
Effective Theory Approaches in
Gravitational Wave Theory

About the use of effective theories, the effective field theory approach, and the effective one body
approach in the development of gravitational wave theory describing binary inspiral systems

Submitted by
MYRTHE SCHEEPERS

Supervisor and first examiner
PROF. DR. DIEDERIK ROEST

Daily supervisor
DIJS DE NEELING, MSC

Second examiner
PROF. DR. ANUPAM MAZUMDAR

Van Swinderen Institute for Particle Physics and Gravity
Faculty of Science and Engineering

2020-2021





Abstract

Effective Theory Approaches in Gravitational Wave Theory

by MYRTHE SCHEEPERS

To study descriptions of gravitational waves originating from binary systems consisting of
black holes and/or neutron stars, two different effective theory approaches are reviewed. The
first, the effective field theory approach, integrates out the scales significantly smaller than the
wavelength of gravitational waves and constructs an effective action that allows for a diagram-
matic interpretation. The second, the effective one body approach, generalises the test parti-
cle limit and uses resummation methods to describe the gravitational waveform until the final
stages of the merger, thus including the merger and ringdown. To understand these approaches
better, they will be considered from the general notion of effective theories, and several cases
of two-body systems will be discussed in other theories than the theory of General Relativity.
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Chapter 1. Introduction

Chapter 1

Introduction

The first direct detection of gravitational waves was performed on September 14th in 2015. The
origin of these ripples in spacetime was the final moment of the merger of two black holes into
one more massive spinning black hole. This detection was announced by the LIGO and Virgo
collaborations on February 11th in 2016 (Abbott et al., 2016a) because it took a long time to
verify the detection. Mainly due to the fact that the data acquired by the gravitational wave
detectors is all but straightforward to interpret, as it requires a prediction of the shape of wave-
forms to be detected to filter out the noise. These waveforms are described by the theory of
General Relativity, introduced by Albert Einstein in 1915 (Einstein, 1916).

The fact that gravitational waves, which were already predicted by Einstein’s theory, have now
been directly detected, is seen as an important verification of the theory of General Relativity.
On top of that, the ability to detect gravitational waves is said to enable us to ‘hear’ phenomena,
such as the mergers of heavy objects, like black holes or neutron stars, in the universe, instead
of only being able to ‘see’ them by observing light- and other rays. It is as if we have acquired
another sense to observe the universe. Since the first detection, the network of interferometers
has been expanded and observational abilities have been improved to be able to perform more
and better detections. By performing more of these gravitational wave observations, scientists
would be able to study the fundamental nature of gravity, the structure of black holes and
neutron stars, and the large-scale evolution of the universe.

However, analysis of gravitational waves requires an understanding the gravitational dynam-
ics of the systems from which they are emitted, such as binary systems of black holes or neutron
stars. This is not an easy job to do within the theory of General Relativity. In this theory, space-
time is described by the so-called Einstein field equations, which are non-linear. This makes
them very hard to solve, and so far, only very few exact solutions have been found. Thus, to
understand the data acquired from the interferometers, which are detecting the gravitational
waves, we need a theory that approximates General Relativity but is easier to use for compu-
tations. Two important approaches which do this, the effective field theory approach and the
effective one body approach, will be discussed in this project.
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Chapter 1. Introduction

Effective field theories are very well known for their application in the Standard Model of
particle physics. One of the most familiar examples of an effective field theory is the Fermi
theory. In Fermi theory, four fermions interact with each other in one vertex and the coupling
of that vertex is calculated. However, it later turned out that this is actually a low-energy
effective description of the weak field interaction which occurs by the exchange of a virtual
interaction boson and thereby splitting the one vertex in Fermi theory into two vertices.

The effective one body approach is a generalisation of the test particle limit and has been specif-
ically developed for the description of gravitational binary systems. In this limit, there is one
object, the ‘test particle’ with a significantly smaller mass or charge which therefore has a neg-
ligible effect on the other object with a larger mass or charge. The description of the system
in the test particle limit can therefore be simplified by only considering the effects of the ob-
ject with a larger mass or charge on the test particle. The generalisation of this limit extends
the description to situations in which the masses or charges of the particles are more equal.
The gravitational effective one body description was inspired by, although different from, an
approach to electromagnetically interacting two body-systems. Its application in the current
form to electrodynamically interacting two-body systems presents therefore an interesting case
to study, because of the availability of exact solutions.

What stands out from the names of the two approaches, is that they are both classified as
‘effective’ approaches. The main implication of this characteristic is that they do not provide
exact solutions or descriptions. An effective theory “systematizes what is irrelevant for the
purposes at hand”, it “enables a useful prediction with a finite number of input parameters”
(Wells, 2012, p. 1). This can be useful in two types of cases: when you want to simplify a
known complicated theory, and when you want to describe a system of which the theory is yet
unknown. With the availability of the theory of General Relativity, it seems that we are looking
at the first application of an effective theory for the description of coalescing binary systems.

In this thesis, we will start with an introduction to gravitational waves. We will cover some im-
portant moments in the theoretical development and the link between theory and experiment.
After that, the chapters will be divided into three parts of the thesis: (I) effective theories, (II)
effective field theory approach and (III) effective one body approach. The three approaches in
the parts are not equal, since the first one will be studied as a foundation for the other two and
reflect on the role of the broader class of effective theories in physics and theory development.
The first part also includes a case study about a heuristic application of effective theories, which
will at the same time provide a warm-up for the construction of an effective field theory. The
second part then covers the main concepts and procedures of effective field theories for binary
problems. Two cases will be studied, effective scalar field theory and effective electromagnetic
field theory, before applying the approach to the gravitational dynamics of a binary system.
The last part starts from the results from the second part and introduces an approach to extend
these results to later stages of the merger of gravitational binaries. To study this approach, we

2



Chapter 1. Introduction

again analyse the case of electromagnetic interactions, before applying it to the gravitational
situation. The concluding chapter of the thesis will then discuss the accumulated conclusions
from the three parts.

The research question is: “How can we construct gravitational wave templates to detect grav-
itational waves originating from gravitational binary inspirals?” To answer this question, we
will consider the role of effective theories in general, and the effective field theory formalism
and the effective one body formalism in particular, in the development of our understanding
of gravitational waves emitted by binary systems of compact objects.

1.1 Notation and conventions

There are several notations and conventions which are used consistently throughout this re-
port, unless otherwise noted.

• Throughout the report we work with ~ = c = 1 units, unless otherwise noted.

• We use a reduced Planck mass: M−2
Pl ≡ 32πG, with G Newton’s constant.

• We use Einstein’s summation over repeated indices. Greek and Latin indices ranges are
as usual, i.e. µ, ν, . . . = 0, 1, 2, 3, and i, j, . . . = 1, 2, 3. Sometimes we use the notation
x0 = t where that is appropriate.

• We sometimes use the dot-notation for time derivatives, e.g. ẋ = dx
dt , and ẍ = d2x

dt2
.

• We denote 3-vectors in boldface, e.g. x,y, . . ., and put hats on unit vectors, e.g. x̂.
To avoid cluttering expressions, sometimes we omit the Greek indices when evaluating
spacetime (scalar, vector, tensor) functions, e.g. fαβ···(x, y, · · · ) ≡ fαβ···(xµ, yµ, · · · ).

• The Minkowski metric is given by ηαβ ≡ diag(+,−,−,−). The full metric tensor is de-
noted as usual, gµν(x), and often use the standard notation: v2 ≡ vµvµ ≡ gµνvµvν .

• We use τ for the proper time: dτ2 = gαβdx
αdxβ .

• We write spacetime velocities as uµ(σ) ≡ dxµ

dσ , with σ an affine parameter (sometimes the
proper time), and vµ(t) ≡ dxµ

dt , when the choice σ = t is made.

• The partial derivatives are denoted by ∂µ ≡ ∂
∂xµ , and sometimes we simplify notation by

repeating indices, e.g. ∂ij ≡ ∂i∂j .

• We use the shortened notation
∫
p,··· ,q ≡

∫ d3p
(2π)3

· · · d
3q

(2π)3
and

∫
p0
≡
∫ dp0

2π .

• We denote the symmetric-trace-free electric- and magnetic-type multipole moments as IL

and JL, respectively, using the compact notation L ≡ (i1 . . . il). We also use the shortened
notation xL ≡ xi1 · · ·xil , xijL−2 ≡ xixjxi1 · · ·xil−2 etc., throughout.

3



Chapter 1. Introduction

• We denote the time average of a quantity as 〈X(t)〉 ≡ 1
T

∫ T
0 dtX(t).

• We use 〈T · · ·〉 for the time-ordered product, which in our classical setting is short-hand
for products of the Green’s functions.

• The n-th order in the post-Newtonian expansion is denoted by nPN ≡ O(v2n), this ex-
pansion is discussed in more detail in section 6.1.

4
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Chapter 2

Gravitational Waves

As explained in the introduction, the theory of General Relativity predicted the existence of
gravitational waves. However, the history of this prediction is less straightforward than often
thought. We will therefore first briefly discuss part of the theoretical history of gravitational
waves, and then discuss the current state of gravitational wave science including the detection
of gravitational waves.

2.1 Theoretical history

The first known concept of gravitational waves was introduced by William Clifford in his pub-
lished work in 1876 (Clifford, 1876). He did not use the term ‘gravitational waves’ but he
described the following concept:

I hold that (1) small portions of space are in fact of a nature analogous to little hills
on a surface which is on average flat; namely that the ordinary laws of geometry are
not valid for them. (2) That the property of being curved or distorted is continually
being passed on from one portion of space to another after the manner of a wave
(Chen, Nester, and Ni, 2017, pp. 4–5).

With this description, Clifford explained his concept of “curvature waves”. The first known
use of the term “gravitational waves” was then by Henri Poincaré in 1906 in relation to his
speculation about relativistic gravity involving waves propagating at speed c originating from
the acceleration of gravitational bodies (Poincaré, 1906, p. 174)(Chen, Nester, and Ni, 2017,
p. 5).

The development of special relativity inspired some to think about a Lorentz covariant scalar
theory. Nordström’s suggestion in 1913 is one of the best-known (Nordström, 1913), it con-
tained waves propagating at the speed of light and can be expressed in a generally covariant
form, even though it does not predict the bending of light. This last characteristic was shown by
Einstein and Fokker in 1914 for a theory with a generally covariant form (Einstein and Fokker,
1914), and one of the things it showed is that the Riemann curvature scalar is proportional to

5
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the trace of the matter energy-momentum density:

R = 3κT , κ :=
8πG

c4
(2.1)

where the factor κ depends on Newton’s gravitational constant G and the speed of light c
(Chen, Nester, and Ni, 2017, p. 5).

Einstein presented his generally covariant theory of gravitation for a dynamical spacetime met-
ric, General Relativity, in 1915 (Einstein, 1916). The field equations,

Rµν −
1

2
gµνR =

8πG

c4
Tµν , (2.2)

are found by taking the variation of the total gravitational action with respect to the spacetime
metric tensor gµν (Maggiore, 2008, p. 4). More detail with regards to the gravitational action will
be discussed in the field theory description. These field equations describe the relation between
the density and flux of energy and momentum in spacetime, represented by the stress-energy-
momentum tensor Tµν , and the curvature of spacetime, described by the spacetime metric gµν ,
with spacetime interval ds2 = gµνdx

µdxν . The Ricci curvature tensor, Rµν , is given by

Rµν = Rαµαν = ∂µΓαβν − ∂νΓαβµ + ΓαγµΓγβν − ΓαγνΓγβµ, (2.3)

in which the Christoffel symbols can be given in terms of the metric by

Γαβγ =
1

2
gαδ(∂βgδγ + ∂γgδβ − ∂δgβγ). (2.4)

This allows us to define the Einstein tensor Gµν = Rµν − 1
2gµνR (Chen, Nester, and Ni, 2017,

p. 5).

Although now often seen as a logical consequence from the theory of General Relativity, at the
time, Einstein was not convinced of the existence of gravitational waves. Three months after
writing down these field equations, Einstein wrote to Schwarzschild:

Since then [Nov 4], I have handled Newton’s case differently according to the final
theory. - Thus there are no gravitational waves analogous to light waves. This
is probably also related to the one-sidedness of the sign of scalar T , incidentally.
(Nonexistence of the “dipole”.) (Einstein, 1998, p. 196)

Reconstructing what led Einstein to believe this, it is thought that he did not consider effects
beyond dipole radiation. He might have understood that for purely attractive gravity, now con-
sidered a spin-two theory, there could be no dipole radiation. This explains why Einstein could
have missed the damping due to radiation reactions from the emission of gravitational waves,

6
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which we now know appear at order
(
v
c

)5, as he might have only found the first corrections of
order

(
v
c

)2 and vanishing corrections at order
(
v
c

)3 (Chen, Nester, and Ni, 2017, p. 6).

A few months later, when Einstein developed the weak field linearized theory of General Rel-
ativity, which at the time still contained several mistakes, he changed his mind. He followed a
suggestion from Willem de Sitter and used the coordinate condition

√
|g| = 1. This led to the

prediction of the existence of gravitational waves that travel with a speed of c generated by the
quadrupole moment of a time varying-source (Chen, Nester, and Ni, 2017, pp. 6–7).

In January 1918, Einstein published a new article in which he corrected many of the mistakes
from his linearized gravity work since Nordström had pointed those out to him. This paper
also provided the earlier missing arguments for the fact that two out of the three types of
waves do not carry energy and depend on the choice of coordinates, these polarizations are
therefore not physical, while only the transverse-transverse waves carry energy (Chen, Nester,
and Ni, 2017, p. 7). In this paper, Einstein also introduced the “quadrupole formula” for the
first time. This formula expresses the rate of emission of gravitational wave energy by a system
of accelerating masses. Einstein showed that the power radiated in gravitational waves by
a system of accelerating masses is proportional to the square of the third time derivative of
the system’s mass quadrupole moment, hence the name of the formula. The derivation of the
quadrupole formula was the basis of the linearized approximation of General Relativity that
we will discuss later in this chapter (Kennefick, 2017, p. 293). It would remain, however, for
a long time an important question as to whether, and in which form, the quadrupole formula
gives a reasonable approximation of the source strength of possible astrophysical sources of
gravitational waves. We will see later in this chapter that the controversy of this question was
eventually solved by the first indirect detections of gravitational waves.

Eddington examined the concept of ‘waves of curvature’ from Clifford in 1922 and concluded
that the pure gauge degrees of freedom, which are the two types of waves depending on the
choice of coordinates, can propagate at any speed. This verified Einstein’s work from 1918 but
also contained a small correction to the quadrupole amplitude (Chen, Nester, and Ni, 2017,
pp. 7–8). However, the correct expression for the quadrupole radiation would not be finalised
until many years later.

The arguments for and against the existence of gravitational waves kept on going back and
forth between Einstein and others. Einstein submitted a paper together with Nathan Rosen
in 1936 arguing against the existence of gravitational plane waves. However, the paper got
rejected and Einstein decided to submit it elsewhere. A while later, one of Einstein’s assistants
became friends with the referee who was responsible for rejecting Einstein and Rosen’s paper.
This referee, H. P. Roberson, and Einstein worked on the theory of gravitational waves together
and came back to the conclusion by arguing that cylindrical gravitational waves could exist.

7
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Rosen was not involved in these revisions of the paper he and Einstein had published together,
and he distanced himself from the new conclusions (Chen, Nester, and Ni, 2017, pp. 18–19).

These are only brief descriptions of the large amount of controversy surrounding the existence
of gravitational waves and different restrictions on their characteristics. Since much of the fur-
ther development of gravitational wave theory is strongly linked to the experimental ambitions
and advances, we will mention some of the next highlights in the historical context in section
2.4 below. We will see how observations have been able to resolve some of the theoretical
debates, or at least provide strong evidence for the existence of gravitational waves.

2.2 Linearized gravity

In linearized gravity the non-linear equations of motion from General Relativity are expanded
to linear order in hµν . This approach is applicable for weak gravitational fields, described by

gµν = ηµν + hµν (2.5)

which can be treated as a classical field theory of the field hµν as a perturbation of the flat
spacetime described by the Minkowsky metric ηµν , thus assuming that |hµν | � 1 (Maggiore,
2008, p. 4).

2.2.1 Symmetries

The components of a tensor depend on the chosen reference frame, and hence we can always
choose a reference frame for which equation 2.5 holds in a sufficiently large region of space.
Fixing the reference frame has the consequence that the local invariance of General Relativity
is broken under coordinate transformations, and pseudo-degrees of freedom are eliminated.
A gauge symmetry remains, which can be associated with the coordinate transformation, or
diffeomorphism,

xµ → x′µ = xµ + ξµ(x), (2.6)

in which derivatives |∂µξν | are of the same order of smallness as |hµν |. Under the transforma-
tion of the metric, given by

gµν(x)→ g′µν(x′) =
∂xρ

∂x′µ
∂xσ

∂x′ν
gρσ(x), (2.7)

the transformation of hµν , to lowest order, is

hµν(x)→ h′µν(x′) = hµν(x)− (∂µξν + ∂νξµ). (2.8)

8
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The condition |hµν | � 1 is preserved when |∂µξν | are at most of the same order of smallness as
|hµν |, and if that is the case then the slowly varying diffeomorphisms described by equation 2.6
are a symmetry of linearized theory (Maggiore, 2008, pp. 4–5).

In addition to this local gauge symmetry, there is also a finite, global symmetry in linearized
gravity. This symmetry is given by the Lorentz transformations

xµ → Λµνx
ν . (2.9)

In which the matrix Λµν by definition has to satisfy

ΛρµΛσνηρσ = ηµν . (2.10)

For the transformation of the spacetime metric, this yields

gµν(x)→ g′µν(x′) = ΛρµΛσνgρσ(x) (2.11)

= ΛρµΛσν [ηρσ + hρσ(x)] (2.12)

= ηµν + ΛρµΛσνhρσ(x). (2.13)

This shows that hµν transforms like a tensor under Lorentz transformations. We just have to
make sure that the condition |hµν | � 1 holds, which is always the case for rotations, and only
poses a limitation for boosts (Maggiore, 2008, p. 5).

It is clear from equation 2.7 that constant translations leave hµν invariant. Constant translations
are of the form xµ → x′µ = xµ+aµ in which aµ has to be finite but not necessarily infinitesimal.
We can summarise the symmetries of linearized gravity by saying that it is invariant under
finite Poincaré transformations. This group of transformations includes the infinitesimal local
transformations in equation 2.8, the Lorentz transformations in equation 2.9, and the finite
translations (Maggiore, 2008, p. 5).

2.2.2 Wave equation

In linearized theory we use the flat metric ηµν = ηµν to raise or lower indices. We define

h = ηµνhµν (2.14)

and
h̄µν = hµν −

1

2
ηµνh. (2.15)

Then by observing that
h̄ ≡ ηµν h̄µν = h− 2h = −h (2.16)

9
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thus
hµν = h̄µν −

1

2
ηµν h̄. (2.17)

Combining this with the Riemann tensor to linear order in hµν , given by

Rµνρσ =
1

2
(∂ν∂ρhµσ + ∂µ∂σhνρ − ∂µ∂ρhνσ − ∂ν∂σhµρ), (2.18)

we can compute the linearization of the Einstein tensor Gµν = Rµν − 1
2gµνR. And then the

Einstein field equations become

�h̄µν + ηµν∂
ρ∂σh̄ρσ − ∂ρ∂ν h̄µρ − ∂ρ∂µh̄νρ = −16πG

c4
Tµν , (2.19)

where� = ηµν∂
µ∂ν = ∂µ∂

µ is the flat space d’Alembertian. This can be simplified by using the
gauge freedom from equation 2.8, and choose the harmonic gauge given by

∂ν h̄µν = 0. (2.20)

Which reduces equation 2.19 to

�h̄µν = −16πG

c4
Tµν , (2.21)

which is a simple wave equation for the generation of a gravitational wave (Maggiore, 2008,
pp. 6–7).

Observe that hµν has ten independent components because it is a symmetric 4 × 4 matrix.
Equation 2.20 provides four conditions, thus reducing the number of independent parameters
to six (Maggiore, 2008, p. 7). In the section about polarization, section 2.2.3 below, we will
discuss the physical interpretation of the independent parameters.

We can also note that equations 2.20 and 2.21 together imply that

∂νTµν = 0, (2.22)

equivalent to the conservation of energy-momentum in this linearized theory. This is in con-
trast with the full conservation given by DνTµν = 0, where Dν is the covariant derivative, in
the full, non-linear theory of General Relativity (Maggiore, 2008, p. 7). For many situations,
only retaining the terms up to order O(h) suffices and higher-order terms can be dropped.

The physical interpretation of approximations in linearized gravity for a self-gravitating binary
system is that the bodies are moving in a flat space-time, ηµν , along trajectories determined by
their mutual influence. This means that the system, up to certain order, is described by the
dynamics of Newtonian gravity, rather than that of full General Relativity. The response of the
objects to the presence of gravitational waves in the system is computed using gµν = ηµν +hµν ,

10



Chapter 2. Gravitational Waves

where terms O(h2) are neglected in the Christoffel symbols and Riemann tensor (Maggiore,
2008, p. 7).

2.2.3 Polarization

The wave equation in equation 2.21 describes the generation of gravitational waves. To study
the propagation of gravitational waves, we are interested in the equations outside the source,
when Tµν = 0. The wave equation then reduces to

�h̄µν = 0, (2.23)

where
� = − 1

c2
∂2

0 +∇2. (2.24)

Outside the source, the metric can also be simplified, because the harmonic gauge in equation
2.20 does not fix the gauge completely. This can be seen in the transformation of h̄µν :

h̄µν → h̄′µν = h̄µν − (∂µξν + ∂νξµ − ηµν∂ρξρ), (2.25)

which implies
∂ν h̄µν → (∂ν h̄µν)′ = ∂ν h̄µν −�ξµ. (2.26)

From which we can see that a coordinate transformation xµ → xµ + ξµ with the condition
�ξµ = 0 does not violate the condition that ∂µh̄µν = 0. This allows us to define

ξµν ≡ ∂µξν + ∂νξµ − ηµν∂ρξρ, (2.27)

which must satisfy �ξµν = 0, given that the d’Alembertian � commutes with ∂µ. Looking
back at equation 2.25, it now shows how from the six independent components of h̄µν , satisfy-
ing �h̄µν = 0, we can subtract the functions ξµν . The functions ξµν depend on four arbitrary
functions ξµ, and satisfy �ξµν = 0. This means that four extra conditions can be imposed on
hµν . In particular, ξ0 can be chosen such that the trace h̄ = 0, which has as a consequence that
h̄µν = hµν . And the three functions ξi(x) are chosen such that h0i(x) = 0 (Maggiore, 2008,
pp. 7–8).

The condition from equation 2.20, taking µ = 0, reads

∂0h00 + ∂ih0i = 0, (2.28)

and since we have also fixed h0i = 0, this simplifies to

∂0h00 = 0. (2.29)

11
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As a consequence, h00 is a constant in time, corresponding to the Newtonian potential of
the source that generated the gravitational wave. Since the gravitational wave itself is time-
dependent, only the spatial components hij are non-zero after removing all redundant degrees
of freedom. This is all summarised in the transverse-traceless (TT) gauge, in which the metric
is denoted by hTTij , which has to satisfy:

h0µ = 0, hii = 0, ∂jhij = 0. (2.30)

The six degrees of freedom of hµν that remained after imposing the harmonic gauge, have now
been reduced to two degrees of freedom by fixing the residual gauge freedom, with the four
constraints of the functions ξµ (Maggiore, 2008, p. 8).

The two remaining degrees of freedom correspond to the two physical polarizations of gravi-
tational waves. They are given in the plane wave solutions to equation 2.23, given by

hTTij (x) = eij(k)eikx, (2.31)

in which kµ = (ω/c,k), ω/c = |k|, and eij(k) is called the polarization tensor. For a single
plane wave with wave-vector k, the non-zero components of hTTij are in the plane transverse
to n̂ = k/|k| because the condition ∂jhij = 0 becomes nihij = 0. Choosing n̂ along the z-axis,
and imposing that hij is symmetric and traceless, we find

hTTij (t, z) =

h+ h× 0

h× −h+ 0

0 0 0


ij

cos[ω(t− z/c)], (2.32)

in which h+ and h× are the amplitudes of the “plus” and “cross” polarizations of the wave
(Maggiore, 2008, p. 9).

2.2.4 Field theory description

So far, we have described General Relativity in its geometric formalism. Complementary to
this, there is also the field-theoretic tradition. The field theory language is most familiar in the
context of classical and quantum field theory. Both formalisms describe General Relativity at
different levels. The macroscopic level is most clear in the geometric tradition, in which the
metric describes the collective excitations of the gravitational field. The fundamental level is
best described by the field theory tradition, in which linearized gravity is the field theory of a
massless particle called the graviton. Both descriptions have their advantages, and they both
provide a better understanding of different conceptual challenges (Maggiore, 2008, p. xiv).

The basis of the field-theoretic description is the action, in the case of General Relativity the
action is given by S = SEH + SM , consisting of the Einstein-Hilbert action, and the matter
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action respectively. The first is given by

SEH =
c3

16πG

∫
d4x
√
−gR (2.33)

in which c is the speed of light, G is Newton’s gravitational constant, g is the determinant of
the spacetime metric gµν , and R is the Ricci scalar (Maggiore, 2008, pp. 4, 59).

For the matter action, we often look at its variation because that enables us to define the energy-
momentum tensor Tµν . The variation of the matter action under the change of the metric gµν →
gµν + δgµν is given by

δSM =
1

2c

∫
d4x
√
−gTµνδgµν , (2.34)

in which c is the speed of light, g is the determinant of the spacetime metric gµν , and Tµν is the
stress-energy tensor (Maggiore, 2008, pp. xvii, 4).

Because we are looking at linearized theory here, we expand gµν = ηµν + hµν . This is the same
expansion as used in the geometric approach, however, now hµν is treated like any other field,
and not specifically interpreted as a space-time metric as in the geometric tradition (Maggiore,
2008, p. 52). The loss of the metric aspect of the theory is related to the fact that in the Newtonian
approximation of General Relativity, the leading-order term comes from just one component of
the Einstein equations. This poses a problem for the description of gravitational waves because
they travel far from the sources that generate them and the Newtonian approximation weakens
according to the inverse-square of the radial distance from the source (Kennefick, 2017, p. 48).
However, as we will see, the field theoretical description, without the metric interpretation of
the spacetime perturbation, has found a way to describe gravitational waves.

The linearized gravity theory yields for the Ricci scalar

R = gµνRµν = (ηµν − hµν +O(h2))
(
R(1)
µν +R(2)

µν +O(h3)
)
, (2.35)

where R(1)
µν is linear in h and R

(2)
µν is quadratic in h, and they are given by (Maggiore, 2008,

pp. 30, 59):

R(1)
µν =

1

2
(D̄αD̄µhνα + D̄αD̄νhµα − D̄αD̄αhµν − D̄νD̄µh), (2.36)

R(2)
µν =

1

2
ḡρσ ḡαβ

[
1

2
D̄µhραD̄νhσβ + (D̄ρhνα)(D̄σhµβ − D̄βhµσ)

+ hρα(D̄νD̄µhσβ + D̄βD̄σhµν − D̄βD̄νhµσ − D̄βD̄µhνσ)

+

(
1

2
D̄αhρσ − D̄ρhασ

)
(D̄νhµβ + D̄µhνβ − D̄βhµν)

]
.

(2.37)
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In these expressions, D̄µ is the covariant derivative with respect to the flat background metric
(Maggiore, 2008, p. 30).

With the expansion given by

√
−g =

√
det(δµν + hµν ) =

√
1 + ηµνhµν +O(h2

µν), (2.38)

and some algebra and integration by parts, we arrive at the linearized Einstein action, up to
and including orders of h2, given by

SE = − c3

64πG

∫
d4x[∂µhαβ∂

µhαβ − ∂µh∂µh+ 2∂µh
µν∂νh− 2∂µh

µν∂ρh
ρ
ν ]. (2.39)

From which we can identify

L = − c3

64πG
[∂µhαβ∂

µhαβ − ∂µh∂µh+ 2∂µh
µν∂νh− 2∂µh

µν∂ρh
ρ
ν ] (2.40)

as the corresponding Lagrangian density (Maggiore, 2008, p. 59).

2.3 Sources

In general, every acceleration that is not spherically or cylindrically symmetric will produce
gravitational waves. This brings us to four main types of gravitational waves caused by sources
with different kinds of motion and changing distributions of mass (Sources of Gravitational
Waves):

• Continuous gravitational waves are caused by systems with a relatively constant and
well-defined frequency. For example, binary systems of stars or black holes orbiting each
other before the inspiralling and merger stage, or a star with a large irregularity fastly
orbiting around its axis. These sources of gravitational waves are expected to be relatively
weak compared to the other types of sources (Continuous Gravitational Waves).

• Inspiral gravitational waves are caused by the later stage of binary systems that merge
into one object. These systems often consist of two neutron stars, two black holes, or a
neutron star and a black hole. Their orbits have degraded from the continuous stage be-
cause the orbital distances decrease and the speeds increase. This causes the frequency of
the gravitational waves to increase until the merger, and hence the source is not continu-
ous anymore (Inspiral Gravitational Waves).

