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1 Abstract

The Universe appears to have a positive Cosmological Constant. If spacetime is curved, with de

Sitter space being a good approximation, then since for every continuous isometry there is a cor-

responding conserved Noether Current, there are implications for the conservation of energy due

to the fact that the de Sitter and Poincaré Lie Groups differ. This project does three things; first, it

shows how as the de Sitter radius approaches infinity, the de Sitter Lie Group approaches becoming

the Poincaré Lie Group of the isometries of flat Minkowski space under İnönü Wigner Contraction.

Secondly, this project finds the Noether currents corresponding to the Generators of the Poincaré

and de Sitter Groups to compare the conservation laws of Minkowski and de Sitter space, show-

ing that while the isometry group of Minkowski space has corresponding conservation laws which

include global conservation of energy, the same is not the case for de Sitter space (unless the de

Sitter radius approaches infinity). Finally, various global and non-global coordinate systems for de

Sitter space are considered, including global coordinates and static patch coordinates, the latter

of which is non-global. When dealing with the static patch region, one can have a Killing vector

which is timelike, therefore giving rise to energy conservation, within the horizon of the static patch,

although not globally (however since the distance of the horizon is inversely proportional to the

Cosmological Constant, which empirical research suggests is extremely small, the static patch is

extremely large). With this taken into account, the results are discussed with some suggestions for

future research.
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2 Introduction

“Begin at the beginning," the King said, very gravely, "and go on till you

come to the end: then stop.”

Alice’s Adventures in Wonderland (Carroll (1865))

This thesis deals with energy conservation in de Sitter space. Evidence, such as the findings of

Perlmutter (1999) and Riess (1998), is supportive of the idea that the Universe approximately re-

sembles de Sitter Space (especially when describing the Universe in its earliest stages and in the

distant future. Differences between the contemporary Universe and de Sitter space will be men-

tioned in section 3.3.1). The fact that for a sufficiently large de Sitter radius of curvature, de Sitter

space locally resembles Minkowski space, even though globally it does not, has been established

in previous literature (such as Aldrovandi and Pereira (1998)), but will nonetheless be shown as

part of this thesis.

Due to Noether’s Theorem, whereby continuous symmetries imply conserved currents, rotational

symmetry implies a conservation law for angular momentum, translational symmetry in space im-

plies a conservation law for linear momentum and translational symmetry in time implies a conser-

vation law for the Hamiltonian, which in many cases is equal to energy.

Due to the differences between their isometry groups, the corresponding conservation laws of de

Sitter space and Minkowski space differ. The isometries of Minkowski space give rise to conser-

vation of energy, but despite de Sitter space locally resembling Minkowski space for a sufficiently

large radius of curvature, it has a nonzero Cosmological constant, and so it does not have global

translational symmetry in time and therefore has no global conservation of energy law.

This thesis will look at de Sitter space’s conservation laws, and how to have some kind of (non-

global) energy conservation in de Sitter space. First, in sections 5 and 6, İnönü Wigner Contraction

will be used to show how the isometries of de Sitter space locally resemble those of Minkowski

space (although not globally). Secondly, Noether’s Theorem will be used in section 7 to find the

conservation laws corresponding to the Lie groups of de Sitter and Minkowski space’s isometries.

With this achieved, it will be shown how de Sitter space does not have global energy conservation.

Finally, looking at concepts such as the Static Patch, it will be shown in section 8 how it is possible

to have conservation of energy within the (non-global) horizon of an extremely large region, with

conclusion section 9 discussing the results overall, and giving some recommendations for directions

of future research in the topic of de Sitter space.

3 The Einstein Field Equations and de Sitter Space

3.1 Intrinsic vs Extrinsic Curvature

To discuss the curvature of de Sitter Space and/or Minkowski Space, one must clearly distinguish

between two different kinds of curvature: Extrinsic and Intrinsic curvature. These can facilitate

understanding the concept of the Riemann tensor, which is central to discussing the curvature of

de Sitter space, and the concept of parallel transport, which will be essential to discussion of Lie

derivatives, which in turn lead in to discussion of Killing Vector Fields.
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3.1.1 Surfaces with both Intrinsic and Extrinsic Curvature

Figure 1: A 2 Sphere

A 2-sphere is a two dimensional surface embedded in a 3 dimensional space (see figure 1). It has

both intrinsic and extrinsic curvature, as can be shown.

3.1.1.1 Extrinsic Curvature of a 2 Sphere

Figure 2: Extrinsic Curvature of a 2-Sphere embedded in 3D Euclidean Space

One can consider two points, A and B, on a 2-sphere embedded in Euclidean 3D space, as is

pictured in figure 2. Two vectors normal to the surface of the sphere at those two points are not

parallel to each other. The parallel counterpart of the vector normal to the surface of the sphere at

point A would in fact be the vector labelled ~C, so the curvature results in the difference between ~B

(the vector normal to the sphere’s surface at point B) and ~C (the vector parallel to the vector normal

to the surface of the sphere at point A). Since the normal vectors exist in the embedding space, the

2



curvature which causes their difference is extrinsic.

3.1.1.2 Intrinsic Curvature of a 2 Sphere

Figure 3: Spherical Coordinates

What about vectors in the tangent space of the sphere, rather than the embedding space? That will

now be discussed.

Figure 4: A 2 Sphere centred at the origin. The x axis points ’out’ of the page.

Using spherical coordinates as are shown in figure 3, one can focus on the yz plane that passes

through the centre of the 2 sphere centred at the origin as is shown in figure 4.
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Figure 5: Moving the tangent vector � @

@✓

from a point on the sphere’s surface to another point
opposite the original point by changing � while keeping ✓ constant.

Consider the vector � @

@✓

. If one moves the vector around the ’equator’ of the sphere, keeping ✓

constant but changing �, then the direction in which � @

@✓

points remains the same. The intial and

final vector are parallel, as can be seen in figure 5.

Figure 6: Moving the tangent vector � @

@✓

from a point on the sphere’s surface to another point
opposite the original point by changing ✓ while keeping � constant.

However, if instead one changes ✓ while keeping � constant, as is shown in figure 6, then the direc-

tion of the vector changes. Therefore, it is possible to combine these changes, ’looping’ the vector

back to its initial location with a reversed direction, as is shown in figure 7. This is most definitely

not parallel transport, since the initial and final vector are antiparallel. Note that while the arrows in

the diagrams are shown ’outside’ the surface, this is merely for clarity. It is more accurate to say that

they are in the tangent space of the sphere, rather than the embedding space. This is not related to

the embedding space, so is intrinsic curvature of the sphere (Carroll (2014a), Physics Unsimplified

(2019b)).
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Figure 7: Moving the tangent vector � @

@✓

from a point on the sphere’s surface to another point
opposite the original point by changing � while keeping ✓ constant, an then moving the tangent
vector from this point back to the original point by changing ✓ while keeping � constant.

A 2-sphere is an ideal example to begin with, because it has both intrinsic and extrinsic curva-

ture.

3.1.2 Surfaces with neither Intrinsic nor Extrinsic Curvature

Figure 8 shows a 2D plane embedded in 3D Euclidean space. It is flat both extrinsically and

intrinsically.

3.1.2.1 Extrinsic Curvature of a Flat 2D Plane

On the one hand, as Figure 8 shows, the vectors normal to the plane at points A and B, which are

in the embedding space, are parallel, such that there is no curvature due to the plane’s embed-

ding.

Figure 8: Extrinsic Curvature of a Flat 2D plane embedded in 3D Euclidean Space

5



3.1.2.2 Intrinsic Curvature of a Flat 2D Plane

On the other hand, figure 9 shows that the plane is not merely extrinsically flat, but is also intrin-

sically flat. If one takes a tangent vector (which is in the tangent space of the surface, rather than

the embedding space) such as @

@x

and moves it in a loop across the surface, no matter what path

is taken, on returning to the original position, the initial and final tangent vector are parallel (Carroll

(2014a), Physics Unsimplified (2019b)).

Figure 9: Intrinsic Curvature of a Flat 2D plane embedded in 3D Euclidean Space

3.1.3 Surfaces with Extrinsic Curvature but not Intrinsic Curvature

A 2D plane embedded in 3D space in a ’bumpy’ way such that, from the perspective of the embed-

ding space, there are visible curves, has extrinsic curvature but not intrinsic curvature.

3.1.3.1 Extrinsic Curvature of a ’Bumped’ 2D Plane

Figure 10 shows extrinsic curvature (The vectors ~A and ~B are normal to the surface at points A

and B. These vectors in the embedding space are not parallel to each other. Instead, ~C is parallel

to ~A).

Figure 10: Extrinsic Curvature of a ’Bumpy’ 2D plane embedded in 3D Euclidean Space

3.1.3.2 Intrinsic Curvature of a ’Bumped’ 2D Plane

In contrast, figure 11 shows the intrinsic flatness. A tangent vector such as @

@x

, which is a vector in

the tangent space of the surface rather than the embedding space, can be moved around, changing

direction, but regardless of the loop one takes, the final and initial tangent vector at the same point

are parallel (Carroll (2014a), Physics Unsimplified (2019b)).
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Figure 11: Intrinsic Curvature of a ’Bumpy’ 2D plane embedded in 3D Euclidean Space

3.1.4 Surfaces with Intrinsic Curvature but not Extrinsic Curvature

Having read through all of this, readers might be thinking ’But what about the reverse case, where

the surface is intrinsically curved, but due to the embedding, is extrinsically flat?’ Unfortunately this

is much more complicated, but it is nonetheless possible in the case of surfaces called ’Minimal

Surfaces’. Giving this example requires moving away from discussion of parallel transport in order

to instead discuss concepts of Gaussian and Mean curvature. Since this is interesting but not as

directly relevant to the discussion of parallel transport which is relevant to discussing the Riemann

tensor and Lie derivatives, it is instead discussed in more detail in the appendix 10.3.

3.2 Intrinsic Curvature and the Riemann Tensor

3.2.1 An Introduction to Covariant Derivatives

The concepts of covariant derivatives, Lie derivatives, and the overall concept of parallel transport

are all absolutely essential to understanding the Killing vector fields of Minkowski and de Sitter

space.

Figure 12: Covariant Derivative

For some curve given by coordinate line x↵, parametrised by z, at any point along the curve, one

can find the tangent vector of x↵

(z) given by @x

µ

@z

. Alternatively, one can find the normal vector at

that point.

As is pictured in figure 12 , one can choose two points along the curve, a and b and can give each
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point a normal vector to the curve, ~A and ~B. One can also put a vector parallel to ~A, named ~A0, with

one end at point b. The covariant derivative is the difference between ~A0 and ~B (Carroll (2014b),

Physics Unsimplified (2019d)).

Consider a special case of the scenario in figure 12, where the line x↵ is straight. This is shown in

figure 13. The difference between ~A0 and ~B is 0. In this case, the covariant derivative, r, giving

the difference between ~A and ~B is simply given by r = @ + 0 But what about less simple cases

Figure 13: When x↵

(z) is straight, the Covariant Derivative equals 0

such as in figure 12 where the difference between ~A0 and ~B might be nonzero? The covariant

derivative, r, giving the difference between ~A and ~B, requires a second term, not just @, in order

to take into account the curvature. So for a curve on the surface of some manifold M with tensor g,

the covariant derivative is given by:

r
a

vb = @
a

vb +
1

2

gbd (@
a

g
cd

+ @
c

g
ad

� @
d

g
ac

) vc (1)

Where the second term is to take into account that the surface of the manifold might not be flat. One

can use a substitution, �b

ac

, the Christoffel symbol of the second kind, to write this more succinctly.

When dealing with some Riemmannian manifold, it helps to have a way of understanding the rate

of change of the metric tensor of the manifold. This is where Christoffel symbols of the first and

second kind become useful, since they can be used to do exactly this.The Christoffel symbol of the

first kind is defined as:

Definition 1 (Christoffel Symbol of the First Kind) �

dac

=

1

2

(@
a

g
cd

+ @
c

g
ad

� @
d

g
ac

)

Using definition 1, the second term of equation 1 can be rewritten as gbd�
dac

. Furthermore, defini-

tion 1 can be used to define Christoffel Symbols of the Second Kind.

Definition 2 (Christoffel Symbol of the Second Kind) �

b

ac

= gbd�
dac

=

1

2

gbd (@
a

g
cd

+ @
c

g
ad

� @
d

g
ac

)

Using definition 2, equation 1 can be more simply written as:

r
a

vb = @
a

vb + �

b

ac

vc (2)
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Where the second term takes into account the curvature of the manifold, and so when a flat surface

is being considered, the second term in equation 3.2.1 is zero. Christoffel symbols will prove to be

extremely important for the next few sections.

3.2.2 The Riemann Curvature Tensor

When dealing with the symmetries of a surface, it can be useful to have a stronger mathematical

tool to deal with Intrinsic Curvature. With the distinction between Intrinsic and Extrinsic Curvature

established, it is time to move on to the mathematical tool in question, which is the Riemann tensor.

The Riemann tensor, R↵

���

completely characterises the intrinsic geometry of spacetime, regard-

less of embedding (Hartle (2014)). For an intrinsically flat space, R↵

���

= 0, while for a space with

intrinsic curvature, there is some nonzero value of R↵

���

.

Definition 3 (Riemann Tensor) R↵

���

= @
�

�

↵

��

� @
�

�

↵

��

+ �

µ

��

�

↵

µ�

� �

µ

��

�

↵

µ�

Lowering the indices to get R
↵���

(have a look back at definition 1 to understand how), and writing

out the Christoffel Symbols in full, the tensor has the following symmetries and skew symmetries

(d’Inverno (1992a)):

R
↵���

= �R
�↵��

(3)

R
↵���

= �R
↵���

(4)

And so, with a little consideration:

R
↵���

= R
��↵�

(5)

And the slightly more complicated result called the first Bianchi Identity:

R
↵���

+R
↵���

+R
↵���

= 0 (6)

3.2.3 The Ricci Tensor

Contracting the first and third indices of the Riemann tensor as defined by definition 3 can give the

Ricci tensor (d’Inverno (1992a), Hartle (2014)):

Definition 4 (Ricci Tensor) R
↵�

= R�

↵��

Why not contract the first and second, or first and fourth, indices instead? Well due to the Riemann

tensor being antisymmetric on the first two identities, as is shown by equation 3, contracting the

first two indices would just give 0. Similarly, the Riemann tensor is antisymmetric on the last two

indices, as is shown by equation 4, meaning that contracting the first and fourth indices just gives a

negative version of the Ricci tensor gained by contracting the first and third indices.

The Ricci tensor, R
↵�

, is a symmetric tensor relating to the effect of curvature on geometry of the

manifold, specifically showing how the volume of spheres on the manifold differs from the volume

they would have in ’normal’ Euclidean space.

9



In dealing with spacetimes, the Ricci tensor is called a curvature invariant (Physics Unsimplified

(2019c)).

3.2.4 The Scalar Curvature

Just as one can go from the Riemann tensor to the Ricci tensor, one can go from the Ricci tensor to

the Scalar Curvature, which gives a scalar value for any point on the manifold. The scalar curvature,

R, is also a curvature invariant (Carroll (2014c), Physics Unsimplified (2019c)). It is given by:

Definition 5 (Scalar Curvature) g↵�R
↵�

= R

3.2.5 Describing the Curvature of a Flat Minkowski Spacetime

So with these fundamental concepts all dealt with, it might be useful to give a straightforward ex-

ample, specifically Minkowski spacetime1, which is flat.

g
µ⌫(Minkowski)

= ⌘
µ⌫

=

2

66664

�1

1

1

1

3

77775
(7)

Equation 7 means that for Minkowski space ds2 = �dx2

0

+ dx2

1

+ dx2

2

+ dx2

3

. To find the Christoffel

symbol for flat spacetime, one must take derivatives of ⌘
µ⌫

, and since all of the entries in ⌘
µ⌫

are

either -1 or 1, the derivatives will all be 0, meaning that:

�

µ

↵�(Minkowski)

= 0 (8)

Which makes intuitive sense, since this is after all a flat spacetime. Since the Riemann tensor is

derived from, �, the Ricci tensor is derived from the Riemann tensor, and the Scalar curvature is

derived from the Ricci tensor, this therefore means that:

Rµ

⌫↵�(Minkowski)

= 0 (9)

R
⌫�(Minkowski)

= 0 (10)

R
Minkowski

= 0 (11)

Note that if one used polar coordinates rather than Cartesian ones then equation 8 could give

a nonzero value. However, while this approach requires more derivation and effort, nonetheless

equation 9 equals 0 and so equations 10 and 11 also equal 0 regardless of whether one uses

Cartesian or polar coordinates.

