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Abstract

In this thesis, we analyze over 200,000 classifications contributed by over 3,000 individual volunteer citizen
scientists, of over 6,000 images from the Fornax Deep Survey, in an attempt to discover low-surface
brightness galaxies in this cluster not found previously, or to confirm those found in previously created
catalogues. We find that the users correctly classify at least 30 (and up to 48 depending on strictness of
classification criteria) of the 232 low-surface brightness galaxies from a forthcoming catalogue of Fornax
low-surface brightness galaxies. By performing our own visual classification, we find an additional 63
objects classified by the users as so-called ’fluffy’ galaxies, that were excluded from this forthcoming
catalogue, but that from visual inspection do not show enough structure to be excluded from a catalogue of
Fornax low-surface brightness galaxies. We find that objects with effective mean r-band surface brightness
exceeding 25 mag/arcsec2 are never identified by the volunteers as galaxies, even though a significant
fraction of low-surface brightness galaxies are at least this faint, or fainter, placing a limit on the viability
of using user-contributed classifications in identifying low-surface brightness galaxies like those in Fornax.
We believe that the accuracy of users could be increased through various improvements to the tutorial
provided to them before they make their first classification.
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1 Introduction

Our universe contains some few hundred billion galaxies, each containing hundreds of millions to hundreds
of trillions of stars. By virtue of them containing such huge quantities of stuff, galaxies are extremely
interesting objects to study. Not all galaxies, however, are easy to find, which naturally makes them
harder to study. Faint, extended galaxies, however, are still galaxies, and thus our human inquisitiveness
leads us ever onward in our search of finding as many of these objects as we can. Much has been discovered
about galaxies since we first aimed our sights at the cosmos. Research into their makeup, formation, and
evolution are all active fields of study. In this thesis, we will aim to aid in the search for more of the
small, faint galaxies that we call low-surface brightness galaxies, in the galactically nearby Fornax galaxy
cluster. These galaxies are so faint that even our computer algorithms still have trouble identifying them
sometimes.

1.1 Low Surface Brightness dwarfs and Ultra-Diffuse Galaxies

(a) Edwin Hubble’s galaxy classification schema.
Credit: ESA/Hubble

(b) Dwarf galaxy classification from Binggeli et al. (fig. 1,
[15]). Giant galaxy classes are also shown along the ’bright’
part of the vertical axis.

Figure 1

By number, dwarf galaxies are the dominant galaxy population in the Universe [18]. As their name
suggests, we understand dwarf galaxies to be small (Reff ≤ 1.5 kpc), and like non-dwarf galaxies, we
can readily morphologically categorize them into various subclasses (see figure 1a). Though generally a
significant fraction (approximately 60%) of the galaxies in our Universe are spirals, for dwarfs it is quite
the opposite: most dwarf galaxies are ellipticals, spheroidals and irregulars [16] (irregulars are essentially
the dwarf version of spiral galaxies). The dwarf spiral ’void’ is seen in figure 1b, where we see that there
is no direct companion between Sa and Sb galaxies in the ’bright’ part, and dwarf types in the ’faint’ part
in the image.

Current cosmological models tell us that smaller systems often form the building blocks of larger ones
(e.g. [24, 5]). It is for reasons such as this that we may take a particular interest in the study of small
galaxies like dwarfs.

In this thesis, we will concern ourselves with low-surface brightness (LSB) (dwarf) galaxies, and we
will also consider the slightly larger ultra-diffuse galaxies (UDGs). The distinction between these two
types (LSB dwarfs and UDGs) is based on effective radius: LSB dwarfs will extend up to 1.5 kpc, and for
UDGs we consider 1.5 kpc < Reff < 10 kpc [26]. Note that we consider the surface brightness regime of
approximately µe,r & 23 mag arcsec−2. [12] to be the ’low surface brightness’ regime, where µe,r denotes
the effective mean r-band surface brightness of an object.

Low surface brightness galaxies contain considerable amounts of dark matter in their halos, especially
compared to giant galaxies. However, LSB galaxy formation is still poorly understood (see e.g. Martin
et al. [11], or Bhattacharjee et al. [2]). Detection of these galaxies for further study, thus, is of vital
importance. The more of these galaxies we find, the better our understanding of them can become.
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1.1.1 The Fornax Cluster

In particular, this project concerns a (likely, see section 1.3) selection of low-surface brightness galaxies
from the Fornax cluster. The Fornax cluster is the second-richest galaxy cluster (after Virgo) within 20
Mpc of the Galaxy with a virial mass of 7 × 1013M�, making it a great site for the study of galactic
evolution and galactic dynamics [8]. In the past decade, the Fornax Deep Survey [13] has been created
through observations with OmegaCAM on the VST. This survey goes 3 magnitudes deeper than the
complete Fornax Cluster Catalogue from 1989, making it the deepest survey of this cluster to date. This
improved depth allows for better study of exactly the objects we’re looking for - the small, faint galaxies
that might have previously escaped the view of then-state-of-the-art optics. The size and improvement
of quality of this data compared to previous surveys allows us to study in more detail the properties and
history of many objects in this cluster (see e.g. [14, 19]).

1.2 Citizen science and the Zooniverse

In citizen science projects, volunteers, who are generally untrained in the field before coming to a project,
are asked to conduct science on platforms like Zooniverse or SciHub, often by means of visual identifica-
tion (like in the project this thesis analyses), usually after following a short tutorial put together by the
project managers that aims to guide users in the right direction. Classification projects may concern a
wide variety of subjects, from animal species to astronomical objects. Involving a large group of volunteers
in a project may either aid (or in cases possibly even replace entirely) work otherwise done by computers
in cases where there is simply too much data to look at for a small group of experts, or in cases where
an untrained eye can, with a slight nudge in the right direction in the form of a short tutorial, match up
against the opinion of an expert. Volunteer contributions may also serve to identify objects that warrant
a further manual inspection, which is also a way to reduce the size of the extremely large datasets and
surveys that are produced nowadays.

In the past decade, significant attention has been drawn to the use of citizen science in the field of
astronomy, on the web most notably with the Galaxy Zoo project [27], in which 105 participants made
more than 4 × 107 morphological classifications of galaxies [10]. In a similar successor project called
Galaxy Zoo Supernovae [17], volunteers were shown images of potential supernovae, and through a series
of questions asked of each volunteer, a score would be assigned to the object in question based on how
astrophysically interesting it was perceived to be (as e.g. a transient or supernova). Classifications and
transcriptions gathered from citizen science projects are leading to the expansion of knowledge in a large
variety of scientific disciplines (see for example the list of Zooniverse-related scientific publications at [28]).

1.3 Space Fluff

This thesis focuses on the analysis one particular Zooniverse project: Space Fluff, executed by Anna
Lanteri with the Sundial international training network [20]. The following description is taken from the
Space Fluff page on Zooniverse:

The better our telescopes get, the fainter the galaxies we see with them can be. Recently a
new population of faint objects has attracted the attention of the scientific community: we
need your help to make sense of what we see!

Since it is a challenging field due to the nature of the objects, we want to be prepared for the
future big surveys. We have built this project with a medium sized dataset from the Fornax
Deep Survey to classify these objects with citizen science and to study how this classification
can compare with the traditional one. This will allow us to be ready when it is time to add a
way bigger set from the KIDS survey of the same objects. Stay tuned for that! [21]

Space Fluff aims to find what the project describes as ’fluffy’ galaxies in the Fornax cluster, referring to
the UDGs and LSB (dwarf) galaxies described in the introduction to this work, by visually distinguishing
between this type of galaxy and other galaxies and non-galaxy objects that appear in the images, but are
for example actually far behind the Fornax cluster. It is hard for algorithms to distinguish between a high-
surface brightness background galaxy, and a low-surface brightness cluster member (see also section 1.5),
and hence Space Fluff was created to explore the effectiveness of the possibility of using human classifica-
tion instead. Aside from the potential scientific benefit, Space Fluff also serves as a public outreach project.
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The ultimate goal is to create a complete catalogue of LSB galaxies in the Fornax cluster, since natu-
rally, if we are to study these objects as a group, we would first like to know where they are.

In the Space Fluff project, images of a total of 6362 possible LSB dwarf/UDG candidates were shown
to a total of 3700 unique users (registered or unregistered), 2136 of them with accounts registered on
the Zooniverse website, the rest of them as ”not-logged-in” users. These users made a total of 233,375
classifications (from late October 2020 to mid-January 2021) across three so-called workflows: ’on-the-go’,
’classify’ and ’hardcore’. So as no to waste volunteers’ time with objects that are easily seen not to be part
of the Fornax cluster, or even not galaxies at all, the objects served in the project were run through the
MTObjects source extraction algorithm [22] to provide a reasonable initial guess that the objects shown
may in fact be LSB galaxies in the Fornax cluster.

In the main ’Classify!’ workflow, users are shown an image of one of the objects, following a short
initial training session (see the Appendix at the end of this work for a short overview of the Space Fluff
training/field guide), and tasked with answering the following question: ”Look at the very center of the
image: do you see a single galaxy or a group of far away objects?”. The user is invited to provide one
of the following answers: ’Galaxy’, ’Group of objects (Cluster)’ or ’Something else/empty center’. If the
user judges the center of the image to contain a galaxy, they will be asked whether they believe it to be
’fluffy’ or ’bright’ (see an excerpt of the Space Fluff field guide in the Appendix). This distinction forms
the essence of a classification. An object may be a galaxy that is beyond the Fornax cluster that made
it into the image simply by being in the line of sight, or it may be a low-surface brightness galaxy in the
Fornax cluster. Using a physical argument resulting from data about previously confirmed cluster mem-
bers (relations between color, magnitude, surface brightness and concentration (see section 1.6)), we can
distinguish many background galaxies from cluster members. Objects that the users are guided to mark
as ’bright’, are supposed background galaxies, whereas ’fluffy’ galaxies are more likely to be LSBs/UDGs
in the Fornax cluster.

If a user thinks the see a group of objects in the center of the image, rather than a single galaxy (or
even nothing), they won’t be asked any further questions. The hardcore workflow goes deeper into the
properties of the object in the image, about its color, or whether the user believes the object to have a
nucleus or not. The workflow diagram in figure 27 (see the Appendix) is taken from the ’about’ page of
the Space Fluff project on Zooniverse, and describes the flow of questions presented to a user based on
their choices throughout a classification.

The goal of this thesis is to analyze the answers provided by these volunteer users, and determine
whether they can, with any accuracy, correctly identify LSB galaxies and UDGs purely based on a visual
inspection of an image. In the process of our analysis, we will examine the behavior of the users in the
project and attempt to find any correlation between the photometric properties of these objects and the
resulting consensus among the votes of the volunteers on the identity of these 6362 objects.

1.4 Analyzing citizen science data

Aceves-Bueno et al. [1] draw a comparison between various methods used to analyze citizen science
projects. The most common, and most intuitive, comparison method is percent agreement between a
ground truth dataset (verified data, or analysis performed by experts) and the volunteer consensus. The
main drawback of this method is a lack of framework that this presents for hypothesis testing. Another
drawback is the fact that this methodology fails to account for agreement by chance. Other methods used
in citizen science analysis are statistical methods like T tests, various correlations (Spearman’s, Pearson’s),
chi-square tests and linear regressions. All of these methods require some sort of ground truth labeled
into categories for complete comparison. Still, despite these drawbacks, it is intuitive to quantify a user
consensus in terms of percentages (a majority is always a majority, so 50% agreement is in every case a
good initial number at which to draw a line). Lintott et al. use percentage cutoffs of 80% and 95% to
define ’clean’ and ’superclean’ samples of classifications in [10] in the first Galaxy Zoo project, however
they refer to work by Darg et al. [3], who present a case where only 40 percent agreement is needed
to correctly classify a sample of galaxy mergers, thereby leading to the conclusion that using a single
pre-defined classification threshold is not always the best choice.

In our analysis of Space Fluff data, we will compare the classifications done by volunteers to a likely
ground truth (LGT) catalogue (see section 1.6), containing a number of galaxies identified by Venhola
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et al. (in prep.) as low-surface brightness galaxies in the Fornax cluster. However, the project does
not contain a set of expert classifications on all of the objects, meaning a complete comparison between
volunteers and experts cannot be done in this case. The most suitable method for analysis then becomes
the simplest: percentage agreement. In order to determine the accuracy of volunteers in classifying Fornax
LSB galaxies, we will be comparing the agreement among users for each task presented in the project, and
comparing various levels of consensus to the likely ground truth. We will use 50% and 75% classification
thresholds throughout this work, but will also come to find an argument for the usage of a 90% threshold
in a specific situation later in this work.

