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Abstract

In topology, it is in general very difficult to decide whether or not two spaces are homotopy equivalent. In
algebraic topology, therefore, algebraic invariants are associated with each space, reflecting some topological
data. Examples of this are homology and cohomology, that originated from measuring the number and size of
holes in topological spaces. They turn out to be versatile and related to much that is cared about in algebraic
topology. In this thesis, we will show that, as long as we restrict ourselves to a certain subclass of topological
spaces, namely that of CW-complexes, all cohomology theories are representable by a sequence of CW-complexes.
To do so, we first explore singular homology and cohomology, define what generalised cohomology theories are,
and use the homotopy theory of CW-complexes to prove this main result.
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Introduction

A central challenge in topology is to show if two given topological space X and Y are homeomorphic or homotopy
equivalent. In practice, there is often not a natural candidate for a homeomorphism or homotopy equivalence,
and to directly show no such map exists is neigh impossible. Therefore, algebraic topology seeks to assign
to each topological space X some algebraic structure that is invariant under homeomorphism or homotopy
equivalence. If two spaces X and Y have non-isomorphic invariants associated to them, consequently they
cannot be homeomorphic or homotopy equivalent, respectively. It is in practice doable to check whether or not
groups or modules (or whatever the algebraic structure is) are isomorphic, so this is a viable approach.

The fundamental group π1(X,x) is one example of such an invariant, and measures the amount of different
loops there are in X on a certain base point x (up to homotopy). As such, it is also a measure of the amount of
holes in the space, although not a very reliable one in that. For instance, we know that π1(S2) = 0, although
we would certainly say the 2-sphere has a two-dimensional hole (since the boundary of this hole is a surface).
Apparently, the fundamental group cannot recognise this, so it does not capture all the information we are after.

If we want to define an algebraic invariant on an arbitrary space, it is natural to want to measure the amount
and dimension of the holes of such a space. They are namely not only visibly homotopy invariants on the space,
but are themselves visible: they are clear geometric aspects of the space, one of the few we have left once we
make the step from more rigid geometry like differential geometry to topology.

This leads us to singular homology and cohomology, which we will be covering in the first two chapters of
this thesis. These assign for each n ≥ 0 a module over a ring to a given space. The most important properties
of singular cohomology can be used as a starting point to define what we wish a cohomology theory in general
to be. We then do not have an explicit description of the inner workings of the cohomology theory anymore, as
we do have with singular cohomology. What we will however be concerned with showing is that despite this, all
cohomology theories that map to abelian groups (which are Z-modules) actually arise in a similar manner, as
long as we restrict ourselves to CW-complexes only: for any cohomology theory, there exist fixed CW-complexes
such that the algebraic invariants that the theory assigns to a CW-complex X is the set of homotopy classes of
maps from X into those fixed spaces (and we will also see that this set carries a group structure). This is of
huge theoretical and practical importance, we will encounter some beautiful consequences of it along the way.

This thesis is meant as a Bachelor’s level treatment of cohomology, CW-complexes, homotopy theory and
representability of said cohomology theories. As such, not much prior knowledge is required. A solid under-
standing of point-set topology and of group and module theory are needed, and a basic understanding the
fundamental group and homotopy are recommended. Although we do include some category theory, module
theory and homological algebra in the appendices, we omit most of the proofs of the statements there, and it
certainly helps if the reader is already a bit familiar with those topics.

Conventions
We quickly write down a few conventions that we adopt in this thesis, that are not entirely standard.
− Every ring is understood to have a unit.
− The empty set ∅ is also considered a topological space because of category theoretical considerations.

However, arbitrary topological spaces are often implicitly assumed to be nonempty in the text. This is
because arguments with maps to and from empty spaces require some care, although it is always simple to
check if a certain passage still holds for the empty space, and to check that results hold for empty spaces
as well. It is therefore not worth the effort to always write down a separate passage for the empty space.

− A space X is quasi-compact if every open cover of X admits a finite subcover. A space X is compact if it
is both quasi-compact and Hausdorff.

− A space X is locally compact if for every point x ∈ X and open neighbourhood U ⊆ X, there is a compact
(in the sense of the above convention) neighbourhood K ⊆ X of x with K ⊆ U . K being a neighbourhood
of x means that there also exists an open O 3 x with O ⊆ K.

− If X ′ ⊆ X are two topological spaces, a map f : X → X ′ is a deformation retraction if f |X′ = idX′ and
if there exists a homotopy H : X × [0, 1]→ X from idX to ι ◦ f , where ι : X ′ ↪→ X is the inclusion, such
that H( · , t)|X′ = idX′ for all t.
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Notation

Ab The category of abelian groups. Example A.4.
Cf ,Cuf The reduced and unreduced mapping cone of a map. Definition 3.45.
CX, CuX The reduced and unreduced cone on X. Definition 3.42.
C∗ The pointed version of a category C.
C(2), C(3) The category of pairs or triplets of objects in C.
Copp The opposite category of a category C. Definition A.8.

RChain, RcChain The category of left R-module chain or cochain complexes. Notation B.20.
C•(X;M) The singular chain complex with coefficients in M . Definition 1.15.
C•(X;M) The singular cochain complex with coefficients in M . Definition 2.2.
C•(X,X

′;M) The relative chain complex with coefficients in M . Definition 1.27.
C•(X,X ′;M) The relative cochain complex with coefficients in M . Above Proposition 2.12.
CMon The category of commutative monoids. Definition 4.25.
CohomTh The category of generalised cohomology theories on CW-complexes. Beginning of Section 5.2.
CW The category of CW-complexes. Notation 3.22.
cCW The category of path-connected CW-complexes. Notation 6.27.
Hn(X;M) The n-th singular homology module with coefficients in M . Definition 1.16.
Hn(X;M) The n-th singular cohomology module with coefficients in M . Definition 2.6.
Hn(X,X ′;M) The n-th relative homology module with coefficients in M . Definition 1.27.
Hn(X,X ′;M) The n-th relative cohomology module with coefficients in M . Definition 2.16.
hC The homotopy version of a category C.
HomR( · , · ) The Hom-functor in the category of R-modules. Notation B.3.
K(A,n) The (an) Eilenberg-MacLane space of type K(A,n). Notation 6.50.
mf , Mf The reduced and unreduced mapping cylinder of a map. Definition 3.44.
Map(X,Y ) The set of continuous maps between topological spaces. Notation 1.9.
Map•(X,Y ) The set of pointed continuous maps between pointed topological spaces. Notation 6.6.
M [S] The linearisation of a set S over a module M . Definition B.4.
rCohomTh The category of reduced cohomology theories on pointed CW-complexes. Beginning of Section 5.2.
SX The unreduced suspension of a space X. Definition 3.43.
Sn(X) The set of singular n-simplices on a topological space. Notation 1.4.
Set The category of sets. Example A.4.
Top The category of topological spaces. Example A.4.
X+ The addition of a base point to a topological space. Remark 1.26.

∆n The standard n-simplex in Rn+1. Definition 1.1.
ΣX The reduced suspension of a space X. Definition 3.43.
ΩX The loop space of X. Definition 6.8.
Ω−spec The category of Ω-spectra. Definition 6.24.

[ · , · ] The set of homotopy classes of maps between spaces, pairs or triplets. Notation 4.2.
[ · , · ]• The set of homotopy classes of pointed maps between spaces or pairs. Notation 4.2.∫
C
F The category of elements of a functor F . Definition 5.19.

∨ The wedge sum of topological spaces. Definition 3.37.
∧ The smash product of topological spaces. Definition 3.40.
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Notation of references
This thesis consists of literature research, and consequently contains plenty of references in the text. Sometimes,
we mention during a section that a part that follows is taken from a certain source; other moments, we add
references at the most important theorems only, especially when consequences of it are fairly straightforward.
When we add the reference not in the theorem statement but at the beginning of the proof, it is understood that
both the theorem and its proof are taken from that source. Remarks taken from sources also get their references,
and definitions that are either very important or that appear in multiple different forms in the literature do as
well.

When we add a part of a proof or make entirely our own, state an interesting result not taken from the
literature, or have interesting contributions to make in the text that are our own, we will either make that clear
in the text, or we will denote it with the symbol (†) for clarity. None of these additions on our side are however
new results: it only means we did not need sources to come up with them.

There is one exception to this notation, namely our usage of Theorem A.51. This theorem states that left
adjoint functors commute with colimits and right adjoint functors with limits, and we will use it multiple times
througout this thesis. Each time we do so, it has been an addition on our side, as none of the sources that
we have used for arguments about algebraic topology have used it. However, since sometimes it is only briefly
mentioned by us within a proof taken from a reference, we will never explicitly use our above defined symbol
when we use that theorem, as that would often be inappropriate.
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Chapter 1

Preliminaries

We begin this thesis by recalling the theory of singular homology. This provides a natural setup for singular
cohomology and its generalisations, and is moreover better accessible for a reader which has not yet encountered
more advanced algebraic topology. As stated in the introduction, the motivation for singular homology is that
we want to determine for a given topological space X whether or not X has any holes, and if so, if we can say
anything about the “size” or “dimension” of that hole.

Singular homology approximately does the following. If we let ∆n be a regular n-simplex in Rn, then
the image of any continuous map f : ∆n → X can be considered to be a “continuous n-simplex in X”. We
can use these n-simplices in X to build something that looks like it could be the boundary of a continuous
(n + 1)-simplex in X, given by a continuous map ∆n+1 → X (where “looks like it could” will be captured in
precise mathematics). If it actually is, then there are no holes within that construction, since the image of a
continuous map ∆n+1 → X is contractible. However, if it is not, then that indicates that there is some sort of
n-dimensional hole there. Singular homology provides a precise and algebraic method to carry out this idea.
It turns out that singular homology is reasonably well-computable since it satisfies a few pleasant properties,
which are of great theoretical interest. We will mainly focus on the theoretical aspects, and not on the practical
and computational ones.

Although the title of the chapter suggests we are going to quickly go through the material, we are going
to go in depth at some points, not in the least because this allows us to better understand singular cohomology
in the next chapter. However, on one hand it is not meant to learn for the first time about singular homology,
and on the other hand some of the more technical proofs will be skipped.

This chapter, and for that matter all subsequent ones, relies heavily on concepts from abstract algebra and
category theory, such as functors, modules, and chain complexes. A brief overview of these topics is given in
Appendices A and B.

1.1 Singular homology

In this section, we will define singular homology and derive a few basic properties of it. We follow the route that
[23] takes, and generalise using [7] the construction to modules over a ring R. We will tend use more category
theory jargon than in [23], but this does not generalise further the arguments he gives. Rather, it serves to keep
an overview, a sort of “bird-eye view”, since there will be many induced maps appearing on the next pages.
How and why they arise is best captured using the language of functors.

As stated above, we have to begin with explaining what n-dimensional simplices on X exactly are. Our
starting point is at the Euclidian simplices.

Definition 1.1. For n ≥ 0, the standard n-simplex is the subset ∆n = {(t0, . . . , tn) | ti ≥ 0 for all i,
∑n
i=0 = 1}

of Rn+1, equipped with the subspace topology. ♦
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The reader should visualise these sets for n = 0, 1, 2 and convince himself or herself that these indeed define
simplices: ∆0 is a singleton, ∆1 is a line segment, ∆2 is a triangle with its interior, and so forth. Moreover, we
see that there are inclusions ∆0 ⊂ ∆1 ⊂ ∆2 ⊂ . . ., which is partly the reason of this particular definition. In
fact, the boundary of the standard (n+1)-simplex consists of n+2 copies of the standard n-simplex. Motivated
by this observation, we define for any n ≥ 1 and i ∈ {0, . . . n} the so-called face-maps

δni : ∆n−1 → ∆n : (t0, . . . , tn−1) 7→ (t0, . . . , ti−1, 0, ti, . . . , tn−1). (1.1)

In terms of the standard basis (ei) of Rn+1 (which are the vertices of ∆n), δni sends ∆n−1 to its copy in ∆n

opposite to the vertex ei. We will often omit the superscript and simply write δi, leaving the dimensions implicit.
Note that the face maps are continuous, and in fact topological embeddings.

The next step is to define simplices on arbitrary topological spaces.

Convention 1.2. For the rest of this chapter, let R be a commutative ring and M be a left R-module. �

Definition 1.3. Let X be a topological space and n be a nonnegative integer. A singular n-simplex in X is a
continuous map σ : ∆n → X. ♦

Notation 1.4. Let X be a topological space and n ≥ 0. We write Sn(X) for the set of singular n-simplices on
X. #

Recall the definition of the M -linearisation of a set (see Definition B.4).

Definition 1.5. Let X be a topological space and n ≥ 0. We define Cn(X;M) := M [Sn(X)]. We shorten
Cn(X;Z) to Cn(X) (where Z is understood to be a Z-module). ♦

Remark 1.6. For us, it is convenient to also set Cn(X;M) = 0 for negative n, because of the technicality in
Definition 1.46 of a generalised homology theory that we wish them to be defined for all integers n, and not
just for nonnegative ones. Note that setting Cn(X;M) = 0 for integers n < 0 is in line with the definition
of Cn(X;M) for n ≥ 0. Indeed, if n < 0, then it is acceptable to say that {σ : ∆n → X} = ∅, and hence
Cn(X;M) = M [∅] = 0. O

Remark 1.7. We must stress that, in general, a singular n-simplex in X does not need to be an element of
Cn(X;M), because there does not need to be an element 1 ∈M . Only M -linear combinations of such simplices
are contained in Cn(X;M). O

Convention 1.8. We write the elements of Cn(X;M) as
∑
σ∈Sn(X)mσσ and do not mention that, of course,

mσ must be zero for all but finitely many σ. This is implicitly assumed specifically in this notation. �

We are going to build a chain complex out of our above defined modules, and therefore need to define
differentials. Let a topological space X be given. For n ≥ 1, a face map δi : ∆n−1 → ∆n induces an R-linear
map

(δi)∗ : Cn(X;M)→ Cn−1(X;M),
∑

σ∈Sn(X)

mσσ 7→
∑

σ∈Sn(X)

mσ(σ ◦ δi). (1.2)

This can be captured in the language of category theory as follows.

Notation 1.9. We write Map( · , · ) for the Hom-functor Topopp × Top → Set. For any two topological spaces
X and Y , we call Map(X,Y ) a mapping space. #

Remark 1.10. We will later, in Definition 6.1 to be precise, equip these mapping spaces with a topology, which
explains why we call them spaces. However, until then, these spaces are only sets. O

We see that Sn(X) = Map(∆n, X), so the face-maps induce a map of sets Map(δi, X) : Sn(X)→ Sn−1(X).
Applying the functor M [ · ] to this map yields an R-linear map Cn(X;M) = M [Sn(X)] → M [Sn−1(X))] =
Cn−1(X;M), which is of the form (1.2). We also obtain the following proposition.
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Proposition 1.11. For each n ≥ 0, Sn is a functor Top → Set. Consequently, Cn( · ;M) = M [Sn( · )] is a
functor Top→ RMod for all n ∈ Z.

Remark 1.12. [23] In fact, even more is true: the face-maps themselves are actually induced by a more
abstract morphism between totally ordered sets of nonnegative integers: if we let ∆ be the category of ordered
sets [n] = (0 < 1 < . . . < n) and order preserving maps between them (in the weakly monotone sense, so
these maps do not need to preserve the strict order <, but only the order ≤), then the collection of standard
n-simplices is actually a functor ∆ → Set which sends [n] to ∆n and an order preserving map α : [m] → [n]
to the map α∗ : ∆m → ∆n determined by sending a basis vector ei of ∆m to eα(i) of ∆n. The face-maps are
induced by the unique order preserving map [n− 1]→ [n] which maps an i to i+ 1 and i− 1 to i− 1, as is now
clear from (1.1).

A simplicial set is a functor ∆opp → Set, and the category of all simplicial sets is denoted by sSet (which is
a functor category, see Definition A.22). We see that for each topological space X, S(X) is actually a simplicial
set, which sends a map α : [m] → [n] in ∆ to the map Sn(X) → Sm(X), σ 7→ σ ◦ α∗. Furthermore, S itself is
a functor Top → sSet, which sends a continuous map f : X → Y to the natural transformation S(X) → S(Y )
consisting of maps Sn(X)→ Sn(Y ) : σ 7→ f ◦ σ.

The diagrams below summarise the situation: from left to right, it shows the functor ∆→ Set, the simplicial
functor S : Top → sSet, and the action of the simplicial set S(X) and a morphism S(f) : S(X) → S(Y ) of
simplicial sets.

∆ Set Top sSet ∆opp Set S(X) S(Y )

[m] ∆m X S(X) [n] Sn(f) Sn(X) Sm(X)

[n] ∆n Y S(Y ) [m] Sm(X) Sn(Y ) Sm(Y )

S S(X) S(f)

α α∗ f S(f) αopp −◦α∗ f◦−

−◦α∗

f◦−

−◦α∗

(†) M -linearising the right-most diagram, we see that in particular for any continuous map f : X → Y and any
face map δi, the diagram

Cn(X;M) Cn−1(X;M)

Cn(Y ;M) Cn−1(Y ;M)

f∗

(δi)∗

f∗

(δi)∗

is commutative. O

Now we define our differentials.

Definition 1.13. Let X be a topological space. For n ≥ 1, we define the map ∂n : Cn(X;M)→ Cn−1(X;M)
by

∂n =

n∑
i=0

(−1)i(δi)∗,

and we let ∂0 : C0(X;M)→ 0 be the zero map. ♦

Explicitly, these maps are given by

∂n

( ∑
σ∈Sn(X)

mσσ

)
=

∑
σ∈Sn(X)

n∑
i=0

(−1)imσ(σ ◦ δi).

The geometric motivation for this definition lies in the observation that the differential sends a singular n-
simplex to its boundary. Intuitively, for such a simplex σ, the (n− 1)-simplex σ ◦ δi is the part of the boundary

3



of σ opposite to σ(ei). The sum in the expression of the differential is alternating to make the orientations of
the simplices on the boundary match.

The maps ∂n are called the singular boundary operators for the above reason. They are also clearly R-linear.
The following lemma is the last ingredient we need to define the singular chain complex.

Lemma 1.14. For each n, it holds that ∂n−1 ◦ ∂n = 0.

Proof. The proof consists of elementary algebra and is rather straightforward, and hence omitted. It is given
in [23], however.

Definition 1.15. For a topological space X, the chain complex (C•(X;M), ∂•) is called the singular chain
complex (with coefficients in M). ♦

For a topological space X, the associated singular chain complex looks like this:

. . . C2(X;M) C1(X;M) C0(X;M) 0 . . .
∂3 ∂2 ∂1 ∂0

Definition 1.16. Let X be a topological space. The n-th singular homology module (with coefficients in M)
Hn(X;M) is defined as the n-th homology module of the singular chain complex C•(X;M), that is,

Hn(X;M) = Hn(C•(X;M)) = ker ∂n/im ∂n+1.

We shorten Hn(X;Z) to Hn(X). ♦

Remark 1.17. We are now in a position to verify that singular homology does what we promised. Indeed,
the kernel of a differential consists of singular n-chains with zero boundary. For 1-chains, this simply means
that the 1-chain is a loop consisting of singular 1-simplices on X, and for 2-chains, this means that the singular
2-simplices of which a chain consists form a “closed” shape, analoguous to the boundary of a tetrahedron.

The differential maps an n-chain to its boundary chain. If therefore every cycle (element of the kernel of a
differential) lies in the image of the differential, there is for every “closed” shape in X a singular simplex which
has this shape as boundary. In other words, we can then “fill in every n-simplex on X”.

Singular homology measures as a quotient module the extent to which this fails to be the case, and therefore
measures if the space X has holes in it, and measures a bit more abstractly also their size. O

As we saw in Remark 1.12, for any continuous map f : X → Y between topological spaces, the induced
R-linear maps f∗ : Cn(X;M)→ Cn(Y ;M) commute with the induced maps (δi)∗. By R-linearity of both maps,
and since the differential is an R-linear combination of the maps (δi)∗, it follows that ∂ ◦ f∗ = f∗ ◦ ∂, and the
diagram

. . . Cn+1(X;M) Cn(X;M) Cn−1(X;M) . . .

. . . Cn+1(Y ;M) Cn(Y ;M) Cn−1(Y ;M) . . .

∂ ∂

f∗

∂

f∗

∂

f∗

∂ ∂ ∂ ∂

commutes.
It is clear from the definition that (idX)∗ equals the identity map on the chain complex for each topological

space X, and there is an equality of induced chain maps (gf)∗ = g∗f∗ for all composable continuous maps f and
g. Indeed, Cn( · ;M) is a functor for each n (as it is trivially also a functor in negative degrees), so in each degree
we have ((gf)∗)n = (g∗)n (f∗)n. Hence taking the singular chain complex is a functor C•( · ;M) : Top→ RChain.

Proposition 1.18. The n-th singular homology Hn( · ;M) = Hn ◦ C•( · ;M) is a functor Top→ RMod.

Corollary 1.19. Let X and Y be topological spaces. If X and Y are homeomorphic, then Hn(X;M) ∼=
Hn(Y ;M) for all n.

Proof. This follows directly from Corollary A.15.
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Lemma 1.20. Let X be a topological space. Then Hn(X;M) = 0 for all n < 0.

Therefore, we usually implicitly assume we are dealing with nonnegative n when talking about singular
homology. There is nothing interesting happening when n is negative.

So what is the situation? For any continuous map f : X → Y of topological spaces, there are induced maps
f∗ = Hn(f ;M) on singular homology by virtue of the composition of functors Hn ◦ C•( · ;M) : Top → RMod.
Explicitly, for nonnegative n they are given by

f∗ : Hn(X;M)→ Hn(Y ;M),

 ∑
σ∈Sn(X)

mσσ

 7→
f∗

 ∑
σ∈Sn(X)

mσσ

 =

[ ∑
σ:∆n→X

mσ(f ◦ σ)

]
(1.3)

for
∑
σ∈Sn(X)mσσ ∈ ker ∂n. It is maybe a good time to start computing some singular homology modules. The

following two examples are admittedly the easiest ones, but they are important nonetheless.

Example 1.21. The empty space ∅ has a trivial singular chain complex by definition (see Definition B.4), and
therefore Hn(∅;M) = 0 for all n. M

Example 1.22. [23] Consider the one-point space ∗. For each n ≥ 0, there is precisely one continuous map
σ : ∆n → ∗. If S = {s} is a set with only one element, there is a canonical isomorphism M [S]→ M,ms 7→ m,
so Cn(∗;M) ∼= M for n ≥ 0 (and zero in negative degrees). Under these isomorphisms, for n > 1 the differential
∂n is associated to

dn : M →M : m 7→
n∑
i=0

(−1)im =

{
m, if n is even,

0, if n is odd.

The singular chain complex C•(∗;M) thus is isomorphic to the chain complex

. . . M M M 0 . . .
d3 d2 d1 d0

Since isomorphic chain complexes have isomorphic homology modules, for even n > 0 we find Hn(∗;M) ∼=
ker dn/im dn+1 = 0/0 = 0, for odd n > 0 we find Hn(∗;M) ∼= ker dn/im dn+1 = M/M = 0, and at n = 0, it
holds that H0(∗;M) ∼= ker d0/im d1 = M/0 ∼= M . All in all,

Hn(∗;M) ∼=

{
M, if n = 0,

0, otherwise.
M

Proposition 1.23. If X is a (nonempty) path connected topological space, then H0(X;M) ∼= M .

Proof. [23] There is a canonical bijection S0(X) → X,σ 7→ σ(1), which induces an isomorphism C0(X;M) ∼=
M [X]. Let two points x, y ∈ X be given, and let γ : I → X be a path from x to y (which exists, as X is path
connected). A homeomorphism ∆1 ∼−→ I allows us to consider γ as an element of S1(X). From the definition
of the singular boundary operator, we see that for all continuous σ : ∆1 → X and all m ∈ M it holds that
∂(mσ) = mσ(1)−mσ(0) (multiplication by m is needed, as there does not need to be an element 1 ∈ M , and
hence σ cannot automatically be seen as an element of C1(X;M)). Hence my = mx + ∂(mγ) for all m ∈ M .
However, this implies that [mx] = [my] in H0(X;M), so each homology class in H0(X;M) is represented by an
element of the form [mx0], where x0 is a fixed point in X and m ∈M .

This means that the homomorphism ψ : M [X] ∼= C0(X;M) → H0(X;M) factors as the precomposition of
the homomorphism M [X] → M,

∑
x∈X mxx 7→

∑
x∈X mx with the homomorphism ϕ : M → H0(X;M),m 7→

[mx0]. On the other hand, the unique map X → ∗ to the one-point space induces the so-called augmentation
map ε : H0(X;M)→ H0(∗;M) ∼= M, [mx0] 7→ m (by (1.3), and where the isomorphism was shown in Example
1.22). We see that ε and ϕ are each other’s inverses, and therefore they are both isomorphisms. This shows
that H0(X;M) ∼= M .
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1.2 Relative homology

Singular homology also comes with a relative variant. Heuristically, it measures the extent to which the homology
of a topological space X agrees with the homology of a subspace of X. It will be very convenient to consider a
category consisting of such pairs.

