
Bachelor’s Project in Physics

Convolutional Neural Network

for Noise Reduction and Particle

Tracking Applications

Andrey Mikus

supervised by
dr. JG Messchendorp

dr. M Kavatsyuk

July 9, 2021

Abstract

This thesis investigates the applications of a convolution neural network, CNN, for
noise reduction and track identification of e+e− collision data taken from the drift chamber
of BESIII. The CNN was originally developed and tested by Harmjan de Vries in his
Master’s thesis. The noise reduction capabilities were further explored in a follow-up
Bachelor’s thesis by Ignacio Graña. The network was shown to be effective in filtering
noise and classifying individual particle tracks for Monte Carlo data simulated for e+e−

collisions in the BESIII experiment. In this thesis, the CNN was trained and further tested
for five different event topologies.. The network was successful in filtering noise from events
containing up to 20 particle tracks. The feasibility of track identification, broken down
into individual track labeling, charge classification and pair recognition was demonstrated.
The effect of broken layers on the performance was also examined. The performance of the
network for track identification decreases significantly for events with a large number of
tracks. We observed that the network is particularly sensitive to the underlying features
directly linked to the curvature of tracks, and, therefore, to the transverse momentum
and electric charge of the particles. Tracks can be identified successfully in the case they
are distinct in those features and among each other. For pair recognition, the opening
angle between the tracks appears to be a key feature for discrimination.

CONTENTS 2

Contents

Page

1 Introduction 4

2 BESIII detector 5
2.1 Working mechanism . 5
2.2 Relevant decay channels . 6

3 Deep Learning 7
3.1 Overview . 7
3.2 Learning process . 8

3.2.1 Forward propagation . 8
3.2.2 Backpropagation . 8

3.3 Overfitting and underfitting . 9
3.4 Convolutional Neural Networks . 10

3.4.1 Convolutional layers . 10
3.4.2 Pooling . 11
3.4.3 Batch Normalization . 11

4 Hardware and software specification 11
4.1 Deep learning framework . 11
4.2 Server specifications . 12

5 Network design 12
5.1 Overview . 12
5.2 U-Net architecture . 12
5.3 Data processing . 13

5.3.1 Binning . 13
5.3.2 Input processing . 14
5.3.3 Output processing . 14

5.4 Loss functions and performance metrics . 15
5.4.1 Noise reduction . 15
5.4.2 Track identification . 16

6 Results 17
6.1 Noise reduction . 17
6.2 Track identification . 19

6.2.1 Individual track labeling . 19
6.2.2 Charge identification . 22
6.2.3 Pair identification . 24

6.3 Effect of broken layers . 26
6.3.1 Noise reduction . 27
6.3.2 Track identification . 28

7 Conclusion 30

Bibliography 32

CONTENTS 3

Appendices 33
A Noise reduction training loss and performance plots 33
B Noise reduction broken layers accuracy plots . 36
C Track identification broken layers F1 score plots 37

Chapter 1 INTRODUCTION 4

1 Introduction

Modern, state of the art experiments in particle physics, such as the upcoming PANDA exper-
iment at the Facility for Antiproton and Ion Research (FAIR), generate enormous amounts of
data. A typical interaction rate in the PANDA experiment is in the magnitude of 107 events/s,
which translates to 200 GB/s [1]. At this rate, the storage facilities (∼ 3 PB/year), would
be exhausted in less than 5 hours. A real-time event selection algorithm, able to reconstruct
particle tracks and reduce the pile-up of data, is necessary to circumvent the storage limita-
tion. Machine learning, or more specifically deep learning, is a class of algorithms potentially
well-suited for this task.

Deep learning algorithms are widely used in many areas of knowledge, from the natural sci-
ences to mathematics to economics. Common applications include speech recognition, image
classification and predictive analytics. In the recent years, the performance and complexity of
deep learning algorithms have risen dramatically, largely due to the advances in computational
power and the advent of big data. Deep learning methods are based on artificial neural net-
works, or simply neural networks, that vaguely resemble biological neural networks in animal
brains. A Convolutional Neural Network, CNN, is a class of neural networks most suitable for
analyzing visual imagery. CNNs have been very successful for biomedical image segmentation
tasks, in particular those based on the U-Net architecture. [2–4].

The CNN studied in this thesis was developed by Harmjan de Vries in his Master’s thesis titled
Convolutional Neural Network for Reducing Noise and Detecting Tracks in the BES-III Main
Drift Chamber [5], hereinafter referred to as the Master’s thesis. It uses the U-Net architecture
to analyze images containing particle tracks from a collision. The CNN was trained on data
generated with Monte Carlo simulations of e+e− collisions in the BESIII experiment. Both,
noise reduction and track recognition algorithms were shown to be very effective for the decay
channel e+e− → Ψ(2S)→ J/Ψ π+π− → e+e− π+π−.

The Master’s thesis was followed up by Ignacio Fernández Graña in his Bachelor’s thesis ti-
tled Deep Learning for Particle Tracking [6], hereinafter referred to as the Bachelor’s thesis.
Ignacio investigated the limits of the noise reduction algorithm for the same decay channel, by
introducing moderate to large amount of noise to the image. The network maintained a high
performance score, despite track-to-noise ratios up to 1:8. However, it was also shown to be
ineffective at filtering a single track unrelated to the observed event and at labeling tracks in
incomplete events.

In this thesis, the applications and limits of the network are further explored. In an attempt
to generalize to other types of events, the network is trained and tested on a number of decay
channels, both simple and more complex. The ability of the network to filter noise from high
image density events, like those with up to 20 tracks, is evaluated. The track identification
algorithm is split into three components: individual track labeling, charge identification and
pair identification, in order to assess its capabilities on a variety of tasks. Charge identification
will be useful in experiments where the particles are to be treated separately based on their
electrical charge. It may also be used in conjunction with individual track labeling, where some
tracks are preemptively discarded based on charge. Pair identification is the next step after
individual track labeling, in which one exploits the correlations between two oppositely charged

Chapter 2 BESIII DETECTOR 5

tracks. It provides insight into which tracks belong to which part of the decay chain. Lastly,
the effect of broken wire layers is investigated, by testing trained network weights on incomplete
events.

2 BESIII detector

2.1 Working mechanism

The Beijing Spectrometer III (BESIII) is a particle physics experiment conducated at the In-
stitute of High Energy Physics. The experiment began collecting data in 2008 with the intent
to study the physics of charm and ”charmonium”, a meson consisting of a charm quark and
a charm antiquark [7]. The discovery of charmonium has had far-reaching consequences for
high-energy physics, as it is an important tool for the study of forces between quarks in the
context of quantum chromodynamics in the non-perturbative regime [8]. The BESIII experi-
ment studies the decay channels of charmonium produced in e+e− collisions in the energy range
of 2.0-4.9 GeV.

The innermost tracker in the BESIII experiment is the Main Drift chamber (MDC), pictured
in figure 1a. The MDC is 2.4 meters long and contains 6796 tungsten signal wires arranged in
43 layers. It is located inside a 1 T superconducting solenoid magnet, which curves the paths
of charged particles. The extent of the curvature of the particle track is used to calculate the
momentum of the particle. A hit on the wire is recorded whenever the ions from the ionization
of the helium and propane gas mixture by a travelling charged particle drift to the nearest wire.
The data corresponding to wire hits can be stored as a 2D image, representing the transverse
cross section of the MDC, as depicted in figure 1b. In this thesis, the data is generated via
Monte Carlo simulations of a number of different decay channels of charmonium with distinct
event topologies.