• Burst gravitational waves are short-duration signals from mostly unknown or unantici-
pated sources. The hypotheses are that systems such as supernovae or gamma-ray bursts
can produce these types of gravitational waves, but too little is yet known to make predic-
tions and anticipate the sources of these gravitational waves (Burst Gravitational Waves).
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• Stochastic gravitational waves have their origin in the early evolution of the universe.
They are expected to arise from a large number of random, independent events combin-
ing to a cosmic gravitational wave background, similar to the Cosmic microwave back-
ground for electromagnetic radiation (Stochastic Gravitational Waves).

For this project, we focus on the inspiral gravitational waves caused by binary systems of neu-
tron stars and black holes. Although there are systems emitting continuous gravitational waves
for which the discussion in this project is relevant, not all continuous signals will fit within this
theory. One of the assumptions or starting points for the approaches that will be discussed is
that the orbits are quasi-circular, which is always the case for the inspiral stage of a merger due
to circularization but is not always applicable to the binary sources of continuous gravitational
waves.

Figure 2.1 shows an example of a gravitational wave originating from a binary coalescence,
namely the first directly detected gravitational wave, GW150914. Characteristic of these signals
is that they cover a large range of scales, both in terms of separation distance, and in terms of
relative velocity. The accompanying increase in the frequency of the gravitational wave is often
referred to as the “chirp” of the signal because it becomes higher and higher pitched (Blanchet,
2016, p. 11).

2.4 Detection

It was most importantly the experimental evidence that led to the consensus about the exis-
tence of gravitational waves. Initially with the indirect detections in a binary pulsar, and later
with the direct detection by laser interferometers. We will briefly discuss both below, in which
we will pay special attention to the requirements for filtering out the signal from the detector
output of laser interferometer detectors.

2.4.1 Indirect: binary pulsar

In 1974, the binary pulsar PSR B1913+16 was discovered (Chen, Nester, and Ni, 2017, p. 27). A
pulsar is a fast rotating neutron star that emits radio signals in the shape of two cones. Due to
the rotation of the source, the radio signals are received in pulses, like the light from a light-
house, rather than a continuous signal (Falcke, 2020, p. 91). The frequency of these pulses
provides a lot of information about the evolution of the dynamics of such a system involving
one or multiple pulsars.

Taylor first announced in 1978 that the orbital parameters of the binary pulsar were decaying
according to the quadrupole formula, analogous to the dipole formula in electromagnetism
(Taylor, Fowler, and McCulloch, 1979). For a gravitational system, the quadrupole formula
gives the first approximation of the radiation emitted by a weakly relativistic system (Schutz,
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FIGURE 2.1: Top: The estimated gravitational-wave amplitude from GW150914.
Bottom: The Keplerian effective black hole separation in units of Schwarzschild
radii (RS = 2GM/c2) and the effective relative velocity given by the parameter
v/c = (GMπf/c3)1/3, where f is the gravitational-wave frequency calculated
with numerical relativity and M is the total mass of the objects in the system

(Abbott et al., 2016a, p. 3).

2000, p. 6). This was strong indirect evidence for the existence of gravitational waves (Chen,
Nester, and Ni, 2017, p. 27).

Thibault Damour was able to solve the quadrupole formula controversy, mentioned in sections
2.1, in 1983. He provided quantitative results that both agreed with the observational data
from the binary pulsar, and with theoretical results at that time (Damour, 1983). After a few
more years, around 1985, the consensus had spread and the controversy about the existence of
gravitational waves was over (Chen, Nester, and Ni, 2017, pp. 26–27).

After the original results of the binary pulsar, scientists continued to monitor the relativistic
binary pulsar PSR B1913+16 and collected over three decades of data. During this extensive
period, the measured orbital decay of the binary system is still in agreement with the value
predicted by the theory of General Relativity, as can be seen in figure 2.2 (Weisberg, Nice, and
Taylor, 2010).
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FIGURE 2.2: “Orbital decay caused by the loss of energy by gravitational radia-
tion. The parabola depicts the expected shift of periastron time relative to an un-
changing orbit, according to General Relativity. Data points represent our mea-
surements, with error bars mostly too small to see.” (Weisberg, Nice, and Taylor,

2010, p. 14)

2.4.2 Direct: laser interferometry

The efforts to develop methods for direct detection of gravitational waves started with Joseph
Weber in 1958. At the time, the gap between predicted gravitational wave strength and de-
tection capabilities was still approximately 15-16 orders of magnitude (Chen, Nester, and Ni,
2017, p. 28). With a lot of hard work and different detector designs based on the compression
of a large cylinder, Weber reported having detected gravitational waves in both 1969 and 1970.
Even though no attempts to verify his results were successful, this did lead to an increase in
interest in gravitational wave detection (Chen, Nester, and Ni, 2017, pp. 29–32).

The first people thought to have come up with the idea to use interferometers for gravitational
wave detection were M. Gerstenshtein and V. I. Pustovoit who published about this in 1962.
Independently, Weber and his students also considered this idea in 1964. It eventually was
Robert Forward who was the first one to build an interferometer to detect gravitational waves.
However, this first device was too small to actually perform any detections (Chen, Nester, and
Ni, 2017, p. 32).
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In 1966, a group of scientists, among who also Forward, started building the first laser inter-
ferometer at the Hughes Research Laboratories. In that same year, Weber published an article
describing how to improve detectors’ sensitivity which would reduce the gap to the expected
gravitational wave signals to 6 orders of magnitude (Chen, Nester, and Ni, 2017, p. 29). The
first laser interferometer was later finished in 1972 but did not generate any conclusive results
(Chen, Nester, and Ni, 2017, pp. 32–33). However, laser interferometer detectors did become
the new standard for detection efforts by 1980, and in 1981 the first public proposal for a space-
bound interferometer was presented by Faller and Bender (Chen, Nester, and Ni, 2017, p. 35).

All these attempts paved the road for the ‘second generation detectors’, such as advanced
LIGO, advanced Virgo, and KAGRA, to eventually become the first generation of detectors
to successfully perform direct detections of gravitational waves (Chen, Nester, and Ni, 2017,
p. 36). One of the biggest challenges for these detectors to succeed was to overcome amounts
of noise in which the actual gravitational wave signals are hidden.

The four main sources of noise for a laser interferometer to detect gravitational waves are:

• Shot noise due to the quantized nature of light. The photodetectors measure the power of
a laser signal as the number of incoming photons, which for a large number ofN photons
behaves according to a Gaussian distribution with a standard deviation of

√
N . This type

of noise cannot be eliminated but it can be quantified (Dimastrogiovanni, 2021, pp. 8–10).

• Radiation pressure is the pressure extorted by photons upon hitting the detector or mir-
ror. This source of noise is not trivial to balance out since it depends on the intensity of
the light and is related to the shot noise (Dimastrogiovanni, 2021, pp. 8–10).

• Thermic noise is caused by vibrations in the detector system due to temperature fluctua-
tions, it can be minimised by keeping the temperature as stable as possible (Dimastrogio-
vanni, 2021, pp. 8–10).

• Seismic and Newtonian noise is caused by micro-seismic background, seismic activity,
and human activity (Dimastrogiovanni, 2021, pp. 8–10).

These types of noise show that it is not possible to eliminate or quantify all of the noise. The
last type of noise is expected to be fully eliminated in the Laser Interferometer Space Antenna
(LISA) which is planned to launch before 2035. This detector consisting of three spacecrafts will
follow the earth in its orbit around the sun and have arm lengths given by the distance between
the spacecrafts of 2.5 million kilometres (Barausse et al., 2020). But even such an advancement
in gravitational wave detection will still have to make use of data analysis tools to identify the
signal in the detector output which mainly consists of noise.

The detector output is called the “strain” and will have the general form of s(t) = h(t) +n(t) in
which s(t) is the strain at moment t in time, and h(t) and n(t) are the gravitational wave signal
and noise respectively at that same moment. Intuitively it makes sense to think that the signal
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can only be detected when |h(t)| > |n(t)|, but that would make detections on Earth, where
generally the situation resembles |h(t)| � |n(t)|, impossible. The method called “matched
filtering” offers a solution since that enables us to filter out noise even when it is much stronger
than the signal (Maggiore, 2008, p. 343).

A requirement for this technique is to know, at least to some level of accuracy, the form of the
signal h(t). Additionally, we must have an idea of the scales of variation of the noise n(t), to be
able to exploit the difference in the behaviour of the two. To illustrate the procedure, you can
think of matched filtering as in the following example. Suppose that both s(t) and the form of
h(t) are known. Multiply these two with each other, integrate over an observation time T , and
divide by T . This looks as follows (Maggiore, 2008, p. 343):

1

T

∫ T

0
dts(t)h(t) =

1

T

∫ T

0
dth2(t) +

1

T

∫ T

0
dtn(t)h(t). (2.41)

The essential characteristic of h(t) and n(t) is that both are oscillating functions. This makes the
first integral on the right hand side definite positive, for instance the integral of cos2 ωt times
an amplitude, which is a slowly varying function of time. For large T , the integral will then
grow as T , and due to the average over the time, this gives:

1

T

∫ T

0
dth2(t) ∼ h2

0, (2.42)

where h0 represents the amplitude of the signal template h(t). Considering that n(t) and h(t)

are uncorrelated, their product will oscillate. For large T , the integral of n(t)h(t) will, therefore,
grow as T 1/2, as shown in

1

T

∫ T

0
dtn(t)h(t) ∼

(τ0

T

)1/2
n0h0, (2.43)

in which τ0 is the period of the signal waveform h(t), and n0 is the amplitude of the noise
function n(t) (Maggiore, 2008, p. 343).

For the limit T →∞, this means that the term with the noise function averages to zero, and the
contribution from the noise is “filtered out” of the strain. In practice, the observation time T is
limited, and the signal itself has a finite temporal duration. However, this method is successful
in reducing the requirement of h0 > n0 to h0 > (τ0/T )1/2n0 (Maggiore, 2008, p. 344).

This description stresses the importance of constructing possible waveforms for the signals
we would like to extract from the detector outputs. The matched filtering procedure can be
further improved by, for example, adding a “filter function”, comparing signals from different
detectors, and applying statistical methods, but the dependency on the template h(t) remains
(Maggiore, 2008, pp. 344, 356, 400).
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The template waveform is even more complex because it does not just depend on a temporal
variable t. Instead, it also depends on a collection of other parameters, just like the actual
signal depends on parameters describing the characteristics of the source of the gravitational
waves. This collection of parameters, such as the object’s masses, the time of coalescence, the
luminosity distance, etc., is often denoted by θ = θ1, ..., θN in the “template” waveform h(t; θ)

(Maggiore, 2008, p. 351).

2.5 Analogy with electromagnetic waves

The analogy between gravitational and electromagnetic waves has been very important. Es-
pecially before the physical proof of the existence of gravitational waves had been found, this
analogy offered a way to describe the gravitational field. The analogy has two purposes: a
heuristic one, and to represent a real underlying structural connection. In his book Traveling
at the speed of thought, Daniel Kennefick associates the two purposes with the ‘sceptics’ and
‘nonsceptics’ among the theorists. The sceptics regarded the analogy of gravity with electro-
magnetism as inappropriate or misleading. They either doubted the existence of gravitational
waves altogether or, more commonly, thought that gravitational waves would not be emitted
by freely falling gravitational systems, such as binary stars. Even though the sceptics did use
the analogy, they were not necessarily committed to making every point of the analogy corre-
spond, thus only using it with a heuristic purpose. The nonsceptics, on the other hand, con-
sidered the analogy as a first step towards unifying the two areas of physics. Therefore, they
emphasised the points of similarity between the two theories, which enabled them to adopt
insights, intuition, and calculation tools from the better understood electromagnetic theory of
radiation. Despite this distinction between sceptics and nonsceptics, it is important to empha-
sise that both used the analogy as a guide. The difference was that the sceptics were looking
for a point of breakdown of the analogy, while the nonsceptics were searching for a unified the-
ory in which both gravity and electromagnetism would be brought together (Kennefick, 2017,
pp. 7–17).

The similarity between gravity and electromagnetism lies in the description by the Einstein
field equations and the Maxwell equations respectively, which can both be used to describe
waves. The differences between the theories are that there exist no negative masses, unlike the
existence of both positive and negative charges in nature, and that there is no electromagnetic
analogue for the conservation of momentum in gravity.

This description of the analogy between gravitational and electromagnetic waves completes
this chapter that has introduced some concepts of gravitational waves. The analogy will be
used in chapters 8 and 12, where we will study binary systems in electromagnetism.
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Effective Theories
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Chapter 3

Effective Theory Basics

There is a risk of presenting effective theories as a new concept or method. However, effective
theories have in principle existed for as long as theories have existed. The relatively new part
is that we have started to use them more actively. There has been a change of mindset in the
understanding and the use of effective theories in a more explicit way.

In this chapter, we will discuss different aspects of the approach, or notion, that we mean when
we talk about “effective theories”. Starting with a brief overview of the history of the approach.
Then continuing with a definition and description of different types of how effective theory
approaches are used. When these general defining aspects have been made clear, we look a bit
more closely to why and when it is beneficial to use the effective theory approach. There are
both advantages and disadvantages to using effective theories, which will both be discussed.
That will make clear which situations are most suitable for applying this approach and how
they strongly relate to the types of effective theories. The chapter will be concluded with a
brief discussion of some more philosophical reflections on the impact of effective theories on
scientific progress and reduction.

3.1 History

Effective theories have existed for as long as science has, however, we have only started to give
them a name relatively recently. This change arrived around the same time as the understand-
ing that finitely written theories are in principle never complete, and with the development
of renormalisation techniques, in the 1970s (Hartmann, 2001, pp. 2–3). James Wells describes,
in the preface of his book Effective Theories in Physics, the existence of two different, opposing
camps. On one side, the physicists who started working on effective theories who were “cele-
brating their ignorance”, and on the other side, the physicists who shared their belief in being
close to the ‘Theory of Everything’ (Wells, 2012, p. v).

The history of a specific kind of effective theories, the effective field theories, started with the
reconceptualisation of renormalisation. Stephan Hartmann describes that while many effective
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field theories were previously were seen as problematic due to the divergences at higher or-
ders in perturbation expansions, which blocked the road to obtaining finite results from those
theories. In the 1970s, however, the cut-off parameter in quantum field theories started to be in-
terpreted in a realistic way, opposed to its previous formalistic way. Together with the insights
of renormalisation group theory, this shift in interpretation relaxed the condition of renormali-
sation for theories and thus paved the way for acceptance of effective field theories (Hartmann,
2001, pp. 2–3).

The start of the introduction of effective theories in gravitational dynamics can be traced back
to the middle of the last century, when the Einstein field equations of General Relativity were
derived from the assumption of massless spin-2 particles in a flat background (Rothstein, 2014,
pp. 1–2). Pioneers in the development of these ideas were (Gupta, 1954), (Kraichnan, 1955), and
(Feynman, 1996). The non-geometric, quantum-based approach to General Relativity added
the benefit that the machinery developed for quantum field theory could be applied to grav-
ity. Together with the reconceptualisations and change in mindset in quantum field theory
research, this led to the first effective theory descriptions of systems governed by gravity, such
as the Schwarzschild solution generated by coupling the graviton to a point particle classi-
cal source (Duff, 1973). The work of Goldberger and Rothstein in (Goldberger and Rothstein,
2006a) and (Goldberger and Rothstein, 2006b) is often considered to be the first application of
the effective field theory approach to the gravitational binary inspiral problem (Porto, 2016,
p. 3).

Now, after getting more used to the concept of effective theory, the culture and language of
the approach have infiltrated all of physics (Wells, 2012, p. v). As we will see in the definition,
types, and motivation of effective theories, there is no way of doing physics, and science in
general, without effective theories. This also sheds more light on the comment about how
effective theories are not a new concept, it is just the evolution from a passive into an active
use of the approach that has changed and helped us further develop theories and methods in
physics.

3.2 Definition

The definition of an ‘effective theory’ is essentially just the combination of the definitions of
‘effective’ and ‘theory’. Wells sums it up as follows:

“Effective Theories” are theories because they can organise phenomena under an ef-
ficient set of principles, and they are effective because it is not impossibly complex
to compute outcomes. The only way a theory can be effective is if it is manifestly in-
complete. “Everything affects anything” is generally correct, but it saps confidence
in our ability to predict outcomes. Effective Theories modify this depressing maxim
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by pointing out that “most things are irrelevant for practical purposes. (Wells, 2012,
p. 1)

This description suggests that all theories that are not infinite are effective, and you can wonder
what the added value of the term ‘effective theory’ thus is. There are two important reasons
for the explicit emphasis that comes with the use of the term. The first concerns the historical
awareness, it is an important reminder that we have not always been convinced of the fact
that most theories are incomplete. It provides a good nuance for the belief that theories are
either correct or useless because it adds the option that theories are “correct enough for our
purposes in [a given] domain”. And the second reason for the use of the term ‘effective the-
ory’ has a more heuristic purpose, to refer to the new approach to theory development. This
approach acknowledges the theory’s incompleteness and domain of applicability. When the
domain of applicability is well known, the uncertainties of the theory can be parametrically
assessed (Wells, 2012, p. 1).

3.3 Types

Since the definition of effective theories is still broad and includes all finite theories, it is no
surprise that there are different types of effective theories to be distinguished. A specific type
that is often used is the group of ‘effective field theories’ which are effective theories used in
field theories. However, as we will later find by an example of an effective theory in part
III of this project, there are other effective approaches that are hard to classify. Therefore we
will consider a distinction between types of effective theories based on the relation between
the effective theory with another theory or other theories. This classification results in the
notions of ‘top-down’ and ‘bottom-up’ types of effective theories. In the top-down approach,
the higher-energy theory is understood, but for practical purposes, it is useful to have a simpler
theory for the lower energies. The bottom-up approach is used when the underlying more
fundamental theory is unknown, or when matching the theories turns out to be too difficult to
carry out (Stewart, 2013).

Roberto Emparan makes the same distinction but phrases it differently. According to him,
effective theories can be used either as “a scheme to systematically parametrize our ignorance
about short-distance dynamics”, or as “an approach to simplify the long-distance physics of a
known complex theory” (Emparan, 2020). These uses correspond to the bottom-up and top-
down approaches respectively.

3.4 Motivation

The motivation for using effective theories can already be recognised in the different ways in
which effective theories are used. However, in this section, we will state more explicitly what
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the disadvantages and advantages of the effective theory approach are. Doing so will also
provide a better understanding of the situations in which effective theories can be helpful.

The most important disadvantage to using an effective theory is that it does not provide the
underlying fundamental principles which govern the system. Therefore, before the effective
theory approach was accepted as a valuable tool in physics, theories that would have fit into
the effective theory mindset were dismissed based on their lack of logic and reasoning. We will
see an example of the dismissal of such a theory in the next chapter (Wells, 2011).

Another related disadvantage is that we might prefer a theoretical description that applies to
the largest range of scales (Porto, 2016, p. 1). The basis of this preference is that we believe that
all phenomena should be possible to be reduced to a set of universal laws, and having different
theories for different scales does not fit this belief. A compromise on this point is to have
different theories which can be shown to reduce to the same principles in their appropriate
limits, such as how the classical limit of quantum mechanics relates to the theory of classical
mechanics.

In return for giving up the more fundamental explanation and applicability to all scales in ef-
fective theories, we get some nice things back. The most important one is that effective theories
simplify the computations compared to most more fundamental theories (Porto, 2016, p. 2).
This advantage is directly related to the type of use of effective theories that simplifies a known
more fundamental theory.

The other important advantage of effective theories is related to the other type of their use,
the parametrization of our ignorance, which is the case where we do not know what the more
fundamental theory is. By using an effective theory, we can improve our understanding of
the limits of the known theory and quantitatively predict for which parameters and scales
we expect to require a new description of phenomena. This advantage will also be further
elaborated on in the case discussed in the next chapter (Wells, 2011).

3.5 Impact on theory development

The relatively new mindset of effective theories and its effect on how we see and do physics
ought to also affect the theory of science that describes theory development in physics. Al-
though this is a bit of a different project on its own, it is interesting to discuss some of these
considerations very briefly. Starting with two views on scientific progress described by Kuhn
and Feyerabend, which have one aspect in common: ‘incommensurability’. It is followed by
a discussion of the concept of ‘reduction’. As we will see, there are some trends in these two
stories that could be related to effective theories.

26



Chapter 3. Effective Theory Basics

3.5.1 Scientific progress

There is a very well-known theory of science described by Thomas Kuhn. He puts a lot of
emphasis on the revolutionary character of science. The revolutions as described by Kuhn are
characterised by replacing one theoretical structure with another theoretical structure, where
both structures are ‘incommensurable’ with each other (Chalmers, 1999, pp. 132, 142). ‘Incom-
mensurability’ typically means “to have no common measure” and is used by Kuhn “to char-
acterize the holistic nature of the changes that take place in a scientific revolution” (Oberheim
and Hoyningen-Huene, 2018).

In 1962, Kuhn published his book The structure of scientific revolutions (Kuhn, 1962) introducing
his theory about scientific progress in which sociological characteristics play an important role
(Chalmers, 1999, p. 133). In that same year, Paul Feyerabend first used the term ‘incommen-
surable’ in his article ‘Explanation, Reduction, and Empiricism’ (Feyerabend, 1962) by which
he meant that two incommensurable fundamental theories were conceptually incompatible
(Oberheim and Hoyningen-Huene, 2018). “The main concepts of one could neither be defined
based on the primitive descriptive terms of the other nor related to them via a correct empirical
statement” (Feyerabend, 1962, p. 74). As an example, Feyerabend claims that the concepts of
mass, length and time have a different meaning in Newtonian mechanics compared to those
same concepts in relativistic mechanics (Oberheim and Hoyningen-Huene, 2018).

Both authors include a certain discontinuous aspect of scientific progress, in which theories are
in some way incompatible. However, based on the development of physics of the past decades,
we might consider changing this view. Even though concepts are in some cases still different
in their meaning depending on the theory in which they occur, as the examples for Newtonian
and relativistic mechanics, more attention started to be paid to describing these differences.
The more detailed description of the relation between theories, indicated by a more precise
requirement of being able to reduce one theory to another, does not remove the conceptual
incompatibilities but does introduce a common measure to describe the theories. This can be
seen as related to the mindset that is also behind the use of effective theories as we will discuss
below.

3.5.2 Reduction

A term often used in describing the relationship between different (part of) theories is ‘reduc-
tion’. Despite its prevalent uses, it lacks a clear definition and is not used consistently. This is
already unmistakable from the between the philosophers’ convention and the physicists’ con-
vention of defining reduction. Typically when philosophers say that theory A can be reduced
to theory B, physicists will state exactly the opposite, thus that theory B can be reduced to the-
ory A (Crowther, 2018, p. 1441). Despite these ambiguities in the definition of the ’direction’ of
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reduction, there are also other ways in which it is hard to use the word ‘reduction’ without the
possibility of going into a discussion of what is precisely meant by the term.

Different types of reduction are defined to distinguish between different uses of the notion. To
give some examples, we first discuss the distinction described by William Wimsatt (Wimsatt,
1976) between ‘explanatory’ reduction and ‘successive’ reduction. The first is an inter-level
relation representing the relation between different levels of explanation rather than different
theories. An example of this type of reduction is the explanation of the behaviour of a gas in
terms of a could of colliding molecules. This is different from ‘successive’ reduction, which
is an intra-level relation common in mathematically expressed theories that are either on the
same level of composition or not level-specific. The reduction relation localises similarities and
differences between theories through mathematical transformations. This form of reduction
includes the example of special relativity reducing to classical mechanics in taking the limit
v
c → 0 (Wimsatt, 2006, pp. 450–451).

Another definition of types of reduction is described by Karen Crowther (Crowther, 2018) and
distinguishes ‘weak’ and ‘strong’ reduction. Weak reduction holds in the cases where the suc-
cessful results from one theory can be obtained, within an acceptable degree of error, in the
other theory. The strong conception of reduction requires that the successful parts of one the-
ory can be derived or deduced in principle from the other theory (Crowther, 2018, p. 1443).

In general, successive reduction and strong reduction are the stricter types of reduction and
are also the types of reduction that are often desired in contemporary physics. This fits the
view that “everything depends on everything else” that is also on the fundamental basis of
effective theories because the success of theories is often determined based on their ‘fit’ to other
successful theories. For example, candidates for a theory of quantum gravity have to satisfy
certain conditions in their relation to General Relativity and quantum field theory. Whether
these relations are relations of reduction, and what type of reduction is desired depends on the
research programme.
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Case: Mercury’s Perihelion Precession

In one of the chapters of his book, Effective Theories in Physics, James Wells describes an alterna-
tive history to the discovery of the perihelion precession of Mercury (Wells, 2012, Chapter 3).
This is a simple example of how a bottom-up approach of an effective theory could be used
to make new predictions. The author argues that the effective theory mindset could have pre-
dicted the perihelion precession, which is shown in figure 4.1, before it was discovered by
LeVerrier in 1845.

FIGURE 4.1: Every revolution the perihelion of Mercury’s orbit advances a little
bit. This effect, which is called the ‘precession of the perihelion’ is explained by

the theory of General Relativity (Magnan, 2007, p. 11).
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The theory under consideration is Newton’s law of gravity for a system of a test particle moving
in the gravitational field of another object with a much larger mass. We can assume that the
relative velocity between the two bodies is small relative to the speed of light, and therefore
neglect special relativistic effects. This system describes the orbit of Mercury around the Sun
and is described by the Lagrangian

L =
1

2
mv2

r +
α

r
(4.1)

in which m is the mass of a test particle orbiting a particle of mass M � m, and α = GMm

with G being Newton’s constant (Wells, 2012, p. 17).

Due to the rotational invariance of the system, we can express the equations of motion in polar
coordinates.

m(r̈ − rvφ) = − α
r2

(radial equation) (4.2)

m(2vrvφ + rφ̈) =
d

dt
(mr2vφ) = 0 (angular equation) (4.3)

The solution to the radial equation is given by a harmonic oscillator equation (r ≡ 1
u ):

u(φ) = u0 cosφ+
αm

l2
(4.4)

r(φ) =
ρ

1 + e cosφ
(4.5)

in which u0 is a constant determined by the initial conditions, ρ = l2

αm , and e = u0ρ is the
eccentricity. For our case we focus on 0 ≤ e < 1 corresponding to circular and elliptical orbits
(Wells, 2012, pp. 17–18).

This shows that Newton’s theory of gravity does not allow any advancement of the perihelion.
The minimum where du

dφ = 0 occurs for sinφ = 0 and therefore the successive perihelions start
at φ = 0, 2π, 4π, ... (Wells, 2012, p. 20). Therefore the situation shown in figure 4.1 does not
apply to the situation described by Newtonian gravity.

4.1 Symmetries

The symmetries of this system can be seen from considering some characteristics on the closest
and furthest points of the orbits, called the perigee and apogee respectively. At those points
the radius vector r̂, angular vector φ̂, and angular momentum vector L = r × p = mr2vφ

are perpendicular to each other. Since we also know that angular momentum and mr2vφ are
conserved, we can conclude that l = mr2vφ on all points of the orbit. This proves, among other
things, that the motion is in a plane (Wells, 2012, p. 17).
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The existence of an additional conserved vector can be derived by first taking the cross product
of dpdt with L:

dp

dt
×L =

mk

r3
[r × (r × vr)] =

mk

r3
[r(r · vr − r2vr]. (4.6)

Where dp
dt = r

r3
has been given by Newton’s second law, and Laplace’s identity was used.

Noting that

r · vr =
1

2

d

dt
(r · r) = rvr (4.7)

and using that L is constant, you can rewrite this into

d

dt
(p×L) =

d

dt

(
mkr

r

)
. (4.8)

This implies that there is a constant vector

A = p×L−mkr
r

(4.9)

which is called the Laplace-Runge-Lenz vector and its conservation implies the hidden sym-
metry in closed Kepler-orbits (Goldstein, Poole, and Safko, 2002, p. 103).

4.2 Effective potential

We can rewrite the description of this system into a one-dimensional Hamiltonian description
in which the orbit is considered from the perspective of the radial effective potential.

First expand vr into radial and angular coordinates, where you can take sin θ = 1 for the fixed
orbital plane. This gives

v2
r = v2

r + r2 sin2 θv2
φ + r2v2

θ = v2
r + r2v2

φ (4.10)

The Hamiltonan is then constructed from

H =
∑
i

vipi − L (4.11)

in which the factors pi are given by

pr =
∂L

∂vr
= mvr, and pφ =

∂L

∂vφ
= mr2vφ (4.12)

for the radial and angular momentum respectively (Wells, 2012, p. 19).

This implies

H =
1

2
mv2

r +
1

2
mr2v2

φ −
α

r
(4.13)
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where we can see that it is independent of the angle φ. Using one of Hamilton’s equations, we
thus can deduce that pφ is a conserved quantity

dpφ
dt

=
∂H

∂φ
= 0 (4.14)

This is another way to see that the angular momentum of the system is conserved because

l = pφ = mr2vφ (4.15)

Substituting this back into the Hamiltonian yields

H =
p2
r

2m
+ Veff (r), (4.16)

where

Veff (r) =
l2

2mr2
− α

r
(4.17)

in which the first term of the effective (radial) potential pushes the particle away, and the second
term attracts the particle to the origin (Wells, 2012, pp. 19–20).

4.3 Effective theory corrections

The symmetries in Newton’s theory of gravitation tell us that the effective theory must be in-
variant with respect to any transformation of rotation, spatial translation, and time translation,
together referred to as Galilean invariance. For Newton’s theory, introducing all terms consis-
tent with these symmetries gives

VET (r) =
GMm

r

[
1 +

∞∑
n=1

λn

(r0

r

)n]
+ ... (4.18)

where r0 is some dimensionful effective theory length scale and λn are dimensionless coeffi-
cients, which together with r0 can be found by performing precise experiments. There are an
infinite variety of other terms that could be added, including rj and vkr interactions, but we
streamline the argument by looking only at one class of corrections that decouple as r → ∞
(Wells, 2012, p. 29).