A final question is that of user expertise. How does one weigh the level of skill of an individual user?
Weighting each user’s classifications can be done, and has been explored, e.g. by Lintott et al. and Darg
et al. Lintott et al. find that, in their case of Galaxy Zoo, weighting users according to their agreement
with the majority does not produce a significant change in classification outcome. A pitfall of upweighting
a user who often agrees with the majority is the fact that this assumes that the majority is always accu-
rate, which will always be main research question for a citizen science project, and thus cannot simply be
assumed.

When discussing initial results from the Planet Hunters project [4], Fischer et al. note they aim to
determine individual users’ capibilities by inserting artificially generated light curves of planet transits
and analyzing user performance for those curves. This is essentially a form of comparison against ground
truth, as in this case data is generated for which the scientists know with certainty what they want the
classification outcome to be.

For the bulk of our analysis, we will not perform weighting of individuals’ classifications, but we will at
a later stage investigate what changes in our results if we only consider classifications made by the most
active subset of users, and also what happens if we discard the first few classifications made by each user.
The latter follows from the assumption that users learn as they gain experience in a project.

1.5 Astronomical object detection: human vs. machine

In recent years, technology has drastically improved astronomical object detection, or ”source extraction”.
Combined with the need for fast, large-scale detection engendered by the ever-increasing size of astronom-
ical surveys, automated detection methods may outscale what is possible by humans. Space Fluff makes
use of classification done by humans, instead of automated methods. How does the feasibility of the two
different methodologies compare? In this section we will briefly go over various methods of algorithmic
astronomical object detection, making note of strengths and weaknesses. Our analysis of Space Fluff in
later sections will then reveal whether or not manual classification stacks up against algorithmic detection.

In what follows, we will very briefly compare a number of source extraction algorithms (SourceEx-
tractor (also ”SExtractor”, or ”SE”), NoiseChisel, ProFound and Max-Tree Objects (also ”MTO” or
”MTObjects”)), following a comparison between these algorithms done by Haigh et al. [6]. Generally,
source extraction methods all follow the same steps (see sec. 2.1 of [6]): (1) identify and measure back-
ground light, (2) threshold the image relative to the background, (3) locate sources exceeding the threshold
level, (4) produce a catalogue of sources and their measured properties. Implementation details of these
steps vary across algorithms of course.

Most relevant to our work is Max-Tree Objects (MTO). This is the algorithm that was used by Venhola
et al. to extract the same set of over 6,000 objects that were presented to users in Space Fluff. MTO uses
tree-based morphological operators: the leaves in a tree represent local maxima (the brightest pixels in
some region), the nodes represent connecting areas of the image, and the root represents the entire image.
Compare this to SExtractor or ProFound, where instead of trees, various levels of thresholds are used to
distinguish objects from background pixels. SExtractor uses multiple backgrounds, spaced in exponential
steps, and ProFound only uses one threshold level initially. Other programs use dendrograms: hierarchical
representations of images, with nodes representing connections between local maxima, which is a more
refined method than thresholding, where you end up with only a single unbroken object instead of a series
of nodes. The complexity of implementation exceeds the level of this work, so we refer to [6] for a more
complete description.

Comparing algorithms can be done for example by inserting a number of simulated objects into an
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image, and analyzing how many of those objects are properly identified by the algorithm. Haigh et al.
find that MTO sometimes finds diffuse regions in images and allocates them to the wrong object, mean-
ing a manual classification must still be done to identify cases where this occurred. They also find that
SExtractor and ProFound are incapable of detecting the outskirts of objects accurately. This may present
a problem in the case of low-surface brightness galaxies, where objects are generally extremely faint to
begin with, and thus often no bright areas exist in the images for these programs to identify as objects.
According to Haigh et al., NoiseChisel and MTO were more accurate in finding these faint objects, but
still experienced difficulty in identifying the edges of objects, and also in separating similar nested objects.
Finally, Haigh et al. state that MTO consistently statistically outperformed other methods when testing
simulated data.

Considering the performance of MTO on faint objects, we can state that MTO is a good choice for
a source extraction algorithm for the low-surface brightness galaxies we consider in Space Fluff. The
question remains, how does this algorithm stack up against the manual classification of the Space Fluff
volunteers? This is the question we will explore throughout the remainder of this work.

1.6 Ground truth, selection cuts and object properties

If and when Space Fluff users reach a consensus on the identity of an object, how can we subsequently
judge the accuracy of this consensus? We have no information on the level of experience of expertise of
an individual user, nor of the group of volunteers as a whole. To analyse to any extent the accuracy of
the user consensus, we will be comparing user classifications to a catalogue of 265 Fornax cluster UDGs
and LSB dwarfs produced by Venhola et al. (unpublished, in preparation) resulting from work following
[26, 25]. Throughout our analysis, we will in places refer to this catalogue in terms of ”likely ground truth
objects”, ”the (likely) ground truth catalogue”, or ”the LGT catalogue”. Note that we emphasize likely
ground truth when referring to this catalogue. This is because one of the aims of this work is to compare
the performance of humans to that of machine algorithms, when it comes to classifying faint objects that
may not have clearly defined edges in images. A possible result of our analysis may be that the human
classifications are strictly better than that as performed by algorithms, in which case a catalogue resulting
from human classifications would become the ground truth, instead.

The next subsection describes the procedure used by Venhola et al. to separate likely non-cluster
member galaxies from the likely cluster members. We note that the catalogue produced by this procedure,
the FDSDC [25], is a Fornax dwarf catalogue, and not necessarily a LSB galaxy/UDG catalogue. However,
the selection procedure serves mainly to filter out background galaxies (galaxies not in the Fornax cluster
at all), and thus is still relevant to our situation. A final note is that Venhola et al. only consider candidates
with a semi-major axis of at least 2 arcsec for this dwarf catalogue.

1.6.1 Selection cuts

As mentioned above, Venhola et al. [25] perform so-called ’selection cuts’ on Fornax dwarf candidates to
filter out likely non-cluster members. By using a physical argument, objects can be excluded from cluster
membership on the basis of color (the filters used for this are SDSS filters r′, g′, i′, and the color selection
cut uses the g′ − r′ color), surface brightness and concentration. Concentration in this case is defined as
follows:

C = 5× log
R80%

R20%

where R80% and R20% denote the radii enclosing that percentage of the galaxy’s light.

Using known values of the above-mentioned color, surface brightness and concentation of spectroscop-
ically confirmed Fornax cluster members, Venhola et al. filter out unlikely Fornax cluster member dwarf
galaxies. The argument for being able to use these parametric selection cuts is based on three assump-
tions, derived by Venhola et al. from comparison to a sample of galaxies with known redshifts: (1) cluster
galaxies become bluer with decreasing luminosity, (2) the surface brightness of cluster galaxies decreases
with decreasing luminosity, (3) faint cluster galaxies are less concentrated (referring to the concentration
parameter C) than background galaxies.

By excluding objects that do not adhere to these relations, the majority of background galaxies can be
identified and thus excluded from cluster membership. Specifically, Venhola et al. perform three selection
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cuts:

1. Color cut : Objects at least 0.15 magnitudes redder than the brightest spectroscopically confirmed
galaxies in the cluster are filtered out. The objects Venhola et al. filter have g′− r′ > 0.95 mag. The
g′ − i′ color is similar. Objects with g′ − i′ > 1.35 are also filtered out.

2. Surface brightness cut : Perform a linear fit on confirmed cluster galaxies in the magnitude-surface
brightness space, and exclude candidate galaxies whose surface brightness is at least three standard
deviations above the fit.

3. Concentration cut : Fit the magnitude-C relation for cluster galaxies with r′ < 16 mag. Exclude
objects that are 2 standard deviations above this fit, and have C > 3.5. For Space Fluff objects, the
magnitude-C relation for r′ < 16 mag is not relevant, since none of the Space Fluff objects reside in
this r′ magnitude regime.

Though these selection cuts already exclude a large number of cluster candidates, Venhola et al. proceed
to perform a further selection based on visual classification, after which only 577 of the 1497 candidates
that survive their selection cuts remain. This manual classification might be a matter of experience and
expertise, and thus is hard to quantify for reproduction (which is in part the reason the Space Fluff project
was created to begin with). In section 3.3, we will reproduce the selection cuts on Space Fluff objects in
an effort to filter out a fraction of the likely background galaxies that might have been classified by users
as fluffy galaxies. We will also perform a manual visual classification of objects that survive selection cuts,
and are classified by users as fluffy galaxies, to compare our intuition against that of Venhola et al., and to
possibly identify a number of galaxies that may or may not still be good candidates for catalogue inclusion.

1.6.2 Object properties

In addition to the 265 objects in the likely ground truth catalogue, an unfiltered catalogue (Venhola et al.,
unpublished) of all candidates considered for cluster membership in the creation of the likely ground truth
catalogue was made available to us. This catalogue contains photometric properties and a few other pa-
rameters that we can use in our analysis of the Space Fluff project. These properties result from GALFIT
models of the objects, applied to images from the FDS. Whenever we refer to any photometric properties,
or parameters like surface brightness and concentration, we will mean the properties as provided to us
through this catalogue. The surface brightness we use,µe,r, is the mean effective surface brightness in the
r′-band (with the dimension of magnitudes per square arcsecond).

Of the 6036 UDG candidates in this unfiltered catalogue, 5440 are present in the Space Fluff project
as candidates for identification. The Space Fluff images are also selected from the FDS. The objects that
are not listed in this unfiltered set of 6036 candidates are expected to be from images containing artifacts
(which makes parameter extraction tricky), or objects otherwise not chosen for classification, presumably
on the basis of them obviously not being cluster members in some way or another. Like for all objects
that do have properties in the catalogue, we will analyse user classifications for these objects also.
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2 Extracting and parsing the classification data

2.1 Space Fluff on Zooniverse

Figure 27 in the Appendix contains a flow diagram of the whole project as it was presented to users on the
Zooniverse page of Space Fluff. For completeness and clarity, we will shortly state the makeup of every
workflow in tables 1 and 2. Since these are the questions ultimately actually shown to users in the final
version of the project, these tables are perhaps more useful than the workflow diagram, which also outlines
Sundial’s thoughts on the relevance and possible interpretation of answers in each task.

Task Question

T0 Look at the very center of the image: do you see a single galaxy or a group of far away objects?
T1 Is the galaxy fluffy or is it bright?
T2 What color is the galaxy?
T3 Does the galaxy have a visible core?
T4 What shape is the galaxy?
T5 How would you describe the texture of the galaxy?
T9 Our bad! what do you see instead?

Table 1: Reference of task indices and corresponding questions. We will often refer to tasks by their
identifier (e.g. ’T0’ or ’task 0’) throughout this work for the sake brevity.

Task Unique answers

T0
Galaxy
Group of objects (Cluster)
Something else/empty center

T1
Fluffy
Bright

T2
Impossible to say
White/blue
Red/yellow

T3
No/Unsure
Yes, a bright point
Yes, a bulge

T4
Distorted/disturbed
Elliptical
Round

T5
Smooth and fuzzy
Smooth and dense
Clumpy and/or featured

T9

Something else
Looks like a small star
Scattered light
Nothing: background too bright or galaxy too faint

Table 2: Reference of task indices and corresponding unique answers. Users were only able to select from
these predefined answers when classifying an object.

As mentioned previously, the first task presented to each user, which we will hereafter refer to as T0 or
task 0, is presented regardless of the workflow chosen by the user. In the ”On-the-Go” workflow, T0 is the
only question presented to a user. The second task, T1, is presented to users in either the ”Classify!” or
”Hardcore” workflow, provided that they answer T0 with ’Galaxy’. In the ”Classify!” workflow, only T0
and T1 are present. In the Hardcore workflow, tasks 2 through 5 are also presented in this case. Finally,
T9 is only presented in the Hardcore flow, and only after a user answers ’Something else/empty center’
for T0.
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2.2 Parsing Space Fluff classifications

2.2.1 Initial extraction

The classification phase has been successfully executed prior to this thesis, leading to some few hundred
thousand total classifications of a total of over six thousand images. The analysis in this work builds, in
part, off the data files and code generated by Anna Lanteri, available on GitHub [9] under an MIT license.