1Note that whether the matrix in equation 7 is

2

664

�1
1

1
1

3

775 or

2

664

1
�1

�1
�1

3

775 is a matter of convention

which varies depending on the textbook or article one is using. This thesis will use the

2

664

�1
1

1
1

3

775 convention.
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3.2.6 The Einstein Field Equations

In 1905 Albert Einstein developed his theory of Special Relativity, dealing with the constant nature

of the speed of light in a vacuum, c. However, this theory did not take gravity into account. It would

take Einstein another decade before he developed his theory of General Relativity in order to take

gravity into account in 1915. He defined the Einstein tensor as:

Definition 6 (Einstein Tensor) G
µ⌫

= R
µ⌫

� 1

2

Rg
µ⌫

So since this is all in terms of the Ricci tensor, R
µ⌫

and scalar curvature of spacetime, R, which

will be defined by definitions 4 and 5, the Einstein tensor is entirely related to the curvature of

spacetime. To understand how this curvature ties in with the nature of gravity, one must define the

Einstein Gravitational Constant:

 =

1

c4
8⇡G (12)

In equation 12, c is the speed of light in a vacuum2 and G is the Newton Gravitational constant,

one can use definition 6 and equation 12 in order to write the Einstein Field Equation (Einstein

(1917)):

G
µ⌫

+ ⇤g
µ⌫

= T
µ⌫

(13)

T
µ⌫

in equation 13 is the Energy Momentum Tensor, which will be explained in more detail in sub-

section 7.2.1 (where the concepts of energy and momentum will be discussed in a lot more detail)

and more specifically will be defined by definition 21. T
µ⌫

gives the flux of the µth component of

the momentum vector across a surface of constant x⌫ . T 00 is therefore the flux of time-momentum

across a surface of constant time. What is that? Energy density. Similarly, T 01, T 02 and T 03 give

the momentum density of x, y and z-momentum. The Energy Momentum Tensor for an empty uni-

verse is 0.

The Einstein Field Equations are local equations, applying to any particular point in space. Since

the energy momentum tensor gives the densities of these quantities, not, the quantities themselves,

integrating over a region of spacetime can give the energy, x, y and/or z momentum in that region.

⇤ in equation 13 is the Cosmological constant, which Einstein did not originally include in the equa-

tion in 1915, but which he added in 1917. The 1998 discoveries by the Supernova Cosmology

Project and the High-Z Supernova Search Team that the expansion of the Universe appears to be

accelerating supports the idea that the Universe has a positive Cosmological Constant (Perlmutter

(1999), Riess (1998)).

So for a flat spacetime, G
µ⌫

= 0 since it is defined entirely in terms of the Ricci tensor and scalar

curvature. For an empty spacetime, T
µ⌫

= 0.

2Since this is the first section to discuss the speed of light in a vacuum in the context of Einstein’s Gravitational Constant
in equation 12, here is probably as good a place as any to note that throughout this thesis, unless otherwise specified, the
convention will be used of setting the speed of light in a vacuum c=1.
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3.3 An Introduction to de Sitter Space

3.3.1 The properties of a de Sitter Universe

One solution to equation 13 with a positive Cosmological Constant is de Sitter space, initially de-

veloped in de Sitter (1917b) and de Sitter (1917a), which assumes an empty (so that T
µ⌫

= 0)

homogeneous Universe. While the Universe was probably very close to this description in its ear-

liest moments, and will probably become increasingly close to this description in its distant future,

at present the de Sitter Universe is a slightly simpler approximation of what the real universe might

be like, since the real universe is not completely homogeneous or empty. Nonetheless, for the

purposes of this project, which deals with considering how energy conservation is affected in a

Universe with a positive Cosmological constant, de Sitter is a good approximation. For a de Sitter

Universe, the Einstein Field equation becomes:

G
µ⌫

+ ⇤g
µ⌫

= 0 (14)

Or

R
µ⌫

� 1

2

Rg
µ⌫

+ ⇤g
µ⌫

= 0 (15)

3.3.2 The metric of the ambient flat space in which de Sitter Space is embedded

De Sitter Space is a curved 3+1 dimensional hypersurface embedded in a flat 4+1 dimensional

’Minkowski’ pseudo-Euclidean Space E4,1 (note that due to being 4+1 dimensional, it is unlike the

Minkowski space discussed in the rest of this thesis, which has 3+1 dimensions). The metric tensor

for the embedding space is given by:

⌘AB

ambient

=

2

6666664

�1

1

1

1

1

3

7777775
(16)

So vectors in this embedding space can be given:

"A =

h
"0 "1 "2 "3 "4

i
"
A

=

2

6666664

�"
0

"
1

"
2

"
3

"
4

3

7777775
(17)

The equation for the hypersurface embedded in this space is:

⇢
d

2

S

= "
B

"B = ⌘
AB

"A"B = �("0)2 + ("1)2 + ("2)2 + ("3)2 + ("4)2 (18)

Where ⇢
dS

is called the de Sitter radius.

A hyperboloid such as de Sitter space has intrinsic curvature. The Riemann tensor can be used to

account for its intrinsic curvature. Since a hyperboloid is not a minimal surface, it also has extrinsic

12



Figure 14: Diagram of a Hyperboloid embedded in a 4+1 Minkowski Space (although due to the
difficulty of representing 5 dimensions visually, this is in fact only a 2 dimensional surface embedded
in a 3 dimensional space)

curvature. The focus in this thesis is on the intrinsic curvature, however. This is why the Riemann

tensor is so important.

It is convenient to break up ⌘
ambient

in order to think about the 4th dimension separately.

Definition 7 Let ⌘0
ab

= ⌘
AB

for A = 0, 1, 2, 3 and B = 0, 1, 2, 3 and let ⌘
44

= g
AB

for A = 4, B = 4

Therefore the de Sitter radius can be rewritten as:

⇢
d

2

S

= ⌘0
ab

"a"b + ⌘
44

("4)2 (19)

(Aldrovandi and Pereira (1998))

3.3.3 The Conformal Factor

When discussing a curved surface such as de Sitter space, one can use Stereographic projection

in order to think of it mapped onto a flat surface, with the most obvious example being world maps,

which are flat but depict a curved Earth. The 2D surface of the Earth embedded in 3D space can

be described using 2D (North and East, with South and West simply being the negative versions of

North and East), rather than 3D (x, y and z), coordinates, but doing so requires that one take into

account the conformal factor. The curvature of the Earth’s surface is the reason why Greenland

appears bigger than India on World Maps.

Stereographic projection is the process of taking some p dimensional manifold, M, and mapping it

to a p-1 dimensional flat surface.

n is called the ’conformal factor’ and can be used to write the metric of the manifold, g
µ⌫

and the

metric of the manifold’s Stereographic Projection, ⌘
µ⌫

in terms of each other:

g
µ⌫

= n2⌘
µ⌫

(20)
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But what is this conformal factor which is so useful for writing vectors and metrics for both a manifold

and the Stereographic projection of a manifold?

Definition 8 (Conformal Factor) If there are two Riemannian metrics, g and h, on some smooth
manifold, M, and there is some positive function, n, on M, such that the metrics can be written as
g = nh, then g and h are conformally equivalent and n is the conformal factor (Birrell and Davies
(1992)).

Conveniently, the spaces being discussed here, such as de Sitter space and Minkowski space,

have Riemannian metrics, and the manifold for de Sitter space is smooth, so the conformal factor

will turn out to be an extremely useful concept.

3.3.4 Finding the Ricci tensor, Scalar Curvature and Einstein Tensor of de Sitter Space

The conformal factor, given by definition 8, is useful for enabling this to be done. Having made a con-

ceptual distinction between "a where a=0,1,2,3 and "4, it is now possible to write these coordinates

in terms of the conformal coordinates, xµ, dealing with a curved 3+1 dimensional hypersurface

embedded in a flat 4+1 dimensional ambient space.

"a = n�a
µ

xµ (21)

"4 = �n⇢
dS

(1� 1

4⇢
d

2

S

⌘
44

⌘0
µ⌫

xµx⌫

) (22)

In equation 21, the convention established by Aldrovandi and Pereira (1998) of using Latin letters

(a,b,c...) for the " coordinates and using Greek letters (↵, �, �...) when dealing with the stereo-

graphic coordinates is used.

⌘0
µ⌫

= �a
µ

�b
⌫

⌘0
ab

(23)

In order to write a version of equation 20 for this situation, the conformal factor, n, when using stere-

ographic coordinates to deal with this hypersurface, is given by (Aldrovandi and Pereira (1998)):

n =

✓
1 +

1

4R2

⌘
44

⌘0
µ⌫

xµx⌫

◆�1

(24)

Finding a line element, ds on a surface is relatively straightforward, and one can also find a line

element on the stereographic projection of the surface. Therefore:

ds2 = ⌘
AB

d"Ad"B = g
µ⌫

dxµdx⌫ (25)

g
µ⌫

is the metric on the curved hypersurface. Relating the metric for the curved hypersurface g
µ⌫

to

⌘ the metric for the flat ambient space given by equation 16(taking advantage of how it was written

in equation 19), one can write out:

g
µ⌫

= n2�a
µ

�b
⌫

⌘0
ab

= n2⌘0
µ⌫

(26)

This value for the metric of the conformal space can now be put into the Christoffel symbol in order

to be used in the definition of the Riemann tensor, which in turn can be used in the definition of the
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Ricci tensor. Putting the tensor ⌘ in equation 26 into equation 2 gives the Christoffel symbol of the

second kind for de Sitter space:

�

↵

µ⌫

= (�↵
µ

��
⌫

+ �↵
⌫

��
µ

� ⌘0
µ⌫

⌘0↵�)@
�

ln(n) (27)

And putting equation 27 into definition 3 to get the Riemann tensor of de Sitter space and putting

that tensor in turn into definition 4 to get the Ricci tensor of de Sitter space results in:

R
µ⌫

= 3

1

⇢2
dS

g
µ⌫

(28)

And putting equation 28 into definition 5 gives the de Sitter Scalar Curvature:

R = 12

1

⇢2
dS

(29)

And therefore, putting these quantities into the Einstein tensor given by definition 6 gives:

G
µ⌫

= � 3

⇢2
dS

g
µ⌫

(30)

And so since the energy momentum tensor for de Sitter space equals zero as is stated by equation

15, the Einstein Field Equation for de Sitter space simplifies to:

⇤ =

3

⇢2
dS

(31)

Therefore, since ⇢
dS

is positive, de Sitter space has a positive Cosmological Constant, ⇤, and as

⇢
dS

�! 1, ⇤ �! 0.

With a much better understanding of de Sitter space, it is now time to start considering its symme-

tries, in order to examine its conservation laws.

4 Symmetry in Physics

What immortal hand or eye, could frame thy fearful symmetry?

The Tyger (Blake (1988) (originally published 1794))

4.1 An Introduction to Lie Groups

Describing the symmetries of Minkowski and de Sitter Space involves the Poincaré and de Sitter

groups 3 respectively, both of which are Lie groups. Therefore, a clear understanding of Lie groups

is important for this project.

4.1.1 Lie Groups

Definition 9 (Smooth Manifold) A Smooth Manifold is a Topological Manifold, M, together with a
differentiable structure on M.

3Though little detail been given about these groups so far, they will be explained in more detail in the section about the
generators of these groups.
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Definition 10 (Lie Group) A Lie Group is a Group that is a smooth differentiable manifold.

Therefore a Lie Group is a Group for which the elements are continuous rather than discrete.

Figure 15 shows an example of a Lie Group, � and a Vector Space called the Geometric Space,

G, for which the transformations of G are represented by elements of �. � contains elements such

as ↵, �, �... while G contains elements such as a, b, c... An analytic function, �, represents

�’s group operation, which takes two elements of �, such as ↵ and �, and returns an element of

�, such as �. So for ⌘-dimensional �, where elements ↵ and � are points on the manifold with

coordinates (↵1,↵2...↵⌘

) and (�1,�2...�⌘

), �(↵1, ...↵⌘

;�1, ...�⌘

) = (�1, ...�⌘) One can take an

element of � such as ↵, which is a point on the ⌘-dimensional manifold, and an element of G, such

as a, which is a point of the N-dimensional Geometric Space, and can use the function f to execute

the transformation: f(↵1, ...↵⌘

; a1, ...aN ) = (a01, ...a0N ) Gilmore (1974).

In this project, the spaces being discussed will mainly be Minkowski and de Sitter Space, while the

Lie groups being discussed will mainly be the corresponding Poincaré and de Sitter groups.

Figure 15: A Lie Group, �, and a geometric space, G.

4.1.2 Special Orthogonal Groups

Lie Groups of special note to this project will be the Special Orthogonal groups, also called SO(n)

groups.

Definition 11 (Orthogonal Matrix) An n⇥n matrix, M is orthogonal if the transpose of the matrix,
MT is the inverse of M such that MMT

= MTM = I where I is the n ⇥ n identity matrix.
Armstrong (1988)

Definition 12 (Orthogonal Group O(n)) The collection of all n⇥ n orthogonal matrices forms the
Orthogonal Group O(n). Hall (2003a)

Group O(n) has subgroup SO(n).

Definition 13 (Special Orthogonal Group SO(n)) The set of n ⇥ n orthogonal matrices with de-
terminant 1 is the Special Orthogonal Group SO(n). Hall (2003a)

One can also consider pseudo-orthogonal matrices.

Definition 14 (Pseudo-Orthogonal Matrix) If M and J are n⇥n matrices and J = diag(±1, ...,±1)
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such that not every entry necessarily has the same sign 4 and MTJM = J then M is a pseudo-
orthogonal matrix.

One can discuss pseudo-orthogonal and special pseudo-orthogonal groups. For example, when J

is the Minkowski metric given by equation 7, one can discuss the O(1, 3) and SO(1, 3) Lie Groups
5.

4.1.3 Lie Algebras

Since a Lie group, � is a smooth manifold, it has a tangent space, �, which is a vector space.

Since a Lie group is a smooth manifold which is also a group, there is a point on the manifold which

is the identity.

The tangent space � of the Lie group � close to the identity is a vector space called the Lie Alge-

bra.

The elements of this vector space are the Infinitesimal Generators of the Lie Group (see figure 16

for a visual representation of this relationship) (HTNW (2021), Kajelad (2021)).

Figure 16: The Lie Group Generators are in the Tangent Space of a Lie Group.

Definition 15 (Algebra) An algebra, �, is a vector space over field, k, which has a binary operation
(given by Lie brackets [A,B]) for which [,]: � ⇥ � �! �. Knapp (1996a) Schwichtenberg (2015)

Definition 16 (Lie Algebra) An algebra, �, is a Lie Algebra if all of its products satisfy the following
conditions:
Antisymmetry: 8A,B 2 �, [A,B] = �[B,A]

Jacobi Identity: 8A,B,C 2 �, [[A,B], C] + [[B,C], A] + [[C,A], B] = 0

Bilinearity: 8A,B,C 2 � [↵A + �B,C] = ↵[A,C] + �[B,C], [C,↵A + �B] = ↵[C,A] + �[C,B]

where ↵ and � are arbitrary scalars.
Knapp (1996a) Schwichtenberg (2015)

4the most obvious example of such a matrix is the Minkowski metric given by equation 7
5Note that some textbooks instead use the convention of instead writing O(3, 1) and SO(3, 1)
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So in a Lie group, such as the Lorentz group, there are elements such as Lorentz transforma-

tions, while in the tangent space to that Lie group, such as the Lorentz algebra, there are the Lie

Generators.

As Generators’ name suggests, Generators can be used to generate a Lie group, as will now be

shown.

4.1.4 The Exponential Map

ex where e is the exponential constant and x is some number can be written as a Taylor series using

equation 212. exp(X) is similar to this, with Generators (written as X here) rather than numbers,

such that by using the Taylor series given by equation 212, one can derive a Lie Group’s elements

from the Generators. Using a Lie Algebra as defined by definition 16, one can generate the corre-

sponding Lie Group using the exponential map:

Definition 17 (Exponential Map) If � is a Lie Group and � is the corresponding Lie Algebra then
the exponential map, exp, for � is:
exp(�) �! � Hall (2003b)

The exponential map is a major reason why considering Lie Algebras is so useful for studying Lie

Groups.

4.1.5 An Example of what has been discussed thus far: Infinitesimal Generators of the

SO(3) Group

An example of Generators might be illustrative. Using definition 13, SO(3) is the group of 3 ⇥ 3

orthogonal matrices which have determinant 1. In other words, it’s the group of all and only 3D

rotations.

