

3
P
2

—
3
P
0

6.
25

e+
01

1.
30

e+
03

4.
60

e+
0
1

7
.4

3
e-

1
2

1
.6

1
e-

1
0

3
.1

1
e-

0
1

2
.4

2
e-

0
1

1
.7

1
e-

1
0

4
.8

6
e-

1
5

(c
)

N
u
m

er
ic

co
m

p
a
ri

so
n

o
f

w
ra

p
p

er
o
u
tp

u
t

w
it

h
th

e
R

A
D

E
X

o
u
tp

u
t

o
f

T
a
b
le

3
b

a
s

a
b
a
se

li
n
e.

T
h
e

d
iff

er
en

ce
b

et
w

ee
n

R
A

D
E

X
a
n
d

ev
er

y
w

ra
p
p

er
is

ca
lc

u
la

te
d

a
cc

o
rd

in
g

to
:

d
iff

%
=

1
0
0
×

(w
ra

p
p

er
−

R
A

D
E

X
)/

R
A

D
E

X
,

w
h
er

e
”
w

ra
p
p

er
”

a
n
d

”
R

A
D

E
X

”
re

fe
r

to
th

e
(t

a
b
le

)
o
u
tp

u
t

co
lu

m
n
s.

w
ra

p
p

er
T

ra
n

si
ti

on
T

e
x

[%
]

τ
[%

]
T

R
[%

]
n
u

[%
]

n
l

[%
]

F
[K

k
m

s-
1
]

[%
]
F

[e
rg

c
m

-2
s-

1
]

[%
]

3
P
1

—
3
P
0

1.
08

e-
04

1
.5

5
e-

0
2

-6
.7

7
e-

0
3

-5
.6

5
e-

0
3

-1
.7

7
e-

0
2

x
a

x
p
y
ra

d
e
x

3
P
2

—
3
P
1

-3
.8

3e
-0

4
1
.8

4
e-

0
2

-3
.4

9
e-

0
3

-1
.0

2
e-

0
2

-5
.6

5
e-

0
3

x
x

3
P
2

—
3
P
0

6.
02

e-
04

-5
.6

5
e-

0
3

6
.9

2
e-

0
3

-1
.0

2
e-

0
2

-1
.7

7
e-

0
2

x
x

3
P
1

—
3
P
0

0.
00

e+
00

0
.0

0
e+

0
0

-1
.2

4
e-

1
4

0
.0

0
e+

0
0

0
.0

0
e+

0
0

1
.1

6
e-

1
4

0
.0

0
e+

0
0

n
d

R
A

D
E

X
3
P
2

—
3
P
1

-1
.5

9e
-1

4
1
.2

4
e-

1
4

1
.4

2
e-

1
4

0
.0

0
e+

0
0

0
.0

0
e+

0
0

0
.0

0
e+

0
0

0
.0

0
e+

0
0

3
P
2

—
3
P
0

0.
00

e+
00

0
.0

0
e+

0
0

0
.0

0
e+

0
0

0
.0

0
e+

0
0

0
.0

0
e+

0
0

0
.0

0
e+

0
0

0
.0

0
e+

0
0

3
P
1

—
3
P
0

1.
08

e-
04

1
.5

5
e-

0
2

-6
.8

5
e-

0
3

-5
.6

5
e-

0
3

-1
.7

7
e-

0
2

4
.5

9
e-

0
3

3
.0

8
e-

0
2

S
p

e
c
tr

a
lR

a
d

e
x

3
P
2

—
3
P
1

-3
.8

4e
-0

4
1
.8

4
e-

0
2

-3
.6

3
e-

0
3

-1
.0

2
e-

0
2

-5
.6

5
e-

0
3

6
.8

0
e-

0
3

1
.0

8
e-

0
2

3
P
2

—
3
P
0

6.
01

e-
04

-5
.6

5
e-

0
3

6
.6

8
e-

0
3

-1
.0

2
e-

0
2

-1
.7

7
e-

0
2

-9
.9

1
e-

0
3

4
.8

6
e-

0
3

a
’x

’
R

ep
re

se
n
ts

th
a
t

th
e

w
ra

p
p

er
d
id

n
o
t

d
ir

ec
tl

y
o
u
tp

u
t

th
is

q
u
a
n
ti

ty
.

page 20 of 100

https://www.nist.gov/pml/atomic-spectra-database

Chapter 6 REVERSERADEX

6 ReverseRADEX

ReverseRADEX is a program that takes molecular spectral line observations of interstellar gas
clouds and returns the global physical conditions of said gas cloud based on an escape probability
approximation, using the SpectralRadex python wrapper for RADEX. ReverseRADEX will solve
for at most 8 parameters, including Tkin, Nmol and all14 volume densities of collision partners; H2,
H, e−, p–H2, o–H2, H+ and He, and at minimum fits any one of the aforementioned parameters.
The fitting will be done against user observations, Figure 2, and returns the parameter and un-
certainty estimates, Table 4. ReverseRADEX is limited to a terminal application and or .ipynb
notebook to operate and does not possess a graphical user interface (GUI), see Section 7.5.5 for
further discussion on the UI.

6.1 Inverting RADEX

Section 4.1 lists what RADEX itself is capable of, and what the important output is for one run
of the program. One of these important outputs; TR, F [K km s−1], F [erg cm−2 s−1], in Re-
verseRADEX is taken as input, such that RADEX’s input will become ReverseRADEX’s output.
An algorithm chain, Section 2.2, is employed to achieve this by first finding global estimates of the
input parameters to be fit using a grid search, followed by the LM algorithm refining the parameter
estimates, which is subsequently complemented by an MCMC algorithm in order to determine the
uncertainties.

6.1.1 Input

The input for ReverseRADEX is thus the same as RADEX with the addition of bounds for fit
parameters and observed molecular spectral lines for the interstellar cloud of interest. The same
units are used and are clearly listed when prompted for input, Figure 3. The first input is the
molecular data file following the file format from LAMDA and the second input is the observed
data, see Figure 2 for how it should be formulated,

Figure 2: The observed data file (new test.dat, see Figure 3) where; the first line indicates the units used (1: TR

[K], 2: F [K km s−1], 3: F [erg cm−2 s−1], see Section 4.1), the first column contains the frequencies in GHz, the 2nd
column indicates the line strengths in terms of the specified units in the header, and the last column is the uncertainty,
in this case a flat 10%. These “observations” were generated with SpectralRadex and hence have an absurd number
of decimal digits.

The remainder of the input is similar to RADEX’s and is shown in Figure 3, where the first three
inputs (after the file paths) are constants; background radiation field Tbg [K], line width dv [km
s−1] and the escape geometry, Section 4. Subsequent input follows for the parameters that can be

14 It would be inappropriate to fit H2 in combination with either p–H2 or o–H2, since RADEX internally always
calculates the ortho/para ratio for H2, unless p–H2 or o–H2 are specified, in which case H2 gets ignored.

page 21 of 100

Chapter 6 REVERSERADEX

fit, starting with a prompt if the parameter is to be fit, followed by the upper and lower bounds if
yes and the parameter value if no. For the volume densities, the same prompt asking if the param-
eter should be fit appears but the bounds are entered only once and are the same for all collision
partners. Similarly to Tkin and Nmol, if the collision partner should not be fit bit is selected, the
parameter value is required input.

Figure 3: The terminal input for the CO molecule, fitting 25 < Tkin [K] < 750, 1010 < NCO [cm−2] < 5× 1021 and
103 < nH2 [cm−3] < 108. Blank entries indicate that default settings were used, Tbg = 2.73 [K] and dv = 1 [km s−1].

Once the input sequence is completed, an overview is displayed before continuing to the fitting
process, Figure 4. First it repeats back the file paths of the molecular and observation data file, fol-
lowed by the units specified in the observed data file and whether uncertainties are included, Figure
2. Thereupon the numeric values for the constant parameters in addition to the numeric variable
parameters, their bounds and fit status is reported. The overview finishes of with an indication of
the frequency bounds within which all the observed spectral lines should be contained in addition to
which escape probability geometry is selected, before prompting the user to either continue towards
the fitting process or terminate.

6.1.2 Output

The output of ReverseRADEX will be five files, of which two figures, two data files and a summary
file. The two plots produced are; a corner plot, Figure 6, and a spectrum plot, Figure 7a (unfortu-
nately without the “truth” input parameters, of course). Moreover, a RADEX model run for the
optimal parameter estimates in addition to the χ2 values for each line are returned, see Appendix
A.2.1. The user can thus inspect if any values appear nonphysical and possibly indicate grounds for
dismissal of ReverseRADEX’s results, as well as give information on the accompanying Tex, τ , etc.
of all the (un)observed spectral lines. Also returned are the sampled MCMC parameter estimates,
Appendix A.2.2, to inspect the chains or e.g. if different looking plots are desirable.
Lastly, a summary file, Appendix A.2.3, is written that contains information about the input pa-

page 22 of 100

Chapter 6 REVERSERADEX

rameters and the fitting result.

Figure 4: An overview of the selected (user) settings, Figure 3, is displayed. The “name of the parameter” is
primarily used internally, “parameter value” is the numeric selected value used in calculations (if not fit), “(upper
bound, lower bound)” is self explanatory and “fit parameter?” is either True or False and either fit or not respectively.

In addition to the summary file, the terminal also displays information on the fitting progress dur-
ing run time, Figure 5. Primarily to give insight into how much the parameter estimates differ
per algorithm, especially important in the case of LM vs MCMC, for LM should have found the
correct parameter estimates and any significant discrepancy between the MCMC and LM parameter
estimates would likely indicate that the grid search was ineffective at finding the correct minima in
parameter space.

page 23 of 100

Chapter 6 REVERSERADEX

Figure 5: After the user answered “y” to the prompt aksing the user to continue to the fitting process, Figure 4, the
resulting terminal output follows. From the top; first the initial estimate based on the global search algorithm, Section
2.2.1, followed by the refined parameter estimates using LM, Section 2.2.2, after which the MCMC algorithm runs
with progression indicated by a progress bar, subsequently the run time, and lastly the parameter and uncertainty
estimates are displayed, as well as where the results are saved.

6.2 Results

Results of ReverseRADEX will be shown for a single run using mock data generated by Spectral-
Radex, Figure 2, thus implying ReverseRADEX can find the exact parameter combination, which
in real world observations is unlikely to be the case. A comparison is also performed to showcase
how the results differ if different amounts of data are available.

6.2.1 Single run

For the input parameters summarized in Figure 4 and using generated data (4 CO spectral lines),
Figure 2, the retrieved parameter estimates and uncertainties enclose the input parameters, see
Table 4. The parameter estimate is the median of the MCMC chains and the upper and lower
uncertainties enclose 1σ of uncertainty within them. The true kinetic temperature deviates the
most from the input parameter but falls well within the uncertainties. The largest uncertainties are
found for nH2 followed shortly by Tkin and translate well to the parameter corner plot, Figure 6,
where it is clearly shown that Tkin and nH2 are highly correlated. NCO is constrained much further
with uncertainties one order of magnitude lower, even though the parameter value itself is one order
of magnitude greater than Tkin.

page 24 of 100

Chapter 6 REVERSERADEX

Figure 6: The input parameters are those of Figure 3. The blue lines indicate the median of the parameter
distributions, the contours show the 1σ (∼39% for 2D distributions) level and the dashed lines indicate the 1σ (∼68%
for 1D distribution) interval for the distributions on the diagonal.

The parameter distributions obtained, see Figure 6, from the MCMC run in the case of nH2 and
Tkin do not follow the expected Gaussian distribution very well, also indicative of why the upper
and lower uncertainties for Tkin deviate, see Figure 5. In the case of NCO, the Gaussian distribution
is much more discernible. Furthermore, to a lesser extent than between Tkin and nH2 , the remaining
parameter combinations all show clear correlation. Interestingly, the correlation for all parameter
pairs is not along a straight line in parameter space but more akin to a curved line.
Figure 7a shows how the MCMC algorithm sampled parameter estimates used to calculate the
RADEX models confine the fit most stringent on the observed data points, especially clear for the
CO spectral line at ∼1267 GHz where the “MCMC uncertainty interval” is tighter than for sur-
rounding frequencies. The RADEX model for the input parameters is over-plotted and overlaps
at the data points, diverging from the optimal parameter estimates primarily in the peak and by
several dex at higher frequencies, Figure 7b.
A trace plot accompanying the corner plot of the MCMC chain is also made visible in Appendix
A.2.4. The total run time for the settings used in Figure 4 is consistently . 5 minutes.

page 25 of 100

Chapter 6 REVERSERADEX

(a) The spectrum on a linear scale to clearly show the results near the observed data points.

(b) The spectrum on a log10 scale to showcase how much the optimal parameters still deviate from the RADEX model
using the input parameters at higher frequencies.

Figure 7: ReverseRADEX plot of the line flux vs. frequency for four spectral lines of the CO molecule, see Figure 3
for the full input and Figure 2 for which CO spectral lines. The RADEX model for the input parameters, Table 4, is
over-plotted to showcase it falls withing the MCMC sampled region, see Figure 6. The MCMC “uncertainty interval”
is simply 100 RADEX models selected from randomly drawn parameter combinations after burn-in.

page 26 of 100

Chapter 6 REVERSERADEX

6.2.2 Comparison

Table 4 also contains the results for the same input parameters, see Figure 3, if 8/40, 20/40 and
40/40 spectral lines are available to be fit,

Table 4: A comparison using ReverseRADEX of the parameter (+ uncertainty) estimates for Tkin, NCO, and nH2 ,
with all other parameters fixed, see Figure 3, and using 4/40, 8/40, 20/40, and 40/40 spectral transition lines. In all
four cases, the input parameters are within the parameter estimates’s 1σ uncertainty interval.

Run Available data log10(Tkin) [K] log10(NCO) [cm−2] log10(nH2
) [cm−3]

Input parameters ∼ 2.0791 15 5

1 4/40 spectral lines 2.2+0.4
−0.3 14.98+0.04

−0.05 4.7+0.6
−0.6

2 8/40 spectral lines 2.078+0.005
−0.005 15.00+0.03

−0.03 5.00+0.04
−0.04

3 20/40 spectral lines 2.077+0.003
−0.004 15.00+0.02

−0.03 5.01+0.02
−0.02

4 40/40 spectral lines 2.078+0.002
−0.002 15.00+0.02

−0.02 5.01+0.02
−0.02

For all four runs, the parameter uncertainties hold the input parameters within but from run 1 to
run 2, the parameter estimates significantly differ compared to from run 2 to runs 3 and 4, where
the parameter estimates are almost identical. Similarly for the uncertainties, from run 1 to runs 2,
3 and 4 they differ ∼2 dex in the case of Tkin, ∼1 dex in the case of nH2 and only a factor ∼2 for
NCO. The uncertainties for run 4 are still meaningfully lower than those of runs 2 and 3 however.
The excess of data thus does seem to offer diminishing returns when comparing run 1 to to runs 2,
3 and 4 and when comparing runs 2, 3 and 4 between themselves. For run 4 the Gaussian likelihood
is resolved quite nicely as seen by the equality in magnitude of the upper and lower uncertainties.
Tkin is thus constrained most stringently, 1 dex lower than NCO and nH2 , if enough data is available
but matches the dex in uncertainty for nH2 in the case of run 1. The column density seems to be
indifferent towards change in the amount of data available.
Confirming the suspicion of a refined Gaussian likelihood for runs 2, 3 and 4, a corner plot, Figure
8, shows how the posterior parameter distributions differ based on the amount of available data.

page 27 of 100

Chapter 6 REVERSERADEX

14
.88

14
.94

15
.00

15
.06

lo
g

(N
) [

cm
]

2.0
0

2.2
5

2.5
0

2.7
5

log (T) [K]

4.2
4.8
5.4
6.0

lo
g

(H
) [

cm
]

14
.88

14
.94

15
.00

15
.06

log (N) [cm]
4.2 4.8 5.4 6.0

log (H) [cm]

run 1
run 2
run 3
run 4
Input parameters

Figure 8: The input parameters are the same for each run, Figure 3, with the exception being that run 1 used
“observed input” Figure 2, 4 CO spectral lines, and corollary according to Table 4, runs 2, 3 and 4 used 8, 20 and
40 CO spectral lines respectively. The dotted line indicates the input parameters of the parameter distributions; Tkin

= 120 [K], NCO = 1e15 [cm−2], nH2 = 1e5 [cm−3]. And the contours show 3 σ contour levels (∼68%, ∼95%, ∼99%
standard contour levels and not 2D σ levels).

The extreme correlation between Tkin and nH2 for run 1 is much less pronounced in the case of
runs 2, 3 and 4 but still follow the same diagonal, albeit much tighter bound in terms of magnitude.
Interestingly, the opposite is true for the other parameter correlations, where the correlation in
magnitude remains comparably consistent between runs but the diagonals seem to have flipped,
rotating ∼90◦. For runs 2, 3 and 4, the distributions are much more established, as seen by the
median falling dead in the middle of the 1D and 2D distributions, contrary to run 1 where the
distributions are misshapen from the expected Gaussian distributions. Although regarding NCO,
the Gaussian distribution for run 1 is much more comparable to the other runs, primarily skewed
towards lower values, as opposed to the distributions of Tkin and nH2 where Gaussian structure is
completely absent.

page 28 of 100

Chapter 7 DISCUSSION

7 Discussion

The discussion discloses certain topics of the thesis that may be ameliorated and provides prospects
where possible in pursuit of this.

7.1 Parameter degeneracy

A grid in parameter space has been sampled for the CO15 molecule within bounds of, and for the
following parameters; 0.1 < Tkin [K] < 105, 105 < NCO [cm−2] < 1016, 105 < nH2 [cm−3] < 1013,
which should be representative of other researchers’s use case. The grid has been sampled for various
combinations of lines to showcase the resulting mono- and multi-modal parameter space, see Figure
9, which implies one clear (global) minima or multiple possible (global) minima. The parameter
estimates, as well as the true values, were generated using SpectralRadex, instead of using real
world observations normally used in the χ2 calculation. Reason being that the input parameters
need to be known in order to distinguish the minima.

(a) The χ2 statistic in multi-modal parameter space using CO spectral lines; 5–4, 6–5, 7–6, 8–7.

(b) The χ2 statistic in mono-modal parameter space using CO spectral lines; 5–4, 18–17, 35–34.

15 The collisional data for the CO molecule in LAMDA (accessed: 25/04/21) is provided by (Yang et al. 2010) and
the spectroscopic data by CDMS and JPL.

page 29 of 100

https://cdms.astro.uni-koeln.de/
https://spec.jpl.nasa.gov/

Chapter 7 DISCUSSION

(c) The χ2 statistic in multi-modal parameter space using CO spectral line 4–3.

Figure 9: The un-normalized χ2 statistic for the CO molecule. The data was generated in a logspace grid where
the blue points indicate the χ2 value obtained for each point in parameter space, and the red vertical dashed line
indicates the input parameters; Tkin = 3500 [K], NCO = 1e12 [cm−2], nH2 = 1e7 [cm−3].