With the completion of the process of gathering volunteer classifications, it is time for data analysis.
The output format of the project’s data is a number of files with comma-separated values (CSV), in which
every classification is given its own row, and each of the three workflows is distinctly labeled, so we may
individually assess each workflow, or combine overlapping tasks (to reiterate: in Space Fluff, only task 0
is present in each workflow, and T1 is present in both ”Classify!” and ”Hardcore”. Remaining questions
are only present in ”Hardcore”).

To prepare these classifications for analysis, we must first extract the data into a usable format. The
numerical analysis in this work was all conducted in the Python programming language, using the Pandas
[23] and NumPy [7] frameworks for the processing and manipulation of the raw data into usable so-called
dataframes (in the Pandas documentation, a dataframe is described as ”Two-dimensional, size-mutable,
potentially heterogeneous tabular data.”1).

The initial data parsing process concerns the following matters:

1. Not all classifications were properly completed. Users may decide not to complete any task by simply
leaving the web page. This results in a reduction of the total number of usable classifications. If, for
example, in ’task 0’ in the Classify! workflow, a user answers that they see a Galaxy, but then they
don’t follow up by providing an answer for whether they think the galaxy is ’fluffy’ or ’bright’ (by
clicking off the webpage, for example), it will have been registered in the raw dataset, but we discard
the classification for the purposes of this analysis. Note, however, that in the Hardcore workflow, due
to the nature of some of the questions, users were allowed to opt out of completing a task regarding
an object (excluding the initial task, which always had to be answered).

2. Some classifications were done in alpha and beta stages of the project. We discard these to exclude
any classifications made potentially only to test the system.

3. Users may have been presented objects they had already seen, either in the same workflow, or in
another workflow (a few hundred users did classifications in multiple workflows). We exclude any
classifications of an object made by a single user after the first classification they made of that object.
Of the 233,375 total classifications across the three workflows, 10,316 classifications, performed by
233 users, are filtered out due to this criterion.

In the CSV files generated, a single ’annotations’ column per row contains the name of each task
completed in that classification, along with the answer provided by the user for these tasks. For ease of
analysis, we cast the answer given by the user for every task to a new dataframe column. This allows for
easy grouping using the programming libraries we’ve chosen. Note that the (Python) programming code
pertaining to the analysis of this data is available in the Appendix and on Github2.

Figure 2 shows distributions of the number of remaining valid classifications, after the filtering described
above. We also include the distribution after combining all three workflows. In the execution of the project,
the order in which objects were served to the user was such that every object would receive a statistically
significant amount of votes in each workflow (e.g. in ”Classify!”, this target (also called an object’s
’retirement limit’) was 15 classifications, and in ”Hardcore” it was 10 classifications). Combining the three
workflows is a good way to increase statistical significance, since we will in all cases end up with an equal
or larger amount of classifications per object than if we were to consider only a single workflow.

2.2.2 Combining workflows

Something to note for later stages of our analysis is how we will combine results from each of the three
different workflows in our final classification of each object: since the ”On-the-Go workflow” only asks

1https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html
2https://github.com/Seerden/SpaceFluff

9



Figure 2: Votes per object for each of the three Space Fluff workflows, and the combined dataframe
containing all workflows, after filtering. Note that values on each y-axis are not normalized.

users whether an object is a galaxy or not, its use is limited for our analysis. Later in our analysis, we will
at times restrict ourselves to examining objects for which the user consensus for T0 is for example ’galaxy’
or ’something else/empty center’. When examining these consensus, we will combine classifications from
all three workflows to arrive at an answer, as there is no reason to distinguish between a ’galaxy’ vote in
the ”On-the-Go” workflow from a ’galaxy’ vote in the ”Hardcore” workflow.

Figure 3 (see next page) shows a rudimentary comparison between the votes an object gets in task
0 in each workflow (recall that task 0 is the only task that exists in every workflow). We compare each
workflow to each other workflow, and since there are only three possible answers for this task, we show
the comparison for every unique answer type in a separate plot for completeness. The strong correlation
between answers across workflows that we observe in this figure affirms the feasibility of simply combining
all T0 answers for every object rather than, for example, employing some kind of weighting scheme. The
correlation coefficient we use in this figure, and also at other points in this work, is the Pearson correlation
coefficient, which is a measure of linear correlation between datasets. It can be computed by dividing the
covariance of variables by the product of their standard deviations, so for two variables, X and Y , we
would use the following;

ρX,Y =
cov(X,Y )

σXσY

The correlation coefficient is in reality a matrix, but since the diagonal terms describe the relation
between a variable and itself, the correlation coefficient for these will be 1. When we mention the correlation
coefficient in this work, we describe the coefficient for two different variables. In the case of figure 3, it
would be the correlation between the percentage of ’galaxy’ votes an object receives in one workflow, and
the percentage in another workflow.
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(a) Classify vs. Hardcore

(b) Classify vs. On-the-Go

(c) Hardcore vs. On-the-Go

Figure 3: Comparison of T0 votes per object between each combination of workflows. The corr annotation
denotes the Pearson correlation coefficient (see text). The color mapping indicates the absolute value of
the difference between the x- and y-values of every point, and the dashed line on every plot indicates a
simple linear fit.
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2.2.3 Object parameters and photometric properties

As discussed in section 1.6, we have access to a catalogue/dataset containing a number of parameters for
the majority of the objects in the Space Fluff project. The names and coordinates of the objects in this
catalogue match those used in the Space Fluff project, so we can easily assign these photometric proper-
ties to the objects in our dataframes. As a sanity check, we also matched the coordinates of the objects
between Space Fluff and the LGT catalogue dataset to ensure no anomalous data was present (e.g. an
object with the same name in the two data sets having completely different coordinates).

At various points in our analysis, it is useful for visualisation purposes to include images of the objects
we are discussing as they were presented to users in Space Fluff. This does not prove quantitative data,
but gives us a clearer picture of the overall situation.

2.3 User engagement

Figure 4: Cumulative vote fraction of each workflow as a function of users that made at least n classifica-
tions, in linear and in log scale. The y-axis denotes the fraction of total votes cast by all the users that
performed less than or equal to n classifications.

Figure 5: Distribution per-workflow of number of classifications made per user. The caption Nclas denotes
the total number of classifications in the entire workflow, and Nuser denotes the number of users in the
workflow.

Figure 5 shows the distribution of number of classifications made per user, per workflow. Figure 4
indicates the distribution of total votes as a function of users included. Note the similarity between the
”Classify” and ”Hardcore” workflows when considering only the users that made 1000 classifications or
fewer, and the divergence thereafter (the ’power-users’, if you will, in the Hardcore category, made fewer
classifications than the power-users in Classify). In ”On-the-Go” we also see that a small fraction of users
performed far more classifications than the rest. We also observe that users made more classifications, on
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average, in ”On-the-Go” than in the other two workflows. Table 3 describes a few basic statistics regarding
the number of classifications made per user, per workflow. Additionally, we find that the distribution of
time taken per classification is in line with the complexity of each workflow. The mean time per classifi-
cation is 11, 20 and 41 seconds for ”On-the-Go”, ”Classify!” and ”Hardcore” respectively (after filtering
out classifications that took more than an hour, as we assume the user in those cases left the page to do
something else, and came back at a later date to finish that classification).

workflow mean median standard deviation

Classify 50.36 14.00 162.68
Hardcore 40.32 9.00 121.89

On-the-Go 87.48 12.00 345.77
Combined 60.29 11.00 239.06

(a) Basic numbers on the amount of classifications done
per user across workflows

workflow mean (s) median (s)

Classify 19.8 5.8
Hardcore 40.8 14.9

On-the-Go 11.2 3.0

(b) Basic information about average classification time
(in seconds) for each workflow after filtering improbably
long durations.

Table 3: Basic information on the average number of classifications per user in each workflow, and the
average classification duration per workflow.
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3 Analysing the classifications

This analysis can be partitioned as follows:

1. Compare the voting behavior of each individual user to that of all the users as a group.

2. Compare the classification behavior of the users as a group to the (photometric) parameters of the
objects they classify.

3. Compare the users’ behavior, combined with (photometric) parameters, to the likely ground truth
catalogue.

3.1 User classification behavior among their peers

Since we cast every answer given by a user to a dataframe column, it becomes relatively straightforward
to find a consensus for any given object, and any given task. Before we compare the volunteers’ consensus
to photometric properties, or to the likely ground truth catalogue (see 1.6), we will first examine how a
consensus forms, by inspecting individual users’ classification behavior.

Figure 6 describes what we will refer to as a user’s ’precision’ among their peers for three tasks. Because
of the large variation in number of classifications per user, we plot the horizontal axis on both linear and
logarithmic scale for clarity. To compute a user’s precision for a task, ftask, we simply take the consensus
vote for every object, for every task, and compare the answer the user submitted for that task to this
consensus. If the user’s answer coincides with the consensus (in this case, the ’consensus’ answer is the
answer that gets the most votes for that object, for that task), we say they ’match’ the consensus. A
user’s precision, then, is simply the total amount of times they matched the consensus, divided by the
total amount of times they submitted an answer for that task (for any object).

ftask =
Nmatch

Nmatch +Nno match

Another way to compare the agreement between users in general is by evaluating Fleiss’ kappa (κ).
Fleiss’ κ is a so-called inter-rater reliability statistic that takes a number of ’raters’ (the users in Space
Fluff), who categorize a number of ’subjects’ (the Space Fluff objects) into a number of ’categories’ (the
unique answers given for each task). The computation goes as follows:

Let N be the total number of subjects. Let n be the number of ratings per subject, and k the number
of categories into which ratings are assigned. Label the subjects with i ∈ {1, ..., N}, and the categories
with j ∈ {1, ..., k}, then nij is the number of raters that assigned the ith subject to category j. Then,

the proportion of assignments to the jth category is pj = 1
Nn

∑N
i=1Nij , with

∑k
j=1 pj = 1. The extent to

which users agree for the ith subject is

Pi =
1

n(n− 1)

k∑
j=1

nij(nij − 1)

The mean extent to which raters agree on subjects, then, is

P̄ =
1

N

N∑
i=1

Pi

Finally, we can compute Fleiss κ as follows:

κ =
P̄ − P̄e

1− P̄e
,

where P̄e =
∑k

j=1 p
2
j

The interpretation of κ varies depending on the situation, though generally κ ≤ 0 denotes agreement
worse than chance, 0.01 ≤ κ ≤ 0.6 denotes slight to moderate agreement (increasing κ means better
agreement), and values between 0.61 and 1 denote almost perfect agreement. We will use this measure
at a few places throughout this work when taking subsets, so that we have access to some measure with
which to compare various subsets of classifications.

14



Figure 6: Precision of users among their peers for three tasks (T0, T1, T2). Each row of graphs describes
one task. The leftmost plot is a histogram of user precision for that task. The central plot compares
each user’s average precision for that task to the total amount of classifications they made. The colormap
indicates (on log base 10 scale) the amount of times they answered the specific task. The rightmost plot
describes (in linear scale) the user’s average precision for a task compared to the amount of times each
user answered the specific task.

3.2 Comparing classifications to photometric properties

3.2.1 Objects without photometric properties

Of the 6362 objects in the project, 922 do not have properties associated with them in the unfiltered
catalogue/dataset. None of these objects eventually make it into the likely ground truth catalogue. These
objects are, however, in the Space Fluff dataset, so we must decide how to treat them. In many of these
cases, we can verify by inspection of the objects’ thumbnail images (see e.g. figure 7) that the reason the
images do not have photometric properties assigned to them (i.e. the objects do not exist in the unfiltered
catalogue) is because the objects, even though they were pre-selected by MTO for Space Fluff, are for
example (1) not easily definable due to the presence of a nearby very bright object, (2) not definable due
to image quality issues, like the presence of artifacts, or (3) appear in the image as a group of background
objects scattered around the center, rather than a single object in the center.