4.1.5.1 Finding the Infinitesimal Generators of the SO(3) group

A rotation about the z axis in Euclidean space is given by:

x0
= x cos ✓ � y sin ✓ y0 = x sin ✓ + y cos ✓ z0 = z (32)

And so with a little consideration, the rotation matrix in question is given by:

R
3

=

2

64
cos ✓ � sin ✓ 0

sin ✓ cos ✓ 0

0 0 1

3

75 (33)

Now one can set about finding the infinitesimal Generators. Due to being infinitesimal, the small

angle approximations can be used, replacing sin ✓ and cos ✓ with ✓ and 1 respectively. Therefore,

taking the derivative with respect to ✓, one can find the infinitesimal generator:

L
3

= i
dR

z

d✓
= i

2

64
0 �1 0

1 0 0

0 0 0

3

75 (34)

Note the i in equation 34. 6

6Why is there an i in the equation? This is time for an important note on conventions when writing Generators. In
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Using analogous reasoning to find the infinitesimal generators about the x and y axes:

L
1

= i

2

64
0 0 0

0 0 �1

0 1 0

3

75 L
2

= i

2

64
0 0 1

0 0 0

�1 0 0

3

75 L
3

= i

2

64
0 �1 0

1 0 0

0 0 0

3

75 (35)

Or using the Levi-Civita symbol, the ij entry of the relevant matrix is given by:

(L
1

)

ij

= �i✏
ij1

(L
2

)

ij

= �i✏
ij2

(L
3

)

ij

= �i✏
ij3

(36)

4.1.5.2 The so(3) Lie Algebra

Using equation 35, the so(3) Lie algebra (which does indeed satisfy all the criteria of definition 16)

is:

[L
1

, L
2

] = iL
3

[L
2

, L
3

] = iL
1

[L
3

, L
1

] = iL
2

(37)

This can be written using the Levi Civita symbol as:

[L
i

, L
j

] = i✏
ijk

L
k

(38)

4.1.5.3 How do the Generators of the SO(3) group generate the SO(3) group?

If one knows the infinitesimal Generators and wants to know the elements of the Lie Group, one

can use the so(3) algebra and exp. Due to orthogonality, for generator L,

(exp(L))T = exp(LT

) = exp(�L) (39)

And therefore

(exp(L))T (exp(L)) = exp(�L+ L) = exp(0) = I (40)

And therefore exp(L) is indeed an orthogonal matrix.

The matrix exponential of a Generator can be expanded into a Taylor series7 using equation

212.

exp(�i✓L
1

) =

1

0!

I
3⇥3

+

✓

1!

(�iL
1

) +

✓2

2!

(�iL
1

)

2

+ ... (41)

One can take advantage of the facts that (�iL
1

)

1+4k

= �iL
1

, (�iL
1

)

1+3k

= �(�iL
1

)

2 ,

(�iL
1

)

1+2k

= �(�iL
1

) , k 2 Z and that...

Mathematics, Generators are sometimes written without the imaginary unit i. However, in Physics, i is generally used so that
the Generators will be Hermitian.

7Note that the -i in equation 41 cancels out with the i in the matrix L1 following the Physics convention of writing Gen-
erators with i discussed in a previous footnote as a way to make the Generators Hermitian. If one had instead written the
Generators without the i, as sometimes happens in Mathematics subjects unrelated to Physics, one would not include the -i
in equation 41
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(�iL
1

)

2

=

2

64
0 0 0

0 1 0

0 0 1

3

75

...to write out exp(�i✓L
1

) as:

exp(�i✓L
1

) =

2

64
1 0 0

0 0 0

0 0 0

3

75 +
⇣

✓

1!

� ✓

3

3!

+

✓

5

5!

� ✓

7

7!

+ ...
⌘
2

64
0 0 0

0 0 �1

0 1 0

3

75+

⇣
1

0!

� ✓

2

2!

+

✓

4

4!

� ✓

6

6!

+ ...
⌘
2

64
0 0 0

0 1 0

0 0 1

3

75 (42)

Putting the cosine and sine Taylor series given by equations 213 and 214 into equation 42 gives:

exp(�i✓L
1

) =

2

64
1 0 0

0 cos ✓ � sin ✓

0 sin ✓ cos ✓

3

75 = R
1

(✓) (43)

Therefore

exp(�i✓L
i

) = R
i

(✓) (44)

So it has been shown how if one knows the SO(3) Generators, one can generate the SO(3) Group.

The so(3) Algebra is related to the SO(3) Group by exp.

4.1.6 Representations of the Infinitesimal Generators of Lie Groups

Killing vectors are representations of Infinitesimal Generators, and will be of great relevance to this

project.

4.1.6.1 Lie Derivatives

Dealing with a single curve was shown in figure 12 when discussing Covariant Derivatives is a very

abstract and idealised scenario. Often in Physics and Mathematics, there is more likely to be the

case of vector fields with various field lines. Consider a single curve, xµ

(z) in a vector field, f ,

of various possible curves, as is shown in figure 17. Two points along the curve, a and b, have

tangent vectors using the vector field f =

@

@z

for z defined everywhere in the surrounding region,

and the vector field defined everywhere in the surrounding region. There is also vector field v

defined everywhere in the surrounding region, which gives the two normal vectors, v
a

and v
b

, which

are not parallel, with v0
a

instead being parallel to v
a

. How are things different in this vector field

scenario?

One can therefore think of this vector space as involving multiple integral curves of the vector field

f =

@

@z

. While the focus of this discussion is on one specific curve, figure 17 could be misinterpreted

as indicating that this specific curve is unique in the vector field, when that is most definitely not the

case. Each curving sequence of green arrows in the diagram could similarly be written as a single

integral curve as occurs in figure 18. In this case, with vector field f =

@

@z

, the gaps between points

a and b is given by �zf
a

for the case from a to b in the vector field of f , while the parts of the
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Figure 17: Lie Derivative Diagram: As can be seen, there is a vector field (signified by green
arrows). The curve, xµ

(z) is being considered)

normal vectors connecting a to c and connecting b to d are given by �yv
a

and �yv
b

respectively.

Returning once again to the concept of parallel transport which was also discussed in section 3.1,

the difference between d and c’, which would be 0 if v
a

and v
b

were parallel, but is nonzero if they

are not, is given by the Lie derivative.

So the Lie derivative is different from the covariant derivative, and is extremely useful, allowing us

to think in terms of vector fields and systems.

This difference, as is shown in figure 18, can be written as:

L
f

vµ = f↵@
↵

vµ � v↵@
↵

fµ (45)

So the concept of a Lie Derivative is much clearer now.

Definition 18 (Lie Derivative) For some vector field, �!v , the Lie derivative of �!v in the direction of
tangent vector field �!u is given by: L

u

vi = uj

@v

i

@x

j � vj @u

i

@x

j = uj@
j

vi � vj@
j

ui
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Figure 18: Lie Derivative Diagram: The multiple integral curves of the vector field f are orange.
The two normal vectors are coloured red and blue respectively, although the parts of them given by
�yv

a

and �yv
b

respectively are coloured cyan.

Therefore the Lie derivative of a covariant vector, v
i

is given by:

L
u

v
i

= v
j

@
i

uj

+ uj@
j

v
i

(46)

While the Lie derivative of metric tensor g
ij

of manifold M is given by:

L
u

g
ij

= uk@
k

g
ji

+ g
jk

@
i

uk

+ g
ik

@
j

uk (47)

(Carroll (2014b), Physics Unsimplified (2019a))

What happens when a Lie derivative equals 0? That question leads to discussing Killing vec-

tors.

4.1.6.2 Killing Vectors and Isometries

In common sense terms, Killing vector fields (often simply called Killing vectors for brevity’s sake)

are vector fields such that, when translating a set of points on a manifold in the direction of the Killing

vector field, one does not change the distances between the points. These vector fields are due to

the isometries of the manifold and so are a nice way of describing things when one’s emphasis is on

looking at isometries and corresponding conservation laws. A more formal definition now follows.

Definition 19 (Killing Vector Field) For some manifold, M, with metric g, a Killing vector field is a
vector field on M which leaves g invariant under diffeomorphism induced by the Killing vector field.

For every isometry of the manifold there is a corresponding vanishing Lie derivative of the metric.

What does this mean? If there is some direction in which the metric doesn’t change then there’s an

isometry. Setting the Lie derivative of a metric to equal zero gives the Killing equation, which can
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be used to find the isometry directions of the manifold, which form the solutions.

r
i

u
j

+r
j

u
i

= 0 (48)

As was historically established by Emmy Noether with Noether’s Theorem, symmetries imply con-

servation laws, and so Killing Vectors are extremely useful in finding conservation laws.

Killing vector fields are in the Tangent Space of the manifold just as the Infinitesimal Generators of

a Lie Group are in the Tangent Space of the Lie Group, as is pictured in figure 16. The Killing vector

fields of a manifold are representations of the Infinitesimal Generators of the Isometry Group of that

manifold, as can be seen in figure 19 (Pedro (2021), Kluitenberg (2021)).

Figure 19: The Infinitesimal Generators of a Lie group � in the Lie Group’s tangent space � are
represented by the Killing vectors in the tangent space of the geometric space G of which the Lie
Group is the isometry group.

In this project, two Lie Groups will be especially important. Lie Groups � will be the Poincaré and de

Sitter groups, which have corresponding algebras, �, given by the Poincaré and de Sitter algebras.

The corresponding Geometric spaces, G, will be Minkowski and de Sitter space, with the Killing

vectors of those spaces being the Killing vectors of Minkowski and de Sitter space.
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5 The Infinitesimal Generators of the Lorentz, Poincaré and de

Sitter groups

First, a matrix approach will be considered to look at the matrices in the so(1,3) and so(1,4) al-

gebras, before a more conventional approach in terms of Killing vectors will be used to find the

relevant Generators. The SO(1,3) Group, of which so(1,3) is the corresponding algebra, is called

the Lorentz group, and is a subgroup of the Poincaré group. The SO(1,4) group, of which so(1,4)

is the corresponding algebra, is the isometry group of de Sitter space, as will become clearer when

discussing Killing vectors.

5.1 The Matrix approach to finding the infinitesimal generators of the SO(1,3)

and SO(1,4) groups

This approach is not the ideal way to do this. The faster and easier way to find the Generators of

the relevant Lie Groups will occur after first looking at some of the matrices involved. An approach

emphasising matrices can be a useful intuitive way to conceptualise the generators of groups. Un-

fortunately, it doesn’t work with all groups. The Poincaré group includes translations, which are not

linear transformations, and so such an approach won’t work for Poincaré, although it can work with

the Lorentz subgroup of the Poincaré group. Before using Killing Vectors to find the generators of

the de Sitter and Poincaré groups, let’s first find the Lorentz and de Sitter groups’ generators using

matrices. This method is less elegant, but can help give a clearer conceptual understanding of what

exactly is going on.

This approach, using matrix reps, is a more ’intuitive’ example of the Group Generators, but is also

quite slow. The approach using Killing vector reps is a little faster.

The Lie Algebras for group O(1,n-1) and SO(1,n-1) (where n is some positive integer) are the same.

By convention, the Lie algebra of a Lie group is written with the non-capitalised version of the group’s

name, and since SO(1,n-1) and O(1,n-1) both have the same Lie Algebra, the Lie Algebra being

discussed will simply be called so(1,n-1) rather than ’so(1,n-1) and also o(1,n-1)’ (which would be

a rather more unwieldy name). The definition of the group given by definition 13 means that for

any element of the group, A, AAT

= ATA = I where I is the identity matrix. The elements of

the group are related to the Generators by the exponential map, as was explained by definition 17.

Therefore elements of the group can be written as A = exp(M) where M is a Generator of the

Group. Since (exp(M))

T

= exp(MT

) it is the case that:

exp(M) exp(MT

) = exp(MT

) exp(M) = I (49)

Therefore it is the case that

exp(M +MT

) = exp(MT

+M) = I (50)

From this, one can infer that M must be skew symmetric.

MT

= �M (51)
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Therefore, any matrix, M, of the Lie algebra so(1,n-1) can be written as:

M =

"
↵ �

�T �

#
(52)

Where ↵ is 1 ⇥ 1, � is n ⇥ n and � is 1 ⇥ n. Knapp (1996b). Throughout this section, the ith

component of a � matrix will be written as j
i

and the ithcomponent of a � vector will be written as

k
i

. It is important to note that this matrix cannot yet be assumed to be orthogonal, because one

can choose an ↵ and a � for which M is not orthogonal.

Due to the fact that for each matrix in the the so(1,3) algebra, the matrix’s transpose is its inverse,

one can infer that ↵ and � are both skew symmetric.

For all Lie algebras so(1,n), ↵ is a 1 ⇥ 1 matrix, which means that for all so(1,n) algebras where n

is some positive integer:

↵T

= ↵ (53)

And therefore, since ↵ is skew symmetric:

↵ = �↵) ↵ = 0 (54)

) M =

"
0 �

�T �

#
(55)

Let’s look at some examples of �. The simplest examples, so(1,1) and so(1,2), are not included

here, but can be found in 10.4. They have been put there since the so(1,3) and so(1,4) algebras are

of far more importance to this project. However, those who feel mathematically confused by these

concepts might wish to read that section before returning here in order to work through simpler

examples before focusing on the Lorentz and de Sitter algebras.

Figure 20: Various SO(1,n) groups

5.1.1 so(1,3) (The Lorentz Algebra)

This is the group of real homogeneous linear transformations of x, y, z and t which leave x2

+ y2 +

z2 � t2 invariant.

� is 1⇥ 3 and � is 3⇥ 3. It is a subgroup of the Poincaré group, which contains the SO(1,3) group
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and also spacetime translations. Skew symmetry necessitates that all � matrices have the form:

� =

2

64
0 �j

3

j
2

j
3

0 �j
1

�j
2

j
1

0

3

75 (56)

So all matrices in the so(1,3) Lie algebra are given by:

M(1, 3) =

2

66664

0 k
1

k
2

k
3

k
1

0 �j
3

j
2

k
2

j
3

0 �j
1

k
3

�j
2

j
1

0

3

77775
= k

1

K
1

+ k
2

K
2

+ k
3

K
3

+ j
1

J
1

+ j
2

J
2

+ j
3

J
3

(57)

where k
i

and j
i

are some real numbers for i = 1, 2, 3 and:

K
1

= i

2

66664

0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

3

77775
K

2

= i

2

66664

0 0 1 0

0 0 0 0

1 0 0 0

0 0 0 0

3

77775
K

3

= i

2

66664

0 0 0 1

0 0 0 0

0 0 0 0

1 0 0 0

3

77775
(58)

J
1

= i

2

66664

0 0 0 0

0 0 0 0

0 0 0 �1

0 0 1 0

3

77775
J
2

= i

2

66664

0 0 0 0

0 0 0 1

0 0 0 0

0 �1 0 0

3

77775
J
3

= i

2

66664

0 0 0 0

0 0 �1 0

0 1 0 0

0 0 0 0

3

77775
(59)

So one can define everything in the Lie algebra using these six matrices. There are six generators,

of which three are K matrices, which are normally called boosts, and three of which are J matrices,

which are normally called rotations.

The Levi-Civita symbol can conveniently explain the so(1,3) algebra which arises from these six

generators:

[J
i

, J
j

] = i✏
ijk

J
k

(60)

[K
i

,K
j

] = �i✏
ijk

J
k

(61)

[J
i

,K
j

] = i✏
ijk

K
k

(62)

There is a slightly more succinct way to write the Lorentz group which is common in Physics.

J
i

=

1

2

✏
ijk

�
jk

K
i

= �
0i

(63)

Using the above definition, the Lorentz Lie algebra becomes much more straightforward, being:

[�
↵�

,�
��

] = i(⌘
↵�

�
��

� ⌘
↵�

�
��

� ⌘
��

�
↵�

+ ⌘
��

�
↵�

) (64)

For ↵,�, �, � = 0, 1, 2, 3,↵ 6= �, � 6= �, and with ⌘ being the Minkowski metric given by equation

7.
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5.1.1.1 The Lorentz Group’s Elements (Lorentz Transformations)

Knowing the Generators, any element, ⇤ of the Lorentz group can be written using exp.

⇤ = exp(�i~� · ~K) exp(�i~✓ · ~J) (65)

Where the exp(�i~✓ · ~J) should seem obvious from the similar case in equation 44. � is a hyperbolic

’angle’ for when dealing with boosts just as ✓ is there for rotations. � is given by � = cosh� where

� is the Lorentz factor. It is worth noting that exp(�i~� · ~K) and exp(�i~✓ · ~J) cannot be combined

into a single exp because J and K do not commute (Boer (2019)).

5.1.2 so(1,4) (The de Sitter Algebra)

Although the de Sitter algebra is the so(1,4) algebra, that will not be shown in this section, instead

being shown in section 5.2.2. The writer of this thesis personally considers the way of finding the

SO(1,4) Generators and the so(1,4) algebra which appears in that section to be more straightfor-

ward.

What are the real homogeneous linear transformations of w, x, y, z and t which leave w2

+ x2

+

y2 + z2 � t2 invariant?