The parameter space of only a very limited subset of all available molecules in the LAMDA database
have been looked at but all showcased a mono-modal parameter space when enough data was used,
4 & spectral lines, preferably spaced apart over the frequency band. However, this likely varies for
each molecule and their degeneracy dependence. Additionally, for the sake of comprehensible plots,
not the entire parameter space has been sampled, as certain combinations of parameters resulted
in χ2 values in excess of 10250 but the mono-modality of the parameter space still applied. This is
possibly due to mis-modeling of results like maser lines, Section 4.2, that occur for some combina-
tions of parameters.
When three, non-adjacent, spectral lines are observed and compared, Figure 9b, the parameter
space is non-degenerate, whereas if four adjacent lines are used, see Figure, 9a, the volume density
is degenerate. This is also showcased by Figure 7 where the MCMC sampled uncertainty is con-
strained slightly further at each “observed” spectral line then the surrounding unobserved spectral
lines. Figure 7b also reveals that for the higher frequencies, not constrained by “observations”, the
model with the best parameter estimates still deviates multiple orders of magnitude. Figure 9 also
indicates how fine the grid should be sampled and thus what step size to use in the grid search
algorithm, Section 2.2.1, in order to find the global minimum in the case of non-adjacent lines.
In the case of only one spectral line, see Figure 9c, the parameter degeneracy (Spilker et al. 2014)
becomes unavoidably apparent, especially for Tkin and nH2 . nH2 spans a wide range of possible
minima as well as a multiple minima for Tkin. But ReverseRADEX requires data points ≥ param-
eters + 1 to run at all, Section 2.2.2 and a single spectral line is never enough to constrain both
temperature and density.
One tidbit to add is that the parameter degeneracy mainly persists for and between Tkin and nH2

which also produces a different joint posterior contour compared to the similar, albeit orientated
differently, Tkin–NCO and NCO–nH2 contours, see Figure 8.
The degeneracies are problematic, for the first algorithm in the chain is a simple grid search, not
tailored to find appropriate solutions of degenerate, multi-modal, parameter space. To mitigate
this, the user can try to enforce strict bounds, defeating the purpose of a solver, or provide more
data to constrain the parameters further, preferably spaced out over the frequency band. Although
more data is usually always better, expect diminishing results, see Section 6.2.2. Alternatively, on
the side of ReverseRADEX, the program would require either a finer grid search, possibly imple-

page 30 of 100

Chapter 7 DISCUSSION

ment MAGIX’s “BestSiteCounter”, or different global optimization method e.g. the bees algorithm
(Pham et al. 2006), or particle swarm optimization (Kennedy et al. 1995). These algorithms can find
the global minimum in such circumstances, whilst likely not significantly increasing computation
time, if not diminishing it.

7.2 MCMC

The chains of the MCMC algorithm and the moves within those chains are elaborated upon. Indi-
cating why certain choices were made and where room for improvement lies.

7.2.1 Chains

Continuing where Section 7.1 left off, one possibility is that the MCMC algorithm will migrate from
the degenerate false minima, settled on by algorithms prior in the chain, to another (global or local)
minima. Although, it is unlikely for the MCMC walkers to always jump, as many times as needed,
to find the global minimum, given the sampling period used in ReverseRADEX is only 500 steps.
The sampling period is short because the prior algorithms in the chain should have found the param-
eter estimates already and the MCMC algorithm is primarily used to determine the uncertainties.
There is also no thinning of the chains, in favor of efficiency (Link et al. 2012), which does make all
determined parameter estimates and uncertainties dependently drawn.
In the limited testing for which the chains did migrate, it happened for . 80 steps, after which the
chain settles again. Therefore a burn-in is applied of 100 steps, leaving 400 steps, to help ensure
that the determined parameter estimates and uncertainties are drawn from convergent chains.
The user can edit the source files, Appendix C.3.5, to change the sampling and burn-in period.
And further testing will have to be conducted in order to settle on a step size that will work for all
molecules, and perhaps more notably, for different (more) parameter combinations. Additionally
providing the user with the option of setting their own sampling period would be preferred but
remains omitted to avoid cluttering the terminal input, but would be added if a GUI was available,
Section 7.5.5.

7.2.1.1 Moves
All the moves used in ReverseRADEX are ensemble moves that benefit from parallelization as de-
scribed in (Foreman-Mackey et al. 2013). The current number of walkers is 35 but should preferably
be a multiple of the number of processors used in order to most efficiently make use of the compu-
tation time and avoid having to wait for a process that updates less walkers than the processors can
handle. In other words, if 4 processors are available and 35 walkers are used, once the 4 × 8 = 32
walker moves (updated in sets of 4) have been processed, 35− 32 = 3 walkers still remain and only
3 of the 4 processors will be utilized in updating the three walker moves. Not enough testing has
been performed to set a confident interval where the number of walkers will always be sufficient for
any system.

The StretchMove is not particularly tailored for high dimensional or multi-modal parameter spaces
but is indifferent towards them and has the advantage of quickly moving from false minima, fol-
lowing an affine-invariant updating scheme (Allison et al. 2013; Goodman et al. 2010). This is to

page 31 of 100

Chapter 7 DISCUSSION

combat parameter degeneracy to a certain extent and likely why the burn-in only has to be ∼100
steps before the sampling takes place for convergent chains only. Affine-invariant MCMC in addi-
tion to this flexibility also benefits from robustness (Allison et al. 2013).
The differential evolution moves; DEMove and DESnookerMove are fairly similar to each other and
are used primarily to overcome the multi-modal issue as they are effective at exploring multi-modal
regions (ter Braak et al. 2008).
Regarding the modality of the parameter space there has not been much issue with the current im-
plementation of moves, Section 2.2.3, but testing has been limited. The higher dimensionality has
not been tested at all beyond three parameters. The combination of moves for ReverseRADEX has
been established primarily based on trial and error of the different moves16, rather than grounded in
research, extending beyond what is mentioned in the paragraphs above. The “correct” combination
of moves is thus room for improvement.

7.2.2 Distributions

The MCMC algorithm utilizes both a log likelihood and log prior in order to marginalize over
nuisance parameters and combine to form a posterior in order to determine the uncertainties of
parameters of interest. The distributions can be manually altered by going to Appendix C.3.2.

7.2.2.1 The likelihood
The (log) likelihood, equation (12), is assumed to be a simple Gaussian likelihood as this is thought
to be the general case, suitable for most users. If the user is aware of any underestimates of the
variance that are unaccounted for, then this underestimate is not propagated in the uncertainty
estimations of the parameters without determining the uncertainty of the underestimate. Addition-
ally, if your object of interest is not modeled well by a Gaussian likelihood for whatever reason, then
it is advisable to manually change the likelihood, for ReverseRADEX will not accurately describe
the parameter and uncertainty estimates in that case.

7.2.2.2 The prior
The (log) prior, equation (13), used is a simple uninformative uniform prior, while the prior al-
gorithms in the chain already contain information on the parameter space and thus parameter
boundaries, beyond those that the user supplied. This entails that the boundaries could be con-
strained further if the information by prior algorithms is adequate, which in the case of a simple
grid search as a global optimization is not deemed adequate. If a global optimization technique like
e.g. bees or pso is used that greatly improves the chances of finding the global minimum, then the
prior could constrain the posterior further to primarily envelope the global minima and yield more
accurate and precise results.
Additionally, the prior need not constrict only the parameters to be fit, but could also constrain
other quantities output by SpectralRadex, like τ , Tex, nu and nl, or (molecular) mass and length
of the object of interest (Kamenetzky et al. 2018), but that would require information not directly
supported by (Reverse)RADEX. Caution is advised though, for the prior only applies to the MCMC
algorithm in the algorithm chain, thus if your prior is very constricting, it is unlikely to obtain a

16 See: emcee.readthedocs.io/moves for information about all available moves in emcee.

page 32 of 100

https://emcee.readthedocs.io/en/stable/user/moves/

Chapter 7 DISCUSSION

good fit in the short sampling period used in ReverseRADEX.

7.3 MAGIX

The issues that arose (and still persist) whilst working with MAGIX and further reasons why it was
dismissed are detailed here.

7.3.1 Latent MAGIX

The earliest version of ReverseRADEX contained code to support the iterating engine MAGIX
which was ultimately dropped in favor for simpler, native to python, implementations of iterative
solvers, Section 2.2. Parts of this code are entangled with other parts of the code-base, deemed nec-
essary to operate MAGIX, a separate program to python. Some of this code still remains, primarily
in user input, Appendix C.2, and the subsequent grid search algorithm, Appendix C.3.3, compared
to the MAGIX free much clearer; fitting helper functions, Appendix C.3.2, LM code, Appendix
C.3.4, or MCMC code, Appendix C.3.5, albeit hard to spot without knowing what to look for.
The performance impact of the latent code should be quite minimal, as it is not code that has to
run for each iteration of a RADEX model, but possibly still causes slight overhead and is primarily
a nuisance in terms of readability of the code in some parts.

7.3.2 MAGIX results

The number of data points does not affect the parameter estimate in any significant way, meaning
either the combination of lines randomly converge to the same physical conditions, the 4/40 data
points dominate the fitting process over all other data points, or something else under the hood of
MAGIX renders void the dependence on data points.
The case presented in Section 3.2 showcases parameter estimates that do not equal the input pa-
rameters and consistently produces them from run to run as long as no parameters were altered.
Changing up the input parameters slightly however, resulted in different parameter estimates and in
some cases also return the input parameters. The uncertainties were mostly the problematic factor
in MAGIX in addition to the inconsistent results on slightly varying parameter input estimates,
making it unfit for real world use cases where slightly different input parameters by a user are to be
expected. It may very well have been mis-use of MAGIX that produces these results for MAGIX
has found success in other use cases17.

7.4 Wrapper comparison

The comparison of the timings could be improved by randomizing the input for each iteration of the
1000 runs but keeping it consistent for every single wrapper. This way any form of caching should
mitigated and slight variations in the results might be expected.
Additionally, multiple molecular files with various amounts of lines could have been used to perform
the numerical comparison but displaying the numerical results for the CO molecule with 40 lines

17 See for further information: magix.astro.uni-koeln.de/publications.

page 33 of 100

https://magix.astro.uni-koeln.de/publications

Chapter 7 DISCUSSION

would not have been pleasing in tabular form but is difficult without it.

7.5 ReverseRADEX

The continuously updated LAMDA database will make ReverseRADEX and other “intermediate-
level” radiative transfer codes passively increase in usefulness. More (accurate) collisional data will
becomes available (van der Tak et al. 2020), and the drawback of not being able to model every
species will diminish over time.
A discussion of ReverseRADEX is offered in terms of program specific concepts rather than the
specific components, which are discussed in other sections of the discussion.

7.5.1 Limitations and Assumptions

All the limitations of RADEX, Section 4.2, also apply to ReverseRADEX, as well as some newly
introduced ones.
Since ReverseRADEX works with grid calculations (built in by SpectralRadex) there is e.g. no
option to control or fix ortho/para ratios if these would be known e.g. from prior observations. An
attempted solution could be to enforce the ratio by adding it manually to the prior, 7.2.2.2, although
only the MCMC algorithm takes into account the prior (in addition to the likelihood and resulting
posterior), possibly converging on vastly different parameter estimates than the LM algorithm. It
could conceivably be worked into the grid search however. And since the MCMC walkers only take
500 steps, it is unlikely that the input parameters guided by the ortho/para ratio is not obtained
within this sample period.
Most of the testing has been conducted with the CO molecule and in lesser amount with the C
atom. There are therefore no guarantees it will work for all molecules present in the LAMDA but
ReverseRADEX should offer support for most of the molecular files. No testing has been performed
with real observed data either in view of time constraints unfortunately.
Some molecular files from the LAMDA might not be supported. Although the LAMDA has a par-
ticular file format, the structure of the molecular files is not always the same, most notably seen
in the absence of frequencies or unordered frequencies. Problems thus might ensue but should be
obvious when they occur. The absence of frequencies can be addressed by ReverseRADEX in the
future by calculating them from the energy levels.
ReverseRADEX should be OS independent for the only compatibility trouble might come from
RADEX but SpectralRadex claims to be OS independent. I myself however have not been able to
get SpectralRadex running properly in Windows.
Currently only Tkin, Nmol and ncol are supported to be fit, to avoid cluttering the UI but once a
GUI would be added, it should be easy to introduce the other parameters like dv as fit candidates
as well.
The tabulated background radiation field that can be added to RADEX has not been tested for Re-
verseRADEX and is not currently supported by ReverseRADEX, although support could be added
relatively easily. The question remains if SpectralRadex has support for it.
A prospect for (Reverse)RADEX is the ability to model multiple molecules at once or at least
model isotopologue lines (Tunnard et al. 2016). Improving the containment of physical parameters
by observing more data.
See also the other sections of the discussion, regarding limitations and assumptions not specifically

page 34 of 100

Chapter 7 DISCUSSION

mentioned here.

7.5.2 Figures

The “MCMC uncertainty interval” in Figure 7a is used instead of an 1σ uncertainty interval. The
MCMC samples more clearly show a measure of how different the model could really look with
slightly different parameters and where the model is sampled most densely, information that would
be lost with a simple 1σ uncertainty interval.

7.5.3 Fitting

Currently, the observed peak line strength is matched against (Sepctral)RADEX’s line strength
output and thus does not account for the line profile and possible (hyper-fine) line overlap. This
might be ameliorated by utilizing SpectralRadex’s spectral modeling capabilities (Holdship et al.
2021) that can be used to fit molecular spectra instead of peak line strengths.
Line overlap is also addressed by using an opacity weighted radiation temperate, following (Hsieh
et al. 2015) but would preferably be addressed in the source code of RADEX directly.
Alternatively, line ratios would be a better candidate for the χ2 statistic, for the calibration uncer-
tainties of the telescope will divide out between the two spectral lines and thus diminish.

Regarding the bounds of the volume densities of the collision partners, currently they are set for all
partners at once. This is not much of an issue when the bounds of the all parameters to be fit is
unknown but when once parameter is constrained prior to running it through ReverseRADEX for
whatever reason, then it would cause unnecessary computational overhead, in addition to parameter
degeneracy, to have global bounds in order to accommodate for the most uncertain collision partner.
Alternatively if bounds are know to be strict for multiple collision partners but also vastly different
for said collision partners, similar computational overhead and parameter degeneracy is introduced.
The primary reason it is omitted from the current implementation of ReverseRADEX is to reduce
cluttering of the (terminal) UI, as well as the limited foreseen use of such a feature following the
limited amounts of available collisional data for certain molecules. But this data is only said to
improve in the coming years and a GUI with the option of individual bounds for individual collision
partners would be the preferred solution.

7.5.4 Code

The code has been written in pursuit of (Wilson et al. 2014)’s best practices, in order to write good
code, and following (Prlić et al. 2012) in view of open science, making ReverseRADEX accessible
and clear, both for the user and (future) developer(s). In both cases, the cutting of MAGIX from
the codebase at a later stage of the project was problematic, with latent MAGIX code still per-
sisting, Section 7.3.1. This is also indicative of the code not being modular enough to swap out
one algorithm chain, albeit and external one, for another one and continues to serve as a point of
improvement that can be solved by refactoring the code.
Additional improvements in no particular order, primarily in favor of code maintainability and
readability are; type hinting, provide and use built in (unit)tests, add assertions to check validity

page 35 of 100

Chapter 7 DISCUSSION

of code operation, provide online external documentation as well as improve in-software documen-
tation, extend in-software documentation with examples, reduce repeated code. See Appendix B of
(van der Tak et al. 2007) for the coding standards of RADEX itself.

7.5.5 User interface

An effort was made to make the terminal UI as user friendly as possible, following (Prlić et al.
2012), by being lenient where possible and allowing the user to re-enter input if invalid instead
of terminating the program. Once invalid input is detected, a clear warning should be displayed
that explains what was invalid and the user should in most cases be able to continue without much
backtrack. Invalid input should in all cases be caught before running the program as well, to avoid
confusing about what might have gone wrong. There might still be cases where a warning by (Spec-
tral)RADEX occurs, “Warning: Calculation did not converge in 9999 iterations.”, but these can be
safely ignored based on my experience. The parameter combinations that result in no convergence
are unlikely to be candidates for observations. A likely candidate for failure are the observed and
molecular data files that are only checked by extension in ReverseRADEX and not much effort goes
into verifying their contents before run time. Sometimes this failure will be invisible and no warning
or error is returned even-though the program is either stuck, or terminated.
Alternative methods to running ReverseRADEX could be to allow for an input file and preferably
using a GUI but those options where omitted in view of time constraints. What is included however
is a Jupyter notebook18 that allows for manual user input, see Appendix A.1. The notebook needs
to remain in the root folder of ReverseRADEX or be prepared to run into at the very least issues
with relative imports. The manual input is not checked like that of the terminal based input so try
and at least keep the type of the input the same as in Appendix A.1.