Definition 1.24. A pair of topological spaces (X,X ′) consists of a topological space X and a subspace X ′ ⊆ X.
A morphism of pairs f : (X,X ′)→ (Y, Y ′) is a continuous map f : X → Y such that f(X ′) ⊆ Y ′, that is, such
that f restricts to a map X ′ → Y ′. ♦

Notation 1.25. The category of topological pairs is denoted by Top(2). #

Remark 1.26. (†) There are a few standard functors between Top, Top∗ and Top(2) that we will encounter
later on. Therefore we list them here.

Firstly, there is a functor J : Top → Top(2), X 7→ (X,∅), which sends a map f : X → Y to If = f :
(X,∅) → (Y,∅). We see that I is injective on objects and morphisms, and fully faithful, so Top can be
considered as a full subcategory of Top(2). Moreover, it is left adjoint to the forgetful functor Top(2) → Top
that forgets the subspace, which is not difficult to show.

Secondly, there is a fully faithful inclusion Top∗ → Top(2), which is right adjoint to the quotient functor
Q : Top(2) → Top∗, (X,X

′) → (X/X ′, ∗), where the base point of X/X ′ is the equivalence class of the set X ′.
This adjunction is basically a restatement of the universal property of the quotient topology.

Thirdly, note that the forgetful functor Top∗ → Top is right adjoint to the functor ·+ : Top → Top∗, X 7→
X+ := (X t {∗}, ∗), which adds a discrete base point to a space. This is actually a consequence of the adjoint
functors of the previous paragraphs, since X+ = X/∅ for any topological space X. O

Let (X,X ′) be a pair of a topological spaces. We will again follow [23] and generalise the concepts according
to [7]. The inclusion ι : X ′ ↪→ X induces a chain map ι∗ : C•(X

′;M)→ C•(X;M), and from its definition, it is
clear that it consists of inclusions ιn : Cn(X ′;M) ↪→ Cn(X;M) in each degree: this follows from the observation
that any singular n-simplex on X ′ is also a singular n-simplex on X. A consequence of this observation is that
the singular boundary operator belonging to C•(X

′;M) is simply the one belonging to C•(X;M) restricted to
the respective submodules. Example B.28 allows us to construct a short exact sequence of chain complexes

0 C ′•(X;M) C•(X;M) C•(X;M)/C ′•(X;M) 0.
ι∗ π• (1.4)

Definition 1.27. The relative chain complex of a pair of spaces (X,X ′) is defined as C•(X,X
′;M) :=

C•(X;M)/C ′•(X;M). The n-th relative homology module is the n-th homology of the relative chain complex,
that is,

Hn(X,X ′;M) := Hn(C•(X,X
′;M)). ♦

Proposition 1.28. The relative chain complex is a functor C•( · , · ;M) : Top(2) → RChain, and for each n,
relative homology is a functor Hn( · , · ;M) : Top(2)→ RMod.

Proof. As shown in Example B.32, a morphism of pairs f : (X,X ′) → (Y, Y ′) induces a chain map between
relative chain complexes, and a R-module homomorphism between the relative homology modules, from the
explicit description of which both can easily seen to be functorial.

Theorem 1.29. Let (X,X ′) be a pair of topological spaces, and use the notation of (1.4). Then there is a long
exact sequence

. . . H2(X;M) H2(X,X ′;M)

H1(X ′;M) H1(X;M) H1(X,X ′;M)

H0(X ′;M) H0(X;M) H0(X,X ′;M) 0

H2(π)

α2

H1(ι) H1(π)

α1

H0(ι) H0(π)
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Moreover, this sequence is natural in (X,X ′): if f : (X,X ′) → (Y, Y ′) is a morphism of pairs, then there is a
commutative diagram

. . . H1(X;M) H1(X,X ′;M) H0(X ′;M) H0(X;M) H0(X,X ′;M) 0

. . . H1(Y ;M) H1(Y, Y ′;M) H0(Y ′;M) H0(Y ;M) H0(Y, Y ′;M) 0

H1(π)

H1(f)

α1

H1(f̄) H0(f)

H0(ι) H0(π)

H0(f) H0(f̄)

H1(π) α1 H0(ι) H0(π)

Figure 1.1

Proof. This follows directly from Theorem B.29, and Example B.32.

Remark 1.30. The relative homology modules allow us to measure in a way how the homology of a topological
space X relates to the homology of a subspace X ′. Note that it does not generally hold that Hn(X ′;M) is a
submodule of Hn(X;M). We will see later in Corollary 1.35 for instance that the zeroth homology of a space
X with n path connected components is isomorphic to Mn, and a subspace can have more path connected
components than the original space. O

Lemma 1.31. (i) The map Hn(X ′;M) → Hn(X;M) induced by the inclusion is an isomorphism for all
n ≥ 0 if and only if Hn(X,X ′;M) = 0 for all n ≥ 0.

(ii) Let f : (X,X ′) → (Y, Y ′) be a morphism of topological pairs. If two of the maps Hnf : Hn(X ′;M) →
Hn(Y ′;M), Hnf : Hn(X;M) → Hn(Y ;M) and Hnf̄ : Hn(X,X ′;M) → Hn(Y, Y ′;M) are isomorphisms
for all n ≥ 0, then so is the other.

Proof. The first statement follows from Lemma B.10(v), and the second from Figure 1.1 and the Five Lemma
B.13.

Proposition 1.32. (†) Let J : Top → Top(2) be the inclusion functor of Remark 1.26. Then there is an
isomorphism of functors Hn( · , · ;M) ◦ J ∼= Hn( · ;M) for all n. In other words, for any topological space X,
there is for all n an isomorphism Hn(X,∅;M) ∼= Hn(X;M), which is natural in X.

Proof. This is immediate from Theorem 1.29, Example 1.21 and Lemma A.25.

1.3 Properties of singular homology

Now we are ready to delve into some larger properties of singular homology and relative homology. This section
culminates in Definition 1.46 and Theorem 1.47, which summarise the main results, which turn out to be
somewhat characteristic of singular homology.

Definition 1.33. Let X be a topological space. The set of path connected components of X is denoted by
π0(X). ♦

It is no coincidence that the notation is so similar to that of the fundamental group of X (with a base point).
In Definition 4.23 the exact relation is explained.

Proposition 1.34. Let X be a topological space. Index the path connected components of X as π0(X) = {Xα |
α ∈ A}. Then the inclusions Xα ↪→ X induce an isomorphism

⊕
α∈A Hn(Xα;M)

∼−→ Hn(X;M) for all n.
Similarly, Let X =

⊔
α∈AXα be a disjoint union of spaces (not necessarily the path connected components).

Then the inclusions Xα ↪→ X induce an isomorphism
⊕

α∈A Hn(Xα;M)
∼−→ Hn(X;M) for all n.

Proof. [23] We only prove the first statement, since the second one is proved entirely analogously. Since each
n-simplex ∆n is path connected, there is for each singular n-simplex σ : ∆n → X an α ∈ A such that
imσ ⊆ Xα. Therefore, we see that Sn(X) =

⊔
α∈A Sn(Xα). An application of Lemma B.7 now yields an
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isomorphism
⊕

α∈A Cn(Xα M) ∼= Cn(X;M), induced by the inclusions ια : Xα ↪→ X. As mentioned in
Example B.28, each map ια induce a chain map C•(Xα;M) → C•(X;M), and together they induce a chain
map

⊕
α∈A C•(Xα;M) → C•(X;M), which is an isomorphism since it is an isomorphism in each degree (see

Lemma B.23). One can demonstrate that Hn(
⊕

α∈A C•(Xα;M)) ∼=
⊕

α∈A Hn(C•(Xα;M)), so now Proposition
B.26 yields the desired isomorphism.

Corollary 1.35. Let X be a topological space. Then H0(X;M) ∼=
⊕

π0(X)M .

Proof. This is immediate from Proposition 1.34, Proposition 1.23, and Example 1.21 in case X is empty.

We now move on to the most important property of singular homology, for our purposes at least, namely
the homotopy invariance of it. We first need to know what we understand under a homotopy of a map between
pairs of spaces.

Convention 1.36. Unless explicitly stated otherwise, we write I for the unit interval [0, 1] (with inherited
Euclidean topology). �

Definition 1.37. Let f, g : (X,X ′) → (Y, Y ′) be two maps of pairs of topological spaces. Then f and g are
homotopic if there exists a homotopy H : X × I → Y between f and g (that is, H( · , 0) = f and H( · , 1) = g)
such that H(X ′ × I) ⊆ Y ′. ♦

In other words, f : (X,X ′)→ (Y, Y ′) and g : (X,X ′)→ (Y, Y ′) are homotopic if there exists a homotopy H
between f and g that is also a map (X,X ′)→ (Y, Y ′) at each time t ∈ I.

Being homotopic is an equivalence relation between maps of pairs of spaces that respects composition, and
therefore we have also have a homotopy category of pairs of topological spaces.

Notation 1.38. The category of pairs of topological spaces and equivalence classes of homotopic maps between
them is denoted by hTop(2), the homotopy category of topological pairs. #

Theorem 1.39. (Homotopy invariance of singular homology) Let (X,X ′) and (Y, Y ′) be two pairs of
topological spaces, and suppose f, g : (X,X ′) → (Y, Y ′) are homotopic maps. Then Hnf = Hng as maps
Hn(X,X ′;M)→ Hn(Y, Y ′;M) for all n.

Proof. See [20] for a direct proof, and [23] for a more category theoretical proof (which has the preference of
the author). Both proofs can be generalised to work for R-modules as well. The main idea of the latter proof
is that H( · ;M) is a composition

Top sSet RChain RModS Hn

of functors, and in the first three of the above categories there is a notion of homotopy. In case of RChain, it
is a chain homotopy as defined in Definition B.33. By Proposition B.37, it suffices to show that the first two
functors above preserve the particular notion of homotopy in each category, and this is exactly what that proof
does.

We deduce, just like in [20] or [23], the following consequences.

Corollary 1.40. Let X and Y be two topological spaces, and suppose f, g : X → Y are homotopic maps. Then
Hnf = Hng as maps Hn(X;M)→ Hn(Y ;M) for all n.

Proof. A map X → Y is the same as a map (X,∅) → (Y,∅) (cf. Remark 1.26), and a homotopy between
two maps X → Y is the same thing as a homotopy between two maps (X,∅) → (Y,∅). Theorem 1.39 and
Proposition 1.32 then yield the result.

Corollary 1.41. Let f : X → Y be homotopy equivalence of topological spaces. Then Hnf : Hn(X;M) →
Hn(Y ;M) is an isomorphism for each n.

Moreover, if X ′ and Y ′ are subspaces of X and Y respectively such that f restricts to a homotopy equivalence
X ′ → Y ′, then the commutative diagram of long exact sequences of homology in Figure 1.1 has all isomorphisms
as vertical arrows.
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Proof. This is immediate from the previous corollary and Lemma 1.31.

Remark 1.42. The statement of the theorem and corollaries above is equivalent to saying that the singular
homology functors Top → RMod and the relative singular homology functors Top(2) → RMod factor through
the categories hTop (see Example A.4(vi)) and hTop(2), respectively. This means that singular homology cannot
distinguish between objects on the level of homotopy equivalence: it only “sees information up to homotopy
and homotopy equivalence”. O

Corollary 1.43. If X is a contractible space, then

Hn(X;M) ∼=

{
M, if n = 0,

0, otherwise.

One of the most computationally important properties of singular homology is the following theorem. It
allows us to remove a suitable part of our space without affecting the relative homology modules. As a result,
it can considerably simplify certain computations of homology, when used in combination with e.g. the long
exact sequence of singular homology.

Theorem 1.44. (Excision Theorem)Let (X,X ′) be a pair of topological spaces, and suppose Y ⊆ X ′ is a
subspace such that Y ⊆ (X ′)◦. Then the inclusion X \ Y ↪→ X induces for each n an isomorphism Hn(X \
Y,X ′ \ Y ;M)

∼−→ Hn(X,X ′;M).

Proof. The proof is rather involved and technical. In [23] and [11] it is given. The basic idea is that singular
simplices on X can be subdivided into smaller simplices in such a way that the relative homology remains
unchanged. Therefore, we can replace simplices by smaller ones for any finite amount of times. Since a simplex
is quasi-compact in X (as the image of a quasi-compact space), at some point the smaller simplex will either
lie completely in X \ Y or in (X ′)◦. Therefore, each cycle is equivalent to one that does not intersect Y , and
hence the isomorphism in the Excision Theorem follows.

Remark 1.45. [11] Note that the Excision Theorem is equivalent to the following statement:
Let X be a topological space with subspaces A and B such that X = A◦ ∪ B◦. Then the inclusion
(A,A ∩B) ↪→ (X,B) induces an isomorphism Hn(A,A ∩B;M)

∼−→ Hn(X,B;M) for each n.
Namely, given the Excision Theorem, then for X, A and B as above, we can take Y = X \ A, which satisfies
Y = X \A◦ ⊆ B◦, so we can use the Excision Theorem. Noting that X \ Y = A and B \ Y = A ∩B, it tells us
that the inclusion (A,A ∩B) ↪→ (X,B) induces an isomorphism Hn(A,A ∩B;M)

∼−→ Hn(X,B;M) for each n.
Conversely, if Hn( · , · ;M) satisfies the statement above, then for a pair (X,X ′) of topological spaces a

subspace Y ⊆ X ′ satisfying Y ⊆ (X ′)◦, we define A = X\Y and B = X ′. Then A◦ = X\Y ⊇ X\(X ′)◦ = X\B◦,
so A◦ ∪B◦ = X. The given statement then yields the Excision Theorem. O

The key results about singular homology turn out to more or less define singular homology up to natural
isomorphism, or at least on a suitable subcategory of Top, which we will define in Chapter 3. Therefore, they
are known as the Eilenberg-Steenrod axioms for homology. We will come back to this uniqueness statement in
Remark 6.64. For now, let us state these axioms

Definition 1.46. (Eilenberg-Steenrod axioms for homology)[13] A sequence of functors hn( · , · ) : Top(2)→
RMod with n ∈ Z, together with homomorphisms αn,(X,X′) : hn(X,X ′)→ hn−1(X ′,∅) that are natural in the
topological pair (X,X ′), is called a generalised homology theory if it satisfies the following four properties (where
it is understood that hn(X) is to be interpreted as hn(X,∅)):

(i) (Homotopy invariance) Let (X,X ′) and (Y, Y ′) be two pairs of topological spaces, and suppose f, g :
(X,X ′)→ (Y, Y ′) are homotopic maps. Then hnf = hng as maps hn(X,X ′)→ hn(Y, Y ′) for all n.

(ii) (Excision) Let X be a topological space with subspaces A and B such that X = A◦ ∪ B◦. Then the
inclusion (A,A ∩B) ↪→ (X,B) induces an isomorphism hn(A,A ∩B)

∼−→ hn(X,B) for each n.
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(iii) (Long exact sequence) Let (X,X ′) be a pair of topological spaces. Then the inclusions X ′ ↪→ X and
(X,∅)→ (X,X ′) induce a long exact sequence

. . . hn+1(X) hn+1(X,X ′)

hn(X ′) hn(X) hn(X,X ′)

hn−1(X ′) hn−1(X) . . .

αn+1,(X,X′)

αn,(X,X′)

of homology, which is natural in the pair (X,X ′).
(iv) (Sums) Let X =

⊔
α∈AXα be a disjoint union of spaces. Then the inclusions Xα ↪→ X induce an

isomorphism
⊕

α∈A hn(Xα)
∼−→ hn(X) for all n.

The functors hn are called an ordinary homology theory if moreover they satisfy
(v) (Dimension) The homology modules of the one-point space satisfy hn(∗) = 0 for all n 6= 0. ♦

Theorem 1.47. For each R-module M , the sequence of relative singular homology functors Hn( · , · ;M) is an
ordinary homology theory.

This concludes our introduction to singular homology. Of course, with these results we are able to compute
many homology modules, define new concepts and derive more results, but that is not the purpose of this thesis.
In the next chapters, we will introduce singular cohomology and focus on cohomology in general.
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Chapter 2

Singular cohomology

In many ways, the theory of singular cohomology is dual to the theory of singular homology. The basic motivation
is still the same, namely that we are algebraically measuring the amount and size of holes in a topological space,
and our approach is in some sense dual to the one taken with singular homology.

In fact, singular cohomology does not capture more information about a space X than singular homology,
which is shown in Theorem 2.20. It only captures the same information slightly differently. For a start, singular
cohomology is a contravariant functor, which in practice means that many properties of singular homology
have reversed arrows in the case of singular cohomology. Furthermore, singular cohomology actually allows a
multiplicative structure, which gives us more ways to reason with it, and in some cases it allows easier or more
natural arguments. We will however not need this extra structure, but refer to [13] for an exposition.

It are these slightly different and dualised properties of singular cohomology that make the question of
representability a bit more convenient to answer than the case of singular homology.

2.1 Dualising singular homology

Convention 2.1. In this chapter, let R be a principal ideal domain, and M a left R-module. �
The construction of singular cohomology follows the construction of the dual cochain complex in Definition

B.40. We generalise using [7] the construction of singular cohomology given in [13] for abelian groups to R-
modules.

Definition 2.2. Let X be a topological space. The singular cochain complex (with coefficients in M) is defined
as C•(X;M) := HomR(C•(X;R),M). In the case of R = Z, We shorten C•(X;Z) to C•(X). ♦

Notation 2.3. We write ∂∗ for the codifferentials HomR(∂,M) of the singular cochain complex. We also
slightly adapt the indexing for consistency as follows: (∂∗)n = HomR(∂n+1,M). #

Remark 2.4. There is an isomorphism C•(X;M) ∼= HomSet(Sn(X),M) of R-modules (where the right-hand
side carries the structure of an R-module inherited from M). Therefore, we can also see the elements of
C•(X;M) as maps of sets from singular n-simplices to M , rather than as R-linear maps from singular cochains
with coefficients in R to M . The reader might prefer this to get an idea of the meaning of the singular cochain
complex. O

Remark 2.5. Since the singular cochain complex C•( · ;M) is the precomposition of the functor C•( · ;R) :
Top → RChain with the contravariant Hom-functor HomR( · ;M) : RChain

opp → RcChain (see Lemma B.39), it
itself is a functor Topopp → RcChain. O

Explicitly, the singular cochain complex with coefficients in M of a topological space X is the cochain
complex

0 HomR(C0(X;R),M) HomR(C1(X;R),M) HomR(C2(X;R),M) . . .
(∂∗)0 (∂∗)1 (∂∗)2
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Any continuous map f : X → Y of topological spaces induces a map f∗ : C•(Y ;M)→ C•(X;M) by functoriality
of the singular cochain complex. Explicitly, it is given by

(f∗)n : Cn(Y ;M)→ Cn(X;M), ϕ 7→ ϕ ◦ (f∗)n,

where f∗ : C•(X;R)→ C•(Y ;R) is the induced map on the singular chain complexes.

Definition 2.6. Let X be a topological space. The n-th singular cohomology module (with coefficients in M)
Hn(X;M) is defined as the n-th cohomology module of the singular cochain complex C•(X;M), that is,

Hn(X;M) := Hn(C•(X;M)) = ker (∂∗)n/im (∂∗)n−1.

We shorten Hn(X;Z) to Hn(X). ♦

Proposition 2.7. Singular cohomology is a functor Hn( · ;M) : Topopp 7→ RMod.

Corollary 2.8. Let X and Y be topological spaces. If X and Y are homeomorphic, then for each n there is an
isomorphism Hn(X;M) ∼= Hn(Y ;M).

Lemma 2.9. Let X be a topological space. Then Hn(X;M) = 0 for all n < 0.

Remark 2.10. By this functoriality, each continuous map f : X → Y of topological spaces induces a map

f∗ : Hn(Y ;M) ∼= Hn(X;M), [ϕ] 7→ [ϕ ◦ (f∗)n]

on cohomology modules. O

Example 2.11. As we saw in Example 1.22, the singular chain complex C•(∗;R) is isomorphic to the chain
complex

. . . R R R R 0.id 0 id 0

Applying the HomR( · ,M)-functor and using the isomorphism HomR(R(A),M) ∼= MA for all sets A, we find
that C•(∗;M) is isomorphic to the cochain complex

0 M M M M . . .0 id 0 id

The cohomology of this complex is easy to take and gives us Hn(∗;M) = 0 if n ≥ 1 and H0(∗;M) ∼= M .
The empty space ∅ had a trivial singular chain complex C•(∅;R), and hence C•(∅;M) is trivial as well.

Therefore, Hn(∅;M) = 0 for all n. M

For a pair of spaces (X,X ′) we can also define relative singular cohomology, by dualising the relative chain
complex C•(X,X

′;M): we let the relative singular cochain complex be the cochain complex C•(X,X ′;M) :=
HomR(C•(X,X

′;R),M). Of course, we wish to get a long exact sequence of cohomology, so we need the
following proposition.

Proposition 2.12. Let (X,X ′) be a pair of spaces. With the notation as in Equation (1.4), there is a short
exact sequence

0 C•(X,X ′;M) C•(X;M) C•(X ′;M) 0
(π∗)• ι∗ (2.1)

of cochain complexes.

Proof. This follows from exactness of (1.4) and Corollary B.43.

Remark 2.13. Note that this proposition also tells us that it would not have made a difference if we had
mimicked the construction of the relative chain complex and defined the relative cochain complex as the kernel
of the map C•(X;M) → C•(X ′;M) induced by the inclusion X ′ ↪→ X, instead of dualising the relative chain
complex. We can therefore confidently define relative cohomology below. O
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Remark 2.14. The reason why we take R to be a PID in this chapter (see Convention 2.1) is to be able to
apply the Algebraic Universal Coefficient Theorem B.44. Corollary B.43 is a corollary of it, so the result of
the above proposition is not generally true if R is not a PID. Likewise, the Universal Coefficient Theorem 2.20
below requires R to be a PID, for the same reason. O

Remark 2.15. As a continuation of Remark 2.4, note that there is anR-linear isomorphism between C•(X,X ′;M)
and the set of maps of sets Sn(X)→M whose restriction to X ′ is trivial. O

Definition 2.16. Let (X,X ′) be a pair of topological spaces. Their n-th relative cohomology module is defined
as the cohomology of the relative cochain complex. In other words,

Hn(X,X ′;M) := Hn(C•(X,X ′;M)). ♦

Proposition 2.17. For each n, relative cohomology is a functor Hn( · , · ;M) : Top(2)
opp → RMod.

Theorem 2.18. Let (X,X ′) be a pair of topological spaces, and use the notation of (2.1). Then there is a long
exact sequence

0 H0(X,X ′;M) H0(X;M) H0(X ′;M)

H1(X,X ′;M) H1(X;M) H1(X ′;M)

H2(X,X ′;M) H2(X;M) . . .

H0(π) H0(ι)

α∗1

H1(π) H1(ι)

α∗2

H2(π)

Moreover, this sequence is natural in the pair (X,X ′).

Proof. This follows from Proposition 2.12, Theorem B.30, and the statement of Corollary B.31 in case of cochains
and cohomology.

Corollary 2.19. (†) Let J : Top → Top(2), X 7→ (X,∅) be the inclusion functor of Remark 1.26. Then there
is a natural isomorphism Hn( · , · ;M) ◦ J ∼= Hn( · ;M) for all n.

The Eilenberg-Steenrod axioms for singular homology carry over with appropriate dualising to the case of
singular cohomology. However, this dualising is not trivial, and we need some auxiliary results. The following
theorem is a direct consequence of the Algebraic Universal Coefficient Theorem B.44.

Theorem 2.20. (Universal Coefficient Theorem) [7] There is a short exact sequence

0 Ext1
R(Hn−1(X,X ′;R),M) Hn(X,X ′;M) HomR(Hn(X,X ′;R),M) 0,

which is natural in the pair (X,X ′). The sequence is split as well, although not naturally in the pair (X,X ′).

Remark 2.21. The Universal Coefficient Theorem tells us two things at the same time: first, the singular
cohomology of a pair (X,X ′) of spaces can be computed from its singular homology, and hence singular coho-
mology does not capture more information about the pair than singular homology does (as already mentioned
in the beginning of this chapter) [11]. Second, using different coefficients does also not capture more informa-
tion about the pair: the singular cohomology with coefficients in M depends on the pair (X,X ′) only via the
singular homology with coefficients in R. Hence anything that singular homology with coefficients in R cannot
distinguish between is also indistinguishable for singular cohomology with coefficients in M . O

Remark 2.22. On a historical side note, we would like to mention that the Universal Coefficient Theorem
is directly related to the birth of category theory, as its founders, Saunders MacLane and Samuel Eilenberg,
needed a new framework to capture the ideas needed to state and prove the Universal Coefficient Theorem after,
thanks to some good fortune, discovering it [22]. O
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Definition 2.23. (Eilenberg-Steenrod axioms for cohomology) [13] A sequence of functors hn( · , · ) :
Top(2)

opp → RMod with n ∈ Z, together with homomorphisms αn,(X,X′) : hn(X ′,∅) → hn+1(X,X ′) that are
natural in the topological pair (X,X ′), is called a generalised cohomology theory if it satisfies the following four
properties (where it is understood that hn(X) is to be interpreted as hn(X,∅)):

(i) (Homotopy invariance) Let (X,X ′) and (Y, Y ′) be two pairs of topological spaces, and suppose f, g :
(X,X ′)→ (Y, Y ′) are homotopic maps. Then hnf = hng as maps hn(Y, Y ′)→ hn(X,X ′) for all n.