(a) Main Drift chamber (MDC) of the BESIII [7].
(b) Example of cosmic ray detection in the MDC.
Red dots are measured hits, blue line is true path

of particle and teal dots are the wires [9].

Figure 1: BESIII Main drift chamber cross-section and mechanism of particle detection.

Chapter 2 BESIII DETECTOR 6

2.2 Relevant decay channels

Both in the Master’s and the Bachelor’s theses, the decay channel e+e− → Ψ(2S)→ J/Ψπ+π− →
e+e− π+π− was the only process studied for the purpose of investigating noise reduction and
track identification. The Ψ(2S) resonance is an excited charmonium state, with a rest mass
of 3.68 GeV/c2. The aim of this thesis is to address the performance of the CNN for different
decay topologies with varying complexity. We therefore simulated several other decay chains
of the Ψ(2S) resonance, which allows us to perform a thorough and systematic investigation.

The decay channels that were studied in this thesis are listed below. The text in bold indicates
the shorthand name assigned to the channel to be used throughout the thesis.

1. pipiee – e+e− → Ψ(2S)→ J/Ψ π+π− → e+e− π+π−.
The decay channel studied in the Master’s and the Bachelor’s theses. The J/Ψ is also an
excited charmonium state with a rest mass of 3.097 GeV/c2.

2. npipi – e+e− → Ψ(2S)→ n(π+π−).
n is the number of π+π− multiplicities resulting in 2n tracks. This channel is selected
to investigate the feasibility of the network to recognize and classify events with a large
number of tracks and to filter noise in high-density events. The channel does not produce
a cascade of excited state and particles, therefore the particles have equal momentum
distributions.

3. 2pipi alt – e+e− → Ψ(2S)→ J/Ψ π+π− → π+π− π+π−.
The reaction is a cascade process in which the transition π+π− pair has a much lower
momentum than the π+π− pair decaying from the J/Ψ state. It has an event topology
very similar to that of the pipiee reaction, which makes it useful for supporting the
conclusions drawn from studying pipiee.

4. 3pairs – e+e− → Ψ(2S)→ K+K− π+π− π+π−.
The decay chain is broken down into:

• Ψ(2S)→ J/Ψ π+π−

• J/Ψ→ φ π+π−

• φ→ K+K−

The decay chain involves intermediate unstable resonances, namely J/Ψ and φ (ss), that
decay into 3 distinct long-lived final state pairs. The φ meson is a vector meson with a
rest mass of 1.02 GeV/c2. The distinct final states make this reaction useful for exploring
the pair and track identification algorithms.

5. 4pairs – e+e− → Ψ(2S)→ π+π− K+K− K+π− π+π−.
The decay chain is broken down into:

• Ψ(2S)→ J/Ψ π+π−

• J/Ψ→ φ KS K
+π−

• φ→ K+K−

• KS → π+π−

Chapter 3 DEEP LEARNING 7

It is similar to the 3pairs reaction, only with an additional intermediate KS (neutral
kaon) resonance with a rest mass of 0.498 GeV/c2. The KS resonance has cτ equal to a
couple of centimeters, meaning the decay occurs away from the interaction vertex. This
brings another level of complexity to the topology, which makes this decay an interesting
candidate for investigation. The decay result is 4 long-lived pairs.

3 Deep Learning

3.1 Overview

Deep learning is a subset of machine learning based on the methods of artificial neural net-
works, or, simply, neural networks. A neural network is a series of algorithms based on a
collection of connected nodes, called neurons. Each neuron outputs a single value, which is
computed by some non-linear function, known as the activation function, of the sum of its
inputs. The connections between neurons typically have weights that represent the strength of
the connection. These weights are adjusted during the learning process to improve the quality
of predictions. Neurons are usually aggregated in a series of layers: one input layer, one output
layer and zero or more hidden layers. Each layer of the network takes the outputs of the previous
layer as inputs, which increases the complexity of detected features as the algorithm propa-
gates through the layers. The hidden layers are not visible to external systems, hence the name.

Figure 2: The schematic of a neural network with three hidden layers.

Artificial neural networks learn via supervised learning. In supervised learning, the network is
presented with processing examples, the training set, containing a known input and target out-
put. The network compares its predictions to the target output by determining the difference,
the error value, between them. Subsequently, using this error value, the weights of the network
are adjusted according to a learning process, such as gradient descent. The performance of
the network is evaluated using a separate dataset, called the testing set. The testing set is
kept separately from the training set to avoid overestimating the performance by overfitting
the model. Neural networks are excellent tools for approximating functions regardless of their
complexity. However, studying the structure of the network does not provide insights on the
form of the function being approximated. Therefore, neural networks are sometimes described
as ”black-box models”.

Chapter 3 DEEP LEARNING 8

3.2 Learning process

The learning process of a neural network consists of two stages: forward propagation and
backpropagation. In forward propagation, the input data is transformed successively by prop-
agating through the network layers, until it reaches the output layer where the prediction is
made. During backpropagation, the direction of the data flow is reversed. The network ef-
ficiently computes the best adjustments needed for each weight to minimize the error value,
starting at the last layer.

3.2.1 Forward propagation

Forward propagation is a feature of feedforward neural networks, networks for which the connec-
tions between the neurons are not cyclical. The input data propagates forward, from the input
layer, through the hidden layers (if any) and to the output layer. During forward propagation,
the output of a neuron is calculated by taking the weighted sum of all inputs and applying a
non-linear activation function. Without the non-linear activation function, the neural network
simply acts as a linear transformation, which drastically reduces the number of problems it can
solve.

The activation functions used in the architecture of the neural network investigated in this
thesis are:

1. ReLU (Rectified Linear Unit) function:

R(z) = max (0, z). (1)

The ReLU function has been shown to yield a higher performance than other activation
functions for networks with many layers [10]. It is used in all hidden layers of the neural
network.

2. Sigmoid function:

σ(z) =
1

1− e−z
. (2)

The sigmoid function is used in the output layer to constrain the predictions between 0
and 1.

At the end of forward propagation, the network computes the loss function, which outputs a
real number describing how ”far” the prediction is from the target output. The goal of the
neural network is to minimize this loss function.

3.2.2 Backpropagation

Backpropagation, short for backward propagation of errors, is an algorithm for training feed-
forward neural networks. It allows to efficiently compute the gradient of the loss function with
respect to the weights. The efficiency of backpropagation makes it feasible to use gradient
methods, such as gradient descent, for updating the weights. In gradient descent, the loss
function is minimized by updating the parameters in the direction of its gradient.

There are three primary types of gradient descent: batch, mini batch and stochastic. In batch
gradient descent, the parameters of the network are updated after one iteration through the

Chapter 3 DEEP LEARNING 9

training set, meaning that the entire training set is used to compute the gradient. In mini-batch
gradient descent, the training set is divided into batches of some fixed sized. The parameters
are updated after each batch has been processed. Lastly, stochastic gradient descent is simply
an extreme instance of mini-batch gradient descent with a batch size of 1. For batch gradi-
ent descent, the network must process the entire training set before making an update to the
parameters, which is inefficient. Stochastic gradient descent can also be inefficient due to the
frequency of parameter updates and may also lead to overfitting. In this project, mini-batch
training with a batch size of 50 is implemented, as was successfully implemented in the Master’s
thesis.