18 See for further information: https://jupyter.org.

page 36 of 100

https://jupyter.org

Chapter 8 CONCLUSION

8 Conclusion

A program was developed to quickly gauge physical conditions of interstellar gas clouds from molec-
ular spectral line observations, with RADEX as the underlying radiative transfer code based on an
escape probability formalism. RADEX takes physical parameters as input and outputs molecular
spectral line data. ReverseRADEX inverts this process by taking molecular spectral line data as
input, as well as molecular collisional data, provided it follows the LAMDA format, and outputting
estimated global physical conditions. To this end, a variety of python wrappers for RADEX were
compared and SpectralRadex was picked for its suitable feature set, including grid search and accom-
panying parallelization capabilities, as well as the prospect of incorporating the spectral modeling
capabilities into ReverseRADEX.
ReverseRADEX utilizes three algorithms chained together; the Brute-force method examines pa-
rameter space and determines initial parameter estimates, followed by the LM algorithm in order
to refine the parameter estimates, finishing of with an MCMC algorithm to determine uncertain-
ties. MAGIX was considered instead for optimization purposes but the implementation turned out
futile.
Synthetic results of ReverseRADEX prove to be promising, finding the true physical conditions
within a practical time of under 5 minutes, Section 6.2.1. The best results are obtained if more data
is available, but primarily if spaced out over the frequency band as opposed to clumped together.
Limitations and prospects for ReverseRADEX are discussed in Section 7, most notably; replac-
ing and adjusting the Brute-force method and MCMC algorithm respectively, adding a GUI, and
refactoring the code for maintainability.

page 37 of 100

Acknowledgments

This brings me to the end of my bachelors research project and another learning experience richer.
I would like to thank Prof. Dr. Floris F.S. van der Tak for allowing me to pursue this bachelor
project and aiding me along the way. Laying emphasis on the aiding aspect as Floris really allowed
me to put forth my own project and served as a guiding role more than a demanding one being open
to my own suggestions as well. Nonetheless, the project would not have been completed without
his help.
I would also like to thank Dr. Kateryna Frantseva for being willing to serve as the 2nd examiner
for this bachelor project, as well as Drs. Martin G.R Vogelaar for providing me with the necessary
information on where and how to publish ReverseRADEX.
Software: RADEX (van der Tak et al. 2007), SpectralRadex (Holdship et al. 2020), ndRADEX
(Taniguchi 2019), pyRadex (Ginsburg 2014), pythonradex (Cataldi 2017), NumPy (Harris et al.
2020), SciPy (Virtanen et al. 2020), Pandas (McKinney 2010; Reback et al. 2020), emcee (Foreman-
Mackey et al. 2013), Matplotlib (Hunter 2007), corner (Foreman-Mackey 2016), pyGTC (Bocquet
et al. 2016)

page 38 of 100

References

Allison, R. and J. Dunkley (2013). In: MNRAS 437.4, 3918–3928. doi: 10.1093/mnras/stt2190.
Bocquet, S. and F. W. Carter (2016). In: J. Open Source Softw. 1.6. doi: 10.21105/joss.00046.
Brinch, C. and M. R. Hogerheijde (Nov. 2010). In: A&A 523, A25. doi: 10.1051/0004-6361/

201015333.
Cataldi, G. (2017). Version used: 0.1 (Oct 2020); original release/first (known) commit (Dec 2017).

url: https://github.com/gica3618/pythonradex.
de Jong, T., W. Boland, and A. Dalgarno (1980). In: A&A 91, pp. 68–84. url: https://ui.

adsabs.harvard.edu/abs/1980A&A....91...68D.
de Jong, T., S. Chu, and A. Dalgarno (1975). In: ApJ 199, pp. 69–78. doi: 10.1086/153665.
Draine, B. T. (2011). first print. PUP. isbn: 978-1-400-84732-7.
Du, F. (2014). Current version: (Jun 2020); original release/first (known) commit (Jan 2014). url:

https://github.com/fjdu/myRadex.
Foreman-Mackey, D. (2016). In: J. Open Source Softw. 1.2, p. 24. doi: 10.21105/joss.00024.
Foreman-Mackey, D., D. W. Hogg, D. Lang, et al. (2013). In: Publ. Astron. Soc. Pac. 125.925,

306–312. doi: 10.1086/670067.
Ginsburg, A. (2014). Version used: 0.4.2.dev (Aug 2020); original release/first (known) commit (Feb

2014). url: https://github.com/keflavich/pyradex.
Goldsmith, P. F. and W. D. Langer (1999). In: ApJ 517.1, pp. 209–225. doi: 10.1086/307195.
Goodman, J. and J. Weare (Jan. 2010). In: Commun. Appl. Math. Comput. Sci. 5.1, pp. 65–80.

doi: 10.2140/camcos.2010.5.65.
Harris, C. R., K. J. Millman, S. J. van der Walt, et al. (Sept. 2020). In: Nature 585.7825, pp. 357–

362. doi: 10.1038/s41586-020-2649-2.
Hogerheijde Michiel R and van der Tak, F. F. S. (2000). In: A&A. arXiv: astro-ph/0008169.
Holdship, J. and et al. (2021). In prep.
Holdship, J. and the UCL Astronomy Group (2020). Version used: 0.3.2 (Mar 2021); original

release/first (known) commit (Jul 2020). url: https://github.com/uclchem/SpectralRadex.
Hsieh, T.-H., S.-P. Lai, A. Belloche, et al. (2015). In: ApJ 802.2, p. 126. doi: 10.1088/0004-

637x/802/2/126.
Hunter, J. D. (2007). In: Comput. Sci. Eng. 9.3, pp. 90–95. doi: 10.1109/MCSE.2007.55.
Kamenetzky, J., G. C. Privon, and D. Narayanan (2018). In: ApJ 859.1, p. 9. doi: 10.3847/1538-

4357/aab3e2.
Kennedy, J. and R. Eberhart (1995). In: Proceedings of ICNN’95 - International Conference on

Neural Networks. Vol. 4, pp. 1942–1948. doi: 10.1109/ICNN.1995.488968.
Klein, H., F. Lewen, R. Schieder, et al. (1998). In: ApJ 494.1, pp. L125–L128. doi: 10.1086/311169.
Link, W. A. and M. J. Eaton (2012). In: Methods in Ecology and Evolution 3.1, pp. 112–115. doi:

10.1111/j.2041-210X.2011.00131.x.
Mangum, J. G. and Y. L. Shirley (2015). In: Publ. Astron. Soc. Pac. 127.949, 266–298. doi:

10.1086/680323.
McKinney, W. (2010). In: Proceedings of the 9th Python in Science Conference. Ed. by S. van der

Walt and J. Millman, pp. 56 –61. doi: 10.25080/Majora-92bf1922-00a.
Mendoza, E., N. Duronea, D. Ronsó, et al. (2021). In: Frontiers in Astronomy and Space Sciences

8. doi: 10.3389/fspas.2021.655450.
Mihalas, D. (1978). 2nd ed. San Francisco: W. H. Freeman and Co.
Möller, T., Bernst, I., Panoglou, D., et al. (2013). In: A&A 549, A21. arXiv: 1210.6466 [astro-ph].

page 39 of 100

https://doi.org/10.1093/mnras/stt2190
https://doi.org/10.21105/joss.00046
https://doi.org/10.1051/0004-6361/201015333
https://doi.org/10.1051/0004-6361/201015333
https://github.com/gica3618/pythonradex
https://ui.adsabs.harvard.edu/abs/1980A&A....91...68D
https://ui.adsabs.harvard.edu/abs/1980A&A....91...68D
https://doi.org/10.1086/153665
https://github.com/fjdu/myRadex
https://doi.org/10.21105/joss.00024
https://doi.org/10.1086/670067
https://github.com/keflavich/pyradex
https://doi.org/10.1086/307195
https://doi.org/10.2140/camcos.2010.5.65
https://doi.org/10.1038/s41586-020-2649-2
https://arxiv.org/abs/astro-ph/0008169
https://github.com/uclchem/SpectralRadex
https://doi.org/10.1088/0004-637x/802/2/126
https://doi.org/10.1088/0004-637x/802/2/126
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.3847/1538-4357/aab3e2
https://doi.org/10.3847/1538-4357/aab3e2
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1086/311169
https://doi.org/10.1111/j.2041-210X.2011.00131.x
https://doi.org/10.1086/680323
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.3389/fspas.2021.655450
https://arxiv.org/abs/1210.6466

Chapter REFERENCES

Möller, T. and Panoglou, D. (May 2020). User manual, PDF. Version 2.1.0. I. Physikalisches
Institut, Universität zu Köln. 50937 Köln, Germany. url: https : / / magix . astro . uni -

koeln.de/sites/magix/files/files/MAGIX_Manual.pdf.
Momcheva, I. and E. Tollerud (2015). arXiv: 1507.03989 [astro-ph.IM].
Moré, J. J. (1978). In: Numerical Analysis. Ed. by G. A. Watson. Berlin, Heidelberg: Springer

Berlin Heidelberg, pp. 105–116. isbn: 978-3-540-35972-2.
Nelson, B., E. B. Ford, and M. J. Payne (2013). In: ApJS 210.1, p. 11. doi: 10.1088/0067-

0049/210/1/11.
Osterbrock, D. E. and G. J. Ferland (2006). 2nd ed. University science books.
Pham, D., A. Ghanbarzadeh, E. Koç, et al. (2006). In: Intelligent Production Machines and Systems.

Ed. by D. Pham, E. Eldukhri, and A. Soroka. Oxford: ESL, pp. 454–459. isbn: 978-0-08-045157-
2. doi: 10.1016/B978-008045157-2/50081-X.

Prlić, A. and J. B. Procter (Dec. 2012). In: PLOS Computational Biology 8.12, pp. 1–3. doi:
10.1371/journal.pcbi.1002802.

Reback, J., W. McKinney, jbrockmendel, et al. (Dec. 2020). Version v1.1.5. doi: 10.5281/zenodo.
4309786.

Roweis, S. (1996). Notes, PDF. New York University, Department of Computer Science, Courant
Institute of Mathematical Sciences. New York, USA. url: https://cs.nyu.edu/~roweis/
notes/lm.pdf.

Rybicki, G. B. (1985). In: NATO ASI Series (Series C: Mathematical and Physical Sciences), vol
152. Springer, Dordrecht, pp. 199–206. doi: 10.1007/978-94-009-5372-7_16.

Rybicki, G. B. and A. P. Lightman (2004). New York, USA: Wiley. isbn: 978-0-471-82759-7.
Schöier, F. L., van der Tak, F. F. S., van Dishoeck, E. F., et al. (2005). In: A&A 432.1, pp. 369–379.

doi: 10.1051/0004-6361:20041729.
Schroder, K, V Staemmler, M. D. Smith, et al. (1991). In: J. Phys. B: At. Mol. Opt. Phys. 24.10,

pp. 2487–2502. doi: 10.1088/0953-4075/24/10/007.
Shults, B. (2002). In: 32nd Annual Frontiers in Education. IEEE, T1G–14–T1G–20. isbn: 0-7803-

7444-4. doi: 10.1109/FIE.2002.1157918.
Simulia Corp (Apr. 2008). User guide, PDF. Version 6.8. (Accessed on 08/06/2021) URL: simulia.

com/Analysis-Manual/11.9.1-Parallel-execution-in-Abaqus. Dassault Systèmes Simulia
Corp. Waltham, MA 02451 - USA.

Sivia, D. and J. Skilling (2006). URL: global.oup.com/Data-Analysis-A-Bayesian-Tutorial.
Oxford University Press. isbn: 978–0–19–856831–5.

Spilker, J., D. P. Marrone, J. Aguirre, et al. (2014). In: ApJ 785, p. 149.
Svoboda, B. (2013). Current version: 0.1 (Oct 2014); original release/first (known) commit (Oct

2013). url: https://github.com/autocorr/radexgrid.
Taniguchi, A. (2019). Version used: 0.2.2 (Oct 2020); original release/first (known) commit (May

2019). doi: 10.5281/zenodo.4139707. url: https://github.com/astropenguin/ndradex.
ter Braak, C. J. F. and J. A. Vrugt (Oct. 2008). In: Stat. Comput. 18.4, pp. 435–446. doi:

10.1007/s11222-008-9104-9.
Tunnard, R. and T. R. Greve (2016). In: ApJ 819.2, p. 161. doi: 10.3847/0004-637x/819/2/161.
van der Tak, F. F. S., Black, J. H., Schöier, F. L., et al. (2007). In: A&A 468.2, pp. 627–635. doi:

10.1051/0004-6361:20066820.
van der Tak, F. (June 2011). In: Proc. Int. Astron. Union 7.S280, pp. 449–460. doi: 10.1017/

s1743921311025191.

page 40 of 100

https://magix.astro.uni-koeln.de/sites/magix/files/files/MAGIX_Manual.pdf
https://magix.astro.uni-koeln.de/sites/magix/files/files/MAGIX_Manual.pdf
https://arxiv.org/abs/1507.03989
https://doi.org/10.1088/0067-0049/210/1/11
https://doi.org/10.1088/0067-0049/210/1/11
https://doi.org/10.1016/B978-008045157-2/50081-X
https://doi.org/10.1371/journal.pcbi.1002802
https://doi.org/10.5281/zenodo.4309786
https://doi.org/10.5281/zenodo.4309786
https://cs.nyu.edu/~roweis/notes/lm.pdf
https://cs.nyu.edu/~roweis/notes/lm.pdf
https://doi.org/10.1007/978-94-009-5372-7_16
https://doi.org/10.1051/0004-6361:20041729
https://doi.org/10.1088/0953-4075/24/10/007
https://doi.org/10.1109/FIE.2002.1157918
http://130.149.89.49:2080/v6.8/books/usb/default.htm?startat=pt04ch11s09aus69.html
http://130.149.89.49:2080/v6.8/books/usb/default.htm?startat=pt04ch11s09aus69.html
https://global.oup.com/academic/product/data-analysis-9780198568322?cc=nl&lang=en&
https://github.com/autocorr/radexgrid
https://doi.org/10.5281/zenodo.4139707
https://github.com/astropenguin/ndradex
https://doi.org/10.1007/s11222-008-9104-9
https://doi.org/10.3847/0004-637x/819/2/161
https://doi.org/10.1051/0004-6361:20066820
https://doi.org/10.1017/s1743921311025191
https://doi.org/10.1017/s1743921311025191

Chapter REFERENCES

van der Tak, F., F. Lique, A. Faure, et al. (Apr. 2020). In: Atoms 8.2, p. 15. doi: 10.3390/
atoms8020015.

van Dishoeck, E. F. (2017). In: Proc. Int. Astron. Union 13.S332, 3–22. doi: 10.1017/s1743921317011528.
van Zadelhoff, G.-J., Dullemond, C. P., van der Tak, F. F. S., et al. (2002). In: A&A 395.1, pp. 373–

384. doi: 10.1051/0004-6361:20021226.
Virtanen, P., R. Gommers, T. E. Oliphant, et al. (2020). In: Nat. Methods 17, pp. 261–272. doi:

10.1038/s41592-019-0686-2.
Wilson, G, D. Aruliah, C. Brown, et al. (2014). In: PLoS Biol 12 (1), e1001745. doi: 10.1371/

journal.pbio.1001745.
Yamamoto, S. and S. Saito (1991). In: ApJ 370, pp. L103–L105. doi: 10.1086/185987.
Yang, B., P. C. Stancil, N. Balakrishnan, et al. (2010). In: ApJ 718.2, pp. 1062–1069. doi: 10.

1088/0004-637x/718/2/1062.

page 41 of 100

https://doi.org/10.3390/atoms8020015
https://doi.org/10.3390/atoms8020015
https://doi.org/10.1017/s1743921317011528
https://doi.org/10.1051/0004-6361:20021226
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1371/journal.pbio.1001745
https://doi.org/10.1371/journal.pbio.1001745
https://doi.org/10.1086/185987
https://doi.org/10.1088/0004-637x/718/2/1062
https://doi.org/10.1088/0004-637x/718/2/1062

Appendix A ReverseRADEX

Appendices

A ReverseRADEX

A.1 main.ipynb

An Jupyter notebook to be used instead of the terminal version of ReverseRADEX. The third cell is
Figure 10 and should be the only cell a user has to change any values in order to get ReverseRADEX
working for their data.

Figure 10: One cell of the main.iypnb is displayed here that concerns how manual user input should be entered, if
preferred over working from the terminal.

page 42 of 100

Appendix A ReverseRADEX

A.2 Output

A.2.1 RADEX.csv
“RADEX.csv” Is saved for the user to see if RADEX produces any physically feasibly results for
the selected input, and determined output parameters. Additionally, it also provides information
specific to (un)observed spectral lines e.g. Tex, optical depth τ and number densities of the upper
and lower state. The un-normalized χ2 values for each observed line is calculated for the user to see
which line(s) were most important in the fitting process and if a particular (set) of lines possibly
originates from vastly different global physical conditions.

Figure 11: The “RADEX.csv” file containing the RADEX model results for the input parameters and optimal
parameter values obtained in the fitting process, see Figure 13. Not all output is displayed for there are 40 lines in
the LAMDA CO file. The colors are a result of the text viewer used to easily distinguish between columns.

A.2.2 sampler.dat
“sampler.dat” is the saved version of an emcee EnsembleSampler.flatchain object, ideal for plotting
Giant Triangle Confusograms (GTC) with e.g. the pyGTC python module for instance, see Figure
8. The file consists of 35 (walkers) × 500 (steps) = 17500 rows and columns for every parameter
fit.

Figure 12: The “sampler.dat” file for the input of Figure 3, containing the parameter values for the walkers of the
total MCMC chain, including burn-in.

page 43 of 100

Appendix A ReverseRADEX

A.2.3 parameters.txt

Figure 13: The “parameters.txt” file containing a summary of the input parameters and resulting parameter and
uncertainty estimates of the fitted parameters. The parameter median (50%) is given as well as the upper (84%) and
lower (16%) uncertainties constraining the values encapsulated within to 1σ.

page 44 of 100

Appendix A ReverseRADEX

A.2.4 Trace plots
The trace plots for run 1 and run 4, Table 4, are graphed here to show how more data will benefit
the convergence of the parameter and uncertainty estimation process conducted by the MCMC
algorithm. A much tighter trace plot is obtained using more data, Figure 14b, as expected for
the distribution can be constrained more, and as a consequence is devoid of outlier walkers that
often reject parameter updates. This “tightness” translates similarly to the corner plots, Figure
8. For 14b the trace plots appear stationary with no real trend observed, but for 14a there are a
few walkers, showing an unwanted trend, near the bottom and top for log10(Tkin) and log10(nH2)
respectively, that remain near constant and thus often reject parameter updates.

(a) The trace plot after burn-in of the MCMC algorithm for the input shown in Figure 4 (4 CO lines).

page 45 of 100

Appendix A ReverseRADEX

(b) The trace plot after burn-in of the MCMC algorithm for the input shown in Figure 4 but with all available 40
CO lines.

Figure 14: All the input parameters for both subplots is the same, Figure 3, with the exception being that 14a used
“observed input” Figure 2, 4 CO lines, and 14b used all available 40 CO lines. The red line indicates the mean of the
trace for the respective parameters. The trace plots show the steps after burn-in.

page 46 of 100

Appendix B Wrapper comparison code

B Wrapper comparison code

The wrapper comparison code is used to conduct the timings seen in Table 2 and the numeric com-
parison, 3c, that ensures the input and output for all wrappers is as similar as possible: a numpy
array in the same shape and containing the same contents.
All comments that look like “#%%” are indicative of code cells, like those in Jupyter notebooks,
but specifically for the Virtual Studio Code IDE19, allowing you to run cells straight from .py files.

1 #!/usr/bin/env python3

2 #%%

3 from numpy import (

4 concatenate ,

5 loadtxt ,

6 savetxt ,

7 array ,

8 ones

9)

10

11

12 from time import perf_counter

13 def timeit(function):

14 """a timer function to be used as a decorator that runs 1000

15 iterations of the function that is decorated and prints the average

16 time per run.

17

18 Args:

19 function (function): function to time.

20

21

22 Returns:

23 innder: function to be passed through and execute as normal.

24 """

25 def timeit_inner(*args , **kwargs):

26 """ function doing the actual timing.

27

28

29 Returns:

30 function: function to be passed through and execute as normal.

31 """

32 time = []

33 runs = 1000

34 for i in range(runs):

35 tic = perf_counter ()

36 fnc = function(*args , **kwargs)

37 toc = perf_counter ()

38 time += [toc - tic]

39

40 runtime = sum(time)/len(time)

41 print(f"\nThis code took ~{ runtime :0.5f} seconds per run " +

42 f"for a total of {runs} runs.\n")

43

44 return fnc

45

46 return timeit_inner

19 See for further information: visualstudio.com/jupyter-support-py#_jupyter-code-cells.

page 47 of 100

https://code.visualstudio.com/docs/python/jupyter-support-py#_jupyter-code-cells

Appendix B Wrapper comparison code

47

48

49 import cProfile , pstats , io

50 # this import appears to be python >=3.7

51 from pstats import SortKey

52

53

54 # This is not a function to be used as a benchmark tool , only profiling.

55 def profile(fnc):

56 """ https://youtu.be/8qEnExGLZfY

57

58 Args:

59 fnc (function): function to profile

60

61

62 Returns:

63 function: function to be passed through and execute as normal.

64 """

65 def profile_inner(*args , **kwargs):

66 """ https://docs.python.org/3/library/profile.html#profile.Profile

67

68

69 Returns:

70 function: function to be passed through and execute as normal.