From this, we can deduce that any deviation from the pure inverse square law will lead to a
perihelion precession of planets. We also know that Newton’s law is approximately correct
and thus we should add terms that decouple as r � r0. Our expectation, based on the small
precession of Mercury, is that r0 should be much less than the orbital radius of Mercury around
the sun (Wells, 2012, p. 29).
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Following Wells, we will discuss the two first terms, with n = 1 and n = 2. First by considering
the new dynamics of the system, then by calculating the specific length scale of the term, and
then by showing how the term can be derived from General Relativity.

4.3.1 First correction, n = 1

The first correction term adds a 1
r2

-correction to the potential, this changes the Lagrangian into

L1 =
1

2
mv2

r +
α

r

(
1 +

R1

r

)
(4.19)

where R1 will be fixed later, it represents the new fundamental length scale, corresponding to
the cut-off scale of the effective theory. The solution to the radial equation of motion of this
theory is given by

u(φ) =

(
1

ρ− 2R1

)[
e cos

(
φ

√
1− 2R1

ρ

)
+ 1

]
(4.20)

where e = u0(ρ − 2R1). This time, calculating the minimum from du
dφ = 0, we find that the

successive perihelion shifts start at φ
√

1− 2R1
ρ = 0, 2π, 4π, .... Assuming that 2R1

ρ is small we
can thus derive that the ellipse now has a small perihelion advance given by (Wells, 2012,
pp. 20–21):

δ = 2π
R1

ρ
. (4.21)

When the perihelion advance is measured, you can use it to calculate the value for the length
scale R1. Or, when you have a theory for what the length scale is, you can make a prediction
for the perihelion advance in units of arc seconds per century. The relation between the length
scale and the perihelion advance is expressed by the relation (Wells, 2012, p. 22):

δ

Torbit
=

2πR1

ρTorbit
= (0.866 arcsec · century−1)

(
1 au
ρ

)(
years
Torbit

)(
R

1 km

)
”. (4.22)

The length scale R1 can be expressed as a multiple value of some invariants of the system:
R1 = λ1R, where R ≡ GM

c2
. Fitting the data clarifies that λ1 = 3, yielding a new theory of

gravity

L1 =
1

2
mv2

r +
GMm

r

(
1 + 3

GM/c2

r

)
(4.23)

This lagrangian looks “natural” given that there are no really big or really small numbers.
Furthermore, it provides the information that the “natural” next known threshold of speed is
the speed of light (Wells, 2012, p. 32).

A problem in this theory is that if ρ < 2R1 = 6GM
c2

, the orbits do not make sense anymore, as
the equations formally say r < 0 which is nonsensical. Since for the situation of orbits around
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the Sun this radius is only 9 km, which is below the radius of the Sun (7× 105 km), there is no
danger that some small object rotating around the sun would have no chance to be described
by this theory. Nevertheless, it is a bit uncomfortable because it means that you can imagine
a configuration in which this theory cannot provide a description (Wells, 2012, p. 33). The
limitation in the range of validity of the description is a fundamental characteristic of effective
theories, we will see and discuss this also in later chapters.

The effective theory including the first correction term has been discussed as a bottom-up type
of effective theory, without referring to a more fundamental theory. Even though the effective
theory is valid without relating it to the higher energy theory, we will now briefly discuss how
the same effective theory can be constructed in a top-down way, deriving it from the theory of
General Relativity. We start by looking at the Schwarzschild metric given by

ds2 =
(

1− rg
r

)
c2dt2 − dr2(

1− rg
r

) − r2
(
sin2 θdφ2 + dθ2

)
(4.24)

in which rg = 2GM
c2

is the gravitational radius of the Sun with G Newton’s constant and M the
mass of the Sun, and r, θ, and φ are spherical coordinates in their normal use (Landau et al.,
1971, p. 284).

We can plug this metric into the Hamilton-Jacobi equation,

gµν
∂S

∂xµ
∂S

∂xν
−m2c2 = 0, (4.25)

which gives

(
1− rg

r

)−1
(
∂S

c∂t

)2

−
(

1− rg
r

)(∂S
∂r

)2

− 1

r2

(
∂S

∂φ

)2

−m2cc = 0 (4.26)

applying the approximations r(r − rg) = r′2 and r − rg
2 ≈ r′, and expanding some terms in

powers of rgr′ , we can solve for Sr which yields

Sr′ =

∫ [(
2E′m+

E′2

c2

)
+

1

r′
(2m2MG+ 4E′mrg)−

1

r′2

(
l2 −

3m2c2r2
g

2

)] 1
2

dr′ (4.27)

in which E′ is the non-relativistic energy without the rest energy, M the mass of the Sun, m the
mass of Mercury, and l angular momentum (Landau et al., 1971, pp. 287–288).

The last term is proportional to G2M2/c2

r2
and thus is the first correction term that we found in

our effective theory.
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4.3.2 Second correction, n = 2

We can do the same for the second correction term, which adds a 1
r3

-correction to the potential

L2 =
1

2
mv2

r +
α

r

(
1 +

R2
2

r2

)
(4.28)

in which R2 is a new fundamental length scale. Because this theory is different from the one
with the first correction, we also have a different cut-off scale, meaning that R1 from the pre-
vious section is not equal to R2 and we need to determine the value of the new fundamental
length scale for this effective theory separately. The changed radial equation of motion can be
solved using perturbation theory. Treat the last term in the following equation as a small per-
turbation, then the solution to the unperturbed equation will be the standard Newtonian orbit
solution

d2u

dφ2
+ u =

αm

l2
(
1 + 3R2

2u
2
)

(4.29)

uN (φ) =
1

ρ
(1 + e cosφ) (4.30)

where e = u0ρ. Substitute u→ uN (φ) + δu into the differential equation and keep one order in
perturbation theory. Then solve for δu to obtain the complete solution

δu =
3

ρ3
R2

2

(
1 + eφ sinφ+

e2

3
cos 2φ+ e2 sin2 φ

)
(4.31)

Solving for δ in the perturbation expansion results in a perihelion advance of

δ = 6π
R2

2

ρ2
(4.32)

Yielding a value for the new length scale and a prediction for the perihelion advance:

δ

Torbit
=

6πR2
2

ρ2Torbit
= (1.74 arcsec · century−1)

(
R

107 meters

)2(1 au
ρ

)2(years
Torbit

)
(4.33)

(Wells, 2012, pp. 22–24).

This time, the value for R2 depends the planet for which you are considering the theory, it is
proportional to the angular momentum divided by the mass of the planet, Ri2 ∝

li
mi

. Where the
proportionality constant given by the inverse of the speed of light (Wells, 2012, p. 34).

This theory thus has the same fundamental speed threshold as the previous one, and the theory
is now given by

L2 =
1

2
mv2

r +
GMm

r

(
1 +

1

c2

l2/m2

r2

)
(4.34)
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Reflecting on this theory and noting that angular momentum is l ∼ mrv, where v is the velocity
of the planet orbiting the sun, the second term inside the parenthesis can be thought of as anm-
independent v

2

c2
correction to the Newtonian gravitational potential. As the speed of the planet

gets closer to the speed of light, Newton’s theory begins to crack. So far the basic assumptions
of spacetime, symmetries are not breaking down, just the simple form of Newton’s theory of
gravity (Wells, 2012, p. 34).

We can also derive this theory from the theory of General Relativity. Starting from the trajectory
of a particle subject to a central, radially symmetric gravitating source in General Relativity, we
use the Schwarzschild metric. The Schwarzschild metric is unperturbed by making shifts in
the time direction and by making shifts in the angular direction φ. These define Killing vectors
ξλtime = (1, 0, 0, 0) and ξλrot = (0, 0, 0, 1), which, when dotted into the four-velocity vector dxα

dτ ,
the result must be constant along the geodesic motion:

ξλ
dxλ
dτ

= gαβξ
αdx

β

dτ
= constant (4.35)

Applied to the Schwarzschild metric, this gives:

gαβξ
α
time

dxβ

dτ
= η(r)

dt

dτ
= c1 (4.36)

gαβξ
α
rot

dxβ

dτ
= r2 sin2 θ

dφ

dτ
= c2, (4.37)

in which η(r) ≡ 1− rg
r is the Schwarzschild factor. We know that the independence of time im-

plies conservation of energy, and the independence of rotation implies conservation of angular
momentum. Thus, c1 is some function of energy, and c2 is some function of angular momentum
(Wells, 2012, pp. 37–38).

Solve for dt
dτ = c1

η(r) and dφ
dτ = c2

r2 sin2 θ
. Simplify by taking the orbit in the θ = π

2 plane. Note
that conservation laws have given us this, and this is where deep physics lies. Expand out the
defining equation for the four-velocity, substitute values for the Killing equations, and doing
some algebra and rewriting with some substitutions, we find:

E =
1

2
m

(
dr

dt

)2

+
l2

2mr2
− GMm

r

(
1 +

l2/m2c2

r2

)
(4.38)

This is the energy equation for a particle in Newtonian gravity except for the small shift in the
effective potential

∆Veff (r) = −GMm

r

(
l2/m2c2

r2

)
(4.39)

which is the same correction to Newton’s theory as we derived for the second correction term
of the effective theory (Wells, 2012, pp. 38–39).
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Discussion of Part I

In this part, we have seen how ‘effective theories’ are really about a certain mindset. It is a broad
category of theories but what they all have in common is that they provide a comprehensive
manner to organise phenomena under an efficient set of principles. The difference with non-
effective theories is that effective theories do not aim to generate descriptions that include all
details and interactions, instead, they focus on the practical purposes of the theory. These
practical purposes should then be restricted to a certain domain or region on which the effective
theory is defined.

The concept of effective theories is not new in itself, but the awareness and mindful application
of them is. Therefore, the use of the term ‘effective theory’ serves as a reminder of the shift
in mindset that occurred around the 1970s which made the use of effective theories more ac-
ceptable, and it serves as a new heuristic approach to exploring new phenomena and testing
theories on a specified domain.

The two main types in which effective theories are used are referred to as ‘top-down’ and
‘bottom-up’, corresponding to simplifying a known theory for use on the long-range and parametriz-
ing the ignorance of short-range dynamics respectively. Therefore, the use and type of an ef-
fective theory are significantly determined by its relation to other known theories.

In an effective theory, one has to compromise on the fundamental descriptions and the range of
applicability. But simplified computations and describing systems for which the fundamental
descriptions are not available are two important qualities that compensate for those disadvan-
tages.

Even though the discussion about the relationship between effective theories and the devel-
opment of physics that was provided here is nowhere near complete, some trends are can be
identified and reflected upon in the development in physics of the past decades. Depending
on your exact definitions of concepts involved, the relatively recent revolutions in physics are
less characterised by the incommensurability of different theories compared to scientific revo-
lutions from centuries ago on which many theories of science are based. Nowadays, physicists
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are interested in quantifying the differences between theories by writing them in terms of ef-
fective theories, thus overcoming, or at least describing the incompatibilities between theories.
Furthermore, there is a shift towards requiring more strict types of reduction between theories,
fuelled by an understanding of how theories in different ranges of validity can be connected.
More often than in the past, instead of rejecting a theory in favour of a more successful theory,
physicists aim to describe the domain on which the theory can make accurate predictions.

The case that was studied in this part, about the perihelion precession of Mercury, showed
that there are multiple ways to derive the effective theory predicting the phenomenon. The
difference between the different effective theories is due to different corrections to Newton’s
gravity law. We have seen that both the first and second correction terms can reproduce the
correct predictions and they can both be derived from the theory of General Relativity. The
two theories based on the different correction terms are not equivalent though. They yield
equivalent results for this problem as all approximations and computations of the coupling
terms have been carried out with the sole purpose of finding perihelion precession. In the end,
the precession rate angle per orbit period from either correction is the same:

δ =
6πGM/c2

a(1− e2)
(5.1)

Algebraically, the orbital identity l2 = GMm2a(1−e2) is what guarantees that the two solutions
predict the same anomalous perihelion precession rate (Wells, 2012, p. 39).

An important point that Wells puts forward, is that the understanding of the concept of effec-
tive theories could have lead to an earlier discovery of the anomalous perihelion precession of
Mercury. And even after the measured advancement of the perihelion, a lot of theories were
dismissed because they did not provide a fundamental explanation but only gave a description
of the phenomena. These theories were rejected at the time, while they were accurate effective
theories (Wells, 2012, p. 35). This case, therefore, supports the argument made in the effec-
tive theory chapter that an understanding of effective theories can lead to new predictions and
possibly the discovery of new physics.
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Effective Field Theory Approach
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Chapter 6

Effective Field Theory Basics

In section 2.4.2, we saw that in order to detect a gravitational wave, given the noise that the
detectors deal with, a suitable template for the signal is required. The sensitivity of current and
planned gravitational wave detectors is highest for inspiralling compact binaries containing
neutron stars and/or black holes. A useful characteristic of such systems is that the orbit of
the objects can be considered to be circular after the gradual inspiral because the gravitational
radiation reaction forces are responsible for a rapid decrease towards zero of the eccentricity
(Peters and Mathews, 1963). Therefore, only non-isolated systems will have a non-negligible
eccentricity (Blanchet, 2016, p. 12).

Furthermore, in the first approximation, the objects in the system can be considered to be struc-
tureless. This means that, for example, their magnetic properties and internal structure can
be neglected, and only their masses and spins need to be taken into account (Blanchet, 2016,
pp. 12–13).

One of the requirements for using an effective field theory (EFT) is that there is a separation of
scales. The dynamics of the binary problem can be separated into the following zones (Porto,
2016, p. 25), which are also depicted in figure 6.1:

• Internal zone: the scale of finite-size effects. For compact neutron stars or black holes we
have Rs ' 2GNm;

• Near (or potential) zone: the intermediate region, or orbit scale, given by the typical
separation between the objects of the binary, r;

• Far (or radiation) zone: the scale of (gravitational) waves emitted with a typical wave-
length λrad ∼ r/v.

The hierarchy among these scales can be justified by looking at the virial theorem given by

v2 ' GM

r
, (6.1)
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which is equivalent on circular orbits to Kepler’s law

ω2 ' GM

r3
. (6.2)

These expressions are exact at the Newtonian level, but not in General Relativity. For the hier-
archy of scales this results in Rs < r ∼ Rs

v2
< λ ∼ r

v , where for the gravitational wave-length
the relation v = ωr was used (Sturani, 2014, pp. 8–9).

FIGURE 6.1: Schematic description of an inspiralling compact binary where the
relevant length scales are shown (Cannella, 2011, p. 48).

After discussing more the different types of approximations, which are together collected un-
der the term ‘post-Newtonian’ approximations, we will continue by setting up an introduction
to the systematic effective field theory approach. The first situation in which we will do this is
an effective scalar field theory. Then we apply the same approach to a vector-theory, Maxwell’s
electromagnetism, to then get to the gravitational situation with all of its extra challenges and
complications.

6.1 Post-Newtonian approach

To define and keep track of the order of approximations, we talk about the “post-Newtonian”
(PN) orders of approximation. This is an expansion in 1/c2 which means that 0PN order corre-
sponds to O(

(
1
c2

)0
), 1PN order corresponds to O(

(
1
c2

)1
), and so forth. The expansion does not

have to be explicitly around a parameter containing 1/c2, because expansions in other param-
eters can also result in post-Newtonian terms.

There are several different approximations connected to corresponding expansion parameters
that can be used to determine the terms in the post-Newtonian expansion of General Relativity.
The most used ones are the following (Blanchet, 2016, p. 5):

• Post-Newtonian method is a non-linear expansion in 1/c, with c the speed of light. The
post-Newtonian expansion is therefore both the encompassing scheme in which expan-
sions in different parameters are ordered, as well as an expansion in a parameter, 1/c,
itself.

• Post-Minkowskian method is a non-linear expansion in the Newtonian constant, G.

• Multipole decomposition is an expansion in the source radius.
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• Far-zone expansion is an expansion in 1/R, with R the radial separation between the
objects.

• Perturbation in the small mass limit is an expansion in the mass ratio, ν, of a binary
system.

Since the orbital and wave frequencies of the gravitational binary system vary quicker towards
the later stages of the merger, the assumption of slow variation is violated. To handle the time-
varying frequency, the cos(2ω(t)t) factor in the interferometer signal h(t) can be replaced with
cos(2Φ(t)), where

Φ(t) = 2

∫ t

ti

ω(t′)dt′ (6.3)

is the integrated phase of the orbital motion, in which ω is the orbital angular velocity of the
individual binary component, and ti indicates the time at which the signal enters the detector’s
band-with (Hilborn, 2018, p. 36)(Sturani, 2014, pp. 7–8). The laser interferometer detectors dis-
cussed in section 2.4.2 are particularly sensitive to this factor in the gravitational wave signal.

To calculate this phase, we can consider two quantities: the energy E, and the radiated flux F .
They are related by the equation

dE

dt
= −F , (6.4)

and can both be expressed in terms of a single parameter, which is the relative velocity of the
binary system, v. The energy of a circular orbit can be expressed as

E(v) = −1

2

Gm1m2

r
(1 + c1PN (ν)v2 + c2PN (ν)v4 + · · · ), (6.5)

in which ν ≡ m1m2/M
2 is the symmetric mass ratio, with M ≡ m1 + m2 the total mass, and

cnPN (ν) the coefficients that stand for the corrections to the Newtonian case. Note that only
the even powers in v are involved in the conservative energy. The leading term of the radiated
flux F(v) is the Einstein quadrupole formula, and for circular orbits it is given by the following
expansion:

F(v) =
32ν2

5G
v10(1 + d1PN (ν)v2 + d1.5PN (ν)v3 + · · · ). (6.6)

Using the relation v = ωr together with the virial theorem v2 ' GM
r , we can use

ω ' 1

GM
v3 (6.7)

to rewrite the gravitational phase:

Φ(v) ' 2

GM

∫ v

vi

v3dE/dv

−F
dt =

5

16ν

∫ v

vi

1

v6
(1 + f1PNv

2 + f1.5PNv
3 + · · · )dv. (6.8)
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The precision of the detection of the phase is of order O(1), thus we need to consider the en-
ergy and radiation flux at least to O(v6), which corresponds to the third post-Newtonian order
(Sturani, 2014, p. 8) (Blanchet, 2016, p. 13).
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Case: Effective Scalar Field Theory

Building on the field theory formalism introduced in section 2.2.4, we can describe one of the
methods to expand the theory of General Relativity. The analysis will be restricted to scalar
fields in d = 4 spacetime dimensions. Initially, studying a linear static case, and later incorpo-
rating time-dependence and non-linearities. The methods have their origin in quantum field
theory, however, for the General Relativity context we do not need to take quantum effects into
account and therefore we will consider the classical limit of the quantum field theory methods
(Porto, 2016, p. 6).

Quantum field theory, in its path-integral representation, takes the action as the main actor of
the functional integral

Z[J ] ≡
∫
DφeiS[φ,J ]. (7.1)

The action is represented by S[φ, J ] and describes a set of fields, φ(x), coupled to external
sources, J(x). Classical objects with an action S[φ, J ] � 1 are subject to rapid oscillatory be-
haviour, in which case the path-integral is dominated by the saddle-point

Z[J ] ' eiS[φ=φJ ,J ]. (7.2)

Here, φJ(x) is defined by
δS[φ, J ]

δφ(x)

∣∣∣∣∣
φ→φJ

= 0, (7.3)

which minimizes the action (Porto, 2016, p. 6).

For simplicity, we define
W [J ] ≡ −i logZ[J ], (7.4)

for which we can take W [J ] → S[φJ , J ] in the classical limit. And we concentrate on a single
massless scalar field, with the action given by

S[φ, J ] =

∫
d4x

(
−1

2
φ(x)∂2φ(x)− V (φ) + J(x)φ(x)

)
. (7.5)
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For now, we can also remove self-interactions, by setting V (φ) = 0 (Porto, 2016, pp. 6–7).

With these choices in place, we can find a solution to the field equations 7.3:

φJ(x) = φJ=0(x) + i

∫
d4y∆F (x− y)J(y). (7.6)

In this expression, φJ=0(x) is a solution to the Klein-Gordon equation with J(x) = 0, and the
propagator, or Green’s function, ∆F (x− y) is given by

∆F (x− y) ≡
∫
p

∫
p0

i

p2
0 − p2 + iε

e−ip0(x0−y0)eip·(x−y). (7.7)

The inclusion of iε is known as Feynman’s prescription and is a choice of boundary condition.
This only matters when the momenta go ‘on-shell’ when p2

0 = p2 (Porto, 2016, p. 7).

With equation 7.6 as an expression for φJ(x), we can rewrite the action and find an expression
for the functional W [J ]:

S[φ = φJ , J ]→ i

2

∫
d4xd4yJ(x)∆F (x− y)J(y) = W [J ]. (7.8)

This expression has an important role in the development of our classical effective field theory
approach. However, it is only exact for scalar fields coupled to external sources and does not
include self-interactions (Porto, 2016, p. 7).

From the functional derivative, we can read off the propagator,

∆F (x− y) = −i δ2W [J ]

δJ(x)δJ(y)

∣∣∣∣∣
J=0

= (−i)2 δ2Z[J ]

δJ(x)δJ(y)

∣∣∣∣∣
J=0

, (7.9)

with normalization Z[0] = 1. This expression will be useful to set up the perturbative approach
and include non-linearities later (Porto, 2016, p. 7).

7.1 Binding potential

7.1.1 Static sources

We introduce a mass scale Mφ related to the strength of the coupling of φ and consider static
point-like sources described by

J(x) = J1(x) + J2(x) ≡ 1

Mφ

[
m1δ

3(x− x1) +m2δ
3(x− x2)

]
. (7.10)
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We can ignore the iε in the propagator for off-shell configurations, and write the expression
from equation 7.8 as

W [J ] =

(∫
dt

)
1

2

∫
d3xd3x′J(x)J(x′)

∫
p,p0

−1

p2
0 − p2

δ(p0)eip·(x−x
′). (7.11)

The factor δ(p0) comes from performing the integral
∫
dt′e−ip0(t−t′) = 2πδ(p0) for static sources

(Zee, 2010, pp. 27–28). Rewrite r ≡ x1 − x2 and use that∫
p

1

p2
e−ip·r =

1

4πr
, (7.12)

such that via

W [J ]→ −
∫ tout

tin

dtV [J ], (7.13)

it is possible to identify the binding potential V [J ] when taking tin → −∞ and tout → +∞.
This yields

W [J ] =

(∫
dt

)
m1m2

4πM2
φ

1

r
→ V [J ] = −m1m2

4πM2
φ

1

r
, (7.14)

where the Coulomb-like potential can be recognised. From products of the sources at the same
point, you can also find self-energy contributions given by∫

d3xd3yδ3(x− x1(t))∆F (x− y, t)δ3(y − x1(t)) = ∆F (0, t) ∝
∫
p

1

p2
. (7.15)

This integral is divergent and therefore it is necessary to introduce a UV cutoff. It can be shown
that the cutoff’s contribution can be absorbed into the mass coupling(s) of the sources. This
process is referred to as adding a ‘counter-term’. Instead, you can use dimensional regulariza-
tion, which sets the scale-less integrals to zero, and allows you to ignore these terms (Porto,
2016, p. 8).

7.1.2 Time-dependent sources

The static situation can be generalised to the case of time-dependent sources by taking for the
sources the expression

J(t,x) = J1(t,x) + J2(t,x) ≡ 1

Mφ

[
m1δ

3(x− x1) +m2δ
3(x− x2)

]
. (7.16)

For this situation the time integrals no longer lead to δ(p0), as they did in equation 7.11. And
hence we need to assume that the sources move slowly, which means that |va| ≡ |ẋa| � 1 for
both sources a = 1, 2. The off-shell Green’s function can be expanded in powers of p0

|p| , which
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due to the scaling (p0,p) ∼ (vr ,
1
r ) corresponds to an expansion in v:

1

p2
0 − p2

' − 1

p2

(
1 +

p2
0

p2
+ · · ·

)
. (7.17)

The static propagator and its expansion are shown in figure 7.1. The leading term in this ex-
pansion yields

W(0)[J ] =
m1m2

4πM2
φ

∫
dt

|r(t)|
, (7.18)

as we have also found in equation 7.14 (Porto, 2016, pp. 8–9).

FIGURE 7.1: Diagrammatic representation of the static propagator as a dashed
line, with p0 = 0, and correction factors of p20/p2 in subsequent diagrams, corre-

sponding to the expansion in equation 7.17 (Porto, 2016, p. 9).

Using the integral ∫
p

pipj

p4
eip·r(t) =

1

8πr3
(r2δij − rirj), (7.19)

the first correction can be written in the form

W(v2)[J ] =
m1m2

M2
φ

∫
dtdt′

∫
p,p0

p2
0

p4
e−ip0(t−t′)eip·(x1(t)−x2(t)) (7.20)

=
m1m2

M2
φ

∫
dtvi1(t)vj2(t)

∫
p

pipj

p4
eip·r(t) (7.21)

=
m1m2

M2
φ

∫
dtvi1(t)vj2(t)

1

8πr3
(r2δij − rirj). (7.22)

Then the following first-order potential can be identified (Porto, 2016, p. 9):

V(v2)[J ] =
m1m2

8πM2
φ

1

|r(t)|3
[
|r(t)|2(v1(t) · v2(t))− (v1(t) · r(t))(v2(t) · r(t))

]
. (7.23)

Higher-order corrections can be computed using the same approach. The validity of perform-
ing the Taylor series from equation 7.17 inside the integral depends on the method of regions[,
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which is explained in section ...] (Porto, 2016, p. 9).

7.1.3 Non-linearities

Adding self-interactions makes the field equations more difficult to solve in closed analytic
form, and this requires numerical methods or perturbative techniques. For this discussion,
we consider perturbative techniques applied to an example of a cubic potential, V (φ) = λφ3,
which leads to IR divergences for a massless field. The singular integrals can later be tamed by
introducing regulators, thus we can proceed by assuming that λ is small and writing the field
equations in the form

∂2φ(x) = J(x)− 3λφ2(x). (7.24)

With the ansatz
φJ(x) = φλ=0

J (x) + φλJ(x) + · · ·+ φλ
n

J (x) + · · · , (7.25)

inserted into equation 7.24, we can solve for φJ in powers of λ. When assuming static sources,
at first order in λ this gives

∂2φλJ(x) = Jλ(x), with Jλ(x) ≡ −3λ(φλ=0
J )2(x). (7.26)

Solving for φλJ by using the Green’s function as follows:

φφJ(x) = 3iλ

∫
d3yd3zd3w∆F (x− y)∆F (y − z)∆F (y −w)J(z)J(w). (7.27)

Then you can use ∫
q

1

q2(k + q)2
=

1

8|k|
, (7.28)

to write down the contributions from particle 1 in Fourier space (Porto, 2016, p. 10):

φλJ(k) = −3λ
m2

1

M2
φ

eik·x1

k2

∫
q

∫
q

1

q2(k + q)2
+ · · · = −3λ

m2
1

8M2
φ

eik·x1

|k|3
+ · · · . (7.29)

To compute W(λ)[J ] we use the expression from equation 7.8. Then, we plug the above expres-
sion for φλJ into the action from equation 7.5. We can see that the first term becomes

−1

2
φλJ∂

2φλ=0
J → −1

2
JφλJ , (7.30)
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based on the field equations in equation 7.24. Combined with the source term in equation 7.5,
JφλJ , and equation 7.13, we can compute the binding potential from W(λ)[J ].

W [J, V [J ] = 0]→
(∫

dt

)
S[φJ(x), J(x), V [J ] = 0] =

1

2
J(x)φλJ(x) (7.31)

V(λ)[J ] = −1

2

∫
d3xJ(x)φλJ(x) + · · · = 3λ

m2
1m2

64π2M3
φ

log(µr) + 1↔ 2 · · · . (7.32)

Where 1 ↔ 2 accounts for the contributions from particle 2, and µ is introduced as an IR
regulator and could be, for example, a scalar mass. The introduction of the regulator is desired
to be able to tame singular integrals. The logarithm in the potential is responsible for a long-
range force scaling as 1/r (Porto, 2016, p. 10).

The procedure can be continued to all orders in λ, and it can be extended to the case of non-
static sources like we have done in section 7.1.2. This will introduce some divergences. We
will discuss an example of such a divergence: the contribution given by the cubic potential in
the evaluation of the unperturbed solution, λ(φλ=0

J )3. The divergent integral produced by this
contribution represents the self-energy in the scalar field produced by a point-like object,

λ
m3

M3
φ

∫
d3x

1

|x1 − x|3
∝
∫
dr

r
= log(Λ/µ). (7.33)

Where Λ−1 is introduced as a short-distance cutoff. The dependence on this UV cutoff can
be absorbed into the couplings of the theory, while the IR singularities cancel out after long-
distance effects are properly incorporated (Porto, 2016, pp. 10–11).