The network uses the Adam optimization algorithm, which is an extension to stochastic gradient
descent. It was first proposed in 2016 [11] and since then has been shown to compare favourably
to other stochastic optimization methods [12]. The method computes individual learning rates
for each network parameter and adapts them during training. This accelerates the gradient
descent of the loss function towards the minimum, as compared to other fixed learning rate
algorithms. For a more detailed discussion, see section 3.4 of the Master’s thesis [5].

3.3 Overfitting and underfitting

The main goal of a neural network is to learn to generalize well to new data. Neural network
models are generally trained on as much training data as possible to cover as many variations
of data as possible. This allows the model to make good predictions on data it has never pre-
viously encountered. Overfitting and underfitting refer to issues that the model might suffer
from, hindering its ability to generalize.

Overfitting is the scenario where the network has trained sufficiently well to minimize the loss
function and to make good predictions on the training set, but performs poorly for the testing
set. Essentially, the model has ”memorized” the features of the training set, which makes it
less applicable and generalizable to the testing set and new data. Overfitting most commonly
occurs either due to the limited variety in the training dataset or due to overtraining the model.
The techniques used to combat overfitting are called regularization techniques. These include
L1 and L2 regularization methods, early stopping and dropout [13].

Figure 3: A representation of an underfitting, optimal fitting and
overfitting.

Chapter 3 DEEP LEARNING 10

Underfitting is the scenario where the model cannot make good predictions on neither the
training set nor the testing set. It usually means that the network was not sufficiently trained
or that the model is not complex enough to accurately identify the dataset’s relevant features.
Solutions to underfitting include revising the architecture, adding more hidden layers, or simply,
increasing the duration of training.

3.4 Convolutional Neural Networks

A convolutional neural network (CNN) is a class of deep neural networks specialized in analyzing
visual imagery. CNNs are similar to ordinary neural networks, in the sense that they are
comprised of the same building blocks: neurons with trainable weights and biases. They have
a loss function that is calculated in the output layer and they use forward propagation and
backpropagation to adjust the weights and improve the quality of predictions. CNNs exploit
the nature of 2D images by arranging the neurons in three dimensions: width, height and
depth. The neurons in a layer are only connected to a small region of the preceding layer,
which drastically reduces the number of trainable parameters, decreases the complexity of the
model and prevents overfitting.

3.4.1 Convolutional layers

Convolutional layers are the core building blocks of convolutional neural networks. The layer
performs a linear operation, called a convolution, that is an element-wise multiplication of an
nf × nf filter (or kernel) by nf × nf patches of an n × n input, which is then summed to
produce a single value. The filter is a two-dimensional array of weights that the network aims
to optimize in training. The filter is intentionally smaller than the input (nf < n), such that
it may be systematically applied to each overlapping nf × nf patch of the input. The result of
this operation is a two-dimensional feature, or segmentation, map that describes the detected
features of the input. A convolution operation is depicted in figure 4.

Figure 4: A convolution operation between a 3×3 filter and a 5×5
input, depicting an element-wise multiplication of the filter with the

first filter-sized patch of the input.

A convolution operation decreases the size of the image. ”Same” padding calculates the di-
mensions required to preserve the size of the image. In this project, a ”same” zero-padding is
applied. Another variable parameter is the stride s, which is the distance the filter shifts across

Chapter 4 HARDWARE AND SOFTWARE SPECIFICATION 11

the input image after each successive application. In this project stride is kept at a fixed value
of 1.

3.4.2 Pooling

Pooling is a downsampling operation, typically applied after a convolutional layer. Max pooling
is the most commonly used type of pooling operation. It divides the input into n×n subregions
and selects the maximum value from the current pooling view, which preserves the detected
features. Other types of pooling include average pooling, which averages the values of the
current view, and global pooling, which reduces the dimensions of a feature map to a single
value. In this project, a 2 × 2 max pool is used to extract the most important features of the
feature map and reduce the dimensions of the input image by 2. A 2×2 max pooling operation
is depicted in figure 5.

Figure 5: A 2× 2 max pooling operation applied to a 4× 4 input.

3.4.3 Batch Normalization

Batch normalization is a technique first proposed in 2015 [14]. It has the effect of greatly
accelerating the learning process. In some cases, batch normalization may even improve the
performance of the network by behaving as a regularization technique, which helps prevent
overfitting. The reasons behind its effectiveness are still a subject of discussion. Originally
believed to mitigate the problem of internal covariant shift, some scholars have recently come
out with studies supporting alternative reasons [15]. In this project, batch normalization is
applied after each convolutional layer.

4 Hardware and software specification

4.1 Deep learning framework

The convolutional neural network was originally written using the open-source software library
Keras, which provides a simple, but flexible, Python interface for neural networks. Tensor-
flow acts as the backend for Keras, handling low-level operations such as tensor products and
convolutions. Keras offers a declarative interface for composing neural networks, which al-
lows for quick implementations of prototypes. However, this comes at a cost of computational
speed, with Keras ranking consistently slower compared to other frameworks such as PyTorch
or Caffe [16, 17]. Additional code for input/output processing and plotting was written and
executed in Python 3.6.10.

Chapter 5 NETWORK DESIGN 12

4.2 Server specifications

The network was trained on a server with 48 Intel Xeon E5-2650 v4 @ 2.20GHz CPUs and
100GB of RAM. The server did not have a GPU, which offers massive training speed im-
provements for convolutional neural networks. In some cases, training the model is 4-5 times
faster [18] on a GPU than on a CPU. The main reason is that GPUs are bandwidth optimized,
meaning that they are able to perform heavy matrix multiplication and convolution operations
more efficiently.

5 Network design

5.1 Overview

In this thesis, no changes are made to the network architecture developed in the Master’s thesis,
except for the number of output segmentation maps, which depends on the training algorithm.
The noise reduction algorithm will produce one feature map - corresponding to the image with
reduced noise. For the track identification algorithms, the number of feature maps will vary
depending on the number of tracks or pairs. For instance, for charge identification, the number
of feature maps will be two - representing positive and negative charges.

5.2 U-Net architecture

The network developed in the Master’s thesis is based on the U-Net architecture. The U-Net
CNN was first proposed in 2014 [2] and specifically developed for biomedical image segmen-
tation. The U-Net has become the most prominent CNN architecture in the field, due to its
capabilities for fast and precise segmentation of images [3,4]. The resemblance between tracking
detector images and biomedical images was the motivation behind implementing the U-Net,
and in fact, it outperformed the standard CNN during architecture comparison in the Master’s
thesis.

The U-Net consists of a contracting part and an expanding part. In the contracting part, the
image is repeatedly convolved using a 5×5 filter with ”same” padding and s = 1 stride, followed
by a ReLU activation and batch normalization, and finally by a 2× 2 max pooling operation.
The dimensions of the image are halved and the number of filters is doubled after every max
pooling layer, beginning with 24 filters in the first layer. In the expanding part, the image is
convolved with a filter having the same properties as in the contracting part, followed by a
2×2 up-sampling operation, and finally by a 2×2 convolution with ”same” padding and s = 1
stride. The up-sampling operation repeats each value in the image to a 2× 2 grid, doubling its
size. The operations in both the contracting part and expanding parts repeat four times. The
last layer is a convolutional layer with a 1× 1 filter, ”same” padding and s = 1 stride, followed
by a sigmoid activation function to produce the output segmentation map(s). The architecture
is illustrated in figure 6.