(ii) (Excision) Let X be a topological space with subspaces A and B such that X = A◦ ∪ B◦. Then the
inclusion (A,A ∩B) ↪→ (X,B) induces an isomorphism hn(X,B)

∼−→ hn(A,A ∩B) for each n.
(iii) (Long exact sequence) Let (X,X ′) be a pair of topological spaces. Then the inclusions X ′ ↪→ X and

(X,∅)→ (X,X ′) induce a long exact sequence

. . . hn−1(X) hn−1(X ′)

hn(X,X ′) hn(X) hn(X ′)

hn+1(X,X ′) hn+1(X) . . .

αn−1,(X,X′)

αn,(X,X′)

of cohomology, which is natural in the pair (X,X ′).
(iv) (Products) Let X =

⊔
α∈AXα be a disjoint union of spaces. Then the inclusions Xα ↪→ X induce an

isomorphism hn(X)
∼−→
∏
α∈A hn(Xα) for all n.

The functors hn are called an ordinary cohomology theory if moreover they satisfy
(v) (Dimension) The cohomology modules of the one-point space satisfy hn(∗) = 0 for all n 6= 0. ♦

Remark 2.24. [11] Instead of the excision axiom above, we could have taken the dual statement of the Excision
Theorem 1.44:

(Excision Theorem for singular cohomology) Let (X,X ′) be a pair of topological spaces, and suppose
Y ⊆ X ′ is a subspace such that Y ⊆ (X ′)◦. Then the inclusion X \ Y ↪→ X induces for each n an
isomorphism hn(X,X ′)

∼−→ hn(X \ Y,X ′ \ Y ).
The equivalence between these two axioms is shown exactly as in Remark 1.45. O

Theorem 2.25. For any R-module M , relative singular cohomology is an ordinary cohomology theory.

Proof. [13] The natural isomorphism Hn(X,∅;M) ∼= Hn(X;M) is the content of Corollary 2.19. We will prove
the remaining statements in order for n ≥ 0 (the case of n < 0 is trivial).

(i) As mentioned in the “proof” of Theorem 1.39, the two homotopic maps f and g induce chain homotopic
maps f∗, g∗ : C•(X,X

′;M)→ C•(Y, Y
′;M). Let (hn)n∈Z be a homotopy from f∗ to g∗. It is straightfor-

ward to check that the induced maps between dual cochain modules (h∗n)n∈Z form a cochain homotopy
between f∗ and g∗. Indeed, the chain homotopy identity

(f∗)n − (g∗)n = ∂n+1hn + hn−1∂n

implies
(f∗)n + (g∗)n = (h∗)

n(∂∗)n + (∂∗)n−1(hn−1)∗

(with the adapted indexing of the codifferentials as in Notation 2.3). Proposition B.37 applies to the
cochain case as well and implies that Hnf = Hng.

(ii) The chain complexes C•(X,X
′) and C•(X \ Y,X ′ \ Y ) are free modules on the sets Sn(X) \ Sn(X ′)

and Sn(X \ Y ) \ Sn(X ′ \ Y ), and the Excision Theorem 1.44 implies that the inclusion X \ Y ↪→ X
induces isomorphisms on all homology modules. Then Corollary B.45 yields induced isomorphisms
Hn(X,X ′;M)

∼−→ Hn(X \Y,X ′\Y ;M), and by Remark 2.24, this shows that singular cohomology satisfies
the excision axiom.
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(iii) This is Theorem 2.18.
(iv) By Remark 2.4 and Propositions A.49 and A.50, we have isomorphims of chain complexes

C•(X;M) = C•(
⊔
α∈A

Xα;M) ∼= HomSet(
⊔
α∈A
S•(Xα),M) ∼=

∏
α∈A

HomSet(S•(Xα),M) ∼=
∏
α∈A

C•(Xα;M),

and hence Hn(X;M) ∼=
∏
α∈A Hn(Xα;M).

(v) This is Example 2.11.

Corollary 2.26. If X is a contractible space, then

Hn(X;M) ∼=

{
M, if n = 0,

0, otherwise.

2.2 Reduced singular cohomology

The previous corollary shows that the zeroth singular cohomology module with coefficients in M of any con-
tractible space is isomorphic to M (it measures the amount of path-connected components). Since we like to
think of these spaces as having no holes, it would be nice to be able to adjust the definition of singular cohomol-
ogy slightly in order to make the cohomology of any contractible space trivial in any degree. It also seems to be
attractive for computational reasons (for instance in long exact sequences). There is another important reason
to do this, namely that this allows us to prove representability of singular cohomology more easily. Details of this
will be presented in due time, namely in Sections 6.3 and 6.4. We will devote this section to the adjusting the
construction of singular cohomology slightly to obtain this new cohomology theory. We dualise the construction
of reduced singular homology as given in [23], and generalise again using [7] the construction to R-modules.

LetX be a topological space. The unique continuous mapX → ∗1 induces maps εn : Cn(∗;M)→ Cn(X;M).
Since these form a chain map, we obtain the identity ∂0ε0 = ε1∂

0 = 0, since ∂0 : C0(∗,M) → C1(∗;M) is the
zero map (see Example 2.11). Hence we have a chain complex

0 C0(∗;M) C0(X;M) C1(X;M) C2(X;M) . . .ε ∂0 ∂1

where ε := ε0 is the augmentation map. This chain complex (with Cn(X;M) appearing in degree n) is called

the reduced singular cochain complex, and we denote it by C̃•(X;M).
We have C0(X;M) = HomR(C0(X;R),M) ∼= HomR(R(X),M) ∼= MX , and likewise C0(∗;M) ∼= M , and

the augmentation map ε can be seen to correspond to the diagonal M → MX : m 7→ (m)x∈X under these
isomorphisms. Therefore, it is injective.

Definition 2.27. Let X be a topological space. Its n-th reduced singular cohomology module (with coefficients

in M is defined as H̃n(X;M) := Hn(C̃•(X;M)). ♦

Remark 2.28. For any continuous map f : X → Y of topological spaces, there is an identity (X → ∗) = (Y →
∗) ◦ f . Therefore, there is a commutative diagram

0 C0(∗;M) C0(X;M) C1(X;M) C2(X;M) . . .

0 C0(∗;M) C0(Y ;M) C1(Y ;M) C2(Y ;M) . . .

ε ∂0 ∂1

ε

id

∂0

f∗

∂1

f∗ f∗

(where commutativity of all squares but the left one above follows from f already inducing a cochain map on

the singular cochain complexes) which shows that f : X → Y induces a chain map f̃∗ : C̃•(Y ;M)→ C̃•(X;M).
Since taking cohomology of a cochain complex is a functor as well, this shows reduced cohomology is a functor
Topopp → RMod. O

1If X is empty, there is a set-theoretical map ∅→ ∗, which is vacuously continuous. Although certain statements here will not
make sense for an empty space, the conclusions do.
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Example 2.29. The reduced singular cohomology of the empty space is from its description easily seen to be
trivial for all n except for n = −1, when H̃−1(∅;M) ∼= M . On the other hand, H̃n(∗;M) = 0 for all n, by a
similar computation as in Example 2.11. M

Convention 2.30. Reduced cohomology is, as this example show, more suited for nonempty spaces. To avoid
technicalities and pathetic cases for the empty space, when dealing with reduced singular cohomology we will
always assume the space we plug in is nonempty. �

For any space X, the map X → ∗ to the one-point space also induces a map H0(∗;M) → H0(X;M)
by functoriality of singular cohomology. This gives us functors coker (Hn(∗;M)→ Hn( · ;M)) : Topopp →
RMod, X 7→ coker (Hn(∗;M)→ Hn(X;M)). Indeed, for any continuous map f : X → Y , it holds true that
(X → ∗) = (Y → ∗) ◦ f , so

(Hn(∗;M)→ Hn(X;M)) = Hnf ◦ (Hn(∗;M)→ Hn(Y ;M)) .

This shows that Hnf passes through the quotient coker (Hn(∗;M)→ Hn(Y ;M))→ coker (Hn(∗;M)→ Hn(X;M)),
which establishes coker (Hn(∗;M)→ H0( · ;M)) as a functor. Of course, for n ≥ 1 this equals singular cohomol-
ogy, since Hn(∗;M) = 0 then by Example 2.11. The connection with reduced singular cohomology is now as
given in the following proposition.

Proposition 2.31. There is for each nonzero n a natural isomorphism H̃n( · ;M) ∼= Hn( · ;M) of functors

Top\{∅}opp → RMod. Moreover, there is also a natural isomorphism H̃0( · ;M) ∼= coker
(
H0(∗;M)→ H0( · ;M)

)
of functors Top \ {∅}opp → RMod.

Proof. The only slightly nontrivial case of the first statement is if n = −1. However, the augmentation map
ε is injective as we saw above, so H̃−1( · ;M) ∼= 0 ∼= H−1( · ;M), where 0 denotes the zero functor Topopp →
RMod, X 7→ 0.

For the second statement, note that C0(∗;M) = H0(∗;M) by Example 2.11, and consequently that the
diagram

H0(∗;M) H0(X;M) = ker ∂0

C0(∗;M) C0(X;M)ε

commutes. This means that im ε = im
(
H0(∗;M)→ H0(X;M)

)
as submodules of ker ∂0 ⊆ C0(X;M). Finally,

we find

H̃0(X;M) = ker ∂0/im ε = H0(X;M)/im
(
H0(∗;M)→ H0(X;M)

)
= coker

(
H0(∗;M)→ H0(X;M)

)
,

showing the claim, as naturality is obvious now.

Remark 2.32. Just like in the case of ordinary singular cohomology, for a pair of nonempty topological
spaces (X,X ′) the inclusion induces a cochain map C̃•(X;M) → C̃•(X ′;M). Consequently we can set

C̃•(X,X ′;M) := ker
(
C̃•(X;M)→ C̃•(X ′;M)

)
, which can be seen to be isomorphic to C•(X,X ′;M), since

the module in degree −1 is trivial (here we use Proposition 2.12 to see C•(X,X ′;M) as the kernel of the map

C•(X;M) → C•(X ′;M)). We write the cohomology of this reduced cochain complex as H̃n(X,X ′;M), but

note that H̃n(X,X ′;M) = Hn(X,X ′;M) for all n, so this is more for notational consistency. By Theorem B.30,
therefore, there is a long exact sequence

0 H̃0(X,X ′;M) H̃0(X;M) H̃0(X ′;M) H̃1(X,X ′;M) H̃1(X;M) . . .

of reduced singular cohomology (like there is also one for reduced singular homology [23]), which is natural in
the pair (X,X ′). We again should stress that this sequence fails in case X ′ is the empty space: in that case,
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we must add the nontrivial cohomology at degree −1 at the start of the sequence as first nontrivial module. In
particular, by Example 2.11, there is for any pointed space (X, ∗) an isomorphism Hn(X, ∗;M) ∼= H̃n(X;M),
which is natural in the pointed space (X, ∗). This gives us another description of what reduced singular
cohomology does on (nonempty) spaces. O

Lemma 2.33. (i) Let f, g : X → Y be two homotopic maps between nonempty topological spaces. Then

H̃nf = H̃ng for all n.
(ii) Let f : X → Y be homotopy equivalence of nonempty topological spaces. Then H̃nf : H̃n(Y ;M) →

H̃n(X;M) is an isomorphism for each n.

Moreover, if X ′ and Y ′ are nonempty subspaces of X and Y respectively such that f restricts to a homotopy
equivalence X ′ → Y ′, then the induced map between the natural long exact sequences of reduced singular
cohomology of (X,X ′) and (Y, Y ′) consists entirely of isomorphisms.

(iii) If X is a contractible space, then H̃n(X;M) = 0 for all n.

Proof. This follows from Proposition 2.31 and Theorem 2.25.

The natural isomorphism Hn(X, ∗;M) ∼= H̃n(X;M) derived above has an interesting consequence: for any
pair (X,X ′) of pointed spaces with the same base point (which are consequently both nonempty), it implies
the existence of a long exact sequence

0 H0(X,X ′;M) H0(X, ∗;M) H0(X ′, ∗;M) H1(X,X ′;M) H1(X, ∗;M) . . .

which is also natural in this pair of pointed spaces. This turns out not to be a coincidence, and can even
be generalised a bit: we end this chapter with the so-called long exact sequence of a triplet of spaces. It is a
property of all generalised cohomology theory that they have one, and the proof will be a first example of how
to use the Eilenberg-Steenrod axioms. Of course, we first need to define what a triplet of spaces is, but it will
not be a surprise.

Definition 2.34. A triplet of topological spaces (X,X ′, X ′′) consists of a topological space X and subspaces
X ′′ ⊆ X ′ ⊆ X. A morphism of triplets f : (X,X ′, X ′′)→ (Y, Y ′, Y ′′) is a continuous map f : X → Y such that
f(X ′) ⊆ Y ′ and f(X ′′) ⊆ Y ′′. The category of topological triplets is denoted by Top(3). ♦

Note that any map f : (X,X ′, X ′′) → (Y, Y ′, Y ′′) of triplets can also be seen as three maps of topological
pairs.

Theorem 2.35. (Long exact sequence of cohomology of a triplet) [20] Let (X,X ′, X ′′) be a triplet of
topological spaces and h∗ a generalised cohomology theory. Then the inclusions (X ′, X ′′) ↪→ (X,X ′′) ↪→ (X,X ′)
induce a long exact sequence

. . . hn(X,X ′) hn(X,X ′′) hn(X ′, X ′′) hn+1(X,X ′) . . .

which is natural in the triplet (X,X ′, X ′′).

Proof. (†) We provide the proof that Munkres [20] omitted (as it was an exercise in his book). Let i : X ′ ↪→ X,
i′ : X ′′ ↪→ X and i′′ : X ′′ ↪→ X ′ be the inclusions, let ι : (X,∅) → (X,X ′), ι′ : (X,∅) → (X,X ′′) and
ι′′ : (X ′,∅) → (X ′, X ′′) be the inclusions of pairs, and let j′′ : (X,X ′′) → (X,X ′) be the identity on X and
j : (X ′, X ′′) → (X,X ′′) the inclusion. Denote by α, α′ and α′′ respectively the snake map in the long exact
sequences of cohomology of the pairs (X,X ′), (X,X ′′) and (X ′, X ′′). By naturality of the long exact sequence
of cohomology, j and j′′ induce a commutative diagram

. . . hn(X,X ′) hn(X) hn(X ′) hn+1(X,X ′) . . .

. . . hn(X,X ′′) hn(X) hn(X ′′) hn+1(X,X ′′) . . .

. . . hn(X ′, X ′′) hn(X ′) hn(X ′′) hn+1(X ′, X ′′) . . .

ι∗

j′′∗

i∗

id

α

i′′∗ j′′∗

ι′∗

j∗

i′∗

i∗

α′

id j∗

ι′′∗ i′′∗ α′′
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Hence, the diagram

. . . hn−1(X ′′) hn(X ′, X ′′) hn+1(X,X ′) hn+1(X) . . .

hn−1(X ′) hn(X,X ′′) hn(X ′) hn+1(X,X ′′) . . .

. . . hn(X,X ′) hn(X) hn(X ′′) . . .

α′′

α′ ι′′∗

α◦ι′′∗ ι∗

j′′∗i′′∗

α ι′∗

j∗

i′′∗

α ι′∗

ι∗

j′′∗ i∗

i′∗

α′

is also commutative. Moreover, since the map j′′ ◦ j : (X ′, X ′′) → (X,X ′) equals the composite [(X ′, X ′) →
(X,X ′)] ◦ [(X ′, X ′′)→ (X ′, X ′)] and hn(X ′, X ′) = 0 for all n (by the long exact sequence of the pair (X ′, X ′)),
it follows that j∗ ◦ j′′∗ = 0 as well. Now, repeated application of the Braid Lemma implies that the dashed
sequence is exact, as we wanted to show. Naturality of this sequence follows from commutativity of the diagram

(X ′, X ′′) (X,X ′′) (X,X ′)

(Y ′, Y ′′) (Y, Y ′′) (Y, Y ′)

f f f

for any map f : (X,X ′, X ′′) → (Y, Y ′, Y ′′) of triplets, and from the naturality of the snake maps in the long
exact sequences of pairs.
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Chapter 3

CW-complexes

In this chapter, we will finally introduce the class of topological spaces to which we will mostly restrict our
attention for the rest of this thesis (as promised before Definition 1.46), namely that of the CW-complexes.
These are spaces that are build by taking a few points, and then (in this order) “glue” lines segments, discs,
cubes, etc. to the already existing space. This gluing can be done in all kinds of ways, and it turns out that
many spaces we encounter in practice are in fact CW-complexes, although we will not give many examples of
CW-complexes. The construction of a CW-complex allows us to generalise arguments about (hyper)spheres to
those spaces, and allows inductive arguments over the structure of a space, both of which are especially helpful
in homotopy theory. Together with the fact that most spaces we care about are CW-complexes, this justifies a
separate study of these spaces.

3.1 Pushout diagrams

Recall the definition of a pushout of a diagram

A X

Y

f

g

Figure 3.1

as given in Example A.46, namely as the colimit of the above diagram in Top. We state the definition again for
convenience.

Definition 3.1. Consider the diagram in Figure 3.1. The pushout X ∪A Y is the topological space (X tY )/∼,
where ∼ is the equivalence relation generated by f(a) ∼ g(a) for all a ∈ A. It comes with continuous maps
ιX : X → X t Y → X ∪A Y and ιY : Y → X t Y → X ∪A Y , where the last arrow is the projection belonging
to the quotient space. ♦

Remark 3.2. Although we do not notate the maps f and g in the pushout, it of course does depend on these
maps as well, and not only on the spaces A, X and Y . O

Remark 3.3. The construction of a pushout can be visualised as follows: given two spaces X and Y , we take
their disjoint union, and then glue two points x ∈ X and y ∈ Y together if there is an a ∈ A such that f(a) = x
and g(a) = y. If we picture A as its image in X and Y , we glue those respective images together (of course, if f
and g are not injective, we cannot make such an identification, but this image might help to understand what
we are doing). O
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The fact that the pushout is a colimit of course means it satisfies and is characterised by a universal property,
and looking at Figure 3.1, we see that it is the following.

Proposition 3.4. [22] For every commutative diagram

A X

Y X ∪A Y

Z

f

g ιX

ιY

∃!h

of topological spaces and continuous maps, there exists a unique map h : X∪AY → Z making the above diagram
commutative. We sometimes write this map as f ∪A g.

If there is a space Z such that there is a commutative diagram

A X

Y Z

f

g

satisfying this universal property, we say the above diagram is a pushout square [22]. It then immediately follows
that there is a homeomorphism from Z to X ∪A Y which identifies the maps X → Z and Y → Z above with
ιX and ιY , respectively.

Remark 3.5. For a diagram as in Figure 3.1 but now of pointed topological spaces, the pushout still exists and
is formed by equipping the non-pointed pushout X ∪A Y with the canonical base point [∗], which equals the
images ιX(∗) and ιY (∗) of the base points of X and Y , since all the maps in the pushout diagram are pointed
now.

The basic theory of pushouts of pointed topological spaces is therefore entirely similar to the non-pointed
case, and we only need to add a base point and the word “pointed” on appropriate places. O

Lemma 3.6. Let X be a topological space, and suppose A,B are two closed or two open subspaces of X. Then
A ∪A∩B B ∼= A ∪B via a homeomorphism that identifies ιA : A→ A ∪A∩B B and ιB : B → A ∪A∩B B with the
inclusions A ↪→ A ∪B and B ↪→ A ∪B.

Proof. [23] Let Z be an arbitrary topological space, and suppose we are given two continuous maps f : A→ Z
and g : B → Z such that f |A∩B = g|A∩B . The pasting or gluing lemma from point-set topology tells us that the
unique map A∪B → Z that restricts to f and g on A and B, respectively, is continuous as well. Therefore, A∪B
satisfies the universal property of the pushout, and is hence homeomorphic to A∪A∩B B via a homeomorphism
that identifies ιA and ιB with the inclusions A ↪→ A ∪B and B ↪→ A ∪B.

Remark 3.7. By the universal property of the pushout, any two continuous maps X → Z and Y → Z that
agree on (the images of) A can be glued uniquely to a map X ∪A Y → Z. A natural question is if the same
holds for homotopies. The answer turns out to be affirmative, as explain in [23]. We present a more category
theoretical argument here.

(†) Given continuous mapsX
f←− A g−→ Y , we ask if for every two homotopies F : X×I → Z andG : Y×I → Z

fitting in the commutative diagram
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A× I X × I

Y × I (X ∪A Y )× I

Z

f×id

g×id ιX×id
F

ιY ×id

G

Figure 3.2

there is a unique map (X∪AY )×I → Z making the diagram commute still. We will use the result of Proposition
6.4 (whose proof is independent of our usage of it here) that −× I is a left adjoint functor Top→ Top, since I
is a locally compact space. By Theorem A.51 then, it commutes with colimits, so

A× I X × I

Y × I (X ∪A Y )× I

f×id

g×id ιX×id

ιY ×id

is a pushout square (note that the morphisms are also the ones induced by the functor − × I). Therefore,
(X ∪A Y ) × I satisfies the universal property of the pushout and there is a homeomorphism (X ∪A Y ) × I ∼=
X × I ∪A×I Y × I. Therefore, the dashed line morphism in Figure 3.2 does indeed exist, and is unique. In other
words, the pushout also glues homotopies that agree on A× I. O

Lemma 3.8. Consider the pushouts

A X

Y X ∪A Y

f

g ιX

ιY

and

B Z

Y Y ∪B Z

h

k

iZ

iY

and

A X

Y ∪B Z X ∪A (Y ∪B Z)

f

iY ◦g jX

jY

of topological spaces. Then

B X ∪A Y

Z X ∪A (Y ∪B Z)

ιY ◦h

k jX∪A(jY ◦iY )

jY ◦iZ

Figure 3.3

is a pushout square. In particular, there is a homeomorphism (X ∪A Y ) ∪B Z ∼= X ∪A (Y ∪B Z).

Proof. (Proposed by drs. J. Becerra) This will follow from a more general assertion in category theory that if
the left and right square in a commutative diagram

A B E

C D F
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are pushout squares in a certain category C, then so is the outer rectangle. In fact, this is fairly obvious: given
a commutative diagram

A B E

C D F

G

of solid arrows, then the dashed morphism D → G exists since the left square is a pushout square, and then the
dotted morphism F → G exists since the right square is a pushout square. This shows that the outer rectangle
is also a pushout square.

Now, returning to the statement of the lemma, first note that jX ◦f = jY ◦iY ◦g by the third pushout square,
so the map jX ∪A (jY ◦ iY ) does indeed exist. Therefore (jX ∪A (jY ◦ iY )) ◦ ιY ◦ h = jY ◦ iY ◦ h = jY ◦ iZ ◦ k,
so Figure 3.3 does commute. We obtain a commutative diagram

B Y X ∪A Y

Z Y ∪B Z X ∪A (Y ∪B Z))

h

k

ιY

iY jX∪A(jY ◦iY )

iZ jY

that consists of a left and right pushout squares. By our observation above, Figure 3.3 is a pushout square.

3.2 Construction of CW-complexes

What we are interested in is gluing n-dimensional disks Dn = {x ∈ Rn | ‖x‖ ≤ 1} to a given space along
their boundaries ∂Dn = Sn−1. If we let i : ∂Dn → Dn denote the inclusion, we can for any continuous map
f : ∂Dn → Y form the pushout X ∪∂Dn Dn. More generally, we can glue any number of n-dimensional discs to
X as we want.

Definition 3.9. [19] Suppose X → Y is a continuous map, J is a set (which we equip with the discrete topology)
and f : J × ∂Dn → X is a continuous map. If there is a pushout square

J × ∂Dn X

J ×Dn Y

f

idJ×i

we say that Y arises from X by attaching n-cells along f . We call f the attaching map. ♦

Note that by putting the discrete topology on J , we have guaranteed that a map f : J × ∂Dn → X is
continuous if and only if for each j the restriction f |{j}×∂Dn is continuous. Together with Lemma 3.8, this
implies that there is no difference between attaching a set of n-cells to X all at once or one at a time.

Remark 3.10. A discrete topological space J of course canonically satisfies J × ∂Dn ∼=
⊔
j∈J ∂D

n. This
identification with the disjoint union might help with visualising the process of attaching n-cells. O

Definition 3.11. [19] Let a topological space A be given. A CW-complex relative to A consists of a topological
space X together with subspaces A = X−1 ⊆ X0 ⊆ X1 ⊆ . . . satisfying:

(i) For each n ≥ 0, Xn arises from Xn−1 by attaching (possibly zero) n-cells.