7.1.4 Diagrammatic approach

A diagrammatic approach would help to simplify the collection of all possible contributions to
W [J ], and for this, we can use Wick’s theorem. This theorem helps to sum the different con-
tributions from combinations of field variables at different spacetime points. We will discuss
how this works based on a simple one-dimensional model described by

Z[J, λ] =

∫
dxe−

a
2
x2−λx3+Jx. (7.34)

The propagator for this case follows from expanding Z[J, λ = 0] to second order in J , and
evaluating at J = 0:

〈x2〉 =
1

Z0

δ2Z[J, λ = 0]

δJ2

∣∣∣∣∣
J=0

=

∫
dxx2e−

a
2
x2∫

dxe−
a
2
x2

= a−1, (7.35)
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where Z0 ≡ Z[J = 0, λ = 0]. Higher moments can then be obtained by further differentiating
with respect to J,

〈x2n〉 =

∫
dxx2ne−

a
2 x2∫

dxe−
a
2 x2

= a−n(2n− 1)!!, (7.36)

where each factor of 1
a is replaced by a propagator. These propagators are defined by the

‘time-ordering’ of the different Wick contractions of the field variables evaluated at different
spacetime points. This looks as follows for the two-point function, connecting two distinct
points:

〈T{φ(x1)φ(x2)}〉λ=0 ≡
∫
Dφφ(x1)φ(x2)eiS[φ,λ=0] = (−i)2 δ

2Z[J, λ = 0]

δJ(x1)δJ(x2)

∣∣∣∣∣
J=0

= ∆F (x1 − x2).

(7.37)
When the cubic interaction is turned on, that is for λ 6= 0, Z[J, λ], as given in equation 7.34,
needs to be expanded around the linear theory:

Z[J, λ] =
∑
n

1

n!

∂nZ[J, λ]

∂λn

∣∣∣∣∣
λ=0

λn =
∑
n

1

n!
λn〈(−x)3n〉(J,λ=0), (7.38)

in which Z[J, λ] was redefined as Z[J, λ]/Z0. The next step is expanding this expression in
powers of the source J , this yields

Z[J, λ] =
∑
n,l

1

n!

1

l!

∂n∂lZ[J, λ]

∂λn∂J l

∣∣∣∣∣
λ=0,J=0

J lλn =
∑
n,l

(−1)nJ lλn〈x3n+l〉(J=0,λ=0). (7.39)

Restoring the is for Minkowski space, we have

Z[J, λ] =
∑
n,l

(−1λ)n

n!

il

l!

∫
d4x1 · · · d4

l J(x1) · · · J(xl)×〈
T

{
φ(x1) · · ·φ(xl)

(∫
d4y1φ

3(y1) · · ·
∫
d4ynφ

3(yn)

)}〉
(J=0,λ=0)

. (7.40)

Where Wick’s theorem can be applied to every one of these moments of a Gaussian integral
(Porto, 2016, pp. 11–13).

We can now construct the diagrammatic approach. This consists of the following Feynman
rules, also represented in figure 7.2 (Porto, 2016, p. 13):

• Propagator: Include a factor of −i
p2 δ(t1− t2) for each dashed line connecting two points in

the diagram.

• Non-instantaneity: Replace the factor of δ(t1 − t2) by d2

dt1dt2
δ(t1 − t2) for one of the (two)

propagator(s) connected by a cross.
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• Point-like sources: Include a factor of i
∑

a=1,2
ma
Mφ

∫
dteip·xa(t), or i

∑
a=1,2

ma
Mφ

∫
dtδ(x −

xa(t)) in coordinate space, for each propagator ending in a source.

• Vertex: Include a factor of −iλ
∫
dt̃δ3

(∑i=3
i=1 pk

)
for each φ3-vertex. This guarantees con-

servation of momenta, with pi incoming.

FIGURE 7.2: These are the Feynman rules for the diagrammatic approach to Gen-
eral Relativity. The solid line represents a point-like external source which does
not propagate. The dashed lines represent the static propagators (Porto, 2016,

p. 13).

We start by constructing the diagrams for the linear theory for static sources, as was described
in section 7.1.1. We know the exact result of this theory, which was given in equation 7.11 and
can be written using propagators in the following form

W [J ] = −i logZ[J ] =

(∫
dt

)
1

2

∫
d3xd3x′J(x)(i∆F (x− x′))J(x′). (7.41)

The contributing diagrams for W [J ] are therefore only one-scalar diagrams, these are the tree-
level connected diagrams. From this result for W [J ], it is straightforward to see that the con-
tributing diagrams for Z[J ] are found by exponentiation of the result for W [J ]. The diagrams
contributing to Z[J ] are shown in figure 7.3 (Porto, 2016, p. 14).

FIGURE 7.3: (Porto, 2016, p. 14)

Diagrams with self-interactions only occur after adding the non-linear terms to the theory. Di-
agrams with loops do not occur since they are responsible for quantum effects, and we are
considering a classical field theory. The exclusion of self-interactions and loops makes sense
for the linear theory because only one-scalar exchanges contribute to Z[J ] when λ = 0.
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We can further consider the relation between Z[J ] and W [J ] by considering that

Z[J ] =
∞∑
n

(
i
~W [J ]

)n
n!

, (7.42)

which is the series expansion of the exponential. In the classical limit, we can see from equation
7.2 and Stirling’s approximation, eN ' NN+1/2

N ! for N � 1, that Z[J ] involves a large number of
terms, because

n ' N ≡ S[φJ ]/~� 1. (7.43)

The series ofN one-scalar exchanges can be interpreted as building blocks for the classical field
φJ(t,x). The typical momentum exchanged by each of these contributions is of order |q| ∼ ~

r

due to the quantum nature of the off-shell exchange particles. While the total momentum
transferred due to the force induced by the binding potential is given by

∆p ' N ~
r
' mv. (7.44)

Considering the fraction of linear momentum exchanged and the total momentum due to the
binding potential,

|q|
|∆p|

∼ ~
L
� 1, (7.45)

in which L = mvr is the angular momentum. We can see that this yields

S[φJ ] '
∫

∆pdx ' L� ~, (7.46)

which support an analogy with heavy particle effective field theories. Based on this analogy
you can argue that for the effective theory of gravity we can treat macroscopical objects as
non-propagating sources (Porto, 2016, pp. 14–15) (Goldberger and Rothstein, 2006a, p. 3).

7.2 Radiated power loss

In the discussion of the equations of motion and binding potential in the previous section, the
choice of boundary conditions is innocuous because it involves quasi-instantaneous modes,
where p0 � |p| applies. But when the theory allows the objects to move, they will accelerate
due to the binding forces and hence emit radiation. To derive the power of the scalar field
that is radiated, we can introduce retarded boundary conditions, in contrast to the Feynman
propagator used in the previous part. The iε-prescription is re-introduced here, because the
scalar field can only be emitted on-shell for p2

0 = p2 (Porto, 2016, p. 16).
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7.2.1 Retarded boundary conditions

The standard approach to compute the total radiated power of a system is by introducing the
retarded propagator given by

∆ret(x− y) =

∫
p

∫
p0

i

(p0 + iε)2 − p2
e−ip0(x0−y0)eip·(x−y) (7.47)

in momentum space. This propagator has, unlike the Feynman propagator, only poles in the
lower-half complex plane, thus enforcing the causal condition that is required. We can also
define the retarded propagator in coordinate space, then it is given by

i∆ret(x− y) =
1

2π
θ(x0 − y0)δ((x− y)µ(x− y)µ). (7.48)

The retarded propagator can be inserted into equation 7.6, which gives the solution to the field
equations that minimises the action. It becomes

φretJ (x) =
∑
a=1,2

ma

4πMφ

∫ x0

−∞
dt

1

|x− xa(t)|
δ(x0 − t− |x− xa(t)|) (7.49)

=
∑
a=1,2

ma

4πMφ

[
1

|x− xa(t)| − va(t) · (x− xa(t))

]
ret

, (7.50)

in which the conditions for the last expression are given by replacing t = x0 − R(t), where
R(t) ≡ x− xa(t) (Porto, 2016, pp. 16–17).

The derivatives of this expression are given by

∂iφ
ret
J (x) =

∑
a=1,2

ma

4πMφ

[
R̂− va

R2(1− va · R̂)2
+

R̂

(1− va · R̂)

(
v̇a ·R− va · R̂ + v2

a

R2(1− va · R̂)2

)]
ret

(7.51)

∂0φ
ret
J (x) =

∑
a=1,2

ma

4πMφ

[
v̇a ·R− va · R̂ + v2

a

R2(1− va · R̂)2

]
ret

, (7.52)

which can be used together with Noether’s theorem to compute the momentum density, P i(x) =

∂iφ(x)∂0φ(x). We will expand in small velocities, thus assuming |v| � 1, at leading order this
yields

R̂i · ∂iφretJ = ∂0φ
ret
J =

∑
a=1,2

ma

4πMφ

[
v̇a ·R
R2

]
ret

. (7.53)
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Giving a total radiated power loss at leading order given by (Porto, 2016, p. 17):

dPLO
dΩ

=
1

16π2M2
φ

∑
a6=b

mamb

(
v̇a · R̂

)(
v̇b · R̂

)
, (7.54)

PLO =
1

12πM2
φ

〈∑
a=1,2

mav̇a

 ·
∑
b=1,2

mbẍb

〉 =
(m1 +m2)2

12πM2
φ

〈a2
cm〉. (7.55)

Using the retarded boundary conditions is one way to compute the total radiated power loss.
However, another procedure that allows us to compute the radiated power uses the optical
theorem. In the next section, we will discuss this second procedure, as it will also be relevant
for the next two chapters.

7.2.2 Optical theorem

Before discussing the optical theorem, we have a brief look at the Feynman propagator in co-
ordinate space, given by

i∆F (x− y) = −i 1

(2π)2

1

(x− y)µ(x− y)µ + iε
. (7.56)

Using that

Im

{
1

x+ iε

}
= −πδ(x), (7.57)

we can write the real part of the Feynman propagator as

Re i∆F (x− y) =
1

4π
δ((x− y)µ(x− y)µ). (7.58)

This is a procedure to include the retarded boundary conditions such that the propagators sat-
isfy the causal conditions. In fact, with this procedure we have included (half of) both retarded
and advanced contributions (Porto, 2016, p. 17).

We can split the effective action in terms of the real and imaginary parts,

Z[J ] = eiW [J ] → e
i
∫ tout
tin

dtReE[J ] × e−
∫ tout
tin

dt ImE[J ]
, (7.59)

where we take tin and tout to be (infinitely) long times. Note that ReE[J ] accounts for the
binding energy as studied in the previous section. For the imaginary part we can consider

1

T
ImW [J ] = 〈ImE[J ]〉 → 1

2

∫
d2Γ

dEdΩ
dEdΩ, (7.60)
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where T = tout − tin → ∞, and dΓ the differential rate of radiation. Multiplying this by the
energy of the emitted (massless) scalars, and integrating over energy and solid angle, we find

P ≡
∫
dP =

∫
EdΓ =

∫
E

d2Γ

dΩdE
dEdΩ. (7.61)

The scalar field has to be taken on-shell here, and hence the iε-prescription is crucial (Porto,
2016, pp. 17–18).

The intuitive interpretation of the optical theorem is that the in-out boundary conditions rep-
resent a system that first emits radiation, and later absorbs that radiation again. The optical
theorem can be intuitively thought of as computing (twice) the imaginary part, which can be
represented as sending the radiation backwards in time. Figure 7.4 is a diagrammatic represen-
tation of this procedure (Porto, 2016, p. 19).

FIGURE 7.4: The optical theorem in an intuitive, diagrammatic representation.
The double lines are non-propagating constituents of the source which are sepa-

rated by a distance much shorter than the scale of radiation.

We can introduce a mixed Fourier space representation, with a source given by

J(t,p) ≡
∫
d3xJ(t,x)e−ip·x =

1

Mφ

∑
a

mae
−ip·xa(t). (7.62)

This expression can be used to consider the imaginary part of W [J ], defined in equation 7.8, by
also using equation 7.57:

ImW [J ] =
1

2

∫
dtdt′

∫
p0,p

1

2|p|
(δ(p0 − |p|) + δ(p0 + |p|))e−ip0(t−t′)J(t,p)J(t′,−p) (7.63)

=

∫
dtdt′

∫
p

1

2|p|
e−i|p|(t−t

′). (7.64)

Together with equation 7.60, this yields for the total radiated power that

d2P

d|p|dΩ
=

1

T

|p|2

16π3M2
φ

∣∣∣∣∣∣
∑
a=1,2

∫
dtamae

i|p|tae−ip·xa(ta)

∣∣∣∣∣∣
2

. (7.65)
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This can be expanded in powers of p · xa ∼ v:

P =
1

T

∫
p

1

2M2
φ

∣∣∣∣∣∣
∑
a=1,2

∫
dtamae

i|p|ta
(

1 + p · xa(ta) +
1

2
(p · xa(ta))2 + · · ·

)∣∣∣∣∣∣
2

= P(0)+P(1)+· · · .

(7.66)
The first term, P(0), vanishes, and for the next term we find (Porto, 2016, pp. 18–19):

P(1) =
1

T

∫
p

1

2M2
φ

∑
a6=b

∫
dtadtbmambe

i|p|(ta−tb)pipjxib(tb)x
j
a(ta) (7.67)

=
1

T

∫
p

1

2M2
φ

pipj

∑
b=1,2

mbx̃
i
b(|p|)

∑
a=1,2

max̃
j
a(−|p|)

 (7.68)

=
1

12πM2
φ

1

T

∫ ∞
0

d|p|
π
|p|4

∑
b=1,2

mbx̃
i
b(|p|)

∑
a=1,2

max̃
j
a(−|p|)

 (7.69)

=
1

12πM2
φ

〈∑
b=1,2

mbẍb(t)

 ·
∑
a=1,2

maẍa(t)

〉 . (7.70)

The expressions in equations 7.63 and 7.65 have the form of the square of an on-shell amplitude
(Porto, 2016, p. 19):

iA(p0 = |p|,p) = i
∑
a=1,2

ma

Mφ

∫
dtae

i|p|ta·xa(ta), (7.71)

P =
1

T

∫
p

1

2|p|
|p||A|2. (7.72)

7.2.3 Multipole expansion

The discussion in the previous subsection, without self-interactions, was able to provide an
exact result in equation 7.65. However, after adding the self-interactions of gravity, an analytic
result is no longer possible, and therefore we introduce a perturbative approach to the radiation
problem. This approach is based on the multipole expansion, similar to the one in electromag-
netism in which a combined system can be approximated by a single localized source with
a series of time-dependent multipole moments. The assumption for this approach is that the
typical wavelength of the radiation is much larger than the typical change of positions and
velocities in the system, thus λrad ∼ r/v � r. For such a system, we have an effective action
given by

Sradeff =
1

Mφ

∫
dt

(
J(0)(t)φ(t,xcm) + J i(1)(t)∂iφ(t,xcm) +

1

2
J ij(2)(t)∂i∂jφ(t,xcm) + · · ·

)
, (7.73)
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where xcm is the centre-of-mass of the bound state. The time-dependent couplings, J i1,··· ,in(n) , can
be computed by using a matching procedure. Starting with inserting the multipole expansion,

φ(t,x) = φ(t,xcm) + (x−xcm)i∂iφ(t,xcm) +
1

2
(x−xcm)i(x−xcm)j∂i∂jφ(t,xcm) + · · · , (7.74)

into the Jφ-interaction from the original action, as given in equation 7.5. For simplicity, we can
take xcm = 0, and then we can write∫

dtd3xJ(t,x)φ(t,x)→
∫
dt

{(∫
d3xJ(t,x)

)
φ(t, 0) +

(∫
d3xJ(t,x)xi

)
∂iφ(t, 0)

}
+ · · · .

(7.75)
The following multipole moments term can be read of:

J i1,··· ,in(n) (t) = Mφ

∫
d3xJ(t,x)xi1 · · ·xin . (7.76)

And in mixed Fourier space:

J(t,k) =

∫
d3xe−ik·xJ(t,x) =

∑
n

(−i)n

n!

(∫
d3xJ(t,x)xi · · ·xin

)
ki · · ·kin , (7.77)

where the coefficients in the expansion correspond to the J i1,··· ,in(n) (t)-factors in equation 7.76.
For example, the first two terms are:

J(0) = m1 +m2, (7.78)

J(1) = m1x1 +m2x2. (7.79)

The total radiated power loss can be computed in a similar way as in equation 7.71. For exam-
ple, the dipole term contributes as

iA(1)(p) = i
1

Mφ
p · J (1)(t), (7.80)

which gives the same power as was already calculated in equation 7.54 (Porto, 2016, p. 20):

P(1) =
1

T

1

M2
φ

〈∫
p
pipjJ i(1)(t)J

j
(1)

〉
=

1

12πM2
φ

〈
J̈ (1) · J̈ (1)

〉
(7.81)

=
1

12πM2
φ

〈∑
b=1,2

mbẍb(t)

 ·
∑
a=1,2

maẍa(t)

〉 =
(m1 +m2)2

12πM2
φ

〈a2
cm〉. (7.82)

This procedure can be continued to all orders, for which it is useful to decompose the multi-
poles into irreducible symmetric-trace-free (STF) parts. More details about this procedure are
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given in (Porto, 2016, p. 21). With the expression

J L(t) =
∑
k

(2l + 1)!!

(2l + 2k + 1)!!(2k)!!

∫
d3x∂2k

0 J(t,x)|x|2kxLSTF , (7.83)

in which L = (i1 · · · il) and l = 0, 1, 2, . . . corresponds to the order of the multipole expansion,
the flux to all orders can be computed:

iA(l)(p) = i
1

Mφ

(−1)l

l!
J LpL, (7.84)

P =
1

4πM2
φ

∑
l

1

l!(2l + 1)!!

〈(
dl+1J L(t)

dtl+1

)2
〉
. (7.85)

7.3 Method of regions

In the introduction of this chapter, the separation of scales for the binary problem in General
Relativity was discussed. Here we will briefly look at how this separation of scales is imple-
mented for the effective scalar theory we have just developed.

The conservative dynamics, described in terms of the binding potential above, can be seen as
independent from the radiation field when there are no non-linear contributions. The ‘method
of regions’ describes how these two aspects relate to each other. For the situation described
above, the scalar field can be decomposed into separate regions based on their length scale.
For slowly moving objects, v � c, the wavelength of the radiation is much longer than the
separation of the objects, λrad ∼ r/v � r. That means that we can create two non-overlapping
regions: one corresponding to the field mode representing the dynamics of potential forces,
and the other region corresponding to the field mode representing the radiation effects. The
scalar field can then be written as

φ(t,x) = Φ(t,x)︸ ︷︷ ︸
potential

+ φ̄(t,x)︸ ︷︷ ︸
radiation

. (7.86)

The scaling of the terms is as follows:

∂0Φ(t,x) ∼ v

c
Φ(t,x), (7.87)

∂iΦ(t,x) ∼ 1

r
Φ(t,x), (7.88)

∂µφ̄(t,x) ∼ v

c
φ̄(t,x). (7.89)

For a static source J there are only potential modes without a temporal component, thus de-
scribed by |p| ∼ 1/r. The dynamics of slowly moving sources is described by a deviation
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parameterized in powers of p0 ∼ v/r � c/r. As asymptotic states in the EFT, on-shell radia-
tion modes appear, with a typical momentum of order (p0,p) ∼ (v/r, v/r). In this region the
potential modes must be solved for, or in the language of particle physics: these modes need to
be ‘integrated out’ (Porto, 2016, pp. 21–22).

For the linear theory, this procedure is still relatively straightforward since the two regions
decouple and the binding energy and emitted power can be computed separately. However,
when non-linearities are added to the theory, the two regions get mixed, and terms like Φ2φ̄ and
φ̄2Φ might occur. This is what is called the ‘coupling’ of the potential modes and the radiation
modes (Porto, 2016, p. 22).
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Case: Effective Classical
Electrodynamics

After introducing the effective field theory approach in the previous chapter in a scalar theory,
we will now apply the approach to a system governed by Maxwell’s laws. The electromagnetic
binary system consists of two charged spheres subject to electromagnetic interactions. Where
the discussion in the previous chapter was quite technical and introduced a lot of field theory
language, this chapter will focus more on the physical interpretation of that language in the
context of the system under consideration. Compared to the effective field theory approach of
gravitational binaries, which will be discussed in the next chapter, this chapter will be limited
to a relatively simplified discussion. This means that we will ignore some complications such
as divergences, and radiation reaction effects in this chapter. Those are discussed in either the
previous or the next chapter, or both. This choice of simplification will serve the familiarity
with the fundamentals of the effective theory approach, before applying it to the gravitational
theory.

We will start the description of the system of two charged spheres by zooming in on the finite-
size effects, which occur at the scale of the sphere’s radii. Integrating out that scale gives a
theory with an effective action that can be described on the scale of the radial separation be-
tween the two objects. In the section about the binding potential of the system, the potential
field will be analysed and a diagrammatic description will generate Feynman diagrams to com-
pute the potential terms of the system. In the last section of this chapter, we will integrate out
the potential field such that the radiated power can be computed.
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8.1 Finite-size effects

In this section we consider a system consisting of two charged spheres. The starting point is
the point particle approximation. The action for a collection of point particles is given by

S =
∑
i=1,2

∫
dλi

mi

√
dxµi
dλi

dxiµ
dλi

+ ei
xµi
dλi

Aµ(xi(λi))

− ∫ d4x
1

4
FµνF

µν , (8.1)

where ei is the charge of particle i, and the world lines are parametrized in λi. To account for
the finite-size effects, which occur at the sphere’s radius scale, we need to add a term to this
action. The requirement is that the added term(s) respect the symmetries of the theory: gauge
invariance, Lorentz invariance, and world-line reparameterization invariance. Additionally, at
a large enough distance from the source, only Maxwell’s electrodynamics plays a role so the
added terms for finite effects at the source radius scale should vanish there. Constructing the
added terms from the vector potential Aµ, four-velocities of the world lines vµ, and higher
time derivatives of the world line xµ, we find that at leading order, the added terms of lowest
dimension are given by

SFS =

∫
dλ

(
C1√
v2
vµFµνvαF

αν + C2

√
v2FµνF

µν

)
, (8.2)

where C1 and C2 are coefficients to be fixed and must scale as 1/R3, where R is the radial
separation of the spheres, for dimensional reasons (Rothstein, 2016, pp. 3–4).

The finite-size effects could be caused by, for example, polarization or deformation due to an
external field, or structural deformations of the sphere(s). Whether these effects are classical or
quantum does not matter, only the strength of the effects will be recorded in the coefficients.
Note that we have assumed the time scale for the deformations to be short in comparison to
the external time scales, such as the period of the orbit (Rothstein, 2016, p. 4).

At this order, the system is still Gaussian and thus the path integral could be solved exactly
(Rothstein, 2016, p. 5). However, the goal is to study how to solve non-Gaussian gravitational
systems and therefore we will also look at approximate rather than exact solutions of this sys-
tem.

8.2 Binding potential

Now we consider the action for sources coupled to the electromagnetic field:

S =

∫
d4x

(
−1

4
FµνF

µν − 1

2
(∂µA

µ)2 + JµA
µ

)
, (8.3)
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in which the second term accounts for the Feynman gauge, and the current from two particles
traversing the worldlines xµ1 (τ) and xµ2 (τ) is given by (Rothstein, 2016, pp. 6, 13):

Jµ(x) = e1

∫
dτvµ1 (τ)δ(4)(x− x1(τ)) + e2

∫
dτvµ2 (τ)δ(4)(x− x2(τ)). (8.4)

Ignoring the finite-size corrections for a moment, we separate the scales of the potential modes
and the radiation modes. We can then write the gauge field as

Aµ(x) = Aµ︸︷︷︸
potential field

+ Āµ︸︷︷︸
radiation field

. (8.5)

The goal here is to make sure that there is no overlap between these fields, which is naturally
satisfied. The underlying idea of this approach is based on the potential part being “off-shell”,
i.e. kµkµ ∼ 1/r2 > 0, thus existing only on a very short time scale compared to the on-shell
radiation field. One can think of this as the potential field fluctuating on a (relatively) static
background radiation field. The next step then is to “integrate out” the potential field, leaving
an effective action for the background radiation field. We have already seen the method of
integrating out in the previous section because the classical limit of this process corresponds
to performing the saddle point approximation. For this system the approximation looks as
follows:

Z[J ] =

∫
DĀDAeiS(Ā,A,J) =

∫
DĀeiSeff (Ā,J), (8.6)

in which Seff is the effective action (Rothstein, 2016, pp. 16–17).

Before integrating out the potential field, we should consider the gauge invariance of the the-
ory. In the background field formalism, it is possible to choose distinct gauges for Ā and A.
The preferred gauge within this formalism is automatically incorporated in the process of in-
tegrating out the potential field and constructing the effective action for the radiation field Ā.
The gauge fixing term for A is then fixed by covariantizing the typical gauge fixing term with
respect to the background field. For a linear theory, such as we are considering now, this is not
a problem since the gauge field does not transform under the gauge symmetry. However, for a
non-linear theory such as General Relativity, the gauge fixing term will shift the action and can
generate a non-gauge invariant effective action Seff (Rothstein, 2016, p. 17).

Starting from the full action in which the source terms are included and the finite-size effects
are neglected:

S = −
∑
i

∫
midτi −

1

4

∫
d4xFµνF

µν − 1

2

∫
d4x(∂µA

µ)2 +
∑
i

∫
eivµ(xi)A

µ(xi)dτi. (8.7)
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Using the partial Fourier transform,

Aµ(t,x) =

∫
[d3k]eik·xAkµ(t) ≡

∫
k
eik·xAkµ(t), (8.8)

and substituting the mode decomposition from equation 8.5 into the full action:

S =
1

2

∫
d4x(Āµ�Ā

µ)︸ ︷︷ ︸
potential photon

+
1

2

∫
dt

∫
k
(k2Aµ

kA−kµ + ∂0A
µ
k∂0A

µ
−k)︸ ︷︷ ︸

corrections to instantaneity

+
∑
i

∫
ei
dxµi
dti

(ti)

(
Āµ(xi) +

∫
k
eik·xi(ti)Akµ(ti)

)
dti︸ ︷︷ ︸

interactions of the source with a photon

. (8.9)

The terms describing the kinetic energy of the point particles, and terms linear in the fluctuating
field Akµ(ti) do not play a role in the next steps so these have been omitted (Rothstein, 2016,
pp. 17–18).

Now we can analyse the scaling in v of each term in the effective action 8.9. The reference for
the scaling of the fields is the kinetic term for the photon, which must be leading order to have
a sensible perturbative expansion. The scaling of the fields is then as follows (Rothstein, 2016,
pp. 18–19):

• Radiation field: Consider the term
∫
d4x(Āµ�Āµ), in which� ∼ v2/r2, and the spatial in-

tegration generates a momentum conserving delta function ∼ r4/v4. This gives a scaling
of the radiation field of Āµ ∼ v/r.

• Potential field: We consider the term
∫
dt
∫
k k

2Aµ
kA−kµ in which we have dt ∼ r

v , and
k ∼ 1

r , which gives A2
kµ(t) ∼ v

r r
3r2. Thus the potential field scales as Akµ(t) ∼ v1/2r2.

8.2.1 Diagrammatic approach

Inverting the term quadratic in the potential photon field gives the propagator,

〈Akµ(t1)Aqν(t2)〉 = (2π)3δ(t1 − t2)δ3(k + q)
igµν

k2 . (8.10)

That the propagator does not depend on the energy means that its Fourier transform is propor-
tional to δ(t) and is thus instantaneous. The absence of an energy pole in this propagator also
eliminates the possibility of overlap with the radiation field, for which k0 ∼ |k|. Corrections
to this instantaneity come from the temporal derivative terms, which are being suppressed by
a factor v2. The leading order interaction involves a temporal potential photon and generates
the Coulomb potential. The coupling to non-temporal photons is suppressed by v (Rothstein,
2016, p. 19).
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This is an example of what is called ‘power counting’ in effective field theory language. It is a
generalized version of dimensional analysis in which you consider the scaling of each element
in the terms of the action to determine the order at which the terms contribute to the theory
(Cannella, 2011, p. 49). This allows us to integrate out the potential modes, which will eliminate
the scale 1/r from the theory. The result will be a one body theory, since at the next scale, v/r, it
is no longer possible to distinguish the two objects in the binary. At this next scale, the theory
will couple to the radiation field. The approximate solution to the theory can be constructed by
considering the Feynman diagrams order by order. We have already found the potential photon
propagator, so now we extract the Feynman rules for two types of vertices from expanding the
interaction term in the effective action:∑

i

∫
ei
dxµi
dti

(ti)

(∫
k
eik·xi(ti)Akµ(ti)

)
dti ≈

∑
i

ei

(∫
k
eik·xi(ti)(Ak0(ti)− vaAka(ti))

)
dti.

(8.11)
In this expansion, it is possible to recognise a leading-order coupling to the temporal photon,
and an order v vertex coupling to the spatial photon (Rothstein, 2016, pp. 19–20).

FIGURE 8.1: Feynman rules for the interaction of the source with a photon:
(a) leading order in v, (b) O(v) interaction. Omitted are the explicit factors of∫
k
eik·xi(ti) associated with the potential Ak at the vertex coupling to worldlines

xi(ti) (Rothstein, 2016, p. 20).

The last term, and last Feynman rule, we need to consider for this theory is coming from the
term describing the corrections to instantaneity in equation 8.9. The leading order propagator
for this term is given by

〈Akµ(t1)Ak′ν(t2)〉 = i(2π)3gµνδ
3(k − k′)

d

dt1

d

dt2
δ(t1 − t2)

1

k4 , (8.12)

and depicted in figure 8.2 (Rothstein, 2016, p. 20).