Figure 8a shows the vote distribution for task 0 (”Look at the very center of the image: do you see
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Figure 7: 4x4 image grid of a random selection of objects that do not have photometric properties associated
with them in the unfiltered dataset by Venhola et. al (see section 1.6).

a single galaxy or a group of far away objects?”) answers for the objects without photometric properties.
Assuming these objects indeed do not have properties due to any mixture of the reasons outlined above,
the low percentage of ’galaxy’ votes for these objects indicates that the users are generally adept at finding
these anomalous objects. Of the 922 objects without properties, only 19 are considered galaxies by the
majority of the users that classified them. Due to the nature of the project, task 0 was the only one
presented to users in case they classified an object as being a ’group of objects’. As mentioned in section
2.1, task 9 (”Our bad! what do you see instead?”) was presented in the Hardcore workflow in case users
voted ’something else/empty center’ in task 0. We include the distribution of task 9 votes for objects
without properties in figure 8b.
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(a) Task 0 distributions

(b) Task 9 distributions

Figure 8: Vote distributions for objects without properties in the unfiltered catalogue (see section 1.6).
For reference, Fleiss’ κ computed for task 0 for objects without properties is 0.69, indicating moderate to
strong agreement among users.

3.2.2 Objects with photometric properties

In this section, we will compare the users’ classifications for the objects that have (photometric) properties
in the unfiltered catalogue (see 1.6). We will present comparisons for the most relevant tasks in the project
one-by-one. For reference, Fleiss’ κ for task 0 for objects with properties is 0.66, indicating moderate to
strong agreement among users in general, but slightly lower agreement on average than for the objects
without properties.

Task 0 (”Look at the very center of the image: do you see a single galaxy or a group of
far away objects?”) The most important answer in this task is ’galaxy’. In figure 9, we compare the
(photometric) properties of objects to the number of galaxy votes they receive. Interesting to note is the
relation between magnitude and percentage votes for ’galaxy’: objects with fainter r′ magnitudes are less
likely to be considered to be a galaxy by a majority. This relation can be observed in figure 30 (in the
Appendix), where we plot the r′ magnitude against the percentage of ’galaxy’ votes each object receives,
along with a linear fit. The Pearson correlation coefficient for this relation is -0.53, which indicates a
moderate (but certainly not strong) correlation.
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Figure 9: Comparison between Space Fluff objects in various parameter spaces. The color mapping
indicates the percentage of users that classify an object as a galaxy.

Task 1 (”Is the galaxy fluffy or is it bright?”) Figure 10 displays the objects in parameter space
again, but now colored by the percentage of votes for each task 1 answer. In figure 10b we see that,
generally, the majority of users classify an object as bright if its (mean effective r-band) surface brightness
exceeds 22 mag/arcsec2, and fluffy if the surface brightness is below this value. Note that we do not
account for whether the majority of users thinks the object in question is even a galaxy in the first place.
Task 1 is only shown to a user if they already classify the object as a galaxy. This means that objects
only classified as galaxies by a minority of users are considered equal to objects with a majority ’galaxy’
consensus in this plot. Subfigure (c) describes more clearly the correlation between ’fluffy’ votes and color,
and surface brightness. The Pearson correlation is much stronger between color and ’fluffy’ votes, than is
is between surface brightness and ’fluffy’ votes.

Referring to an excerpt of the Space Fluff field guide (see the Appendix), we note that a disproportionate
number of objects indicated there as ’bright’ also displays this color bias, which is most likely an unfortunate
coincidence.
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(a) Objects in parameter space, with the percentages of T1 votes for ’fluffy’ and ’bright’ as color bars.

(b) Percentages of T1 votes for various subsets of objects of various surface brightnesses. Note that we do not
distinguish here between an object that has, for example, 22 votes with all in favor of ’fluffy’, and one that only
has 2 votes with both for ’fluffy’. The vertical axis denotes the number of objects in each bin. Also note that the
fact that the two options mirror each other perfectly is simply due to the fact that there are only two possible
answers for T1.

(c) Percentage of T1 votes for ’fluffy’
compared to object color and surface
brightness. The annotation in the
top right of each subplot denotes the
Pearson correlation coefficient.

Figure 10
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Task 2 (”What color is the galaxy?”) From figure 11(b and c) it is evident that the color a user
perceives is correlated moderately strongly to the astronomical color of the object. In subfigure (b): for
white/blue, the Pearson correlation coefficient is ∼ -0.73, and for red/yellow it is ∼ 0.78. Note that this
subfigure includes even objects with only one T2 vote. If we increase the threshold, the correlation will
increase (e.g. when considering only objects with at least five T2 votes, the correlation coefficients become
approx. -0.87 and 0.89, respectively). In the Appendix, we include a small image grid of some of the
objects that have g′− r′ < 0.5 (bluer objects), that get are voted by the majority as being red/yellow, and
have at least five T2 votes (this excludes the objects that only got one T2 vote to begin with, in which
case the color classification is not statistically significant).
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(a) Comparison between Space Fluff objects in various parameter spaces. The colorbar indicates the percentage of
users that vote for that option.

(b) Percentage of votes for each type of answer, plotted against the
g′ − r′ color of the objects. The points each indicate an individual
object. The straight line in each subplot indicates a linear fit.

(c) Histogram of g′− r′ color for ob-
jects with at least 50% of their T2
votes for ’white/blue’, and the same
for ’red/yellow’.

Figure 11: Distributions in parameter space, and histograms, of objects and users’ task 2 votes.
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3.3 Reproducing selection cuts on Space Fluff data

To gain a better idea of the relation between users’ classifications and the ground truth, we will in this
section retrace the selection cut procedure done by Venhola et al. [25] for the objects classified as fluffy
galaxies by the Space Fluff users, in order to filter out the bulk of the most likely non-cluster (i.e. back-
ground) galaxies. We do this keeping in mind the main objective of the Space Fluff project, which is
to determine the viability of purely using manual classification as done by a large group of users. Any
additional steps we need to take to refine the users’ decisions reduces the strength of the idea that user
classifications can be a pure indicator for a galaxy’s Fornax cluster membership.

Figure 12a describes the selection cuts as performed by Venhola et al. in [25]. Figure 12b compares
results from [25] to those in the what we call the likely ground truth catalogue (which is the result of
Venhola et al., in prep.). In subfigure (a), the objects excluded by each selection cut are in the grey
shaded region. In subfigure (b), the grey dashed line indicates the surface brightness cut.

To perform the selection cuts, we begin with the set of objects the users classify as fluffy galaxies (see
also section 3.4.1), and perform the selection on those objects. The remaining objects (all artifacts, groups
of objects, galaxies the users don’t consider fluffy, etc.) in the Space Fluff dataset have essentially been
excluded from selection by the users themselves already.

(a) Description of the selection cuts, from Venhola
et al. (2018) [figure 16, [25]].

(b) Comparison between FDSDC (the catalogue
resulting from [25]) and the likely ground truth
catalogue (Venhola et al., unpublished).

Figure 12: Selection cuts as performed by Venhola et al. Note that these two subfigures are from different
works; the color schemes of data points between the two subfigures bear no relation.
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Color cut Excluding any objects with color g′−r′ > 0.95 mag removes 150 of the 1050 objects classified
as fluffy galaxies. Also excluding those with g′ − i′ > 1.35 excludes an additional handful of objects.

Surface brightness cut Extracting and fitting to the same set of confirmed galaxies as done in [25] is
slightly outside of the scope of this thesis, but as an approximation, we instead take the likely ground truth
catalogue and approximate the linear fit from the shape of the catalogue objects in the magnitude-surface
brightness space. In figure 13 we show our approximation to the linear regression that determines the
surface brightness cut.

Figure 13: Likely ground truth objects in magnitude-surface brightness space, along with our visually
derived estimate of the linear regression that determines the surface brightness cut. For the sake of
reproduction: our approximation is of the form µe,r = 9.771 + r′ × 0.645. Colors and axes are chosen to
reflect those in figure 12b for the sake of comparison.

Concentration cut Performing the concentration cut by removing objects with a concentration param-
eter C > 3.5 excludes another 3 objects the users classified as fluffy galaxies.

We visualize the selection cut process using our approximation to the surface brightness cut from Ven-
hola et al. in figure 14. From the 1050 user-classified fluffy galaxies, 488 remain after these selection cuts.
In table 4 we list the results of performing these selection cuts on various subsets of Space Fluff data,
where we also include the results for the 90% threshold on fluffy votes (see section 3.4.2). We see that
among the subsets, the highest survival rate occurs for the user-classified fluffy galaxies.

For comparison, we also ran 1000 simulations with randomly assigned T0 ’galaxy’ vote percentages,
performing selection cuts on the subset of galaxies that get at least 50% and 75% votes for galaxy, and
find that, on average, 22.0 ± 0.6% and 22.0 ± 1.0% of objects survive the selection cuts for the 50% and
75% thresholds, respectively (since the votes are randomly assigned, it makes sense that the percentage
threshold does not make a difference in the mean survival rate). This is on the order of the overall per-
centage of objects with properties that survive the selection cuts, as expected.

We reiterate that, since the selection cuts are set up so that the likely ground truth objects retain their
alleged cluster membership, and the selection cuts in all cases decrease (or maintain) the number of objects
in the Space Fluff dataset possibly in the Fornax cluster, this is a rather artifical statistic for the purposes
of analyzing the accuracy of user classifications. However, for the purposes of picking a subset of objects
from a large dataset for further inspection, this does significantly reduce the size of the dataset, with few
disadvantages (a small percentage of actual cluster members may be labeled as background galaxies by
the selection procedure, as outlined in [25]).
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(a) Color cut

(b) Surface brightness cut

(c) Concentration cut

Figure 14: Performing selection cuts on fluffy galaxies as classified by the users. Points excluded due to
each selection cut (colored in black each time) do not make it into the next subfigure. The objects marked
”OK” are those that survive the cut, i.e. those that can still be considered for cluster membership after
the selection step. We also show the likely ground truth objects (marked as ’Catalogue’) for the sake of
comparison. Note of course that there is some overlap between ”OK” objects and likely ground truth.

3.4 Comparing user classifications to likely ground truth

After comparing the voting behavior of the users to photometry, we now turn to the other half of our
analysis; in this section we will relate the user consensus to the likely ground truth catalogue in order to
determine the usefulness of manual classification in the process of identifying UDGs.
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subset of objects N NOK % OK (rounded to nearest integer)
All objects with properties 5440 1196 22%
User-classified galaxies (75% threshold) 1973 532 27%
Galaxies also classified as fluffy (75% threshold) 1050 473 45%
Galaxies also classified as fluffy (90% threshold) 548 317 57%

Table 4: Selection cuts performed on various subsets of Space Fluff data. The N column denotes the total
number of objects in the subset, NOK the number of objects that survive the selection cuts, and %OK
the percentage of objects that survive the selection cuts.

3.4.1 Fluffy galaxies according to the users

Of the 6362 objects in the dataset, 1050 are classified as fluffy galaxies (with 75% classification thresholds).
What objects do the users consider to be fluffy galaxies? In figure 15, we compare properties of objects
in the overall dataset to the subset of objects that are considered galaxies (by at least 75% of users) and
also fluffy (with two vote thresholds; the number 1050 we mention above is obtained using a threshold of
75%).

Figure 15: Comparison in parameter space between all objects in Space Fluff, and objects that are classified
galaxies (≥ 75% threshold) and fluffy (with thresholds of ≥ 50% and ≥ 75%).

We note a few things: (1) redder objects get classified as fluffy galaxies much less often than bluer ob-
jects. Approx. 48% of the objects in the overall dataset (that have properties) have a color of g′− r′ ≥ 1.0
mag, but for objects the users classify as fluffy galaxies (galaxy ≥ 75%, fluffy ≥ 50%), only approx. 24%
of the objects satisfy this inequality, and even fewer if we bump the ’fluffy’ threshold to ≥ 75% of votes:
then, only 12% of objects have g′ − r′ ≥ 1.0 mag. (2) Lower surface brightness objects are less likely to
be considered fluffy galaxies. While 25% of objects with properties in the complete dataset have a surface
brightness fainter than 24 mag arsec-2 (i.e. µe,r ≥ 24 mag arcsec-2), of the objects classified as fluffy, only
8% are this faint or fainter.

The above can be visualized in figure 16, where we display the fraction of objects remaining in the
’≥ 75% fluffy’ subset and the overall dataset as we progressively increase surface brightness and color
thresholds. We also see here that the number of objects considered ’fluffy’ decreases more sharply as a
function of surface brightness than the number of objects in the overall dataset does, for example.