71 """

72 pr = cProfile.Profile ()

73 pr.enable ()

74 retval = fnc(*args , **kwargs)

75 pr.disable ()

76 s = io.StringIO ()

77 sortby = SortKey.CUMULATIVE

78 ps = pstats.Stats(pr, stream=s).sort_stats(sortby)

79 ps.print_stats ()

80 print(s.getvalue ())

81

82 return retval

83

84 return profile_inner

85

86

87 #%%

88 # parameters

89 tkin = 50.0

90 cdmol = 1e14

91 h2 = 1e4

92 h = 0

93 e = 0

94 ph2 = 0

95 oh2 = 0

96 hplus = 0

97 he = 0

98 molfile = ’/home/mooren/BT/moldata/catom.dat’

99 tbg = 2.73

100 linewidth = 1.0

101 # geometry = (unifrom sphere) differs for every wrapper

102 # some manual settings required for ndRadex (which lines) and for

103 # pythonRadex (the collision densities).

page 48 of 100

Appendix B Wrapper comparison code

104

105

106 #%%

107 # normal Radex

108 from os import system

109

110

111 # @profile

112 @timeit

113 def radex_call ():

114 radex_in = [molfile.split(’/’)[-1], ’comparison.out’, ’0 0’, tkin ,1,

115 ’h2’, h2, tbg , cdmol , linewidth , 0]

116

117 with open(’comparison.in’, ’w’) as infile:

118 for parameter_input in radex_in:

119 infile.write(f"{parameter_input }\n")

120

121 system(’radex_sphere < comparison.in’)

122

123 radex_output = loadtxt(’comparison.out’, skiprows=13,

124 usecols=[3,4,6,7,8,9,10,11,12])

125

126 return radex_output.T

127

128 radex_output = radex_call ()

129 # print(radex_output)

130 (E_up_radex , freq_radex , T_ex_radex , tau_radex , T_R_radex , n_u_radex ,

131 n_l_radex , FLUX_Kkms_radex , FLUX_ergcm2s_radex) = radex_output

132

133

134 #%%

135 # pyRadex

136 import pyradex

137

138

139 # @profile

140 @timeit

141 def pyradex_call ():

142 pyradex_run = pyradex.Radex(

143 temperature=tkin , column=cdmol ,

144 collider_densities={’H2’:h2 , ’H’:h, ’e’:e, ’pH2’:ph2 , ’oH2’:oh2 ,

145 ’H+’:hplus , ’He’:he ,},

146 species=molfile [:-4], tbackground=tbg , deltav=linewidth)

147 pyradex_output = pyradex_run(escapeProbGeom=’sphere ’)

148

149 # pretty print.

150 # print(pyradex_output.to_pandas ())

151 pyradex_output_cut = pyradex_output.to_pandas ().to_numpy ().T

152

153 return pyradex_output_cut

154

155 pyradex_output_cut = pyradex_call ()

156 (T_ex_pyradex , tau_pyradex , freq_pyradex , E_up_pyradex , _, _, n_u_pyradex ,

157 n_l_pyradex , brightness_pyradex , T_R_pyradex) = pyradex_output_cut

158 # print(pyradex_output_cut)

159

160

page 49 of 100

Appendix B Wrapper comparison code

161 #%%

162 # ndRadex

163 from ndradex import run as ndradex_run

164

165

166 # @profile

167 @timeit

168 def ndradex_call ():

169 # ndRadex.run only takes/prints the radex output for the highest frequency

170 # (as per the documentation) thus you need to specify every line (and run

171 # the model again for every line) to get the full radex output.

172 # nd_radex_lines = [’1-0’, ’2-1’, ’3-2’, ’4-3’, ’5-4’, ’6-5’, ’7-6’, ’8-7’,

173 # ’9-8’, ’10-9’, ’11-10’, ’12-11’, ’13-12’, ’14-13’,

174 # ’15-14’, ’16-15’, ’17-16’, ’18-17’, ’19-18’, ’20-19’,

175 # ’21-20’, ’22-21’, ’23-22’, ’24-23’, ’25-24’, ’26-25’,

176 # ’27-26’, ’28-27’, ’29-28’, ’30-29’, ’31-30’, ’32-31’,

177 # ’33-32’, ’34-33’, ’35-34’, ’36-35’, ’37-36’, ’38-37’,

178 # ’39-38’, ’40-39’] # co.dat

179 nd_radex_lines = [’1-0’, ’2-1’, ’2-0’] # catom.dat/oatom.dat

180

181 nd_radex_output = ndradex_run(molfile , QN_ul=nd_radex_lines , T_kin=tkin ,

182 N_mol=cdmol , n_H2=h2 , n_H=None , n_e=None ,

183 n_oH2=None , n_pH2=None , n_Hp=None , n_He=None ,

184 T_bg=tbg , dv=linewidth , geom=’uni’,

185 progress=False , n_procs=3)

186

187 # pretty print.

188 # print(nd_radex_output.to_dataframe ())

189 nd_radex_output_cut = nd_radex_output.to_dataframe ().to_numpy ().T[6:]

190

191 return nd_radex_output_cut

192

193 nd_radex_output_cut = ndradex_call ()

194 (E_up_ndradex , freq_ndradex , _, T_ex_ndradex , tau_ndradex , T_R_ndradex ,

195 n_u_ndradex , n_l_ndradex , I_ndradex , F_ndradex , _) = nd_radex_output_cut

196 # print(nd_radex_output_cut)

197

198

199 #%%

200 # spectralRadex

201 from spectralradex.radex import run as spectral_radex_run

202

203

204 # @profile

205 @timeit

206 def spectral_call ():

207 spectral_radex_parameters = {}

208 spectral_radex_parameters[’tkin’] = tkin

209 spectral_radex_parameters[’cdmol ’] = cdmol

210 spectral_radex_parameters[’h2’] = h2

211 spectral_radex_parameters[’h’] = h

212 spectral_radex_parameters[’e-’] = e

213 spectral_radex_parameters[’p-h2’] = ph2

214 spectral_radex_parameters[’o-h2’] = oh2

215 spectral_radex_parameters[’h+’] = hplus

216 spectral_radex_parameters[’he’] = he

217 spectral_radex_parameters[’molfile ’] = molfile

page 50 of 100

Appendix B Wrapper comparison code

218 spectral_radex_parameters[’tbg’] = tbg

219 spectral_radex_parameters[’linewidth ’] = linewidth

220 spectral_radex_parameters[’geometry ’] = 1

221

222

223 spectralRadex_output = spectral_radex_run(spectral_radex_parameters)

224

225 # pretty print.

226 # print(spectralRadex_output)

227 spectralRadex_output_cut = spectralRadex_output.to_numpy ().T

228

229 return spectralRadex_output_cut

230

231 spectralRadex_output_cut = spectral_call ()

232 (E_up_spectral , freq_spectral , _, T_ex_spectral ,

233 tau_spectral ,T_R_spectral , n_u_spectral , n_l_spectral ,

234 FLUX_Kkms_spectral , FLUX_ergcm2s_spectral , _, _) = spectralRadex_output_cut

235 # print(spectralRadex_output_cut)

236

237

238 #%%

239 #pythonRadex

240 from pythonradex import nebula , helpers

241 from scipy import constants

242

243

244 # @profile

245 @timeit

246 def pythonradex_call ():

247 ext_background = helpers.generate_CMB_background (0)

248

249 #FIXME: cannot use all densities propely due to KeyErrors. It seems

250 # that only ’ortho-H2’ and ’para-H2’ are allowed , even thought the

251 # documentation appears to mention all 7 collision partners should

252 # work?

253 # coldens = {

254 # ’H2 ’:h2/constants.centi**3, ’h’:h/constants.centi**3,

255 # ’e’:e/constants.centi**3, ’para-H2 ’:ph2/constants.centi**3,

256 # ’ortho-H2 ’:oh2/constants.centi**3, ’H+’:hplus/constants.centi**3,

257 # ’He ’:he/constants.centi**3

258 # }

259 # manually get these from "comparison.out" radex output.

260 coldens = {’para-H2’:7.711/constants.centi**3,

261 ’ortho-H2’:2.289/constants.centi**3}

262 dv = linewidth*constants.kilo

263 cd = cdmol/constants.centi**2

264

265 python_radex_run = nebula.Nebula(

266 data_filepath=molfile , geometry=’uniform sphere RADEX’,

267 ext_background=ext_background , Tkin=tkin , line_profile=’square ’,

268 coll_partner_densities=coldens , Ntot=cd , width_v=dv)

269 python_radex_run.solve_radiative_transfer ()

270

271 # capture the output from the printed results , since direct access

272 # is not clear.

273 python_radex_run.print_results ()

274 pyradexTex = python_radex_run.Tex

page 51 of 100

Appendix B Wrapper comparison code

275 pyradexlevels = python_radex_run.level_pop

276 pyradextau = python_radex_run.tau_nu0

277 python_radex_run.compute_line_fluxes (4*3.14)

278 pyradexflux = array(python_radex_run.obs_line_fluxes) * 1000

279

280 return

281

282 pythonradex_call ()

283

284

285 # %%

286 # # if a radex output column is missing from a wrapper ’s output , said output

287 # will be equated to "empty".

288 empty = ones(radex_output.shape [1])

289 def wrap_rad_difference(wrapper_array , radex_array):

290 """ calculate the percentage difference of specific wrapper output

291 compared to native radex output.

292

293 Args:

294 wrapper_array (numpy.array): contains the output columns (every

295 single spectral line) and specific output (E_up , freq , etc.) of

296 a wrapper as a 2D array.

297 radex_array (numpy.array): contains the output columns (every

298 single spectral line) and specific output (E_up , freq , etc.) of

299 a wrapper as a 2D array.

300

301

302 Returns:

303 float: the difference expressed as a percentage.

304 """

305

306 if wrapper_array.all() != 1:

307 diff = (wrapper_array - radex_array) / radex_array

308 return diff.astype(’float64 ’) * 100

309 else:

310 # just an indicator in the table to show that the wrapper had

311 # no output for this column.

312 return empty

313

314

315 pyradex_table = array([

316 E_up_pyradex , freq_pyradex , T_ex_pyradex , tau_pyradex ,

317 T_R_pyradex , n_u_pyradex , n_l_pyradex , empty , empty

318])

319

320 ndRadex_table = array([

321 E_up_ndradex , freq_ndradex , T_ex_ndradex , tau_ndradex ,

322 T_R_ndradex , n_u_ndradex , n_l_ndradex , I_ndradex , F_ndradex

323])

324

325 spectral_table = array ([

326 E_up_spectral , freq_spectral , T_ex_spectral ,

327 tau_spectral , T_R_spectral , n_u_spectral , n_l_spectral ,

328 FLUX_Kkms_spectral , FLUX_ergcm2s_spectral

329])

330

331 # python_radex_table = [’pythonRadex ’,]

page 52 of 100

Appendix B Wrapper comparison code

332

333 wrappers = [pyradex_table , ndRadex_table , spectral_table]#,

334 # # python_radex_table]

335

336 # hacky way of getting LaTeX table output written to file.

337 with open(’intermediate_comparison_table.txt’, ’w’) as table:

338 for wrapper in wrappers:

339 difference = array([wrap_rad_difference(wrap , rad)

340 for wrap , rad

341 in zip(wrapper , radex_output)]).T

342 savetxt(table , difference , fmt=’%.2e’, delimiter=’\t’)

343

344 temp = loadtxt(’intermediate_comparison_table.txt’)

345

346 intermediate = array([array([f’{temp_value :.2e}’, ’&’])

347 for temp_value

348 in concatenate ((radex_output.T.flatten (),

349 temp.flatten ()))]).flatten ()

350

351 final_table = intermediate.reshape(temp.shape [0] + radex_output.shape [1],

352 (temp.shape [1] + radex_output.shape [0]))

353

354 savetxt(’comparison_table.txt’, final_table , fmt=’%s’)

355

356

357 # %%

page 53 of 100

Appendix C ReverseRADEX (main program code)

C ReverseRADEX (main program code)

The file tree fore the ReverseRADEX program is seen in Figure 15 and in this appendix the sub-
sections; user input, Appendix C.2, fitting, Appendix C.3, and save plot, Appendix C.4 are listed
in chronological run time order.

Figure 15: The file tree for ReverseRADEX.

C.1 main

1 #!/usr/bin/env python3

2 #%%

3 # relative imports.

4 from user_input import (

5 ConstantParamaters ,

6 VariableParamters ,

7 DataRetrieval ,

8 yay_or_nay

9)

10 from fitting import (

11 AlgorithmHelpers ,

page 54 of 100

Appendix C ReverseRADEX (main program code)

12 find_initial_parameter_guesses ,

13 run_levenberg_marquardt ,

14 run_monte_carlo ,

15)

16 from save_plot import Plotting , SaveResults

17

18 # module imports.

19 from numpy import (

20 append ,

21 array ,

22 log10 ,

23 full ,

24)

25 from datetime import timedelta , datetime

26 from pathlib import Path

27 from time import time

28 from os import getcwd

29

30

31 input_constant = ConstantParamaters ()

32 input_variable = VariableParamters ()

33 data_retrieval = DataRetrieval ()

34

35

36 #%%

37 #### Catch user input from terminal ####

38 user_molfile = input_constant.molfile_input ()

39 user_datfile = input_constant.datafile_input ()

40 # user_molfile = ’/home/mooren/BT/moldata/co.dat’

41 # user_datfile = ’/home/mooren/BT/reverseRadex/new_test.dat’

42

43 # (matching) frequencies with molfile.

44 freq_indices = data_retrieval.get_molfile_frequency_index(user_datfile ,

45 user_molfile)

46 freq = data_retrieval.get_frequencies(freq_indices , user_molfile)

47 user_mol_frequencies , freq_min , freq_max , number_of_lines_total = freq

48 freq_range = (freq_min , freq_max)

49

50 # checking for units and uncertainties.

51 units = data_retrieval.get_user_units(user_datfile)

52 uncertainties = data_retrieval.uncertainties_included(user_datfile)

53 (y_observed ,

54 y_uncertainties) = data_retrieval.line_strengths(user_datfile ,

55 uncertainties)

56

57 # constant parameters.

58 Tbg = input_constant.background_radiation_input ()

59 dv = input_constant.line_width_input ()

60 geom , geom_name = input_constant.geometry_input ()

61

62 # variable parameters.

63 temp_kin = input_variable.kinetic_temperature_input ()

64 coldens = input_variable.column_density_input ()

65 voldens = input_variable.collision_densities_input ()

66 #### Catch user input from terminal ####

67

68

page 55 of 100

Appendix C ReverseRADEX (main program code)

69 #%%

70 #### If you would like to set the input manually , uncomment the cell ####

71

72

73 # user_molfile = ’/home/mooren/BT/moldata/co.dat’

74 # user_datfile = ’/home/mooren/BT/reverseRadex/new_test.dat’

75 # freq_indices = data_retrieval.get_molfile_frequency_index(user_datfile ,

76 # user_molfile)

77 # freq = data_retrieval.get_frequencies(freq_indices , user_molfile)

78 # user_mol_frequencies , freq_min , freq_max , number_of_lines_total = freq

79 # freq_range = (freq_min , freq_max)

80

81

82 # units = data_retrieval.get_user_units(user_datfile)

83 # uncertainties = data_retrieval.uncertainties_included(user_datfile)

84 # (y_observed ,

85 # y_uncertainties) = data_retrieval.line_strengths(user_datfile ,

86 # uncertainties)

87

88 # # variable parameters.

89 # # [name parameter , init guess , (bound_low , bound_upp), fit parameter ?]

90 # # 0.1 < tkin < 1e4 [K]

91 # temp_kin = [’tkin ’, 131, (10.0 , 500.0) , True]

92 # # 1e5 < cdmol 1e25 [cm^-2]

93 # coldens = [’cdmol ’, 3e16 , (1e10 , 5e21), True]

94 # # coll partner :(init guess , fit parameter ?)

95 # # 1e-3 < coll partner < 1e13 [cm^-3]

96 # voldens = {’h2 ’:(3e4 , True), ’h ’:(0.0, False), ’e- ’:(0.0, False),

97 # ’p-h2 ’:(0, False), ’o-h2 ’:(0.0, False), ’h+ ’:(0.0, False),

98 # ’he ’:(0.0, False), ’min_max ’:(5e3 , 5e8)}

99

100 # # constant parameters.

101 # Tbg = 2.73 # K

102 # dv = 1.0 # km s^-1

103 # geom = 1 #(1=sphere , 2=LVG , 3=slab)

104 # # just for displaying purposes ,

105 # geom_name = ’uniform sphere ’

106

107

108 #### If you would like to set the input manually , uncomment the cell ####

109

110 ##### No user input required beyond this point #####

111 ##### Unless you want to tweak the algorithms #####

112

113

114 #%%

115 # printing the chosen settings for user to check.

116 print(f"\n\nSelected molfile path : ’{user_molfile}’")

117 print(f"Selected datafile path : ’{user_datfile}’")

118 print(f"Selected line strength units : {units}")

119 print(f"uncertainties included : {uncertainties}")

120 print("\n\n[name of parameter , parameter value , (lower bound , upper" +

121 " bound), fit parameter ?]")

122 print(’If a parameter is fit , "parameter value" is a dummy number and ’ +

123 ’can be ignored .\nIf not fit , the boundaries are dummy numbers .\n’ +

124 "0.0 just indicates SpectralRadex to not use this collision " +

125 "partner .\n")

page 56 of 100

Appendix C ReverseRADEX (main program code)

126 print(f"Selected minimum and maximum \n" +

127 f"kinetic gas cloud temperature : {temp_kin} K")

128 print(f"Selected background radiation field: {Tbg} K")

129 print(f"Selected minimum and maximum \n" +

130 f"column densities : {coldens} cm^-2")

131

132

133 constant_parameters = {

134 ’tbg’:Tbg , ’fmin’:freq_min , ’fmax’:freq_max , ’linewidth ’:dv,

135 ’geometry ’:geom , ’molfile ’:user_molfile

136 }

137

138 # handeling the kinetic temperatrue and column density.

139 lim_low = array ([])

140 lim_upp = array ([])

141 tkin_cd = [temp_kin , coldens]

142 lims_to_save = {}

143 for parameter in tkin_cd:

144 prm_name , prm_value , prm_bounds , prm_fit = parameter

145 if prm_fit == True:

146 prm_low , prm_upp = prm_bounds

147 lim_low = append(lim_low , log10(prm_low))

148 lim_upp = append(lim_upp , log10(prm_upp))

149 lims_to_save[prm_name] = (lim_low[-1], lim_upp[-1])

150 else:

151 constant_parameters[prm_name] = prm_value

152

153 # handeling the collision partners (volume densities).

154 str_voldens = "Selected volume densities [cm^-3], "

155 print(str_voldens)

156 vol_dens_summary = []

157 min_max = ’min_max ’

158 for collision_partner in voldens:

159 if collision_partner != min_max:

160 blank = ’’.ljust(len(str_voldens) -

161 len(collision_partner) - 1) + ":"

162 param_value , param_fit = voldens[collision_partner]

163 voldens_min , voldens_max = voldens[min_max]

164 vol_dens_summary += [[collision_partner , param_value ,

165 (voldens_min , voldens_max), param_fit]]

166 print(f"{collision_partner}" + blank +

167 f" {vol_dens_summary[-1]}")

168 if param_fit == False:

169 constant_parameters[collision_partner] = param_value

170 else:

171 lim_low = append(lim_low , log10(voldens_min))

172 lim_upp = append(lim_upp , log10(voldens_max))

173 lims_to_save[collision_partner] = (lim_low[-1], lim_upp[-1])

174

175 # printing remaining input.