FIGURE 8.2: The box corresponds to the first correction to instantaneity. It can be
thought of as the corrected propagator. Higher-order corrections to instantaneity,

i.e. with n insertions of the box go as∼ 1
(k2

i )
n

(
d
dt1

d
dt2

)n
δ(t1−t2) (Rothstein, 2016,

p. 20).
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Now that all the Feynman rules for this theory have been derived, we can see that only three
diagrams can be constructed up to order v2, they are depicted in figure 8.3.

FIGURE 8.3: Feynman diagrams generating the potentials up to order v2: (a)
leading order Coulomb potential, (b) instantaneity correction, and (c) velocity

dependent vertex correction (Rothstein, 2016, p. 21).

8.2.2 Calculating the potentials

The potentials for these first three diagrams can be calculated from the Feynman rules and the
contributing diagrams. Doing this for diagram (a) in figure 8.3 results in the Coulomb potential
(Rothstein, 2016, pp. 14, 20–22):

VC =
e1e2

4π|x1 − x2|
. (8.13)

And the first relativistic correction is calculated from both diagrams (b) and (c) in figure 8.3,
which results in the potential (Rothstein, 2016, p. 14):

V1PC = −e1e2

8πr

(
v1 · v2 + v1 ·

x1 − x2

|x1 − x2|
v2 ·

x1 − x2

|x1 − x2|

)
. (8.14)

8.3 Radiated power loss

After integrating out the potential field, the effective Lagrangian has the form

L =
∑
i

Vi + Lrad(Ā(x)), (8.15)

where we have dropped the kinetic terms which do not play a role in this part. However, not all
contributions of 1/r order have been eliminated yet, because there are still couplings between
the potential and the worldlines at this scale. In order to remove these couplings, we have to
apply the multipole expansion. We first consider the coupling of the radiation photon, which
can be expanded as follows in the centre-of-mass frame:∑

i

eiv
i
νA

ν(xi) =
∑
i

ei(v
i
νA

ν(t, 0)− viν(xi · ∂)Aν(t, 0) + · · · ) (8.16)

=QA0(t, 0) + p ·E(t, 0) + · · · (8.17)
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Q represents the total charge, and p is the net dipole moment. The first order in v gives the
electric dipole, and including higher orders in v would generate the magnetic dipole and elec-
tric quadrupole, etc. In this expansion the scale 1/r has been completely eliminated and the
multipole moments belong to the composite object (Rothstein, 2016, pp. 22–23).

8.3.1 Diagrammatic approach

To calculate the power loss we consider the leading order diagram depicted in figure 8.4. Even
though the diagram represents the situation in which the emitted graviton is re-absorbed by the
system, it can be used to compute the radiated power via the optical theorem that we discussed
in section 7.2.2. Instead of deriving the Feynman rules for this diagram, we can also calculate
the contribution from the diagram by first identifying the Wick contraction from which the dia-
gram arises, then calculating the diagram’s amplitude, and performing the integral (Rothstein,
2016, p. 23).

FIGURE 8.4: Feynman diagram responsible for the leading order power loss
(Rothstein, 2016, p. 23).

The only possible Wick contraction in the dipole interaction is given by

−1

2

∫
dt1dt2pi(t1)pj(t2)〈T{∂iA0(t1, 0)∂jA0(t2, 0) + ∂0Ai(t1, 0)∂0Aj(t2, 0)}〉. (8.18)

Where we can use the usual radiation photon propagator in the Feynman gauge:∫
[d4x]eik·x〈T{Aµ(x)Aν(0)}〉 =

−igµν
k2 + iε

. (8.19)

And we have rotational invariance which gives

〈∂iA0(t1, 0)∂jA0(t2, 0)〉 = i
1

3

∫
[d4k]δijk

2

k2
e−ik0·(t1−t2). (8.20)
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Combining this gives the following amplitude:

iM =i
1

2

∫
dt1dt2

∫ [d4k]
(
−k2

3 + k2
0

)
k2 + iε

p(t1) · p(t2)e−ik0(t1−t2) (8.21)

=−
∫
dt1dt2

∫ [d3k]
(
−k2

3 + k2
)

4k
p(t1) · p(t2)e−ik(t1−t2), (8.22)

which yields

ImM =
1

6

∫
dt1dt2

∫
[d3k]|k|p(t1) · p(t2)e−i|k|(t1−t2). (8.23)

The last steps in calculating the dipole radiation consist of weighing this result by the energy,
and using that

Re ln(Z[J ]) = −ΓT

2
, (8.24)

where Γ is the width of the state, corresponding to a decay rate Γ−1, and T is the observation
time. The dipole radiation formula is then given by

〈P 〉 =
1

6πT

∫
dtp̈(t) · p̈(t), (8.25)

with
pi =

∑
i

eixi (8.26)

giving the dipole moment (Rothstein, 2016, pp. 9, 15, 23–24).
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Gravitational Binary Inspiral

FIGURE 9.1: Graphical representation of the step-like construction of a tower of
effective field theories for the binary problem in General Relativity. From top to
bottom, the characteristic values of the length scale l are: the size of the compact
object Rs, the orbital radius r, and the radiation wavelenght λ (Cannella, 2011,

p. 46).

The full effective theory approach for General Relativity includes a version of all the steps
described above for the scalar and electrodynamic theories, however, in the gravitational situ-
ation, there are some extra complications which we will discuss in this section. The complete
set of steps to take is as follows:

• Parameterization of ignorance. In this step the degrees of freedom at the source radius
scaleRs are dealt with. Some finite-size effects beyond the minimal coupling are included
in the point-particle action, which could be for extended objects for example tidal and
dissipative effects. When these effects vary on distances of order |k|−1, the finite-size
effects entering in the action are of power |k|Rs (Porto, 2016, p. 25).

• Conservative dynamics. These are the (off-shell) potential modes that we have also seen
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in the scalar field theory, which occur at the orbit scale. For small velocities, these interac-
tions can be treated as instantaneous, plus time derivatives yielding velocity corrections
as perturbations. The equations of motions can be extracted in this step from the binding
potential energy. The finite-size effects for compact objects scale as powers of Rs/r ' v2,
which can be seen from the virial theorem combined with the fact that the potential modes
vary on a scale |k| ' 1/r as probes for the internal structure of the objects (Porto, 2016,
p. 25).

• Radiated power. At the scale of radiation the multipole expansion comes in to describe
the point-like sources in the binary system. The multipole expansion for a binary inspiral
consists of a series of (l ≥ 2) multipole moments, (IL, JL), scaling as IL ∼ Mrl.The
expansion parameter is given by |k|r, with |k|−1 ∼ λrad. The multipoles are a function
of the dynamical variables from the two steps above, like positions, velocities, and spins.
And the changes in energy of the system and gravitational wave amplitude are expressed
in terms of derivatives of these multipoles (Porto, 2016, p. 26).

• Hereditary effects. From this step the non-linear contributions start to become more
prominent. The hereditary effects are included, which account for the interaction of the
emitted gravitational wave with the static potential, thus an interaction between the ef-
fects from the λrad- and the r-scale in figure 9.1. These interaction effects are also referred
to as the ‘tail effects’, and contribute to the radiated power loss. In this step, the time-
dependent contributions arising from non-linear self-interactions in the radiation field, a
memory effect, also contributes (Porto, 2016, p. 26).

• Radiation-reaction. This step accounts for the effect of the back-reaction of gravitational
waves on the motion of the binary system. It includes a non-linear coupling that causes
a subtle interplay between different regions/scales with both conservative and dissipa-
tive contributions. They are incorporated in the EFT framework by using appropriated
retarded Green’s functions (Porto, 2016, p. 26).

The first three steps have been described for the spin-0 and spin-1 fields already. We will briefly
discuss these in the spin-2 field, for the gravitational binary inspiral. The first step, the param-
eterization of ignorance, is similar to the process of taking the finite-size effects into account in
section 8.1, and we will call it the “worldline effective theory”. The steps concerning the conser-
vative dynamics and the radiated power are part of what is often referred to as “non-relativistic
General Relativity” and have been discussed in the contexts of both the scalar and Maxwell the-
ory. The last two steps, which take into account hereditary effects and radiation-reaction, have
not yet been discussed and will be introduced briefly at the end of this chapter.
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9.1 Worldline effective theory

9.1.1 Point-like source approximation

Similar to the procedure in the Maxwell case, we start by integrating out the finite-size effect
on the Rs scale. We start systematically doing this, by splitting the metric field as

gµν = ηµν +
hµν
MPl

. (9.1)

The cut-off scale, MPl here, is the Planck mass at which quantum gravity is expected. We can
ignore contributions from that scale since they are negligible in the classical regime of the binary
dynamics. The Planck mass relates to Newton’s constant according to the relation 1

M2
Pl

= 32πG

(Cannella, 2011, pp. 51–52). This shows that an expansion of the metric field in powers of 1
MPl

is equivalent to an expansion in powers of G, thus this process of integrating out the finite-
size effects of the compact objects of the binary at scale Rs is what we have referred to as the
post-Minkowskian expansion in section 6.1.

Inserting this expansion of the metric into the Einstein-Hilbert action that we saw in equation
2.33, which we can write as

SEH = −2M2
Pl

∫ √
g(x)R(x)d4x, (9.2)

we get the following expansion (Cannella, 2011, pp. 51–53):

SEH =

∫
d4x

[
(∂h)2 +

h(∂h)2

MPl
+
h2(∂h)2

M2
Pl

+ · · ·
]
. (9.3)

The first term corresponds to the free propagation of a graviton, and the higher-order terms
introduce gravitational self-interactions. Equation 9.3 can be solved iteratively in powers of
Rs
r � 1 to obtain an expression for hµν . In the effective theory, the limitRs → 0 is taken and the

effects from the scale r < Rs are incorporated in the boundary conditions. Each compact object,
which is in our case a black hole or a neutron star, can then be described as a localized source
(Porto, 2016, p. 27). The interaction of the gravitational field with a point particle is given by
the minimal coupling, in the expansion around the Minkowski space from equation 9.1 this is
given by

Spp = −m
∫ [(

ηµν +
hµν
MPl

)
dxµdxν

]1/2

= −m
∫
dτ̄

√
1 +

hµνvµvν

MPl
(9.4)

= −m
∫
dτ̄ − m

2MPl

∫
dτ̄hµνv

µvν − m

8M2
Pl

∫
dτ̄(hµνv

µvν)2 + · · · , (9.5)

where dτ̄2 = ηµνdx
µdxν and vµ ≡ dxµ/dτ . We can consider these point-like matter sources
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to be static, because they have a three momentum p ∼ mv with v the orbital velocity, while
the gravitons will have an approximate three-momentum of k ∼ ~. Thus, the recoil of the
macroscopic object in our point-particle description due to the graviton is negligible and we can
consider the compact objects of the binary systems as static sources of gravitons. The Feynman
representations corresponding to the vertices in equation 9.5 are presented in figure 9.2. In the
diagrams, the continuous lines represent the compact objects, the arrows describe the flow of
time of the particle worldlines, and each curly line represents a factor hµνvµvν .

FIGURE 9.2: Diagrammatic representation of the terms in equation 9.5 that rep-
resent the interaction between a static point-particle source and (a) graviton(s)

(Cannella, 2011, p. 54).

Another way of writing the action terms from equation 9.4 is in terms of the stress-energy
tensor for a point particle, Tµνpp , given by

Tµνpp (x) = m

∫
dσ
uµuν√
u2

δ4(x− x(σ))√
g(x)

+ · · · , (9.6)

where at higher-order gravitational non-linear effects will show up. The terms of the action
that describe the coupling between the point-particle and the gravitational field are then given
by

− 1

2MPl

∫
d4xTµνpp (x)hµν(x)→ − m

2MPl

∫
dth00(t, 0) + · · · , (9.7)

where, for the moment, we only have retained the h00-polarization, and we can take the static
limit and evaluate the expression at the origin to compute the metric for an isolated object. This
point-like approximation leads to divergences due to the non-linear structure of the field equa-
tions. These can be removed by counter-terms proportional to higher-order derivatives of the
metric. At the same time, these counter-terms will be the terms in which the finite-size effects
of the objects are incorporated (Porto, 2016, p. 27). However, Birkhoff’s theorem shows that as
long as the spherical symmetry of a mass distribution is maintained, the Schwarzschild metric
is a solution despite possible time variations in the mass distribution (Johansen and Ravndal,
2006, p. 538). As a consequence, the counter-terms and the non-linear worldline couplings do
not contribute to the computation of the classical one-point function.
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9.1.2 Gauge fixing

To get rid of redundant degrees of freedom due to the coordinate invariance discussed in sec-
tion 2.2.1, we need to add a gauge fixing term to the action. An example of a suitable gauge is
the harmonic gauge, Γµ = 0, with

Γµ = ∂αh
α
µ −

1

2
∂µh

α
α. (9.8)

At the action-level this means that we have to add the term

SGF =

∫
d4xΓµΓµ. (9.9)

As a result, there is a unique solution to the Feynman propagator given by:

∆Fαβµν = Pαβµν∆F (t− t′,x− x′), (9.10)

in which ∆F is the Feynman propagator that was defined in equation 7.7, and

Pαβµν =
1

2
(ηαµηνβ + ηανηµβ − ηαβηµν). (9.11)

is responsible for the tensorial structure necessary to compute the contributions from the dia-
grams later (Porto, 2016, p. 28).

9.1.3 Non-linearities

At this point, we add the non-linearities as we have also done in section 7.1.3 for the scalar
situation. These occur for the gravitational situation at higher orders in G, coming from both
the Einstein-Hilbert action and the coupling to the source. The worldline non-linearities in
equation 9.6 do not contribute to the metric of an isolated object at the classical level. These
will only be important later on in the binary problem, so we can keep using equation 9.7 for
now. What is different from the scalar situation, is that the non-linearities in General Relativity
involve derivatives, as can be seen in equation 9.3. These derivatives add extra factors of k2

to the vertices, improving the situation for the IR divergences, but worsening the UV problem
(Porto, 2016, p. 28).

To incorporate the gravitational non-linearities, we first rewrite the perturbation of the metric
term as

hµν
MPl

(k0,k) = − i

2M2
Pl

Pµναβ
i

k2
0 − k2T

αβ(k0,k), (9.12)

where T αβ(x) is introduced as the pseudo stress-energy tensor, which is an extension of the
stress-energy tensor that incorporates the energy-momentum of gravity. At leading order in G
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it is given by
T µν(1) (k0,k) = m(2π)δ(k0)e−ik·x(τ)uµuν , (9.13)

and it can be computed at higher orders by using the background field method. This method
starts by splitting up the metric perturbation into the following components:

hµν = Hµν︸︷︷︸
background

+ Hµν︸︷︷︸
perturbation

. (9.14)

Even though the method looks similar to the procedure we have seen for integrating out the
potential field on the radiation scale, there is no radiation in the static limit that we are still
considering. It can be considered here to be a trick to integrate out the perturbation. The
expansion of the metric perturbation yields the path integral

eiSeff [Hµν ] ≡ e−
i

2MPl

∫
Tµνpp (x)Hµν(x)

∫
DHµν exp

[
iSEH [Hµν +Hµν]

+ iS
(H)
GF [Hµν ]− i

2MPl

∫
Tµνpp (x)Hµν(x)

]
. (9.15)

To ensure invariance under coordinate transformations, we need to adapt the gauge fixing term
from equation 9.8 to

Γ(H)
µ = ∇(H)

α Hα
µ −

1

2
∇(H)
µ Hα

α , (9.16)

where ∇(H) is the covariant derivative compatible with the Hµν-metric. This also ensures con-
servation of the pseudo stress-energy tensor, including the self-energy in the gravitational field,
as described by the Ward identity:

∂αT αβ(x) = 0. (9.17)

This allows us to compute the contribution at order G2, which corresponds to the diagram in
figure 9.3:

T αβ(2) (k) =(2π)δ(k0)
m2

32M2
Pl

[−7(ηαβk2 − kαkβ) + k2vαvβ]

∫
q

1

q2(q2 + k2)
(9.18)

=(2π)δ(k0)
m2

16M2
Pl|k|

[
− 7

32
(ηαβk2 − kαkβ) +

1

32
k2vαvβ

]
, (9.19)

74



Chapter 9. Gravitational Binary Inspiral

where vµ = (1, 0). With this result, and equation 9.12, we can compute the next order of the
curved spacetime metric:

g00 = 1− 2Gm

r
+ 2

(
Gm

r

)2

+ · · · (9.20)

gij = −δij

[
1 +

2Gm

r
+ 5

(
Gm

r

)2

+ · · ·

]
. (9.21)

This result corresponds to Schwarzschild’s solution in harmonic coordinates as a series expan-
sion in powers of Rs/r (Porto, 2016, pp. 28–29).

FIGURE 9.3: Feynman diagram to compute the O(G2) pseudo stress-energy ten-
sor contribution (Porto, 2016, p. 31).

9.1.4 Divergences

Some of the integrals we have encountered so far, and even more that occur at higher orders,
run into divergences. There are different types of divergences: power-law divergences, and
logarithmic divergences. Both will be briefly discussed in relation to examples of diagrams
that introduce these types of divergences, and the results of solving the divergences are given
for those diagrams. However, for a more extensive discussion of the full procedures of dealing
with divergences, it is recommended to take a look at the references, such as (Porto, 2016,
pp. 30–34).

Starting with the power-law divergences, which occur, for example, when the ∂2 from the cubic
vertex in figure 9.3 hits the propagator. A diagram of such a situation is given in figure 9.4, and
contributions from these types of diagrams are set to zero in the procedure called ‘dimensional
regularisation’. The divergent part of the integral corresponding to the diagram in figure 9.4 is
given by

Aij(k) ≡
∫
q

qiqj

q2(k + q)2
, (9.22)

which runs into problems for i = j, when the numerator cancels out of the propagator. Setting
the trace of the integral to zero will still leave other contributions from the integral which we
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therefore need to compute. The result of the dimensional regularisation of the integral is:

Aij(k) =

∫
q

qiqj

q2(k + q)2
=

1

64|k|
(3kikj − k2δij), (9.23)

the full computation of which can be found in (Porto, 2016, p. 30).

FIGURE 9.4: Diagram corresponding to the power-law divergence at O(G2)
(Porto, 2016, p. 30).

Another type of divergence is the logarithmic divergence, such as occur in the diagrams in
figure 9.5. To regularize these we need to consider the responsible integrals in d spacetime
dimensions. The relevant scalar integral is given by

I0(k) =

∫
dd−1q

(2π)d−1

dd−1p

(2π)d−1

1

q2p2(q + p + k)2
. (9.24)

Analytic continuation of this integral in d and expanding around ε ' 0 for ε ≡ 4 − d, as is
explained in (Porto, 2016, pp. 31–32), yields the result

I0(k) =
1

32π2

[
1

ε
+ log(4π)− γE + 3− log

k2

µ2

]
+O(ε), (9.25)

where γE ' 0.572 is the Euler-Mascheroni constant, and µ is the renormalization scale.

FIGURE 9.5: Feynman diagrams contributing at O(G3) (Porto, 2016, p. 31).

In some cases, there remain poles after dimensional regularization. These poles can be removed
by adding counter-terms, which absorb the divergences. This is part of the renormalization of
the theory, and there are several renormalization schemes available. In (Porto, 2016, pp. 32–
34) the minimal subtraction bar (M̄S) scheme is explained, also concerning the renormaliza-
tion group flow in which the coefficients of the counter-terms are chosen as functions of the
parameter k.
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9.1.5 Effective action

To integrate out the first and smallest scale of our system, Rs, this involves adding the finite-
size effects to the point-particle action, according to the procedure discussed in section 8.1. In
the gravitational case we split the metric as

gµν = gSµν︸︷︷︸
short-distance

+ gLµν︸︷︷︸
long-distance

, (9.26)

where the short and long distances are taken as compared to the scale Rs. The effective the-
ory will consist of the long-wavelength metric field, gLµν , and the centre-of-mass of the com-
pact object, xµcm(σ). The effective action describing this theory, Seff [xcm, g

L
µν ], is constructed

by integrating out the short-distance modes in the saddle-point approximation that we saw in
equation 7.2. For a compact object in our binary problem we have

exp
{
iSEH [gLµν(x)] + iSeff [xαcm(σ), gLµν(x)]

}
=∫

DgSµν(x)Dδxαp (σp) exp
{
iSEH [gµν(x)] + iSint[x

α
p (σp), g

S
µν(x)]

}
, (9.27)

where Sint[xαp , gSµν ] describes the dynamics of the internal degrees of freedom which depends
on the short-distance field gSµν and the positions of all the constituents of the object xµp (σp). The
constituents’ positions are integrated out by the integral over the displacement with respect to
the centre-of-mass, δxαp ≡ xαp − xαcm (Porto, 2016, p. 34).

FIGURE 9.6: The idea behind the worldline effective theory: the full space-time
geometry of the object is replaced by a point particle together with some effective
action interactions with its slowly varying background (Kol and Smolkin, 2012,

p. 4).

The exact form of the effective action is unknown, but we do know that it must satisfy the
symmetries of the long-distance physical system: diffeomorphism and reparameterization in-
variance. Therefore, we construct an effective action consisting of all the terms respecting these
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symmetries (Porto, 2016, pp. 34–35):

Seff [xcm, g
L
µν ] =

∫
d4xdσδ4(x− xcm(σ))

(
−m

√
gLµν(x)uµcm(σ)uνcm(σ)

+ CR

∫
RL[gLµν ]

√
gLµν(x)uµcm(σ)uνcm(σ)

+ CV

∫
RLµν [gLµν ]

uµcm(σ)uνcm(σ)√
gLµν(x)uµcm(σ)uνcm(σ)

+ · · ·

)
. (9.28)

Due to Birkhoff’s theorem, the coefficients CR and CV can be set to zero, which means that the
terms containing the Ricci tensor Rµν are dropped. This is allowed because Rµν = 0 in the
vacuum Einstein field equations. After a suitable redefinition, the terms which do not occur
in the equations of motions and are referred to as ‘redundant’ are removed, because they do
not alter the physical prediction of the theory (Goldberger, 2007, pp. 41–43). Higher powers of
the Riemann tensor Rµναβ do occur through its components of the electric and magnetic type
parity given by

Eµν = Rµναβv
αvβ, (9.29)

Bµν = εµνβρR
αβ

νσv
ρvσ, (9.30)

respectively. This allows us to rewrite the effective action from equation 9.28 as

Seff [x, gµν ] = cE

∫
dτEµνE

µν + cB

∫
dτBµνB

µν + · · · . (9.31)

Where we have dropped the sub- and superscripts of xcm and gLµν , and included reparameteri-
zation invariance by switching to the proper time. The terms in this effective action encode the
finite-size effects of the objects, here given by the electric and magnetic quadrupole moments.
The coefficients cE and cB can be computed by matching (Cannella, 2011, p. 52). Conceptually,
the procedure of matching consists of two stages: (1) calculating a convenient observable in the
full theory and expanding the result in the low energy limit, and (2) comparing this result with
the prediction of the effective theory and fixing the coefficients on which the operators of the
effective theory depend (Cannella, 2011, p. 46). Fixing cE and cB involves splitting the compo-
nents of the quadrupole moments into background and response components, corresponding
to the short-distance and long-wavelength modes respectively. The results of the matching
procedure, as performed in (Porto, 2016, pp. 36–39), (Goldberger and Rothstein, 2006a) and
(Goldberger, 2007), show that both coefficients scale as M2

PlR
5
s . Considering the scaling of the

full first term contribution:

cE/B

M2
Pl

∫
(∂i∂jH00)2dt ∼ cE/B

G2m2

r6

r

v
∼
(
Rs
r

)6 L

v2
∼ Lv10, (9.32)
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where it was used that for a gravitationally bound system H00
MPl
∼ Gm

r , and derivatives add extra
factors of 1/r (Porto, 2016, p. 44). This means that the quadrupole moments do not contribute
to the binary dynamics until the 5PN order (Cannella, 2011, p. 52).

It should be noted here that it has been shown that for this matching procedure the differences
between neutron stars and black holes become relevant. In fact, it has been shown that the
coefficients cE and cB from equation 9.31 vanish for black holes (Kol and Smolkin, 2012). The
first non-zero terms include time derivatives, such as ĖµνĖµν , thus also altering the scaling of
these effects in the effective action (Porto, 2016, p. 44).

9.2 Non-relativistic General Relativity

The next two steps in the procedure are considering the conservative dynamics and the radi-
ated power. We have seen these steps in sections 7.1 and 7.2 for the scalar theory, and in sections
8.2 and 8.3 for Maxwell’s theory of electrodynamics. In the gravitational situation, these two
steps are part of the non-relativistic General Relativity (NRGR) formalism, which emphasises
the small-velocity approximation that is considered. The procedure is very similar to what
we have seen so far, only with the addition of gauge fixing issues, tensor structure, and more
complicated non-linear interactions.

The decomposition of the metric perturbation into potential and radiation modes is as follows:

hµν = Hµν︸︷︷︸
potential

+ h̄µν︸︷︷︸
radiation

, (9.33)

where the following scaling applies

(k0,k)pot ∼ (v/r, 1/r), (k0,k)rad ∼ (v/r, v/r). (9.34)

The potential modes appear off-shell and mediate the binding forces between the objects in
the binary. Integrating out the Hµν field in the background radiation modes, which appear as
the on-shell propagating degrees of freedom, will give the non-relativistic General Relativity
theory that we are looking for. The non-linear coupling between these modes complicates the
procedure, but as we will see, the effective field theory framework can deal with this by sys-
tematically separating the relevant scales (Porto, 2016, p. 40). We will discuss both the binding
potential and the gravitational wave radiation in the following sections.
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9.2.1 Binding potential

To compute the binding potential of the gravitational binary system, we consider the real part
of the functional W [xa], because the potential modes are off-shell:

ReW [xa] =

∫
dt(K[xa]− V [xa]), (9.35)

in which K[xa] is the kinetic part of the effective action, and V [xa] is the binding potential
we are looking to compute. W [xa] is obtained through the integral from which we have to
integrate out the potential modes:

eiW [xa] =

∫
DHµν exp

{
iSEH [Hµν ] + iSppeff [xa(t), Hµν ] + iSGF [Hµν ]

}
, (9.36)

where (a = 1, 2), SGF is the gauge fixing term that we have already seen in equation 9.1.2, and
the point particle action Sppeff [xa(t), Hµν ] contains the point particle coupling to the gravita-
tional field plus the terms that have been established when the Rs scale was integrated out. At
zero-th order in G, the effective point-particle action is given by the kinetic part of the effective
action,

W(0)[xa]→ Sppeff [xa, ηµν ] ≡
∫
dtK[xa], (9.37)

which still has to be expanded in powers of v. Computing higher orders of W [xa] is done
by solving for Hµν perturbatively and plugging it back into the action. To integrate out the
potential modes, we use the quasi-instantaneous Green’s function

〈T{Hµν(t1,x1)Hαβ(t1,x2)}〉 = −iPµναβ

[
δ(t1 − t2)

∫
k

1

k2 e
ik·(x1−x2)

+
d

dt1dt2
δ(t1 − t2)

∫
k

1

k4 e
ik·(x1−x2) + · · ·

]
. (9.38)

To get an expansion in the velocity for slowly moving sources, we can expand the denominator
in powers of k0

|k| ∼
v/r
1/r � 1, resulting in the propagator and velocity corrections represented in

figure 7.1. From the leading order term in equation 9.38 the scaling can be determined:

〈T{Hµν(t,k)Hαβ(0, q)}〉 ∼ 1

k2 δ(t)δ
3(k + q) ∼

(
1

r

)−2 (r
v

)−1
(

1

r

)−3

∼ r4v (9.39)

[Hµν(t,k)] ∼ r2√v. (9.40)

Using the virial theorem v2 ∼ Gm
r , scaling of the Planck mass 1

M2
Pl
∼ G and the orbital angular

momentum L = mvr, we can see that the following scaling applies the source coupling:

m

MPl
∼
√
Lv. (9.41)
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Recalling the the point-particle action from the combination of equations 9.7 and 9.6:

Sppeff [xa, Hµν ] = − m

2MPl

∫
dt

vµvν√
vαvα

Hµν + · · · , (9.42)

we can derive the scaling of the leading order interaction term, where we note that it is suffi-
cient to consider vµ = (1,vi) (Porto, 2016, pp. 40–41):[

m

2MPl

∫
H00dt

]
∼
√
Lv
(r
v

)(1

r

)−3

(r2√v) ∼
√
L (9.43)

The diagram at first order in G consists of two of these interactions, which together introduce
a propagating graviton that is described by the propagator in equation 9.10. We now have all
the tools to compute the potential corresponding to the diagram in figure 9.7.

FIGURE 9.7: First diagram contributing to the computation of the potential, cor-
responding to the Newton potential (Cannella, 2011, p. 54).