3.4.2 Likely ground truth catalogue objects

Figure 17 displays the distribution of votes across all 230 objects in the likely ground truth catalogue that
are also present in Space Fluff. There are another 35 objects in the catalogue that are not present in Space
Fluff, and thus those naturally don’t have any classifications. It is evident from the figure that only a few
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Figure 16: Cumulative fraction of objects remaining in two subsets of the data as we increase surface
brightness and color thresholds, respectively. The vertical axis denotes the fraction of objects for which
the quantity on the horizontal axis is at least equal to the value given on the horizontal axis (e.g. for the
’all objects’ set, a fraction of ∼ 0.5 (so approx. 48%) of objects have color g′ − r′ ≥ 1.0 mag. Note for the
blue line, we consider objects that are voted ’galaxy’ by at least 75% of users, and also ’fluffy’ for T1 by
at least 75% of users.

of these objects are considered groups of objects by the users. In fact, only 19 of the 230 objects (∼ 8.7%)
get the majority (≥ 50%) of their votes in favor of this option, which is quite a bit less than the same
statistic for the complete dataset (∼ 33.7%). Furthermore, we note that Fleiss’ κ for task 0 for the LGT
objects is 0.57, significantly lower than for the general set of objects with properties, indicating that users
have a harder time forming a clear consensus on the identity of these objects.

Figure 17: Vote distributions for task 0 of all likely ground truth catalogue objects that were presented to
users for classification in Space Fluff. The vertical axis indicates the number of objects.

Figure 18 contains comparisons in parameter space and of parameter distributions between the overall
dataset and the likely ground truth objects.

Ground truth objects classified as fluffy Of the 232 likely ground truth objects, only 75 (∼ 32%) are
voted to be galaxies by at least half the users that classified them. If we shift this threshold from 50% to
75%, only 30 of the 232 objects are classified as galaxies. Interestingly, the overwhelming majority of users
that see these objects, classify them as fluffy galaxies rather than bright galaxies, which is exactly what
we would hope for, because the ’fluffy’ identifier is supposed to indicate an LSB galaxy by the definition
of the project. These 30 objects each have at least 12 ’task 1’ (T1) votes, and each has at least 91.3%
of its T1 votes in favor of ’fluffy’. This is a much larger fraction than the general subset of objects with
a ’galaxy’ consensus: for objects with at least 75% votes for ’galaxy’, only ∼ 27.7% have at least 90% of
their T1 votes as ’fluffy’.

Only 8 of the 232 likely ground objects get fewer than 50% of their T1 votes for fluffy. Among these,
only two have more than 3 T1 votes. It is clear, then, that the difficulty in identifying the likely ground
truth objects is not that they do not appear fluffy, but that they are extremely difficult for the users to
identify as galaxies to begin with. Figure 19 displays five of these objects for the sake of comparison.
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Figure 18: Top row: a comparison in parameter space (color, magnitude, surface brightness, effective
radius and concentration) between the likely ground truth objects and the complete Space Fluff dataset.
Bottom row: comparison of the distribution of various parameters between these same two categories.
Note the labels on each subfigure, as the top and bottom figures don’t necessarily correspond.

Figure 19: Five objects from the LGT catalogue with µe,r > 26. Each of these was classified as a galaxy
by fewer than 15% of users. Note that the galaxy is in the exact center of the image - do not be distracted
by nearby interlopers!

Ground truth objects not classified as fluffy Why do the other 202 likely ground truth objects not
get classified as fluffy galaxies? In figure 20, we plot some of the same object parameters we’ve plotted
before, but now we color-code them by the amount of T0 ’galaxy’ votes the objects receive. The second
subfigure in figure 20a alludes to a relation between surface brightness and votes in favor of ’galaxy’.
We quantify this relationship in figure 20b by including a simple linear fit, and by computing the Pearson
correlation coefficient, which evaluates to a relatively strong correlation of 0.84 (or rather -0.84, but because
higher surface brightness corresponds to a lower number, we invert the x-axis on the plot, which inverts
the sign of the correlation). Figure 20c repeats (b), but for the entire dataset. The correlation is much
weaker in this case (∼ 0.34), but we do note from this subfigure that lower surface brightness objects
generally receive fewer ’galaxy’ votes than higher surface brightness ones.

Fluffy objects not in ground truth, and selection cuts Of the 1050 objects classified by the users
as fluffy galaxies (see section 3.4.1), only 30 (< 3%) are actually in the likely ground truth catalogue. In
figure 20 we related the surface brightness of an object to the percentage of ’galaxy’ votes it receives, and
noted that for this intersection of ground truth objects and objects classified as ’galaxy’, all 30 objects
classified as galaxies are also classified as ’fluffy’ galaxies.

What about the hundreds of remaining objects classified as fluffy galaxies? Have the users identified
new cluster members, or are there physical reasons for the discrepancy between catalogue and user con-
sensus? One thing to note is that we have thus far only considered the likely ground truth catalogue for
comparison. In its preparation, Venhola et al. disregard any objects already present in the Fornax Deep
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(a) Objects in the likely ground truth catalogue plotted in parameter space, colored by percentage of
T0 ’galaxy’ votes. Each point represents one object.

(b) Surface brightness plot-
ted against percentage of T0
’galaxy’ votes. The grey line
represents a simple linear fit
(of the form y ≈ 25.65 ×
x + 682.49). The points repre-
sent only objects in the likely
ground truth catalogue

(c) Surface brightness plotted against percentage of T0
votes for ’galaxy’. The grey line represents a simple lin-
ear fit. The points represent all objects in Space Fluff for
which a µe,r value is present in the dataset. On the left:
scatter plot, each point represents one object. On the right:
two-dimensional heatmap, where the number of points in
each square is indicated by the color bar.

Figure 20

Survey Dwarf Catalogue (FDSDC), which is the catalogue that resulted from the work in [25]. These are
Fornax cluster dwarf galaxies, so not necessarily LSB dwarfs or UDGs, however we could argue that if
the users correctly identify one of these galaxies, they have still succeeded; a significant fraction of these
dwarfs are, indeed, of low surface brightness.

Cross-matching the coordinates of the centers of each of the FDSDC galaxies to within 3 arcseconds
of the center of a Space Fluff object (this procedure is also used in Venhola et al., unpublished), which
at the distance to the Fornax cluster (approx. 19.95 Mpc) corresponds to a center-to-center distance
of at most ≈ 280 pc; significantly smaller than what we generally expect a Fornax dwarf to be, yields
a significant number of objects also classified by the users as fluffy galaxies. Setting the threshold for
galaxy classification at 75% of votes or more, and 75% for fluffy classification, we find that 39 of the 124
FDSDC galaxies present in the Space Fluff project are classified by Space Fluff users as fluffy galaxies. We
display the parameters of all the FDSDC objects we find in the Space Fluff dataset, alongside the objects
from the likely ground truth catalogue, in figure 21. It is possible that comparison to other existing LSB
dwarf/UDG catalogues reveal more intersections with objects classified as fluffy galaxies by Space Fluff
users. This does, however, not change anything about the difficulty the users faced in identifying the lower
surface brightness objects, however it does serve to show the usefulness of classification by humans.
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Figure 21: FDSDC and likely ground truth objects in parameter space.
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3.5 Manual classification on user-selected fluffy galaxies

As previously described, after performing parametric selection cuts, Venhola et al. go on to perform a
manual selection of the remaining objects, labeling all the objects with clear structure like spirals and
bulges, and excluding them from the catalogue, since those structures are not expected to exist in low-
surface brightness galaxies in the Fornax cluster. This selection is hard to reproduce manually, however,
to gain a better idea of the process, and also to identify any objects that may not have been selected for
the likely ground truth catalogue by Venhola et al., but could conceivably be included based on visual
inspection, we will attempt to reproduce this process.

We start with the set of objects classified by users as fluffy galaxies (with a 75% classification thresh-
old), that also survive our reproduction of the paramametric selection cuts, and that do not make it into
the likely ground truth catalogue. We create 5 × 5 grids of thumbnail images as shown to the users in
Space Fluff, and put them next to grids of the likely ground truth objects, and compare, thereby essentially
walking through part of the process the Space Fluff users also experienced.

We do this in two passes. First, we choose any objects that do not appear too bright and show no
obvious structure like spirals or strong bulges. After this initial loose filtering, we end up with 95 (of
445) objects that warrant a second inspection. Then, for the second inspection, we narrow the comparison
slightly by creating new image grids containing only these images. We take the subset of LGT objects that
are at least as bright as the faintest object classified as ’fluffy galaxy’ by the users (refer back to previous
sections, where we found that objects fainter than 25 mag/arcsec2 are never classified as galaxies by the
majority of users), and visually compare those to the objects that remain after our first pass. We find
22 objects that we believe to show clear enough structure to exclude from cluster membership candidacy.
Note that because these objects are so faint, and generally show so little structure, it is quite hard to say
with complete certainty that these objects do or do not show clear bulges, for example.

Doing the same thing for the objects that are classified by users as fluffy galaxies if we exclude the first
50 classifications per user, yields an additional 9 objects we believe could be included in the catalogue,
bringing the total from 73 to 82. We cross-match the coordinates of these objects to the FDSDC and
find that 19 of these 82 objects are actually included in that catalogue already, which leaves 63 objects
that we recommend for further inspection. We list the identifiers (names) of all these objects and their
thumbnail images in the Appendix. Venhola et al. might have recognized structure in these images, or
they may show structure in images from other surveys, or perhaps they found another physical reason to
exclude these objects from their final catalogue. We display a small set of these images in figure 22 (refer
to the Appendix for thumbnails of all 63 objects), and also plot them in parameter space to compare them
to the LGT catalogue in figure 23, and the total set of fluffy galaxies identified by users that survive the
selection cuts. We then leave it as an exercise to the reader to make their own judgement: after having
seen various examples of images throughout this work (and also in the Appendix, where we include a
number of examples from the field guide), do these objects appear similar enough to the LGT catalogue
objects to warrant reconsidering their inclusion/exclusion in the catalogue?
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(a) Selection of possible cluster members after our two-pass visual classification.

(b) Selection of LGT catalogue objects brighter than µe,r = 25 mag/arcsec2.

Figure 22: Comparison of a small selection of image thumbnails of LGT catalogue objects with µe,r ≤ 25
mag/arcsec2, and objects classified as fluffy galaxies by the users that we believe show no clear enough
structure to be excluded from the LGT catalogue. The top row displays a few objects we believe could
be reconsidered for inclusion in the LGT catalogue, and the bottom row displays actual LGT catalogue
members.

(a) Distributions in parameter space.

(b) Parameter histograms.

Figure 23: Comparison between LGT catalogue, ’fluffy galaxies’ selected by the users, and the subset of
objects from the ’fluffy galaxies’ that we believe could be included in the catalogue based on our 2-pass
visual inspection. The blue ’To inspect’ points denote the fluffy galaxies as classified by the users, that
don’t make it into the LGT catalogue. The orange ’LGT’ points are all the LGT catalogue objects, and
the green ’Pass’ objects are the 63 objects we believe might still be candidates for inclusion in the LGT
catalogue.
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3.6 Classification accuracy of experienced users

An important question in citizen science projects is how important each individual user’s contributions
should be. An expert or highly-skilled classifier is likely to provide more trustworthy results, however this
requires prior knowledge of users and their level of expertise by some quantifiable measure. In Space Fluff,
we have no access to any of this information about individual users. One thing we can expand on, however,
results from figure 6, where we noted that users that make more classifications typically end up being more
precise (among their peers, which does not necessarily correlate to accuracy of cluster member identifi-
cation). What happens to the overall classification consensus if we account for this trend, by excluding
the first few classifications a user makes? In doing this, we assume that, during the initial classifications
made by a user, they are still exploring the project, and still have to process the types of images they are
seeing to get a feeling for which objects they are likely to put into which category (galaxy/empty center,
fluffy/bright, etc.). Depending on the number of classifications we exclude, some users’ contributions may
be entirely removed from consideration, as there are many users that made only a few classifications.

Figure 24 describes the total amount of classifications remaining per object for an increasing number
of excluded classifications per user. We see that, eventually, the number of classifications remaining for
some objects falls far enough that we cannot statistically significantly consider the votes cast for that
object, which places a limit on how many votes we can realistically exclude. Excluding up to the first 50
classifications per user leaves most objects with over 20 total classifications, and no objects with fewer
than 5. Extending the exclusion to the first 250 classifications per user will leave us with some objects
receiving only 1 classification, which is not statistically significant.

Fleiss’ κ for task 0 increases steadily with increasing levels of exclusion, from 0.67 for nex = 0 , to 0.70
for nex = 50. Where, nex = x denotes that for that subset, each user’s first x votes have been discarded.