(ii) X is the colimit of the diagram A = X−1 X0 X1 X2 . . . ♦
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Notation 3.12. We often omit the subspaces Xn in our notation, and simply call X a CW-complex relative
to A. We also tend to call this “a relative CW-complex (X,A)”. #

Remark 3.13. The fact that X = colimnXn can be translated as saying that X =
⋃∞
n=−1Xn and that X

carries the so-called weak topology : a set S ⊆ X is open if and only if S ∩Xn is open for all n ≥ −1. Indeed, as
we saw in Example A.53, the colimit of the above diagram has

⋃
nXn as underlying set by Proposition A.48,

and is equipped with the final topology with respect to the maps of sets ιn : Xn ↪→ X. The condition that a
set S ⊆ X is open if and only if S ∩Xn is open for all n ≥ −1 is just a different way of saying that X carries
this very same final topology with respect to the inclusions ιn : Xn ↪→ X. O

Corollary 3.14. Let X be a CW-complex relative to A. Then a map f : X → Y of topological spaces is
continuous if and only if each restriction f |Xn : Xn → Y is continuous.

Definition 3.15. Let X be a CW-complex relative to A. Then:
(i) We call the subspace Xn the n-skeleton of X.

(ii) (X,A) is finite-dimensional if there is an n such that X = Xn.
(iii) (X,A) is finite if it is finite dimensional and at each step, we only attach finitely many n-cells.
(iv) X is called an absolute CW-complex if A = ∅. ♦

Convention 3.16. When we talk about a CW-complex X without mentioning any space to which it is relative,
it is understood that X is an absolute CW-complex. �

Remark 3.17. Milnor [18] showed that any topological manifold is homotopy equivalent to a CW-complex.
Any compact smooth manifold allows even a CW-structure itself, as shown in [21]. Any topological graph is
also a CW-complex. Therefore, almost all spaces we encounter in practice are at least homotopy equivalent to
a CW-complex, with many actually being CW-complexes. O

Definition 3.18. [20] Let (X,A) be a relative CW-complex. A subcomplex of (X,A) is a relative CW-complex
(X ′, A), where X ′ ⊆ X is a closed subspace of X that is a union of cells of X. ♦

Notice that we do not require a subcomplex to contain n-cells of any degree except −1. Note also that it
depends on the cell structure whether or not a space is a subcomplex of another space. For instance, S0 is a
CW-complex consisting of two 0-cells, and we can realise S1 as a CW-complex consisting of one 0-cell with one
1-cell attached to it. In this case, S0 is a subspace of S1, but not a subcomplex.

Remark 3.19. There are two standard choices of CW-structure on the n-spheres. Firstly, we can realise S0 as
two 0-cells, and Sn as a single n-cell attached to a single 0-cell. Secondly, we can let S0 consist of two 0-cells,
and if we have defined the structure on Sn, then we can form Sn+1 by attaching two (n+ 1)-cells to Sn using
the identity ∂Dn+1 → Sn as attaching maps. In this case Sn is a subcomplex of Sm for all n < m. It depends
on the situation which structure is more convenient to use. O

Definition 3.20. A CW-pair (X,X ′) is a topological pair with X a CW-complex and X ′ ⊆ X a subcomplex
of X. ♦

A CW-pair is also a relative CW-complex, since a CW-complex X can be build from a subcomplex X ′ by
attaching all the cells which are not yet in X ′.

Convention 3.21. We will always assume that a base point of a CW-complex is a 0-cell of it. �

We can actually always refine the CW-structure of a CW-complex X in such a way that an arbitrary point
x ∈ X becomes a 0-cell.

Notation 3.22. The category of CW-complexes and continuous maps between them is written as CW. The
category of pointed CW-complexes is denoted by CW∗, and the category of CW-pairs by CW(2), seen as full
subcategories of Top∗ and Top(2), respectively. #

Definition 3.23. Let (X,A) and (Y,B) be two relative CW-complexes. A continuous map f : X → Y is
cellular if f(Xn) ⊆ Yn for all n ≥ −1. ♦
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Remark 3.24. Instead of letting the category of CW-complexes be the full subcategory of Top, it seems it
would have been more natural to take only the cellular maps as morphisms, since we tend to pick structure
preserving maps as morphisms in categories. However, this would require us include for each topological space
the multiple copies of it, but with different CW-structures, as objects in the category. We do not want this:
objects in CW are just topological spaces that admit a CW-structure (and in arguments we will often implicitly
take a particular CW-structure). However, we will see later that for our purposes the choice does not matter that
much: by the Cellular Approximation Theorem 4.40 any continuous map f : X → Y between CW-complexes
is homotopic to a cellular map. We are in this thesis only concerned with properties that are conserved under
homotopy, so we can almost always immediately take a map between CW-complexes to be cellular. O

Now we turn to some point-set topological properties of CW-complexes and cells attachments. Since our
main interest lies with cohomology and homotopy theory, we omit the proofs of most statements, and instead
refer to [19], or equivalently [23] for them.

Proposition 3.25. Let X be an arbitrary topological space, and J a set. Let q : Xt(J×Dn)→ X∪J×∂Dn J×D
n

be the quotient map belonging to the attachment of n-cells.
(i) The image q(X) is closed in X ∪J×∂Dn J ×Dn, and q gives an embedding X → X ∪J×∂Dn J ×Dn.

(ii) The image q(J×(Dn)◦) is open in X∪J×∂Dn J×D
n, and q gives an embedding J×(Dn)◦ → X∪J×∂Dn J×D

n.
(iii) Suppose for every j ∈ J we are given an open subset Vj ⊆ {j} × Dn with {j} × ∂Dn ⊆ Vj. Then

X ∪
⋃
j∈J q(Vj) is open in X ∪J×∂Dn 1J ×Dn.

Proposition 3.26. If X is Hausdorff, so is X ∪J×∂Dn J ×Dn.

Corollary 3.27. Let (X,A) be a relative CW-complex. If A is Hausdorff, then X is as well.

Corollary 3.28. If X is compact and J is finite, then X ∪J×∂Dn J ×Dn is compact as well.

Corollary 3.29. If (X,A) is a finite relative CW-complex and A is compact, then X is compact.

Lemma 3.30. Any CW-complex X is locally path-connected. Consequently, X is path-connected if and only if
it is connected.

There is no guarantee that standard operations on topological spaces behave nicely when we apply them to
relative CW-complexes, in the sense that the result will in that case again be a relative CW-complex. One of
the most important operations for which a complication arises is the product of two spaces: naively, the product
of two relative CW-complexes (X,A) and (Y,B) seems to be the space (X ×Y,A×B), which has a natural cell
structure with the cells being the products of single cells of X and Y . However, the topologies do not match:
for (X × Y,A×B) to be a relative CW-complex, we need a stronger topology than the product topology.

Write X̂ = A
⊔∞
n=1 Jn × Dn and Ŷ = B

⊔∞
n=1 J

′
n × Dn, where we shortened the notation of the disjoint

unions a bit. Then there are quotient maps q : X̂ → X and q′ : Ŷ → Y .

Definition 3.31. The CW-product of relative CW-complexes (X,A) and (Y,B) is the pair of sets (X×Y,A×B)
with n-skeleton (X × Y )n =

⋃
i+j=nXi × Yj , and equipped with the final topology with respect to the product

map q × q′ : X̂ × Ŷ → X × Y . ♦

The last part of the definition guarantees that the CW-product actually arises from A×B by attaching the
cells in the mentioned n-skeletons. This is not a trivial statement and of course needs a proof, but we will not
give that here. The reader is instead referred to [23].

Convention 3.32. Whenever we consider the product of two (relative) CW-complexes, it is understood that
we are taking the CW-product of these spaces. �

It does happen that this finer topology coincides with the product topology.

Proposition 3.33. Let (X,A) and (Y,B) be two relative CW-complexes, and suppose Y is locally compact.
Then the topology on the CW-product (X × Y,A×B) coincides with the product topology on it.
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Proof. This is shown in [23].

Corollary 3.34. If (X,A) and (Y,B) are relative CW-complexes, (Y,B) is finite and B is compact, then the
topology on the CW-product (X × Y,A×B) coincides with the product topology on it.

Proof. This follows from Corollary 3.29 and the previous corollary.

However, many other constructions do behave nice with respect to (absolute) CW-copmlexes. We have the
following important result about pushouts of CW-complexes, which has numerous useful applications.

Proposition 3.35. Suppose X and Y are CW-complexes, and A is a subcomplex of X. If f : A → Y is a
cellular map, then the pushout X ∪A Y is a CW-complex as well. Moreover, Y is a subcomplex of X ∪A Y .

Proof. The proof can be found in [9].

Corollary 3.36. Let X be a CW-complex and A be a subcomplex. Then X/A is also a CW-complex.

Proof. X/A is the pushout of the diagram X ←↩ A→ ∗, and the map A→ ∗ is of course cellular.

Note that the preferred base point of a quotient CW-complex X/A is a 0-cell of it. Therefore, it is a pointed
CW-complex, in line with Convention 3.21.

3.3 Cones, suspensions, mapping cones and mapping cylinders

There are a few useful constructions of topological spaces which we will often use in the remainder of this thesis.
Then it will be clear why these constructions are interesting with respect to our topic. In short, they either
behave well in homotopy theory or reflect certain homotopy information of a certain space or map between
spaces. We follow [11] and [13] in all the definitions to come in this section.

Definition 3.37. Let (Xα, ∗α)α∈A be a family of pointed topological spaces. Their wedge sum is the pointed
topological space

∨
α∈AXα :=

⊔
α∈AXα/{∗α | α ∈ A}. ♦

Remark 3.38. The wedge sum comes with canonical inclusions ια : Xα ↪→
∨
α∈AXα, which establish the

wedge sum as the coproduct in Top∗. O

Remark 3.39. In Remark 3.5, we described the pointed pushout of a given diagram X
f←− A

g−→ Y of pointed
spaces and maps. We can see this pushout equals (X ∨ Y )/∼, with ∼ again the equivalence relation generated
by f(a) ∼ g(a) for all a ∈ A. O

We can identify X ∨ Y with (X × {∗}) ∪ ({∗} × Y ) and consider X ∨ Y as a subspace of X × Y . We can
then make the following definition.

Definition 3.40. Let (X, ∗) and (Y, ∗) be two pointed topological spaces. Their smash product is the pointed
topological space X ∧ Y := X × Y/X ∨ Y . ♦

The smash product fits in a pushout square

X ∨ Y X × Y

∗ X ∧ Y

in Top∗, and the smash product is a functorial construction Top∗×Top∗ → Top∗: if f : X → X ′ and g : Y → Y ′

are pointed maps of spaces, then the induced map X ∨ Y → X ′ ∨ Y ′ equals the restriction of the induced map
X × Y → X ′ × Y ′, so there is an induced map X ∧ Y = X × Y/X ∨ Y → X ′ × Y ′/X ′ ∨ Y ′ = X ′ ∧ Y ′.
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Lemma 3.41. (i) Let X and Y be pointed topological spaces. Then X ∧ Y ∼= Y ∧X naturally in both X and
Y .

(ii) Let X, Y and Z be pointed topological spaces. Then (X ∧ Y ) ∧ Z ∼= X ∧ (Y ∧ Z) naturally in all three
spaces.

Proof. The first statement is obvious from the definition. For the second, the interested reader may consider it
an exercise in quotient spaces to show that

(X ∧ Y ) ∧ Z ∼= X × Y × Z/(X × Y ∪X × Z ∪ Y × Z),

naturally in all three spaces, where we identify X×Y with X×Y ×{∗}, and similarly for the other two subspaces
appearing on the right. This yields the second statement.

Definition 3.42. Let X be a topological space. Then the unreduced cone over X is defined as the space
CuX = X × I/(X × {1}). We consider X as a subspace of CuX by identifying it with (the image of) X × {0}
in the quotient space.

Now suppose (X, ∗) is a pointed space. The (reduced) cone over X is the pointed space CX = CuX/({∗}×I)
with the equivalence class of ∗ as base point. We again consider (X, ∗) as a pointed subspace of CX by identifying
it with the image of X × {0} in the quotient space. ♦

Definition 3.43. Let X be a topological space. Then the unreduced suspension over X is the space SX
obtained from the space X × [−1, 1] by collapsing separately the subspaces X × {−1} and X × {1} to a point.
We consider X as a subspace of SX by identifying it with (the image of) X × {0} in the quotient space.

Now suppose (X, ∗) is a pointed space. The (reduced) suspension over X is the pointed space ΣX =
SX/({∗}× [−1, 1]) with the equivalence class of ∗ as base point. We again consider (X, ∗) as a pointed subspace
of ΣX by identifying it with the image of X × {0} in the quotient space. ♦

Definition 3.44. Let f : X → Y be a continuous map. The mapping cylinder is defined as the pushout
Mf = X × I ∪X×{1} Y , in other words, the space making

X × {1} Y

X × I Mf

f

a pushout diagram. If f , X and Y are pointed, then the reduced mapping cylinder is the quotient mf =
Mf/({∗} × I), where ∗ denotes the base point of X.

We consider X and Y as subspaces of Mf and mf by identifying them with the images of X × {0} and Y
in the quotients Mf and mf , respectively. ♦

Definition 3.45. Let f : X → Y be a pointed continuous map. The mapping cone is the pointed pushout
Cf = CX ∪X Y , in other words, the space making

X Y

CX Cf

x 7→[(x,0)]

f

a pushout diagram. The unreduced mapping cone is the pushout Cuf = CuX ∪X Y . ♦

Remark 3.46. Let X be a pointed topological space. Then there are homeomorphisms CuX ∼= X+ ∧ I,
CX ∼= X ∧ I, and ΣX ∼= X ∧ S1, where ·+ is the base point adding functor of Remark 1.26 and where we take
1 as the base point of I. O

Lemma 3.47. [11] Let X be a pointed topological space, and f : X → Y a continuous map. Then
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(i) CuX and CX are contractible.
(ii) SX ∼= CuX ∪X CuX = Cuiu where iu : X ↪→ CuX is the inclusion, and ΣX ∼= CX ∪X CX = Ci, where

i : X → CX is the inclusion.
(iii) Cuf ∼= Mf/(X × {0}), and Cf ∼= mf/(X × {0}).
(iv) Y is a deformation retract of both Mf and mf .

Proof. (i) is obvious, and (ii) follows from Lemma 3.6. (iii) is obvious as soon as we realise we could also have
defined Mf = X × I ∪X×{0} Y and the reduced statement follows similarly. For (iv), note that the homotopies
(X × I) × I → X × {1}, ((x, s), t) 7→ (x, (1 − t)s + t) and Y × I → Y, (y, t) 7→ y induce by inclusion in the
disjoint union (X × I) t Y and taking the quotient homotopies F : (X × I) × I → Mf and G : Y × I → Mf .
They satisfy G(f(x), t) = [f(x)] = [(x, 1)] = F ((x, 1), t) for all x ∈ X and t ∈ I, so by Remark 3.7 there is a
homotopy H : Mf × I →Mf that glues F and G. By the description of F and G, H is seen to be a homotopy
between the identity on Mf and a retract Mf → Y ⊆Mf that is stationary on Y at all times. Therefore, Y is
a deformation retract of Mf . The same homotopies F and G also induce similarly the deformation of mf on
Y .

Remark 3.48. The last statement of this lemma implies that any continuous map f : X → Y factors through
a closed inclusion X → Mf and a homotopy equivalence Mf → Y , and a similar story holds for pointed
continuous maps. Therefore, when working up to homotopy we can safely assume that every pointed or non-
pointed continuous map is a pointed or non-pointed closed inclusion. O

Remark 3.49. (†) All the above constructions are functorial:
(i) The unreduced cone is a functor Cu : Top → Top that sends a morphism f : X → Y to the morphism

Cuf : CuX → CuY, [(x, t)] 7→ [(f(x), t)].
(ii) The (reduced) cone is a functor C : Top∗ → Top∗ which acts the same as the above functor on morphisms.

Continuity of this induced map follows from the pointedness assumption the morphisms now have and the
universal property of the quotient topology.

(iii) The unreduced and reduced suspensions are functors S : Top → Top and Σ : Top∗ → Top∗, respectively,
that act similarly to the cone functors above on morphisms. In fact, the homeomorphisms in Lemma
3.47(ii) can even be seen to be natural isomorphisms of functors (the pushout is also a functor from a
category of diagrams (see Example A.23)).

(iv) The mapping cylinder is a functor from the category of diagrams of shape • → • of topological spaces to
the category Top. It sends a commutative square

X Y

X ′ Y ′

f

ϕ ψ

f ′

to the morphism Mf →Mf ′ induced by the maps ϕ× id : X × I → X ′× I and ψ : Y → Y ′. Similarly the
functoriality of the reduced mapping cylinder is established.

(v) The mapping cone is a functor from the category of diagrams • → • of pointed topological spaces to the
category Top∗. It sends a commutative square

X Y

X ′ Y ′

f

ϕ ψ

f ′

of pointed spaces and morphisms to the pointed morphism Cf → Cf ′ induced by the maps C(ϕ) : CX →
CX ′ and ψ : Y → Y ′. The unreduced mapping cone is a functor in the same way by replacing pointed
spaces and morphisms by regular ones.

All the homeomorphisms in Remark 3.46 are natural, and the right hand sides could have been taken as definition
instead (and will be used when convenient). O
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When working with CW-complexes, the definitions of the smash product, cones, suspensions, mapping
cylinders and mapping cones need to be modified slightly: the continuous maps f mentioned in the definition
of the mapping cylinder and mapping cone must be cellular, and every time a product of two spaces occurs,
it has to be mentioned that it is the CW-product, and the resulting space therefore does not necessarily carry
the product topology. Now, by Corollary 3.34, the latter actually does not change the definitions of anything
other than the smash product, and even the smash product remains unchanged if one of its terms is a locally
compact CW-complex. Using Proposition 3.35, Corollary 3.36 and 3.46, we obtain the following results:

Lemma 3.50. (i) If (Xα)α∈A is a family of pointed CW-complexes, then
∨
α∈AXα is a pointed CW-complex,

which contains all the Xα as subcomplexes.
(ii) If X and Y are pointed CW-complexes, then X ∧ Y is a pointed CW-complex as well.

(iii) If X is an non-pointed resp. pointed CW-complex, then CuX and SX resp. CX and ΣX are non-pointed
resp. pointed CW-complexes, which contain X as subcomplex.

(iv) If f : X → Y is a cellular map between non-pointed resp. pointed CW-complexes, then Cuf and Mf resp.
Cf and mf are non-pointed resp. pointed CW-complexes as well. Moreover, Y is a subcomplex of all of
them, and X is a subcomplex of Mf and mf (whichever is appropriate).
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Chapter 4

Homotopy theory of CW-complexes

After having defined what CW-complexes are in the previous chapter, we will now study these spaces from a
homotopy theoretical perspective. We will encounter various examples in which the CW-structure of a space
allows inductive arguments for results that were first shown to hold for spheres, illustrating the usefulness of
the definition of a CW-complex. Next to the important theorems that will be key in later chapters, we will also
introduce the higher homotopy groups of a topological space, that are not only needed to state and prove the
former results, but are also a central element in algebraic topology and homotopy theory: loosely stated, they
describe how many different ways (up to homotopy) there are to map spheres of a certain dimension into your
space, and are as such higher-dimensional analogues of the fundamental group.

4.1 The homotopy extension property

We begin by introducing some notation. Recall Definition 1.37 of a homotopy between maps of pairs of topo-
logical spaces. Since a pointed space is also a pair of spaces, we also know what it means for two pointed maps
to be pointedly homotopic: for two pointed maps f, g : (X, ∗) → (Y, ∗)), a pointed homotopy from f to g is
a homotopy H : X × I → Y such that H(∗, t) = ∗ for all t ∈ I. Note that this is the same as giving a map

H̃ : X ∧ I+ → Y (with ·+ the base-point adding functor of Remark 1.26) such that H̃([x, 0]) = f(x) and

H̃([x, 1]) = g(x).
All in all, we get a homotopy category of pointed topological spaces, which is a full subcategory of hTop(2).

Notation 4.1. The homotopy category of pointed spaces is denoted by hTop∗. #

Notation 4.2. For the rest of this thesis, we let [ · , · ] denote the Hom-functor hTopopp × hTop → Set, and
[ · , · ]• the Hom-functor hTopopp

∗ × hTop∗ → Set. #

In other words, for any two topological spaces X and Y , [X,Y ] denotes the set of equivalence classes of
homotopic maps X → Y , and for two pointed spaces (X, ∗) and (Y, ∗), [X,Y ]• (we often omit the base point
in this notation) denotes the set of equivalence classes of homotopic pointed maps (X, ∗) → (Y, ∗). The latter
set has a natural choice of base point, namely the constant map that maps X entirely to the base point of Y .
It is immediate that any induced map between these Hom-sets preserves this preferred element. Hence [ · , · ]•
is a functor to the category Set∗ of pointed sets, rather than just ordinary ones.

The reader might already be familiar with homotopies relative to a certain subspace. It is indeed likely to
have been covered in any introductory course in topology, but since the amount of different types of homotopies
make it pleasant to be able to reread definitions, we present it again.

Definition 4.3. Let f, g : (X,X ′) → (Y, Y ′) be two maps of pairs of spaces that agree on X ′. A homotopy
between f and g relative to X ′ is a homotopy H : X × I → Y from f to g such that H(x′, t) = f(x′)(= g(x′))
for all x′ ∈ X ′ and t ∈ I. ♦
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As such, a homotopy relative to a subspace is a special case of a homotopy of a map of pairs, but clearly a
much stronger requirement on a homotopy of maps. A pointed homotopy is one example of both a homotopy
of pairs and a homotopy relative to the base point.

Related to this is a special type of homotopy equivalences that are of interest to us, namely the ones the
ones that also restrict to the identity on a certain subspace. A deformation retract is an example of this. It will
be convenient to have a notation for this.

Notation 4.4. Let (X,A) and (Y,B) be two topological pairs. If there is a homotopy equivalence X ' Y via
maps f : X → Y and g : Y → X that restrict to mutually inverse homeomorphisms A

∼−→ B and B
∼−→ A,

respectively, and via homotopies gf ' idX and fg ' idY that are constant on A and B, respectively, then we
write X ' Y relA, and say that X and Y are homotopy equivalent relative to A (and then they are of course
also homotopy equivalent relative to B). #

With these notational matters out of the way, we can start with the actual content of this section, which all
revolves around the following idea.

Definition 4.5. [23] Let (X,X ′) be a pair of topological spaces. It is said to have the homotopy extension
property (HEP) if for any topological space Z and any continuous map f : X → Z, any homotopy H : X ′×I → Z
from the restriction f |X′ of f can be extended to a homotopy H̃ : Y × I → Z from f . ♦

In other words, a pair (X,X ′) has the HEP if for every commutative diagram

X ′ X

X ′ × I X × I

Z

ι

x′ 7→(x′,0)

f

x 7→(x,0)

ι×id

H
H̃

there is a homotopy H̃ : X × I → Z such that the resulting diagram is also commutative.

Remark 4.6. [19] We can rephrase this definition for X ′ closed in X once again by saying that the pair (X,X ′)
has the HEP if every map H : (X ′ × I) ∪X′ X → Z factors through the map (ι × id) ∪X′ (x 7→ (x, 0)) :
(X ′ × I) ∪X′ X → X × I, as illustrated in the following diagram:

(X ′ × I) ∪X′ X Z

X × I

H

(ι×id)∪X′ (x 7→(x,0))

By Lemma 3.6, (X ′ × I)∪X′ X ∼= (X ′ × I)∪ (X × {0}) ⊆ X × I (and this uses that X ′ is assumed to be closed
in X now), so we finally end up with a pair (X,X ′) having the HEP if and only if for every diagram

(X ′ × I) ∪ (X × {0}) Z

X × I

H

there is an arrow making the diagram commutative. O

The importance of a pair of spaces having the HEP lies for instance in the following results.

Proposition 4.7. Let (X,A) and (Y,B) be two topological pairs with the HEP, and suppose f : X → Y is a
homotopy equivalence that restricts to a homeomorphism A

∼−→ B. Then X ' Y relA via f .
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Proof. The proof is a bit long, and can be found in [11].

Corollary 4.8. Suppose X and Y are two pointed spaces with the HEP with respect to that base point. If
f : X → Y is a pointed map that is also a (not necessarily pointed) homotopy equivalence, then f is a pointed
homotopy equivalence.

Proposition 4.9. Suppose the topological pair (X,X ′) satisfies the HEP and X ′ is contractible. Then the
quotient map q : X → X/X ′ is a homotopy equivalence. In particular, if (X,X ′, ∗) is a topological triplet and
X ′ is contractible, then the quotient map q : X → X/X ′ is a pointed homotopy equivalence.