� is 1⇥ 4 and � is 4⇥ 4. Skew symmetry necessitates that all � matrices have the form:

� =

2

66664

0 j
1

j
2

j
3

�j
1

0 �j
4

j
5

�j
2

j
4

0 �j
6

�j
3

�j
5

j
6

0

3

77775
(66)

So all matrices in the so(1,4) Lie algebra are given by:

M(1, 4) =

2

6666664

0 b
1

b
2

b
3

b
4

b
1

0 j
1

j
2

j
3

b
2

�j
1

0 �j
4

j
5

b
3

�j
2

j
4

0 �j
6

b
4

�j
3

�j
5

j
6

0

3

7777775
(67)

) M(1, 4) = b
1

B
1

+ b
2

B
2

+ b
3

B
3

+ b
4

B
4

+ j
1

J
1

+ j
2

J
2

+ j
3

J
3

+ j
4

J
4

+ j
5

J
5

+ j
6

J
6

(68)

Where b
i

and j
j

are real numbers for i = 1, 2, 3, 4 and j = 1, 2, 3, 4, 5, 6:

B
1

= i

2

6666664

0 1 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

3

7777775
B

2

= i

2

6666664

0 0 1 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

0 0 0 0 0

3

7777775
B

3

= i

2

6666664

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

0 0 0 0 0

3

7777775
B

4

= i

2

6666664

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

1 0 0 0 0

3

7777775

(69)
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J
1

= P
1

= i

2

6666664

0 0 0 0 0

0 0 1 0 0

0 �1 0 0 0

0 0 0 0 0

0 0 0 0 0

3

7777775
J
2

= P
2

= i

2

6666664

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 �1 0 0 0

0 0 0 0 0

3

7777775
J
3

= P
3

= i

2

6666664

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 0 0 0

0 �1 0 0 0

3

7777775

(70)

J
4

= Q
3

= i

2

6666664

0 0 0 0 0

0 0 0 0 0

0 0 0 �1 0

0 0 1 0 0

0 0 0 0 0

3

7777775
J
5

= Q
2

= i

2

6666664

0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 �1 0 0

3

7777775
J
6

= Q
1

= i

2

6666664

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 �1

0 0 0 1 0

3

7777775

(71)

So one can define everything in the Lie algebra using these ten matrices. These are the generators

of this Lie Algebra. Therefore, its generators include four boosts (the K matrices) and six rotations

(the J matrices).

Why are the first and last three J matrices also written in terms of P and Q respectively? Because

with a little matrix multiplication, it will be clear that the six J matrices of the so(1,4) algebra have

the exact same commutation relations with each other as the so(1,3) algebra. P
i

of so(1,4) is anal-

ogous to K
i

of so(1,3), while Q
1

, Q
2

and Q
3

of so(1,4) are analogous to J
3

, J
2

and J
1

of so(1,3)

respectively.

The commutations of just the J generators, rewritten as P and Q, are:

[P
i

, P
j

] = �i✏ijkQ
k

(72)

[Q
i

, Q
j

] = i✏ijkQ
k

(73)

[P
i

, Q
j

] = i✏ijkP
k

(74)

The commutation relations of the boosts can be written as:

First B entry in Commutator Bracket:

Second B

entry in

Commutator

Bracket:

1 2 3 4

1 0

2 iP
1

0

3 iP
2

-iQ
3

0

4 iP
3

iQ
2

-iQ
1

0
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Again, with a little rewriting, this can be written more succinctly. Let:

K
0

= B
1

,K
1

= B
2

,K
2

= B
3

,K
3

= B
4

(75)

And therefore this whole table can be written as:

[K
0

,K
i

] = iP
i

(76)

[K
i

,K
j

] = �i✏ijkQ
k

(77)

Where i=1,2,3 and j=1,2,3. There are also the twenty four combinations in which a boosts and a

rotation are both in the commutator brackets, which must be considered to show all of the de Sitter

algebra.

First K entry in Commutator Bracket :

Second rota-

tion entry in

Commutator

Bracket:

0 1 2 3

i P
1

iK
1

-iK
0

0 0

i P
2

iK
2

0 -iK
0

0

i P
3

iK
3

0 0 -iK
0

iQ
1

0 0 -iK
3

iK
2

iQ
2

0 iK
3

0 -iK
1

iQ
3

0 -iK
2

iK
1

0

So again, this table can be written more succinctly as:

[K
0

, P
i

] = iK
i

(78)

[K
0

, Q
i

] = 0 (79)

[K
i

, P
j

] = �i�
ij

K
0

(80)

[K
i

, Q
j

] = i✏ijkK
k

(81)

5.1.2.1 The de Sitter Algebra in Full

So now the de Sitter Algebra can be written out more clearly. There are 10 generators: Four boost

generators in the 1st, 2nd, 3rd and 4th spatial dimensions which are misleadingly (but with reason

behind it, once we get to the Poincaré group) labelled K
0

, K
1

, K
2

and K
3

. It also contains six

rotation generators, which are labelled P
1

, P
2

, P
3

, Q
1

, Q
2

and Q
3

. The algebra is given by the

commutation relations:

[P
i

, P
j

] = �i✏ijkQ
k

[Q
i

, Q
j

] = i✏ijkQ
k

[P
i

, Q
j

] = i✏ijkP
k

(82)
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[K
0

,K
i

] = iP
i

[K
0

, Q
i

] = 0 [K
0

, P
i

] = iK
i

(83)

[K
i

,K
j

] = �i✏ijkQ
k

[K
i

, P
j

] = �i�
ij

K
0

[K
i

, Q
j

] = i✏ijkK
k

(84)

Where i=1,2,3 and j=1,2,3.

As with so(1,3), some methods can be employed to express the so(1,4) Lie algebra more succinctly.

L.H. Thomas actually did work out all of the relations in Thomas (1941). However, using the equiv-

alent approach to the one used with so(1,3), one can write the so(1,4) algebra as:

[X
↵�

, X
��

] = i(⌘
↵�

X
��

� ⌘
↵�

X
��

+ ⌘
��

X
↵�

� ⌘
��

X
↵�

) (85)

5.1.3 What have we learned from this?

Going through these groups has provided some intriguing insights.

so(1,n-1) Lie algebra
Number of gen-

erators

Number of rota-

tion generators

Number of

boost genera-

tors

so(1,1) 1 0 1

so(1,2) 3 1 2

so(1,3) 6 3 3

so(1,4) 10 6 4

For a Lie algebra so(1,n-1), the number of boost generators is equal to n-1. The number of gener-

ators is equal to 1

2

n(n� 1).

What determines the number of possible rotations, and the number of possible boosts? A rotation

occurs in a 2D plane embedded in a space of n-1 dimensions. The SO(1,1) group does not have

enough spatial dimensions to have any planes in which a rotation can occur, so has no rotations.

SO(1,2) has exactly one spatial 2D plane, so has exactly one rotation generator. SO(1,3) has three

possible planes (xy, xz and yz) so needs three rotation generators. Finally SO(1,4) has six possible

planes (wx, wy, wz, xy, xz, yz) so has six rotation generators. This can be extended to further

dimensions.

This might seem like cheating because it neglects the temporal dimension t in each of these cases.

Group SO(1, n-1) deals with n dimensions, not n-1, since n-1 is just the number of spatial dimen-

sions. Is it not possible to consider a rotation in a 2D spacetime plane? A plane of one time

dimension and one space dimension? Indeed it is! And that is exactly what a boost is! The number

of boost generators in a group’s Lie algebra is given by the number of possible 2D planes in that

space of which one of the dimensions is time. And so a boost is effectively a kind of spatio-temporal

rotation, rather than just a spatial rotation, which is what the other rotations are. This also explains

why the matrices for boosts have both objects in the matrix having the same sign, while those for

rotations do not. Because under the Minkowski metric, the sign of the time component and of some

spatial component are opposite, while the same is not true for two spatial component.

Using this matrix approach is slow and boring, especially for groups with larger numbers of gen-
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erators such as the de Sitter group. It also only works for groups all of the elements of which

are linear transformations, and so doesn’t work with the Poincaré group. A much faster, more el-

egant and more interesting approach, which also works with the Poincaré group, is to use Killing

vectors.

5.2 The Killing Vector Approach

5.2.1 The Poincaré Group

5.2.1.1 The Poincaré Generators

The generators of the symmetry group of flat Minkowski spacetime, which has temporal dimension

t (its zeroth dimension) and spatial dimensions x, y and z (its first, second and third dimensions,

respectively) can be found using Killing Vector Fields. The isometry group of Minkowski spacetime

is called the Poincaré group.

The two essential things required to find the Killing Vectors of Minkowski space are the fact that

Minkowski space is flat (So its Riemann tensor, Ricci tensor and scalar curvature are all 0)and that

the Minkowski metric is given by

g
Minkowski

=

2

66664

�1

1

1

1

3

77775
(86)

such that for Minkowski space:

ds2 = �dt2 + dx2

+ dy2 + dz2 (87)

The intuitive way that a person acquainted with definition 19 looks for symmetries is by looking for

what doesn’t turn up in the metric. Since x, y, z and t do not turn up in it, this already indicates

symmetries.

From the discussion of parallel transport earlier, it can be seen that this gives four obvious killing

vectors in the form of derivatives:

P 0

= i@t (88)

P 1

= i@x P 2

= i@y P 3

= i@z, (89)

Corresponding to translations. Using the Killing equation given by equation 48, one can find six

more transformations:

J
1

= i(�z@
y

+ y@
z

) (90)

J
2

= i(z@
x

� x@
z

) (91)

J
3

= i(�y@
x

+ x@
y

) (92)

These are transformations which occur in a two dimensional plane of Minkowski spacetime, for

which neither of the plane’s dimensions are time. These transformations are called rotations. There
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are also:

K
1

= i(t@
x

+ x@
t

) (93)

K
2

= i(�t@
y

� y@
t

) (94)

K
3

= i(z@
t

+ t@
z

) (95)

Which are transformations which similarly occur in a two dimensional plane of Minkowski space-

time. However, unlike with the rotations, these transformations occur in a two dimensional plane for

which one of the dimensions is time and the other is a spatial dimension. These transformations

are called boosts. Note that in equations 93, 94 and 95, the convention has been taken of setting

c = 1.

Figure 21: The Poincaré group has exactly ten generators: Four spacetime translation generators,
and also the six generators of the Lorentz group, of which three are rotation generators and three
are boost generators

In other words, since there are six possible two dimensional planes in 1+3 dimensional Minkowski

spacetime, there are six possible linear transformations in it. These six linear transformations might

seem familiar, because they have already been encountered in the SO(1,3) group. The three boosts

and three rotations of the Poincaré group form the Lorentz group, which is a subgroup of the

Poincaré group. So in other words, the Poincaré group consists of the Lorentz group and also

spacetime translations.

But wait. The translations each occur in a one dimensional line, while the rotations each occur in a

two dimensional plane. Why are there no generators which occur in a three dimensional subspace

of Minkowski spacetime? Or four dimensional generators? Well the point of generators is that all

of the transformations in this spacetime can be constructed out of various generators. All three and

four dimensional transformations in Minkowski spacetime can be made up using the ten generators

of the Poincaré group.

In the case of a flat spacetime, switching to using the Killing vectors which are the representations

of the Infinitesimal Generators of the Poincaré Group in order to consider the symmetries and corre-

sponding conservation laws of Minkowski space can feel like a mere change of notation. However,
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on a curved spacetime such as de Sitter Space, it is significantly more insightful, enabling one to

salvage some form of conservation laws for energy and linear momentum via concepts such as the

static patch. But more on that later.

5.2.1.2 The Poincaré algebra

The Poincaré group has ten generators; four spacetime translation generators (P
µ

for µ = 0, 1, 2, 3)

given by equations 88 and 89, which commute with each other due to being translations on a

flat space. It also contains three rotations each of which takes place in a 2 dimensional plane of

the three spatial dimensions of four dimensional Minkowski spacetime, J
12

, J
13

and J
23

, given by

equations 92, 91 and 90. It also contains three boosts in the 1st, 2nd and 3rd spatial dimensions of

Minkowski spacetime. In reality, the boosts are also a kind of rotation, however, rather than taking

place in a two dimensional plane in which both of the dimensions are spatial ones, they take place

in a two dimensional plane one of the two dimensions of which is the time dimension, 0. So the

three boosts are K
01

, K
02

and K
03

, which were given by equations 93, 94 and 95. Similarly to

during the discussion of the Lorentz Algebra in equation 64, which is a subalgebra of the Poincaré

Algebra, it will be convenient to write these six generators, rotations and boosts in the format �
µ⌫

where µ, ⌫ = 0, 1, 2, 3, the Poincaré algebra can be written as:

[�
µ⌫

,�
⇢�

] = i(�⌘
µ⇢

�
⌫�

+ ⌘
µ�

�
⌫⇢

+ ⌘
⌫⇢

�
µ�

� ⌘
⌫�

�
µ⇢

) (96)

This was already found when working out the Lorentz algebra in equation 64, since the Lorentz

group is a subgroup of the Poincaré group and so the Lorentz algebra is a subgroup of the Poincaré

algebra. However the Poincaré algebra also includes the relations between Lorentz generators

and transformation generators, and between transformation generators and other transformation

generators:

[�
µ⌫

, P
⇢

] = i(⌘
µ⇢

P
⌫

� ⌘
⌫⇢

P
µ

) (97)

[P
µ

, P
⌫

] = 0 (98)

5.2.1.3 The Poincaré Group’s Elements

The Generators of the Lorentz subgroup of the Poincaré Group, as well as the Spacetime Trans-

lation Generators of the Poincaré Group, can all be used to write any Poincaré Group Element,

⇡ (Boer (2019)) (in fact the elements of the Lorentz subgroup of the Poincaré group have in fact

already been written out in equation 65):

⇡ = (�|a) = exp(�ia
µ

Pµ

) exp(�i~� · ~K) exp(�i~✓ · ~J) (99)

With aµ being some four-vector.

5.2.2 The de Sitter Group

5.2.2.1 The de Sitter Generators

Using the general form of Killing vectors discussed earlier, looking at the ambient space metric

metric given by equation 16 due to which the line element for de Sitter space is given by ds2 =
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�d"2
0

+ d"2
1

+ d"2
2

+ d"2
3

+ d"2
4

, the infinitesimal de Sitter group generators are:

J
AB

= "
A

@

@"B
� "

B

@

@"A
= ⌘

AC

"C
@

@"B
� ⌘

BC

"C
@

@"A
(100)

This is a Lie algebra as defined in definition 16:

[J
AB

, J
CD

] = ⌘
BC

J
AD

+ ⌘
AD

J
BC

� ⌘
BD

J
AC

� ⌘
AC

J
BD

(101)

These generators have been derived in terms of " rather than x, which would be more useful. De

Sitter space is a 3+1 dimensional hypersurface embedded in a 4+1 dimensional ambient space.

Using x is better when dealing with the surface itself. x and " have already been written in terms of

one another, this can be easily resolved. We will be considering the zeroth, first, second, third and

fourth dimensions in this scenario. The zeroth dimension is the time dimension. The first, second

and third dimensions are spatial dimensions. The fourth dimension is also a spatial dimension,

specifically, the spatial dimension needed to consider the radius of curvature ⇢. For an individual

on the hypersurface, for a sufficiently large value of ⇢, the fourth dimension might seem invisible.

Equation 100 gives the de Sitter Generators in terms of " rather than the stereographic x coordi-

nates. However, equations 21 and 22 can be used to relate the two.

There are two kinds of " value which can be plugged into the generator equation. ✏a for a =

0, 1, 2, 3 and ✏4. Therefore there will be two generator results found, J
ab

(L generators) and J
a4

(⇧

generators)for a,b=0,1,2,3 (Aldrovandi and Pereira (1998)). First let’s ignore the fourth dimension

for now and focus on the generator for when a,b=0,1,2,3. From equations 100 and 21 it can be

reasoned that:

J
ab

= �
a

µ�
b

⌫

✓
i

✓
⌘0
⇢µ

x⇢

@

@x⌫

� ⌘0
⇢⌫
x⇢

@

@xµ

◆◆
(102)

For brevity’s sake let’s rewrite things a little:

L
µ⌫

= i

✓
⌘0
⇢µ

x⇢

@

@x⌫

� ⌘0
⇢⌫
x⇢

@

@xµ

◆
(103)

And so the generator is:

J
ab

= �
a

µ�
b

⌫L
µ⌫

(104)

Now on to considering the fourth dimension using equations 100 and 22:

J
a4

= ⇢
dS

�
a

µ

✓
i⌘

44

✓
@

@xµ

+

1

4⇢2
dS

⌘
44

(2⌘0
µ�

x�x⇢ � ⌘0
µ⌫

xµx⌫�
µ

⇢

)

@

@x⇢

◆◆
(105)

Again, let’s rewrite things for brevity. Let:

⇧

µ

= i⌘
44

✓
@

@xµ

+

1

4⇢2
dS

⌘
44

(2⌘0
µ�

x�x⇢ � ⌘0
µ⌫

xµx⌫�
µ

⇢

)

@

@x⇢

◆
(106)
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⇧ is especially interesting. There are four ⇧ generators for the de Sitter group, just as there are

four translation generators, P , for the Poincaré group. However, since equations 88 and 89 show

that P
µ

=

@

@x

µ for a = 0, 1, 2, 3, as ⇢
dS

�! 1, ⇧
µ

�! ⌘
44

@

@x

µ and therefore as ⇢
dS

�! 1,

⇧

µ

�! ⌘
44

P
µ

. This will come in useful when discussing Group contraction later in this thesis (in

fact, this is central to the subject of Group contraction).