Figure 24: Total number of classifications remaining when excluding the first nex classifications made by
each user.

The overall shape of the distributions for tasks 0 and 1 does not vary appreciably when excluding
classifications (see figure 32 in the Appendix), however there are a number of objects for which the user
consensus changes when excluding classifications. In figure 25, we compare the sets of objects remaining
for exclusion of nex = 0 and nex = 50, and plot the task 0 ’galaxy’ votes of objects that receive at least
75% of their T0 votes for ’galaxy’ in one of these sets, and not in the other. We find that the difference in
’galaxy’ votes rarely exceeds 20%. We also note that there are more objects that gain a ’galaxy’ consensus
if we exclude each user’s first 50 votes, than there are galaxies that fall below the 75% threshold if we
exclude these 50 votes per user.

In figure 26, we show the percentage of votes received for ’galaxy’ and ’fluffy’ between the non-exclusive
dataset and the nex = 50 dataset, considering now only objects that are classified as fluffy galaxies (75%
thresholds for both fluffy and galaxy) in one of the sets, but not in the other. We note that the difference
in votes for either of these answers only rarely exceeds 20%, however there is a significant number of ob-
jects that end up not being classified as fluffy galaxies in one set, but do end up being classified in the other.

How does the comparison to the likely ground truth (LGT) catalogue change if, instead of including
every single classification, we exclude the first n classifications per user? Table 5 describes the number
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Figure 25: Percentage of ’galaxy’ votes for objects that receive at least 75% of T0 votes for ’galaxy’ in
either the complete dataset, or the dataset in which the first 50 votes per user are filtered, but not in the
other subset. The dashed lines at 75% on either axis denote the cutoff we consider as threshold for overall
’galaxy’ consensus.

Figure 26: Percentage of votes for ’galaxy’ and ’fluffy’ for objects that are classified as fluffy galaxies in
either the complete dataset, or in the set excluding each user’s first 50 classifications.

of LGT objects classified as fluffy galaxies by the users as a function of the number of excluded leading
classifications n. We find that increasing the threshold of exclusion yields more and more likely ground
truth objects, indicating that users get better at identifying fluffy galaxies as they classify more and more
objects. However, the users still come nowehere near identifying all 232 LGT objects. Lowering the
threshold for ’galaxy’ consensus yields more objects, however this might be a result of selection bias -
objects that are considered by more users as empty images instead of galaxies are almost certainly not
going to be high-surface brightness objects (as those appear brighter in the image). For the users that
then do consider them galaxies, they are almost guaranteed to be considered fluffy instead of bright, which
would lead to a ’correct’ classification.

nex NLGT (≥ 50% galaxy threshold) NLGT (≥ 75% galaxy threshold)

0 73 (4.5%) 30 (2.9%)
5 74 (4.6%) 33 (3.1%)
25 74 (4.4%) 35 (3.1%)
50 76 (4.6%) 38 (3.4%)
250 97 (5.5%) 48 (4.0%)

Table 5: Number of leading votes per user excluded (nex) versus likely ground truth (LGT) catalogue
objects ’retrieved’ (NLGT ), i.e. classified by the users as fluffy galaxies (fluffiness threshold of 75%, galaxy
threshold of either 50% or 75% for comparison). The percentages next to the number of LGT objects
retrieved in each column denotes that number as a percentage of the total number of fluffy galaxies in
that subset. Higher is better, and ideally this would be 100%, assuming the LGT catalogue is complete
and ideal.

Are the LGT objects found by users across these subsets of classifications the same objects? Com-
paring the nex = 0 subset to the nex = 50 one, we find that of the 30 objects classified as fluffy galaxies
when nex = 0, 29 are also found by the nex = 50 subset, meaning there is significant overlap, and we
can consider the nex = 50 subset to be a better sample. For the nex = 250 set, again 29 are found that
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were also found when nex = 0, meaning this subset is an even better selection. Thus, we find that users
that spend more time in the project generally do correctly classify a larger subsample Fornax LSB galaxies.

As an additional comparison, we can also choose to include all classifications, but only those done by
the so-called power users in the project. If we define a power-user to be someone who makes at least 250
classifications, then the results are similar to the results nex = 250, but the accuracy compared to the
LGT catalogue is slightly lower. The users retrieve 41 LGT objects, which is 3.5% of all the fluffy galaxies
they find (compare to table 5). This means these results lie between the nex = 50 and nex = 250 subsets,
which makes sense, since in this case we only consider the users that made at least 250 classifications, but
now we include their first 250 classifications. If we assume (by using the trends we found previously, like
the results from figure 6) that users get better as they classify more and more objects, this naturally would
also apply to power-users, and excluding their first classifications would also yield a better accuracy than
including these first classifications.

4 Results and discussion

Space Fluff tasked users with identifying an object from the Fornax Deep Survey into one of three cate-
gories, based off a single image of the object: (1) galaxies, (2) groups of objects, (3) empty images/artifacts.
Our main interest are the subset of galaxies we wish to have classified as ’fluffy’, as we consider those to be
LSB galaxies in the Fornax cluster. These objects generally have much less structure than, for example,
the spiral galaxies studied in the immensely popular Galaxy Zoo spiral galaxies citizen science project.
Because of this general lack of structure, combined with their low surface brightness, the assumption is
that it will be harder for the untrained eye to identify these objects as galaxies. In this work, we analyzed
the classification behavior of the Space Fluff volunteer users to find correlations between the user consensus
and the (photometric) properties of the objects.

4.1 Correlation of classification behavior and photometric properties

Of the 922 objects in the project that do not have photometric properties assigned to them in the unfil-
tered catalogue of possible cluster candidates, produced by Venhola et al. (in prep.), none are generally
considered by the users to be fluffy galaxies. Very few are even considered galaxies at all (only 24 of
these objects are classified as galaxies by at least half the users that classified them, and none of them are
classified as galaxies by 90% or more of the users).

For objects considered galaxies by the users, we will describe the correlations between photometry and
user classifications, below.

4.1.1 Magnitude

We find a moderate correlation between an object’s r′ magnitude and the percentage of votes an object
receives in task 0 for ’galaxy’, with higher (fainter) magnitudes generally leading to a lower percentage of
galaxy votes.

4.1.2 Color

The g′ − r′ color of an object is strongly correlated to the color perceived by the users. An increase in
g′ − r′ leads to an increase in user votes for ”Red/yellow”, and a decrease in g′ − r′ leads to an increase
for ”White/blue” votes.

Another strong correlation exists between g′ − r′ color and consensus on whether a galaxy is fluffy or
bright. We find a stronger correlation here than we do when comparing the actual mean effective surface
brightness to fluffy/bright votes. We find that objects that are more yellow/red are typically considered
bright, whereas white/blue objects are considered fluffy more often.

4.1.3 Surface brightness

Across the whole dataset, we do not find a strong correlation between an object’s mean r-band effective
surface brightness and the likelihood of users forming a consensus on whether or not an object is a fluffy
galaxy. The faintest objects in the dataset are most of the time not considered galaxies by the majority of
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users. Over 90% of the objects in the likely ground truth set have surface brightness µe,r ≥ 24 mag/arcsec2,
but for objects classified by users as fluffy galaxies, this is only 8%. Only 7 of the objects with µe,r > 25
mag/arcsec2 in the LGT catalogue are classified as galaxies by the majority of users, even though over
half of the likely ground truth catalogue is this faint or fainter.

The fact that users do not consider the faintest objects to be galaxies may be due to image quality and
resolution, which might make it hard to distinguish between a true empty image and a very faint image.
It might also be an inherent limitation to what the users consider a galaxy. Placing a stronger emphasis
in the training session the users undergo on the fact that these very faint objects are indeed very faint
galaxies, instead of for example artifacts, might lead to a more accurate classification for these faintest
objects.

4.2 Accuracy of cluster member classifications

We find that the majority of the likely ground truth catalogue objects do not reach a majority fluffy galaxy
consensus. Over two-thirds of these objects are not even considered galaxies by the majority of the users
that classified them.

232 likely ground truth objects were included in the Space Fluff project. Of these, only 30 are accurately
identified as fluffy galaxies by the users in accordance with the thresholds we set for classification (at least
75% of votes for ’galaxy’, and then at least 75% of votes for ’fluffy’). However, among the users that do
classify these catalogue objects as galaxies, the consensus generally is that they are fluffy galaxies rather
than bright ones. If we decrease the threshold for the acceptance of a galaxy consensus to 50% (a simple
majority), the amount of catalogue targets classified as fluffy galaxies more than doubles, to 73. However,
we must note that there is a large number of objects that the users classify as fluffy galaxies even though
they are not in the likely ground truth catalogue. Depending on the classification threshold, approximately
half of these can be ruled out from Fornax cluster membership on the account of being too red, too bright,
or too concentrated. Manual classification done by Venhola et al. (in [25] and the unpublished paper that
produces the likely ground truth catalogue we refer to throughout this work) rules out the remaining few
hundred objects on the basis of morphology.

4.2.1 Experienced users

We find that as users gain more experience classifying objects in the project, they become more adept at
correctly classifying likely ground truth catalogue objects as fluffy galaxies. Excluding up to the first 250
classifications per user (thereby also completely discarding many users’ classifications in the case that those
users made fewer than 250 total classifications) yields an increasing number of LGT objects classified as
fluffy galaxies, however the total number of votes per object decreases simultaneously, leading to a decrease
in statistical significance of these remaining classifications. It is hard to balance the benefit of the increased
accuracy to the decreased significance, as we do not have enough information on the expertise of individual
users to weigh their classifications based on any other metric.

4.3 Manual classification

We performed a manual classification of all the objects that are classified by users as fluffy galaxies, and
that survive the parametric selection cuts, and find that, of these 450 or so objects, 63 look similar enough
to likely ground truth objects in our opinion that they could not be excluded from cluster membership
based on visual identification alone. This means that we do not believe clear spiral structure and bulges
are present in these images. Whether Venhola et al. excluded these objects based on some other criterion
that is outside of the scope of this thesis, or if they did judge them to show clear signs of spirals or bulges
is not known to us. Therefore we present this set of objects as candidate Fornax cluster LSBs, with the
caveat that a single visual classification should not suffice to conclusively include them, just that further
inspection might be warranted.

4.4 Suggestions for similar future projects

There are a few factors that limit the depth of this analysis that could be mitigated in a similar project
involving contributions from citizen scientists:
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• The lack of knowledge about the users. Reconsidering the level of balance between the exposure
of personally identifiable information (PII) and useful background information of a user’s level of
training or expertise would be extremely useful in weighting the classifications done by an individual
user against those by other users.

• The lack of a sizeable expert (also called ’gold standard’) classification dataset to compare the
volunteer classifications to, limits the extent to which we can determine the accuracy of users.
Instead, we compared our results to a single catalogue without individually labeled reasons for
exclusion of objects. In our project, we were left with a number of objects classified by the users as
fluffy galaxies that were subsequently ruled out from cluster membership on the basis of a manual
morphological classification by Venhola et al. (in prep.). A distinctly labeled set of further criteria
that determines whether or not an object that survives the selection cuts actually becomes included in
the final catalogue, would not only be helpful in the analysis of a project like this after its execution,
but could also be very useful as additional training information for any users willing to partake in
classification.

• Other aspects of the training procedure might also be improved. A more diverse presentation of
labeled objects might prevent the situation we encountered in our analysis, where users apparently
judge the fluffiness or brightness of an object based on its color, rather than other aspects like surface
brightness.

• The fact that only a single image was presented per object severely limits the decision process a user
undergoes when classifying an object. The effect of this is likely to be more noticeable in a project like
Space Fluff, where the objects of interest already have rather few features. Some features that guide
the user in making a classification might be different in another filter, so including images from
several (combinations of) filters and levels of contrast would help the user make a more involved
decision.

36



5 Conclusions and summary

In this work we analyzed the classifications made by volunteer users of possible low-surface brightness
galaxies in the Fornax cluster. Based off only a single image containing an object in the Fornax Deep Sur-
vey, extracted by the Max-Tree Objects algorithm, users were asked to decide whether that object was a
galaxy, and subsequently whether that galaxy appeared to them as ’fluffy’ or ’bright’, where the fluffiness or
brightness of an object supposedly distinguishes between a brighter galaxy simply appearing in the line-of-
sight within the image, and a fluffy galaxy being a low-surface brightness galaxy within the Fornax cluster.