Proof. [11] Let H : X ′×I → X be a contraction of X ′ onto a point in X ′, and consider the identity idX : X → X.

Since (X,X ′) has the HEP, there exists a homotopy H̃ : X × I → X extending both idX and H. Write H̃t

for the continuous map X → X : x 7→ H̃(x, t). Because H̃t(X
′) ⊆ X ′ for each t ∈ I, there exist maps

h̃t : X/X ′ → X/X ′ such that qH̃t = h̃tq, and these maps h̃t also constitute to a homotopy h̃ : X/X ′×I → X/X ′.

Moreover, H̃1(X ′) equals a single point, so there is a map f : X/X ′ → X such that fq = H̃1 ' H̃0 = idX .

Therefore, qfq = qH̃1 = h̃1q, and surjectivity of q now implies qf = h̃1 ' h̃0 = idX/X′ . Therefore, q : X → X/A
is a homotopy equivalence. The last statement follows from the fact that the quotient map is pointed and
Corollary 4.8.

We will prove that any CW-pair has the HEP, and, more generally, any relative CW-complex has it with
respect to the space which it is relative to. To do so, we need a convenient necessary and sufficient condition
for a pair of spaces to have the HEP. The following lemma is an easy observation.

Lemma 4.10. Let (X,X ′) be a pair of topological spaces. Then X ′ is a retract of X if and only if any continuous
map f : X ′ → Z can be extended to a continuous map f̃ : X → Z.

Proof. For necessity, let r : X → X ′ be a retract. Then any continuous map f : X ′ → Z can be extended
by precomposition with r to a continuous map f ◦ r : X → Z. For sufficiency, suppose any continuous map
f : X ′ → Z can be extended to a continuous map f̃ : X → Z. Then the identity idX′ can be extended to a
continuous map X → X ′, which therefore establishes X ′ as a retract of X.

Corollary 4.11. [23] A pair (X,X ′) of topological spaces with X ′ closed in X has the HEP if and only if
(X ′ × I) ∪ (X × {0}) is a retract of X × I.

Proof. Remark 4.6 and the previous lemma yield this statement.

Lemma 4.12. If n ≥ 0, then the CW-pair (Dn, ∂Dn) has the HEP.

Proof. [23] We will construct a retraction Dn × I → ∂(Dn × I) ∪ (Dn × {0}), which is sufficient by Corollary
4.11. We consider Dn × I as a subspace of Rn+1. Let P = (0, . . . , 0, 2). For any (x, t) ∈ Dn × I, we set r(x, t)
to be the intersection of the line in Rn+1 through P and (x, t) with (∂Dn × I) ∪ (Dn × {0}). It is not difficult
to see that this is indeed a retraction.

Lemma 4.13. Suppose (X,X ′) is a topological pair such that X arises from X ′ by attaching n-cells. Then
(X,X ′) has the HEP.

Proof. [23] First note that X ′ is closed in X, so it again suffices to construct a suitable retraction. Let X =
X ′ ∪J×∂Dn J ×Dn, where we as usual consider X ′ to be a closed subspace of this. Using the last lemma, we
obtain a retraction

r : J ×Dn × I → (J × ∂Dn × I) ∪ (J ×Dn × {0}).
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We obtain, using Lemmata 3.8 and 3.6 and the fact that −× I and −× {0} commute with pushouts (as they
are left adjoints, see Proposition 6.4), the homeomorphisms

X ′ × I ∪X × {0} ∼= X ′ × I ∪ ((X ′ ∪J×∂Dn J ×Dn)× {0})
∼= X ′ × I ∪ (X ′ × {0} ∪J×∂Dn×{0} J ×Dn × {0})
∼= X ′ × I ∪X′×{0} (X ′ × {0} ∪J×∂Dn×{0} J ×Dn × {0})
∼= (X ′ × I ∪X′×{0} X ′ × {0}) ∪J×∂Dn×{0} J ×Dn × {0}
∼= X ′ × I ∪J×∂Dn×{0} J ×Dn × {0}
∼= (X ′ × I ∪J×∂Dn×I J × ∂Dn × I) ∪J×∂Dn×{0} J ×Dn × {0}
∼= X ′ × I ∪J×∂Dn×I (J × ∂Dn × I ∪J×∂Dn×{0} J ×Dn × {0})
∼= X ′ × I ∪J×∂Dn×I (J × ∂Dn × I ∪ J ×Dn × {0}),

and a homeomorphism X × I ∼= X ′ × I ∪J×∂Dn×I J ×Dn × I. Now, the retraction r induces a retraction

X × I ∼= X ′× I ∪J×∂Dn×I J ×Dn× I id∪r−−−→ X ′× I ∪J×∂Dn×I (J ×∂Dn× I ∪J ×Dn×{0}) ∼= X ′× I ∪X ×{0}.

This completes the proof.

Theorem 4.14. Let (X,A) be a relative CW-complex. Then (X,A) has the HEP.

Proof. [23] A is closed in X, and hence we will inductively construct a retraction r : X × I → A× I ∪X × {0}.
Let r−1 : A× I → A× I be the identity, and once a retraction rn : Xn × I → A× I ∪Xn × {0} is defined, we
use the retraction r′n+1 : Xn+1 × I → Xn × I ∪Xn+1 × {0} from the last proposition and let rn+1 be the map

Xn+1 × I
r′n+1−−−→ Xn × I ∪Xn+1 × {0}

rn∪id−−−−→ A× I ∪Xn+1 × {0},

which can be seen to be both well-defined and continuous. Moreover, it is a retraction as a composition of
retractions. Then r : X × I → A× I ∪X × {0} is defined as r(x, t) = rn(x, t) for x ∈ Xn. This is well-defined,
since rn|Xn−1×I = rn−1 by construction. Moreover, it is continuous for the following reason: by definition, X is
the colimit of the diagram

A X0 X1 X2 . . .

Since −× I commutes with colimits, X × I is the colimit of

A× I X0 × I X1 × I X2 × I . . .

Therefore, r : X×I → A×I∪X×{0} is continuous iff each map Xn×I
rn−→ A×I∪Xn×{0} ↪→ A×I∪X×{0}

is continuous, which holds true. Lastly, r is a retraction as well, essentially by definition.

We have shown that A× I ∪X × {0} is a retract of X × I. Even more is true: it is a deformation retract.

Lemma 4.15. [11] Let (X,A) be a relative CW-complex. Then A × I ∪ X × {0} is a deformation retract of
X × I.

Proof. (This proof was proposed by drs. J. Becerra) Note that X × {0} is a deformation retract of both X × I
and A× I ∪X × {0}. Therefore, the unnamed inclusions in the commutative diagram

X × {0} X × I

A× I ∪X × {0}

ι

are homotopy equivalences. Consequently, so is ι : A×I∪X×{0} ↪→ X×I. Also note that (X×I, A×I∪X×{0})
is a relative CW-complex, and has therefore the HEP by the previous theorem. Now, Proposition 4.7 implies
that ι : A× I ∪X × {0} ↪→ X × I establishes A× I ∪X × {0} as a deformation retract of X × I.

32



The fact that each relative CW-complex has the HEP is key in proving some other important results about
CW-complexes in relation to homotopy theory. We present a few of them.

Lemma 4.16. Let (X,X ′) be a CW-pair and suppose Y is another CW-complex. If we are given two homotopic
maps f, g : X ′ → Y , then the pushouts X ∪f Y and X ∪g Y of the diagrams

X ′ X

Y X ∪f Y

f and

X ′ X

Y X ∪g Y

g

respectively, satisfy X ∪f Y ' X ∪g Y relY .

Proof. [11] Let H : X ′ × I → Y be a homotopy from f to g, and consider the pushout (X × I) ∪X′×I Y ,
which contains both X ∪f Y and X ∪g Y as subspaces. By Lemma 4.15, there is a deformation retraction
X × I → X ′ × I ∪X × {0}, and this gives us a deformation retraction (X × I) ∪X′×I Y → X ∪f Y , which the
identity on Y . A similar argument gives us a a deformation retraction (X × I) ∪X′×I Y → X ∪g Y which the
identity on Y , and combining the two a homotopy equivalence X ∪f Y ' X ∪g Y relY .

Proposition 4.17. (i) Let X be a pointed CW-complex. Then the quotient maps CuX → CX and SX → ΣX
are pointed homotopy equivalences.

(ii) Let f : X → Y be a pointed cellular map between pointed CW-complexes. Then the quotient maps
Mf → mf and Cuf → Cf are pointed homotopy equivalences.

Proof. All statements follow from Theorem 4.14 and Proposition 4.9, since the subspace we collapse is always
a subcomplex.

Remark 4.18. The statement of the lemma holds in more generality for pointed spaces (X, ∗) that satisfy the
HEP [13]. Such a space is called well-pointed. O

We will later need the following construction, namely that of the mapping telescope. We will not need it in
all its generality, but only in the case where the maps involved are inclusions. From its description, it should
be clear why we call it a “telescope”.

Definition 4.19. [11] Let (Yn)n≥1 be a sequence of CW-complexes such that Yn is a subcomplex of Yn+1 for
all n (not necessarily the n-skeleton: do not be confused by the sequence notation), and set Y = colimnYn with
respect to the inclusions Yn ↪→ Yn+1. The mapping telescope of Y is now defined as TY = ∪∞n=1Yn × [n, n + 1]
as a subcomplex of Y × [1,∞). If all the Yn are pointed, then the reduced mapping telescope is defined as
tY = ∪∞n=1Yn ∧ [n, n+ 1]+ as a subcomplex of Y ∧ [1,∞)+. ♦

Note that the union in the definition of the reduced mapping telescope identifies all base points of the
complexes considered, so the reduced mapping telescope comes with a canonical base point.

Lemma 4.20. Let (Yn) and Y be as above. Then Y is a deformation retract of both TY and tY .

Proof. [11] It is clear that the projection p′ : Y × [1,∞) → Y is a deformation retraction, so to show that TY
deformation retracts to Y , we only need to show that TY is a deformation retract of Y × [1,∞). Indeed, let
i : TY ↪→ Y × [1,∞), ι′ : Y ↪→ Y × [1,∞) and ι : Y ↪→ TY be the inclusions, set p = p′ ◦ i, and suppose we have
found a deformation retract π : Y × [1,∞)→ TY . If H ′ : Y × [1,∞)× I → Y × [1,∞) is a homotopy from ι′ ◦ p′
to idY×[1,∞) relative to Y , then one may check that H = π ◦H ′ ◦ (i× idI) : TY × I → TY defines a homotopy
from ι ◦ p to idTY relative to Y , so that Y indeed would be a deformation retract of TY .

To show that this deformation retraction Y × [1,∞) → TY exists, define for all n ∈ N the subspace Zn =
TY ∪ Y × [n,∞) of Y × [1,∞). Since the CW-pair (Y, Yn) has the homotopy extension property, there is a
deformation retraction r′n : Y × [n, n+ 1] → Yn × [n, n+ 1] ∪ Y × {n+ 1} induced by the one in Lemma 4.15.
The identity on Zn+1 glues with r′n to form a deformation retraction rn : Zn → Zn+1.
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Let p′ : TY → Y be the restriction of the projection p : Y × [1,∞) → Y to TY . If ιn+1 : Zn+1 ↪→ Zn and
ι : TY ↪→ Z1 are the inclusions, and if we let Hn : Zn× I → Zn be the homotopy from ιn ◦ rn to idZn relative to
Zn+1, then we can perform Hn during the time interval [1/2n−1, 1/2n], and glue these maps together to get a
homotopy from ι ◦ r (by its definition) to the identity on Z1 which is stationary on TY and is performed during
the time interval [0, 1]. This map is continuous and well-defined, which shows that TY is a deformation retract
of Y × [1,∞).

Now, in the reduced case (when Y is also pointed) we simply write R = {∗} × [1,∞) and note that tY ∼= TY /R
and Y ∧ [1,∞)+

∼= Y × [1,∞)/R. Since the deformation retraction Y × [1,∞) → TY is stationary on R, we
obtain a deformation retraction Y ∧ [1,∞)+ → tY , and since the projections p : TY → Y and p′ : Y × [1,∞)→ Y
and factor through R as well, they define induced projections tY → Y and Y ∧ [1,∞)+ → Y . These establish
Y as a deformation retract of tY .

We end this section with obtaining the so-called Puppe sequence, an important result about the relation
between a map and its mapping cone in homotopy theory. To get there, we first need the following lemma,
which already contains part of the Puppe sequence.

Lemma 4.21. Let f : X → Y be a pointed map between pointed topological spaces, and let another pointed

space Z be given. Then the sequence X
f−→ Y

ι
↪−→ Cf induces an exact sequence

[Cf,Z]• [Y, Z]• [X,Z]•,

of pointed sets, which is natural in Z and in the map f : X → Y .

Proof. To establish the exact sequence, we follow [13]. Suppose a pointed map g : Y → Z satisfies that g ◦ f
is homotopic to the constant pointed map c : X → Z. Then there is a homotopy H : X × I → Z such that
H(X × {1}) = ∗, which means H factors through a continuous map H : CX → Z. By definition, it fits in a
commutative diagram

X Y

CX Cf

Z

f

g
ι

H

ιCX

h

so the universal property of the pushout gives us a map h : Cf → Z such that g = h ◦ ι.
On the other hand, for any map h : Cf → Z the map h ◦ ι ◦ f is null-homotopic, because the map

h ◦ ιCX : CX → Z, where ιCX : CX → Cf is the map in the pushout square above, induces a homotopy
X × I → Z from h ◦ ι ◦ f to c.

(†) Now, for any commutative diagram

X Y

X ′ Y ′

f

g h

f ′

between two maps f : X → Y and f ′ : X ′ → Y ′, the diagram

X Y

CX Y ′

CX ′ Cf ′

h

C(g)

34



commutes, so the universal property of the pushout gives an induced map Cf → Cf ′ which fits in a commutative
diagram

X Y

CX Cf Y ′

CX ′ Cf ′

h

C(g)

This implies that there is a commutative diagram

X Y Cf

X ′ Y ′ Cf ′

f

g h

f ′

induced by the morphism between f and f ′. Naturality of the exact sequence in Z and f : X → Y follows then
from functoriality of [ · , · ]•.

Proposition 4.22. (Puppe sequence) Let f : X → Y be a pointed map between pointed topological spaces,

and let another pointed space Z be given. Then the sequence X
f−→ Y

ι
↪−→ Cf induces a long exact sequence

. . . [ΣCf,Z]• [ΣY, Z]• [ΣX,Z]• [Cf,Z]• [Y, Z]• [X,Z]•,

which is natural in Z and in the map f : X → Y .

Proof. We will only show this statement for pointed CW-complexes X and Y , and with f a pointed cellular
map, since we will not need the statement in its full generality. For the full proof, see [13], which we will modify
for our special case. The details about naturality were added by us.

We only need to show that the part of the sequence that is written out in the statement of the lemma is
exact and natural in Z, as inductively it will then follow that the whole sequence is exact and natural in Z. By
Lemma 3.50, Y is a subcomplex of Cf . Now, Cι = Cf ∪Y CY is a CW-complex as well by Proposition 3.35, and
since ι is an inclusion of a subcomplex, CY can be regarded as a contractible subcomplex of Cι. This implies
that Cι ' Cι/CY ∼= Cf/Y ∼= ΣX pointedly by Proposition 4.9. This homotopy equivalence is also natural in
f : indeed, a morphism between f : X → Y and f ′ : X ′ → Y ′ induces as in the previous lemma a commutative
diagram

X Y Cf Cι

X ′ Y ′ Cf ′ Cι′

f

g h

ι

f ′ ι′

and the map Cι→ Cι′ sends the subspace CY into CY ′. Since taking the quotient is a functor, we finally end
up with a commutative diagram

X Y Cf Cι Cι/CY ΣX

X ′ Y ′ Cf ′ Cι′ Cι′/CY ′ ΣX ′

f

g h

ι ' ∼

Σg

f ′ ι′ ' ∼

This shows that the homotopy equivalence Cι ' ΣX is natural in f . Hence [Cι, Z]• ∼= [ΣX,Z]• as pointed sets,
naturally in both Z and f .
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Furthermore, the inclusion i : Cf ↪→ Cι induces a pointed homotopy equivalence Ci ' Ci/C(Cf) ∼=
Ci/Cf ∼= ΣY , again natural in f . Lastly, we will later (independently of our current work) show in Corollary
6.9 that Σ is a left adjoint functor, and hence commutes with pushouts, which implies there is a pointed
homeomorphism C(Σf) ∼= ΣCf , also natural in f .

Putting all this together, and using the preceding lemma repeatedly, we find that the sequence

[ΣCf,Z]• [ΣY,Z]• [ΣX,Z]• [Cf,Z]• [Y,Z]• [X,Z]•

is exact and natural in Z and f by functoriality of [ · , · ]•, and as we remarked earlier, this is all we need to
show.

For fixed Z, the Puppe sequence tells us that the functor [ · , Z]• satisfies some sort of long exact sequence
condition. When we define a generalised reduced cohomology theory in Definition 5.1, the nature of this long
exact sequence will become more clear, and it is a clear hint that we might be able to use these sets of homotopy
classes to construct a generalised reduced cohomology theory.

4.2 Higher homotopy groups

We can recover and generalise the definition of the fundamental group (or rather, its underlying set) by choosing
a base point ∗ ∈ Sn (and fixing it for the rest of this thesis), and defining the following pointed set:

Definition 4.23. [23] Let (X, ∗) be a pointed topological space. Then for n ≥ 0 we define the n-th homotopy
group

πn(X, ∗) := [Sn, X]•.

It has the equivalence class of the constant map cX : (S, ∗) → (X, ∗), s 7→ ∗ as preferred element. We tend to
omit the base point in our notation and simply write πn(X). ♦

Lemma 4.24. πn is a functor hTop∗ → Set∗ for each n ≥ 0.

Given the importance of the fundamental group, we can expect these homotopy groups contain much and
important information about our spaces, and this turns out to be absolutely true. A few examples of this can
be found in the rest of this thesis.

We will show later that for positive n, this pointed set indeed carries a natural group structure. However,
for n = 0, it most certainly does not. In fact, it is not difficult to see that the above definition of π0(X, ∗)
agrees with Definition 1.33, but now we also choose the path connected component of the base point ∗ of X as
preferred element.

There is a homeomorphism In/∂In ∼= Sn, which means that a pointed map Sn → X is the same as a map
(In, ∂In)→ (X, ∗) of topological pairs. Similar to the group structure on the fundamental group, we can then,
as in [19] define for any pointed topological space X, and 1 ≤ i ≤ n the binary operation +i on Map(Sn, X),
which sends two pointed maps α, β : Sn → X to

α+i β : Sn → X, (t1, . . . , ti, . . . , tn) 7→

{
α(t1, . . . , 2ti, . . . , tn) if 0 ≤ ti < 1

2 ,

β(t1, . . . , 2t1 − 1, . . . , tn) if 1
2 ≤ ti ≤ 1,

which is continuous by the pasting lemma, and seen to be well-defined (in that ∂In is mapped on the base
point of X). This operation factors through homotopy: if F and G are pointed homotopies α ' α′ and β ' β′,
respectively, then α+i β ' α′ +i β

′ via the pointed homotopy

H : Sn × I → X, ((t1, . . . , ti, . . . , tn), s) 7→

{
F ((t1, . . . , 2ti, . . . , tn), s) if 0 ≤ ti < 1

2 ,

G((t1, . . . , 2t1 − 1, . . . , tn), s) if 1
2 ≤ ti ≤ 1.

Therefore, we have n binary operations on πn(X), denoted by the same notation +i, which all have the same
twosided unit [cX ]. This might seem to turn out a bit complicated, but luckily we are saved by the lemma
below.
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Definition 4.25. [22] Let a set M together with a map · : M ×M → M and a particular element e ∈ M be
given. Then (M, ·, e) is a monoid if · is associative and e is a two-sided identity element of ·. It is a commutative
monoid if moreover · is commutative.

A homomorphism of monoids f : M → N is a map that satisfies f(x · y) = f(x) · f(y) for all x, y ∈ M and
maps the identity element of M to the identity element of N . The category of monoids is denoted by Mon, and
of commutative monoids by CMon. ♦

Lemma 4.26. (Eckmann-Hilton argument) Let A be a set, and suppose we are given two binary operations
•, ∗ : A×A→ A with twosided unital elements 1• and 1∗. If

(a • b) ∗ (c • d) = (a ∗ c) • (b ∗ d)

for all a, b, c, d ∈ A, then the two operations and their units coincide, and the operations are associative and
commutative. Therefore, they define the same commutative monoid structure on M . In particular, if • and ∗
allow inverse elements, they define the same abelian group structure on A.

Proof. We slightly generalise the argument given in [19]. First note that

1• = 1• • 1• = (1• ∗ 1∗) • (1∗ ∗ 1•) = (1• • 1∗) ∗ (1∗ • 1•) = 1∗ ∗ 1∗ = 1∗,

and therefore we see that

a ∗ d = (a • 1•) ∗ (1• • d) = (a ∗ 1∗) • (1∗ ∗ d) = a • d,

that is, • = ∗. Hence
b • c = b ∗ c = (e • b) ∗ (c • e) = (e ∗ c) • (b ∗ e) = c • b,

and
a • (b • d) = (a ∗ 1∗) • (b ∗ d) = (a • b) • (1• • d) = (a • b) • d.

Therefore • and ∗ are commutative and associative. If they allow inverse elements, they hence define the same
commutative group structure, i.e. abelian group structure, on A.

Remark 4.27. The condition that (a • b) ∗ (c • d) = (a ∗ c) • (b ∗ d) for all a, b, c, d ∈ A in the lemma above can
be rephrased in a more insightful way. A magma is an algebraic structure consisting of a set M and a binary
operation • : M ×M →M (without any further conditions on this operation). We can define for two magmas
(M, •) and (N, ∗) a product magma M ×N , which has M ×N as the underlying set, and the binary operation ·
given by (m1, n1) ·(m2, n2) = (m1•m2, n1∗n2) for all m1,m2 ∈M and n1, n2 ∈ N . A unital magma is a magma
M which contains a twosided unit element 1. Finally, a homomorphism of magmas f : (M, •) → (N, ∗) is a
map of sets f : M → N such that f(m1 •m2) = f(m1) ∗ f(m2) for all m1,m2 ∈M . Now, the Eckmann-Hilton
argument says that if (M, •, 1•) and (M, ∗, 1∗) are unital magmas, and if ∗ : (M, •) × (M, •) → (M, •) is a
homomorphism of magmas (not assumed to be unital), then both unital magma structures coincide and define
a commutative monoid structure on M . O

Corollary 4.28. For any pointed topological space X and n ≥ 1, πn(X) carries naturally the structure of a
group, which is even abelian if n ≥ 2.

Remark 4.29. Naturality means here that a continuous map f : X → Y induces a group homomorphism
πn(X) → πn(Y ). In other words, the corollary states that for n ≥ 1, πn is a functor hTop∗ → Grp, or even
hTop∗ → Ab in case n ≥ 2. Note that we will often treat the πn also as functors from Top∗ rather than hTop∗.
This of course should not cause confusion. O

Proof. [19] We already know that the fundamental group is a functor, so we only need to consider the case
n ≥ 2. Just like in the case of the fundamental group, it is clear that the operations +i allow inverse elements.
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Now, if pointed maps α, β, γ, δ : Sn → X and 1 ≤ i, j ≤ n are given, then (α+i β) +j (γ +i δ) is the map

Sn → X, (t1, . . . , ti, . . . , tj , . . . tn) 7→


α(t1, . . . , 2ti, . . . , 2tj , . . . tn) if 0 ≤ ti, tj ≤ 1

2 ,

β(t1, . . . , 2ti − 1, . . . , tj , . . . tn) if 1
2 ≤ ti ≤ 1 and 0 ≤ tj ≤ 1

2 ,

γ(t1, . . . , ti, . . . , 2tj − 1, . . . tn) if 0 ≤ ti ≤ 1
2 and 1

2 ≤ tj ≤ 1,

δ(t1, . . . , 2ti − 1, . . . , 2tj − 1, . . . tn) if 1
2 ≤ ti, tj ≤ 1,

which similarly equals (α+j γ) +i (β+j δ). Therefore ([α] +i [β]) +j ([γ] +i [δ)] = ([α] +j [γ]) +i ([β] +j [δ]), and
the Eckmann-Hilton argument applies and gives πn(X) unambiguously the structure of an abelian group.

A continuous map f : X → Y induces the map f∗ : πn(X)→ πn(Y ) : [α] 7→ [f ◦ α], which respects +1 (and
hence all +i and the group structure on πn(X) and πn(Y )) by the same argument as in the fundamental group.
Therefore f∗ is a group homomorphism. It is also clear that f∗ only depends on the homotopy class of f , so πn
is a functor hTop∗ → Ab.

Just like we wanted to consider homology and cohomology of pairs of spaces, we also want to consider
homotopy groups of such pairs. It will turn out that a pair of spaces then also induces a long exact sequence
of homotopy groups, and this allows us to relate the homotopy groups of a subspace to that of the space itself.
First recall from Definition 2.34 what a map between triplets of topological spaces is.