Putting equation 106 into equation 105 gives:

J
a4

= ⇢
dS

�
a

µ

⇧

µ

(107)

And so just as one can focus on the L of J
ab

for the sake of writing the Lie algebra, so too can one

focus on the ⇧ of J
a4

for the sake of writing the Lie algebra (Aldrovandi and Pereira (1998)).

What does this mean conceptually? There are ten infinitesimal generators for the de Sitter group.

All of these generators are for transformations taking place in a 2 dimensional plane of the five

dimensional de Sitter space. Four of the generators are for transformations taking place in a plane

one of the two dimensions of which are the fourth dimension, which becomes less noticeable on a

local scale as the de Sitter radius increases. For each of these four generators, the other dimension

of the plane in which it takes place is given by the generator. So they are ⇧

0

, ⇧
1

, ⇧
2

and ⇧

3

. These

are the de Sitter boosts.

There are six more generators each of which is for a transformation taking place in a 2 dimensional

plane neither of the dimensions of which is the fourth dimension. All of these six combinations are

given by L
01

, L
02

, L
03

, L
12

, L
13

, L
23

. These are the de Sitter rotations.

Figure 22: The de Sitter group has exactly ten generators, of which six are L generators (occurring
in a two dimensional plane of which both dimensions are the 0, 1, 2 or 3 dimension) and four are ⇧

generators (these occur in a two dimensional plane of which one of the dimensions is the 0, 1, 2 or
3 dimension and the other dimension is the 4 dimension).

5.2.2.2 The de Sitter algebra

So with the killing form generators of the de Sitter group found, one can use equations 103 and 106

to find that the de Sitter algebra in Killing form is:

[L
µ⌫

, L
�⇢

] = i(⌘0
⌫�

L
µ⇢

+ ⌘0
µ⇢

L
⌫�

� ⌘0
⌫⇢

L
µ�

� ⌘0
µ�

L
⌫⇢

) (108)

35



[⇧

µ

, L
�⇢

] = i(⌘0
µ�

⇧

⇢

� ⌘0
µ⇢

⇧

�

) (109)

[⇧

µ

,⇧
�

] = �i⌘
44

⇢�2L
µ�

(110)

5.2.2.3 The de Sitter Group’s Elements

Knowing the de Sitter Generators, any de Sitter element, �
dS

8, can be written using exp as:

�
dS

= exp(�i↵
µ

⇧

µ

) exp(�i~� · ~K) exp(�i~✓ · ~J) (111)

With ↵µ being some four-vector, while ~✓ and ~� are the angle and hyperbolic ’angle’ discussed when

handling the Lorentz group, while ~J and ~K are the same as they were in equation 65 since those

rotations and boosts are the same (although exp(�i↵
µ

⇧

µ

) is not the same as the exp(�ia
µ

Pµ

) in

equation 99. Are there any circumstances in which it is the case that ⇧µ �! Pµ such that the de

Sitter and Poincaré Group elements approach becoming the same, �
dS

�! ⇡? Yes, but to explain

how will require delving into İnönü Wigner Contraction, which will soon be discussed.

5.2.3 Comparing the de Sitter and Poincaré Algebras

Although they use different symbols, equations 108 and 96 are the same equation. Similarly, equa-

tions 109 and 97 are the same, albeit with different symbols. So in other words:

Comparison of Poincaré and de Sitter Gener-

ators (if one ignores the difference between

equations 98 and 110

Poincaré generator de Sitter generator

P ⇧

� L

However, this table explicitly ignores the difference between equations 98 and 110.

The commutations of the six de Sitter rotations with other de Sitter rotations (L, given by equation

108) are the same as the commutation relations of the six Lorentz transformations in the Lorentz

subgroup of the Poincaré group with other Lorentz transformations (�, given by equation 96), and

the commutation relations of the six de Sitter rotations with the four de Sitter boosts with the six

de Sitter rotations (L and ⇧, given by equation 109) are the same as the commutation relations

of the six Lorentz transformations with the four Poincaré spacetime translations (� and P , given

by equation 109). However the commutation relations of the de Sitter boosts with other de Sitter

boosts (⇧, given by equation 110) are not the same as the commutation relations of the Poincaré

group’s four spacetime translations (P , given by equation 98), since it is not normally the case that

�i⌘
44

⇢�2L
µ�

= 0. But are there cases where this is the case, such that the Poincaré and de Sitter

Lie algebras have all the same commutation relations? Yes. It is time to discuss İnönü Wigner

Contraction.
8The general convention throughout this thesis has been to write elements of a group using the Greek letter equivalent of

the first letter of the name of the person after whom the Group is named. ⇤, the Greek capital ’l’, for Lorenz in accordance
with convention in Physics, while ⇡, the lower case Greek ’p’, was chosen for Poincaré to avoid confusion with the capital ⇧
generators in the de Sitter group. For the elements of the de Sitter group, �, the Greek lower case ’s’, for ’Sitter’ is chosen
rather than �, the Greek ’d’, for ’de’.
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6

˙

Inönü Wigner Contraction

6.1 An Introduction to Group Contraction

Anaxagoras...declared...over the earth, which is flat, the sea sinks down

after the moisture has been evaporated by the sun.

Lives of Eminent Philosophers (Diogenes Laërtius (500-428 BCE))

...the planet the little prince came from was scarcely any larger than a

house!
The Little Prince (de Saint-Exupéry (1943))

This section goes very slowly through this subject, because the writer of this thesis was initially

unfamiliar with the subject, and so spent a lot of time practicing with it. Those more familiar with Lie

Groups and especially with İnönü Wigner Contraction can skip subsections 6.1.1, which is mainly

a non-mathematical, conceptual account, and 6.1.2, which gives an example of İnönü Wigner con-

traction in order to explain the concept better.

6.1.1 Conceptual Approach (the more Mathematically-Minded can skip this Part)

Figure 23: Picture from de Saint-Exupéry (1943). The Prince’s Planet looks curved relative to the
Prince because the radius of curvature is much smaller, relative to the Prince, than the radius of
curvature of the Earth

The first of the above epigraphs, quoting Diogenes Laërtius, describes how the pre-Socratic Greek

philosopher, Anaxagoras believed the Earth to be flat, while the second, by Antoine de Saint-

Exupéry, describes the eponymous Little Prince’s life upon a fictional house-sized planet. Unlike

Anaxagoras, the Little Prince is aware that he lives upon a spherical object. How could a truth so

intuitively obvious to the Little Prince have been so unclear to the philosopher? There is no rea-
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son to think that Anaxagoras was significantly less intelligent than any modern person,or than the

fictional prince (he was considered by Diogenes Laertius to be an ’eminent’ philosopher, after all).

So how could he have gotten something so wrong? What is different about Anaxagoras’ and the

Prince’s respective planets?

Figure 24: Spatial Translation on the Little Prince’s planet (illustration of the Prince originally from
de Saint-Exupéry (1943))

Figure 25: Spatial Translation on Anaxagoras’ planet (illustration of Anaxagoras originally from
Raphael (1511))

Though both people are of similar size, Anaxagoras’ home planet has a far greater radius than the

Prince’s. The Prince’s home planet is not translationally symmetric. Going in a straight line in the x

or y direction on the surface of his planet will result in moving off of the planet’s surface, as can be
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seen in figure 24. Therefore it is unsurprising that the Prince realises that his home is not flat. In

contrast, as can be seen in figure 25, Anaxagoras’ home planet, Earth, with its far greater radius, is

translationally symmetric (for translations on Anaxagoras’ scale) because increasing the radius of

a sphere can make it locally resemble a flat surface. What does this all imply?

This discussion is a little conceptual. Let’s delve into a more rigorous mathematical way of consid-

ering these ideas.

6.1.2 An Example: so(3) and e(2)

6.1.2.1 The so(3) Lie Algebra

The SO(3) group is the group of 3D rotations and has already been discussed. When considering

it, one is not ever thinking of boosts, as were considered in the previous section on so(1,n-1) Lie

Algebras. Here the focus is entirely on rotations. Intuitively, in a 3D space, there are 3 orthogonal

axes about which rotation may occur. Any rotation can be constructed from a combination of rota-

tions about these 3 orthogonal axes. So from this intuitive argument there will obviously be three

generators for the group. The so(3) Lie algebra has already been derived and is given by equation

38.

6.1.2.2 The e(2) Lie algebra

Depending on the textbook used, the Euclidean group is called either ISO(n) or E(n) and consists

of either all the rotations and translations of n-dimensional Euclidean space, or all the rotations,

translations and reflections of n-dimensional Euclidean space. For clarity, ISO(n) will be used to

refer to the latter, while E(n) will be used to refer to the former. So E(2) is the group of all rotations

and translations in 2 dimensional Euclidean space. This group is not as important to this project,

so will be considered in slightly more ’broad strokes’ terms than some of the others, since its main

purpose is to provide an example of İnönü Wigner contraction.

What are the rotations and translations which are possible in 2 dimensional Euclidean space?

Obviously there are two orthogonal axes in the direction of which translation can occur, such that

by combining these two translations, translations in any direction can be made. Therefore, there are

two translation generators for this Lie Group, which will be called E
1

and E
2

. Furthermore, in a 2D

Euclidean space, there is one kind of rotation (a 2D circle drawn in Euclidean space has rotational

symmetry, for example). Therefore, there is also one rotation generator, which will be called E
3

.

Emphasising Killing vectors more, the metric for such a space is diag(1, 1) so that the line element

is given by ds2 = dx2

1

+ dx2

2

. Since neither x
1

nor x
2

appear in the metric, there are obviously two

Killing vectors, E
1

= i@
1

and E
2

= i@
2

, corresponding to translation, and furthermore, there is a

third Killing vector given by E
3

= i(x
1

@
2

+ x
2

@
1

), corresponding to rotation.

What kind of Lie algebra does the E(2) group have? Well what does or doesn’t commute in the

e(2) algebra? Thankfully, Euclidean space is quite an intuitive space to consider, especially in just 2

dimensions. Translations in the x and y direction commute since a translation in the x direction then

y direction has the y translation occurs before the x translation. Therefore [E
1

, E
2

] = 0. However,

rotation and translation generators do not commute. Instead [E
2

, E
3

] = iE
1

and [E
3

, E
1

] = iE
2

.

So the e(2) algebra is given by:

[E
1

, E
2

] = 0 [E
2

, E
3

] = iE
1

[E
3

, E
1

] = iE
2

(112)
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This looks a little bit similar to the so(3) Lie algebra given by equation 38, except for the fact that

the first commutator equals 0.

6.1.2.3 The Contraction

so(3) can be rewritten as:

⇤

1

= ✏L
1

⇤

2

= ✏L
2

⇤

3

= L
3

(113)

This change of variables is allowed, and can be very enlightening. In terms of these � values, the

so(3) algebra given by equation 38 is:

[⇤

1

,⇤
2

] = i✏2⇤
3

[⇤

2

,⇤
3

] = i⇤
1

[⇤

3

,⇤
1

] = i⇤
2

(114)

Again, this is all seemingly perfectly fine. Nothing seems any different, except for being written

in terms of slightly different variables. However, when one takes the limit, ✏ �! 0, something

interesting happens.

[⇤

1

,⇤
2

] �! 0, [⇤

2

,⇤
3

] �! i⇤
1

, [⇤

3

,⇤
1

] �! i⇤
2

(115)

Which looks the same as the e(2) algebra. So what has happened here? This is called İnönü

Wigner contraction, and is an example where a group can be contracted to another group at spe-

cific limits (Wigner and İnönü (1953)).

6.2

˙

Inönü Wigner Contraction: Contracting the de Sitter Group to the Poincaré

Group

Time to apply İnönu Wigner Contraction to the de Sitter Group. As has already been established

by the discussion of equation 18, de Sitter spacetime is curved, and so has a radius of curvature,

⇢. As with the above examples of contraction, it can now be possible to consider how, depending

on the de Sitter radius, the de Sitter Group can be contracted into the Poincaré group.

6.2.1 Increasing the de Sitter radius

As ⇢
dS

�! 1 the following limits are approached by the de Sitter algebra’s infinitesimal generators,

which were previously shown in equations 103 and 106:

L
µ⌫

�! L
µ⌫

= �
µ⌫

(116)

In general L
µ⌫

= �
µ⌫

and so at this limit, this remains the case. ⇧ is more noticeably affected.

In equation 106 it is the sum of two terms, given by g
44

@

@x

µ (note that ⇢
dS

does not appear in this

term) and 1

4⇢

2
dS
⌘
44

⌘
44
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@x

⇢ (note that ⇢2
dS

appears as a denominator in this

term). As ⇢
dS

�! 1 the latter term �! 0 such that:
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�! i⌘
44
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44
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(117)
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Figure 26: Comparison of the de Sitter and Poincaré groups

Therefore as ⇢
dS

�! 1
[L

µ⌫

, L
�⇢

] �! [L
µ⌫

, L
�⇢

] (118)

[⇧

µ

, L
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] �! g
44

(ig0
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� ig0
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@x�

) = [g
44

P
µ

, L
�⇢

] (119)

[⇧

µ

,⇧
�

] �! 0 = [P
µ

, P
�

] (120)

Therefore, as ⇢
dS

�! 1, the de Sitter algebra and the Poincaré algebra (given by equations 96, 97

and 98) become the same, with L
µ⌫

being the de Sitter group’s equivalent of the Poincaré group’s

M
µ⌫

and ⇧

µ

being the de Sitter group’s equivalent of P
µ

.

In other words, of the ten de Sitter generators, the four de Sitter boosts behave like Spacetime

translations as the de Sitter radius increases. Meanwhile, the de Sitter rotations’ commutation

relations with each other are the same as Lorentz transformations’ commutation relations with each

other, explaining why the six de Sitter rotation generators become the six generators of the Lorentz

subgroup of the Poincaré group.

Due to Noether’s Theorem, continuous isometries have corresponding conserved currents, and

therefore, having shown that the de Sitter group can be contracted to the Poincaré group by İn-

önü Wigner contraction as the de Sitter radius approaches infinity, there are implications for the

conservation laws of de Sitter space.
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7 The Conservation Laws of Minkowski and de Sitter Space

It is important to point out that the mathematical formulation of the

physicist’s often crude experience leads in an uncanny number of cases

to an amazingly accurate description of a large class of phenomena.

The Unreasonable Effectiveness of Mathematics in the Natural Sciences
Wigner (1960)

7.1 A field theoretic approach to Noether’s Theorem

7.1.1 Noether’s Theorem for Scalar Fields

If premises 1 and 2 below are both true then the conclusion is the case.

Premise 1: There is a Lagrangian density, L, of a scalar field 9, �
a

(x), which is transformed by an

infinitesimal perturbation:

�
a

(x, t) �! �
a

(x, t) + �
a

�
a

(x, t) (121)

Premise 2: L changes under the transformation described by equation 121 by some total derivative

for a set of functions given by ⇣µ(�) such that it is the case that �L is given by:

�L = @
µ

⇣µ(�) (122)

Conclusion: It is the case that there exists a conserved current, jµ, which is to say, a current that

can be described by the equation:

@
µ

jµ = 0 (123)

7.1.2 A Proof of Noether’s Theorem for Scalar Fields

The Euler Lagrange equation when considering some scalar field, �
a

(x), is:

@
µ

✓
@L

@(@
µ

�
a

)

◆
� @L
@�

a

= 0 (124)

The amount by which the field is changed in equation 121 can be called �.

�
a

�
a

(x, t) = �

a

(�) (125)

Using some calculus:

�L =

@L
@�

a

��
a

+

@L
@(@

µ

�
a

)

@
µ

(��
a

) (126)

9It is important to note that throughout this section, scalar fields are used for simplicity’s sake. A mathematically adven-
turous reader is welcome to work everything out for vector fields and more.
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We can add @
µ

⇣
@L

@(@µ�a)

⌘
��

a

� @
µ

⇣
@L

@(@µ�a)

⌘
��

a

= 0 to equation 126 since one can always add

0:

�L =

@L
@�

a

��
a

+

@L
@(@

µ

�
a

)

@
µ

(��
a

) + @
µ

✓
@L

@(@
µ

�
a

)

◆
��

a

� @
µ

✓
@L

@(@
µ

�
a

)

◆
��

a

(127)

And because of the product rule, one can combine the second and third terms @L
@(@µ�a)

@
µ

(��
a

)

and @
µ

⇣
@L

@(@µ�a)

⌘
��

a

, into a single term, @
µ

⇣
@L

@(@µ�a)
��

a

⌘
, meaning that equation 127 can be

rearranged as:

�L = @
µ

✓
@L

@(@
µ

�
a

)

��
a

◆
�
✓
@
µ

✓
@L

@(@
µ

�
a

)

◆
� @L
@�

a

◆
��

a

(128)

And putting equation 124 into the second term of equation 128 gives:

�L = @
µ

✓
@L

@(@
µ

�
a

)

��
a

◆
(129)

Putting � and ⇣ from equation 125 and equation 122 into equation 129 means that one can use

definition 20 to rewrite equation 129 as equation 123:

Definition 20 (Noether Current) jµ = @
µ

@L
@(@µ�a)

�� ⇣µ

Therefore there is a Noether current, the flow of a conserved quantity (Tong (2006), Kleinert (2016)).