We compared the classifications made by the users as a group to a likely ground truth catalogue of 265
low-surface brightness galaxies, of which 232 were present in the Space Fluff project for users to attempt
to identify, among some 6,000 other objects that were other galaxies not selected by Venhola et al. for
their final catalogue on the basis of morphology and photometric parameter cuts. We compared results
depending on various selection criteria, like the thresholds we use for classification (e.g. if half of the
users classify something as a galaxy, we can consider it a galaxy, but we can also put this limit at a more
stringent 75% in accordance with other citizen science projects), or an exclusion of each user’s first few
classifications, where we consider these initial classifications to be part of the user’s learning process as
they familiarize themselves with the project.

We find that experienced users are more adept at identifying the likely ground truth objects as fluffy
galaxies, retrieving between 30 and 48 of the 232 likely ground truth objects as fluffy galaxies when tak-
ing into account each classification, or only those after each user’s 50th classification respectively. We
find that users experience difficulty recognizing the lowest surface brightness galaxies as galaxies, instead
they believe many of these images to contain no galaxy at all. This is due to the extreme faintness of
these galaxies, which indeed often makes them hard to spot in the image. Of all objects classified as fluffy
by the users, approximately 69% are brighter than the brightest object in the likely ground truth catalogue.

Based on various selection cuts, determined by a physical argument derived from properties of spec-
trally confirmed Fornax cluster members, approximately half of the fluffy galaxies selected by users can
be ruled out from cluster membership. Depending on the exact selection criteria we apply to the user
classifications, this leaves a few hundred objects as possible cluster members, which are subsequently ruled
out by Venhola et al. on the basis of morphology (presence of spirals, strong bulges). We performed our
own visual classification of these few hundred galaxies and find 73 faint galaxies that we believe do not
show strong enough structure to be excluded from the likely ground truth catalogue purely based on visual
classification.

The lack of prior knowledge about individual users, and also the lack of an expert set of example clas-
sifications, makes it hard to categorize the remaining thousands of objects in the dataset, or to determine
in a statistical framework the overall accuracy of classifications.

Any future project involving visual inspection of low-surface brightness galaxies is recommended to
place a stronger focus on the initial training provided to users. In our project, we found that the training
images provided appeared to show a bias towards yellow/red objects as being ’bright’, which translated
directly into the relation between the astronomical color of an object and how likely a user was to clas-
sify it as bright, where ideally we would instead want this classification to happen based on the surface
brightness of the object. Providing users with more options for comparison, like images in various filters,
or varying levels of contrast, or even a comparison tool where they can more easily directly compare the
image they are looking at to other objects they have already seen, may help the user make a more in-
volved decision in their classification process, and ultimately possibly lead to better classification accuracy.

Concluding, we find that users accurately classify the non-galaxy objects in the dataset, but they
experience difficulty identifying the fainter galaxies, which unfortunately means that the vast majority of
likely ground truth objects are not classified as galaxies, and thus we do not obtain a complete catalogue of
Fornax low-surface brightness galaxies using this citizen science process. We leave a recommendation for
further expert classification of a small subset of galaxies we believe might be included in a LSB catalogue,
as they survive parametric selection cuts, are classified by users as fluffy galaxies, and appear to us as not
showing any obvious morphological properties that would exclude them from cluster membership.
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6 Appendix

6.1 Space Fluff user tutorial

The tutorial or ’field guide’ itself is available on the Space Fluff page on Zooniverse3, but we will include a
few images below of objects that are intended (according to this field guide) to be classified a certain way,
on the next few pages, in figures 28 and 29. Figure 27 describes the workflow of the project as described
on the Space Fluff Zooniverse.

3https://www.zooniverse.org/projects/sundial-itn/space-fluff/classify

41



Figure 27: Space Fluff workflow diagram, from [21] (best viewed in color). Rounded green boxes denote
the unique answer to each orange box, which indicates one of the questions presented to the users (also
called ’tasks’ hereafter).
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Figure 28: Examples from Space Fluff field guide of objects intended to be classified as galaxies
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Figure 29: Field guide section on classification of fluffy and bright galaxies, taken directly from the Space
Fluff Zooniverse page [21].
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6.2 Remaining plots for completeness

Figure 30 belongs to section 3.2.2 and displays the relation between task 0 ’galaxy’ votes an object receives
and its r′ magnitude.

Figure 30: Comparison between r′ magnitude and percent votes ’galaxy’ per object. The grey line indicates
a linear fit, mainly to guide the eye. The Pearson correlation coefficient for this relation is -0.53.

Figure 31 displays the few objects that have at least five T2 votes (which asks users about galaxy
color), that have g′ − r′ < 0.5, and are voted by more than half their users as ’red/yellow’.

Figure 31: Objects with g′ − r′ < 0.5 that have at least have half their T2 votes in favor of ’red/yellow’.

Figure 32 belongs to section 3.6, it compares vote distribution for tasks 0 and 1 between the complete
dataset and a filtered dataset (where we exclude each user’s first 50 classifications).
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(a) Task 0 answers

(b) Task 1 answers

Figure 32: Vote distributions for task 0 and 1 answers, comparing the set of all classifications (nex = 0)
to the set we obtain if we exclude each user’s first 50 classifications (nex = 50).
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6.3 List of possible Fornax LSBs as resulting from our visual classification

Below is a list of object identifiers for the objects we believe look similar enough to likely ground truth
objects that they cannot be ruled out from cluster membership based only on visual identification. The
actual names of the objects in the Space Fluff project, then, are ”UDGcand n”, with n being the identifier
number from the list below. Figures 33, 34 and 35 on the next few pages display the thumbnail images of
each of these objects. Figures 36 and 37 on the pages thereafter display thumbnail images of objects that
are already in the LGT catalogue, for comparison. We state for emphasis that the set of images of objects
in the LGT catalogue that we present here is a random sample, which also includes objects with surface
brightnesses of ≥ 25 mag/arcsec2. For a more direct comparison between objects we still recommend for
possible inclusion in the catalogue, and those actually in the LGT catalogue of similar surface brightness,
refer to figure 22.
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Figure 33: (1/3) Thumbnail images of objects we believe are faint and structure-less enough to possibly
still be included in the LGT catalogue.
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Figure 34: (2/3) Thumbnail images of objects we believe are faint and structure-less enough to possibly
still be included in the LGT catalogue.
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Figure 35: (3/3) Thumbnail images of objects we believe are faint and structure-less enough to possibly
still be included in the LGT catalogue.
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Figure 36: (1/2) Thumbnail images of objects in the LGT catalogue.
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Figure 37: (2/2) Thumbnail images of objects in the LGT catalogue.
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6.4 Code

A complete overview of the (Python) code written during the writing of this thesis is available on GitHub4,
however, this section contains a part of the code written for the creation and parsing of the dataframes
themselves. Code that serves only to create the plots used in the figures throughout this thesis are left
on GitHub, as they can be recreated easily once one obtains the parsed dataframes. The same goes for
various types of queries that serve only to filter the dataframes. The code on GitHub is mostly in the form
of Jupyter Notebooks, with most Notebooks containing enough information to be standalone to a certain
extent.

6.4.1 Dataframe creation

1 import os
2 from . s f import (
3 getFilename ,
4 ex t r a c t t a s k va l u e ,
5 parseTime ,
6 get power use r s ,
7 percentageVotesForAnswer ,
8 extractTaskValue ,
9 g e t t a s k 0 va l u e c oun t s )

10 from . h e l p e r s import j s o n pa r s e r
11 from datet ime import date
12 import pandas as pd
13 import numpy as np
14 import j son
15
16 def make d f c l a s s i f y ( workflow , t a s k i n d i c e s = [0 , 1 ] ) : # [0 ,1 ] are the ind ices from the c l a s s i f y

workflow
17 ”””
18 Create a dataframe where each contains a s i n g l e c l a s s i f i c a t i o n , from a Zooniverse . csv f i l e .
19 @param { s t r } workflow : one of ’ c l a s s i f y ’ , ’ onthego ’ and ’ hardcore ’
20 @param {Lis t [ Int ]} t a s k i nd i c e s : l i s t o f task ind ices present in the given workflow
21 ”””
22 conve r t e r s = { column name : j s on pa r s e r for column name in [ ’ annotat ions ’ , ’ s ub j e c t da ta ’ , ’

metadata ’ ] }
23
24 cwd = os . path . dirname ( os . path . abspath ( f i l e ) )
25 c s v f i l e name s = {
26 ’ c l a s s i f y ’ : ’ c l a s s i f y −c l a s s i f i c a t i o n s ’ ,
27 ’ hardcore ’ : ’ c l a s s i f y −hardcore−ed i t i on−c l a s s i f i c a t i o n s ’ ,
28 ’ onthego ’ : ’ c l a s s i f y −on−the−go−c l a s s i f i c a t i o n s ’
29 }
30 path s t r ing = ’ . . / SpaceF lu f f / z oon i v e r s e expo r t s /{} . csv ’ . format ( c s v f i l e name s [ workflow ] )
31 l o c = os . path . j o i n (cwd , pa ths t r ing )
32 df = pd . r ead csv ( loc , d e l im i t e r=” , ” , c onve r t e r s=conve r t e r s )
33
34 df . i n s e r t (0 , ’ Filename ’ , df [ ’ s ub j e c t da ta ’ ] . apply ( getFi lename ) )
35
36 ta sks = [ ’T{} ’ . format ( i ) for i in t a s k i n d i c e s ]
37 for task in ta sk s :
38 df [ task ] = df [ ’ annotat ions ’ ] . apply ( lambda x : extractTaskValue (x , task ) )
39
40 df = df [ ˜ df [ ’T0 ’ ] . i s n u l l ( ) ] # i f user didn ’ t answer T0, the c l a s s i f i c a t i o n i s void and can be

removed s a f e l y
41
42 # f i l t e r out c l a s s i f i c a t i o n s from beta
43 df [ ’ c r e a t ed a t ’ ] = parseTime ( df [ ’ c r e a t ed a t ’ ] )
44 end o f be ta = pd . Timestamp ( date (2020 , 10 , 20) , tz=’ utc ’ )
45 df = df [ df [ ’ c r e a t ed a t ’ ] > end o f be ta ]
46
47 try :
48 df [ ’ i sRe t i r e d ’ ] = df [ ’ metadata ’ ] . apply ( lambda x : x . get ( ’ s u b j e c t s e l e c t i o n s t a t e ’ , {}) . get ( ’

r e t i r e d ’ ) )
49 df [ ’ a l readySeen ’ ] = df [ ’ metadata ’ ] . apply ( lambda x : x . get ( ’ s u b j e c t s e l e c t i o n s t a t e ’ , {}) . get (

’ a l r e ady s e en ’ ) )
50
51 # f i l t e r alreadySeen or r e t i r e d rows , and drop ob so l e t e columns from the dataframe

a l t o g e t h e r
52 df = df . query ( ’ ( i sRe t i r e d == False ) & ( alreadySeen == False ) ’ )
53 df = df . drop ( [ ’ i sRe t i r e d ’ , ’ a l readySeen ’ , ’ go ld s tandard ’ ] , ax i s=1)
54 except :
55 pass
56
57 return df
58
59 def make d f vote thre sho ld ( df , vo t e count th r e sho ld ) :
60 u s e r s and vo t e s = ge t power use r s ( df , vo t e count th r e sho ld )
61 usernames = [ user [ ’ username ’ ] for user in us e r s and vo t e s ]

4https://github.com/Seerden/SpaceFluff
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62
63 df = df [ df [ ’ user name ’ ] . i s i n ( usernames ) ]
64
65 return df
66
67 def make d f ta sks w i th props ( df , candidate names , o b j e c t i n f o , onthego=False ) :
68 # create a temporary dataframe containing only c l a s s i f i c a t i o n s where ’ task0 ’ == ’Galaxy ’
69 d f ga l axy = df [ df [ ’T0 ’ ] == ’Galaxy ’ ]
70 galaxy names = df ga l axy [ ’ Filename ’ ]
71
72 d f t a sk0 = make df task0 ( df , candidate names , onthego )
73
74 i f not onthego :
75 groupby name = df ga l axy [ [ ’ Filename ’ , ’T0 ’ , ’T1 ’ ] ] . groupby ( [ ’ Filename ’ ] )
76 ga l axy ta sk1 va lu e s = [ ]
77 for name in set ( galaxy names ) :
78 group = groupby name . get group (name) # get a l l c l a s s i f i c a t i o n s of t h i s ob j e c t from df
79
80 rowObj = {
81 ”name” : name
82 }
83
84 for answer in [ ’ F lu f f y ’ , ’ Br ight ’ ] : # add ’ f l u f f y ’ and ’ b r i gh t ’ columns
85 rowObj [ ’% {} ’ . format ( answer ) ] = round( l i s t ( group [ ’T1 ’ ] ) . count ( answer ) ∗100/ group . shape