W(1)[xa,xb] =

(
− m1

2MPl

∫
dt

vµavνa√
vαa vaα

Hµν

)− m2

2MPl

∫
dt′

vρb v
σ
b√

vβb vbβ

Hρσ

 (9.44)

=
m1m2

4M2
Pl

(∫
dt

∫
dt′
)

1
√
vαa vaα

√
vβb vbβ

vµav
ν
a∆Fµνρσv

ρ
b v
σ
b . (9.45)

The contraction with the tensorial structure of the Feynman propagator is given by

vµav
ν
aPµνρσv

ρ
b v
σ
b =

1

2
vµav

ν
a [ηρµησν + ηρνησµ − ηµνηρσ]vρb v

σ
b (9.46)

=
1

2
[(va · vb)2 + (va · vb)2 − (va · va)(vb · vb)] (9.47)

=
1

2
[2(va · vb)2 − v2

av
2
b ] =

1

2
[2(va · vb)2 − 1]. (9.48)

But since we are not yet interested in the higher-order contributions in v, we only get a factor
−1
2 from this propagator now. Similarly the factors 1√

vαi viα
can be dropped for now:

W(1)[xa,xb]→ −
∫
dtVN [xa,xb] (9.49)

VN = −m1m2

8M2
Pl

∫
p

e−ip·(xa−xb)

p2
= −m1m2

8M2
Pl

1

4π|xa − xb|
= −Gm1m2

r
(9.50)
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Note that this computation is analogous to the computation in equation 7.14 that we did in the
scalar theory, and that from the scaling derived in equation 9.43 we can see that this contribu-
tion scales as ∼ L.

The same procedure can be followed to compute the contributions that scale as ∼ Lv2 at 1PN
order. The contributing diagrams are shown in figure 9.8. Diagram (a) includes the first correc-
tion at order v2 from the graviton propagator in equation 9.38, which can be expanded in a sim-
ilar way as the propagator in 7.1. The diagrams (b) and (c) contribute to the 1PN order because
they include velocity corrections from the point-particle action in equation 9.42. The leading
order term in the point-particle action has a coupling of − m

2MPl
h00 in the Lagrangian, the two

terms in the Lagrangians have couplings− m
MPl

h0iv
i and− m

2MPl

(
hijv

ivj + 1
2h00v

2
)

(Porto, 2016,
p. 128). This gives the diagrams with either two sources with an O(v)-correction, or one of the
sources having anO(v2)-correction. It is straightforward to see that diagrams (a), (b) and (c) all
have a scaling of ∼ Lv2, since they all include a v2 correction with respect to the diagram cor-
responding to the Newtonian potential. The potentials of these diagrams are given by (Porto,
2016, p. 42):

V9.8(a) = −1

2

Gm1m2

r

(
v1 · v2 −

(v1 · r)(v2 · r)

r2

)
, (9.51)

V9.8(b) = 4
Gm1m2

r
v1 · v2, (9.52)

V9.8(c) = −3

2

Gm1m2

r
v2

1. (9.53)

Before calculating the potential corresponding to diagram (d) in figure 9.8, we first show that
it contributes to the 1PN order by power counting. The term in the point-particle Lagrangian
corresponding to this diagram has a coupling m

8M2
Pl
h00h00, and thus we consider the scaling of

the two propagators coupling to a source:[
m

8M2
Pl

∫
H2

00dt

]
∼ m

(
v2r

m

)(r
v

)(1

r

)−6

(r4v) ∼ v2. (9.54)

Which gives a total scaling of ∼ Lv2 for the diagram, where the couplings between the prop-
agators to the source, ∼

√
L, have also been included. For the computation of the ‘seagull

diagram’, diagram (d) in figure 9.8, we have two propagators connecting the two sources:

ReW9.8(d)[xa] =
1

2!

(
−im2

2MPl

)2 im1

8M2
Pl

∫
dt1dt2dt̃2〈T{H00(t2,x2(t2))H00(t̃2,x2(t̃2)H2

00(t1,x1(t1))}〉

(9.55)

= −m
2
1m2

32M4
Pl

∫
dt1dt2dt̃2δ(t1 − t2)δ(t1 − t̃2)(−P0000)2

∫
p,q

eip·(x2(t2)−x1(t1))

p2

eiq·(x2(t̃2−x1(t1))

q2
,

(9.56)
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FIGURE 9.8: Feynman diagrams contributing at 1PN order. (a) corresponds to a
correction to non-instantaneity, (b) and (c) correspond to different velocity cor-
rections introduced by higher-order terms in the point-particle action in equation
9.42, (d) corresponds to a non-linear contrubtion from the point-particle source,
(e) corresponds to the self-interction term of the graviton in the Einstein-Hilbert

action (Porto, 2016, p. 42).

where we have used Wick contractions. This allows us to extract

V9.8(d)[xa] = − m2
1m2

(4π)2128M4
Pl

1

|x1(t)− x2(t)|2
= −G

2m2
1m2

2r2
(9.57)

as the potential corresponding to the diagram (Porto, 2016, p. 42).

The last diagram contributing to the 1PN order includes the three-graviton vertex. The vertex
corresponds to

〈T{H00(t1,p1)H00(t2,p2)H00(t3,p3)}〉 =

i

4MPl
δ(t1 − t2)δ(t1 − t3)

(
−i
p2

1

)(
−i
p2

2

)(
−i
p2

3

)
(p2

1 + p2
2 + p2

3)δ3(p1 + p2 + p3). (9.58)

To which we can apply our power counting method:

[
1

MPl

∫
dtδ3(k)k2

(
d3kHµν(t,k)

)3] ∼ 1

MPl

(r
v

)
r3 1

r2

(
MPlv

2

√
L

)3

∼ v2

√
L
, (9.59)

which gives a total scaling for diagram (c) in figure 9.8 of (
√
L)3v2√
L
∼ Lv2. The situation in which

the vertex, with a p2
i part, cancels the propagator and causes a divergence like the one in figure
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9.4 and thus can be set to zero by dimensional regularization. The only surviving term, without
a scale-less integral, then gives (Porto, 2016, p. 43):

V9.8(e)[xa] =
G2m2

1m2

r2
. (9.60)

Adding up all the potential contributions from the diagrams in figure 9.8, including factors due
to symmetries for diagrams (c), (d), and (e), we find the Einstein-Infeld-Hoffmann Lagrangian:

LEIH =
1

8

∑
a=1,2

mav
4
a +

Gm1m2

2r

[
3(v2

1 + v2
2)− 7(v1 · v2)− (v1 · r)(v2 · r)

r2

]

− G2m1m2(m1 +m2)

2r2
. (9.61)

At higher orders in the post-Newtonian expansion, it will become increasingly difficult to com-
pute the contributions to the Lagrangian. The reason for this is that other components thanH00

will start to become relevant for the self-interaction vertex. To make the computations easier, a
spacetime decomposition can be introduced to reduce the number of and simplify the Feynman
diagrams at each order. Splitting the spacetime metric up into a scalar, vector, and (3-)metric is
known as the ‘Kaluza-Klein’ decomposition:

gµνdx
µdxν = e2φ(dx0 −Aidx

i)2 − e−2φγijdx
idxj . (9.62)

In this decomposition, the Einstein-Hilbert action takes the form

SEH = −2M2
Pl

∫
d4x
√
γ
[
R(3)[γ] + 2γij∂iφ∂jφ+ e4φFijF

ij
]
, (9.63)

where Fij ≡ ∂iAj − ∂jAi (Porto, 2016, p. 43). The coupling to point-like sources in terms of
(φ,Ai, γij) can be obtained from equation 9.62. There is no scalar cubic coupling, because φ
always couples to the vector and tensor perturbations, which always come with extra factors
of v. This means that in this decomposition, diagram (e) in figure 9.8 does not contribute to the
1PN order but enters at 2PN order (Foffa and Sturani, 2014, pp. 11–12). The last term in the
Einstein-Infeld-Hoffmann Lagrangian, in equation 9.61, is in the Kaluza-Klein decomposition
accounted for by diagram (d) from figure 9.8, instead of both diagrams (d) and (e) from that
figure. Although this approach has proved to be helpful in the conservative dynamics, it does
not provide much of an advantage for the radiation modes because the physical modes are
encoded in γij (Porto, 2016, p. 43).
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9.2.2 Radiated power loss

We start constructing the long-wavelength effective theory by turning on the radiation field
h̄µν . The potential modes now have to be integrated out in a non-trivial background,

gµν = ḡµν +
Hµν

MPl
, ḡµν +

h̄µν
MPl

. (9.64)

The effective action for the radiation theory, Sradeff [xa, ḡµν ], is obtained from

eiW [xa] =

∫
Dh̄µν exp

{
iSEH [ḡµν ] + Sradeff [xa, ḡµν ] + iSGF [h̄µν ]

}
(9.65)

=

∫
DHµνDh̄µν exp

{
iSEH [gµν ] + Sppeff [xa, gµν ] + iS

(h̄)
GF [h̄µν ]

}
. (9.66)

where we have to integrate out the radiation modes to obtain W [xa] (Porto, 2016, p. 45). Then
by using the optical theorem from section 7.2.2, the total radiated power can be obtained. The
gauge fixing term can be determined in a similar way as in section 9.1.2.

Analogous to the steps take in section 9.1.5, we will construct an effective action that satisfies
the symmetries of General Relativity at the gravitational wavelength scale. This means that
the description of the two objects in the binary system will be replaced by a single point-like
object endowed with a series of multipole moments. This takes the following form (Ross, 2012,
pp. 31–32):

Sradeff [xa, h̄µν ] =

∫
dt
√
ḡ00

[
−M(t) +

∑
l=2

(
1

l!
IL(t)∇L−2Eil−1il −

2l

(2l + 1)!
JL(t)∇L−2Bil−1il

)]
.

(9.67)
The centre-of-mass of the binary is placed at the origin and at rest with respect to distant ob-
servers, such that the integration variable

√
ḡ00dt = dτ is the proper time. The binding energy

of the system is represented by the first term containingM . The electric and magnetic multipole
(l ≥ 2) moments, (IL, JL), are SO(3) symmetric and traceless tensors (Porto, 2016, p. 45).

Applying the optical theorem, performing the integral using Feynman’s boundary conditions,
and incorporating the gauge fixing term is in the gravitational context similar to what we have
seen in the scalar case. Therefore, we can now write down the total power (Porto, 2016, p. 46):

P =
G

T

∫ ∞
0

dω

π

[
ω6

5
|Iij(ω)|2 +

16

45
ω6|J ij(ω)|2 +

ω8

189
|Iijk(ω)|2 + · · ·

]
. (9.68)

To link this result to a diagrammatic description, we recall that the power can be computed by
integrating the energy of the emitted gravitons over the differential rate of radiation, like we
have done in equation 7.61 for the scalar case. The differential rate of radiation per polarization
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is given by

dΓh(k) =
1

T

d3k

(2π)32|k|
|Ah(|k|,k)|2, (9.69)

where the the gravitational wave amplitude for polarizations h = ±2 can be represented by the
diagram in figure 9.9.

FIGURE 9.9: The double line represents the constitutents of the binary system,
separated by a distance much smaller than the scale of radiation λ (Porto, 2016,

p. 46).

Computing this amplitude as a derivative expansion from equation 9.67 yields

FIGURE 9.10: Expanded form of the gravitational wave amplitude from figure
9.9, based on equation 9.67 (Porto, 2016, p. 46).

where ω = |k|, and εij(k, h = ±2) is the polarization tensor. The combination of these results
allows us to write the power of the gravitational waves, analogous to the expression in equation
7.61:

P |h=±2 =

∫
k
|k|dΓh(k). (9.70)

Summing over the polarizations in this expression yields the result from equation 9.68 (Porto,
2016, p. 46).

Diagrammatic approach

We can associate a diagrammatic description to the effective radial action in equation 9.67. We
need to find the propagator for the radiation gravitons and their couplings to the potential
modes and world lines of matter particles. The couplings are described by the functional inte-
gral in equation 9.65, from which the potential modes have been integrated out to give a theory
depending on the radiation only.
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We follow similar steps as that we have seen before, starting with the propagator to asses the
scaling of radiation gravitons h̄µν :

〈T{h̄µν(x)h̄αβ(0)}〉 =

∫
d4k

(2π)4

i

k2 + iε
eik·xPµναβ , (9.71)

where Pµναβ provides the tensor structure, which we have already seen in equation 9.11. Con-
sidering that kµ ∼ v

r , since the momentum of the radiation scales with the inverse of the wave-
length, we can derive that the radiation modes should scale as (Cannella, 2011, pp. 68–69):

h̄µν ∼
v

r
. (9.72)

FIGURE 9.11: Three-graviton vertex where a radiation graviton (curly line) inter-
actions with two potential gravitons (dashed lines). The transfer of momentum

is indicated (Cannella, 2011, p. 69).

Now consider the situation in which a radiation graviton transfers momentum to a potential
graviton. Such an interaction is represented in figure 9.11. The potential mode after the inter-
action has a three-momentum of p + k, corresponding to a propagator with the scaling

∼ 1

(p + k)2
=

1

p2
[1 + 2p · k + · · · ]. (9.73)

The scaling of the individual momenta is |p| ∼ 1
r and |k| ∼ v

r , resulting in an infinite number of
powers of v in the scaling of the combined propagator. Thus, to allow a proper application of
the power counting procedure, we need to make sure that radiation gravitons do not transmit
momentum to the potential gravitons. This can be done by multipole-expanding the radiation
field at the level of the action:

h̄µν(x0,x) = h̄µν(x0,x) + δxi∂ih̄µν(x0,x) +
1

2
δxixj∂i∂j h̄µν(x0,x) + · · · , (9.74)

where x can be chosen at the centre-of-mass. This expansion avoids transfer of momentum be-
tween radiation and potential modes by applying a redefinition of the radiation field, which is
in the expanded form only a function of time. This means that the couplings between radiation
field and potential field or matter are not Fourier expanded, and terms like those in equation
9.73 will not appear (Cannella, 2011, pp. 69–70).
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The next step is to consider the coupling between the radiation field and the particle world-
lines, this is given by

−
∑
a

ma

2MPl

∫
dτ0
a h̄µν(vµav

ν
a) ' −

∑
a

ma

2MPl

∫
dx0

a

{
h̄00 + 2h̄0sv

8
a + h̄rsv

r
av
s
a +

1

2
v2
ah̄00

}
, (9.75)

where h̄µν ≡ h̄µν(x0,x), and only terms up to order O(v2) in the velocity expansion have been
kept. The diagrammatic description of this coupling is given in figure 9.12.

FIGURE 9.12: Diagrammatic representation of the coupling between a radiation
graviton to the particle world-lines (Cannella, 2011, p. 70).

For each of the polarizations in equation 9.75 we can perform the multipole-expansion from
equation 9.74. For the polarization h̄00 this yields:

−
∑
a

ma

2MPl

∫
dx0

a

(
1 +

1

2
v2

)
h̄00 '

−
∑
a

ma

2MPl

∫
dx0

a

{
h̄00 + δxia∂ih̄00 +

1

2
δxiaδx

j
a∂i∂j h̄00 +

1

2
v2
ah̄00

}
, (9.76)

where implicitly the choice x = xcm = 0 has been made. The leading order is the coupling
between the radiation field and the mass monopole. However, from taking k2 = k2

0 = 0 in
equation 9.70 we know that the mass monopole does not lead to the emission of radiation.
The first term does therefore not contribute to the power, and h̄00 is not a physical degree of
freedom in General Relativity (Cannella, 2011, pp. 70–71). The second term on the right hand
side of equation 9.76 has order v with respect to the leading order. This term is zero when
the sum over the masses is taken due to the choice of the centre-of-mass at the origin of the
coordinate system. The terms of order v2 in equation 9.76 cannot be made to vanish and we
will get back to these later (Cannella, 2011, p. 71).
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For the polarizations h̄0i we have

−
∑
a

ma

2MPl

∫
dx0

a2h̄0sv
s
a ' −

∑
a

ma

2MPl

∫
dx0

a2
{
h̄0sv

s
a + δxia∂ih̄0sv

s
a

}
. (9.77)

Following a similar argumentation as for the h̄00-polarization, we can write the first term at
first order in v as

2h̄0sP
s
cm = 0, (9.78)

in which the total linear momentum P cm =
∑

amava of the system has been defined. That
the term results in a contribution of zero is a consequence of the choice for the centre-of-mass
frame. The fact that all terms in the coupling of order v vanish, the second term in equation
9.76 and the first term in equation 9.77, proves that there is no gravitational dipole radiation.
The second term on the right side of equation 9.77 is of order v2 and does not vanish (Cannella,
2011, p. 71).

The last term we need to consider from equation 9.75 is the one with the h̄rs-polarization:

−
∑
a

ma

2MPl

∫
dx0

ah̄rsv
r
av
s
a, (9.79)

which only has a non-vanishing contribution of order v2 (Cannella, 2011, p. 71).

The O(v2) Lagrangian expressing the coupling between radiation and point particles can now
be constructed from the non-vanishing terms in equations 9.76, 9.77, and 9.79:

−
∑
a

ma

2MPl

∫
dx0

a

{
1

2
v2
ah̄00 +

1

2
δxiaδx

j
a∂i∂j h̄00 + δxia∂ih̄0sv

s
a + h̄rsv

r
av
s
a

}
. (9.80)

There are two problems with this Lagrangian. The first is that it is not gauge invariant under
infinitesimal coordinate transformations, and the second is that the polarizations h̄00 and h̄0i

appear to be sourced by the Lagrangian but, as we saw in section 2.2.3, they can be removed by
fixing a suitable gauge and are therefore un-physical. The problems turn out to be related and
can be solved by considering the scaling of the couplings from radiation to potential modes,
given in figure 9.13.

FIGURE 9.13: Scaling of coupling of radiation to potential modes (Cannella, 2011,
p. 72).

With these scaling rules, one can interpret the three Feynman diagrams representing the radia-
tion at O(v2), given in figure 9.14.
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FIGURE 9.14: Feynman diagrams representing the radiation sector at first non-
trivial order. The continuous lines with arrows are world lines of point particles,
the dashed lines correspond to potential modes, and the curly lines represent the
radiation modes (Cannella, 2011, p. 71). Diagram (a) is the multipole expansion
carried out to order v2, diagrams (b) and (c) are needed to ensure gauge invari-
ance of the radiation graviton couplings (Goldberger and Rothstein, 2006a, p. 11).

The diagrams (b) and (c) include a coupling of radiation to potential modes. With the scaling
from figure 9.13, and other scaling rules from non-relativistic General Relativity summarised
in table 9.1, you can see that each diagram in figure 9.14 scales as

√
Lv5/2.

k Hk
µν h̄µν

m
MPl

1
r r2√v v

r

√
Lv

TABLE 9.1: Power counting rules in non-relativistic General Relativity (Gold-
berger and Rothstein, 2006a, p. 6).

We will not go through the details of all the diagrams, since diagram (a) has been discussed to
some extent in the discussion of figure 9.12, and diagram (b) is similar to the seagull diagram
from figure 9.8(d). The discussion of the diagrams can also be found in, for example, (Cannella,
2011, pp. 72–74), (Goldberger and Rothstein, 2006a, pp. 10–11) and (Porto, 2016, pp. 49–52).
The combined result of contributions from the three diagrams is given by

Lv2 [h̄] = − 1

2MPl
h̄00

[
1

2

∑
a

mav
2
a −

Gm1m2

|x1 − x2|

]
− 1

2MPl
εijkLk∂j h̄0i +

1

MPl

∑
a

max
i
ax

j
aR0i0j .

(9.81)
The first term in this Lagrangian is the coupling of h̄00 to the Newtonian energy of the binary
system. It can be considered as a correction to the kinetic and gravitational energy. The second
term is a coupling of the graviton h̄0i to the total angular momentum, L =

∑
a xa×mava. Since

both the mass monopole, represented by the kinetic and gravitational energy and the angular
momentum are conserved at this order, h̄00 and h̄0i do not represent physical contributions to
the radiation. The last term in the expression, however, does give a physical contribution. This
term is the coupling of the source moment

∑
amax

i
ax

j
a to the Riemann tensor of the radiation
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field:
R0i0j =

1

2
(∂2

0 h̄ij + ∂i∂j h̄00 − ∂0∂ih̄0j − ∂0∂j h̄0i). (9.82)

It shows that R00 = R0i0j = 0 for all on-shell graviton matrix elements, and that the radiation
only couples to

Qij =
∑
a

ma

(
xiax

j
a −

1

3
x2
aδij

)
, (9.83)

which is the traceless quadrupole moment of the source (Cannella, 2011, pp. 73–74).

9.3 Other effects

There are some other complicating effects that we have left out of the discussion so far. Gen-
erally, these effects become relevant for higher-order corrections, thus the discussion above
provides a good description up to those orders. To give an idea of what these effects are, we
briefly discuss the concept of tail effects in this section. For the other effects, there are some
good resources available:

• Gravitational radiation-reaction: this incorporates the back-reaction effects of the radi-
ation on the dynamics of the binary which have been neglected by using the ‘in-out’
boundary conditions in the optical theorem. Including these effects requires incorporat-
ing causal propagation in non-relativistic General Relativity, i.e. using the ‘in-in’ formal-
ism. More information in (Porto, 2016, pp. 60–62) and (Galley and Leibovich, 2012).

• Spinning extended objects: the discussion in this project is mainly about non-spinning
extended objects. Only in the 1PN diagrams (b) and (b) in figure 9.8, we included some
v-contributions due to the spin of objects. The derivation of these contributions and other
effects due to the spin of objects in the binary can be found in (Porto, 2016, pp. 68–86).

9.3.1 Tail effects

The tail effects originate from the gravitational interactions with the background geometry far
away from the binary, which can be approximated by a Schwarzschild spacetime with total
mass or energyM . At leading order inG, the gravitational potential is given by the Newtonian
approximation

VN (k) = −GM
k2 +O(G2), (9.84)

which varies on scales of order |k| ' λ−1
rad �

1
r . The gravitational tails can be parametrized

in powers of the ratio η ≡ Rs
λrad

, with Rs ≡ 2GM the gravitational radius of the system. For
post-Newtonian sources, we have η ∼ v3, which means that the first tail effects enter at 1.5PN
order beyond the leading effects for binary inspirals (Porto, 2016, p. 52).

91



Chapter 9. Gravitational Binary Inspiral

Conceptually, tails are disturbances that cannot keep up with the rest of the wave. Where elec-
tromagnetic waves satisfy Huygens’ principle that the total disturbance of a wave is confined
to a single expanding wavefront defined by the speed of the light, gravitational waves do not
satisfy this principle. This means that ‘tails’ arising from the interaction of the wave with the
curved spacetime background of the source can bounce around indefinitely (Kennefick, 2017,
pp. 206–207). For example, consider the spacetime diagram in figure 9.15. At a spacetime point
S in the diagram, the source emits a gravitational wave which propagates to R, where a part
of the wave is reflected because of the curved spacetime. A while later, the source emits an-
other gravitational signal at point S′. At a point P both the signals from S′ and R arrive, which
means that spacetime point P can be affected not just by the source at the moment that it inter-
sects with the past light-cone of P , but also by other moments in the past of the source, through
reflections such as occurred at R. The gravitational signal coming from point R is then referred
to as the ‘tail’ of source S.

FIGURE 9.15: Spacetime diagram in the rest-frame of source S, with time rep-
resented vertically, and one space-dimension horizontally. Spacetime event P is
affected by both the source directly, from point S′, and indirectly, through its tail

coming from spacetime point R.

This makes the calculations much more complicated since sources can be surrounded by echoes
of the original disturbance. Even a tail itself might have a tail, which is then called the ‘tail-of-
the-tail’ atO(η2). However, understanding of these effects allows for them to be computed and
shows that the effects are small throughout the inspiral, in the post-Newtonian regime they are
of order η2 log(ωr) ∼ v6 log(v) (Porto, 2016, pp. 55–57).
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Discussion of Part II

Binary systems in three different situations were discussed in this part: scalar theory, electro-
magnetic theory, and General Relativity. In all of them, we followed the same principles of the
effective field theory approach. The assumption in all systems was that there was a separation
of scales possible, for the gravitational case, this is given by the source radiusRs, the separation
of the objects r, and the wavelength of the emitted signal λ. This separation ensured the de-
coupling of different terms in the theories, which in turn allowed us to integrate out the lowest
scales and describe the physics as those scales in an effective action contribution.

We can note that the expansion around the Minkowski space of the spacetime metric,

gµν = ηµν +
hµν
MPl

, (10.1)

looks similar to the weak field approximation of linearized gravity,

gµν = ηµν + hµν . (10.2)

The difference is the cut-off scaleMPl that is present in the effective field theory decomposition.
This is a very important aspect of the effective field theory approach to gravitational dynamics
because it represents the breaking down of the theory at the Planck scale, at which quantum
gravity effects are expected to dominate.

In all three cases, we encountered a ‘tower of effective field theories’, because two scales had to
be integrated out. First, the finite-size effects were integrated out which resulted in an effective
point particle action. The charged spheres and massive objects thereby were reduced to point
particles, which has the advantage of reducing the number of variables of the theory drastically.
The next step was to integrate out the off-shell potential modes. The point particles in the the-
ory would act as sources and be able to exchange scalar particles in the scalar theory, photons
in the electromagnetic situation, and gravitons in the gravitational situation. However, these
virtual particles exchanged in the interactions are acting instantaneously. Higher orders in the
approximation would therefore add velocity corrections to the theory.
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The expanded terms in the action can be associated with Feynman rules, which can then be
interpreted in a diagrammatic representation. For the theory of General Relativity, there are
also self-interaction terms present. The Feynman diagrams which can be constructed from this
set of rules are ordered by the power counting procedure to determine the different ways in
which the terms from the action contribute to the observables. This adds some conceptual grip
on the procedures and supports the physical understanding of the theory.

The on-shell modes of the effective theory are responsible for the radiation. Through the optical
theorem, the imaginary part of the functional W associated with a radiation diagram of the
system can be used to compute the emitted power of the gravitational waves. One of the
challenges in this computation is to find the multipole moments that contribute to each order
by a matching procedure. The diagrammatic description of the expansion has shown that, in
gravity, there exists no monopole radiation, due to the conservation of mass, and no dipole
radiation, due to the conservation of momentum.

Some more complications that occur in the effective field theory approach of General Relativity
were conceptually discussed but not fully calculated or explicitly solved. Divergences can be
dealt with by dimensional regularization or renormalizing the effective theory. Every time that
a scale is integrated out the gauge has to be fixed to remove redundancies introduced by coor-
dinate invariance and symmetries of the long-range theory are satisfied. The compact object in
a gravitational binary can have a spin that needs to be taken into account in the effective theory.
The radiation provides feedback on the system itself, called the radiation reaction.

Although the method still is quite complicated, it is clear that there are a lot of tools available
and the systematic approach is very rigorous when applied correctly. Which can be viewed
as confusing initially, the mixing of all different expansions discussed in section 6.1 into the
‘post-Newtonian’ framework, is very useful to combine the results from different approaches
into one description. This is also the reason that it is hard to consider the results of the effective
field theory approach to gravitational binary systems in isolation because it is often combined
with results from other approaches that generate post-Newtonian descriptions. The most im-
portant of those other approaches is the Arnowitt-Deser-Misner-Hamiltonian method (ADM)
(Arnowitt, Deser, and Misner, 1959). Collectively, the approaches have been able to describe
binary system consisting of non-spinning objects up to 4PN order, and consisting of spinning
objects up to 3PN order. The effective field theory approach has been instrumental in including
finite-size effects for the spinning objects, which could not be obtained with the other methods
(Porto, 2016, p. 4).

The post-Newtonian results will be of great importance in the next part of this thesis, about the
Effective One Body approach. That approach takes the post-Newtonian description rewritten
it in the center-of-mass frame and coordinates close to Hamiltonian coordinates, modified due
to shifts to eliminate the accelerations (Blümlein et al., 2020, p. 6). In this new description, the
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symmetric mass ratio ν ≡ µ
M = m1m2

(m1+m2)2
plays a big role since this parameter will be used to

generalise the test-mass analytic description.
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Part III

Effective One Body Approach
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Chapter 11

Effective One Body Basics

The Effective One Body (EOB) approach to a binary system can be understood as a generali-
sation of the test particle limit. For two objects with gravitational interaction, the test particle
limit describes the situation of a large difference in mass between the two objects. The effect
of the object with the smaller mass on the object with the bigger mass can be neglected. This
means that the dynamics of the system can be described by the lighter object moving in a back-
ground in which the heavier object is stationary. This simplifies the situation enormously, and
that is why a generalisation of this situation to situations in which the mass difference is smaller
is highly interesting. In the case of General Relativity, it is looking for an external spacetime
geometry, gextµν , such that the geodesic dynamics of a test particle of mass µ equivalent to the
original dynamics (Damour and Nagar, 2009, pp. 6–7).

First, the ingredients of the Effective One Body approach will be discussed. It will be mainly
framed in the gravitational context because that is the context of origin for the approach. How-
ever, a test particle limit does not only exist for a system of objects with masses subject to
gravitational interaction, it also exists for systems with charges subject to electromagnetic inter-
actions. We have discussed the analogy between electrodynamics and gravitational dynamics,
and we will extend this analogy to study the Effective One Body approach in chapter 12 of this
part. Then we will finish this part with a chapter on the Effective One Body approach in the
gravitational dynamics of binary systems.

11.1 Ingredients

The Effective One Body approach comprises three ingredients (Damour and Nagar, 2009, p. 2):

• a description of the conservative (Hamiltonian) part of the dynamics of two objects;

• an expression of the radiation reaction part of the dynamics;

• a description of the waveform emitted by a coalescing binary system.
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Each one of these ingredients can be found in the high-order post-Newtonian results from
approaches such as the effective field theory approach that was discussed in the previous part
of this thesis. The key difference between those results on themselves, compared to the Effective
One Body result, is that the post-Newtonian result is given in its original expanded form. The
Effective One Body approach, however, presents those terms in a resummed form, thus as a
non-polynomial function of v. This allows the Effective One Body approach to incorporate
some non-perturbative features of the exact result (Damour and Nagar, 2009, pp. 2–3).