The Noether charge, the conserved quantity Q which is flowing, can be found for a given volume by

integrating over that volume:

Q
volume

=

Z

volume

j0 d

3x (130)

So if one seeks to find the conserved charges for some space, one must find � and ⇣ into equation

123 and decide what the volume is that is being integrated.

7.2 The Conservation Laws of Minkowski Space

7.2.1 Spacetime Translations

For spacetime translations:

x⌫ �! x⌫ � ✏⌫ (131)

Where ✏ is some infinitesimal translation and for Minkowski space, ⌫ = 0, 1, 2, 3. Therefore:

� �! �+ ✏⌫@
⌫

� (132)

And this in turn means that:

L(x) �! L(x) + ✏⌫@
⌫

L(x) (133)
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Equation 133 can be rewritten as:

L(x) �! L(x) + @
⌫

(L(x)✏⌫) (134)

Equation 132 can be compared with equations 121 and 125 to see that for spacetime transla-

tions:

�

spacetime translations

= ✏⌫@
⌫

� (135)

Which can be put into definition 20 to give Noether Current:

(jµ)
⌫

=

@L
@(@

µ

�)
✏⌫@

⌫

�� ⇣µ (136)

What is ⇣µ for this current? Equation 134 can be compared with definition 122 to give this. There

are four translations ✏⌫ for ⌫ = 0, 1, 2, 3. L is changed if ⌫ = µ but if ⌫ 6= µ then �L is not changed.

A Kronecker delta can be used to convey this:

⇣µ = �µ
⌫

L(x)✏⌫ (137)

So putting equation 137 into equation 136 gives:

(jµ)
⌫

= ✏⌫
✓

@L
@(@

µ

�)
@
⌫

�� �µ
⌫

L
◆

(138)

And so this can be used to define the Energy Momentum Tensor:

Definition 21 (The Energy Momentum Tensor) (jµ)
⌫

= Tµ

⌫

=

@L
@(@µ�)

@
⌫

�� �µ
⌫

L

Tµ

⌫

gives the Noether currents when L changes under translations by some total derivative (as

was described by equation 122).

T 00 gives energy density of a volume in space (the flux of 0�Noether Current across a surface of

constant x0). T 11, T 22 and T 33 give pressure in the x, y and z directions (the flux of i�Noether

Current across a surface of constant xi.

7.2.1.1 The Energy and Momentum Noether Charges

Finding the Noether charges corresponding to the Noether Current given by definition 21 is done by

integration, as is shown by equation 130, of T 0⌫, as given by definition 21. This means that some

conserved Noether Charge P ⌫ is given by:

P ⌫

=

Z

volume

T 0⌫

d

3x (139)

So for Minkowski space, these four Noether currents for ⌫ = 0, 1, 2, 3 give four Noether charges,

which are P 0, the time-momentum, which is more commonly called energy, and also P 1, P 2 and

P 3, the linear momentum in the x, y and z directions, for the given region. For a space for which
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d

3x doesn’t change over time, such as Minkowski space, this integration can be done globally,

giving:

P ⌫

=

Z

space

T 0⌫

d

3x (140)

And therefore there is global energy and linear momentum conservation for Minkowski space.

7.2.2 Lorentz Transformations

Writing out Lorentz transformations as square matrices has already been done. Let ⇤µ

⌫

be a

Lorentz transformation or a de Sitter transformation. First � for equation 125 must be found.

⇤

µ

⌫

= �µ
⌫

+ !µ

⌫

(141)

Where �µ
⌫

is the kronecker delta matrix (the matrix equivalent of a kronecker delta, which is either

an n⇥ n 0 matrix if µ 6= ⌫ or an n⇥ n identity matrix if µ = ⌫) which is symmetric (since a 0 matrix

or an identity matrix is symmetric) such that �µ
⌫

= �⌫
µ

and !µ

⌫

is antisymmetric such that !µ

⌫

= �!⌫

µ

,

which means that:

(⇤

µ

⌫

)

�1

= �µ
⌫

� !µ

⌫

(142)

And

�
s

� = �0(x)� �(x) (143)

Where in equation 143, �0(x) is given by:

�0(x) = �(⇤�1x) (144)

Since ! is antisymmetric and � is symmetric, putting equation 142 into equation 144 gives:

�0(x) = �(xµ � !µ

⌫

x⌫

) (145)

and equation 145 can be rewritten as:

�0(x) = �(xµ

)� !µ

⌫

x⌫@
µ

�(x) (146)

Putting equation 146 back into equation 143 gives:

�
s

� =

HHH�(xµ

) � !µ

⌫

x⌫@
µ

�HHH�(xµ

) (147)

Therefore:

�
s

� = �!µ

⌫

x⌫@
µ

� (148)
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And by similar reasoning:

�L = �!µ

⌫

x⌫@
µ

L (149)

Putting 148 into equation 125 gives:

� = �!µ

⌫

x⌫@
µ

� (150)

And putting equation 149 into definition 122 gives:

@
µ

⇣µ = �!↵

⌫

�µ
↵

L (151)

(although when writing out the full Noether current, one should include a Kronecker delta in ⇣ for

analogous reasons to those used when dealing with ⇣ for translations)

Equations 150 and 151 can be put into definition 20 to give:

jµ = �!↵

⌫

✓
@L

@(@
µ

�)
�� �µ

↵

L
◆
x⌫ (152)

And in fact, definition 21 can be put into equation 152 to give:

jµ = �!↵

⌫

Tµ

↵

x⌫ (153)

Can this be written without needing to write in terms of !? Yes.

�@
µ

!⇢

⌫

Tµ

⇢

x⌫

= 0 = �@
µ

!⌫

⇢

Tµ

⌫

x⇢ (154)

Adding them together and taking advantage of the antisymmetry of !:

@
µ

(!⇢

⌫

(Tµ

⌫

x⇢ � Tµ

⇢

x⌫

)) = 0 (155)

From this one can also reason that

@
µ

(Tµ

⌫

x⇢ � Tµ

⇢

x⌫

) = 0 (156)

and therefore there is a way of expressing the six (in the case of Minkowski space) or ten (in the

case of de Sitter space) relevant Noether currents without !:

(jµ)↵� = x↵Tµ� � x�Tµ↵ (157)

For Minkowski space, ⇢, ⌫ = 0, 1, 2, 3, ⇢ 6= ⌫, this gives six Noether currents for the combinations

01, 02, 03, 12, 13, 23.

It is worth noting here that de the de Sitter generators are also boost and rotation generators.

Therefore, the same reasoning can be used for de Sitter transformations, except that for de Sitter

space ⇢, ⌫ = 0, 1, 2, 3, 4, ⇢ 6= ⌫, which means that there are ten de Sitter Noether currents for the

combinations 01, 02, 03, 04, 12, 13, 14, 23, 24, 34.
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7.2.2.1 Lorentz Noether Charges

There are three boost generators and three rotation generators for the isometry group of Minkowski

space (more broadly there are six Lorentz generators, which includes the boost and rotation gen-

erators both). What is the corresponding Noether charge?

Putting equation 157 into equation 130 gives some conserved charge L:

L↵�

=

Z

space

�
x↵T 0� � x�T 0↵

�
d

3x (158)

Where ↵,� = 0, 1, 2, 3,↵ 6= �. Let’s start with the Noether charges associated with rotation gen-

erators, L12, L13 and L23. These three conserved quantities are angular momentum. What about

the Noether charges L01, L02 and L03? What is the conserved quantity associated with a ’rotation’

in a two dimensional plane one of the two dimensions of which is time rather than space? This

in fact corresponds to conservation of centre of energy of a field. It is effectively the relativistic

equivalent of Newton’s First Law. Therefore, the symmetries of Minkowski space overall give rise

to conservation of energy, linear momentum (in fact energy and linear momentum together form

four-momentum), angular momentum and to an equivalent of Newton’s First Law in the form of

conservation of centre of energy of a field. This is because, since L0↵ is conserved, it is the case

that:

0 =

dL0i

dt
=

d

dt
(

Z �
x0T 0↵ � x↵T 00

�
d

3x) (159)

Which can be rearranged to:

0 =

Z
T 0↵

d

3x+ x0

Z
dT 0↵

dt
d

3x� d

dt

Z
x↵T 00

d

3x (160)

And since
R
T 0↵

d

3x = P↵, and P↵ is conserved in Minkowski space, this becomes:

P↵

=

d

dt

Z
x↵T 00

d

3x (161)

And therefore, since P↵ is conserved for Minkowski space, so too is d

dt

R
x↵T 00

d

3x. Therefore the

centre of energy of a field is conserved for Minkowski space.

7.3 The Conservation Laws of de Sitter Space

As has already been established, using İnönü Wigner Contraction, as ⇢
dS

�! 1, the de Sitter

Group becomes the Poincaré group, and so as ⇢
dS

�! 1, the ⇧ Generators of the de Sitter group

become translation Generators. Therefore, as ⇢
dS

�! 1, the Noether Currents of de Sitter space

become the same Noether Currents as those of Minkowski Space.

What about for the non-contraction limit? What are the Noether Currents of de Sitter space in that

case?
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7.3.1 Translations in de Sitter Space

The de Sitter group’s generators consist of four ⇧ generators and six L generators, but do not

include any translation generators of the form @/@x, and therefore, though one can write �L under

translations as a total derivative according to equation 122 as ⇢
dS

�! 1 using İnönü Wigner

contraction, energy is not globally well defined for de Sitter space since there is no Killing vector

of de Sitter space (representing some generator of the de Sitter group) which is globally timelike.

Furthermore, unlike is the case with static spaces such as Minkowski space, d

3x is not time-

invariant for de Sitter space, which has implications for the application of equation 130.

The derivation of the Energy Momentum Tensor as Noether Currents cannot be done for the isome-

tries of the de Sitter group as it can be for those of the Poincaré group since unlike the Poincaré

group, the de Sitter group does not have any translation generators. However, since under İn-

önü Wigner Contraction, as ⇢
dS

�! 1, the de Sitter group becomes the Poincaré group, as as

⇢
dS

�! 1 the Energy Momentum Tensor does become Noether Currents corresponding to the

isometries of de Sitter Space.

7.3.2 Rotations and Boosts in de Sitter Space

7.3.2.1 ’Lorentz Transformations’ in de Sitter space

When ↵,� 6= 0,↵,� 6= 4, the same currents (j0)12, (j0)13, (j0)23, (j0)01, (j0)02 and (j0)03 given

by equation 157 occur in Minkowski and de Sitter space.

7.3.2.2 (j0)04, (j0)14, (j0)24, (j0)34

Because de Sitter space has 4+1 dimensions rather than the 3+1 dimensions of Minkowski space,

there are four more two-dimensional planes of Minkowski space in which a rotation/boost can occur.

Therefore there are four Noether Currents, (j0)04, (j0)14, (j0)24, (j0)34, which can be found using

equation 157 which are found in de Sitter space which are not found in Minkowski space. These

currents correspond to the ⇧ generators of the de Sitter group.

Figure 27: A Venn Diagram of the Noether Currents derived for de Sitter and Minkowski space
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7.3.3 d

3x and Noether Charges in de Sitter Space

While the Noether currents of de Sitter space have been discussed, there is a major issue to

consider whe discussing the Noether charges. Equations 139 and 158 for conserved charges deal

with d

3x. Minkowski space is a static space, so such an integration is time independent. De

Sitter space is not static since a de Sitter Universe expands over time. Therefore, integrating over
R
all of space

d

3x at one time and another later time will not give the same result.

Therefore, while the intuition with regard to the de Sitter Noether Currents is to simply work out

equation 162 for ↵ = 0, 1, 2, 3, 4, � = 0, 1, 2, 3, 4, ↵ 6= �, in fact, L↵� are not constant with respect

to time.

L↵�

=

Z

space

�
x↵T 0� � x�T 0↵

�
d

3x 10 (162)

Since d

3x is not time-independent for de Sitter space, one cannot assume that the Noether charges

for de Sitter space are time-independent. Is there some way to treat at least part of de Sitter space

as a static universe? Yes. But not the whole of it, and not easily. To explain how, it will be necessary

to deal with a static part of de Sitter space using the static patch.

7.3.3.1 De Sitter Space Noether Charges associated with (j0)01, (j0)02 and (j0)03)

Aside from the fact that d

3x is not constant with respect to time in de Sitter space, there is also a

further complication when it comes to interpreting the Noether charges associated with the Noether

currents (j0)01, (j0)02 and (j0)03). Since conservation of linear momentum cannot be assumed

when dealing with de Sitter space, Equation 159 cannot be simplified to equation 161 (As has

already been mentioned, equation 161 is a relativistic equivalent of Newton’s First Law) for de Sitter

space. Therefore, there is yet another difference between the Noether Charges of de Sitter and

Minkowski space.

8 Is there any way of salvaging some kind of Conservation of

Energy for de Sitter Space?

...energy and momentum evolve in a precisely specified way in response

to the behavior of spacetime around them. If that spacetime is standing

completely still, the total energy is constant; if it’s evolving, the energy

changes in a completely unambiguous way.

In the case of dark energy, that evolution is pretty simple: the density of

vacuum energy in empty space is absolute constant, even as the volume

of a region of space (comoving along with galaxies and other particles)

grows as the universe expands. So the total energy, density times

volume, goes up.

Carroll (2010)

There are several coordinate systems which can be used for de Sitter space. One achieves energy

conservation within the static patch horizon, but not globally.

10Remember when looking at equation 162 because it cannot be over-emphasised, for de Sitter space d3x is not constant
with respect to time

49



8.1 Penrose Diagrams

The discussion here is assisted by the use of Penrose Diagrams. Like spacetime diagrams, Penrose

diagrams have a vertical axis representing time and a horizontal axis representing space. However,

unlike spacetime diagrams, Penrose diagrams conformally ’squash’ space in order to represent an

infinite space rather than a finite space.

Figure 28: Penrose Diagram for Minkowski Space originally from d’Inverno (1992b). I+ and I�

represent future and past lightlike infinities, i+ and i� represent future and past timelike infinities,
and i0 represents spacelike infinity.

The Penrose diagram for Minkowski space is a good example of a Penrose diagram. As shown in

figure 28, geodesics are curved due to the diagram’s conformal treatment of infinity.

Figure 29: Penrose Diagram for de Sitter Space originally from d’Inverno (1992c). I+ and I�

represent future and past lightlike infinities, � represents angle

Note the counter-intuitive contrast between the grid-like shape of figure 29 and the more curved

appearance of figure 28, which is ironic given that de Sitter Space is curved while Minkowski space

is flat. This is because Penrose Diagrams allow infinite space to be represented in a finite diagram

by ’squashing’ space, in order to conformally treat infinity. The degree of ’squashing’ increasing as

one approaches infinity.
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Penrose diagrams will be extremely useful in this section.

Figure 30: A comparison of Minkowski space (left) and de Sitter space (right) Penrose diagram
shapes originally from Susskind, Goheer and Kleban (2003). Time increases in the vertical direction
and spatial distance increases in the horizontal direction.

8.2 Timelike Killing Vectors

Due to the focus on energy conservation here, there will be focus on the vector field:

K = i@
t

(163)

For metric g
µ⌫

, if Lie derivative L
K

g
µ⌫

, as given by equation 47 over vector field K, with vector field

K given by equation 163, is zero, then K is a Killing vector Field.