[ 0 ] , 1)
86
87 none count = group [ group [ ’T1 ’ ] . i s n u l l ( ) ] . shape [ 0 ] # also manually add ’None ’ row since

None i s parsed to NaN otherwise
88 rowObj [ ’% None ’ ] = round( none count ∗100/ group . shape [ 0 ] , 1)
89
90 ga l axy ta sk1 va lu e s . append ( rowObj ) # append rowObj to l i s t
91
92 d f t a sk1 = pd . DataFrame ( ga l axy ta sk1 va lu e s )
93 d f t a s k s = d f t a sk1 . merge ( d f task0 , on=’name ’ , how=’ outer ’ )
94 else :
95 d f t a s k s = d f t a sk0
96 d f t a s k s w i t h p r op s = d f t a s k s . merge ( ob j e c t i n f o , how=’ outer ’ , on=’name ’ ) # merge proper t i e s

onto dataframe
97 d f t a s k s w i t h p r op s = d f t a s k s w i t h p r op s [ ˜ d f t a s k s w i t h p r op s [ ’# votes ’ ] . i s n u l l ( ) ] # f i l t e r

out ob j e c t s without ac tua l votes
98
99 return d f t a s k s w i t h p r op s

100
101 def make df task0 ( df , candidate names , onthego ) :
102 # group df by fi lename , so tha t each group contains only rows be longing to tha t ob j e c t
103 gr = df [ [ ’ Filename ’ , ’T0 ’ ] ] . groupby ( ’ Filename ’ )
104
105 task0Values = [ ] # create empty l i s t to push r e s u l t s to
106 for objectName in candidate names :
107 # loop over every group created above to accumulate ’ task 0 ’ votes ( ’ ga laxy ’/ ’ group of

ob j e c t s ’/ ’ something e l s e ’)
108 try :
109 ta sk0 va lu e s = gr . get group ( objectName ) [ ’T0 ’ ]
110 counts , votes = ge t t a s k 0 va l u e c oun t s ( t a sk0 va lu e s )
111
112 countObj = {
113 ”name” : objectName ,
114 ” counts ” : counts ,
115 ”# votes ” : votes
116 }
117
118 task0Values . append ( countObj )
119 except :
120 continue
121
122 d f t a sk0 = pd . DataFrame ( task0Values )
123
124 c l u s t e r s t r i n g = ’Group o f ob j e c t s ( C lus te r ) ’ i f not onthego else ’Group o f ob j e c t s ( c l u s t e r ) ’
125 answer types = [ ’ Galaxy ’ , c l u s t e r s t r i n g , ’ Something e l s e /empty cente r ’ ]
126
127 for ans type in answer types :
128 vote percentage co lumn = d f t a sk0 [ ’ counts ’ ] . apply (
129 lambda x : percentageVotesForAnswer (x , ans type ) )
130 d f t a sk0 [ ’% votes {} ’ . format ( ans type ) ] = vote percentage co lumn
131
132 # f i l t e r dataframe and only l eave ob j e c t s with more than 5 votes
133 # df ta s k0 = d f ta s k0 [ d f t a s k0 [ ’# votes ’ ] > 5]
134
135 return d f t a sk0
136
137 def make d f vote thre sho ld ( df , vo t e count th r e sho ld ) :
138 u s e r s and vo t e s = ge t power use r s ( df , vo t e count th r e sho ld )
139 usernames = [ user [ ’ username ’ ] for user in us e r s and vo t e s ]
140
141 df = df [ df [ ’ user name ’ ] . i s i n ( usernames ) ]
142
143 return df
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Dataframe creation helpers

1 import pandas as pd
2 import numpy as np
3 import os
4 import json
5 from datetime import date
6
7 def getFilename(subject_data):
8 """
9 Given the subject_data field from a row of one of our SpaceFluff dataframes , extract the name of the

object being classified
10 by extracting the ’Filename ’|’image ’|’IMAGE ’ field ".
11
12 To be used with df[column ]. apply ()
13
14 @returns {string} filename of the object being classified , including the extension ’_insp.png ’
15 """
16
17 keys = list(subject_data.values ())[0]. keys()
18 accessKey = (
19 "Filename" if "Filename" in keys else "image" if "image" in keys else "IMAGE" if "IMAGE" in keys

else None)
20
21 if accessKey:
22 return list(subject_data.values ())[0][ accessKey ][:-9]
23 else:
24 print("No filename found!")
25
26 def getMetadataValue(metadata , field):
27 ’’’
28 @param metadata metadata column from a row in a SpaceFluff dataframe
29 @param {string} field: ’retired ’ | ’already_seen ’
30 @returns {boolean} value of ‘field ‘ within the row ’s metadata column
31 ’’’
32 return metadata[’subject_selection_state ’][field]
33
34 def parseTime(created_at):
35 ’’’
36 @param {df column} created_at : df[’ created_at ’] column
37 ’’’
38 return pd.to_datetime(created_at , format="%Y-%m-%d %H:%M:%S %Z")
39
40 def getGroupSize(group):
41 ’’’
42 @param {pd.core.frame.DataFrame } pandas dataframe group
43 @returns number of rows in group ( corresponds to number of columns in case of parsed SpaceFluff

dataframe )
44 ’’’
45 return group.shape [0]
46
47 def extract_task_value(task_index , row):
48 try:
49 return row[task_index ][’value’]
50 except:
51 return
52
53 def percentageVotesForAnswer(counts , answer):
54 ’’’
55 @param counts: a df column like {galaxy: 15, group of objects (cluster): 10, something else/empty

center: 2}
56 @paramanswer : one of the keys of ‘counts ‘
57 ’’’
58
59 totalVotes = sum(counts.values ())
60
61 if not answer in counts.keys():
62 return 0
63
64 votesForAnswer = counts[answer]
65
66 return round (100* votesForAnswer/totalVotes , 1)
67
68 def extractTaskValue(annotations , task):
69 ’’’
70 @param {list} annotations : annotations column for a row in a SpaceFluff dataframe
71 @param {string} task: one of ’Ti ’, where i \in 0,2,1,3,4,5,9
72 @returns {string | None} value the user provided for the given task , or None
73 ’’’
74
75 filtered = list(filter(lambda x: x[’task’] == task , annotations))
76 if len(filtered) > 0:
77 return filtered [0][’value ’]
78
79 def extract_retired_info(subject_data):
80 ’’’
81 @param subject_data : (dataframe ’subject_data ’ column)
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82 ’’’
83 return list(subject_data.values ())[0]["retired"]
84
85 def get_power_users(df , vote_count_threshold):
86 """
87 @param df: parsed dataframe where each row is a single classification
88 @param {int} vote_count_threshold : return only users that made at least this many valid

classifications
89 """
90
91 groupby_username = df[[’user_name ’]]. groupby ([’user_name ’])
92 groupby_username_filtered = groupby_username.filter(lambda x: x.shape [0] >= vote_count_threshold)
93
94 grouped = groupby_username_filtered.groupby ([’user_name ’])
95
96 filtered_usernames_and_votes = []
97 for username , vote_count in grouped:
98 filtered_usernames_and_votes.append ({
99 "username": username ,

100 "votes": len(vote_count)
101 })
102
103 return filtered_usernames_and_votes
104
105 def get_task_0_value_counts(row):
106 "Get task 0 value counts for one row of a group of classifications"
107 row = list(row)
108
109 # value_counts = {answer: 0 for answer in answer_types }
110 value_counts = {}
111 for vote in row:
112 if value_counts.get(vote):
113 value_counts[vote] += 1
114 else:
115 value_counts[vote] = 1
116
117 return value_counts , len(row)
118
119 def as_array(lst):
120 ’Turn a Python list into a NumPy array’
121 if type(lst) == np.ndarray:
122 return lst
123 return np.array(lst)
124
125 def get_running_vote_fraction(df):
126 """
127 Returns a list of
128 (% votes by users that case <= n votes)/total votes
129 as a function of n
130 @param df: ‘df ‘-like dataframe , where each row corresponds to a single classification made by a

single user
131 """
132 users_and_classification_counts = []
133
134 for k, v in df.groupby(’user_name ’).groups.items():
135 users_and_classification_counts.append ({
136 ’username ’: k,
137 ’classifications ’: len(v)
138 })
139
140 cls_per_user = [entry[’classifications ’] for entry in users_and_classification_counts]
141 total_votes = sum(cls_per_user) # total number of votes made
142 sorted_vote_counts = sorted(cls_per_user) # sorted list of number of classifications per user
143
144 # create dictionary with keys: # votes per user , values: # users that cast that amount of votes
145 countDict = {}
146 for entry in sorted_vote_counts:
147 countDict[entry] = countDict.get(entry , 0) + 1
148
149 fractions = []
150 for vote_count , occurrence_rate in countDict.items():
151 fractions.append ([vote_count , vote_count*occurrence_rate/total_votes , occurrence_rate ])
152 counts , fractions , users_included = as_array(fractions).T
153
154 # create a running fraction of total votes cast in a single loop
155 running_fraction = []
156 for i, fr in enumerate(fractions):
157 if i == 0:
158 val = fr
159 else:
160 val = fr+running_fraction[i-1]
161 running_fraction.append(val)
162
163 return [
164 users_and_classification_counts ,
165 cls_per_user ,
166 counts ,
167 running_fraction
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168 ]

Other helper functions

1 import json
2 import sys
3 import numpy as np
4 import pandas as pd
5
6 def json_parser(data):
7 return json.loads(data)
8
9 def df_to_json(df, path):

10 "Save a dataframe ‘df ‘ as .json file in the specified (relative) location ‘path ‘ as ’./path.json ’"
11 df.to_json ( ’{}/{}.json ’. format(sys.path[0], path))
12
13 def get_cols(df, cols):
14 ’’’
15 Extract values of the specified columns ‘cols ‘ from a dataframe ‘df ‘
16 @param df: input dataframe
17 @param cols: list of columns , e.g. [’Name ’, ’Date ’, ’Votes ’]
18 @returns list of lists , where each list contains all values for that column ,
19 @example:
20 name , date , votes = get_cols(df, [’Name ’, ’Date ’, ’Votes ’])
21 ’’’
22 return df[cols].T.values
23
24 def get_column_names(s, df):
25 ’Retrieve from a dataframe ‘df‘ the list of column names that start with (sub)string ‘s‘’
26 cols = df.columns.tolist ()
27 return list(filter(lambda x: x.startswith(s), cols))
28
29 # Fleiss ’ kappa computation
30 def get_P_i(row , answers):
31 ’’’
32 Compute the proportions for each answer for a single ’subject ’ (Space Fluff object)
33 @param row: a row in ‘df_votes ‘-like dataframe
34 @param answers: list of unique answers for task for which we’re computing Fleiss ’ kappa
35
36 ’’’
37 n = sum(row.values ()) # number of votes for this category for this object
38 if n < 2:
39 return 1
40 else:
41 val_sum = 0
42 for answer in answers:
43 val = row.get(answer , 0)
44 val_sum += val*val
45 return val_sum /(n*(n-1))
46
47 def fleiss_kappa(df, df_votes , task):
48 ’’’
49 Compute Fleiss ’ kappa for a single task , for a df_votes -like dataframe.
50 @param df: dataframe where each row corresponds to a single classification
51 @param df_votes: dataframe derived from ‘df‘, where each row corresponds to a single object ,
52 its parameters , and the number of votes it got for each answer in each task
53 @param task: one of ’T0’, ’T1’, etc.
54 ’’’
55
56 N = df.shape [0] # total number of votes
57
58 answers = df[task]. unique ()
59
60 p_js = np.array ([ df_votes[’T0 ’]. apply(lambda x: x.get(ans , 0)).values.tolist () for ans in answers ])/N
61
62 P_is = df_votes[task].apply(lambda x: get_P_i(x, answers))
63 P_bar = sum(P_is)/df_votes.shape [0]
64 P_bar_e = np.sum(p_js **2)
65
66 kappa = (P_bar - P_bar_e)/(1 - P_bar_e)
67
68 return kappa
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