The consequence of this approach is that the analytic solution can be extended to apply much
longer into the inspiral. While the post-Newtonian description on itself can only describe the
binary inspiral for non-relativistic situations, which means approximately up to the last stable
orbit of the inspiral stage, the analytic description constructed in the Effective One Body ap-
proach is successful in describing also the late inspiral, plunge, merger and ring-down stages
of the coalescence (Damour and Nagar, 2009, pp. 3–5).
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Case: Classical Electrodynamics

In this chapter, we will discuss a binary system consisting of two charges with electromagnetic
interaction, instead of two masses with gravitational interaction. The electromagnetic field
equations are linear, and therefore less involved than the Einstein field equations of General
Relativity considered in the next chapter (Kunze and Spohn, 2001, p. 322). The relevance of
this case in the understanding of the coalescence of binary systems in gravity is supported by
the fact that approaches to describe the gravitational dynamics are inspired by results from
quantum electrodynamics. The work of Brezin, Itzykson, and Zinn-Justin on including recoil
effects in the relativistic Balmer formula had especially been inspiring in the development of
the one-body description for gravity (Brezin, Itzykson, and Zinn-Justin, 1970). In this chapter,
we will discuss the approach of an effective one-body description of a two-body system in
classical electrodynamics. This discussion is mainly based on an article written by Alessandra
Buonanno (Buonanno, 2000).

The discussion starts with an explanation of the two-body description of the system, based on
a general description of the laws governing the particles. Towards the end of the first section
of this chapter, we will derive the radial action variable and discuss the energy levels, which
will play a big role in the process of mapping and matching the effective one-body description
to the two-body description. The second section then starts with the discussion of the effective
one-body description and distinguishes three different methods to perform the mapping to
the two-body description, first with an effective scalar potential, then with an effective vector
potential, and finally with an effective metric. The chapter will conclude with a discussion of
the effective description and the different ways of matching the different descriptions to each
other.

12.1 Two-body description

The first step in describing the dynamics of a system consisting of two charges, is to write
down the electromagnetic field equations, also called Maxwell’s laws (Kunze and Spohn, 2001,
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p. 322):

1

c

∂

∂t
B(x, t) = −∇×E(x, t), (12.1)

1

c

∂

∂t
E(x, t) = ∇×B(x, t)− 1

c
j(x, t), (12.2)

∇ ·E(x, t) = ρ(x, t), (12.3)

∇ ·B(x, t) = 0. (12.4)

The equations of motions of the system are given by the Lorentz force equations for both parti-
cles:

d

dt
(m1γ1v1(t)) = e1

(
Eψ(q1(t), t) +

1

c
v1(t)×Bψ(q1(t), t)

)
, (12.5)

d

dt
(m2γ2v2(t)) = e2

(
Eψ(q2(t), t) +

1

c
v2(t)×Bψ(q2(t), t)

)
, (12.6)

where mi is particle i’s mass, γi = 1√
1−
(
v2
i
c2

) the relativistic factor, qi(t) the position of particle

i, vi = q̇i(t) the velocity, and ei is particle i’s charge (Kunze and Spohn, 2001, pp. 322–323).

The rigid charge distribution of the particles is described by the form factor ψ, for which we
assume the following characteristics (Kunze and Spohn, 2001, p. 323):

Smooth 0 ≤ ψ ∈ C∞0 (R3), (12.7)

Radial ψ(x) = ψr(|x|), (12.8)

Compactly supported ψ(x) = 0 for |x| ≥ Rψ, (12.9)

Normalized
∫
dxψ(x) = 1. (12.10)

To define the charge and current densities as follows:

ρ(x, t) = e1ψ(x− q1(t)) + e2ψ(x− q2(t)), (12.11)

j(x, t) = e1ψ(x− q1(t))v1 + e2ψ(x− q2(t))v2. (12.12)

These equations determine the source terms in the Maxwell equations. The combination of
Maxwell equations, equations of motion, and the charge and current densities together are
often referred to as the “Abraham model” (Kunze and Spohn, 2001, p. 323).

We can use an approximation for non-relativistic situations, in the gravitational situation given
by the post-Newtonian expansion. In the electromagnetic context, the expansion in 1

c2
is re-

ferred to as post-Coulombian (PC). The 0PC terms are called the ‘Coulomb terms’ and are of
order (v2/c2)0, the 1PC terms are called the ‘Darwin-terms’ and are of order (v2/c2)1, and so on.
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Starting at 1.5PC order, charges will lose energy through multipole radiation, thus extending
the expansion is not merely an addition of extra terms anymore, and dissipative contributions
will be appearing (Kunze and Spohn, 2001, p. 324). Descriptions including these terms are
non-conservative.

Limited to the conservative part of the dynamics of the bound states of two charged particles,
the electromagnetic system up to 2PC order can be described by the following Lagrangian
(Buonanno, 2000, p. 5):

L(q1,q2, q̇1, q̇2) = L0 +
1

c2
L2 +

1

c4
L4, (12.13)

in which

L0 =
1

2
m1q̇

2
1 +

1

2
m2q̇

2
2 −

e1e2

q
, (12.14)

L2 =
1

8
m1q̇

4
1 +

1

8
m2q̇

4
2 +

e1e2

2q
[q̇1 · q̇2 + (n · q̇1)(n · q̇2)], (12.15)

L4 =
1

16
m1q̇

6
1 +

1

16
m1q̇

6
2 −

e1e2

8q

{
q̇2

1q̇
2
2 − 2(q̇1 · q̇2)2 + 3(n · q̇1)2(n · q̇2)2

− (n · q̇1)2q̇2
2 − (n · q̇2)2q̇2

1 +
e1e2

m2q
[q̇2

1 − 2(n · q̇1)2] +
e1e2

m1q
[q̇2

2 − 2(n · q̇2)2]

− 2(e1e2)2

m1m2q2

}
,

(12.16)

where q = q1 − q2 and n = q/q.

Applying the Legendre transform to arrive at the Hamiltonian description, the expressions

M = m1 +m2, µ =
m1m2

M
, ν =

µ

M
, (12.17)

can be used to rewrite the expression. Note that the parameter ν can take all values in between
the test mass limit, for ν = 0, and the equal mass case, for ν = 1/4 (Buonanno, 2000, p. 5).

The next step to simplify the Hamiltonian is limiting the case to the dynamics of bound states
in two-body dynamics, which means to take e1e2 < 0 and pose that coupling constant α =

−e1e2 > 0. Considering the centre-of-mass frame in which P = p1 = −p2, we can introduce
the following reduced variables (Buonanno, 2000, p. 6)

Ĥ =
H
µ

, p =
P

µ
, t̂ =

µt

α
, r =

µq

α
. (12.18)
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After which the Hamiltonian can be rewritten in the following form (Buonanno, 2000, p. 6):

Ĥ(r,p) =
1

2
p2 − 1

r
− 1

8c2
(1− 3ν)p4 − 1

2c2

ν

r
[p2 + (n · p)2]

− 1

8c2

1

r
[3ν2(n · p)4 + ν(3ν − 2)p4 + 2ν(ν − 1)p2(n · p)2]

+
1

16c4
(1− 5ν + 5ν2)p6 +

1

4c4

ν

r2
p2 +

1

4c4

ν

r3
. (12.19)

In this Hamiltonian, we can identify the symmetries for time translations and space rotations.
They are corresponding to the following two conserved quantities:

centre-of-mass non-relativistic energy: Ĥ(r,p) = ÊNR =
ENRc.m.

µ
, (12.20)

angular momentum: r × p = j =
J c.m.

α
. (12.21)

From now on we will drop the centre-of-mass subscripts, thus define ENR ≡ ENRc.m. and J ≡ J
(Buonanno, 2000, p. 6).

12.1.1 Energy levels and reduced radial action

Using the Hamilton-Jacobi formalism, we can evaluate the energy levels of the system, in which
the two-body description can be summarized in a coordinate invariant manner. To do so, we
first introduce the reduced Hamilton principal-function Ŝ, defined by

∂Ŝ

∂r
= p. (12.22)

Restricting the description to the planar motion, and separating the time and angular coordi-
nates, we can write the reduced Hamilton principal function as follows:

Ŝ = −ÊNRt̂+ jφ+ Ŝr(r, ÊNR, j). (12.23)

Solving the Hamilton-Jacobi equation Ĥ(r,p) = ÊNR with respect to (dŜr/dr) = pr = n · p
yields

Ŝr(r, ÊNR, j) =

∫
dr

√
R(r, ÊNR, j), (12.24)

where we have used that p2 = (n · p)2 + j2

r2
, and R is a polynomial of the fifth order in 1/r.

Neglecting terms O(c−6), the effective potential for the radial motion is given by:

R(r, ÊNR, j) = A+
2B

r
+
C

r2
+
D1

r3
+
D2

r4
+
D3

r5
, (12.25)
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with

A = 2ÊNR +
1

c2
(1− 3ν)(ÊNR)2 +

1

c4
ν(4ν − 1)(ÊNR)3, (12.26)

B = 1 +
1

c2
(1− ν)ÊNR +

1

c4

ν

2
(2ν − 1)(ÊNR)2, (12.27)

C = −j2 +
1

c2
(1 + ν), (12.28)

D1 = − 1

c2
νj2 − 1

c4
ν2j2ÊNR +

1

c4

ν

2
(4ν − 1), (12.29)

D2 = − 3

c4
ν2j2, (12.30)

D3 =
3

4c4
ν2j4. (12.31)

For our purposes, we will consider

irealr (ÊNR, j) =
2

2π

∫ rmax

rmin

dr

√
R(r, ÊNR, j), (12.32)

which is the reduced radial action variable (Buonanno, 2000, pp. 6–7).

By performing a complex contour integral, Damour and Schäfer have shown that

I(A,B,C,D1, D2, D3) =
B√
−A
−
√
−C

{
1− 1

2

B

C2

[
D1 −

3

2

D2B

C
+

15

8

D2
1B

C2

]

− 1

4

A

C2

[
D2 −

3

4

D2
1

C

]
+

3

4

B

C3

[
A− 5

3

B2

C

]
D3

}
+ · · · , (12.33)

where the higher-order terms contain combinations of the Di-coefficients which yield higher
orders in 1/c (Damour and Schäfer, 1988, p. 144). Inserting the expressions from equations
12.26-12.31, we find an expression for the radial action variable IrealR = αirealr (Buonanno, 2000,
p. 7):

IrealR (ENR,J ) =
αµ1/2

√
−2ENR

[
1− 1

4
(ν − 3)

ENR

µc2
− 1

32
(5− 6ν − 3ν3)

(
ENR

µc2

)2
]

− J +
α2

c2J

(
1

2
− ν

2

ENR

µc2

)
+

1

8
(1− 6ν)

α4

c4J 3
. (12.34)
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Solving this equation in terms of the relativistic energy, ER = ENR + Mc2, will lead to the
description of the energy levels:

ER(N ,J ) = Mc2 − 1

2

α2µ

N 2
+

1

c2
α4µ

[
− 1

2

1

JN 3
+

1

8
(3− ν)

1

N 4

]
+

1

c4
α6µ

[
− 3

8

1

J 2N 4

+
1

16
(−5 + 3ν − ν2)

1

N 6
+

1

4
(3− 2ν)

1

JN 5
+

1

8
(6ν − 1)

1

J 3N 3

]
, (12.35)

in which we have introduced the Delaunay action variableN = IrealR +J . At 0PC order this de-
scribes the degeneracy of the energy levels in the Coulomb problem. Identifying N/~ with the
principal quantum-number n, and J /~ with the total angular momentum quantum-number l,
the 1PC order describes the correct bound-state energies of the singlet sates of the positronium
in the classical limit, with e1 = −e2,m1 = m2, andJ /~� 1. Due to the dipole-type interactions
that enter at 1.5PC order and have not been included in this description, equation 12.35 does not
provide the correct descriptions for 2PC order energy levels. The dipole radiation reaction ef-
fects can be postponed to the 2.5PC quadrupole order by choosing e1/m1 = e2/m2 (Buonanno,
2000, pp. 7–8). We will not make the choice to restrict ourselves to the e1/m1 = e2/m2 case in
our discussion, since we will only look at the conservative part of the bound state dynamics
and will not encounter the problems which arise at the radiation scale.

12.2 Effective one-body description

The goal is to map the two-body dynamics to an effective dynamics of a test particle in an
external electromagnetic field. When we associate the massm0 and charge e0 to the test particle,
we can describe its effective action with

Seff =

∫ (
−m0cds0 +

1

c
e0A

µ
eff (z)dzµ

)
(12.36)

where Aµeff = (Φeff ,Aeff ) is the effective electromagnetic field potential. Then, after perform-
ing a Legendre transform, the effective Hamiltonian must satisfy

(Heff − e0Φeff )2

c2
= m2

0c
2 +

(
p− e0

c
Aeff

)2
. (12.37)

Now the effective electromagnetic field can be constructed by expanding in the dimensionless
parameter α0

m0c2R
in which we have a coupling constant α0 = e2

0, and α0
m0c2

is the classical charge
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radius of m0. This yields

Φeff (R) =
e0φ0

R

[
1 + φ1

α0

m0c2R
+ φ2

(
α0

m0c2R

)2

+ ...

]
, (12.38)

Aeff (R) =
e0a

cR

[
a0 + a1

α0

m0c2R
+ ...

]
, (12.39)

in which we have introduced the dimensionless parameters φ0, φ1, φ2, a0, a1, and a vector with
the dimension of a velocity, a. These will be fixed by matching the two-body description to the
effective one-body description (Buonanno, 2000, p. 8).

ENR0

m0c2
=
ENR

µc2

[
1 + α1

ENR

µc2
+ α2

(
ENR

µc2

)2
]

(12.40)

where α1, α2 will be fixed by matching (Buonanno, 2000, p. 10).

There are three ways to map the two descriptions to each other, differing from one another by
choice of effective electromagnetic field and spacetime metric.

12.2.1 Effective scalar potential

The first mapping is by expanding in the scalar potential, while taking the vector potential
equal to zero.

Φeff (R) =
e0φ0

R

[
1 + φ1

α0

m0c2R
+ φ2

(
α0

m0c2R

)2

+ ...

]
, (12.41)

Aeff (R) = 0. (12.42)

This results in the following derivative of the radial Hamilton principal-function:

dS0
R

dR
= 2m0ENR0 − 2m0e0Φeff −

J 2
0

R2
+

(ENR0 )2

c2
+
e2

0Φ2
eff

c2
−

2e0ENR0 Φeff

c2
(12.43)

in which Eeff0 = ER0 − m0c
2 is the non-relativistic energy. Plugged into the integral for the

effective radial action variable, this yields:

Ieff0 (ENR′ ,J′) =
α0m

1/2
0√

−2ENR0

[
−φ0 −

3φ0

4

ENR0

m0c2
+

5φ0

32

(
ENR0

m0c2

)2
]

− J0 +
α2

0

J0c2

[
φ2

0

2
− φ0φ1 − φ0φ1

ENR0

m0c2

]
+

1

8

α4
0

J 3
0 c

4
[φ4

0 − 12φ3
0φ1 + 8φ2

0φ2 + 4φ2
0φ

2
1]. (12.44)
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Identifying this equation with the result from equation 12.34, assuming that m0 = µ and using
the relation between the adiabatic invariantsN = N0, J = J0, and the mapping from equation
12.40, we can derive the value or expressions for the unknown parameters. In particular, at 0PC
order, we have:

−φ0α0 = α (12.45)

where it is then natural to take φ0 = −1, yielding that e2
0 = α0 = α = −e1e2. At 1PC order we

have the equations:

−φ0α0(2α1 − 3) = α(ν − 3), α2
0(φ2

0 − 2φ0α1) = α2, (12.46)

Filling in the values found from 0PC order, these result in: α1 = ν
2 and φ1 = 0.

For 2PC order we have the equations:

−φ0α0(5− 12α1 − 12α2
1 − 16α2) = α(5− 6ν − 3ν2), (12.47)

α4
0(φ4

0 + 4φ2
0φ

2
1 − 12φ3

0φ1 + 8φ2
0φ2) = α4(1− 6ν), (12.48)

φ0φ1α
2
0 =

ν

2
α2. (12.49)

which yield α2 = 0 and φ2 = −3ν
4 , but leave the last equation inconsistent. This inconsistency

can be solved by introducing another parameter. Suppose that the coefficients in the effective
scalar potential depend on an external parameter Eext with the dimension of energy.

φ0(Eext) = φ
(0)
0 + φ

(2)
0

Eext
m0c2

+ φ
(4)
0

(
Eext
m0c2

)2

, (12.50)

φ1(Eext) = φ
(0)
1 + φ

(2)
1

Eext
m0c2

, (12.51)

φ2(Eext) = φ
(0)
2 . (12.52)

For the matching between the ’real’ description and the effective description to work, the ex-
ternal parameter should be set equal to the effective non-relativistic energy, Eext ≡ ENR0 .

What this external parameter then does, is reshuffle the 1
c2

expansion such that the parameter-
equations for the 1PC and 2PC orders are modified. This introduces many different solutions
to the constraint equations. The simplest one incorporates the requirement that the energy-
dependence only start to play a role from the 2PC order, and it is given by:

φ
(0)
0 = −1, φ

(2)
0 = 0, φ

(4)
0 = 0, (12.53)

φ
(0)
1 = 0, φ

(2)
1 = −ν

2
, φ

(4)
1 = −3

4
ν, (12.54)

α1 =
ν

2
, α2 = 0. (12.55)
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These parameters define the mapping from the two-body description to an effective one-body
description for a body of test mass m0 = µ moving in an external scalar potential given by:

Φeff (R,Eext) = −e0

R

[
1− ν

2

(
Eext
m0c2

)(
α0

m0c2R

)
− 3ν

4

(
α0

m0c2R

)2
]

(12.56)

in which the external energy parameter is equal to the non relativistic energy, Eext ≡ ENR0 .

The energy levels are related by the fomula

ENR0

m0c2
=
ENR

µc2

[
1 +

ν

2

ENR

µc2

]
(12.57)

giving the following relation between the real total relativistic energy E and the effective rela-
tivistic energy E0:

E0

m0c2
≡ E

2 −m2
1c

4 −m2
2c

4

2m1m2c4
(12.58)

This result is very interesting because for the limitm1 � m2 the effective energy of the effective
particle equals the energy of the particle 1 in the rest frame of particle 2, and likewise the other
way around.

Despite these good qualities, the result is unsatisfactory due to the dependence on the energy
of the effective scalar potential. It obscures the nature of the mapping and complicates the
possibility of incorporating radiation reaction effects (Buonanno, 2000, p. 12).

12.2.2 Effective vector potential

Now exploring the possibility of expanding the vector potential, while the scalar potential Φeff

is independent of any external parameter:

Aeff =
e0(Jext ×R)

m0cR3

[
a0 + a1

α0

m0c2R
+ ...

]
(12.59)

where Jext is an external vector supposed to be perpendicular to the plane of motion. To solve
the inconsistency in the constraint equations, we apply the Hamilton-Jacobi framework, and
restrict the situation to θ = π/2, resulting in

p =
∂Seff
∂R

= êR
∂Seff
∂R

+ êφ
1

R

∂Seff
∂φ

(12.60)

in which êR and êφ are vectors of an orthonormal basis. For the particular choice of Jext, we
now have:

Aeff =
e0Jextêφ
m0cR3

[
a0 + a1

α0

m0c2R
+ ...

]
(12.61)
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where Jext = |Jext|. Using ∂Seff
∂φ = J0, we get

p ·Aeff =
e0JextJ0

m0cR3

[
a0 + a1

α0

m0c2R
+ ...

]
, A2

eff =
e2

0J
2
exta

2
0

m2
0c

2R4
+ .... (12.62)

Note that with this special choice for the vector potential, p · Aeff does not depend on pR.
Plugging this into the Hamilton-Jacobi equation, equation 12.37, with Heff = ENR0 + m2

0c
2 we

obtain:

dS0
R

dR
= 2m0ENR0 − 2m0e0Φeff −

J 2
0

R2
+

(ENR0 )2

c2
+
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0Φ2
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−
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α0

m0c2R
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(
α0

m0c2R

)2
]
− J2
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R2
a2

0

(
α0

m0c2R

)2

(12.63)

where Φeff is given by the expression in equation 12.38, which is the expansion of the scalar
potential. Evaluating the radial action variable yields

IeffR (ENR0 ,J0, Jext) =
α0m

1/2
0√

−2ENR0

[
−φ0 −

3φ0

4

ENR0
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+
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32
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ENR0
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]
− J0

+
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0
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− φ0φ1 − φ0a0

Jext
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ENR0

m0c2
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−φ0φ1 − φ0a0
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J0

+ a1
Jext
J0

+ a2
0

J2
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J 2
0
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+
1

8

α4
0

J 3
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[
φ4

0 − 12φ3
0φ1 + 8φ2

0φ2 + 4φ2
0φ

2
1 + 24φ2

0φ1a0
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− 12φ3

0a1
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J0

+ 24φ2
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2
0

J2
ext

J 2
0

]
.

(12.64)

The constraint equations to be satisfied, give the same result for the 0PC order as in the case for
the scalar potential: −φ0α0 = α, and we pose φ0 = −1. At 1PC order, we get

−φ0α0(2α1 − 3) = α(ν − 3), α2
0

(
φ2

0 − 2φ0φ1 − 2φ0a0
Jext
J0

)
= α2. (12.65)

The first of these yields, together with the result from 0PC, that α1 = ν/2. And for the second of
these 1PC constraints, we assume that either the Coulomb potential does not have a correction
at 1PC order (φ1 = 0), or that the vector potential only enters at the next Coulombian order
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(a0 = 0). The 2PC order constraints are

−φ0α0(5− 12α1 − 12α2
1 + 16α2) = α(5− 6ν − 3ν2), (12.66)

α2
0

(
φ4

0 + 4φ2
0φ

2
1 − 12φ3

0φ1 + 8φ2
0φ2 + 24φ2

0φ1a0
Jext
J0

−12φ3
0a0

Jext
J0

+ 24φ2
0a

2
0

J2
ext

J 2
0

+ 12φ2
0a1

Jext
J0

)
= α4(1− 6ν),

(12.67)

α2
0

(
φ0φ1 + φ0a0

Jext
J0
− a2

0

J2
ext

J 2
0

)
= ν

α2

2
. (12.68)

Plugging the results from the 0PC and 1PC order into the 2PC constraints, and assuming that
the external vector Jext coincides with the constant of motion J0, we end up with the rather
simple solution: φ2 = 0, a1 = −ν

2 , and α2 = 0.

We can conclude from this that it is possible to reduce the two-body description at 2PC order
to the description of one test particle moving in an effective electromagnetic field described by
a Coulomb potential Φeff (R) = − e0

R and a vector potential dependent on the external vector
Jext(≡ J0)

Aeff (R, Jext) = −ν
2

e0α0

m2
0c

3

(Jext ∧R)

R4
(12.69)

Though this mapping is quite satisfactory because it still satisfies equation 12.58, the fact that it
depends on an external parameter is not desirable.

12.2.3 Effective metric

To find an effective description that does not depend on an external parameter, such as the en-
ergy or angular momentum of the test particle, especially relevant for incorporating radiation
reaction effects, we now relax the assumption that the test mass is moving in flat spacetime. In
this section, we describe an effective spacetime metric that can be viewed as an effective way
of describing the global exchange of energy between the two charged particles in the two-body
description.

We start from the most general spherical symmetric metric in the Schwarzschild gauge:

ds2
eff = −A(R)c2dt2 +B(R)dR2 +R2(dθ2 + sin θ2dφ2), (12.70)
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where the coefficients A(R) and B(R) are given as expansion in the dimensionless parameter
α0

m0c2R
as follows:

A(R) =1 +A1
α0

m0c2R
+A2

(
α0

m0c2R

)2

+A3

(
α0

m0c2R

)3

+ ..., (12.71)

B(R) =1 +B1
α0

m0c2R
+B2

(
α0

m0c2R

)2

+ ... (12.72)

Reducing the two-body description to a one-body description can be done by assuming that in
the effective metric description only the scalar potential Φeff is non-zero, thus using equations
12.41 and 12.42. By using the derivative of the Hamilton principal-function, it is now possible to
write down the radial action variable for the effective metric situation (Buonanno, 2000, p. 16):

IeffR (ENR0 ,J0) =
α0m

1/2
0√

−2ENR0

[
A+ B E
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+ C
(
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]

− J0 +
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0
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[
D + E E
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′
m0c2

]
+

α4
0

J 3
0 c

4
F , (12.73)

where the coefficients are given by (Buonanno, 2000, p. 16):
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A1, (12.74)

B =− 3

4
φ0 +

(
B1 −

7

8
A1

)
, (12.75)

C =
5

32
φ0 +

(
B1

4
− 19

64
A1

)
, (12.76)
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, (12.77)

E =φ0
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, (12.78)
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(24A4
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4
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φ4
0

8

+
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0

16
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1 − 40φ1A1 + 32A2
1 + 16φ2 − 20A2 + 8φ1B1 − 10A1B1 −B2
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(12.79)

If you let φ0 → 0 and take α0 = Gm1m2 in this expression, with G Newton’s constant, the
result coincides with the expression for the radial action variable in pure General Relativity
(Buonanno, 2000, p. 16).
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Equate the two-body radial action variable from equation 12.34, and the effective metric one-
body radial action variable from equation 12.73, while assuming that J0 = J , m0 = µ, and the
mapping between energy levels of the two descriptions from equation 12.40. Then the result
is that at 0PC order the constraint is given by α0(φ0 − A1/2) = α which is fulfilled for taking
A1 = 0 and φ0 = −1. For 1PC order you can then derive the following constraint equations
(Buonanno, 2000, p. 16):

−2φ0α0(2α1 − 3+α0(7A1 − 8B1 − 2A1α1) = 2α(ν − 3), (12.80)

2α2
0(φ2

0 + φ0(2A1 −B1 − 2φ1)) + α2
0(2A2

1 − 2A2 −A1B1) = 2α2. (12.81)

Pose that φ1 = 0, A2 = 0, and B1 = 0 to ensure that the scalar potential and the effective
metric do not differ from the Coulomb potential and the flat spacetime metric. This implies
α1 = ν/2 from the first 1PC constraint, and automatically satisfies the second one (Buonanno,
2000, p. 17).

For 2PC order the values found above can be inserted into the constraint equations, and setting
φ2 = 0 imposes the lack of corrections to the Coulomb potential at this order. This then yields
the simple and unique solution with α2 = 0, A3 = ν, and B2 = −ν. Hence, introducing the
effective metric approach allows for a mapping between the two-body description and one-
body description without the introduction of external parameters. There is also no requirement
to modify the Coulomb scalar potential because Φeff (R) = −e0/R holds up. To conclude this
mapping, the external spacetime metric is given by (Buonanno, 2000, p. 17):

A(R) = 1 + ν

(
α0

m0c2R

)3

, B(R) = 1− ν
(

α0

m0c2R

)2

. (12.82)
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Gravitational Binary Inspiral

Now we go back to the gravitational binary problem. The Effective One Body approach in the
gravitational context is based on four tools: resummation methods, flexibility of analytical ap-
proaches, extraction of the non-perturbative information contained in numerical simulations,
and qualitative understanding of the physical features determining the waveform (Damour
and Nagar, 2009, p. 6). The resummation methods will be explained in section 13.1, where
the multiplicative multipole decomposition, explained in section 13.1.2, is a way of including
qualitative understanding of the physical features of the waveform. The flexibility of analytical
approaches is used in creating the mapping between the two-body and one-body descriptions,
as we have seen in the previous chapter, and we will see again in sections 13.2 and 13.3 for
the gravitational case. Lastly, the extraction of non-perturbative information from numerical
relativity will not be discussed in detail, but those are key in the description of the merger stage
of the waveform. For the part that we will discuss now, we will first briefly discuss the two
resummation methods. After that, we take the post-Newtonian description, as can be found
by applying the effective field theory approach, as a starting point to construct the one-body
description.

In this section, keep in mind that the main goal of the Effective One Body approach is to ex-
tend the analytical representation of the gravitational waveform templates to stages beyond the
reach of the post-Newtonian expansion. The post-Newtonian expanded results yield accurate
descriptions of the motion and radiation for binary systems in their early inspiralling stage,
thus as long as the expansion parameter GM

c2R
is significantly smaller than ∼ 1

6 . This bound-
ary corresponds to the last stable orbit, represented by a distance between the two objects of
R ∼ 6GM

c2
. After this last stable orbit, the orbital motion is expected to become dynamically un-

stable, which is the beginning of the plunge-stage of the coalescence (Damour and Nagar, 2009,
pp. 5–6). The simplified and condensed description of the one-body formalism is constructed in
the stage in which the post-Newtonian description is valid, and then extended to the stages in
which the post-Newtonian description breaks down, where the one-body description is tuned
by using results from perturbation theory and numerical relativity.
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13.1 Resummation methods

To improve the convergence properties of the post-Newtonian expansions, two resummation
methods are applied systematically. In the following sections, we will conceptually discuss
these resummation methods and their results.