Definition 4.30. Two maps f, g : (X,X ′, X ′′) → (Y, Y ′, Y ′′) of triplets of topological spaces are homotopic if
there exists a homotopy H : X × I → Y such that H(X ′ × I) ⊆ Y ′ and H(X ′′ × I) ⊆ Y ′′. ♦

Any pair of pointed spaces is also a triplet of spaces, and as such, we let for any two pointed pairs (X,X ′)
and (Y, Y ′) of topological spaces the set [(X,X ′), (Y, Y ′)]• denote the set of homotopy classes of maps of triplets
(X,X ′, ∗)→ (Y, Y ′, ∗). This is a pointed set, with the homotopy class of the constant map (X,X ′, ∗)→ (Y, Y ′, ∗)
on the base point as preferred element. More generally, for two triplets (X,X ′, X ′′) and (Y, Y ′, Y ′′) of spaces,
we let [(X,X ′, X ′′), (Y, Y ′, Y ′′)] denote the set of homotopy classes of maps between these triplets.

Definition 4.31. [23] Let (X,X ′) be a pair of pointed spaces. For each n ≥ 1. Then the n-th relative homotopy
group is defined as the pointed set πn(X,X ′, ∗) = [(Dn, Sn−1), (X,X ′)]•. Again, we often omit the base point
in notation and write πn(X,X ′). ♦

Lemma 4.32. For each n ≥ 1, the relative homotopy group is a functor πn : hTop(2)∗ → Set∗.

For n ≥ 2, the relative homotopy groups also allow a natural group structure. Let (X,X ′) be a pointed
pair of spaces, and let α, β : (Dn, Sn−1, ∗) → (X,X ′, ∗) represent two homotopy classes of maps. Consider
In−1 as the subset {(t1, . . . , tn ∈ In | tn = 0} of In, and set Jn−1 = {(t1, . . . , tn ∈ In | tn = 1, or ti =
0, 1 for some 1 ≤ i ≤ n− 1}. There is a homeomorphism (Dn, Sn−1, ∗) ∼= (In/Jn−1, ∂In1/Jn−1, Jn−1), which
allows us to see α and β as maps (In, ∂In, Jn−1)→ (X,X ′, ∗). Now, for 1 ≤ i ≤ n−1 the maps +i defined above
give us maps α+i β : (In, ∂In, Jn−1)→ (X,X ′, ∗), and once more these maps respects homotopy. Similarly as
the case for absolute homotopy groups, for n ≥ 2 there is a group structure on πn(X,X ′) defined by each of
these maps [23], and by the Eckmann-Hilton argument 4.26, this group structure is abelian when n ≥ 3.

Lemma 4.33. The relative homotopy group π2 is a functor hTop(2)∗ → Grp, and for each n ≥ 3, the relative
homotopy group is a functor πn : hTop(2)∗ → Ab.

To describe the long exact sequence of the homotopy groups, we need the following lemma.

Lemma 4.34. For all n ≥ 1, there for any pointed space (X, ∗) a natural bijection πn(X, ∗) ∼= πn(X, ∗, ∗).

Proof. This follows from πn(X, ∗, ∗) ∼= [(In, ∂In, Jn−1), (X, ∗, ∗)] ∼= [(In, ∂In), (X, ∗)] ∼= πn(X, ∗).

For a pointed pair (X,X ′), let i : X ′ ↪→ X be the inclusion. This defines maps in := πn(i) : πn(X ′)→ πn(X)
for all n ≥ 0. Now, the isomorphism πn(X, ∗) ∼= πn(X, ∗, ∗) and the map (X, ∗, ∗)→ (X,X ′, ∗) that acts as the
identity on X gives us for each n ≥ 1 a map jn : πn(X, ∗) → πn(X,X ′, ∗). Lastly, for each n ≥ 1 we define
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pn : πn(X,X ′, ∗) → πn−1(X ′, ∗), [α] 7→ [α|Sn−1 ], which works because for [α] ∈ πn(X,X ′, ∗) a representative α
is a map (Dn, Sn−1, ∗) → (X,X ′, ∗), so α|Sn−1 is a pointed map Sn−1 → X ′. Moreover, a homotopy between
two maps (Dn, Sn−1, ∗)→ (X,X ′, ∗) restricts to a homotopy between their restrictions (Sn−1, ∗)→ (X ′, ∗) by
definition of a homotopy of maps of triplets. Also note that it is a group homomorphism for n ≥ 2. Namely,
for two maps α, β : (In, ∂In, Jn−1)→ (X,X ′, ∗), the maps (α+i β)|∂In and α|∂In +i β|∂In coincide.

Proposition 4.35. Let (X,X ′) be a pointed pair of spaces. Then the sequence

. . . π1(X ′) π1(X) π1(X,X ′) π0(X ′) π0(X)
i1 j1 p1 i0

of groups and pointed sets is exact, and moreover natural in the pointed pair (X,X ′).

Proof. The proof can be found in [23].

We end this section with addressing the way the homotopy groups depend on the base point. Since π0 does
not depend on the choice of base point at all, we are only interested in the higher homotopy groups. We know
from introductory topology courses that the fundamental group is basically independent of the choice of base
points within a path-connected component. This turns out to hold as well for higher homotopy groups. In fact,
they are very well-behaved with respect to paths between points in the space. We present three useful results
making the situation precise.

The fact that any pointed map induces a homomorphism on homotopy groups can also be rephrased as
saying that any non-pointed map f : X → Y yields for any choice of x0 ∈ X a homomorphism πn(X,x0) →
πn(Y, f(x0)). In what follows, we denote such a homomorphism by f∗.

Lemma 4.36. Let X be a topological space, take n ≥ 1 and let γ : I → X be a path in X. Then γ induces an
isomorphism γ∗ : πn(X, γ(1))→ πn(X, γ(0)) satisfying the following properties:

(i) If γ, γ′ : I → X are homotopic relative to {0, 1}, then γ∗ = γ′∗.
(ii) If γ is constant, then γ∗ is the identity.

(iii) If γ, δ : I → X satisfy γ(1) = δ(0), then (γ ? δ)∗ = γ∗ ◦ δ∗, where ? denotes the composition of paths.
(iv) If f : X → Y is continuous, then the square

πn(X, γ(1)) πn(Y, f ◦ γ(1))

πn(X, γ(0)) πn(Y, f ◦ γ(0))

f∗

γ∗ (f◦γ)∗

f∗

commutes.

Proof. The proof is very similar to the proof that the fundamental group is a group, and therefore we only
describe the nature of the induced homomorphism γ∗. Full details can be found in [23].

Let α : (Dn, Sn−1)→ (X, γ(1)) represent an element [α] ∈ πn(X, γ(1)). Consider for now Rn as the subspace
Rn × {1} of Rn+1. Let P = (0,−1) ∈ Rn × R and let p : Dn ∪Sn−1×{1} S

n−1 × I → Rn be the map that sends
a point x ∈ Dn ∪Sn−1×{1} S

n−1 × I to the intersection of the line through P and x with Rn (let us stress
that Dn and Rn are seen as subspaces Dn × {1} and Rn × {1} of Rn+1). p defines a homeomorphism from
Dn ∪Sn−1×{1} S

n−1 × I onto its image in Rn, which is another disc centered at the origin. Using the standard

homeomorphism from such a disc to Dn, we get a homeomorphism p : Dn ∪Sn−1×{1} S
n−1 × I ∼−→ Dn (which

we indeed also will call p).
Now, γ induces a map γ ◦ pr1 : Sn−1 × I → X, and using the fact that α(Sn−1) = γ(1), the universal

property of the pushout gives us a map (Dn, Sn−1) ∼= (Dn ∪Sn−1×{1} S
n−1, Sn−1 × {0}) α∪γ◦pr−−−−−→ (X,x0). We

let γ∗([α]) be the homotopy class represented by this last map.
As said, verifying that γ∗ is a group homomorphism and that is satisfies properties (i) to (iv) is certainly

not trivial, but it is intuitive and straightforward, and the first three of these properties furthermore imply that
γ∗ is an isomorphism.
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Corollary 4.37. Let f : X → Y be continuous, take n ≥ 1 and pick two points x0, x1 ∈ X in the same
path component. Then f∗ : πn(X,x0) → πn(Y, f(x0)) is injective, surjective or bijective if and only if f∗ :
πn(X,x1)→ πn(Y, f(x1)) is injective, surjective or bijective, respectively.

Proof. [23] Let γ : I → X be a path from x0 to x1. Then the diagram

πn(X,x1) πn(Y, f(x1))

πn(X,x0) πn(Y, f(x0))

f∗

γ∗ (f◦γ)∗

f∗

commutes, and γ∗ and (f ◦ γ)∗ are isomorphisms.

Lemma 4.38. Let f, g : X → Y be two homotopic continuous maps between topological spaces, and let H :
X × I → Y be a homotopy from f to g. Pick a point x0 ∈ X. Let γ = H|{x0}×I : I → Y be the path from f(x0)
to g(x0) in Y that H gives. Then the diagram

πn(X,x0)

πn(Y, g(x0)) πn(Y, f(x0))

f∗g∗
γ∗

commutes for all n ≥ 1.

Proof. [23] Let α : (Dn, Sn−1)→ (X,x0) represent an element [α] ∈ πn(X,x0), and define F = H ◦ (α × idI) :
Dn × I → Y , which is a homotopy from f ◦ α to g ◦ α satisfying F (x, t) = γ(t) for all x ∈ Sn−1. We will
show that we can produce a homotopy between f ◦ α and g ◦ α relative to Sn−1. To do so, consider once more
the cylinder Dn × I, and consider for each x ∈ Dn the line Lx through P = (0, 2) ∈ Dn × R and (x, 1). Let
lx : I → Dn × I be the affine linear map parametrising the part of Lx in Dn × I, with lx(1) = (x, 1) and
lx(0) ∈ Dn ∪Sn−1×{0} S

n−1× I. It is clear that lx(t) is continuous in both x and t, so we can define a homotopy
G : Dn × I → Y, (x, t) 7→ F (lx(t)), which can (after a bit of care) seen to be a homotopy relative to Sn−1

between f ◦α and a representative of γ∗([g ◦α]). This shows that f∗([α]) = [f ◦α] = γ∗[g ◦α] = γ∗ ◦ g∗([α]) and
hence that the diagram above commutes.

4.3 Approximation theorems and the Whitehead Theorem

We have yet to cover three main results from the homotopy theory of CW-complexes, namely the Cellular
Approximation Theorem, the Whitehead Theorem (and the important related Proposition 4.54) and the CW-
approximation Theorem. The first one is for us more a technical yet helpful tool, and we will not go into the
details of its proof. The Whitehead Theorem and the results that lead to it do however contain key concepts
for us, and we will give a full proof. CW-approximation is more than just a technical tool, but mainly because
it just so happens that we can later give a proof of it using the Brown Representability Theorem. We will
therefore skip a more direct proof.

We will begin with stating the Cellular Approximation Theorem and a related result.

Lemma 4.39. Let (X,A) be a CW-pair and let (Y,B) be a topological pair with B nonempty. Assume that
πn(Y,B, y0) = 0 for all y0 ∈ B and all n > 0 such that X \A has (open) cells of dimension n, and also assume
in case X \A has 0-cells, that then the inclusion B ↪→ Y induces a surjection π0(B)→ π0(Y ). Then every map
f : (X,A)→ (Y,B) is homotopic relative to A to a map X → B.

Proof. The proof can be found in [11].

Theorem 4.40. (Cellular Approximation Theorem) Let f : (X,A)→ (Y,B) be a continuous map between
relative CW-complexes. Then f is homotopic relative to A to a cellular map (X,A)→ (Y,B).
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Proof. The proof can be found in [11], or in [19] and [23] in slightly more detail.

Corollary 4.41. For all n < m, it holds that πn(Sm) = 0.

Proof. Consider Sm and Sn as CW-complexes with one 0-cell as base point and one m-cell or n-cell respectively
attached. Since n < m, the Cellular Approximation Theorem implies that any map Sn → Sm is pointedly
homotopic to the constant map on the base point, which means that πn(Sm) = [Sn, Sm]• = 0.

Now we turn our attention to the Whitehead Theorem and the notion of a weak homotopy equivalence.

Definition 4.42. [23] A map f : X → Y of topological spaces is a weak homotopy equivalence if f induces
isomorphisms πn(X,x0)

∼−→ πn(Y, f(x0)) for all n ≥ 0 and all choices of base point x0 ∈ X (and the induced
map is understood to be a pointed bijection in case of n = 0). ♦

A large part of algebraic topology is devoted to the study of homotopy groups. A weak homotopy equivalence
is then comparable with an isomorphism: it shows that from the point of view of homotopy groups alone, two
spaces cannot be distinguished from each other. It is natural to consider especially on CW-complexes, given
the importance of spheres in general and given the fact that CW-complexes are more or less built from spheres.
However, we should note that a weak homotopy equivalence is not required to have a weak homotopy equivalence
as “inverse”: the inverses of the isomorphisms such a map induces on homotopy groups need not be induced by
a continuous map. This leads us to the following definition:

Definition 4.43. Let X and Y be two topological spaces. They are weakly homotopy equivalent if there exist
a finite sequence of topological spaces X0 = X,X1, X2, . . . , Xn = Y with the property that there exists for each
0 ≤ i ≤ n− 1 a weak homotopy equivalence Xi → Xi+1 or a weak homotopy equivalence Xi+1 → Xi. ♦

To weakly homotopy equivalent spaces clearly have isomorphic homotopy groups. Now, the Whitehead
Theorem states that any weak homotopy equivalence between CW-complexes must be a homotopy equivalence
(and hence that CW-complexes being weakly homotopy equivalent means they are homotopy equivalent). This
justifies the idea that the behaviour of CW-complexes in homotopy theory is determined by their behaviour with
respect to the spheres. Before we can get there, we show a bunch of result about weak homotopy equivalences
and related concepts that we will use later.

Lemma 4.44. If f : X → Y and g : Y → Z are weak homotopy equivalences, then so is g ◦ f .

Lemma 4.45. Suppose f : X → Y is a homotopy equivalence. Then f is also a weak homotopy equivalence.

Proof. Let us begin by noting the proof is not entirely trivial, since f is not required to be a pointed homotopy
equivalence in any way for arbitrary base points. If it was, then functoriality of πn would immediately yield the
statement, but now we need to work a bit, and we follow [23].

It is clear that f induces an isomorphism π0(X)→ π0(Y ). Let g : Y → X be a map such that g ◦ f ' idX
and f ◦ g ' idY , let x0 be an arbitrary point in X and let γ be the path from g ◦ f(x0) to x0 given by the
homotopy g ◦ f ' idX . Since (g ◦ f)∗ = g∗ ◦ f∗, via Lemma 4.38 we obtain for n ≥ 1 a commutative diagram

πn(X,x0) πn(Y, f(x0)

πn(X, g ◦ f(x0))

f∗

γ∗
g∗

Since γ∗ is an isomorphism by Lemma 4.36, f∗ must be injective. A similar argument using the homotopy
f ◦ g ' idY implies that f∗ is surjective, and therefore f∗ : πn(X,x0) → πn(Y, f(x0)) is an isomorphism for all
n ≥ 1. Since x0 was arbitrary, we are done.

Lemma 4.46. If f, g : X → Y are homotopic maps and f is a weak homotopy equivalence, then so is g.

41



Proof. Once more it is clear that g must induce a bijection π0(X) → π0(Y ) if we are given that f does, since
the homotopy between the two gives us paths from f(x) to g(x) for any x ∈ X. For n ≥ 1, we can use Lemma
4.38, and the fact that both f∗ and γ∗ are isomorhisms in this case to conclude that g∗ is also an isomorphism.
Since x0 is arbitrary, we are done.

Remark 4.47. By Corollary 4.37, if a continuous map f : X → Y induces isomorphisms f∗ : πn(X,x0) →
πn(Y, f(x0)) for all n ≥ 0, and for a particular x0 ∈ X, then it also induces isomorphisms f∗ : πn(X,x1) →
πn(Y, f(x1)) for any other choice of x1 within the same path component as x0. Therefore, for a path-connected
space X we only need to check a single point to see whether or not f is a weak homotopy equivalence. O

Lemma 4.48. [23] Let (X,X ′) be a topological pair, and assume the inclusion ι : X ′ ↪→ X induces a bijection
π0(X ′)→ π0(X). Then ι is a weak homotopy equivalence if and only if πn(X,X ′, x0) = 0 for all n ≥ 1 and all
x0 ∈ X ′.

Proof. This follows from exactness of the long exact sequence of homotopy groups of the triplet (X,X ′, x0) in
Proposition 4.35, where x0 ranges over X ′.

Definition 4.49. A pair (X,X ′) of topological spaces is n-connected if for every m ≤ n and every map
f : (Dm, Sm−1)→ (X,X ′) there is a homotopy relative to Sm−1 from f to a map with image in X ′. ♦

Remark 4.50. In the special case of n = 0, we adopt the convention that (D0, S−1) = (∗,∅), so that a pair
(X,X ′) is 0-connected if the inclusion X ′ ↪→ X induces a surjective map π0(X ′)→ π0(X). O

Lemma 4.51. Let (X,X ′) be a pair of spaces and n ≥ 1. Then (X,X ′) is n-connected if and only if the
inclusion X ′ ↪→ X induces a surjection π0(X ′)→ π0(X) and πi(X,X

′, x0) = 0 for all 1 ≤ i ≤ n and all choices
of x0 ∈ X ′.

Proof. Sufficiency follows from the definition of n-connectedness and Lemma 4.39. For necessity, let x0 ∈ X ′ be
arbitrary, and note that any map α : (Di, Si−1, ∗) → (X,X ′, x0) now is homotopic relative to Si−1 and ∗ to a
map with image in X ′. By contracting Di to a point, we obtain a pointed homotopy (now trivially relative to
X ′) from the latter map to the constant map onto x0. This shows that [α] = 0 ∈ πi(X,X ′, x0), the latter group
(or pointed set if n = 1) therefore is trivial.

Lemma 4.52. [23] Let (X,X ′) be a pair of spaces, and suppose the inclusion ι : X ′ ↪→ X is a weak homotopy
equivalence. Then (X,X ′) is n-connected for every n.

Proof. The inclusion ι induces a bijection π0(X ′)→ π0(X) by being a weak homotopy equivalence, so (X,X ′)
is 0-connected. Moreover, this allows us to use Lemma 4.48, which implies that πn(X,X ′) = 0 for any choice of
base point and all n ≥ 1. By the previous lemma, (X,X ′) is n-connected for these n as well.

Lemma 4.53. Let (X,X ′) be a CW-pair.
(i) If all the cells in X \X ′ have dimension greater than n, then (X,X ′) is n-connected.

(ii) The pair (X,Xn) is n-connected, and the inclusion Xn ↪→ X induces isomorphisms πi(Xn, x0)→ πi(X,x0)
for i < n (which is understood to be a pointed bijection in case i = 0) and a surjection πn(Xn, x0) →
πn(X,x0), for all choices of base point x0 ∈ X ′.

Proof. [11] For the first statement, let m ≤ n and f : (Dm, Sm−1) → (X,X ′) be a map of pairs. Using the
Cellular Approximation Theorem on f and the given fact that X \ X ′ has no cells of dimension less than or
equal to n, there must be a map g : (Dm, Sm−1)→ (X,X ′) with image in X ′ to which f is homotopic relative
to Sm−1. Therefore, (X,X ′) is n-connected.

For the second statement, first note that (X,Xn) is n-connected by the first part, and therefore the inclusion
X ′ → X induces a surjection π0(X ′) → π0(X). In particular, if n = 0, the pair (X,Xn) is n-connected. If
on the other hand n ≥ 1, Lemma 4.51 and the long exact sequence of homotopy groups of the pair (X,X ′) in
Proposition 4.35 together imply that the inclusion also induces a surjection πn(X ′) → πn(X), isomorphisms
πi(X

′) → πi(X) for 1 ≤ i ≤ n − 1 and an injection π0(X ′) → π0(X). Since the map π0(X ′) → π0(X) is
apparently both injective and surjective, it is a bijection.
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After all these rather short and technical statements, let us turn towards proving the Whitehead Theorem.
It will in fact follow from a more general statement, which is in itself of great importance to us.

Proposition 4.54. Suppose f : Y → Z is a weak homotopy equivalence between topological spaces or pointed
topological spaces, respectively. Then f induces natural isomorphisms [ · , Y ] ∼= [ · , Z] of functors hCWopp → Set
or [ · , Y ]• ∼= [ · , Z]• of functors hCWopp

∗ → Set∗, respectively.

Proof. [13] By Lemma A.25, we only need to show that for every non-pointed or pointed CW-complex X the
map

[X,Y ]→ [X,Z], or [X,Y ]• → [X,Z]•,

induced by f , respectively, is a bijection. It is namely also clear that the map induced by f on the pointed
sets of homotopy classes is pointed. In the proof below we will include between parentheses what needs to be
adjusted in the pointed, rather than the non-pointed case.

Note that Z is (pointedly) homotopy equivalent to Mf via a homotopy equivalence that identifies f with
the inclusion ι : Y ↪→Mf (see Remark 3.48). Therefore, it suffices to show that ι induces a bijection [X,Y ]→
[X,Mf ]. Since f was assumed to be a weak homotopy equivalence, so is ι, and therefore the pair (Mf , Y )
satisfies by Lemma 4.48 the conditions of Lemma 4.39 (we assume that Y is nonempty, as the proposition is
trivial in case Y (and hence Z) is empty). We can therefore apply said lemma to a map (X,∅)→ (Mf , Y ) (or
in the pointed case, a map (X, ∗) → (Mf , Y )), and find that it is homotopic to a map X → Y (relative to the
base point of X), which implies that ι ◦ − : [X,Y ]→ [X,Mf ] is surjective.

For injectivity, assume that two maps g, h : X → Y induce homotopic maps ι ◦ g ' ι ◦ h. If we apply the
lemma to the homotopy H : (X × I,X × ∂I) → (Mf , Y ) between these maps, we find that H is homotopic
relative to X × ∂I to a homotopy G : X × I → Y . This means that G( · , 0) = g and G( · , 1) = h, so g and h are
also homotopic. (In the pointed case, we must take apply the lemma to the homotopy (X×I,X×∂I∪{∗}×I)→
(Mf , Y ).) This shows that ι indeed induces a bijection, which is all we needed to show.

Remark 4.55. (†) Note that there is a partial converse to the above proposition: if Y and Z are pointed and
path-connected, and f induces a natural isomorphism [ · , Y ]• ∼= [ · , Z]• of functors hCWopp

∗ → Set∗, then f is a
pointed weak homotopy equivalence. To see this, fill in the spheres Sn in the natural isomorphism to show that
f∗ : πn(Y, ∗)→ πn(Z, ∗) is an isomorphism for all n ≥ 0. Since both Y and Z are assumed to be path-connected,
Remark 4.47 implies that f is indeed a pointed weak homotopy equivalence. O

Theorem 4.56. (The Whitehead Theorem) [23] Let f : X → Y be a weak homotopy equivalence between
two CW-complexes. Then f is a homotopy equivalence.

Proof. (†) By the previous proposition, f induces a natural isomorphism hf : hX
∼−→ hY , where h : hCW →

Fun(hCWopp,Set) is the Yoneda functor of Remark A.31. Now that X and Y are CW-complexes, we can apply
the Yoneda Lemma A.34 and use that h is fully faithful to conclude that f must be an isomorphism in the
category hCW, in other words, a homotopy equivalence.

The same argument can of course be applied in the pointed case, so we also have the following pointed verson
of the Whitehead Theorem.

Theorem 4.57. (Pointed Whitehead Theorem) Let f : X → Y be a pointed weak homotopy equivalence
between two pointed CW-complexes. Then f is a pointed homotopy equivalence.

The last result we need is the CW-approximation Theorem (not to be confused with the Cellular Approxi-
mation Theorem), and its uniqueness.

Theorem 4.58. (CW-approximation) Let X be a topological space. Then there exists a CW-complex Y and
a weak homotopy equivalence f : Y → X. If X is pointed, both Y and f may be chosen to be pointed as well.

Proof. A direct proof which constructs an explicit CW-pair is given in [11]. We will later also give a more
abstract proof of a slightly stronger version of the theorem as Theorem 6.40 via the Brown Representability
Theorem 6.31, the proof of which is independent of CW-approximation.
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Proposition 4.59. Let X be a topological space, and suppose Y and Y ′ are both CW-complexes with weak
homotopy equivalences f : Y → X and f ′ : Y ′ → X. Then there exists a homotopy equivalence g : Y → Y ′ such
that the diagram

Y Y ′

X
f

g

f ′

commutes up to homotopy. The statement with pointed spaces, maps and homotopies also holds. In other words,
either non-pointed or pointed CW-approximation is unique up to homotopy equivalence.