L
K

g
µ⌫

= K↵@
↵

g
⌫µ

+ g
⌫↵

@
µ

K↵

+ g
µ↵

@
⌫

K↵ (164)

8.2.1 Noether’s Theorem and Killing Vectors

Definition 22 (Conservation Along a Geodesic) For a geodesic on some smooth manifold, where
ui is a tangent vector to the geodesic, if uir

i

Q = 0 then Q is conserved along the path of the
geodesic

The Killing Equation given by equation 48 can be rearranged to:

r
i

K
j

= �r
j

K
i

(165)

Let Ki be a Killing vector on spacetime M with metric tensor g
ij

. Let there be a geodesic on this

spacetime with tangent vector ui. The inner product of ui and Ki is uiK
i

can be written as ujK
j

and along the path of a geodesic, using the product rule, it is the case that:

uir
i

(ujK
j

) = (uir
i

uj

)K
j

+ uj

(uir
i

K
j

) (166)

And since ui is a tangent vector along the geodesic, r
i

uj

= 0 and therefore the first term of

equation 166 is equal to zero, and so the equation becomes:

uir
i

(ujK
j

) = uj

(uir
i

K
j

) (167)
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And since i and j are dummy variables, they can be exchanged so that:

uj

(uir
i

K
j

) = ui

(ujr
j

K
i

) (168)

However, putting equation 165 into equation 168 results in it becoming:

uj

(uir
i

K
j

) = �uj

(uir
i

K
j

) (169)

And therefore equation 169 necessitates that

uj

(uir
i

K
j

) = 0 (170)

And so putting equation 170 into equation 166 gives:

uir
i

(ujK
j

) = 0 (171)

And comparing equation 171 to definition 22, it can therefore be concluded that when Ki is a Killing

vector for some spacetime, along the geodesic with tangent vector ui, it is the case that ujK
j

is a

conserved current, which is to say, a Noether current (user_35 (2015)).

8.3 De Sitter space and the FRW Metric

The Einstein Field Equations have various exact solutions, including the Friedmann-Robertson-

Walker (FRW) metric. The FRW approach assumes an expanding or contracting (either way non-

static), isotropic, homogeneous Universe. An example of such a Universe is de Sitter spacetime.

An FRW metric has form:

ds2
FRW

= �dt2 + ↵(t)2⌃2 (172)

Where ↵(t)2⌃2 gives all the spatial terms. ⌃ gives the spatial slices of the spacetime (d’Inverno

(1992c), Hartman (2017)). A slice can be:

Open: If it is a Hyperbola

Flat: If it has one fewer dimensions than the spacetime of which it is a slice.

Closed: If it is a closed shape such as an n-sphere.

↵(t) is the reason that a FRW Universe is non-static, expanding or contracting over time. Since

↵(t) appears in the metric then since there is t in the metric, there cannot be the Killing vector @
t

due to the fact that in equation 164 K↵@
↵

g
⌫µ

6= 0 and, therefore, since L
K

g
µ⌫

6= 0, K is not a

Killing vector when using an FRW metric. Therefore these approaches are not appropriate when it

comes to energy conservation. As Physicist Sean Carroll said ’...energy and momentum evolve in a

precisely specified way in response to the behavior of spacetime around them. If that spacetime is

standing completely still, the total energy is constant’ (Carroll (2010)). De Sitter Space is not static,

so one cannot have global energy conservation for it.

Once one accepts the fact that a global timelike Killing vector for de Sitter space is not possible,

one can try to deal with de Sitter space non-globally. As will be shown, for a specific (non-global)

region, one can use static patch coordinates, such that for the static patch there is a non-global
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timelike Killing vector, and therefore one can have energy conservation within the horizon of the
static patch. However, the writer of this thesis is getting ahead of himself, since the static patch

coordinates will not be discussed until after the global slicing, and so it is better to keep the focus

on the global slicing for now.

Figure 31: Open, Flat and Closed Slicing

De Sitter space is a curved hypersurface described by equation 18 (as a reminder, X
µ

Xµ

= ⇢2),

with radius of curvature ⇢
dS

, which is embedded in 4+1 dimensional flat Minkowski space with

coordinates X
0

, X
1

, X
2

, X
3

and X
4

(Hawking and Ellis (1973), Carroll (2014d), d’Inverno (1992c))

(see figure 14 for a visual reminder of the overall concept). As has already been established in

equation 16, the ambient Minkowski space in which the hypersurface is embedded has metric:

ds2
embed

= �dX2

0

+

4X

k=1

dX2

k

(173)

8.3.1 Closed (Global) Slicing Coordinates

One can use polar coordinates t, r, ✓, � and  . Using hyperbolic trigonometric functions such as

sinh and coshit is possible to rewrite X
0

,...X
4

for the hypersurface as:

X
0

= ⇢ sinh(t/⇢) (174)

X
1

= ⇢ cosh(t/⇢) cos ✓ (175)

X
2

= ⇢ cosh(t/⇢) sin ✓ cos� (176)

X
3

= ⇢ cosh(t/⇢) sin ✓ sin� cos (177)
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X
4

= ⇢ cosh(t/⇢) sin ✓ sin� sin (178)

One can more generally write X
i

for i > 0 as:

X
i

= ⇢ cosh(t/⇢)z
i

(179)

Where z2 = 1.

Figure 32: Diagram of the Closed (Global) Slicing of a Hyperboloid originally from Hawking and
Ellis (1973). The diagram has been slightly altered to make the choice of notation consistent with
the choice of notation in the rest of this thesis.

Putting the global coordinates into equation 18 shows that this describes a hyperboloid (see figure

32 for a diagram of a hyperboloid using global coordinates).

⇢2(� sinh

2

(t/⇢) + cosh

2

(t/⇢)(cos2 ✓ + sin

2 ✓(cos2 �+ sin

2 �(cos2  + sin

2  )))) = ⇢2 (180)

And so it is possible to use global coordinates to write the de Sitter metric using global coordi-

nates:

ds2 = �dt2 + ⇢2 cosh2(t/⇢)(d✓2 + sin

2 ✓(d�2 + sin

2 �(d 2

))) (181)

So the global de Sitter metric has been found. This is a version of equation 172 for de Sitter space

globally, with ↵ given by the cosh(t/⇢) term (Hartman (2017)).

Equation 181 is the metric for the global case, and note that t turns up in the metric in the 2 cosh

2

(t/⇢).

One can put the metric given by equation 181 into equation 164 and see that since g
µ⌫

includes the

cosh

2

(t/⇢), it is the case that @
t

g
⌫µ

6= 0 and therefore L
K

g
µ⌫

6= 0. Therefore when using the global

metric, K is not a Killing vector. No Killing vector of de Sitter space is globally timelike. There is no

global law of energy conservation for de Sitter space.

With the global coordinates considered and shown to fail at giving energy conservation, the time
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has come to move onto other coordinate systems, none of which will be global.

8.3.2 Flat Slicing Coordinates

Instead of the previous coordinate system for writing ds2 = �dX2

0

+ dX2

1

+ ...dX2

n

one can now

switch to using:

X
0

= ⇢ sinh(t/⇢) +
1

2⇢
r2et/⇢ (182)

X
1

= ⇢ cosh(t/⇢)� 1

2⇢
r2et/⇢ (183)

X
2

=

t/⇢ r cos ✓ (184)

X
3

=

t/⇢ r sin ✓ (185)

More generally, for i > 1

X
i

= et/⇢y
i

(186)

Where r2 = y2.

These values satisfy a hyperboloid equation. ds is given by:

ds2 = �dt2 + e2t/⇢dy2 (187)

These coordinates only cover X
0

+ X
1

> 0 since X
0

+ X
1

= ⇢(sinh(t/⇢) + cosh(t/⇢)) = ⇢et/⇢.

Therefore, one cannot use these for global coordinates. A diagram of the ’half-covering’ of de Sitter

space by flat slicing coordinates is shown in figure 33. One can also choose flat slicing coordinates

to instead deal with the other half of the hypersurface instead, but cannot make them global, as

they are in the case of the global coordinates (as the name rather subtly implies).
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Figure 33: Diagram of the Flat Slicing of a Hyperboloid originally from Hawking and Ellis (1973)

The most important thing about equation 187 for the sake of this thesis is that when putting it into

equation 164, @
t

g
⌫µ

6= 0 due to the fact that e2t/⇢ appears in the metric, and therefore, since t

appears in the metric, as was the case with the global slicing, L
K

g
µ⌫

6= 0 such that K is not a

Killing vector field and therefore there is no energy conservation using the flat slicing.

8.3.3 Open Slicing Coordinates

Alternatively, one can use the open slicing approach, but like the previous two approaches, this one

will not yield a metric without t in it.

Let:

X
0

= ⇢ sinh(t/⇢) cosh(⌅) (188)

X
1

= ⇢ cosh(t/⇢) (189)

X
i

= ⇢ sinh(t/⇢) sinh(⌅)z
i

(190)

What do these terms mean? The z2
i

term gives an (n-2)-sphere of radius 1. In the case of the four

spatial dimensions of de Sitter space, this results in a 2-sphere (ie: a ’normal’ 2 dimensional sphere

embedded in 3 dimensional space). What about ⌅? It’s used for the hyperbolic metric:

dH2

n�1

= d⌅2

+ sinh

2

(⌅)

X

i

z2
i

(191)

So equations 188, 189 and 190 can be used for the equation for a hyperboloid as seen in equation

18 and therefore using equations 188, 189 and 190 one can get the open slicing coordinates metric
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(Hartman (2017)):

ds2 = �dt2 + ⇢2 sinh2(t/⇢)d⌅2

+ sinh

2

(⌅)

X

i

z2
i

(192)

Which, using equation 191 becomes:

ds2 = �dt2 + ⇢2 sinh2(t/⇢)dH2

n�1

(193)

And in the case we are dealing with, de Sitter space, with 4 spatial dimensions, this becomes:

ds2 = �dt2 + ⇢2 sinh2(t/⇢)d⌅2

+ sinh

2

(⌅)d✓2 (194)

So now the metric for the open slicing coordinates of 4+1 dimensional de Sitter spacetime are

found, and once again, t appears in the metric in the form of ⇢2 sinh2(t/⇢), which means that using

the metric given by equation 194 into equation 164 will give a nonzero value. So once again, we

cannot have a killing vector pointing in the time direction in order to achieve translational symmetry

in time, and therefore, to achieve the corresponding law for the conservation of energy.

The writer of this thesis strongly suspects that the Open Slicing coordinates are not global. However,

he has not been able to think of a way to prove this, and has not found an explicit statement of this

in any literature. However the question of whether or not it is global or not is not of as much concern

to this thesis as the question of whether one can avoid having t appear in the metric using open

slicing coordinates, and the answer to that question is a definite ’no’.

8.3.4 What happens when time is constant?

In general, for constant time (ie: when dt = 0) the equation 172 becomes:

ds2 = kd⌃ (195)

Where k is some constant. Two examples can be given.

Figure 34: Flat Slicing Penrose Diagram originally from Hartman (2017). Blue curves are flat slices
of constant time, red curves are flat slices of constant radius. As can be seen, similarly to the case
in figure 33, the Flat Slicing Coordinates can only be used to cover half of the Penrose Diagram.

When dt = 0, equation 181 becomes ds2 = k(d✓2 + sin

2 ✓(d�2 + sin

2 �(d 2

))) where k is a con-

stant. This is a 3-sphere metric. For the global coordinates, constant t sections are 3-spheres (a
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3-sphere, also called a ’glome’, is the higher dimensional concept of a sphere, being a 3 dimen-

sional surface embedded in a 4 dimensional space, unlike the more common sense concept of a 2

dimensional surface embedded in a 3 dimensional space, which is called a 2-sphere).

Similarly, when dt = 0, equation 187 becomes ds2 = kdy2, where k is a constant. Therefore, for

constant time there is a flat metric, and things seem Euclidean. Conversely, for constant radius,

one can have ds2 as a function only of �dt2. This concept is conveyed by figure 34.

The closed, flat and open slicing approaches have all failed to achieve conservation of energy. Time

to move on to the Static Patch, which will work much better for this task.

8.4 Energy Conservation and the Static Patch

The ways of slicing previously discussed all failed to provide a way of having some sort of energy

conservation in de Sitter Space. However, the Static patch provides an alternative, with a metric

which, unlike the previous three, does not resemble a FRW metric. However, it is important to note

that the Static Patch coordinates are not global.

Figure 35: Static Patch Kruskal Diagram of the r,t plane of de Sitter space originally from Gibbons
and Hawking (1977). The r = 1 curves, which are spacelike, are past (lower curve) and future
(upper curve) infinity. The dotted curves r = 0, which are timelike, are the polar coordinate origins
of a three sphere. The diagonal lines, which are lightlike, show the past and future event horizons
of a person sitting at the origin.

The main focus of this approach it to make sure that t does not appear in the metric. This way, there

can be a timelike killing vector, and so, within the static patch, there can be a conservation law for

energy.

X
0

= ⇢
p

1� r2/⇢2 sinh(t/⇢) (196)

X
1

= ⇢
p
1� r2/⇢2 cosh(t/⇢) (197)

X
2

= r cos ✓ (198)
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X
3

= r sin ✓ cos� (199)

X
4

= r sin ✓ sin� (200)

Which satisfies equation 18 since

�X2

0

+X2

1

+X2

2

+X2

3

+X2

4

= ⇢2 (201)

Figure 36: Static Patch Penrose Diagram originally from Gibbons and Hawking (1977). The arrows
along dotted lines are Killing vectors pointing along geodesics of constant radius. As can be seen in
the diagram, the same killing vector i @

@t

can be timelike and future-directed in quadrant I, spacelike
in quadrants II and III, and timelike and past-directed in quadrant IV. Furthermore, as ⇢

dS

�! 1,
the horizon of the quadrant expands to infinity and

p
⇤ �! 0 until the diagram for quadrant I

becomes figure 28, the Penrose diagram for flat Minkowski space

The static patch coordinates give ds2 which does not match the FRW metric previously given by

equation 172, so is not global:

ds2 = �(1� r2/⇢2)dt2 +
1

1� r2/⇢2
dr2 + r2(d✓2 + sin

2 ✓(d�2)) (202)

There are two notable things about the metric given by equation 202. Firstly, t does not appear

in the metric, and therefore, putting it into equation Lie Derivative equation 164 with vector field

K = @
t

gives:

L
K

g
µ⌫

= 0 + 0 + 0 (203)

The second and third terms in equation 164 equal zero, and furthermore, since t does not appear in

the metric, @
t

g
⌫µ

= 0 and therefore the first term is also zero. Therefore, equation 203 means that

for the static patch, K = @
t

is a killing vector field within the Static Patch horizon, as is shown by

figure 38 and therefore there is also the energy conservation implied by that within the Static Patch
horizon (that gets said twice because it is extremely important to remember this). The conserved
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currents of the Static Patch are not globally conserved charges of de Sitter space. K = @
t

is not a

generator of the de Sitter group, and the conserved charge corresponding to it in a Static Patch is

not the same as the conserved charge corresponding to ⇧

0. However, as ⇢
dS

�! 1, ⇧0 �! K.

The second notable thing about equation 202 is that ds2 has a singularity at r = ⇢ since when this

is the case, the second term in the metric, 1

1�r

2
/⇢

2 dr2, is not well defined. Therefore, the static

patch coordinates cannot be used globally, but only within the horizon given by r = ⇢. In equation

31 it was established that the de Sitter radius is given by ⇢ =

q
3

⇤

, so in other words, for the static

patch:

r
horizon

= ⇢
dS

=

r
3

⇤

(204)

Figure 37: A diagram showing static patch I of figure 36. The dotted blue lines are lines of constant
r, going from past timelike infinity I� to future timelike infinity I+. The red arrows show how a future-
directed timelike killing vector points along a geodesic of constant radius such that, integrating along
the geodesic, one has conservation of energy. It is also interesting to compare this Penrose diagram
to figure 28 (note that all of the dotted blue lines on this diagram go from I� to I+, even though the
ones which curve the most might not appear to)

Given that the Cosmological Constant of the Universe is likely to be extremely small, this means

that the horizon of the static patch is extremely large. Furthermore, it is possible to use more than

one static patch for the whole de Sitter space even though it is not possible to use the same one

static patch for the whole de Sitter space. For example, figure 38 shows a Penrose diagram for de

Sitter space with two static patches. One of them has a future-pointing timelike Killing vector, while

the other has a past-pointing timelike Killing vector.
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Figure 38: Static Patch Penrose Diagram originally from Anderson and Mottola (2013)

Along the dotted lines in figure 37, which represent geodesics, there is conserved charge given by

uiK
j

where u is a tangent vector to the geodesic and K is the timelike killing vector shown by the

red arrow. This is all in accordance with equation 171. The flow of this conserved Noether charge,

J
b

= KaT
ab

, is a conserved current along the geodesic, which one may integrate along to find the

conserved charge (Moretti (2015) user4552 (2018)).

This way, there can be energy conservation in the static patch, since when dealing with the static

patch it is possible to have a timelike Killing vector. There is Noether charge:

E = �u
b

(i@
t

)

b (205)

8.4.1 The Static Patch Horizon and

˙

Inönü Wigner Contraction

It has already been established that as ⇢
dS

�! 1, the de Sitter algebra �! the Poincaré algebra.

Since the de Sitter and Poincaré algebras are related to the de Sitter and Poincaré groups’ elements

by the exponential map, this means that as ⇢
dS

�! 1, the de Sitter group �! the Poincaré group.

Equation 204 is therefore notable, since it means that as the Static Patch horizon r
horizon

�! 1,

the de Sitter group �! the Poincaré group.
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9 Conclusion and Recommendations

What has been shown regarding energy conservation in de Sitter Space?