13.1.1 Padé approximants

The first resummation method uses Padé approximants. This method is discussed in the ar-
ticle written by Thibault Damour, Bala R. Iyer, and B.S. Sathyaprakash (Damour, Iyer, and
Sathyaprakash, 1998). It takes as input the Taylor-expanded, or PN-expanded, results for the
energy and radiation flux, as given in equations 6.5 and 6.6. Without the Padé approximants
procedure, these expansions are used to construct approximate waveforms through a standard
map, that we will call T . This map takes the successive Taylor coefficients, represented by ETn
and FTn , and inserts them into an integral, such as the one in equation 6.8 to construct the wave-
form hTn (t, λk), depending on the time t and the parameters of the signal λk, with k = 1, . . . , nλ:

(ETn , FTn)
T−→ hTn (t, λk). (13.1)

Alternatively, the Padé approximants approach inserts two extra steps in the mapping proce-
dure, using newly introduced energy-type and flux-type functions, represented by e(v) and
f(v). Let us denote this alternative map with P , and consider the four-stage procedure

(ETn , FTn)→ (eTn , fTn)→ (ePn , fPn)→ (E[ePn ], F [ePn , fPn ])→ hPn (t, λk). (13.2)

In their paper, Damour, Iyer, and Sathyaprakash show that the templates hPn (t, λk) perform
“better” in several ways than the templates hTn (t, λk). The criteria for assessing the quality
of the templates come from comparing the templates with the exact waveforms, which are
available through exact results for E(v) and very accurate numerical results for F (v) in the test
mass limit (Damour, Iyer, and Sathyaprakash, 1998, pp. 1–4).

The test mass limit is not only used to confirm the robustness of the hPn (t, λk) templates, it
also plays a large role in the construction of the Padé approximations e(v) and f(v). These are
initially defined in the test mass limit, in which η = 0 and then extended to cases for which
η is nonzero. The full derivation of the energy-type and flux-type functions is explained in
(Damour, Iyer, and Sathyaprakash, 1998, pp. 6–13, 18–20). The basis for constructing these
functions is the calculation of the Padé approximants to the truncated Taylor series expansions
ETn and FTn , which are the Taylor expansions for the energy and radiation flux capped at order
n. In general, for a truncated Taylor series Sn(v) = a0 + a1v+ · · ·+ anv

n, the Padé approximant
is defined by two integers m, k, such that m+ k = n. If Tn[· · · ] denotes the operation of Taylor
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expanding a function up to and including order vn, the Padé approximant of Sn is defined by

Pmk (v) =
Nm(v)

Dk(v)
, (13.3)

with the constraint that
Tn[P km(v)] ≡ Sn(v). (13.4)

Nm and Dk are polynomials in v of order m and k respectively, and the normalization of Dk(v)

such that Dk(0) = 1 assures that the Padé approximants are uniquely defined. Furthermore, in
many cases the Padé approximants are most useful when they are near diagonal. This is the
case for Pmm if n = 2m is even, and Pm+1

m or Pmm+1 if n = 2m + 1 is odd (Damour, Iyer, and
Sathyaprakash, 1998, pp. 18–19).

An example of a diagonal Padé approximant for the truncated Taylor series expansion given
by

S2(v) = a0 + a1v + a2v
2, (13.5)

is given by

P 1
1 (v) =

c0

1 + c1v
1+c2v

= c0
1 + c2v

1 + (c1 + c2)v
, (13.6)

where the coefficients c0, c1, c2 have to be determined by comparison to the Taylor expanded
form (Damour, Iyer, and Sathyaprakash, 1998, p. 19).

13.1.2 Multiplicative decomposition of the metric multipolar waveform

The second resummation method specifically addresses the multipolar expansion and is ex-
plained in full detail in (Damour, Iyer, and Nagar, 2009). One of the characteristic features of
this resummation method is that is uses a multiplicative decomposition of the complex multi-
polar waveform hlm. The post-Newtonian multipolar expansion, on the other hand, is additive,
which means that it has the structure of hlm = hNlm + h1PN

lm + h1.5PN
lm + · · · . The factors that the

multipolar waveform is decomposed into are: (i) the “Newtonian” waveform, (ii) a relativistic
correction coming from an “effective source”, (iii) leading-order tail effects linked to propa-
gation on a Schwarzschild background, (iv) a residual tail dephasing, (v) residual relativistic
amplitude corrections. This yields the (l,m) multipolar waveform emitted by a circular non-
spinning compact binary given by (Damour, Iyer, and Nagar, 2009, pp. 1–5):

h
(ε)
lm =

GMν

c2R
n

(ε)
lmcl+ε(ν)x(l+ε)/2Y l−ε,−m

(π
n
,Φ
)

︸ ︷︷ ︸
Newtonian contribution: h(N,ε)lm

Ŝ
(ε)
effTlme

iδlmρllm︸ ︷︷ ︸
other factors: ĥ(ε)lm

. (13.7)
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ε denotes the parity of the multipolar waveform, for the circular case we have: even (ε = 0,
or l + m =even) for mass-generated multipoles, and odd (ε = 1, or l + m =odd) for current-
generated ones, x ≡ (GMΩ/c3)2/3, and Y lm(θ, φ) are the usual scalar spherical harmonics. The
two factors, n(ε)

lm and cl+ε(ν) are numerical factors (Damour, Iyer, and Nagar, 2009, pp. 1–6).
The first part of the multipolar waveform is called “Newtonian” because it is equal to the first
term, corresponding to the 0-th post-Newtonian order, in the additive decomposition of the
multipolar expansion of the waveform.

The “other factors” ĥ
(ε)
lm ≡ Ŝ

(ε)
effTlme

iδlmρllm represents a resummed version of all the post-

Newtonian corrections. ĥ(ε)
lm itself and all its constituting factors have a structure ĥ(ε)

lm = 1 +

O(x) (Damour and Nagar, 2009, p. 20). These four factors form a decomposition of the post-
Newtonian-correction factor ĥ(ε)

lm = 1 + h1x + h1.5x
3/2 + · · · , and this is the first step of the

resummation method. The choice for these four factors is based on physical intuition of the
main physical effects entering the final waveform. The motivation for the first factor, the source
term Ŝ

(ε)
eff , is based on the form of the equation satisfied by each partial wave in the test-mass

limit. This factor is a linear combination of terms linear in the stress-energy tensor Tµν of a
test-particle of mass µ moving around a hole of mass M . The second factor, the tail factor Tlm,
is motivated by thinking about the structure of the transfer function relating the far-zone grav-
itational wave amplitude to the near zone one. The remaining two factors, eiδlm and ρllm, can be
identified as the phase and the l-th root of the modulus of the waveform respectively (Damour
and Nagar, 2008, pp. 6–7).

13.2 Conservative dynamics

To give an idea of the construction of an effective one-body description, we will consider the
procedure for the 2PN order, which is very similar to what we have seen in the previous chap-
ter. The Hamiltonian that describes the conservative part of the equations of motion, in the
centre-of-mass frame with the relative motion as a parameter, is given by (Damour and Nagar,
2009, p. 6):

Hrelative
2PN (q,p) = H0(q,p) +

1

c2
H2(q,p) +

1

c4
H4(q,p), (13.8)
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where

H0(q,p) =
p2

2µ
+
GMµ

|q|
, (13.9)

H2(q,p) =
p4

8µ3
(3ν − 1)− GM

2µ|q|

[
(3 + ν)p2 + ν

(
q · p
GM |q|

)2
]

+
µ

2

(
GM

|q|

)2

, (13.10)

H4(q,p) =
p6

16µ5
(1− 5ν + 5ν2) +

GM

8|q|

[
p4

µ3
(5− 20ν − 3ν3)− 2ν2

µ

(
p(q · p)

GM |q|

)2

− 3ν2

(
q · p
GM |q|

)4
]

+
1

2

[
p2

µ
(5 + 8ν) + 3νµ

(
q · p
GM |q|

)2
](

GM

|q|

)2

− µ

4
(1− 3ν)

(
GM

|q|

)3

,

(13.11)

with µ = m1m2
M the reduced mass, M = m1 + m2, and ν = µ

M the symmetric mass ratio
(Schäfer and Jaranowski, 2018, p. 45). The Newtonian approximation, H0, can be thought of
as a test particle of mass µ orbiting around an external mass GM . The goal of the Effective
One Body approach will be to look for an external spacetime geometry gextµν (xλ, GM) such that
the geodesic dynamics of a test particle of mass µ within gextµν (xλ, GM) is equivalent to the
dynamics described by equation 13.8 (Damour and Nagar, 2009, pp. 6–7).

The relation between the two descriptions will be considered through a ‘dictionary’. Instead of
thinking about the classical Hamiltonian, H(q,p), we will think in a way that is more related to
quantum mechanics, in terms of quantized energy levels E(n, l) of the quantum bound states
of the Hamiltonian operatorH(q̂, p̂. The energy levels will depend on the integer-valued quan-
tum numbers n and l. l parameterizes the total orbital angular momentum, L2 = l(l + 1)~2,
and n is the principal quantum number. These two are related through n = l+nr + 1, where nr
denotes the number of nodes in the radial wave function. There is no magnetic quantum num-
ber m for the energy levels due to the spherical symmetry of the system. The non-relativistic
Newton interaction in equation 13.9 can be associated with the energy levels given by

E0(n, l) = −1

2
µ

(
GMµ

n~

)2

, (13.12)

which depends only on n. For the 2PN description of the system in equation 13.8, we can write
the energy levels as

Erelative2PN (n, l) = −1

2
µ
α2

n2

[
1 +

α2

c2

(c11

nl
+
c20

n2

)
+
α4

c4

( c13

nl3
+

c22

n2l2
+
c31

n3l
+
c40

n4

)]
, (13.13)

where α ≡ GMµ/~, and we have assumed the quasi-classical limit where n and l are large.
The dimensionless coefficients cpq are functions of the symmetric mass ratio ν ≡ µ/M . The
Hamiltonian expressed in terms of the action variables J = l~ = 1

2π

∮
pφdφ, and N = n~ =
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Ir + J , with Ir = 1
2π

∮
prdr, applying to the classical limit, is called the ‘Delaunay Hamiltonian’

(Damour and Nagar, 2009, p. 7).

So far, the description has still been for a two-body system, but now we start constructing the
one-body system. We describe an effective, spherically symmetric metric

gextµν dx
µdxν = −A(R)c2dT 2 +B(R)dR2 +R2(dθ2 + sin2 θdφ2). (13.14)

Like in the previous chapter, the metric functions A(R) and B(R) are a priori unknown and
constructed in the form of expansions in GM/c2R:

A(R) = 1 + a1
GM

c2R
+ a2

(
GM

c2R

)2

+ a3

(
GM

c2R

)3

+ · · · , (13.15)

B(R) = 1 + b1
GM

c2R
+ b2

(
GM

c2R

)2

+ · · · , (13.16)

in which the dimensionless coefficients an, bn depend on ν. The Newtonian limit, in which
H2 = H4 = 0, fixes the first of the coefficients: a1 = −2. We can separate the following
variables in the effective action:

Seff = −Eeff t+ Jeffφ+ Seff (R), (13.17)

to solve the effective Hamilton-Jacobi equation

gµνeff
∂Seff
∂xν

∂Seff
∂xµ

+ µ2c2 = 0. (13.18)

To compute the Delaunay Hamiltonian, Eeff (Neff , Jeff ), we set

Neff = neff~ = Jeff + IeffR , (13.19)

Jeff = leff~, (13.20)

IeffR =
1

2π

∮
peffR dR, (13.21)

P effR =
∂Seff (R)

dR
, (13.22)

such that we get:

Eeff (neff , leff ) = µc2 − 1

2
µ
α2

n2
eff

[
1 +

α2

c2

(
ceff11

neff leff
+
ceff20

n2
eff

)

+
α4

c4

(
ceff13

neff l
3
eff

+
ceff22

n2
eff l

2
eff

+
ceff31

n3
eff leff

+
ceff40

n4
eff

)]
. (13.23)
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In this description, the dimensionless coefficients ceffpq are functions of the unknown coefficients
an, bn from the metric functions in equations 13.15 and 13.16 (Damour and Nagar, 2009, p. 8).

We want to define a ‘dictionary’ that maps the two-body description in equation 13.13 to the
effective one-body description in equation 13.23. It is natural to identify n = neff and l = leff .
One then needs a rule to relate the two energies Erelativereal and Eeff . Buonanno and Damour
suggest to first write down a general map between the energy levels of the following form
(Buonanno and Damour, 1999, p. 15):

Eeff
µc2
− 1 = f

(
Erelativereal

µc2

)
=
Erelativereal

µc2

(
1 + α1

Erelativereal

µc2
+ α2

(
Erelativereal

µc2

)2

+ · · ·

)
. (13.24)

This map is represented in figure 13.1. Note that it cannot be directly identified, without some
function f , due to the difference in rest-mass contribution (Damour and Nagar, 2009, pp. 8–9).

FIGURE 13.1: Schematic representation of the correspondence between energy
levels of the real and effective conservative dynamics. n denotes the ‘principal
quantum number’ (n = nr+l+1, with nr = 0, 1, . . . denoting the number of nodes
in the radial function), while l denotes the (relative) orbital angular momentum

(L2 = l(l + 1)~2) (Damour and Nagar, 2009, p. 9).

We can see that identifying Eeff (n, l)/µc2 to f(Erelativereal /µc2) yields six equations relating the
six coefficients ceffpq (a2, a3, b1, b2) to the six coefficients cpq(ν) and to the two energy coefficients
α1 and α2. A natural choice is to let the linearized effective metric coincide with the linearized
Schwarzschild metric with massM = m1 +m2, which is done by choosing b1 = +2. This leaves
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a unique solution for the remaining five coefficients (Damour and Nagar, 2009, p. 9):

a2 = 0, a3 = 2ν, b2 = 4− 6ν, α1 =
ν

2
, α2 = 0. (13.25)

At 2PN order, the metric component A(R) is given by the simple expression

A2PN (R) = 1− 2
GM

c2R
+ 2ν

(
GM

c2R

)3

. (13.26)

In the test-mass limit, for ν → 0, equation 13.26 yields the Schwarzschild time-time metric
coefficient:

gSchw00 = 1− 2
GM

c2R
. (13.27)

This shows that the symmetric mass ratio ν has the role of a deformation parameter in equation
13.26 connecting the known test-mass result to the non-trivial 2PN order result for other mass
ratios (Damour and Nagar, 2009, p. 9).

The simplicity of the one-body description becomes clear when you realise that the ν-dependent
terms in the 2PN Hamiltonian from equation 13.8 are all condensed into the 2ν

(
GM
c2R

)3-contribution
inA(R), together with another simple contribution in the radial metric component: (A(R)B(R))2PN =

1−6ν
(
GM
c2R

)2. This rate of simplification increases for higher PN-orders. For example, including
the 3PN-order contributions will add eleven new ν-dependent coefficients to the centre-of-mass
frame Hamiltonian, but only adds three additional terms in the effective one-body description:
(1) an additional contribution to A(R), (2) an additional contribution to B(R), and (3) a O(p4)

modification of the ‘external’ geodesic Hamiltonian (Damour and Nagar, 2009, p. 10).

13.3 Radiation reaction effects

To include the radiation reaction effects, we switch to polar phase space variables r, pr, φ, pφ, in
the equatorial plane θ = π

2 . Furthermore, we replace the radial momentum pr by the momen-
tum conjugate to the radial coordinate R∗ =

∫
dR(B/A)1/2, which yields PR∗ = (A/B)1/2PR

(Damour and Nagar, 2009, p. 14). The radiation reaction force now appears in the pφ equation
of motion only for the systems that we consider, as is explained in (Buonanno and Damour,
2000, pp. 9–12).

The conservative part of the dynamics has been constructed in the previous section. The result
was a map between the real and the effective conservative energies, as given in equation 13.24.
This energy map can be solved to obtain Etotalreal =

√
s in terms of Eeff , and then by solving the

effective Hamiltonian Jacobi equation to get Eeff in terms of the effective phase space coordi-
nates qeff and peff , the full effective one-body Hamiltonian is obtained. The result is given by
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two nested square roots (c = 1):

ĤEOB(r, pr∗ , φ) =
Hreal
EOB

µ
=

1

ν

√
1 + 2ν(Ĥeff − 1), (13.28)

where

Ĥeff =

√√√√p2
r∗ +A(r)

(
1 +

p2
φ

r2
+ z3

p4
r∗

r2

)
, (13.29)

with z3 = 2ν(4 − 3ν). A(r) is the effective one-body metric function defined by Padé resum-
ming the Taylor-expanded equation 13.15 obtained from matching the real and effective energy
levels. The following rescaled dimensionless (effective) variables have been used: r = R

GM ,
pr∗ =

PR∗
µ , pφ =

Pφ
µGM , t = T

GM . This yields the following equations of motion, in which we
define A′ = dA

dr (Damour and Nagar, 2009, pp. 14–15):

dφ

dt
=
∂ĤEOB

∂pφ
=

Apφ

νr2ĤĤeff

≡ Ω, (13.30)

dr

dt
=

(
A

B

)1/2 ∂ĤEOB

∂pr∗
=

(
A

B

)1/2 1

νĤĤeff

(
pr∗ + z3

2A

r2
p3
r∗

)
, (13.31)

dpφ
dt

= F̂φ, (13.32)

dpr∗
dt

= −
(
A

B

)1/2 ∂ĤEOB

∂r
(13.33)

= −
(
A

B

)1/2 1

2νĤĤeff

{
A′ +

p2
φ

r2

(
A′ − 2A

r

)
+ z3

(
A′

r2
− 2A

r3

)
p4
r∗

}
. (13.34)

The next step is to construct the φ-component of the gravitational radiation flux, F̂φ, from
resumming the φ component of the radiation reaction. During the initial stage of the inspiral,
in which the orbit is quasi-circular, F̂φ is known in its post-Newtonian expanded form:

F̂Taylorφ = −32

5
νΩ5r4

ωF̂
Taylor(vφ), (13.35)

where vφ ≡ Ωrω, and rω ≡ r[ψ(r, pφ)]1/3 is a modified effective one-body radius, with ψ defined
as

ψ(r, pφ) =
2

r2

(
dA(r)

dr

)−1
1 + 2ν


√√√√A(r)

(
1 +

p2
φ

r2

)
− 1

 . (13.36)
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F̂ Taylor in equation 13.35 is then given by

F̂ Taylor(v) = 1 +A2(ν)v2 +A3(ν)v3 +A4(ν)v4 +A5(ν)v5

+A6(ν, log v)v6 +A7(ν)v7 +A8(ν = 0, log v)v8, (13.37)

which includes the known 3.5PN-accurate comparable-mass result, and the small-mass-ratio
4PN contributions (Tagoshi and Sasaki, 1994) (Damour and Nagar, 2009, pp. 15–16).

However, these and higher-order results are rather slowly converging towards the exact value
computed by perturbation theory in the small-mass limit ν = 0, as can be seen in figure 13.2.
Especially up to the last stable orbit the convergent properties are poor. The two resummation
methods discussed in section 13.1 can be used to improve the convergence of the φ component
of the radiation reaction Fφ (Damour and Nagar, 2009, pp. 16–19).

FIGURE 13.2: Illustration of the Taylor expansion of the flux emitted by a particle
on circular orbits in the extreme mass ratio limit ν = 0. The Taylor expansion has
been performed around the numerical result (computed up to l = 6) obtained via

perturbation theory (Damour and Nagar, 2009, p. 16).

The first step in applying the Padé resummation is to choose a number for vpole which rep-
resents the value of the orbital velocity vφ at which the exact angular momentum flux would
become infinite if F̂φ would be analytically continued beyond the last stable orbit. Given vpole,
the resummed radiation raction expression is given by

F̂ resummed(vφ) =

(
1−

vφ
vpole

)−1

P 4
4

[(
1−

vφ
vpole

)
F̂ Taylor(vφ, ν = 0)

]
, (13.38)

where P 4
4 is a (4, 4) Padé approximant as explained in section 13.1.1 (Damour and Nagar, 2009,

pp. 17–18).
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Figure 13.3 shows the results for the Padé resummation applied to the results from figure 13.2.
The vpole was set to be equal to 1/

√
3, corresponding to standard Schwarzschild value for ν = 0

(Damour and Nagar, 2009, p. 17) (Damour, Iyer, and Sathyaprakash, 1998). The resummed
energy flux not only converges better, but the convergence is also monotonic, which was not
the case for the Taylor expanded energy flux.

FIGURE 13.3: Illustration of the untuned Padé resummed expansion of the flux
emitted by a particle on circular orbits in the extreme mass ratio limit ν = 0. The
standard Schwarzschild value vpole = 1/

√
3 has been chosen here (Damour and

Nagar, 2009, p. 18).

The resummed result can even be improved further by ‘flexing’ the value of vpole. This means
that vpole is tuned until the difference between the resummed and the exact flux at the last
stable orbit is minimal (Damour and Nagar, 2009, p. 18). The full explanation of this approach
is given in (Damour and Nagar, 2008), and the results are given in figure 13.4.

125



Chapter 13. Gravitational Binary Inspiral

FIGURE 13.4: Illustration of the tuned Padé resummed expansion of the flux
emitted by a particle on circular orbits in the extreme mass ratio limit ν = 0.
The value vpole has been flexed as described in (Damour, Iyer, and Nagar, 2009)
to improve agreement between the resummed and exact energy flux (Damour

and Nagar, 2009, p. 18).
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Discussion of Part III

Conceptually, this part started from the results of the previous part, or from the post-Newtonian
expanded action obtained through another method. The effective one-body description can be
seen as an extension of the effective field theory from which both the finite-size effects and the
potential modes are integrated out since in such a theory the two objects of the binary cannot
be distinguished anymore. Another way of seeing the approach is as a generalisation of the
test particle limit. Independent from the physical interpretation or conceptual understanding,
the description of the system as an effective body moving through a fixed external spacetime
geometry yields impressive results.

Two important tools for the effective one-body description are the applied resummation meth-
ods: Padé resummation, and multiplicative decomposition of the multipole waveform. The
former is a general procedure to rewrite Taylor expansions up to a certain order. The latter
is a new way to decompose the multipole waveform, the resummation uses a multiplicative,
instead of the more standard additive, decomposition. Both resummation methods show to be
effective on their own, and their strengths can be combined in the effective one-body descrip-
tion.

The overall procedure to match the effective one-body description to the two-body description
is performed in a mapping of the energies of both descriptions. From this mapping in situations
in which both the two-body and the one-body descriptions are well-known, such as the test
particle limit, the coefficients can be fixed and the one-body description can be extended to
apply in regions in which there is no accurate two-body description.

The electromagnetic case presented an interesting study because the availability of exact solu-
tions to the Maxwell equations allows verifying the accuracy of the effective one-body descrip-
tion for a larger range of parameters. The mapping was performed in three different ways: by
an expansion in the scalar field, one in the vector field, and one in the metric field. It showed
that for both the effective scalar and effective vector descriptions a dependence on external
parameters obscured the mapping, and hence reduces the ability to analytically describe situa-
tions outside of the range of validity of the post-Coulombian two-body description.
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With this information, we immediately jumped to the effective metric description to construct
the mapping in the gravitational theory. Although the full mapping and procedure to con-
struct the effective one-body description that generates observable results for the waveform
and phase of a gravitational wave is more extensive than the discussion in this part of the
project, we were able to get an impression of the different tools and methods used in the ap-
proach. The full approach can generate waveforms in the inspiral, late-inspiral, plunge, and
ringdown stages of a binary coalescence. An example of such a combined result of these de-
scriptions of the stages of a waveform is given in figure 14.1.

FIGURE 14.1: Complete resummed effective one-body quadrupolar (l = 2,m =
1) waveform with∼ 29 cycles of inspiral,∼ 1 cycle during plunge, and∼ 4 cycles

of ring-down (Damour, 2008, p. 15).

The post-Newtonian expansion gives an accurate description for the early inspiral of the merger
up to the last stable circular orbit, corresponding to values of the expansion parameter up to
GM
c2r
∼ 1

6 . The Effective One Body approach generates a description of the dynamics and ra-
diation for late inspiral, for GM

c2r
& 1

12 , and the subsequent plunge and merger stages. The
ring-down parts of the description are often obtained by including numerical results (Damour
and Nagar, 2009, p. 5).
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Chapter 15

Conclusions

We have looked at a variety of breakthroughs in the development of gravitational wave theory.
Now, to conclude this project, there are five observations, reflections and insights that I would
like to share.

The first is the link between theoretical and experiment progress. Gravitational waves have
shown to be a great example of the complementary nature of both areas. It is impossible to
say that only theory has supported experimental research or vice versa. Instead, both have
stimulated one another. Starting with the theoretical possibility for the existence of gravita-
tional waves while there was still a seemingly insurmountable gap between the domain in
which gravitational waves were expected and the domain of the experimental capabilities at
the time. However, it was the experimental ambition of Joseph Weber that sparked experimen-
tal advances decreasing the gap, and later also renewed theoretical interest in the theory. Since
the detection of gravitational waves was no longer deemed impossible, the two have worked
closely together. Theoretical efforts are providing continuously improving effective descrip-
tions which have been indispensable in constructing gravitational wave templates to extract
the signal from the detector output. And the detections themselves offer important verification
of these theoretical models and add to the ability to test predictions.

The second point to make here is that even though the concept of ‘effective theories’ that we
have discussed here still is very abstract and broad, the mindset has become imperative in
describing gravitational systems subject to General Relativity. In effective theories, there is al-
ways a compromise to be made between giving up on the fundamental description in a theory,
and the feasibility of obtaining solutions. You could argue that explicit understanding of the
effective theory mindset is not essential for using effective theories. The development of the
effective theory mindset came at around the same time as the development of several effective
theories such as effective field theory in particle physics, therefore it is hard to say which came
first. However, it is also quite unnatural to view them as separate advancements. It pays off in
both ways: understanding the conceptual foundation of effective theories in general can help
to grasp the big outlines of a specific effective theory, while specific effective theories help to
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understand the true trade-offs that are made for effective theories. The first holds for philoso-
phy of science in its own discipline because even though scientists are best at doing science and
do not require the ideas of philosophers, they are also often too close to their work to describe
the nature of what they are doing. The second has been shown in practice in this project by first
introducing the basic description of effective theories, and then giving two examples of how
it is applied in practice, thus proving that the trade-offs being made do pay off in results and
showing the variety of manifestations.

The next two observations are related to the two examples of effective theories that we have
discussed: the effective field theory approach, and the effective one body approach. To put
these two approaches into a broader context of the parameter space in which they can be ap-
plied, we consider figure 15.1. This diagram shows four different approaches to find solutions
to the gravitational binary system central to this project. Note that the post-Newtonian de-
scription is a description that we have considered with the effective field theory approach and
covers the upper half, non-relativistic and weak gravitational, domain. The effective one body
description covers the whole diagram indicated by the dashed grey line.

FIGURE 15.1: Diagram of the parameter space of compact binaries with the vari-
ous approximation schemes and their regions of validity (van de Meent, 2015).
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The third reflection concerns the effective field theory approach. While still not a trivial proce-
dure, it is a very robust framework to systematically build an effective theory to find solutions.
Familiarity with (effective) quantum field theories helps to see the rationale in the approach
and even provides an amount of physical intuition to combine the various contributing effect.
The use of the effective field theory can be classified as a combination between top-down and
bottom-up. The former because it is a more comprehensive description of situations governed
by General Relativity, and the latter because the ignorance about the exact dynamics on the
smallest scales is integrated out and parameterized. This approach can be applied to other
situations with a separation of scales. For example, Rafael Porto also discusses the effective
theory of cosmological large scale structures (Porto, 2016, pp. 90–117). Hence we can conclude
that the effective field theory approach is rich in its ability to solve complicated theories involv-
ing a large range of scales and versatile in its applications.

Fourthly, we address the effective one body approach. The biggest success of the approach
lies in its region of validity in the parameter space. This enables the description to bridge gaps
between other descriptions and combine the strengths from different approaches. However, the
effective one body description compromises on the physical intuition supporting its validity in
certain situations, and in those regions seems to be a clever trick to fine-tune the results. Its
success also heavily relies on the descriptions it takes as input, such as the post-Newtonian
expansion. Concerning the types of use of effective theories, the effective one body approach
lacks a more fundamental describing theory, and therefore it is a bottom-up approach.

The last observation to make in this concluding chapter is the impressive results that both
effective approaches yield individually, but more importantly, their combined strength. The
appreciation for the accuracy of results that have been generated, and the boost in experimental
abilities that this provides, grows even bigger when the complexity of the binary systems and
all their interactions has been considered. To come back to the discussion of scientific progress
from chapter 3.5, these theories or approaches are not incommensurable and therefore we do
not have to choose which one is better or ‘right’. Instead, the approaches have shown to be
highly complementary, and in the case of the effective one body approach even dependent on
the approaches generating the post-Newtonian description and other theories to generate the
necessary input. The most impressive results are a virtue of the collective efforts of effective
approaches to General Relativity.

These collective results have already been utilised in the confirmed detections of gravitational
waves by several laser interferometers. For example, the detection of event GW150914 with
which we have started the introduction of this thesis was facilitated by an enormous bank
of templates constructed from models of the waveform that combine post-Newtonian theory,
the effective one body formalism, and numerical relativity simulations (Abbott et al., 2016b,
p. 6). Furthermore, where we ended the discussion in chapter 10 of part II by referring to
the successful results of post-Newtonian descriptions up to 4PN order, the combined efforts
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of post-Newtonian, post-Minkowskian, multipolar-post-Minkowskian, gravitational self-force,
and Effective One Body approaches have been able to obtain the first partial results up to the
5th post-Newtonian order (Bini, Damour, and Geralico, 2019).

Let, therefore, after these remarks, the final conclusion be that instead of viewing ‘effective’
solely as ‘practical’ and ‘not fundamental’ when we talk about effective theories, we add an-
other meaning of the word: ‘successful’.
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