Chapter 5 NETWORK DESIGN 13

Figure 6: U-Net architecture for noise reduction. The number of output
segmentation maps varies for track identification, depending on the

algorithm used.

5.3 Data processing

5.3.1 Binning

Data binning is a pre-processing technique where the data points that fall within a certain
interval (a bin) are replaced by a representative value, usually the central value, of the interval.
In the context of the two-dimensional image data used as input to the CNN, binning is the
process of converting the raw event data, represented by x and y coordinates of the measured
wire hits, to an n × n pixels binary image, where 1’s represent wire hits. As devised in the
Master’s thesis, 192× 192 pixels are the ideal dimensions for the input image. It is calculated
such that it is impossible to bin several wire hits into one pixel. The number 192 = 3 ·26, which
makes it possible to apply 2× 2 max pooling at most 6 times. Other candidates are 128× 128,
96× 96 and 64× 64 pixel images.

In this thesis, we will mostly be working with 96× 96 pixel images, which are 4 times smaller
than the 192 × 192 pixel images. This is mainly due to the fact that working with a smaller
image dramatically increases speed of training and reduces RAM usage, allowing us to carry out
more experiments and train several models at once. Even at a reduced resolution, the network
is sufficiently able to pick up on the key features of the tracks. A performance comparison
between 96×96 and 192×192 pixel images for noise reduction in events with a large number of
tracks and high levels of noise is made in section 6. A visual comparison between the resolutions
is illustrated in figure 7.

Chapter 5 NETWORK DESIGN 14

(a) 96× 96 pixels image (b) 192× 192 pixels image

Figure 7: Example of a 3pipi event at two different resolutions.

5.3.2 Input processing

The next step after binning event data to a two-dimensional image is to label the pixels ac-
cording to their type. For the noise reduction algorithm, a pixel represents either the tracks or
the noise to be removed. For the track identification algorithms, a pixel represents either the
relevant track(s) or the track(s) to be removed. The pixels to preserve are assigned a value of
1 and the pixels to remove are assigned a value of -1 in the target image(s). This approach
to labeling pixels allows the undesirable pixels to be easily discarded with a ReLU function
in both the loss functions and the performance metrics. Examples of input images and the
corresponding target images after processing are shown in figures 9, 11 and 14.

5.3.3 Output processing

Output processing consists of three stages. Firstly, the network outputs a segmentation map or
several segmentation maps in the case of track identification. Since the activation function of
the output layer is a sigmoid function, the segmentation map is comprised of pixels with values
between 0 to 1, which represent the ’confidence score’ or the probability that the pixel is being
predicted correctly. Then, the segmentation map is filtered by removing all the points that
were not part of the true image. In the last stage, the performance of the network is evaluated
by iterating over threshold values between 0 and 1 in steps of 0.01, in search of the value that
yields the best performance. All the pixels with a confidence score below the threshold are
discarded. The values of the remaining pixels are set to 1, such that the values of the pixels in
the image are either 0 or 1. The three stages of output processing are illustrated in figure 8.

Chapter 5 NETWORK DESIGN 15

(a) Output of the network - a
segmentation map.

(b) Filtering points not part of the
input image.

(c) Applying a threshold value of 0.44.

Figure 8: The three stages of output processing for a 3pipi event after
noise reduction.

5.4 Loss functions and performance metrics

It is critical to select appropriate loss functions and performance metrics that accurately reflect
the underlying algorithm. As stated previously in section 3.2, neural networks learn by min-
imizing the loss function. However, the loss function is not a good indicator of the network’s
performance, because it does not take the value of the chosen threshold into account. All per-
formance metrics are therefore functions of the threshold. The performance metrics chosen in
this thesis range in value from 0 to 1, where 1 is the highest possible score.

5.4.1 Noise reduction

The loss function for the noise reduction algorithm is a mean squared error function:

L(y, ŷ) =

∑
ij,n(ŷij − xijyij)2∑

ij,n xij
, (3)

Chapter 5 NETWORK DESIGN 16

where ŷ is the target output, y is the prediction and x is the input. The sum is taken for all
pixels i, j of the image, for all n batches. Each predicted pixel yij is multiplied by the corre-
sponding input pixel xij to discard any pixels in the prediction that were not part of the input
image, i.e where xij = 0.

The performance metric for noise reduction is the classification accuracy:

accuracy =
number of correctly predicted data points

total number of data points
, (4)

simply referred to as accuracy.

5.4.2 Track identification

The loss function for track identification

L(y, ŷ) = 1−
∑

ij,n 2ŷij − y′ij∑
ij,n(2ŷijy′ij + ŷij(1− y′ij) + y′ij(1− ŷij))

, (5)

where y′ij is short for xijyij, is directly based on the definition of the performance metric F1
score:

F1 score =
2 × precision × recall

precision + recall
, (6)

where precision and recall are defined as:

precision =
true positives

true positives + false positives
; recall =

true positives

true positives + false negatives
. (7)

The precision is the number of true positives divided by the number of all points identified as
positive (correctly or incorrectly), whereas the recall is the number of true positives divided by
the number of all points that should have been identified as positive. The F1 score is a harmonic
mean of the precision and the recall, meaning that both precision and recall are assigned an
equal weight. A more generic Fβ score allows to assign custom weights to the precision and
recall, but for the purposes of this thesis, the F1 score is a sufficient metric.

Chapter 6 RESULTS 17

6 Results

6.1 Noise reduction

The performance of the noise reduction algorithm has already been covered extensively in the
Master’s and the Bachelor’s theses. Track-to-noise ratios ranging from 1:1 up to 1:8 were stud-
ied for pipiee events. The model was tested on 1,000 images after being trained on a training
set of 10,000 images for 25 epochs. For a ratio of 1:1, a maximum accuracy in the testing set of
97.1% was found, with a slight drop to 95.2% for a ratio of 1:8. It is unnecessary to increase the
fraction of noise beyond the noise ratio of 1:8, since that would correspond to a very unrealistic
scenario.

Instead of further experimenting with the track-to-noise ratios, the noise reduction algorithm
was applied to events with a larger number of tracks, namely the npipi reaction for n = {3, 4, 5},
i.e. 6, 8 and 10 tracks. Generating npipi data beyond n = 5 is very resource-consuming and
in practice, such a reaction has an extremely small probability of ever occurring. To produce
images with even more tracks, events from the pipiee dataset were programmatically stacked
on top of each other. For stacked pipiee events, the number of tracks = 4s, where s is the
number of stacks. s = {3, 4, 5} resulting in events with 12, 16 and 20 tracks. The noise ratios
were taken directly from the pipiee dataset, and are therefore relative to 4 tracks. For example,
at 1:8 noise ratio, an image with 6 tracks will have the exact same noise data points as the one
with 20 tracks.