The de Sitter and Poincaré groups, which are the symmetry groups of de Sitter and Minkowski

space respectively, each have ten infinitesimal generators. The de Sitter generators consist of six

L generators and four ⇧ generators (Calling them L and ⇧ follows the precedent set by Aldrovandi

and Pereira (1998)). The Poincaré generators consist of the six generators of the Lorentz group

(called � generators in this thesis), and also four spacetime translation generators (called P gener-

ators in this thesis). Although the L generators have the same commutation relations with other de

Sitter generators (whether L or ⇧) as the � have with Poincaré generators (whether � or P), the P

generators do not have the same commutation relations with each other as the ⇧ generators have

with each other. However, one can use İnönü Wigner Contraction to show that as the de Sitter ra-

dius of curvature approaches infinity, these commutation relations become the same, such that due

to the de Sitter Lie Algebra becoming the same as the Poincaré Lie Algebra, the isometry group of

de Sitter space becomes the same as the Poincaré group.

What is the relevance of İnönü Wigner Contraction to energy conservation in de Sitter Space?

Due to Noether’s Theorem, the Poincaré and de Sitter Groups’ generators have corresponding

conservation laws, which in the case of the Poincaré Group, includes a conservation law for energy.

For extremely large radii of curvature, therefore, there is a local conservation law for energy in de

Sitter Space, since it locally resembles Minkowski Space. For an infinite radius of curvature, there

is global energy conservation.

Comparing the Poincaré and de Sitter Lie Group Generators’ Commutation Relations

Poincaré Genera-

tors

How do their commutation relations com-

pare?

de Sitter Generators

6 Lorentz Genera-

tors (�)

� Generators have the same commuta-

tion relations with each other as the L

Generators have with each other

6 L Generators

4 Translation Gener-

ators (P )

The commutation relations of P Genera-

tors with each other or with ⇤ are differ-

ent from those of ⇧ Generators with each

other or with L Generators, but they be-

come the same under İnönü Wigner Con-

traction as ⇢
dS

�! 1

4 ⇧ Generators

The similarities and differences of the Poincaré and de Sitter Generators mean that due to Noether’s

Theorem there are Noether currents for Minkowski and de Sitter Space which correspond to the

Generators, which also have corresponding similarities (in the case of x
↵

T 0� � x
�

T↵) and differ-

ences (in the case of T 0↵ compared to x
↵

T 04 � x
4

T 0↵

)).
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Comparing the Noether Currents of Minkowski and de Sitter space

Minkowski Currents How do the currents compare? de Sitter Currents

6⇥ (x
↵

T 0� �x
�

T↵

) for

↵,� = 0, 1, 2, 3,↵ 6= �

The Same 6⇥ (x
↵

T 0� �x
�

T↵

) for

↵,� = 0, 1, 2, 3,↵ 6= �

4 ⇥ (T 0↵

) for ↵ =

0, 1, 2, 3

These are not the same when us-

ing global coordinates, but are the

same within the causal horizon

when using Static Patch Coordi-

nates or when ⇢
dS

�! 1 (note

that, as was previously stated,

⇢
dS

= r
horizon

).

4⇥(x
↵

T 04�x
4

T 0↵

) for

↵ = 0, 1, 2, 3

When using global coordinates, some of the Noether currents of Minkowski and de Sitter space

differ. Using static patch coordinates, one can ensure that within the horizon of the static patch

there is a timelike Killing vector such that the energy can be well defined, with a conservation law

for the Noether charge of energy within the static patch, just as there is a global conservation law

for Minkowski space. However this cannot be done globally for de Sitter space.

The focus of this thesis is on conservation of energy in de Sitter space. In contrast to the isometries

of Minkowski space, which give rise to global conservation of energy, de Sitter space’s symmetry

group does not similarly result in global energy conservation.

However, using the static patch, one can find a large region, the static patch, for which energy

and linear momentum are conserved in de Sitter space, since within the horizon of the static patch

it is possible to have a timelike Killing vector. It is also possible to use multiple static patches to

ensure that energy is well defined in multiple patches, although in this case there is not global

energy conservation since the same Killing vector can be timelike in one patch but not in another

patch, such that the conserved quantity is not the same for each static patch as is shown in figure

36.

In conclusion, although de Sitter space is not globally flat, when dealing with scales of r which are

small with respect to ⇢
dS

, de Sitter space seems flat due to İnönü Wigner Contraction, since as

⇢
dS

�! 1, the de Sitter algebra becomes the same as the Poincaré algebra.

Furthermore, energy conservation within an extremely large region of de Sitter Space can be

achieved using the Static patch approach. Nonetheless, global energy conservation cannot oc-

cur since for de Sitter space, energy is not globally defined.

The static patch is used by Physicists such as Anderson and Mottola (2013) when dealing with

Quantum field theory in de Sitter space, and so energy conservation in de Sitter space is extremely

useful for this subject. This project is a comparatively small contribution to the whole subject of

the conservation laws of de Sitter space, and especially how the Static Patch coordinates and

İnönü Wigner Contraction are relevant to discussion of the conservation laws of de Sitter space. In

general, research on the conservation laws of de Sitter space is likely to be extremely important for

future Physics research.

What are some future directions of research which might be suggested in this area of research in

light of this project? There are numerous subjects which were too broad for the scope of this project,
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but which are enthusiastically recommended to other researchers. A few of them are mentioned

below, although there may be some degree of overlap between some of them.

The Noether Currents and Noether Charges of de Sitter Space: This thesis has focused on

energy conservation in de Sitter space. However, while there has been some discussion of the

Noether currents of de Sitter Space in this thesis, a more detailed account of the Noether currents

and Noether charges of de Sitter space, what the conservation laws corresponding to the de Sitter

group are, and how to deal with the fact that d

3x is not constant with respect to time for de Sitter

space, are all areas which present interesting areas of future research, including possible Bachelor

and/or Master thesis research.

The de Sitter Casimir Operators: The Casimir Operators of the de Sitter Algebra commute with

the de Sitter Algebra. These are a subject of great interest (discussed a little bit in appendix 10.1

so that any future students reading this thesis while considering ideas for their own thesis have an

idea of an interesting direction to go in).

Mass in de Sitter Space: Due to the importance of mass-energy equivalence in Physics, looking at

the implications of Conservation of Energy for definitions of mass in de Sitter space may be insight-

ful, since, although mass in de Sitter space has already been discussed by Boers (2013) among

others, the implications for mass of different coordinate systems such as global coordinates or the

static patch were not discussed by Boers.

It is certainly clear that de Sitter space, and more specifically the de Sitter Lie Group, are subjects

of significant interest and scope for future Physics research.
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10 Appendix

10.1 An Interesting Possible Subject for Future Research: the Casimir Op-

erators of de Sitter Space

Operators which commute with a Lie algebra are called Casimir Operators. A brief look at the

Casimir Operators of the Poincaré algebra will show why this might be of interest when considering

conservation of energy and more broadly conservation laws for de Sitter space.

10.1.1 Poincaré Casimir Operators

The Poincaré algebra has already been derived. The first thing which commutes with it is given

by:

C
1

= P
µ

Pµ

= �P 2

0

+ P 2

1

+ P 2

2

+ P 2

3

For the second, the Pauli Lubanski vector is given by

W�

=

1

2

✏�µ⌫�J
µ⌫

P
�

(206)

and the second Poincaré Casimir operator is

C
2

= W
�

W� (207)

The eigenvalues of the two Casimir operators of the Poincaré group label the Poincaré group rep-

resentations. What representations do they show? Something involving translation and something

involving rotation. They are related to the concepts of mass and spin (Boers (2013)). That is quite

exciting. What is the equivalent for de Sitter?

For de Sitter transformations K
↵�

where the values of ↵ and � can be 0, 1, 2, 3, 4, the de Sitter

algebra has already been derived, and the two Casimir operators which commute with the algebra

are:

�1

2

K
↵�

K↵� (208)

and

�W
↵

W↵ (209)

Where

W↵

=

1

8

✏↵���⇣K
��

K
�⇣

(210)

and although these are interesting, it is not clear exactly how to interpret these when compared

to the Casimir Operators of the Poincaré Group (Boers (2013)). Though unfortunately outside the

scope of this thesis, the Casimir Operators of the de Sitter algebra are an interesting possible

subject for further research.

10.2 The Taylor series

The Taylor series is useful in discussing Lie Group Generators and the relationship between Lie

Algebras and Lie Groups due to its role in understanding the exponential map.
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If function f is analytic at point a then at point a, f is equal to

f(x) =
1X

n=0

1

n!
fn

(a)(x� a)n (211)

Some Taylor series which which are relevant to this thesis are:

ex =

1X

n=0

1

n!
xn (212)

cos ✓ =
1X

n=0

1

(2n)!
(�1)

n✓2n (213)

sin ✓ =
1X

n=0

1

(2n+ 1)!

(�1)

n✓2n+1 (214)

Stewart (2016)

10.3 Using Surfaces with Intrinsic Curvature but not Extrinsic Curvature to

Clarify what Makes Types of Curvature Intrinsic and Extrinsic (a more

detailed account of section 3.1)

Having read about surfaces with both intrinsic and extrinsic curvature, surfaces with neither, and

surfaces with extrinsic curvature but not intrinsic curvature, readers might be thinking ’But what

about the reverse case, where the surface is intrinsically curved, but due to the embedding, is ex-

trinsically flat?’ Unfortunately this is much more complicated, but it is nonetheless possible in the

case of surfaces called ’Minimal Surfaces’. Giving this example requires a deeper understanding of

what kinds of curvature are intrinsic and extrinsic.
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10.3.1 Principal Curvatures

Figure 39: Principal Curvatures

For some surface, it is possible to measure how the surface bends by different amounts in different

directions at some point on its surface. These principal curvatures point in all of the directions along

the surface. For example, as is shown in figure 39, for every point on some 2 dimensional surface,

M, embedded in 3 dimensional Euclidean space, there are two principal curvatures. Planes a and b

show the two principal curvatures, although the principal curvatures are not in fact planes or vectors,

but rather are numbers.

Obviously, increasing the number of dimensions of the surface and its embedding space increases

the number of principal curvatures. The principal curvatures can be used to give multiple kinds of

curvature.

10.3.2 Mean Curvature

Figure 40: Note that despite the arrows in the diagram, the principal curvatures are numbers, not
vectors
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The mean value of the principal curvatures gives the mean curvature, The mean curvature is an

extrinsic curvature. For example, on a 2D sheet embedded as a flat surface in 3D Euclidean space,

as was shown in figures 8 and 9, and the principal curvatures of a point of which are shown in figure

40, the principal curvatures both have a value of 0, such that the mean curvature is 1

2

(0 + 0) = 0.

In contrast, embedding the same plane in the same space by rolling it into a cylinder as is shown in

figure 41 gives a scenario where one of the principal curvatures is 0, while the other is 1, such that

the mean curvature is changed by the embedding to become 1

2

(1 + 0) =

1

2

.

Figure 41

This gives another explanation of the scenario shown in figures 10 and 11, since, as is shown by

figure 42. The mean curvature, which is extrinsic, is nonzero, while the Gaussian, or intrinsic, cur-

vature is nonetheless zero.

Figure 42: Principal Curvatures of the ’Bumped’ surface

This similarly gives an explanation for the properties of the spherical scenario shown in figures 2

and 7 since, as figure 43 shows, both the mean curvature, and the product of the principal curva-

tures, are nonzero, explaining why the sphere has both mean and Gaussian curvature, and hence

has both extrinsic and intrinsic curvature.
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Figure 43: Principal Curvatures of the ’Bumped’ surface

The Mean curvature is what is most commonly referred to when extrinsic curvature is referred to,

although there are a few other types of extrinsic curvature, such as torsion.

10.3.3 Gaussian Curvature

While the mean value of the sum of the principal curvatures gives the Mean Curvature, taking the

product of the principal curvatures instead gives the Gaussian Curvature. This is the same in both

of the aforementioned cases, because the Gaussian Curvature is intrinsic for the surface. In figure

40 the Gaussian Curvature is given by (0)(0) = 0, while in figure 41 the Gaussian Curvature is

given by (1)(0) = 0. Due to being an intrinsic property of the surface, the Gaussian Curvature

is unaffected by the choice of embedding. In general, when referring to Intrinsic Curvature of a

surface, one is referring to its Gaussian Curvature.

Returning to the previous examples, in all cases, the examples of Intrinsic Curvature were exam-

ples of Gaussian Curvature, while the examples of Extrinsic Curvature were examples of Mean

Curvature.
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10.3.3.1 Surfaces with Intrinsic but not Extrinsic Curvature

Figure 44: Dierke, Hildebradt and Sauvigny’s ’Minimal Surfaces’ page 147 (Dierkes, Stefan and
Friedrich (2010))

The Mathematical name for surfaces with zero mean curvature is ’Minimal Surfaces’. These can

have Gaussian curvature while having no mean curvature. Examples of this include the catenoid

(see figure 44) and the helicoid (see figure 45), surfaces for which, for any point, the Mean Curvature

is 0, while the Gaussian Curvature is nonzero. Therefore, catenoids and helicoids are examples of

shapes with intrinsic curvature but no extrinsic curvature. Unfortunately these examples are not as

intuitive as the ones in the other cases, but nonetheless they facilitate understanding exactly what

is meant when one refers to Intrinsic and Extrinsic Curvature.

Figure 45: Dierke, Hildebradt and Sauvigny’s ’Minimal Surfaces’ page 145

A stubborn reader might ask why a catenoid has zero mean curvature, but not zero Gaussian

vi



curvature. As figure 46 shows, taking any point on the surface of a catenoid and drawing out the

arrows pointing in the directions of the principal curvatures (marked red and blue on the diagram),

one will find that while the two principal curvatures will have equal magnitude, they will have opposite

signs, one giving positive curvature while the other gives negative curvature. Therefore, the sum of

the principal curvatures is 0, resulting in a mean curvature of 0/2 = 0, while in contrast the product

of the two principal curvatures will not give a value of 0 since neither of the principal curvatures

for any point have a value of 0. Therefore, minimal surfaces such as catenoids, and, for analogous

reasons, helicoids and various other minimal surfaces, are cases of surfaces with intrinsic curvature

but which have zero extrinsic curvature due to their mean curvature being zero.

Figure 46: Dierke, Hildebradt and Sauvigny’s ’Minimal Surfaces’ page 145 edited to show the nor-
mal vector and principal curvatures’ directions at some point on the surface (Dierkes, Stefan and
Friedrich (2010))

10.4 The Matrix Approach to finding some more so(1,n-1) Lie Algebras (sim-

pler examples of the algebras discussed in section 5.1)

This gives more accounts of so(1,n) algebras. Readers confused by the section 5.1 might find these

examples easier to begin with.

10.4.1 so(1,1)

This is the group of real homogeneous linear transformations of z and t which leave z2�t2 invariant.

� and � of the matrix given by equation 55 are both 1⇥ 1 (and so the transpose of � is �) and skew

symmetry therefore necessitates that � = 0. Therefore all matrices in the so(1,1) Lie algebra are

given by.

M(1, 1) =

"
0 k

k 0

#
= k

1

K
1

(215)

Where k
1

is some real number and :

K
1

= i

"
0 1

1 0

#
(216)
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So there is a single matrix things are defined in terms of. With more rigorous reasoning, it becomes

clear that this matrix is the single generator of the so(1,1) algebra.

Nothing much can be done with a single generator and commutators, since it obviously commutes

with itself. Time to move on to more interesting examples of Lie algebras.

10.4.2 so(1,2)

This is the group of real homogeneous linear transformations of y, z and t which leave y2 + z2 � t2

invariant.

� of the matrix in equation 55 is 1⇥ 2 while � is 2⇥ 2. Skew symmetry therefore necessitates that

all � matrices have form:

⇢ =

"
0 j

�j 0

#
= jJ (217)

Where j is some real number and:

J =

"
0 1

�1 0

#
(218)

So all matrices in the so(1,2) Lie algebra are given by:

M(1, 2) =

2

64
0 k

1

k
2

k
1

0 j

k
2

�j 0

3

75 = k
1

K
1

+ k
2

K
2

+ j
1

J
1

(219)

Where k
1

, k
2

and j
1

are some real numbers and:

K
1

= i

2

64
0 1 0

1 0 0

0 0 0

3

75K
2

= i

2

64
0 0 1

0 0 0

1 0 0

3

75 J
1

= i

2

64
0 0 0

0 0 1

0 �1 0

3

75 (220)

So one needs three matrices to define everything in the Lie algebra. These three matrices (two K

matrices, which are called boost matrices and a J matrix, which is called a rotation matrix) are the

generators of the so(1,2) Lie algebra. So in the world of one temporal dimension and two spatial

dimensions described by this group algebra, there is one possible rotation and two possible boosts.

The Lie algebra is:

[K
1

,K
2

] = iJ
1

, [K
1

, J
1

] = iK
2

, [K
2

, J
1

] = iK
1

(221)
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