176 print(f"Selected line width : {dv} km/s")

177 print(f"Selected minimum and maximum \n" +

178 f"frequency : {freq_range} GHz")

179 print(f"Selected geometry : {geom_name}")

180

181

182 # check if any of the parameters is set to be fit.

page 57 of 100

Appendix C ReverseRADEX (main program code)

183 if lim_low.shape [0] == 0:

184 raise AssertionError("No parameter is set to be fit.")

185

186 # check if more data is available than parameters to fit.

187 # getting the names of the parameters to be fit , the order is important.

188 all_parameter_names = [’molfile ’, ’tkin’, ’cdmol’, ’tbg’, ’h2’, ’p-h2’,

189 ’o-h2’, ’e-’, ’h’, ’he’, ’h+’, ’fmin’, ’fmax’,

190 ’linewidth ’, ’geometry ’]

191 fit_parameters_names = []

192 for parameter_name in all_parameter_names:

193 if parameter_name not in constant_parameters.keys():

194 fit_parameters_names += [parameter_name]

195

196 len_data = len(y_observed)

197 len_fit_prms = len(fit_parameters_names)

198 if (len_data > len_fit_prms) != True:

199 raise AssertionError(f"{len_data} observed data points is not "

200 f"enough data to fit {len_fit_prms} parameters" +

201 ". Need: ’data > parameters + 1’.")

202

203 # prompt user to either continue to the fitting process or terminate.

204 user_prms_check = yay_or_nay("\nContinue to the fitting process? (y/n) ")

205 if user_prms_check == ’’ or user_prms_check == True:

206 pass

207 else:

208 raise KeyboardInterrupt("User terminated the program.")

209

210

211

212 #%%

213 # since the frequency range is used to limit the radex output , the

214 # indices have to be shifted to accommodate for that (for instance , the

215 # range might start at 300 GHz while lines exist < 300 GHz. Therefore , the

216 # index needs to be shifted).

217 matching_index = list(map(lambda add: add - freq_indices [0], freq_indices))

218

219 # create an index array to be used for cutting the SpectralRadex output

220 # to match the spectral lines present in the user supplied data file.

221 matching_lines = full(number_of_lines_total , False)

222 matching_lines[matching_index] = True

223

224

225 #%%

226 ### start of main program ###

227 start_time = time()

228

229 #### global parameter search ####

230 print("\nEstimating initial parameters.")

231 # use the brute method global search to find initial estimates for

232 # paremeters to be fit.

233 cst_prms = [user_molfile , Tbg , dv, freq_min , freq_max , geom , units ,

234 matching_index , user_datfile , uncertainties]

235 global_parameter_estimates = find_initial_parameter_guesses(

236 temp_kin , coldens , voldens , vol_dens_summary , cst_prms

237)

238

239 grid_time = time()

page 58 of 100

Appendix C ReverseRADEX (main program code)

240 grid_duration = grid_time - start_time

241 grid_duration_HHMMSS = str(timedelta(seconds=grid_duration)).rpartition(’.’)[0]

242 print(f"Time elapsed: {grid_duration_HHMMSS}")

243 print("Global parameter estimates resulting from brute " +

244 "(grid search) method:")

245 for name , value in zip(fit_parameters_names , global_parameter_estimates):

246 print(f"log10({name}): {value :.5f}")

247

248

249 #%%

250 #### setting up Levenberg-Marquardt and MCMC parameters ####

251 alg_help = AlgorithmHelpers(

252 y_observed ,

253 y_uncertainties ,

254 units ,

255 lim_low ,

256 lim_upp ,

257 constant_parameters ,

258 matching_lines ,

259 fit_parameters_names

260)

261

262

263 #%%

264 #### Levenberg-Marquardt least squares to refine parameter estimates ####

265 print("\nRefining parameter estimates.")

266 initial_parameters = run_levenberg_marquardt(global_parameter_estimates ,

267 alg_help.RADEX_model ,

268 y_observed ,

269 y_uncertainties)

270

271 LM_time = time()

272 LM_duration = LM_time - start_time

273 LM_duration_HHMMSS = str(timedelta(seconds=LM_duration)).rpartition(’.’)[0]

274 print(f"Time elapsed: {LM_duration_HHMMSS}")

275 print("Refined parameter estimates resulting from Levenberg-Marquardt:")

276 for name , value in zip(fit_parameters_names , initial_parameters):

277 print(f"log10({name}): {value :.5f}")

278

279

280 #%%

281 #### MCMC for uncertainty estimates ####

282 N = 500 # number of steps the MCMC algorithm takes.

283 print("\nRunning MCMC for uncertainty estimates ,")

284 MCMC_output , ndim = run_monte_carlo(initial_parameters ,

285 alg_help.log_probability ,

286 number_of_steps=N)

287

288

289 #%%

290 ### end of main program ###

291 end_time = time()

292 duration = end_time - start_time

293 duration_HH_MM_SS = str(timedelta(seconds=duration)).rpartition(’.’)[0]

294 print(f"\nRun time of main program: {duration_HH_MM_SS }.")

295

296

page 59 of 100

Appendix C ReverseRADEX (main program code)

297 #%%

298 ##### plotting and saving of results #####

299 date_time = datetime.now().strftime("%Y.%m.%d-%H.%M.%S")

300 #FIXME: add which molecule is used?

301 # create output directory.

302 cwd = getcwd ()

303 output_path = cwd + f’/output/{date_time}’

304 Path(output_path).mkdir ()

305

306

307 ### saving ###

308 saving = SaveResults(

309 MCMC_output ,

310 output_path ,

311 constant_parameters ,

312 fit_parameters_names

313)

314

315 # saving MCMC ensamble.

316 saving.save_MCMC_sampler ()

317

318 # saving RADEX.csv output and obtaining parameter medians.

319 prms_50s = saving.RADEX_for_optimal_parameters(

320 user_datfile , user_mol_frequencies , y_observed , y_uncertainties ,

321 freq_indices , units , lims_to_save

322)

323 ### saving ###

324

325

326 ### plotting ###

327 plot = Plotting(

328 MCMC_output ,

329 output_path ,

330 prms_50s ,

331 fit_parameters_names

332)

333

334 # Plotting and saving the corner plot.

335 plot.plot_corner ()

336

337 # Plotting the molecular spectrum.

338 plot.plot_spectrum(

339 units , y_observed , y_uncertainties , constant_parameters ,

340 user_mol_frequencies

341)

342 ### plotting ###

343

344

345 print(f"\nResults saved to {output_path }.\n")

346

347

348 # %%

page 60 of 100

Appendix C ReverseRADEX (main program code)

C.2 user input

Code used for capturing user input and translating it to input that the subsequent parts of the
program expect.

C.2.1 init .py

1 from .fitting_helper_functions import *

2 from .find_initial_guess import *

3 from .MCMC import *

4 from .LM import *

C.2.2 input functions.py

1 #!/usr/bin/env python3

2

3

4 def re_enter_wrapper(fnc):

5 """a wrapper that recalls the function if input is invalid or

6 unsatisfactory.

7

8 Args:

9 fnc (function): the function to be wrapped and checked for

10 validity of input and recalled if necessary.

11

12

13 Returns:

14 funcion: the wrapper function

15 """

16

17 def re_enter_or_return(*args , **kwargs):

18 """ function that creates a while loop of function calls to

19 the function to be wrapped , until the returned value is

20 satisfactory.

21

22

23 Returns:

24 function: recalls the function.

25 """

26

27 while True:

28 function_return = fnc(*args , **kwargs)

29 if function_return == ’dummy ’:

30 continue

31 else:

32 return function_return

33

34 return

35

36 return re_enter_or_return

37

38

page 61 of 100

Appendix C ReverseRADEX (main program code)

39 @re_enter_wrapper

40 def numeric_input(query):

41 """ function that is called to either return user input or standard

42 parameter if input is omitted. If user input is called ,

43 the input is checked to be either int or float.

44

45 Args:

46 query (str): prompt for user input.

47

48 Raises:

49 TypeError: Input is not an integer or float.

50

51

52 Returns:

53 str , float: empty string (read by python as None) prompt or

54 user input as a float.

55 """

56

57 entry = input(query)

58 if entry == ’’:

59 return entry

60

61 try:

62 # to allow for scientific/exponential notation.

63 if float(entry):

64 return float(entry)

65 except ValueError:

66 pass

67

68 # if input is not ’’ (empty) or in scientific notation , check if

69 # input is numeric (float/int)

70 entry_check = entry.replace(’ ’, ’’).strip ()

71 if_conditions =(

72 entry_check.isdigit () or

73 (entry_check.replace(’.’, ’’, 1).isdigit () and

74 entry_check.count(’.’) < 2)

75)

76 if not if_conditions:

77 print("Input is not an integer or float , or is " +

78 f"negative. User input was ’{entry}’")

79 return ’dummy ’

80

81 #TODO/FIXME: what should be the case for entry == 0? Currently it

82 # seems to ignore the entry (read by python as "False "?)

83 # especially important for Tbg and adding a tabulated radiation

84 # background.

85 # if int(entry) == 0 and float(entry) == 0.0:

86 # raise ValueError(f"Input must be positive. User input was {entry }")

87

88 return float(entry)

89

90

91 def min_max_check(parameter_min , parameter_max , parameter_name):

92 """ checks if minimum of parameter is less than maximum

93 of parameter.

94

95 Args:

page 62 of 100

Appendix C ReverseRADEX (main program code)

96 prms_min (float): lower bound of parameter.

97

98 prms_max (float): upper bound of parameter.

99

100 parameter_name (str): name of parameter to check.

101

102

103 Raises:

104 ValueError: minimum is greater than maximum.

105 """

106

107 if parameter_min > parameter_max:

108 print(f"The minimum {parameter_name} selected" +

109 f" ’{parameter_min}’ is greater than" +

110 f" the maximum ’{parameter_max }’.")

111 return ’dummy ’

112

113 return

114

115

116 def in_between_check(parameter_min , parameter_max ,

117 parameter_value , parameter_name):

118 """ check if the parameter value is within the parameter limits.

119

120 Args:

121 prms_min (float): lower bound of parameter.

122

123 prms_max (float): upper bound of parameter.

124

125 parameter_value (float): value of parameter to be checked.

126

127 parameter_name (str): name of parameter to check.

128

129

130 Raises:

131 ValueError: parameter value is not within the boundary limits.

132 """

133

134 #FIXME: make it clear when it talks about user defined limits and when

135 # it discusses radex limits?

136 if not (parameter_min < parameter_value < parameter_max):

137 print(f"{parameter_name} = {parameter_value}, " +

138 "is not within the limits of " +

139 f"[{ parameter_min }; {parameter_max }].")

140 return ’dummy ’

141

142 return

143

144

145 @re_enter_wrapper

146 def yay_or_nay(query):

147 """ check if user wants to fit (a specific) parameter(s).

148

149 Args:

150 query (str): prompt for user input.

151

152 Raises:

page 63 of 100

Appendix C ReverseRADEX (main program code)

153 ValueError: raises error if the fit is not declared properly.

154

155

156 Returns:

157 bool: True (fit parameter) False (do not fit parameter).

158 """

159

160 entry = input(query)

161

162 if entry == ’’:

163 return entry

164

165 entry = entry.replace(’ ’, ’’)

166

167 yes = [’y’, ’yay’, ’yes’]

168 no = [’n’, ’nay’, ’no’]

169 while True:

170 if entry in yes:

171 return True

172 elif entry in no:

173 return False

174 else:

175 print(

176 f"\n’{entry}’ is not a valid input. Try entering " +

177 f"one of either {yes} if you want to fit the " +

178 f"parameter(s) or {no} if you do not want to fit " +

179 "the parameter(s).\nThe default is ’no’"

180)

181 return ’dummy ’

182

183 return

184

185

186 @re_enter_wrapper

187 def collision_check(query , collision_partner_names , no):

188 """ check if user entered a valid collision partner name. This only

189 checks all the names that RADEX supports , not necessarily the names

190 of collision partners actually present in the molecular data file.

191

192 Args:

193 query (str): query to raise user and request input.

194

195

196 Returns:

197 str: name of collision partner.

198 """

199

200 # collision_partner_names = [’h2’, ’h’, ’e-’, ’p-h2’, ’o-h2’, ’h+’, ’he ’]

201 collision_partner_name = input(query).replace(’ ’, ’’).lower()

202 conditions = (

203 collision_partner_name not in collision_partner_names

204 and collision_partner_name not in no

205)

206 if conditions:

207 print(

208 f"\n’{collision_partner_name}’ is not in " +

209 f"’{collision_partner_names }’."

page 64 of 100

Appendix C ReverseRADEX (main program code)

210)

211 return ’dummy ’

212 else:

213 return collision_partner_name

214

215 return

C.2.3 read user data.py

1 #!/usr/bin/env python3

2

3 # module imports

4 from numpy import loadtxt , ones

5

6 # relative imports

7 from user_input.input_functions import in_between_check

8

9

10 class DataRetrieval:

11 #FIXME: things that are used multiple times should go into __init__?

12 #def __init__(self):

13 # return

14

15

16 #FIXME: just use numpy.loadtxt , array.T for transposing and .astype(float)

17 # to transform the elements of the array from str to float instead of

18 # "transpose_float_convert_list "? runtime is really not an issue here.

19

20

21 ### general functions ###

22 def get_file_lines(self , data_file_location):

23 """ get the file lines of user supplied data file in a list.

24

25 Args:

26 data_file_location (str): file location on system of data file.

27

28

29 Returns:

30 list: list of file lines of the user supplied data file.

31 """

32

33 with open(data_file_location , ’r’) as data_file:

34 #TODO: add a check to see if file is empty ,

35 # perhaps if possible also if there are enough data points

36 # for the number of parameters chosen to fit for LM to still

37 # work --> N + 1 data points required (N is number of fit

38 # parameters)

39 data_file_lines = data_file.readlines ()

40 return data_file_lines

41

42

43 def transpose_float_convert_list(self , input_list , selected_row):

44 """ transpose N x M list and convert elements type of a single

45 row to float.

46

page 65 of 100

Appendix C ReverseRADEX (main program code)

47 Args:

48 input_list (list): list to be transposed and converted.

49 selected_row (int): the index of the row that should be returned

50

51

52 Returns:

53 list: transposed list with float elements.

54 """

55

56 #FIXME: try and use zip(*list)?

57 transposed_list = list(map(lambda *untransposed: list(untransposed),

58 *input_list))

59

60 transposed_list = transposed_list[selected_row]

61

62 #FIXME: take this out when I also include lineID and just do it

63 # where it is needed outside of this function.

64 transposed_float_list = list(map(float , transposed_list))

65

66 return transposed_float_list

67 ### general functions ###

68

69

70 ### data retrieving functions ###

71 def get_user_units(self , data_file_location):

72 """ retrieves the line strength units from the user supplied data file.

73

74 Args:

75 data_file_location (str): file location on system of data file.

76

77 Raises:

78 ValueError: checks if unit selection is read by python

79 properly.

80

81

82 Returns:

83 int: integer describing which line strength units are to be used.

84 """

85

86 units_line = self.get_file_lines(data_file_location)[0]

87 #FIXME?: perhaps use units_line.find (1,2,3) or something?

88 # or maybe a for loop and check

89 # "for units in [1,2,3]: for line in lines: if units in line: break?

90 units_retrieved = int(units_line.strip()[-1])

91

92 valid_units = [’T_R (K) => # 1’,

93 ’FLUX (K*km/s) => # 2’,

94 ’FLUX (erg/cm2/s) => # 3’]

95 valid_units_int = [1,2,3]

96 valid_units_name = [’T_R (K)’, ’FLUX (K*km/s)’, ’FLUX (erg/cm2/s)’]

97 if units_retrieved not in valid_units_int:

98 raise ValueError("Units selected in the header of " +

99 f’"{ data_file_location }" are invalid. ’ +

100 "Please enter one of the following units , " +

101 f"{valid_units}, in the header by typing " +

102 ’"# int".’)

103

page 66 of 100

Appendix C ReverseRADEX (main program code)

104 return valid_units_name[units_retrieved - 1]

105

106

107 def get_molfile_frequencies(self , molecular_file):

108 """ get all the frequencies as floats in a list from the

109 selected molfile.

110

111 Args:

112 molecular_file (str): file location on system of molecular file.

113

114

115 Returns:

116 list: list of frequencies with float type.

117 """

118

119 contents_molfile = self.get_file_lines(molecular_file)

120 #FIXME: this only works if all molfiles are structured the same way

121 # and some inconsistencies in LAMDA files definitley ocurred.

122 trans = (’!TRANS’, ’! TRANS’)

123 numbr = (’!NUMBER ’, ’! NUMBER ’)

124 index_lower = None

125 index_upper = None

126 for molfile_line in contents_molfile:

127 if molfile_line.startswith(trans):

128 index_lower = contents_molfile.index(molfile_line)

129

130 if molfile_line.startswith(numbr):

131 index_upper = contents_molfile.index(molfile_line)

132

133 # since we are after the first occurrence of ’!TRANS’ and

134 # subsequent ’!NUMBER ’ in the molfile , this if statement

135 # should suffice in finding the indices

136 if ((index_lower and index_upper) != None

137 and index_upper > index_lower):

138 break

139

140 radiative_transitions = contents_molfile[index_lower + 1: index_upper]

141 radiative_transitions_split = [split_line.split ()

142 for split_line

143 in radiative_transitions]

144

145 # "transposing" the list to select the column (now row) of frequencies.

146 # index 4 indicates the frequency column (now row) in the molfile.

147 molfile_frequencies = self.transpose_float_convert_list(

148 radiative_transitions_split , 4)

149

150 return molfile_frequencies

151

152

153 #TODO/FIXME: if LAMDA file does not contain frequencies , this will not work

154 # (spectralRadex itself will also not work) change the LAMDA file to

155 # include frequencies in the correct column (get it from energy levels)?

156 def get_molfile_frequency_index(self , data_file_location , molecular_file):

157 """ get the index of molecular file frequencies that match user

158 supplied data file frequencies. The indices are to be used for

159 cutting radex output to match user input later on (this is important)

160 for MAGIX to work properly).

page 67 of 100

Appendix C ReverseRADEX (main program code)

161

162 Args:

163 data_file_location (str): file location on system of user data.

164 molecular_file (str): file location on system of molecular file.

165

166 Raises:

167 EOFError: checks if a specific line in user supplied data file

168 does not match any line in the selected molecular file.

169

170

171 Returns:

172 list: indices of molfile that match user supplied data.

173 """

174

175 data_lines = self.get_file_lines(data_file_location)[1:]

176

177 data_lines_split = [data_line.split()

178 for data_line

179 in data_lines]

180

181 # index 0 selects first row (frequencies) in user supplied data file.

182 user_freqs = self.transpose_float_convert_list(data_lines_split , 0)

183

184 # gets the frequencies (float) of the selected molfile in a list.

185 molfile_frequencies = self.get_molfile_frequencies(molecular_file)

186

187 # bw (" bandwith ") to within which a user supplied frequency should

188 # match the molfile frequency.