Combining the npipi events and the stacked pipiee events, the model was trained and tested on
images with 6, 8, 10, 12, 16 and 20 tracks for 1:2, 1:4 and 1:8 noise ratios. The 1:1 noise ratio
was omitted to focus on the higher, more interesting ratios. Furthermore, the performance was
compared between images processed to a resolution of 96× 96 and 192× 192 pixels, both with
a noise ratio of 1:8.

(a) Input image. Wire hits are labeled
with white pixels.

(b) Target image. Track points are
labeled with white pixels. Noise to be
removed is labeled with black pixels.

Figure 9: Example of 4pipi event with 1:4 noise ratio as fed to the CNN.

Chapter 6 RESULTS 18

The performance results of the noise study are summarized in table 1. Further details can be
found in Appendix A.

6 tracks 8 tracks 10 tracks 12 tracks 16 tracks 20 tracks

Ratio 1:2 (96× 96) 94.9 94.3 94.0 94.0 94.0 93.9

Ratio 1:4 (96× 96) 93.9 92.5 91.8 91.6 91.0 90.6

Ratio 1:8 (96× 96) 93.2 91.5 89.9 89.6 88.3 87.2

Ratio 1:8 (192× 192) 94.4 93.1 91.8 91.5 90.3 89.5

Table 1: Maximum accuracies in the testing set (%) for each number of
tracks and track-to-noise ratios.

Clearly, both the number of tracks and the amount of noise have an inverse relationship with
the performance of the neural network. The highest accuracy in the testing set, 94.9%, was
achieved for 6 tracks with noise ratio 1:2 and the lowest, 87.2%, for 20 tracks with noise ratio
1:8 (for image resolution of 96 × 96 pixels). Intuitively, for a large number of tracks and high
levels of noise, the network has to predict more data points, which increases the room for error
and reduces the overall accuracy. Moreover, if the image is too clustered with data points, it
becomes more and more difficult to distinguish track from noise.

Furthermore, it is evident that the maximum accuracy in the testing set improves when the
image size increases from 96 × 96 to 192 × 192 pixels, for all events for noise ratio 1:8. The
impact of increasing the image resolution on computational performance is explained in section
5.3.1.

Figure 10: Comparing accuracies in the testing set between image
resolutions for a noise ratio of 1:8.

Figure 10 illustrates the effect of the image resolution on the accuracy of the testing dataset.
The black arrow indicates the difference between the maximum accuracy for images with 96×96

Chapter 6 RESULTS 19

and 192 × 192 pixels at the same epoch. This difference increases with an increasing number
of tracks, with a maximum of 2.17% for 20 tracks and a minimum of 1.24% for 6 tracks. A
reason for this behavior is that a larger image size renders more defined tracks, which makes
them easier to differentiate from noise. This becomes increasingly important for events with
many particle tracks.

6.2 Track identification

The track identification section of this thesis is broken down into three parts: individual track
labeling, charge identification and pair identification. The key interests lie in evaluating the
ability of the network to label tracks in events with more than four tracks. Also, in testing
the feasibility of applying the network to label charged particles based on their charge and
recognize particles produced in pairs.

Prior to training, the datasets are cleared of all noise. For the purposes of this section, it can be
assumed that the recorded events either did not contain any measurable noise or the noise was
removed, for example via a neural network, during input processing. Removing the effect of
noise reduces the number of factors needed to take into account to make appropriate conclusions.

6.2.1 Individual track labeling

The previous works, described in the Master’s and the Bachelor’s theses, focused on individual
track labeling for a specific reaction, namely pipiee. In this work, we extend these studies by
making a comparison with other reactions. With this, we aim to conclude on the applicability
of the architecture to analyze a broader spectrum of channels.

(a) Input image. Wire hits are labeled
with white pixels.

(b) Target images, corresponding to individual tracks. The
track of interest is labeled with white pixels. Other tracks

are labeled with black pixels.

Figure 11: Example of 3pairs event as fed to the CNN.

The track labeling algorithm was tested on all the relevant decay channels listed in section 2.2.
The progression of the training loss and F1 score by epoch is shown in figure 12.

Chapter 6 RESULTS 20

The best F1 scores in the testing dataset for pipiee, 2pipi alt and 3pairs are 95.6%, 94.5% and
68.8%, and occur after epoch 28, 28 and 41, respectively. Topologically, pipiee and 2pipi alt
are very similar, hence it is not surprising to see comparable F1 scores. On the other hand, the
3pairs reaction is distinctly different, having 6 tracks and thus a more complex output consist-
ing of 6 feature maps, instead of 4. The corresponding F1 score in the testing set (68.8%) is
significantly lower than for pipiee and 2pipi alt.

(a) Training loss vs. epoch (b) F1 score vs. epoch

Figure 12: Individual track labeling training loss and F1 score by epoch for pipiee,
2pipi alt and 3pairs reactions.

Evidently from the training loss and the F1 scores progression, the pipiee and 2pipi alt events
trained more quickly and effectively than 3pairs. The F1 score in the testings set for 3pairs
plateaus at around 69.0%. Although the best F1 score in the testing set occurred at epoch
41, the second and third highest scores occurred at epochs 34 and 30 respectively. This is a
good example of overfitting. The F1 score in the training set continued to grow, seemingly
unbounded, long after the F1 score for the testing set has plateaued. It means that the model
has started to extract features specific only to the training set, that bear no relevance and are
not applicable to the testing set.

The results are only given for pipiee, 2pipi alt and 3pairs. This is due to the fact that the
network was unable to identify the relevant features necessary to make reasonable predictions
for all the other reactions. The network learns that the best, most accurate prediction it can
make is to simply return the input image for each output image. Any results are therefore
unrepresentative of the actual performance of the network. The reasons for this observation
are discussed later in the section.

Empirically, the incompetence of the network means that the training loss plateaus at some
value y and that the model has encountered a local minimum in the loss function during gra-
dient descent. Breaking free from this local minimum to reach the global loss minimum would
either require adjusting the learning rate [19] or enriching the data with higher-level features
in order to make the tracks distinguishable from one another. Unfortunately, both of these
potential solutions are out of the scope of this thesis. The training loss plateau is further en-

Chapter 6 RESULTS 21

countered in sections 6.2.2 and 6.2.3.

As stated in the overview of section 3, a neural network is a black box. It is impossible
to determine the weight that the network assigns to a particular feature. However, by simply
looking at the images and the performance of the network, a prediction about the most relevant
features can be made. Most notably, these are the radius of track curvature and the particle
charge. The radius, R (meters), is proportional to the transverse momentum, pT (GeV/c), via

pT = B × q ×R, (8)

where B = 1 T is the strength of the magnetic field and q is the charge in units of e. Thus, the
particle transverse momentum dictates the bending radius of the track and the particle charge
dictates the direction of the curvature of the track. Positively charged particles are bent to the
right, negatively - to the left.

The transverse momentum distributions for pipiee, 2pipi alt, 3pairs and 2pipi are illustrated
in figure 13. The distributions are represented by boxplots. Boxplots display variations in
samples of a statistical population. It is a standardized way of displaying the minimum, max-
imum, sample median and the first and third quartiles of a distribution. The whiskers at the
ends depict the minimum and the maximum of the distribution, excluding the outliers. The
median of the distribution is given by the orange line. The first and third quartiles are the
medians of the lower half of the dataset and the upper half of the dataset, respectively. They
are represented by the lower and upper edges of the rectangles. Boxplots are also utilized to
illustrate distributions later the thesis.