Proof. (†) By Proposition 4.54 there is a natural isomorphism [ · , Y ] ∼= [ · , X] ∼= [ · , Y ′] of functors hCWopp →
Set. The Yoneda Lemma tells us that this isomorphism is induced by an isomorphism g : Y → Y ′ in hCW
(which means g is a homotopy equivalence). Moreover, by definition g fits in a commutative diagram

[ · , Y ] [ · , Y ′]

[ · , X]

f◦−

g◦−

f ′◦−

and by filling in the space Y in the first argument and considering the identity idY , we find that f ' f ′ ◦ g,
which means that the diagram in the statement indeed commutes up to homotopy. The pointed case is treated
entirely similar.
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Chapter 5

Cohomology on CW-complexes

It is time to turn our attention towards cohomology again, although this time immediately restricted to CW-
complexes. We will define generalised reduced cohomology theories and generalised cohomology theories on
CW-complexes, and derive a few useful results about them. The reader might wonder while reading the first
section why we suddenly consider a new kind of cohomology theory, but there are two good reasons for it.
Firstly, generalised reduced cohomology theories are “basically the same” as generalised cohomology theories,
as long as we restrict ourselves to CW-complexes. This is made precise in Theorem 5.11 in the next section.
Secondly, they are however in some situations easier to study, just like reduced singular cohomology is sometimes
easier to use than ordinary singular cohomology.

The last section of this chapter deals with a few technical properties of reduced cohomology functors. We
present a more abstract treaty on particular functors from the category of pointed CW-complexes to the category
of pointed sets, since this will also be especially useful when proving the Brown Representability Theorem.

5.1 Reduced and generalised cohomology theories on CW-complexes

Definition 5.1. (Generalised reduced cohomology theory) [13] A sequence of functors h̃n : CWopp
∗ → Ab

with n ∈ Z, together with natural isomorphisms ςn : h̃n+1 ◦ Σ ∼= h̃n of functors CWopp
∗ → Ab, is called a

generalised reduced cohomology theory if it satisfies the following properties:
(i) (Homotopy invariance) If f, g : X → Y are pointedly homotopic maps, then h̃nf = h̃ng for all n.

(ii) (Exact sequence) Any pointed cellular map f : X → Y induces together with the inclusion Y ↪→ Cf an
exact sequence

h̃n(Cf)→ h̃n(Y )→ h̃n(X).

(iii) (Wedges) Let
∨
α∈AXα be a wedge sum of pointed spaces. Then the inclusions Xα ↪→

∨
α∈AXα induce

an isomorphism h̃n(
∨
α∈AXα)

∼−→
∏
α∈A h̃n(Xα).

We often refer to a generalised reduced cohomology theory simply as a reduced cohomology theory. ♦

Remark 5.2. We require the map f : X → Y in part (ii) of the above definition to be cellular in order for Cf

to be a CW-complex (see Lemma 3.50) and hence for h̃n(Cf) to be well-defined. For any pointed continuous
map g : X → Y , there is a pointed homotopy equivalence from g to a pointed cellular map f : X → Y by the
Cellular Approximation Theorem, and Cg and Cf are homotopy equivalent relative to Y by Lemma 4.16, so
by homotopy invariance of h̃∗, our restriction to cellular maps should not feel too restrictive. O

We will not give any examples of reduces cohomology theories on CW∗ (except the trivial one sending
all pointed CW-complexes to the trivial group) until Example 5.13, where we show that reduced singular
cohomology of pointed CW-complexes is one such theory. In Section 6.5 we will give two more examples of
reduced cohomology theories, however not always defined strictly on CW∗.
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Proposition 5.3. [13] Let f : X → Y be a pointed cellular map of CW-complexes. Then there is a long exact
sequence

. . . h̃n−1(X) h̃n(Cf) h̃n(Y ) h̃n(X) h̃n+1(Cf) h̃n+1(Y ) . . .

induced by f , which is natural in the map f : X → Y .

Proof. (†) We essentially saw in the proof of exactness and naturality of the Puppe sequence (Proposition 4.22)
that there is a commutative diagram

X Y Cf Cι Cι/CY ΣX

X ′ Y ′ Cf ′ Cι′ Cι′/CY ′ ΣX ′

f

g h

ι ' ∼

Σg

f ′ ι′ ' ∼

By naturality of the suspension isomorphism and the exact sequence in Definition 5.1(ii), this gives us for each
n ∈ Z a sequence

h̃n−1(X) h̃n(ΣX) h̃n(Cι) h̃n(Cf) h̃n(Y ),
ς−1
n−1

∼
∼ h̃nι

which is natural in f and reduces to a short exact sequence

h̃n−1(X) h̃n(Cf) h̃n(Y ).

Similarly, we obtain a short exact sequence

h̃n(Y ) h̃n(X) h̃n+1(Cf),

which is also natural in f . Together with exactness of the sequence in Definition 5.1(ii), this yields exactness
and naturality of the sequence in the statement.

Let us return to generalised cohomology theories and take as ground ring R = Z (so such a theory maps
pairs of spaces to abelian groups now). We wish to restrict such a generalised cohomology theory to CW-pairs
to make a comparison with reduced cohomology theories possible. To make sure it is clear what we mean by
this, and to be able to check what we mean by it is well-defined, we will restate the axioms of such a theory for
CW-pairs.

Definition 5.4. (Eilenberg-Steenrod axioms for cohomology on CW-pairs) A sequence of functors
hn( · , · ) : CW(2)

opp → Ab with n ∈ Z, together with homomorphisms αn,(X,X′) : hn(X ′,∅) → hn+1(X,X ′)
that are natural in the CW-pair (X,X ′), is called a generalised cohomology theory on CW(2) if it satisfies the
following four properties (where it is understood that hn(X) is to be interpreted as hn(X,∅)):

(i) (Homotopy invariance) Let (X,X ′) and (Y, Y ′) be two CW-pairs, and suppose f, g : (X,X ′) → (Y, Y ′)
are homotopic maps. Then hnf = hng as maps hn(Y, Y ′)→ hn(X,X ′) for all n.

(ii) (Excision) Let X be a CW-complex with subcomplexes A and B such that X = A◦ ∪ B◦. Then the
inclusion (A,A ∩B) ↪→ (X,B) induces an isomorphism hn(X,B)

∼−→ hn(A,A ∩B) for each n.
(iii) (Long exact sequence) Let (X,X ′) be a CW-pair. Then the inclusions X ′ ↪→ X and (X,∅) → (X,X ′)

induce a long exact sequence

. . . hn−1(X) hn−1(X ′)

hn(X,X ′) hn(X) hn(X ′)

hn+1(X,X ′) hn+1(X) . . .

αn−1,(X,X′))

αn,(X,X′)
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of cohomology, which is natural in the pair (X,X ′).
(iv) (Products) Let X =

⊔
α∈AXα be a disjoint union CW-complexes. Then the inclusions Xα ↪→ X induce

an isomorphism hn(X)
∼−→
∏
α∈A hn(Xα) for all n.

The functors hn are called an ordinary cohomology theory on CW(2) if moreover they satisfy
(v) (Dimension) The cohomology groups of the one-point space satisfy hn(∗) = 0 for all n 6= 0. ♦

For all the axioms (and in particular the excision axiom) all the pairs of spaces that are plugged in the
cohomology functors are CW-pairs, so the definition above makes sense.

Proposition 5.5. [11] Let h∗ be a generalised cohomology theory on CW(2). Then for each CW-pair (X,X ′)
and each n ∈ Z, the quotient map (X,X ′) → (X/X ′, ∗) induces an isomorphism hn(X/X ′, ∗) ∼−→ hn(X,X ′),
which is natural in (X,X ′).

Remark 5.6. Let Q be the quotient functor Top(2) → Top∗, (X,X
′) 7→ (X/X ′, ∗) of Remark 1.26. Then the

above proposition says that hn ∼= hn ◦Q as functors CW(2)→ Ab for all n. O

Proof. (†) Let ι : X ′ ↪→ X denote the inclusion, and consider the CW-complex Y = Mι ∪X′ CuX ′ (which
is X, with a cylinder on X ′ glued to it, and on top of that cylinder an unreduced cone glued to it). Let
A = Mι and B = X ′ × I ∪X′ CuX ′ be two subcomplexes of Y (consisting of X and the cylinder, and the
cylinder and the cone, respectively). Note that A ∩ B ∼= X ′ × I, and that there is a deformation retraction
(A,A ∩ B) → (X,X ′) (so in particular an isomorphism in the category hTop(2)), a canonical homeomorphism
(Y,B) → (Cuι, CuX

′) of pairs obtained by seeing the cylinder in Y as the lower half of a cone on X ′, and a
quotient map (Cuι, CuX

′)→ (Cι/CuX
′, ∗) ∼= (X/X ′, ∗) which consists of a homotopy equivalences Cuι→ X/X ′

and CuX
′ → ∗ by the fact that CuX

′ is contractible and Proposition 4.9.
The inclusion (X,X ′) ↪→ (A,A ∩ B) is the homotopy inverse of the deformation retraction of pairs above,

so it induces for each n an isomorphism hn(A,A ∩ B)
∼−→ hn(X,X ′). By the excision axiom, there is an

isomorphism hn(Y,B)
∼−→ hn(A,A∩B) induced by the inclusion (A,A∩B) ↪→ (Y,B). By the above homeomor-

phism of pairs, there is an isomorphism hn(Cuι, CuX
′)
∼−→ hn(Y,B). By the long exact sequence of the pairs

(Cuι, CuX
′) and (X/X ′, ∗) and the Five Lemma, the map (Cuι, CuX

′) → (X/X ′, ∗) induces an isomorphism
hn(X/X ′, ∗) ∼−→ hn(Cuι, CuX

′). Since the composition (X,X ′) ↪→ (A,A ∩ B) ↪→ (Y,B)
∼−→ (Cuι, CuX

′) →
(X/X ′, ∗) equals the quotient map (X,X ′) → (X/X ′, ∗), this shows that the latter quotient map induces an
isomorphism hn(X/X ′, ∗) ∼−→ hn(X,X ′). Since quotienting is a functor, this isomorphism is also natural.

We are now also in a position to show that the requirement in the excision axiom of a generalised cohomology
theory can be weakened somewhat: it is not necessary that the interiors of the subcomplexes cover the CW-
complex, only that the complexes themselves do.

Corollary 5.7. (Excision) [11] Let h∗ be a generalised cohomology theory on CW(2). Suppose X is a CW-
complex with subcomplexes A and B such that X = A∪B. Then the inclusion (A,A∩B) ↪→ (X,B) induces an
isomorphism hn(X,B)

∼−→ hn(A,A ∩B) for each n.

Proof. (†) There is a homeomorphism (A/(A ∩B), ∗) ∼−→ (X/B, ∗) which fits in a commutative diagram

(A,A ∩B) (X,B)

(A/(A ∩B), ∗) (X/B, ∗)∼

where the vertical maps are the quotient maps, so Proposition 5.5 tells us that the induced diagram

hn(A,A ∩B) hn(X,B)

hn(A/(A ∩B), ∗) hn(X/B, ∗)

∼

∼

∼
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has isomorphisms as vertical maps (and as lower horizontal map, since it is induced by a homeomorphism).
Therefore the top map is an isomorphism as well, which is what we wanted to show.

Corollary 5.8. (Mayer-Vietoris sequence) Let h∗ be a generalised cohomology theory on CW(2). Suppose X
is a CW-complex with subcomplexes A and B such that X = A∪B, and write jA : A∩B ↪→ A, jB : A∩B ↪→ B,
iA : A ↪→ X and iB : B ↪→ X for the respective inclusions. Then there is an exact sequence

. . . hn−1(A ∩B) hn(X) hn(A)⊕ hn(B) hn(A ∩B) . . .
(hniA,h

niB) hnjB−hnjA

Proof. The inclusion (A,A ∩ B) ↪→ (X,B) induces a morphism between the long exact sequences of the pairs
(X,B) and (A,A∩B), and induces isomorphisms hn(X,B)

∼−→ hn(A,A∩B) by the previous corollary. Therefore,
Lemma B.14 yields the statement.

5.2 The equivalence of categories

The collection of all generalised cohomology theories on CW(2) (mapping to abelian groups) forms a category
CohomTh: a morphism η between two generalised cohomology theories h∗ and k∗ consists of level-wise natural
transformations ηn : hn → kn that respect the snake map of the long exact sequence: if we write for a CW-
pair (X,X ′) the snake maps that h∗ and k∗ come equipped with as αn,(X,X′) : hn(X ′) → hn+1(X,X ′) and
α′n,(X,X′) : kn(X ′)→ kn+1(X,X ′), respectively, then the diagram

hn(X ′) hn+1(X,X ′)

kn(X ′) kn+1(X,X ′)

αn,(X,X′)

ηX′ ηn+1,(X,X′)

α′
n,(X,X′)

must be commutative for all CW-pairs (X,X ′). In particular, η induces for each CW-pair (X,X ′) a morphism
between the long exact sequences of (X,X ′) with respect to h∗ and k∗.

Likewise, the collection of all reduced cohomology theories on CW∗ (which are by our definition required
to map to abelian groups) forms a category rCohomTh, this time with a morphism η between two reduced

cohomology theories h̃∗ and k̃∗ consisting of level-wise natural transformations ηn : h̃n → k̃n that respect
the natural suspension isomorphism: if we write ηn+1Σ for the natural transformation h̃n+1 ◦ Σ → k̃n+1 ◦ Σ
determined by (ηn+1Σ)X = ηn+1,ΣX for all X ∈ CW∗, and if we write ςn and ς ′n for the suspension isomorphisms

that h̃∗ resp. k̃∗ come equipped with, then the diagram

h̃n+1 ◦ Σ h̃n

k̃n+1 ◦ Σ k̃n

ςn
∼

ηn+1Σ ηn

ς′n
∼

of functors and natural transformations must be commutative. We will spend this section on showing that these
two categories of cohomology theories are equivalent.

Proposition 5.9. There is a functor F : CohomTh→ rCohomTh which sends a generalised cohomology theory
h∗ to the reduced cohomology theory Fh∗ determined by Fhn(X) = hn(X, ∗) for any pointed CW-complex X
and n ∈ Z.

Proof. We roughly follow the proof in [13], with drs. J. Becerra providing a general strategy of the proof, with
the details provided by us. For a generalised cohomology theory h∗ and n ∈ Z, the object Fhn : CW∗ →
Ab, X 7→ hn(X, ∗) is a functor since hn is and a pointed continuous map is also a morphism of pairs of spaces.
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We will now construct the suspension isomorphism. By Lemma 3.47(ii), there is for any X ∈ CW∗ a natural
pointed homeomorphism r1 : Ci

∼−→ ΣX, where i : X ↪→ CX is the inclusion. This gives us an isomorphism
p1 := hn+1r1 : hn+1(ΣX, ∗) ∼= hn+1(Ci, ∗) for all n, which is natural in X since r1 is.

The long exact sequence of the triplet (Ci,CX, ∗) of Theorem 2.35 and the fact that CX is contractible
on its base point (so that the long exact sequence of the pair (CX, ∗) implies that hn(CX, ∗) = 0 for all
n) give us an isomorphism p2 : hn+1(Ci, ∗) ∼−→ hn+1(Ci,CX), induced by the inclusion (Ci, ∗) ↪→ (Ci,CX).
This isomorphism is natural in X since any pointed map f : X → Y between two pointed CW-complexes
induces a map (C(X ↪→ CX), CX, ∗) → (C(Y ↪→ CY ), CY, Y, ∗) which therefore commutes with the inclusion
which induces the isomorphism. The maps on cohomology induced by f will therefore commute with these
isomorphisms.

If we let A = CX be the “original” reduced cone in Ci, and B = CX the one added in the construction
of Ci, then both are subcomplexes of Ci that satisfy Ci = A ∪ B and A ∩ B = X. By the excision property
(Corollary 5.7), the inclusion (A,X) ↪→ (Ci,B) induces an isomorphism p3 : hn+1(Ci,CX)

∼−→ hn+1(CX,X),
which is also natural in X: any pointed map f : X → Y between two pointed CW-complexes also induces
like above a map (C(X ↪→ CX), CX,X, ∗) → (C(Y ↪→ CY ), CY, Y, ∗), which consequently commutes with
the inclusions considered in the excision argument. Since these inclusions induce the isomorphism, the maps
induced by f commute with the respective isomorphisms.

Lastly, there is an isomorphism p4 : hn(X, ∗) ∼−→ hn+1(CX,X), which follows from the long exact sequence of
the triplet (CX,X, ∗) and the fact that CX is contractible on its base point. Explicitly, if we write ι : (X,∅) ↪→
(X, ∗) for the inclusion and αn,(CX,X) for the snake map hn(X) → hn+1(CX,X) in the long exact sequence
of the pair (CX,X), then p4 = αn,(CX,X) ◦ hnι. This isomorphism is also natural in X, since the assignment
X 7→ (CX,X, ∗) is functorial and the long exact sequence of the triplet is natural. Putting everything together,
we get a natural isomorphism

hn+1(ΣX, ∗) hn+1(Ci, ∗) hn+1(Ci,CX) hn+1(CX,X) hn(X, ∗),p1

∼
p2

∼
p3

∼
p−1

4

∼

and we define ςn,X := p−1
4 ◦ p3 ◦ p2 ◦ p1. This defines the suspension isomorphism ςn for all n.

Now we verify Fh∗ satisfies the axioms of a reduced cohomology theory. Firstly, homotopy invariance is trivial.
Secondly, for any pointed cellular map f : X → Y between CW-complexes there is a pointed homeomorphism
Cf ∼= mf/X, and by Proposition 5.5 this gives us an isomorphism hn(Cf, ∗) ∼= hn(mf , X) induced by the
quotient map q : (mf , X)→ (Cf, ∗). If we denote by p : mf → Y the standard pointed deformation retraction,
then there is a diagram

(X, ∗) (mf , ∗) (mf , X)

(X, ∗) (Y, ∗) (Cf, ∗)

idX p q

f

which commutes up to homotopy. By the long exact sequence of the triplet (mf , X, ∗), there is a commutative
diagram

hn(mf , X) hn(mf , ∗) hn(X, ∗)

hn(Cf, ∗) hn(Y, ∗) hn(X, ∗)

hnq

f

hnp id

in which the vertical maps are all isomorphism and the upper row is exact. This is the exact sequence
hn(Cf, ∗)→ hn(Y, ∗)→ hn(X, ∗) induced by f which we were after.

Now, thirdly, if
∨
α∈AXα is a wedge sum of pointed CW-complexes (Xα, ∗α), there is a homeomorphism∨

α∈AXα
∼=
⊔
α∈AXα/

⊔
α∈A{∗α} (this is also a consequence of the fact that taking the quotient is a left adjoint,

whereby it commutes with colimits). The inclusions ια : (Xα, ∗α) ↪→ (X, ∗) give us inclusions ια(Xα, ∗α) →

49



(
⊔
α∈AXα,

⊔
α∈A{∗α}) between pairs of CW-complexes, and the diagram

(Xα, ∗α) (
⊔
α∈AXα,

⊔
α∈A{∗α})

∨
α∈AXα

∼=
⊔
α∈AXα/

⊔
α∈A{∗α}

ια

ια

commutes. Taking cohomology, the inclusions ια induce by Proposition 5.5 an isomorphism Fhn(
∨
α∈AXα) =

hn(
∨
α∈AXα, ∗) ∼= hn(

⊔
α∈AXα,

⊔
α∈A{∗α}). The long exact sequence of the pair (

⊔
α∈AXα,

⊔
α∈A{∗α}) and

the product axiom of cohomology gives a commutative diagram

. . . hn(
⊔
α∈AXα,

⊔
α∈A{∗α}) hn(

⊔
α∈AXα) hn(

⊔
α∈A{∗α}) . . .

. . .
∏
α∈A hn(Xα, ∗α)

∏
α∈A hn(Xα)

∏
α∈A hn(∗α) . . .

∼ ∼

where the first vertical map is given by the product of the maps hn(
⊔
α∈AXα,

⊔
α∈A{∗α}) → hn(Xα, ∗α) in-

duced by the inclusions ια. By the Five Lemma, there is thus an isomorphism hn(
⊔
α∈AXα,

⊔
α∈A{∗α}) ∼=∏

α∈A hn(Xα, ∗α), which implies Fhn(
∨
α∈AXα) ∼=

∏
α∈A Fhn(Xα), induced by the ια. Therefore Fh∗ is a

reduced cohomology theory.

Let η : h∗ → k∗ be a morphism of generalised cohomology theories in CohomTh. Then for n ∈ Z and each pointed
CW-complex X, ηn,(X,∗) is a map Fhn(X) = hn(X, ∗)→ kn(X, ∗) = Fkn(X), which obviously constitutes to a
natural transformation Fhn → Fkn. We have to show that these maps commute with the suspension isomor-
phism. To see this, note that since ηn and ηn+1 are natural transformations between cohomology functors, they
are assumed to commute with maps induced by morphisms on CW-pairs, and are assumed to commute with
the snake maps of the long exact sequences of pairs. By the above definition of the suspension isomorphism,
this implies that the diagram

hn+1(ΣX, ∗) hn(X, ∗)

kn+1(ΣX, ∗) kn(X, ∗)

ςn
∼

ηn+1,(ΣX,∗) ηn,(X,∗)

ς′n
∼

must commute, where ςn and ς ′n are the suspension isomorphisms of h∗ and k∗ in degree n, respectively.
Therefore, the maps ηn,(X,∗) constitute for all X ∈ CW∗ and n ∈ Z to a morphism between Fh∗ and Fk∗. We
let Fη be this morphism. It is clear that this assignment respects composition and the identity. This shows F
is a well-defined functor.

Proposition 5.10. [11] There is a functor G : rCohomTh→ CohomTh which sends a reduced cohomology theory

h̃∗ to the generalised cohomology theory Gh̃∗ determined by Gh̃n(X,X ′) = h̃n(X/X ′) for any CW-pair (X,X ′)
and n ∈ Z.

Proof. (†) Let a reduced cohomology theory h̃∗ be given. Gh̃n is for each n ∈ Z a functor, since h̃n and taking
the quotient is.

For any two homotopic maps f, g : (X,X ′)→ (Y, Y ′) of pairs, there is an induced pointed homotopy between

the induced maps f̄ , ḡ : X/X ′ → Y/Y ′, so homotopy invariance of h̃n implies homotopy invariance of Gh̃n.
Now let X be a CW-complex with two subcomplexes A and B that satisfy X = A◦ ∪ B◦. We proceed

just like in the proof of Corollary 5.7: there is a homeomorphism (A/(A ∩ B), ∗) ∼−→ (X/B, ∗) which fits in a
commutative diagram

(A,A ∩B) (X,B)

(A/(A ∩B), ∗) (X/B, ∗)∼
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where the vertical maps are the quotient maps, so the definition of Gh̃n immediately tells us that the inclusion
(A,A ∩B) ↪→ (X,B) induces an isomorphism Gh̃n(X,B)

∼−→ Gh̃n(A,A ∩B).
Next, for a pair (X,X ′) of non-pointed CW-complexes the inclusion ι : X ′ ↪→ X induces a pointed inclusion

ι+ : X ′+ = X ′/∅ → X/∅ = X+, and the quotient map q′ : Cι+ ∼= Cuι → X/X ′ is a pointed homotopy
equivalence, as we by now know all too well. If we let q : (X+, X

′
+) 7→ (X+/X

′
+, ∗) ∼= (X/X ′, ∗) be the other

quotient map, then there is a commutative diagram

(X ′+, ∗) (X+, ∗) (Cι+, ∗)

(X/X ′, ∗)

ι+

q
q′

and therefore by Proposition 5.3 also a commutative diagram

. . . h̃n+1(X+) h̃n+1(Cι+)) h̃n(X ′+) h̃n(X+) h̃n(Cι+) h̃n−1(X ′+) . . .

h̃n+1(X/X ′) h̃n(X/X ′)

∼

h̃nq

∼

h̃nq

where the top row is exact and induced by the inclusions X ′+ ↪→ X+ ↪→ Cι+. The diagram

(X ′,∅) (X,∅) (X,X ′)

(X ′+, ∗) (X+, ∗) (X/X ′, ∗)q

where the vertical maps are quotient maps, also commutes, and Gh̃n(X) is short for Gh̃n(X,∅) = h̃n(X/∅) =

h̃n(X+). This implies that the inclusions (X ′,∅) ↪→ (X,∅) ↪→ (X,X ′) induce a commutative diagram

. . . Gh̃n+1(X) Gh̃n+1(Cι) Gh̃n(X ′) Gh̃n(X) Gh̃n(Cι) Gh̃n−1(X ′) . . .

Gh̃n+1(X,X ′) Gh̃n(X,X ′)

∼ ∼

where the top row is exact. If we write pn+1 for the isomorphism Gh̃n+1(X,X ′)
∼−→ Gh̃n+1(Cι) in the diagram

above and rn : Gh̃n(X ′) → Gh̃n+1(Cι) for the map appearing in the diagram above, then we define the snake
maps αn,(X,X′) := p′n+1◦rn. This gives us the long exact sequence of the pair (X,X ′). Naturality of this sequence
(and hence of the snake maps in particular) follows from a map (X,X ′)→ (Y, Y ′) of CW-pairs inducing a map
(CιX,+, X+, X

′
+)→ (XιY,+, Y+, Y

′
+) and naturality of the long exact sequence in Proposition 5.3.