189 #TODO: dynamically change "bw" based on molfile by seeing what is

190 # the closest frequency discrepancy and take half that?

191 # For now just with 0.001 , 0.01 or 0.1 or something as max "bw"?

192 bw = 0.001

193 matching_index = []

194 for user_freq in user_freqs:

195 for iter_index , molfile_freq in enumerate(molfile_frequencies):

196 if (user_freq * (1-bw) <= molfile_freq <= user_freq / (1-bw)):

197

198 matching_index += [iter_index]

199 break

200

201 #FIXME: make it so it returns all the lines that do not match.

202 # ALSO be clearer about how a line is matched (using bw)?

203 #FIXME: find a better error to return , instead of EOFError?

204 else:

205 raise EOFError(f"The line corresponding to {user_freq}" +

206 f" GHz in ’{data_file_location}’" +

207 " does not match any frequency in the " +

208 f"selected molfile: ’{molecular_file }’.")

209

210 return matching_index

211

212

213 def get_frequencies(self , frequency_indices , molecular_file):

214 """ get the minimum and maximum frequency [GHz] from the molfile and

215 user supplied data. it is ensured that the minimum and maximum

216 frequency are included in the frequency range by means of a

217 "bw" (bandwidth).

page 68 of 100

Appendix C ReverseRADEX (main program code)

218

219 Args:

220 frequency_indices (list): indices of matching frequencies.

221 molecular_file (str): file location on system of molecular file.

222

223

224 Returns:

225 tuple: minimum and maximum frequency

226 """

227

228 all_frequencies = self.get_molfile_frequencies(molecular_file)

229 number_of_freqs = len(all_frequencies)

230

231 frequencies_that_match = [all_frequencies[index_match]

232 for index_match

233 in frequency_indices]

234

235 # ensuring that all frequencies are within the minimum and maximum.

236 #NOTE: this might prove problematic when frequencies in LAMDA

237 # file are unordered and certain output will be cut by SpectralRadex

238 # and thus not matched to user data. (see line ~217 of main.py)

239 # works fine for ordered frequency files.

240 bw = 0.001

241 freq_min = min(frequencies_that_match) * (1 - bw)

242 freq_max = max(frequencies_that_match) / (1 - bw)

243

244 # check if frequencies are within RADEX limits.

245 in_between_check (0, 3e7 , freq_min , ’minimum frequency read from ’ +

246 ’molecular file (expects GHz)’)

247

248 in_between_check (0, 3e7 , freq_max , ’maximum frequency read from ’ +

249 ’molecular file (expects GHz)’)

250

251 return frequencies_that_match , freq_min , freq_max , number_of_freqs

252

253

254 def uncertainties_included(self , data_file_location):

255 """ determine if there are uncertainties included in the user

256 supplied data file by checking the amount of columns.

257

258 Args:

259 data_file_location (str): file location on system of data file.

260

261 Raises:

262 Exception: if the number of columns is invalid. The excpected

263 number is 2 (frequencies and line strengths) or 3 (frequencies ,

264 line strengths and line strength uncertainties).

265

266

267 Returns:

268 str: either ’yes’ or ’no’ to be used as input for MAGIX to tell

269 it that uncertainties are included or not.

270 """

271

272 #TODO: add support for if there are some lines with , and some

273 # lines without uncertainties (for those without , just set it

274 # equal to one , as they are only used in a chi2 calculation ?)

page 69 of 100

Appendix C ReverseRADEX (main program code)

275

276 # [1:] to exclude header.

277 data_lines = self.get_file_lines(data_file_location)[1:]

278

279 number_of_columns = len(data_lines [0]. split ())

280 if number_of_columns == 3:

281 return ’yes’

282 elif number_of_columns == 2:

283 return ’no’

284 else:

285 raise Exception(f"The number of columns = {number_of_columns}" +

286 f" in {data_file_location} is invalid. " +

287 "The excpected number is 2 (frequencies and " +

288 "line strengths) or 3 (frequencies , line " +

289 "strengths and line strength uncertainties).")

290

291 return

292

293

294 def line_strengths(self , user_data_file , uncertainty):

295 """ extract the line strength column (with uncertainties) from the

296 user supplied data file. These uncertainties are only used for

297 calculating the chi^2 values so the default uncertainties = 1 (or

298 any other constant) since they have no effect then.

299

300 Args:

301 user_data_file (str): user supplied data file directory.

302

303 uncertainty (str): uncertainties included (’yes’ -OR- ’no ’)

304

305

306 Returns:

307 tuple: 1 numpy array with line strenghts and 1 numpy array

308 with line strength uncertainties.

309 """

310

311 data = loadtxt(user_data_file).T

312 if uncertainty == ’no’:

313 line_strenghts = data [1]

314 return (line_strenghts , ones(line_strenghts.shape [0]))

315 else:

316 line_strenghts , line_strenght_uncertanties = data [1:]

317 return (line_strenghts , line_strenght_uncertanties)

318

319 return

320

321

322

323 ### data retreiving functions ###

C.2.4 constant input.py

1 #!/usr/bin/env python3

2 #%%

3 from user_input.input_functions import (

page 70 of 100

Appendix C ReverseRADEX (main program code)

4 numeric_input ,

5 in_between_check ,

6 re_enter_wrapper

7)

8

9

10 class ConstantParamaters:

11 #def __init__(self):

12 # return

13

14

15 def molfile_input(self):

16 """ function to ask for molecular file path.

17

18 Raises:

19 FileNotFoundError: User did not supply a molecular file.

20

21

22 Returns:

23 str: string of name refering to the molecular file used.

24 """

25

26 user_molfile = input(

27 "Enter molecular file path ’*.dat ’: ").replace(’ ’, ’’)

28 if user_molfile == ’’:

29 raise FileNotFoundError("User did not supply a " +

30 "molecular file")

31

32 extension = ’.dat’

33 if not user_molfile.endswith(extension):

34 user_molfile += extension

35

36 return user_molfile

37

38

39 def datafile_input(self):

40 """ function to ask for data file path.

41

42 Raises:

43 FileNotFoundError: User did not supply a data file.

44

45

46 Returns:

47 str: string of name refering to the molecular file used.

48 """

49

50 user_datafile = input(

51 "Enter data file path ’*.dat ’: ").replace(’ ’, ’’)

52 if user_datafile == ’’:

53 raise FileNotFoundError("User did not supply a " +

54 "data file path")

55

56 extension = ’.dat’

57 if not user_datafile.endswith(extension):

58 user_datafile += extension

59

60 return user_datafile

page 71 of 100

Appendix C ReverseRADEX (main program code)

61

62

63 @re_enter_wrapper

64 def background_radiation_input(self):

65 """ function to set background radiation field based on user input ,

66 or return a default value.

67

68

69 Returns:

70 float: either user input or standard parameter.

71 """

72 #TODO/FIXME: how is the option of a user supplied radiation field

73 # handeled by (spectral) radex , since that is what needs to be

74 # the input then instead of background temperature?

75

76 temp_background = (numeric_input(

77 "Enter background radiation field [K]: ") or 2.73)

78

79 # check if ’temp_background ’ within bounds that RADEX operates.

80 btw_check = (

81 in_between_check(-1e4 , 1e4 , temp_background ,

82 ’background radiation field ’) == None

83)

84 if not btw_check:

85 return ’dummy ’

86

87 return temp_background

88

89

90 @re_enter_wrapper

91 def line_width_input(self):

92 """ function to set line width [km/s] based on user input ,

93 or return a default value.

94

95

96 Returns:

97 float: either user input or standard parameter.

98 """

99

100 line_width = (numeric_input("Enter line width [km/s]: ") or 1.0)

101

102 # check if ’line_width ’ within bounds that RADEX operates.

103 btw_check = (

104 in_between_check (1e-3, 1e3 , line_width , ’line width’) == None

105)

106 if not btw_check:

107 return ’dummy ’

108

109 return line_width

110

111

112 @re_enter_wrapper

113 def geometry_input(self):

114 """ function set geometry based on user input , or return uniform

115 sphere as default geometry.

116

117 Raises:

page 72 of 100

Appendix C ReverseRADEX (main program code)

118 ValueError: not a valid geometry.

119

120

121 Returns:

122 int: integer referring to geometry.

123 """

124 sphere = [’1’, ’sphere ’, ’uni’]

125 lvg = [’2’, ’lvg’]

126 slab = [’3’, ’slab’]

127 cloud_geometry = input(

128 "Enter a geometry (1=sphere , 2=LVG , 3=slab): "

129).replace(’ ’, ’’).lower()

130

131 #FIXME: take out default geometry and always ask user?

132 if cloud_geometry == ’’:

133 return int (1), ’uniform sphere ’

134 elif cloud_geometry in sphere:

135 return 1, ’uniform sphere ’

136 elif cloud_geometry in lvg:

137 return 2, ’LVG’

138 elif cloud_geometry in slab:

139 return 3, ’slab’

140 else:

141 print("Not a valid geometry. Choose one " +

142 "of three geometries ;\ nuniform sphere: "+

143 f" {sphere }\n" +

144 "large velocity gradient " +

145 f"(LVG): {lvg}\ nplane-parallel " +

146 f"slab: {slab}")

147 return ’dummy ’

148

149 return

150

151

152 # %%

C.2.5 variable input.py

1 #!/usr/bin/env python3

2 #%%

3 # relative imports

4 from user_input.input_functions import (

5 numeric_input ,

6 min_max_check ,

7 in_between_check ,

8 yay_or_nay ,

9 re_enter_wrapper ,

10 collision_check

11)

12

13

14 class VariableParamters:

15 #def __init__(self):

16 # return

17

page 73 of 100

Appendix C ReverseRADEX (main program code)

18

19 @re_enter_wrapper

20 def kinetic_temperature_input(self):

21 """ function to set kinetic temperature boundaries based on

22 user input , or return default values.

23

24

25 Returns:

26 float , tuple , bool: parameter value , (minimum and maximum

27 kinetic temperature), fit parameter.

28 """

29

30 temp_kin_name = ’tkin’

31

32 temp_kin_fit = (yay_or_nay("Fit the kinetic temperature? (y/n): ")

33 or False)

34

35 if temp_kin_fit == False:

36 temp_kin = (

37 numeric_input("Enter kinetic gas temperature [K]: ")

38)

39 if temp_kin == ’’:

40 print("No kinetic temperature is entered. Enter " +

41 "a kinetic temperature in Kelvin.")

42 return ’dummy ’

43

44 # check if ’temp_kin ’ is within RADEX boundary limits.

45 btw_check = (

46 in_between_check (0.1, 1e4 , temp_kin , temp_kin_name) == None

47)

48 if not btw_check:

49 return ’dummy ’

50

51 return [temp_kin_name , temp_kin , (0.1, 1e4), temp_kin_fit]

52

53

54 temp_kin_min = (numeric_input(

55 "Enter minimum kinetic gas temperature [K]: ")

56 or 10.0)

57 # check if ’temp_kin_min ’ within bounds that RADEX operates.

58 btw_check = (

59 in_between_check (0.1, 1e4 , temp_kin_min ,

60 ’minimum kinetic temperature ’) == None

61)

62 if not btw_check:

63 return ’dummy ’

64

65 temp_kin_max = (numeric_input(

66 "Enter maximum kinetic gas temperature [K]: ")

67 or 500.0)

68 # check if ’temp_kin_max ’ within bounds that RADEX operates.

69 btw_check = (

70 in_between_check (0.1, 1e4 , temp_kin_max ,

71 ’maximum kinetic temperature ’) == None

72)

73 if not btw_check:

74 return ’dummy ’

page 74 of 100

Appendix C ReverseRADEX (main program code)

75

76 # checks if maximum > minimum.

77 mm_check = (

78 min_max_check(temp_kin_min , temp_kin_max , temp_kin_name) == None

79)

80 if not mm_check:

81 return ’dummy ’

82

83 # will not be used by program and serves a dummy purpose to keep

84 # the return in the expected shape.

85 temp_kin = (temp_kin_max - temp_kin_min)/2

86

87 return [temp_kin_name , temp_kin , (temp_kin_min , temp_kin_max),

88 temp_kin_fit]

89

90

91 @re_enter_wrapper

92 def column_density_input(self):

93 """ function to set column density boundaries based on

94 user input , or return default values.

95

96

97 Returns:

98 float , tuple , bool: parameter value , (minimum and maximum

99 column density), fit parameter.

100 """

101

102 cd_name = ’cdmol’

103

104 cd_fit = (yay_or_nay("Fit the column density? (y/n): ") or False)

105

106 if cd_fit == False:

107 cd = (

108 numeric_input("Enter column density [cm^-2]: ")

109)

110 if cd == ’’:

111 print("No column density is entered. Enter " +

112 "a column density in cm^-2.")

113 return ’dummy ’

114

115 # check if ’tcd’ is within RADEX boundary limits.

116 btw_check = (

117 in_between_check (1e5 , 1e25 , cd , cd_name) == None

118)

119 if not btw_check:

120 return ’dummy ’

121

122 return [cd_name , cd, (1e5, 1e25), cd_fit]

123

124

125 cd_min = (numeric_input(

126 "Enter minimum column density [cm^-2]: ")

127 or 1e11)

128 # check if ’cd_min ’ within bounds that RADEX operates.

129 btw_check = (

130 in_between_check (1e5 , 1e25 , cd_min ,

131 ’minimum column density ’) == None

page 75 of 100

Appendix C ReverseRADEX (main program code)

132)

133 if not btw_check:

134 return ’dummy ’

135

136 cd_max = (numeric_input(

137 "Enter maximum column density [cm^-2]: ")

138 or 1e16)

139 # check if ’cd_max ’ within bounds that RADEX operates.

140 btw_check = (

141 in_between_check (1e5 , 1e25 , cd_max ,

142 ’maximum column density ’) == None

143)

144 if not btw_check:

145 return ’dummy ’

146

147 # checks if maximum > minimum.

148 mm_check = (

149 min_max_check(cd_min , cd_max , cd_name) == None

150)

151 if not mm_check:

152 return ’dummy ’

153

154 cd = (cd_max - cd_min)/2

155

156 return [cd_name , cd, (cd_min , cd_max), cd_fit]

157

158

159 @re_enter_wrapper

160 def collision_densities_input(self):

161 """ function to set volume densities (and boundaries) based on

162 user input , or return default values.

163

164

165 Returns:

166 dict[tuple]: dictionary with collision partner volume

167 densities (float) and matching "fit parameter ?" indicator

168 (bool).

169 """

170

171 # collision partners ,

172 h2 = (0.0, False)

173 h = (0.0, False)

174 e = (0.0, False)

175 ph2 = (0.0, False)

176 oh2 = (0.0, False)

177 hplus = (0.0, False)

178 he = (0.0, False)

179

180 nmin = 1e-3

181 n_min = nmin

182 nmax = 1e13

183 n_max = nmax

184

185 densities = {’h2’:h2 , ’h’:h, ’e-’:e, ’p-h2’:ph2 , ’o-h2’:oh2 ,

186 ’h+’:hplus , ’he’:he, ’min_max ’:(n_min , n_max)}

187

188 vol_dens_names = [’h2’, ’h’, ’e-’, ’p-h2’, ’o-h2’, ’h+’, ’he’]

page 76 of 100

Appendix C ReverseRADEX (main program code)

189 no = [’n’, ’no’, ’nah’, ’nay’, ’nope’]

190 # input loop that gets recalled on invalid input (@re_enter_wrapper).

191 while True:

192 if vol_dens_names == []:

193 break

194

195 collision_key = collision_check(

196 "Enter (another) collision partner ’s name " +

197 f"{vol_dens_names} or enter ’no’ if not: ",

198 vol_dens_names , no

199)

200 if collision_key in no:

201 break

202 else:

203 collision_fit = yay_or_nay(

204 f"Fit {collision_key}’s density? (y/n): "

205)

206 if collision_fit == True:

207 # checks if bounds have already been entered.

208 if (n_min is nmin and n_max is nmax):

209 #TODO: have individual limits for all

210 # collision partners.

211 n_min = (numeric_input(

212 "Enter minimum volume density" +

213 " [cm^-3] for all collision " +

214 "partners: "

215) or n_min

216)

217 nmin = n_min

218 # check if ’n_min’ within bounds that RADEX operates.

219 btw_check = (

220 in_between_check(

221 1e-3, 1e13 , n_min , ’minimum volume density ’

222) == None

223)

224 if not btw_check:

225 return ’dummy ’

226

227 n_max = (numeric_input(

228 "Enter maximum volume density" +

229 " [cm^-3] for all collision " +

230 "partners: "

231) or n_max

232)

233 # check if ’n_max’ within bounds that RADEX operates.

234 btw_check = (

235 in_between_check(

236 1e-3, 1e13 , n_max , ’maximum volume density ’

237) == None

238)

239 if not btw_check:

240 return ’dummy ’

241

242 # checks if maximum > minimum.

243 mm_check = (

244 min_max_check(n_min , n_max ,

245 ’volume density ’) == None

page 77 of 100

Appendix C ReverseRADEX (main program code)

246)

247 if not mm_check:

248 return ’dummy ’

249

250 densities[’min_max ’] = (n_min , n_max)

251 collision_value = (n_max - n_min)/2

252 else:

253 collision_value = numeric_input(

254 f"Enter density of {collision_key }: "

255)

256 if collision_value == ’’:

257 print("Collision partner density is not set. " +

258 f"User entered ’{collision_value }’.")

259 return ’dummy’

260 # check if ’collision_value ’ within RADEX bounds.

261 btw_check = (

262 in_between_check(

263 1e-3, 1e13 , collision_value , f’{collision_key}’

264) == None

265)

266 if not btw_check:

267 return ’dummy’

268

269

270 collision_value_dummy = (n_max - n_min)/2

271 if collision_value != collision_value_dummy:

272 pass

273 else:

274 collision_value = collision_value_dummy

275

276 densities[collision_key] = (collision_value , collision_fit)

277

278 vol_dens_names.remove(collision_key)

279

280 # check if a density or bounds are entered for any

281 # collision partner.

282 densities_copy = densities.copy()

283 del densities_copy[’min_max ’]

284 density_values = [collision_partner [0]

285 for collision_partner

286 in densities_copy.values ()]

287 # check if any entry in density_values is a float != 0.0

288 # since python reads bool (0.0) = False and nonzero floats

289 # as True.

290 if any(density_values) != True:

291 print("No volume density is set.")

292 return ’dummy ’

293

294 # check if parameters are within boundary limits.

295 vol_invalid = []

296 for key , value in densities.items():

297 conditions = [

298 value [1] == True ,

299 value [0] != 0.0,

300 value != densities[’min_max ’],

301 not (n_min < value [0] < n_max)

302]

page 78 of 100

Appendix C ReverseRADEX (main program code)

303 if all(conditions):

304 vol_invalid += [(n_min , n_max , value [0], key)]

305

306 if vol_invalid != []:

307 for col_partner in vol_invalid:

308 n_min , n_max , value , key = col_partner

309 print(f"{key} = {value} is not within limits [{ n_min};" +

310 f" {n_max }].")

311 return ’dummy ’

312

313 return densities

314

315

316 # %%

page 79 of 100

Appendix C ReverseRADEX (main program code)

C.3 fitting

Code used to do the fitting, containing all the algorithms used.