Note that the two pions in the pipiee reaction have an identical momentum distribution, but
differ in charge. Therefore, they are distinguishable from each other via the direction of their
curvature. The electron/positron particles are similarly distinguishable. The same logic applies
to the 2pipi alt reaction. On the other hand, for the 3pairs reaction, there is a considerable
distribution overlap between the particles of the second pion pair and those of the kaon pair.
The lower F1 score for the 3pairs reaction can be attributed to this distribution overlap. Finally,
based on charge and pT alone, it is impossible to distinguish one π+ particle from another in
the 2pipi reaction. To the network, they have an identical topology. This explains our earlier
observation that the network fails to label the individual tracks for the 2pipi reaction.

Chapter 6 RESULTS 22

Figure 13: Boxplots showing the absolute transverse momenta distributions of
particles in the training set for various reactions.

6.2.2 Charge identification

The charge identification algorithm implies decomposing the input image into two target images
corresponding to positively and negatively charged particle tracks (see figure 14). As in the
individual track labeling section, the algorithm was trained and tested on all the relevant
reactions listed in section 2.2.

(a) Input image. Wire hits are
labeled with white pixels.

(b) Target images, corresponding to positive and negative
charge. The tracks of interest are labeled with white pixels.

Other tracks are labeled with black pixels.

Figure 14: Example of 5pipi event as fed to the CNN for charge identification.

The training loss and F1 score after each epoch is shown in figure 15. Evidently from plot of the
training loss at each epoch, the training loss for the 4pipi reaction is significantly lower than for
the 5pipi reaction. The 5pipi reaction also took longer to train, reaching a plateau in the F1

Chapter 6 RESULTS 23

score of the testing set after 50 epochs. The obvious reason for this lies in the complexity of the
topology, which is more complex for 5pipi (10 tracks) than for 4pipi (8 tracks). Nevertheless,
the maximum F1 scores of the testing set are comparable - 91.4% and 91.9% for 4pipi and
5pipi, respectively. It indicates that, for charge identification, the topological complexity has
an apparent effect on the training speed and little to no effect on the performance.

(a) Training loss vs. epoch (b) F1 score vs. epoch

Figure 15: Charge identification training loss and F1 score by epoch for 4pipi and
5pipi reactions.

Similarly to the previous section, the results are only given for 4pipi and 5pipi. For the rest
of the reactions the network was unable to extract relevant features and a local minimum in
the loss function was reached. It may seem surprising that the charge identification algorithm
worked for 4pipi, but not, for instance, for 3pipi or 2pipi. After all, the npipi events are similar
topologically, only with a varying number of tracks. To understand the reasons behind this
peculiarity, it helps to observe the transverse momenta distribution of π+ particles in figure 16.

Figure 16: Boxplots showing the absolute transverse momenta
distributions of π+ particles in the training set for various npipi events.

Clearly, the transverse momenta of π+ particles produced in the npipi reactions decrease with
increasing n. This is an obvious consequence of the constant center-of-mass energy of 3.68 GeV
being distributed over n number of tracks. From eq. 8, pT ∝ R and thus particles with lower
transverse momentum have a more defined curvature. However, the reasoning that the network

Chapter 6 RESULTS 24

is able to assess the direction of the curvature for a track, only if it is below a certain pT threshold
is flawed. We note that the network was capable of identifying the charge of the e+ and e−

particles for the individual track labeling algorithm. The median transverse momentum for
these particles was around 1.26 GeV/c, which is higher than the median transverse momentum
of 0.736 GeV/c for the pions in 2pipi. The bending radius of the tracks may play a role, but
it cannot be the only reason for the observed results. The reason is likely to be a combination
of factors, such as the simplicity of topologies, steep local minima in the loss function that
are difficult to escape, or other obscure factors hidden inside the black box that is the neural
network.

6.2.3 Pair identification

The last of the track identification algorithms tested is pair identification. Here, the input
image is decomposed into images equal to the number of pairs produced in the reaction (see
figure 17). The network was trained on all the relevant interactions except for npipi, because
the pions in npipi do not come in distinct pairs.

(a) Input image. Wire hits are
labeled with white pixels.

(b) Target images, corresponding to pairs. The tracks of
interest are labeled with white pixels. Other tracks are

labeled with black pixels.

Figure 17: Example of 2pipi alt event as fed to the CNN for pair identification.

The training loss and F1 score by epoch is shown in figure 18. The 3pairs reaction was trained
for 45 epochs, as opposed to 25 for pipiee and 2pipi alt, due to slower training. However, the
F1 score in the testing set stabilized around epoch 30 after which the model was being overfit-
ted, similarly to what was observed in section 6.2.1. The best F1 scores in the testing set for
pipiee, 2pipi alt and 3pairs are 97.1%, 96.3% and 70.4% attained after epochs 23, 21 and 43,
respectively.

It is interesting to note that the training loss curves for pipiee and 2pipi alt exhibit a stagnancy
up to epoch 3, followed by a rapid decline between epoch 3 and epoch 5. This behavior is also
apparent in the sharp rise of accuracy between epoch 5 and 6. A possible explanation for this
phenomenon could be that a local minimum was initially encountered in the loss function. Soon
after, the model managed to extract some higher-level features from the images and break out
from the local minimum.

Chapter 6 RESULTS 25

The model was unable to identify the pairs in the 4pairs reaction, stabilizing at a local minimum
of the loss function. The result can be attributed to two different factors: the complexity of the
4pairs topology and the opening angle distributions of paired particles (see discussion below).
These factors also explain the low F1 score calculated for the 3pairs pairs, in comparison to
pipiee and 2pipi alt. The effect of the topological complexity has been discussed previously and
the consequences are rather simple. The model takes longer to train and the overall performance
after training is relatively low. The opening angle distributions are arguably a more important
factor for this type of track identification.

(a) Training loss vs. epoch (b) F1 score vs. epoch

Figure 18: Pair identification training loss and F1 score by epoch for pipiee,
2pipi alt and 3pairs reactions.

Figure 19: Boxplots showing the opening angle distributions of pairs in the
training set for various reactions.

Chapter 6 RESULTS 26

The opening angle is the angle between two particle tracks at the moment of their creation.
Formally, it is the angle between two transverse momentum vectors p1 and p2, and is calculated
via the definition of the dot product:

cos θ =
p1 · p2

|p1||p2|

The hypothesis is that in order to classify two particle tracks as a pair, the model must identify
higher-level features related to the pair as a whole, in addition to pT distributions of individual
tracks. The opening angle is one such high-level feature. The model is more likely to identify
a pair if the particles’ opening angles follow a unique pattern. For example, if the particles are
generally expelled at angles > 170◦, they may be interpreted as one long uninterrupted track.
On the other hand, at a small angle < 10◦, the V-pattern resembles a sharp edge at the origin.
Boxplot diagrams of opening angle distributions for all considered reactions are depicted in
figure 19.

The distributions of pairs produced in pipiee and 2pipi alt are very similar. Both reactions
have a distinguishable pair with a narrow distribution and a median value of 173.4◦ and 174.9◦

respectively. The other pair has a much wider distribution, and thus it is difficult to say
whether a particularly distinct pattern is formed. In the 3pairs reaction, the K+K− pair
forms a prominent V-pattern, whereas the remaining two π+π− pairs are less recognizable.
Considering the relatively low F1 score, 70.4%, it can be deduced that the model may wrongly
attribute pion tracks to the pair they do not belong to. Finally, for the 4pairs reaction, an
extra pair introduces another level of difficulty and the necessity to find meaningful patterns.
The K+K− pair is noticeably different from the rest, characterized by a narrow distribution
with a 32.7◦ median, but nowhere near the extent of the e+e− pair in the pipiee reaction, for
example. Coupled with a complex topology, the outcome of the training is a local minimum in
the loss function and the inability of the network to classify pairs.

6.3 Effect of broken layers

The model weights obtained from both noise reduction and track identification algorithms were
evaluated on the testing set in which a number of layers were selected as broken. A broken
layer means that any hit measured by the wires belonging to that layer is discarded from the
event image. Two different schemes for discarding layers were implemented. The layers were
either discarded randomly or starting from the middle outwards. The maximum number of
discarded layers was 35, around 80% of the total number of layers. Going beyond that, the
event no longer has any resemblance to the original image. In reality, more than 50% of broken
layers is already absurd. At that point, it would be more important to determine and eliminate
the cause of the broken layers, rather than to work around it.

An interesting metric to look at is the maximum number of layers that may be broken before
the performance decreases below a certain percentage of base performance. The base perfor-
mance is the performance of the network with 0 broken layers. The metric is defined such that
the smaller the number is, the greater the impact of broken layers on performance is.

Chapter 6 RESULTS 27

6.3.1 Noise reduction

The layers to be discarded were selected randomly before each model prediction. Judging by
the data in table 2, the effect of broken layers is slightly amplified for higher noise ratios. On
average, across all events, the maximum number of broken layers tolerated in order to maintain
an accuracy at 98% of base accuracy, for noise ratio of 1:2, is 7.3. For the noise ratio of 1:8,
that number is 5.7. Similarly, to maintain an accuracy at 95% of base accuracy, the numbers
for noise ratios of 1:2 and 1:8 are 11.5 and 9.5 respectively. The abundance of noise increases
the demand for continuity in the tracks, which is interrupted by the missing layers.

Figure 20: Example of 3pipi event. Left: input image. Right: input image
with 20 randomly broken layers. Wire hits are labeled with white pixels.

Furthermore, broken layers play a bigger role for higher resolution images. The comparison
between the two resolutions can be seen in table 3. The results are given for the noise ratio of
1:8. To maintain 98% of base accuracy, the network tolerated, on average, a maximum of 5.7
broken layers for a resolution of 96× 96 pixels and 4.7 for 192× 192 pixels.

Noise ratio 1:2 1:4 1:8

Tracks 6 8 10 12 16 20 6 8 10 12 16 20 6 8 10 12 16 20

99% 6 4 5 4 5 9 4 5 3 2 3 3 6 5 5 3 3 3

98% 8 8 7 6 5 10 8 6 7 7 4 5 7 6 6 5 5 5

95% 13 9 11 10 13 13 14 9 10 12 10 9 11 10 8 9 9 10

90% 15 15 17 14 13 15 14 13 13 16 14 15 15 13 13 14 13 13

Table 2: Maximum numbers of broken layers, for which the accuracy is greater than
x% of base accuracy. Given for each event at noise ratios of 1:2, 1:4 and 1:8.

Chapter 6 RESULTS 28

Resolution (pixels) 96× 96 192× 192

Tracks 6 8 10 12 16 20 6 8 10 12 16 20

99% 6 5 5 3 3 3 4 5 4 3 2 3

98% 7 6 6 5 5 5 6 5 4 6 4 3

95% 11 10 8 9 9 10 11 8 8 9 9 8

90% 15 13 13 14 13 13 14 11 11 10 11 10

Table 3: Maximum numbers of broken layers, for which the accuracy is greater
than x% of base accuracy. Given for each event for resolutions of 96× 96 and

192× 192 pixels.

The plots of accuracy at each number of randomly broken layers can be seen in Appendix B.

6.3.2 Track identification

For the track identification algorithms, in addition to selecting broken layers at random, layers
were systematically discarded from the middle outwards. It is interesting to compare the per-
formance of the network for both of these cases, particularly the response to a lack of continuity
created by removing the middle layers. The plots of F1 score at each number of broken layers
can be seen in Appendix C.

Type Individual Charge Pair

Event pipiee 2pipi alt 4pipi 5pipi pipiee 2pipi alt

99% 8 8 7 5 8 6

98% 11 10 11 8 13 11

95% 13 15 19 14 16 17

90% 20 20 19 21 23 26

Table 4: Maximum numbers of randomly broken layers, for which the F1
score is greater than x% of base score. Given for each track identification

algorithm.

Type Individual Charge Pair

Event pipiee 2pipi alt 4pipi 5pipi pipiee 2pipi alt

99% 5 5 4 3 7 6

98% 7 7 6 4 10 9

95% 10 10 8 6 15 14

90% 14 13 13 9 19 18

Table 5: Maximum numbers of layers systematically broken from the middle,
for which the F1 score is greater than x% of base score. Given for each track

identification algorithm.

Chapter 6 RESULTS 29

Clearly from tables 4 and 5, the negative impact of broken layers is greater for layers missing
from the middle rather than randomly. The most extreme example is the 4pipi event after
charge identification. For example, the maximum number of layers missing to maintain 95%
of base accuracy is 19 for randomly broken layers and 8 for layers missing from the middle.
As concluded previously in section 6.2.2, the network relies on the curvature of the track to
classify charge. Removing middle layers breaks continuity of the tracks, masking their apparent
curvatures. On the other hand, for randomly broken layers, the general shape of the tracks is
maintained.

The pair identification algorithm has the best performance for broken middle layers. This is
likely due to the hypothesis proposed in section 6.2.3, that the most relevant feature of pairs is
their opening angle. The opening angle is presented in the first couple of layers of the image,
so the removal of layers from the middle is not very effective at disturbing the pattern.

Chapter 7 CONCLUSION 30

7 Conclusion

A Convolutional Neural Network previously developed by a Master’s student [5] was extended
to five different particle interactions and four algorithms. The purpose of the investigation was
to explore the limits of the network architecture and to discover new areas of application. The
network was trained and tested on Monte Carlo simulated data of collision events in the BESIII
experiment. The performance of the network was evaluated for the noise reduction and track
identification algorithms. The track identification algorithm was broken down into three parts:
individual track labeling, charge identification and pair identification. Furthermore, the effect
of broken layers on the performance of the network was examined. All the algorithms were
trained on 10,000 events and tested on 2,000 events.

The noise reduction algorithm was trained for 25 epochs. It was applied to events with 6, 8,
10, 12, 16 and 20 tracks for 1:2, 1:4 and 1:8 noise ratios. The 12-, 16- and 20-track events were
generated by stacking a 4-track events several times on one image, simulating high interaction
rate conditions of the BESIII experiment. The network performed quite well. As expected,
the best accuracy score, 94.9%, was attained for events with 6 tracks and a 1:2 signal-to-noise
ratio. The worst accuracy score, 87.2%, was attained for events with 20 tracks and a 1:8 signal-
to-noise ratio. By increasing the image resolution from 96 × 96 pixels to 192 × 192 pixels for
events with a 1:8 signal-to-noise ratio, the accuracy improved for all events. The increase in
accuracy was marginally greater for events with a larger number of tracks. Therefore, depend-
ing on the requirements and events in question, image resolution may be sacrificed in favor of
computational performance.