C.3.1 init .py

1 from .fitting_helper_functions import *

2 from .find_initial_guess import *

3 from .MCMC import *

4 from .LM import *

C.3.2 fitting helper functions.py

1 #!/usr/bin/env python3

2

3

4 # module imports

5 from numpy import (

6 inf ,

7 log ,

8 pi

9)

10 from numpy import sum as np_sum

11 from spectralradex.radex import run

12

13

14 class AlgorithmHelpers:

15 def __init__(self ,

16 observed_line_strengths ,

17 observed_line_strengths_uncertainties ,

18 unit_key ,

19 bounds_low ,

20 bounds_upp ,

21 constant_parameters ,

22 matching_lines ,

23 fit_parameters_names):

24 """ constant variables/parameters required by the fitting

25 algorithms but not necessarily able to be passed through outright.

26

27 Args:

28 observed_line_strengths (numpy.array[float]): observed line

29 strengths obtained from the user supplied data file ,

30 units => T_R (K) -OR- FLUX (K*km/s) -OR- FLUX (erg/cm2/s). To

31 be used in "log_likelihood ()".

32

33 observed_line_strengths_uncertainties (numpy.array[float]):

34 observed line strengths uncertainties obtained from the user

35 supplied data file ,

36 units => T_R (K) -OR- FLUX (K*km/s) -OR- FLUX (erg/cm2/s). To

37 be used in "log_likelihood ()".

38

39 unit_key (str): string of what units the user supplied data

page 80 of 100

Appendix C ReverseRADEX (main program code)

40 consists of => T_R (K) -OR- FLUX (K*km/s) -OR- FLUX (erg/cm2/s).

41 To be used in "RADEX_model ()" as a "key" to slice SpectralRadex

42 output.

43

44 bounds_low (numpy.array[float]): lower bounds of all parameters

45 to be fit => [par_1_low , par_2_low , ..., par_n_low], to be used

46 in the prior calculation. To be used in "log_prior ()".

47

48 bounds_upp (numpy.array[float]): upper bounds of all parameters

49 to be fit => [par_1_upp , par_2_upp , ..., par_n_upp], to be used

50 in the prior calculation. To be used in "log_prior ()".

51

52 constant_parameters (dict): all parameters not (able to) fit

53 stored in a dictionary , as SpectralRadex takes a dictionary

54 as input. To be used in "RADEX_model ()".

55

56 matching_lines (numpy.array[bool]): array of booleans

57 indicating which lines of the molecular file and SpectralRadex

58 output are present in the user supplied data file , and can thus

59 be compared. True if present , False if not present. To be used

60 in "RADEX_model ()" to cut the output.

61

62 fit_parameters_names (list[str]): names , recognized by

63 SpectralRadex , of parameters to be fit. To be used in

64 "RADEX_model ()".

65

66

67 Retrun:

68 None

69 """

70

71 self.y_obs = observed_line_strengths

72 self.y_err = observed_line_strengths_uncertainties

73 self.unit_key = unit_key

74 self.bounds_low = bounds_low

75 self.bounds_upp = bounds_upp

76 self.parameters = constant_parameters

77 self.matching_lines = matching_lines

78 self.fit_parameters_names = fit_parameters_names

79

80 return

81

82

83 def RADEX_model(self , fit_parameters_values):

84 """ Calculates a RADEX model.

85

86 Args:

87 fit_parameters_values (nd.array): contains the parameter values

88 of the parameters to be fit.

89

90

91 Returns:

92 nd.array: RADEX line strength output for matching lines.

93 """

94

95 variable_parameters = {

96 variable_parameter_name:variable_parameter_value

page 81 of 100

Appendix C ReverseRADEX (main program code)

97 for variable_parameter_name , variable_parameter_value

98 in zip(self.fit_parameters_names , 10.0**fit_parameters_values)

99 }

100

101 self.parameters.update(variable_parameters)

102

103 #NOTE: if I use this to cut the output (for performance ?), then

104 # "output_matching_observation" has to be reworked as well since it

105 # expects the full output.

106 # output_limit = (

107 # self.matching_line_indeces [0] + self.matching_line_indeces[-1] + 1

108 #)

109 radex_output = run(self.parameters)#.head(output_limit)

110

111 # cut (Spectral)RADEX output to match the user observed

112 # lines , provided in the datafile.

113 output_matching_observation = radex_output.loc[

114 self.matching_lines , self.unit_key

115]. to_numpy ()

116

117 return output_matching_observation

118

119

120 ### MCMC functions only ###

121

122 #FIXME: optimize this for speed? define a residuals function?

123 def log_likelihood(self , fit_parameters_values):

124 """ logarithm of the likelihood distribution over datasets

125 for the RADEX model.

126

127 Args:

128 fit_parameters_values (numpy array): values of the variable

129 parameters to be fit in the MCMC algorithm.

130

131

132 Returns:

133 float: logarithm of the likelihood distribution.

134 """

135

136 y_RADEX = self.RADEX_model(fit_parameters_values)

137

138 return - 0.5 * (log(2 * pi) + np_sum(

139 2 * log(self.y_err) + ((self.y_obs - y_RADEX) / self.y_err)**2

140)

141)

142

143

144 def log_prior(self , fit_parameters_values):

145 """ logarithm of the uniform prior that solely checks if the

146 walkers from the MCMC chain are within the supplied limits.

147

148 Args:

149 fit_parameters_values (numpy array): values of the variable

150 parameters to be fit in the MCMC algorithm.

151

152

153 Returns:

page 82 of 100

Appendix C ReverseRADEX (main program code)

154 float: "-inf" (unlikely to be true a.k.a. outside limits) or

155 "0.0" within limits (possibly true parameter values).

156 """

157

158 check = (

159 (fit_parameters_values >= self.bounds_low) ==

160 (fit_parameters_values <= self.bounds_upp)

161)

162

163 # check if any of the parameters are outside specified bounds.

164 if False in check:

165 return -inf

166 else:

167 return 0.0

168

169 return

170

171

172 def log_probability(self , fit_parameters_values):

173 """ the logarithm of the probability distribution for the

174 parameter uncertainty estimation using MCMC to sample the

175 parameters.

176

177 Args:

178 fit_parameters_values (numpy array): values of the variable

179 parameters to be fit in the MCMC algorithm.

180

181

182 Returns:

183 float: logarithm of the probability distribution.

184 """

185

186 logprior = self.log_prior(fit_parameters_values)

187 if logprior != 0.0:

188 return -inf

189 else:

190 return logprior + self.log_likelihood(fit_parameters_values)

191

192 return

193

194 ### MCMC functions only ###

C.3.3 find initial guess.py

1 #!/usr/bin/env python3

2

3

4

5 #FIXME: this whole file should be rewritten pretty much , latent MAGIX

6 # code , long function , not utilizing pandas like in

7 # "fitting_helper_function.py", how parameters that are either fit or not

8 # are handeled , etc.

9 # pretty much make this function similar to LM.py or MCMC.py but above all ,

10 # probably should look into the bees algorithm or pso algorithm or other

11 # global search algorithm besides grid search to combat parameter

page 83 of 100

Appendix C ReverseRADEX (main program code)

12 # degeneracy.

13

14

15

16 #%%

17 # module imports

18 from numpy import (

19 concatenate ,

20 geomspace ,

21 linspace ,

22 loadtxt ,

23 append ,

24 array ,

25 where ,

26 log10 ,

27 full ,

28 ones ,

29 ix_

30)

31 from spectralradex.radex import run_grid

32 from multiprocessing import cpu_count , Pool

33 import warnings

34

35

36 def data_file_extraction(user_data_file , uncertainty):

37 """ extract the line strength column (with uncertainties) from the

38 user supplied data file. These uncertainties are only used for

39 calculating the chi^2 values so the default uncertainties = 1 (or

40 any other constant) since they have no effect then.

41

42 Args:

43 user_data_file (str): user supplied data file directory.

44

45 uncertainty (str): uncertainties included (’yes’ -OR- ’no ’)

46

47

48 Returns:

49 tuple: 1 numpy array with line strenghts and 1 numpy array

50 with line strength uncertainties.

51 """

52 data = loadtxt(user_data_file).T

53 if uncertainty == ’no’:

54 line_strenghts = data [1]

55 return (line_strenghts , ones(line_strenghts.shape [0]))

56 else:

57 line_strenghts , line_strenght_uncertanties = data [1:]

58 return (line_strenghts , line_strenght_uncertanties)

59

60 return

61

62

63 #FIXME: use *args for y_err based on uncertainty?

64 def chi_squared(y_fit , y_obs , y_err , uncertainty):

65 """ calculate the chi^2 values between the user data file and the

66 spectralRadex grid calculations (y_err as a default is equal to an

67 array of ones).

68

page 84 of 100

Appendix C ReverseRADEX (main program code)

69 Args:

70 y_fit (numpy array): the spectralRadex grid fit line strengths

71 for all transition lines [T_R (K) -OR- FLUX (K*km/s) -OR-

72 FLUX (erg/cm2/s)].

73

74 y_obs (numpy array): the observed line strengths read from data

75 file [T_R (K) -OR- FLUX (K*km/s) -OR- FLUX (erg/cm2/s)].

76

77 y_err (numpy array): the observed line strength uncertainties

78 read from data file [T_R (K) -OR- FLUX (K*km/s) -OR-

79 FLUX (erg/cm2/s)].

80

81 uncertainty (str): are uncertainties included (’yes ’, ’no ’).

82

83

84 Returns:

85 [numpy array]: chi_squared values

86 """

87 if uncertainty == ’no’:

88 return ((y_obs - y_fit)**2).sum(axis=1)

89 else:

90 return (((y_obs - y_fit) / y_err)**2).sum(axis=1)

91

92 return

93

94

95 def find_initial_parameter_guesses(kinetic_temperature , column_density ,

96 voldens , volume_density ,

97 constant_parameters ,

98 core_count=cpu_count ()):

99 """ calculate the initial parameter guesses to be used by MAGIX

100 based on user supplied parameter fit information (bounds ,

101 fit=True/False , observed data). This is done with spectralRadex ’s

102 grid running function that runs one (large) grid , from which the

103 parameter values with the lowest chi2 are chosen as initial

104 estimates. This global search method is not very optimized and is

105 sometimes referred to as the "brute method ". Alternatives

106 would be the bees algorithm or particle swarm optimization amongst

107 other.

108

109 Args:

110 summary = [name [str], value [float], (lim_low , lim_upp) [floats],

111 fit (bool)]

112

113 kinetic_temperature (list): summary of kinetic temperature.

114

115 column_density (list): summary of column density.

116

117 voldens (list): list of summaries of all collision partners.

118

119 volume_density (list): list of summaries of all collision partners.

120

121 constant_parameters (list): list of required constant parameters

122 for spectralRadex and user data file information.

123

124

125 Returns:

page 85 of 100

Appendix C ReverseRADEX (main program code)

126 list: list of lists of parameters that now contains the initial

127 parameter guesses for the values to be written to "parameters.xml"

128 for MAGIX.

129 """

130 _, Tkin_value , Tkin_limits , Tkin_fit = kinetic_temperature

131 _, cd_value , cd_limits , cd_fit = column_density

132 (user_molfile , Tbg , dv , freq_min , freq_max , geom ,

133 units , matching_index , user_datfile ,

134 uncertainties) = constant_parameters

135

136

137 # counting the number of parameters to fit (will later be used for

138 # masking spectralRadex output when comparing to observational data

139 # and when retreiving the best initial parameter guesses).

140 # excluding the volume densities for now (the next for loop accounts

141 # for those).

142 parameters_to_fit = [Tkin_fit , cd_fit]

143 number_of_parameters_to_fit = 0

144 for fit in parameters_to_fit:

145 if fit == True:

146 number_of_parameters_to_fit += 1

147

148 Tkin_min , Tkin_max = Tkin_limits

149 cd_min , cd_max = cd_limits

150 voldens_min , voldens_max = voldens[’min_max ’]

151

152 num_points_tkin = int((Tkin_max - Tkin_min) / 40)

153 if num_points_tkin < 5:

154 num_points_tkin = 5

155 elif num_points_tkin > 30:

156 num_points_tkin = 30

157

158 num_points_cd = int(log10(cd_max) - log10(cd_min)) - 1

159 if num_points_cd < 5:

160 num_points_cd = 5

161

162 #FIXME: what if multiple collision partners are fit , it will be a very

163 # large grid and take a long time just to find initial parameters.

164 num_points_voldens = int(log10(voldens_max) - log10(voldens_min)) + 3

165 if num_points_voldens < 7:

166 num_points_voldens = 7

167

168 #TODO: if num_points_tkin + num_points_cd + num_points_voldens > 40?

169 # than decrease it for all points to a more reasonable grid by limiting

170 # the largest num_points_*** first , until the total < 40? again.

171 # num_points_list = [num_points_tkin + num_points_cd + num_points_voldens]

172 # if sum(num_points_list) > 50:

173 # sorted(num_points_list)

174

175

176 # be sure to exclude the first and last point of the chosen limits

177 # by taking endpoint=False and [1:] to exclude the starting point.

178 if Tkin_fit == True:

179 Tkin_grid = linspace(Tkin_min , Tkin_max ,

180 num_points_tkin + 1, endpoint=False)[1:]

181 else:

182 Tkin_grid = Tkin_value

page 86 of 100

Appendix C ReverseRADEX (main program code)

183

184 if cd_fit == True:

185 cd_grid = geomspace(cd_min , cd_max ,

186 num_points_cd + 1, endpoint=False)[1:]

187 else:

188 cd_grid = cd_value

189

190

191 grid_guess_parameters = {}

192 for collision_partner in voldens:

193 # exclude the volume density bounds

194 if collision_partner != ’min_max ’:

195 value , fit = voldens[collision_partner]

196 if fit == False:

197 grid_guess_parameters[collision_partner] = value

198 else:

199 number_of_parameters_to_fit += 1

200 grid_guess_parameters[collision_partner] = geomspace(

201 voldens_min , voldens_max , num_points_voldens + 1,

202 endpoint=False

203)[1:]

204

205 grid_guess_parameters[’tkin’] = Tkin_grid

206 grid_guess_parameters[’cdmol ’] = cd_grid

207 grid_guess_parameters[’molfile ’] = user_molfile

208 grid_guess_parameters[’tbg’] = Tbg

209 grid_guess_parameters[’linewidth ’] = dv

210 grid_guess_parameters[’fmin’] = freq_min

211 grid_guess_parameters[’fmax’] = freq_max

212 grid_guess_parameters[’geometry ’] = geom

213 # print(grid_guess_parameters)

214

215

216 #FIXME: use psutil.cpu_count(logical=True) instead?

217 pool = Pool(processes=core_count)

218

219 grid_output_DataFrame = run_grid(grid_guess_parameters ,

220 target_value=units ,

221 pool=pool)

222 #FIXME: instead of ". to_numpy ()" use pandas dataframe namings for

223 # columns instead? might make code clearer but speed should not

224 # be an issue to begin with (see example in SpectralRadex code

225 # or in LM.py/MCMC.py).

226 grid_output = grid_output_DataFrame.to_numpy ()

227

228 # "number_of_parameters_to_fit" accounts for the variable parameters

229 # used in the grid calculations (and also output) by spectralRadex

230 # and thus in need of removal when compared to user data.

231 grid_output_cut = grid_output [:, number_of_parameters_to_fit :]

232

233

234 # only take the spectralRadex output for matching (observed) lines

235 # taken from the data file.

236 grid_output_to_compare = grid_output_cut[

237 ix_(full(grid_output_cut.shape[0], True), matching_index)

238]

239

page 87 of 100

Appendix C ReverseRADEX (main program code)

240 y_observed , y_uncertainties = data_file_extraction(user_datfile ,

241 uncertainties)

242

243 # using ’[None ,:]’ to "match" the dimensionality of

244 # ’grid_output_to_compare ’ and be able to easily vectorize the chi2

245 # calculation.

246 chi2 = chi_squared(grid_output_to_compare ,

247 y_observed[None ,:], y_uncertainties[None ,:],

248 uncertainties)

249

250 min_chi2_index = int(where(chi2 == chi2.min())[0][0])

251

252 ## ignore UserWarning ##

253 # user warning is that irrelevant columns have the same name.

254 def usr():

255 warnings.warn("user warning", UserWarning)

256

257 with warnings.catch_warnings ():

258 warnings.simplefilter("ignore")

259 usr()

260 grid_output_dict = grid_output_DataFrame.to_dict ()

261 ## ignore UserWarning ##

262

263

264 global_parameter_estimates = array ([])

265 if Tkin_fit == True:

266 global_tkin = grid_output_dict[’tkin’][min_chi2_index]

267 global_parameter_estimates = append(

268 global_parameter_estimates , log10(global_tkin)

269)

270

271 if cd_fit == True:

272 global_cd = grid_output_dict[’cdmol’][min_chi2_index]

273 global_parameter_estimates = append(

274 global_parameter_estimates , log10(global_cd)

275)

276

277

278 ## suppress deprecation warning ##

279 def depr():

280 warnings.warn("deprecated", DeprecationWarning)

281

282 with warnings.catch_warnings ():

283 warnings.simplefilter("ignore")

284 depr()

285 # save the initial parameter guesses (vol_dens) to appropriate lists.

286 for collision_partner in volume_density:

287 col_partner_name , *_, col_partner_fit = collision_partner

288 if col_partner_fit == True:

289 collision_partner_index = int(

290 where(

291 array(volume_density).T[0] == col_partner_name

292)[0][0]

293)

294 volume_density[collision_partner_index][1] = (

295 grid_output_dict[col_partner_name][min_chi2_index]

296)

page 88 of 100

Appendix C ReverseRADEX (main program code)

297 global_vd = grid_output_dict[col_partner_name][min_chi2_index]

298 global_parameter_estimates = append(

299 global_parameter_estimates , log10(global_vd)

300)

301 ## suppress deprecation warning ##

302

303 return global_parameter_estimates

C.3.4 LM.py

1 #!/usr/bin/env python3

2

3 # module import.

4 from scipy.optimize import least_squares

5

6

7 def run_levenberg_marquardt(parameter_estimates , model , y_obs , y_err):

8 """ run the Levenberg-Marquardt least squares algorithm on the RADEX

9 model for the initial parameter estimates supplied by the global

10 search algorithm. The least squares algorithm is used to refine the

11 estimates of the minimum found by the global search algorithm , after

12 which said parameters will be subject to an MCMC run for uncertainty

13 estimates.

14

15 Args:

16 parameter_estimates (numpy.array): parameter estimates

17 obtained via the global search algorithm.

18

19 model (function): RADEX model calculated with SpectralRadex.

20

21 y_obs (numpy.array): line strengths from the user supplied data

22 file to be used in calculating the residuals.

23

24 y_err (numpy.array): line strength uncertaintiesfrom the user

25 supplied data file to be used in calculating the residuals.

26

27

28 Return:

29 numpy.array: the refined parameter estimates to be subject to

30 an MCMC run.

31 """

32

33 def residuals(parameters_to_optimize):

34 """a function to calculate the residuals of SpectralRadex

35 output compared with the observed data from the user supplied

36 data file.

37

38 Args:

39 parameters_to_optimize (numpy.array): parameter estimates

40 obtained via the global search algorithm.