The individual track labeling algorithm was trained for 30 epochs, with the exception of some
reactions for which the learning process was slower and required more epochs. The most
prominent features of the particles were found to be transverse momentum, pT , and charge.
The transverse momentum together with the charge dictate the bending radius and the direc-
tion of the track’s curvature. In order for the network to perform well, each particle track in the
event must have a unique topology, i.e a unique combination of pT and charge. The network
performed significantly worse for an event with 6 tracks, attaining an F1 score of 68.8%, as
a result of a considerable overlap in pT of some particle tracks. Due to the limited number
of unique combinations of pT and charge, the performance of the network further deteriorates
with an increasing number of tracks.

Based on the data provided to the network, the only way to classify tracks by their charge is
to detect the direction of their curvature. The radius of the curvature is directly proportional
to the transverse momentum, meaning that particles with a lower momentum have a more
apparent curvature. Relatively good F1 scores, 91.2% and 90.9%, were attained during charge
classification of pions with median transverse momenta ≤ 0.351 GeV/c. The network was un-
able to classify pions with relatively high momenta by charge. This result is attributed to a
number of factors, not limited to the transverse momentum of the particles, such as steep local
minima in the loss functions and other factors concealed within the hidden layers of the network.

To categorize particle tracks as pairs, the opening angle distribution was determined to be a
higher-level feature the network was most sensitive to. A narrow distribution implies a very
specific pattern in the pair and allows the network to treat it as a single entity. The network

Chapter 7 CONCLUSION 31

was very successful in identifying pairs in two 2-pair reactions, achieving 97.1% and 96.3%
F1 scores. However, for the reaction producing 3 pairs, the network scored a less impressive
70.4%. There was a significant overlap in the opening angle distributions, resulting in incorrect
classification. Due to the conservation of momentum, the opening angle distributions become
wider and less definitive as the number of pairs increases, which results in a performance drop.

Investigating the impact of broken layers on the performance has shown that the network can
operate within 99% of its base performance score for 3 to 8 broken layers. For some events,
the number of broken layers may reach up to 15 and the network would still operate within
95% of its base accuracy or F1 score. This thesis demonstrates that the network is robust for a
realistic number of broken layers. Also, depending on the user’s tolerance for error, the findings
of this thesis can be used as a framework to determine the acceptable number of broken layers
for their needs.

As it stands, the network and the data have several limitations that negatively impact perfor-
mance. The performance of the network depends on some specific conditions, like the unique
topologies of particle tracks and narrow distributions of opening angles for pair identification.
Hence, its effectiveness decreases for events with a large number of tracks, where attaining such
conditions becomes increasingly difficult. Possible solutions to these limitations could be to
utilize other pieces of data available from the tracking detector, such as the drift time and the
energy loss, or to introduce data from other detectors, e.g from an electromagnetic calorimeter,
as input to the network.

BIBLIOGRAPHY 32

Bibliography

[1] A. Herten, “GPU-based Online Tracking for the PANDA Experiment,” in GPU Computing
in High-Energy Physics, 6 2015.

[2] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical
image segmentation,” 2015.

[3] M. Drozdzal, E. Vorontsov, G. Chartrand, S. Kadoury, and C. Pal, “The importance of
skip connections in biomedical image segmentation,” 2016.

[4] N. Ibtehaz and M. S. Rahman, “Multiresunet: Rethinking the u-net architecture for mul-
timodal biomedical image segmentation,” Neural Networks, vol. 121, p. 74–87, Jan 2020.

[5] H. de Vries, “Convolutional neural network for reducing noise and detecting tracks in the
bes-iii main drift chamber,” 2019.

[6] I. F. Graña, “Deep learning for particle tracking,” 2020.

[7] D. Asner et al., “Physics at bes-iii,” 2008.

[8] G. Barucca et al., “Panda phase one,” The European Physical Journal A, vol. 57, p. 184,
Jun 2021.

[9] C. Chen et al., “The besiii drift chamber,” in 2007 IEEE Nuclear Science Symposium
Conference Record, vol. 3, pp. 1844–1846, 2007.

[10] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, pp. 436–444, May
2015.

[11] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” 2017.

[12] S. Ruder, “An overview of gradient descent optimization algorithms,” 2017.

[13] N. Ismoilov and S.-B. Jang, “A comparison of regularization techniques in deep neural
networks,” Symmetry, vol. 10, p. 648, 11 2018.

[14] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by
reducing internal covariate shift,” 2015.

[15] S. Santurkar, D. Tsipras, A. Ilyas, and A. Madry, “How does batch normalization help
optimization?,” 2019.

[16] S. Shi, Q. Wang, P. Xu, and X. Chu, “Benchmarking state-of-the-art deep learning software
tools,” 2017.

[17] S. Bahrampour, N. Ramakrishnan, L. Schott, and M. Shah, “Comparative study of deep
learning software frameworks,” 2016.

[18] E. BUBER and B. DIRI, “Performance analysis and cpu vs gpu comparison for deep learn-
ing,” in 2018 6th International Conference on Control Engineering Information Technology
(CEIT), pp. 1–6, 2018.

[19] C. Versloot, “Getting out of loss plateaus by adjusting learning rates,” Feb 2020.

APPENDICES 33

Appendices

A Noise reduction training loss and performance plots

(a) Training loss vs. epoch (b) Accuracy vs. epoch. Blue is training accuracy.
Red is testing accuracy.

Figure 21: Noise reduction training loss and performance by epoch for 3pipi event.

(a) Training loss vs. epoch (b) Accuracy vs. epoch. Blue is training accuracy.
Red is testing accuracy.

Figure 22: Noise reduction training loss and performance by epoch for 4pipi event.

APPENDICES 34

(a) Training loss vs. epoch (b) Accuracy vs. epoch. Blue is training accuracy.
Red is testing accuracy.

Figure 23: Noise reduction training loss and performance by epoch for 5pipi event.

(a) Training loss vs. epoch (b) Accuracy vs. epoch. Blue is training accuracy.
Red is testing accuracy.

Figure 24: Noise reduction training loss and performance by epoch for pipiee event,
overlapping 3 times.

APPENDICES 35

(a) Training loss vs. epoch (b) Accuracy vs. epoch. Blue is training accuracy.
Red is testing accuracy.

Figure 25: Noise reduction training loss and performance by epoch for pipiee event,
overlapping 4 times.

(a) Training loss vs. epoch (b) Accuracy vs. epoch. Blue is training accuracy.
Red is testing accuracy.

Figure 26: Noise reduction training loss and performance by epoch for pipiee event,
overlapping 5 times.

APPENDICES 36

B Noise reduction broken layers accuracy plots

Figure 27: Noise reduction testing set accuracies at each number of randomly
broken layers. Comparison between different noise ratios.

Figure 28: Noise reduction testing set accuracies at each number of randomly
broken layers. Comparison between 96× 96 and 192× 192 resolutions.

APPENDICES 37

C Track identification broken layers F1 score plots

Figure 29: Track identification testing set F1 scores at each number of
randomly broken layers.

Figure 30: Track identification testing set F1 scores at each number of
layers systematically broken from the middle.