41

42

43 Returns:

44 numpy.array: the residuals for the RADEX model , either with

45 the inclusion of uncertainties or not.

page 89 of 100

Appendix C ReverseRADEX (main program code)

46 """

47

48 y_RADEX = model(parameters_to_optimize)

49 if y_err.all() == 1:

50 return y_RADEX - y_obs

51 else:

52 return (y_RADEX - y_obs) / y_err

53

54 return

55

56

57 ls_solution = least_squares(residuals , parameter_estimates , method=’lm’,

58 ftol=1e-10, xtol=1e-10, gtol=1e-10,)

59

60 return ls_solution.x

C.3.5 MCMC.py

1 #!/usr/bin/env python3

2

3 # module imports

4 from emcee.moves import (

5 DESnookerMove ,

6 StretchMove ,

7 DEMove ,

8)

9 from emcee import EnsembleSampler

10 from multiprocessing import Pool , cpu_count

11 from numpy.random import randn

12

13

14 # required/suggested by emcee when using automatic parallelization done by

15 # numpy using MKL linear algebra for instance to disable it and let

16 # other implementations like Pool in this case take care of parallelization.

17 # see https://emcee.readthedocs.io/en/stable/tutorials/parallel

18 import os

19 os.environ["OMP_NUM_THREADS"] = "1"

20

21

22 #FIXME: set walkers as multiple of cpu_count ()?

23 def run_monte_carlo(initial_parameters ,

24 log_probability_function ,

25 number_of_walkers=35,

26 number_of_steps=500,

27 number_of_burnin_steps=100,

28 number_of_walker_steps=200,

29 core_count=cpu_count ()):

30 """

31 Args:

32 initial_parameters (nd.array): initial parameters obtained by prior

33 algorithms (grid search --> LM) in the chain.

34

35 log_probability_function (function): logarithm (base10) of posterior.

36

37 number_of_walkers (int): number of walkers. Defaults to 35.

page 90 of 100

Appendix C ReverseRADEX (main program code)

38

39 number_of_steps (int): number of steps. Defaults to 500.

40

41 number_of_burnin_steps (int): number of burnin steps. Defaults to 100.

42

43 number_of_walker_steps (int): number of walker steps. Defaults to 200.

44

45 core_count (int): number of processors. Defaults to cpu_count ().

46

47

48 Returns:

49 EnsambleSampler , int: emcee sampler object and number of parameters.

50 """

51

52 # Initialize the walkers in a Gaussian "ball" around the best initial

53 # parameter estimates found by prior algorithms in the chain.

54 pos = initial_parameters + 1e-3 * randn(number_of_walkers ,

55 initial_parameters.shape [0])

56 nwalkers , ndim = pos.shape

57

58 # run the MCMC algorithm.

59 with Pool(processes=core_count) as pool:

60 #FIXME: figure out the best set of moves for all molecules?

61 sampler = EnsembleSampler(

62 nwalkers , ndim , log_probability_function , pool=pool ,

63 moves=[(StretchMove(a=3), 0.7),

64 (DEMove (), 0.2),

65 (DESnookerMove (), 0.1) ,]

66)

67

68 sampler.run_mcmc(pos , number_of_steps , progress=True)

69

70 #FIXME: separate burnin and uncertainty sampling?

71 # # calculate burnin chain.

72 # idk = sampler.run_mcmc(pos , number_of_burnin_steps , progress=True)

73

74 # # calculate walker (uncertainties ?) chain.

75 # sampler.run_mcmc(idk[???] , number_of_walker_steps , progress=True)

76

77 return sampler , ndim

page 91 of 100

Appendix C ReverseRADEX (main program code)

C.4 save plot

Code used to save an plot results.

C.4.1 init .py

1 from .fitting_helper_functions import *

2 from .find_initial_guess import *

3 from .MCMC import *

4 from .LM import *

C.4.2 save plot helper.py

1 #!/usr/bin/env python3

2

3 #module imports

4 from spectralradex.radex import run

5 from numpy import array

6

7

8 def RADEX_model_plot(fit_parameter_names , parameters ,

9 fit_parameters_values):

10 """ calculate RADEX model.

11

12 Args:

13 fit_parameter_names (list): list of names of parameters to fit.

14

15 parameters (dict): constants.

16

17 fit_parameters_values (array/list): fitted parameters ’ values.

18

19

20 Returns:

21 pd.DataFrame: full RADEX output + for which input parameters.

22 """

23

24 variable_parameters = {

25 variable_parameter_name:variable_parameter_value

26 for variable_parameter_name , variable_parameter_value

27 in zip(fit_parameter_names , 10.0**array(fit_parameters_values))

28 }

29

30 parameters.update(variable_parameters)

31 parameters[’fmin’]=0

32 parameters[’fmax’]=3e7

33

34 radex_output = run(parameters)

35

36 return radex_output

page 92 of 100

Appendix C ReverseRADEX (main program code)

C.4.3 plot.py

1 #!/usr/bin/env python3

2

3 #relative imports

4 from .save_plot_helper import RADEX_model_plot

5

6 # module imports

7 from matplotlib.pyplot import figure , show

8 import matplotlib.pyplot as plt

9 from numpy import exp

10 from numpy.random import randint

11 import warnings

12 import corner

13

14

15 class Plotting:

16 def __init__(self ,

17 sampler ,

18 output_path ,

19 parameter_50s ,

20 fit_parameter_names):

21 """ class used for plotting.

22

23 Args:

24 sampler (emcee:EnsembleSampler): MCMC parameter coordinates.

25

26 output_path (str): output folder.

27

28 parameter_50s (nd.array): MCMC parameter medians.

29

30 fit_parameter_names (list): Names of fitted parameters.

31

32

33 Returns:

34 None

35 """

36

37 self.sampler = sampler

38 self.output_path = output_path

39 self.parameter_50s = parameter_50s

40 self.fit_parameter_names = fit_parameter_names

41

42 #FIXME: put in the molecule name for column density.

43 plot_names = {

44 ’tkin’:r"log$_ {10}$(T$_{\ mathrm{kin}}$) [K]",

45 ’cdmol’:r"log$_ {10}$(N$_{\ mathrm{mol}}$) [cm$^{-2}$]",

46 ’h2’:r"log$_ {10}$(H$_2$) [cm$^{-3}$]",

47 ’p-h2’:r"log$_ {10}$(p-H$_2$) [cm$^{-3}$]",

48 ’o-h2’:r"log$_ {10}$(o-H$_2$) [cm$^{-3}$]",

49 ’e-’:r"log$_ {10}$(e$^-$) [cm$^{-3}$]",

50 ’h’:r"log$_ {10}$(H) [cm$^{-3}$]",

51 ’he’:r"log$_ {10}$(He) [cm$^{-3}$]",

52 ’h+’:r"log$_ {10}$(H$^+$) [cm$^{-3}$]"

53 }

54

page 93 of 100

Appendix C ReverseRADEX (main program code)

55 self.plot_labels = [plot_names[plot_name]

56 for plot_name

57 in self.fit_parameter_names]

58

59 return

60

61

62 def plot_corner(self):

63 """ Make and save a corner plot of the MCMC sampled posterior

64 distributions of the parameters that are fit. both 2D contours

65 between parameters and 1D distributions.

66

67

68 Returns:

69 None

70 """

71 flat_samples = self.sampler.get_chain(discard=100, flat=True)

72 fig = corner.corner(

73 flat_samples , labels=self.plot_labels , truths=self.parameter_50s ,

74 quantiles=(0.16 , 0.84), levels=(1 - exp(-0.5) ,), smooth=True ,

75 label_kwargs={’fontsize ’:15}

76)

77

78 plt.close(fig)

79 fig.savefig(f’{self.output_path}/MCMC_corner_plot.png’,

80 dpi=300, bbox_inches=’tight’)

81

82 return

83

84

85 def plot_spectrum(self ,

86 unit_name ,

87 line_strength_y ,

88 line_strength_err ,

89 constant_parameters ,

90 frequencies):

91 """ plot the observed data points , as well as the RADEX model

92 spectrum for the best estimates and an "uncertainty" interval

93 using 100 random MCMC results.

94

95 Args:

96 unit_name (str): dict key of units selected by user.

97

98 line_strength_y (nd.array): user line strenghts.

99

100 line_strength_err (nd.array): user line strength uncertainties.

101

102 constant_parameters (dict): RADEX input for SpectralRadex for

103 the constant input.

104

105 frequencies (nd.array): molfile frequencies matching user

106 frequencies.

107

108

109 Returns:

110 None

111 """

page 94 of 100

Appendix C ReverseRADEX (main program code)

112

113 unit_labels = {

114 ’T_R (K)’:r’T$_{\ mathrm{R}}$ [K]’,

115 ’FLUX (K*km/s)’:r’\mathcal{F} [K km s$^{-1}$}]’,

116 ’FLUX (erg/cm2/s)’:r’\mathcal{F} [erg cm$^{-2}$ s$^{-1}$]’

117 }

118

119 fig = figure(figsize=(15 ,10.5))

120 frame = fig.add_subplot (1,1,1)

121

122

123 # plot 100 randomly drawn RADEX models to showcase uncertainty

124 # interval loosely.

125 flat_samples = self.sampler.get_chain(discard=100, flat=True)

126 inds = randint(len(flat_samples), size=100)

127 for ind in inds:

128 sample = flat_samples[ind]

129 rnd_output = RADEX_model_plot(

130 self.fit_parameter_names , constant_parameters , sample

131)

132 rnd_freqs = rnd_output[’freq’]

133 rnd_line_strengths = rnd_output[unit_name]

134 frame.scatter(rnd_freqs , rnd_line_strengths , color=’#4 daf4a’,

135 alpha=0.1, marker=’s’)

136 #FIXME: add to legend without dummy plot.

137 # a dummy plot to add MCMC "uncertainty interval" to legend.

138 frame.plot(frequencies [0], line_strength_y [0], color=’#4 daf4a’,

139 marker=’s’, scalex=False , scaley=False , alpha=0.8,

140 zorder=0, label=’MCMC uncertainty interval ’,

141 linestyle = ’None’)

142

143

144 # plot RADEX model for the optimal parameter estimates

145 output_50 = RADEX_model_plot(

146 self.fit_parameter_names , constant_parameters ,

147 self.parameter_50s

148)

149 freq_50 = output_50[’freq’]

150 line_strengths_50 = output_50[unit_name]

151 frame.scatter(freq_50 , line_strengths_50 ,

152 color=’#ff7f00 ’, marker=’D’,

153 label=’RADEX optimal parameters ’, s=70)

154

155

156 ## ignore UserWarning ##

157 # The warning says "fmt" is redundant when "marker" is defined

158 # (or vice versa?) but this does not seem to be the case.

159 def usr():

160 warnings.warn("user warning", UserWarning)

161

162 with warnings.catch_warnings ():

163 warnings.simplefilter("ignore")

164 usr()

165 # plot observations.

166 frame.errorbar(frequencies , line_strength_y ,

167 yerr=line_strength_err ,

168 marker=’.’, fmt=’,’, mew=3, ms=13, linewidth=1,

page 95 of 100

Appendix C ReverseRADEX (main program code)

169 capsize=3, capthick=1,

170 color=’dodgerblue ’, ecolor=’black’,

171 label=’Observed data’, zorder=10)

172 ## ignore UserWarning ##

173

174

175 #FIXME: make sure that this legend placement is sufficient

176 # for every molecule?

177 frame.legend(fontsize=16, fancybox=True , shadow=True , ncol=1,

178 loc=’upper right’, bbox_to_anchor=(0.975 , 0.9678))

179 frame.set_xlabel(r’ν [GHz]’, fontsize=21)

180 frame.set_ylabel(unit_labels[unit_name], fontsize=21)

181 frame.yaxis.offsetText.set_fontsize (18)

182 frame.set_axisbelow(True)

183 frame.grid(True)

184

185 frame.tick_params(axis=’both’, direction=’in’, which=’major’,

186 length=10, width=1, labelsize=18)

187

188 fig.savefig(f’{self.output_path}/spectrum.png’,

189 dpi=300, bbox_inches=’tight’)

190 show()

191

192 return

C.4.4 save.py

1 #!/usr/bin/env python3

2

3

4 #relative imports

5 from .save_plot_helper import RADEX_model_plot

6

7 #module imports

8 from numpy import (

9 percentile ,

10 savetxt ,

11 array ,

12 diff ,

13 full ,

14 NaN

15)

16 from pandas import read_csv

17

18

19 class SaveResults:

20 def __init__(self ,

21 sampler ,

22 output_path ,

23 constant_parameters ,

24 fit_parameters_names):

25 """

26 Args:

27 sampler (EnsambleSampler): emcee sampler object containing

28 all MCMC sampler parameter coordinates.

page 96 of 100

Appendix C ReverseRADEX (main program code)

29

30 output_path (str): output directory.

31

32 constant_parameters (dict): dictionary of the constant

33 parameter inputs of SpectralRadex.

34

35 fit_parameters_names (list): parameter names of parameters

36 to be fit.

37

38

39 Returns:

40 None

41 """

42

43 self.sampler = sampler

44 self.output_path = output_path

45 self.constant_parameters = constant_parameters

46 self.fit_parameters_names = fit_parameters_names

47 return

48

49

50 def print_parameter_uncertainty_estimates(self ,

51 user_datfile ,

52 user_frequencies ,

53 limits):

54 """ prints and saves fit information.

55

56 Args:

57 user_datfile (str): observed user data file location.

58

59 user_frequencies (list): observed user line frequencies.

60

61 limits (dict): dictionary of the limits for fit parameters.

62

63

64 Returns:

65 list: parameter medians

66 """

67

68 parameter_50s = []

69 print("\nParameter estimates and accompanying upper and "

70 "lower uncertainties ,")

71 prms_sum_dir = f’{self.output_path}/parameters.txt’

72 with open(prms_sum_dir , ’w’) as prms_txt:

73 prms_txt.write(

74 ’Data file used: ’ +

75 user_datfile +

76 ’\n’

77)

78 prms_txt.write(

79 ’Line (frequencies) used: ’ +

80 str(user_frequencies)[1:-1] +

81 ’\n’

82)

83 for i, parameter_name in enumerate(self.constant_parameters):

84 if parameter_name in self.fit_parameters_names:

85 prms_txt.write(

page 97 of 100

Appendix C ReverseRADEX (main program code)

86 f"{parameter_name}’s parameter boundaries: " +

87 f’{limits[parameter_name]}\n’

88)

89 else:

90 prms_txt.write(

91 f’{parameter_name} = ’ +

92 f’{self.constant_parameters[parameter_name]}\n’

93)

94

95

96 header = f"Percental: 50% | 16% | 84% "

97 print(header)

98 prms_txt.write(’\n’ + header)

99 for i, parameter_name in enumerate(self.fit_parameters_names):

100 # obtaining the median and upper and lower uncertainties

101 # that enclose 1 sigma.

102 parameter_uncertainty_estimates = percentile(

103 self.sampler.get_chain(discard=100, flat=True)[:, i],

104 q=[16, 50, 84]

105)

106 uncertainties = diff(parameter_uncertainty_estimates)

107

108 median = parameter_uncertainty_estimates [1]

109 prm_16 , prm_84 = uncertainties

110

111 parameter_50s += [median]

112

113 parameter_summary = (

114 f"{parameter_name} : {median :.5f} | -{prm_16 :.5f}" +

115 f" | +{prm_84 :.5f}"

116)

117 print(parameter_summary)

118 prms_txt.write(’\n’ + parameter_summary)

119

120

121 return parameter_50s

122

123

124 def save_MCMC_sampler(self):

125 """ save emcee EnsembleSampler.flatchain object.

126 """

127

128 savetxt(

129 f’{self.output_path}/sampler.dat’,

130 self.sampler.get_chain(flat=True),

131 header=str(self.fit_parameters_names)[1:-1]

132)

133

134 return

135

136

137 def RADEX_for_optimal_parameters(self ,

138 user_datfile ,

139 user_frequencies ,

140 y_obs ,

141 y_err ,

142 matching_indices ,

page 98 of 100

Appendix C ReverseRADEX (main program code)

143 units ,

144 limits):

145 """ saves RADEX.csv , which is a RADEX model output for

146 the parameter medians estimated with the MCMC algorithm.

147 Addintionally , the chi^2 for each observed line is

148 calculated and saved as well.

149

150 Args:

151 user_datfile (str): user observed data file location.

152

153 user_frequencies (list): user observed frequencies.

154

155 y_obs (list): user observed line strengths.

156

157 y_err (list): user observed line strengths uncertainties.

158

159 matching_indices (list): incides that match the user

160 observations with the RADEX output.

161

162 units (str): dictunary key that indicates the units used

163 in user_datfile.

164

165 limits (dict): dictionary of the limits for fit parameters.

166

167

168 Returns:

169 list: parameter medians

170 """

171

172 # this is the only way the function below is called.

173 params_50 = self.print_parameter_uncertainty_estimates(

174 user_datfile , user_frequencies , limits

175)

176 optimal_RADEX = RADEX_model_plot(

177 self.fit_parameters_names , self.constant_parameters , params_50

178)

179

180

181 # define to chi2 column to be added to RADEX.csv.

182 y_RADEX = optimal_RADEX.loc[matching_indices , units]. to_numpy ()

183 if y_err.all() == 1:

184 chi2_calc = (y_obs - y_RADEX) ** 2

185 else:

186 chi2_calc = ((y_obs - y_RADEX) / y_err) ** 2

187

188 chi2 = full(optimal_RADEX[units].shape [0], NaN)

189 chi2[matching_indices] = chi2_calc

190

191 csv_path = f’{self.output_path}/RADEX.csv’

192 # write RADEX output to csv.

193 optimal_RADEX.to_csv(

194 csv_path , sep=’,’, na_rep=NaN , float_format=’%.3e’

195)

196 # read the RADEX output.

197 csv_file = read_csv(csv_path)

198 # add the chi2 values as the last column.

199 csv_file[’chi^2’] = array(chi2)

page 99 of 100

Appendix C ReverseRADEX (main program code)

200 # save the new RADEX .csv file.

201 csv_file.to_csv(

202 csv_path , index=False , na_rep=NaN , float_format=’%.3e’

203)

204

205 return params_50

page 100 of 100

	Introduction
	Theory
	Radiative transfer
	Equation of radiative transfer
	Gas emission
	Escape probability

	Algorithms
	The Brute-force method
	Levenberg–Marquardt
	MCMC

	MAGIX
	Incorporating MAGIX
	Results

	RADEX
	Capabilities useful for ReverseRADEX
	Limitations and Assumptions

	Wrapper comparison
	SpectralRadex
	ndRADEX
	pyradex
	Miscellaneous wrappers
	pythonradex
	myRadex
	radexgrid

	ReverseRADEX
	Inverting RADEX
	Input
	Output

	Results
	Single run
	Comparison

	Discussion
	Parameter degeneracy
	MCMC
	Chains
	Distributions

	MAGIX
	Latent MAGIX
	MAGIX results

	Wrapper comparison
	ReverseRADEX
	Limitations and Assumptions
	Figures
	Fitting
	Code
	User interface

	Conclusion
	Acknowledgements
	References
	Appendices
	ReverseRADEX
	main.ipynb
	Output

	Wrapper comparison code
	ReverseRADEX (main program code)
	main
	user_input
	fitting
	save_plot