Finally, for a disjoint union
⊔
α∈AXα of non-pointed CW-complexes, there is a pointed homeomorphism(⊔

α∈AXα

)
+
∼=
∨
α∈A(Xα)+ (this is also a consequence of the functor X → X+ being a left adjoint, as remarked

in Remark 1.26), which associates the inclusions (ια)+ : (Xα)+ ↪→ (
⊔
α∈AXα)+ with iα : (Xα)+ ↪→

∨
α∈A(Xα)+.

Therefore the inclusions induce an isomorphism Gh̃n(
⊔
α∈AXα) ∼= h̃n(

∨
α∈A(Xα)+) ∼=

∏
α∈A h̃n((Xα)+) =∏

α∈AGh̃n(Xα). Therefore Gh̃∗ is a generalised cohomology theory.

For a morphism η : h̃∗ → k̃∗ and a CW-pair (X,X ′), for each n the map ηn,X/X′ : Gh̃n(X,X ′)→ Gk̃n(X,X ′) is

a homomorphism, and since ηn is a natural transformation, these maps define a natural transformation Gh̃n →
Gk̃n. We need to show that these transformations commute with the snake maps Gh̃n(X ′) → Gh̃n+1(X,X ′)
of the long exact sequence of a pair (X,X ′). We saw above that these snake maps are induced by the pointed
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homotopy equivalence Cι+ ' X/X ′, with ι+ : X ′+ ↪→ X+ the inclusion, by the homotopy equivalence Ci ' ΣX ′,

with i : X+ ↪→ Cι+ the inclusion, and by the suspension isomorphism of h̃∗. Since the ηn are assumed to com-
mute with homomorphisms induced by maps of pointed CW-complexes and with the suspension isomorphism,
they will therefore also commute with the snake maps, and therefore they induce a morphism Gh̃∗ → Gk̃∗. We
let Gη be this morphism, and it is not difficult to see that this assignment respects composition and the identity.
Therefore, G is a well-defined functor as well.

Theorem 5.11. The functors F and G as in the previous two propositions give an equivalence of categories
(see Definition A.26) between CohomTh and rCohomTh.

Proof. (†) On the one hand, the functor GF sends a generalised cohomology theory h∗ to the generalised
homology theory GFh∗ determined by GFhn(X,X ′) = hn(X/X ′, ∗) for all CW-pairs (X,X ′) and n ∈ Z.
Proposition 5.5 then gives us a natural isomorphism GF ∼= idCohomTh.

On the other hand, for a reduced cohomology theory h̃∗, the reduced cohomology theory FGh̃∗ is determined
by FGh̃n(X) = h̃n(X/∗) ∼= h̃n(X) for all pointed CW-complexes X and n ∈ Z. Since the homeomorphism
X/∗ ∼= X is natural in the pointed CW-complex X, we find FG ∼= idrCohomTh as well. This shows that F and G
are equivalences of categories.

Corollary 5.12. [11] Let h∗ be a generalised cohomology theory on CW(2). Then there exists a reduced co-

homology theory h̃∗ on CW∗ such that hn(X,X ′) ∼= h̃n(X/X ′) naturally for all CW-pairs (X,X ′) and n ∈ Z.

Conversely, given a reduced cohomology theory h̃∗ on CW∗, there exists a generalised cohomology theory h∗ on
CW(2) such that h̃n(X) ∼= hn(X, ∗) naturally for all pointed CW-complexes X and n ∈ Z.

Example 5.13. In Remark 2.32, we deduced that there is a natural isomorphism Hn( · , · ;A) ∼= H̃n( · ;A) ◦ U
of functors Topopp

∗ → Ab for any abelian group A and any integer n, where U : Topopp
∗ → Topopp is the forgetful

functor. Restricting to CW∗, we see that singular cohomology and reduced singular cohomology are related to
each other just as in the above corollary. In particular, this shows formally that reduced singular cohomology
is a reduced cohomology theory. M

Corollary 5.14. (Mayer-Vietoris sequence for reduced cohomology) Let h̃∗ be a reduced cohomology
theory on CW∗. Suppose X is a pointed CW-complex with pointed subcomplexes A and B such that X = A∪B,
and write jA : A ∩ B ↪→ A, jB : A ∩ B ↪→ B, iA : A ↪→ X and iB : B ↪→ X for the respective inclusions. Then
there is an exact sequence

. . . h̃n+1(A ∩B) h̃n(X) h̃n(A)⊕ h̃n(B) h̃n(A ∩B) . . .
(h̃niA,h̃

niB) h̃njB−h̃njA

Proof. Use the previous corollary to find a generalised cohomology theory h∗ on CW(2) that satisfies h̃n(X) =
hn(X, ∗) naturally for all pointed CW-complexes X and n ∈ Z. The inclusion (A,A∩B, ∗) ↪→ (X,B, ∗) induces
a morphism between the long exact sequences of the triplets (X,B, ∗) and (A,A ∩ B, ∗) (in h∗), and induces
isomorphisms hn(X,B)

∼−→ hn(A,A ∩B) by Corollary 5.7. Therefore, Lemma B.14 yields the statement.

Corollary 5.15. Let h̃∗ be a reduced cohomology theory on CW∗, and write h∗ for its associated generalised
cohomology theory obtained from Corollary 5.12. Then for each m ≥ 0 and n ∈ Z, we have h̃n(Sm) = hn−m(∗).

Proof. For m = 0, this follows from h̃n(S0) = h̃n(∗/∅) ∼= hn(∗,∅) = hn(∗). To show the claim for all m,
we use the suspension isomorphism and the pointed homotopy equivalence Sm+1 ∼= SSm ' ΣSm to obtain
h̃n+1(Sm+1) ∼= h̃n(Sm), which inductively shows the claim for all n and m.

5.3 Interlude on semi-Brown functors

Two of the axioms of a reduced cohomology theory on CW∗, the homotopy invariance axiom and the wedge
axiom, in themselves already allow us to deduce a few interesting results about functors satisfying them. Since
we will use these in the proof of the Brown Representability Theorem 6.31, it is worth to take the time to deduce
them formally in this section.
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Notation 5.16. Let F be a contravariant functor from a subcategory of topological spaces to the category of
sets, pointed sets or abelian groups, respectively (it will be clear from context). If X ′ ⊆ X is a subspace of a
topological space X and ι : X ′ ↪→ X is the inclusion, such that all three are contained in the subcategory, then
for any a ∈ FX we denote by a|X′ the element Fι(a) ∈ FX ′, and we call a|X′ the restriction of a to X ′. #

Definition 5.17. A functor F : CWopp
∗ → Set∗ is called a semi-Brown functor if it satisfies the following two

properties:
(i) (Homotopy invariance) If f, g : X → Y are two pointedly homotopic maps, then Ff = Fg.

(ii) (Wedges) If (Xα)α∈A is a family of spaces in CW∗, then the inclusions Xα ↪→ X induce an isomorphism
F (
∨
α∈AXα)

∼−→
∏
α∈A F (Xα). ♦

Note that we only require F to map to pointed sets, and not to abelian groups. The name is chosen because,
by lack of a better name, we hint at Definition 6.29 of a Brown functor, which is required to satisfy one further
axiom and be defined only on the path-connected CW-complexes.

Lemma 5.18. Let Y be an arbitrary pointed topological space. Then [ · , Y ]• is a semi-Brown functor.

Proof. Homotopy invariance is obvious, and the wedge axiom is a restatement of the universal property of the
wedge sum (cf. Proposition A.50).

Definition 5.19. Let F be a contravariant functor from a subcategory of topological spaces to the category of
sets, pointed sets or abelian groups, respectively (again it will be clear from context). Let (X,x) and (Y, y) be
two pairs of spaces X,Y ∈ C and x ∈ FX, y ∈ FY . A morphism f : (X,x)→ (Y, y) is a morphism f : X → Y
in D such that Ff(y) = x. By functoriality of F , we obtain a category

∫
C
F of such pairs and morphisms

between them, called the category of elements of F [22]. ♦

Convention 5.20. In all that follows here, we assume that F : CWopp
∗ → Set∗ is a semi-Brown functor. �

Lemma 5.21. (†)
(i) Suppose X,Y, Z ∈ CW∗, and let f : X → Z and g : Y → Z be two pointed maps. Then there is a

commutative diagram

FZ F (X ∨ Y )

FZ FX × FY

F (f∨g)

∼

(Ff,Fg)

where the inclusions X,Y ↪→ X ∨ Y induce the vertical pointed bijection on the right.
(ii) Suppose X,Y, Z,W ∈ CW∗, and let f : X → W and g : Y → Z be two pointed maps. If we denote by h

the induced map X ∨ Y →W ∨ Z, then there is a commutative diagram

F (W ∨ Z) F (X ∨ Y )

FW × FZ FX × FY

Fh

∼ ∼

(Ff,Fg)

where the vertical isomorphisms are induced by the inclusions.

Proof. Let ιX : X ↪→ X ∨ Y and ιY : Y ↪→ X ∨ Y be the inclusions, and note that the wedge axiom of F gives
us a commutative diagram

FX

FX × FY F (X ∨ Y ) FZ

FY

prFX

prFY

∼

FιX

FιY

F (f∨g)
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Since FιX ◦ F (f ∨ g) = F ((f ∨ g) ◦ ιX) = Ff and similarly FιY ◦ F (f ∨ g) = Fg, it follows that the map
FZ → FX × FY associated with f ∨ g is (Ff, Fg).

For the second statement, let ιW : W ↪→ W ∨ Z and ιZ : Z ↪→ W ∨ Z be the inclusions, and note that the
induced map h equals (ιW ◦f)∨(ιZ ◦g), and hence the bijection F (X∨Y ) ∼= FX×FY given by the wedge axiom
associates Fh with the map F (W ∨Z)→ FX×FY, u 7→ (Ff ◦FιW (u), Fg ◦FιZ(u)) = (Ff(u|W ), Fg(u|Z)) by
the first part. Now, under the bijection F (W ∨Z) ∼= FW ×FZ also given by the wedge axiom, this is associated
with the map FW × FZ → FX × FY, (w, z) 7→ (Ff(w), Fg(z)).

Corollary 5.22. F (∗) equals the one-point set {∗}.

Proof. [11] For any X ∈ CW∗, let ι : ∗ ↪→ X be the inclusion. Then the wedge idX ∨ ι : X ∨ ∗ → X is a
homeomorphism, so the previous lemma implies that the map (idFX , F ι) : FX → FX × F (∗) is a bijection.
This is only possible if F (∗) equals the one-point set.

Notation 5.23. In what follows, we will often by slight abuse of notation write both the map X ∨Y →W ∨Z
induced by two maps f : X →W and g : Y → Z, and also the map X∨Y → Z induced by two maps f : X → Z
and g : Y → Z as f ∨ g. #

Lemma 5.24. (†) Let X,Y ∈ CW∗, and let ιX : X ↪→ X ∨ Y and ιY : Y ↪→ X ∨ Y be the inclusions. Let
pY : Y → ∗ be the unique map of this kind, and write eY for the base point of FY . If f : X ∨ ∗ ∼−→ X is the
canonical homeomorphism, then the composition

FX F (X ∨ ∗) F (X ∨ Y ) FX × FYFf

∼
F (id∨pY ) (FιX ,F ιY )

∼

equals the map FX → FX × FY : x 7→ (x, eY ).

Proof. The map f ◦ (id ∨ pY ) ◦ ιX : X → X equals the identity, while f ◦ (id ∨ pY ) ◦ ιY : Y → X is pointedly
null-homotopic. Homotopy invariance of F and the fact that F sends continuous maps to pointed maps of sets
therefore imply that the composition above does send any x ∈ FX to (x, eY ) ∈ FX × FY .

Lemma 5.25. For any X ∈ CW∗, F (ΣX) carries naturally a group structure.

Proof. We fill in the details of the short proof in [11]. Consider the quotient map q : ΣX → ΣX/X ∼= ΣX ∨ΣX,
and let i1 and i2 denote the inclusions ΣX ↪→ ΣX ∨ ΣX on the first and second copy, respectively. In what
follows, we will write S1 for this first copy and S2 for the second copy. By the wedge axiom, there is an
isomorphism F (S1 ∨ S2)

∼−→ F (S1) × F (S2) induced by i1 and i2, so we obtain a map m : F (S1) × F (S2)
∼−→

F (S1∨S2)
Fq−−→ F (ΣX), which we claim defines the structure of a group. Explicitly, if (a1, a2) ∈ F (S1)×F (S2),

and α ∈ F (S1∨S2) is the unique element such that α restricts to an on Sn for n = 1, 2, then m(a1, a2) = Fq(α).
For associativity, let S3 be a third copy of ΣX, and let ιn : ΣX ↪→ S1 ∨ S2 ∨ S3 be inclusions on the n-th

copy, and let j1 : ΣX ↪→ ΣX ∨ S3 and j2 : S3 ↪→ ΣX ∨ S3 be two further inclusions.
The operation F (S1)× F (S2)× F (S3)→ F (ΣX), (a1, a2, a3) 7→ m(m(a1, a2), a3) factors as

F (S1)× F (S2)× F (S3) F (S1 ∨ S2)× F (S3) F (ΣX)× F (S3) F (ΣX ∨ S3) F (ΣX)

(a1, a2, a3) (α, a3) (Fq(α), a3) β Fq(β)

(Fi1,F i2)×id

∼
Fq×id (Fj1,F j2)

∼
Fq

with α such that Fin(α) = an for n = 1, 2, and β such that Fj1(β) = Fq(α) and Fj2(β) = a3. Now consider
the composite

F (S1)× F (S2)× F (S3) F (S1 ∨ S2 ∨ S3) F (ΣX ∨ S3)

(a1, a2, a3) a b

(Fι1,F ι2,F ι3)

∼
F (q∨id)
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with a such that Fιn(a) = an for n = 1, 2, 3 (which implies that F (ι1 ∨ ι2)(a) = α by Lemma 5.21 and the
wedge axiom) and b such that Fj1(b) = Fq(F (ι1∨ ι2)(a)) = Fq(α) and Fj2(b) = Fι3(a) = a3. This implies that
b = β, and therefore m(m(a1, a2), a3) = F ((q ∨ id) ◦ q)(a1, a2, a3). Likewise,m(a1,m(a2, a3)) = F ((id∨ q) ◦ q, so
by homotopy invariance of F , associativity of m would follow as soon as we show that (q ∨ id) ◦ q ' (id ∨ q) ◦ q
pointedly.

To do so, consider the maps

f : [−1, 1]→ [−1, 5], t 7→

{
2t+ 1, if −1 ≤ t ≤ 0,

4t+ 1, if 0 ≤ t ≤ 1
, and g : [−1, 1]→ [−1, 5], t 7→

{
4t+ 3, if −1 ≤ t ≤ 0,

2t+ 3, if 0 ≤ t ≤ 1
,

which are clearly homotopic relative to {−1, 1} (the reader should try to visualise what these maps are doing).
Using that we can consider S1 ∨S2 ∨S3 to be the space X × [−1, 5]/(X ×{−1, 1, 3, 5}∪{∗}× [−1, 5]), the maps

f and g induce maps f̃ , g̃ : ΣX → S1 ∨ S2 ∨ S3 (whose well-definedness can be checked), which are then also

homotopic, and even pointedly homotopic. However, f̃ = (q ∨ id) ◦ q and g̃ = (id ∨ q) ◦ q, which means these
right-hand maps are also pointedly homotopic, which is what we wanted to show. Therefore, m is associative.

Let e ∈ F (ΣX) be the base point, and let ι : ∗ ↪→ ΣX be the inclusion and consider p : ΣX → ∗. These
maps fit in a diagram

ΣX ΣX

ΣX ∨ ΣX ΣX ∨ ∗

q

id

id∨p
id∨ι

that commutes up to homotopy. Applying F to this diagram, we obtain by homotopy invariance of F a
commutative diagram

F (ΣX) F (ΣX)

F (ΣX ∨ ΣX) F (ΣX ∨ ∗)

id

F (id∨ι)Fq

F (id∨p)

Under the bijections F (ΣX ∨ΣX) ∼= F (ΣX)×F (ΣX) and F (ΣX ∨∗) ∼= F (ΣX)×F (∗), we see using Lemmata
5.21 and 5.24 that an element a ∈ F (ΣX) in the upper right corner is sent by the lower three maps first to
(a, ∗), then to (a, e) and then to m(a, e). By commutativity of the above diagram, m(a, e) = a. Similarly, we
find that m(e, a) = a. Since a ∈ F (ΣX) was arbitrary, we have checked that e is the unit element of F (ΣX).

Lastly, let r : ΣX → ΣX : [(x, t)] 7→ [(x,−t)]. We claim that Fr : F (ΣX) → F (ΣX) is the inversion map.
Since the map

f : [−1, 1]→ [−1, 1], t 7→

{
2t+ 1, if −1 ≤ t ≤ 0,

1− 2t, if 0 ≤ t ≤ 1

is null-homotopic relative to {0, 1}, the induced map f̃ : ΣX → ΣX is also pointedly null-homotopic. By

homotopy invariance, F f̃ : F (ΣX)→ F (ΣX) is the constant map on the base point e. It is not difficult to see

that f̃ = (id ∨ r) ◦ q, which implies that m(a, Fr(a)) = F ((id ∨ r) ◦ q)(a) = e for all a ∈ F (ΣX). Similary, we
find m(Fr(a), a) = e, also for all such a, and with that, we have found an inverse operation. All in all, we have
shown that F (ΣX) allows a group structure.

For naturality, let f : X → Y be a continuous pointed map between pointed CW-complexes, and write
qX : ΣX → ΣX ∨ ΣX and qY : ΣY → ΣY ∨ ΣY for the respective quotient maps that define the groups
structures on F (ΣX) and F (ΣY ) (with multiplication maps mX and mY ). Then there is a commutative
diagram

ΣX ΣY

ΣX ∨ ΣX ΣY ∨ ΣY

Σf

qX qY

Σf∨Σf
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With Lemma 5.21, this implies that for each (a1, a2) ∈ F (ΣY ) × F (ΣY ), it holds that F (Σf)(mY (a1, a2)) =
mX(F (Σf)(a1), F (Σf)(a2)), and therefore F (Σf) is a group homomorphism. This shows that the group struc-
ture is natural.

In particular, for all n ≥ 1 the set F (Sn) carries the structure of a group, which follows from Sn ∼= SSn−1 '
ΣSn−1 and homotopy invariance of F . Note also that Lemma 5.18 implies that [ΣX,Y ]• carries a group
structure for all pointed CW-complexes X and Y , which is natural in X.

Remark 5.26. (†) We now have a rather explicit description of the group structure on reduced cohomology

groups for reduced suspensions: let h̃∗ be a reduced cohomology theory on CW∗, and let X be an arbitrary
pointed CW-complex. Then h̃n(ΣX) does not only carry its original natural (since h̃n ◦ Σ is a functor) group
structure, but by the above lemma also another natural group structure, and we claim these coincide. Indeed,
let ι1, ι2 : ΣX ↪→ ΣX ∨ ΣX be the inclusions on the first and second copies, and let q : ΣX → ΣX/X ∼=
ΣX ∨ ΣX be the quotient map. The second group structure is given by the composite h̃nq ◦ h̃n(ι1, h̃

nι2)−1 :

h̃n(ΣX)× h̃n(ΣX)→ h̃n(ΣX), which is a group homomorphism in the first group structure since h̃∗ is a functor
CWopp

∗ → Ab. The Eckmann-Hilton argument (and Remark 4.27) now implies that both group structures indeed

coincide. This gives us a good picture of the group law on h̃n(ΣX), despite not knowing anything of h̃∗ except
the axioms it satisfies. O

In the following lemma, F will no longer be a functor CWopp
∗ → Set∗, but a co- or contravariant functor

F : CW∗ → Ab. For F to be a semi-Brown functor now means it basically satisfies the same axioms as before,
properly adjusted in the covariant case.

Lemma 5.27. Let F : CW∗ → Ab be a co- or contravariant semi-Brown functor. Given two pointed CW-
complexes X and Y and two pointed maps f, g : ΣX → Y , let [f ] ? [g] be the group product of homotopy classes
of f and g in the group [ΣX,Y ]•. Then F (f ? g) = Ff + Fg as homomorphisms of abelian groups.

Proof. [11] We only will cover the contravariant case, since the covariant case is treated analogously. Let
q : ΣX → ΣX∨ΣX be the quotient map belonging to collapsing X ⊆ ΣX to a point, let i1, i2 : ΣX ↪→ ΣX∨ΣX
be the inclusions in the first and second copy, and let p : ΣX → ∗ be the unique map between these spaces.

The composite FK
f∨g−−→ F (ΣX ∨ ΣX)

∼−→ F (ΣX)× F (ΣX) sends an arbitrary u ∈ FK to (Ff(u), Fg(u))

by Lemma 5.21. On the other hand, the composite F (ΣX) × F (ΣX)
∼−→ F (ΣX ∨ ΣX)

Fq−−→ F (ΣX) sends any
pair (a1, 0) to a1, by the same argument as in the previous lemma, when we showed the base point of F (ΣX)
was the unit element of the group law on the latter set. Similarly, the composite considered sends (0, a2) to a2

for any a2 ∈ F (ΣX). Since F (ΣX) is an abelian groups and all induced maps are homomorphisms of abelian
groups (since F is a functor to Ab), this implies that (a1, a2) is sent to a1 + a2.

All in all, we find F (f ? g) = Fq ◦ F (f ∨ g) equals the composite

FK F (ΣX ∨ ΣX) F (ΣX)× F (ΣX) F (ΣX ∨ ΣX) F (ΣX)
F (f∨g) ∼ ∼ Fq

and hence sends any u ∈ FK to Ff(u) + Fg(u). This shows that F (f ? g) = Ff + Fg.
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Chapter 6

Ω-spectra and representability of
cohomology

We have now (almost) all the tools we need to show that generalised and reduced cohomology theories on CW-
complexes are representable, as we will show in this chapter. The first two sections are devoted to introducing
the kind of objects that will later turn out to be the representing objects, whereas the third and most important
section deals with the Brown Representability Theorem and the representability of cohomology. In the fourth
section, we apply these results to singular cohomology and give a short treaty of Eilenberg-MacLane spaces
and the uniqueness of cohomology. In the last section, we give, without going into too much detail, two other
examples of cohomology theories, as a teaser of what one can do with cohomology theories other than singular
cohomology.

6.1 Mapping spaces and the suspension-loop adjunction

We have used before that for commutative rings R, the Hom-sets of RMod carry naturally the structure of an
R-module. Something similar is the case with the Hom-sets of Top: for any two topological spaces X and Y ,
we can equip Map(X,Y ) with a convenient topology.

Definition 6.1. Let X and Y be two topological spaces. For any compact set K ⊆ X and open set O ⊆ Y ,
we let N(K,O) = {f ∈ Map(X,Y ) | f(K) ⊆ O}. The compact-open topology on Map(X,Y ) is the topology
generated by the subbase {N(K,O) | K ⊆ X compact, O ⊆ Y open}. ♦

Convention 6.2. From this point forwards, we will always assume that a mapping space carries the compact-
open topology. �

Proposition 6.3. Map( · , · ) is a functor Topopp × Top→ Top.

Proof. We only need to check that the induced maps between mapping spaces are continuous. Let X, Y and
Z be topological spaces, and suppose f : X → Y is a continuous map. For a compact set K ⊆ X and open
O ⊆ Z, we know that f(K) ⊆ Y is also compact. The induced map − ◦ f : Map(Y, Z)→ Map(X,Z) therefore
satisfies (−◦ f)−1(N(K,O)) = {g ∈ Map(Y,Z) | gf(K) ⊆ O} = N(f(K), O). Since the compact-open topology
has sets N(K,O) as subbase, − ◦ f is continuous. Moreover, for a continuous map g : Y → Z, we have
(g ◦ −)−1(N(K,O)) = {f ∈ Map(X,Y ) | gf(K) ⊆ O} = N(K, g−1(O)). Therefore, g ◦ − : Map(X,Y ) →
Map(X,Z) is also continuous.

As we saw in Example A.38(i), there is for any given set Y a natural isomorphism HomSet(− × Y, · ) ∼=
HomSet(−,HomSet(Y, · )). We could ask whether or not such an adjunction also holds in Top. It turns out it
does −as long as we assume that Y is locally compact. What follows is a key result, and hence deserves a
thorough proof.
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Proposition 6.4. Let Y be a locally compact space. Then there is an adjunction −×Y a Map(Y, · ) of functors
Top→ Top.

Proof. (Roughly following [13]) In other words, we need to show there is a natural bijection of sets1 Map(−×
Y, · ) ∼= Map(−,Map(Y, · )). We use the same natural bijection as in Example A.38(i) (or rather its restriction
the given mapping spaces). We thus send a continuous map f : X×Y → Z to f̃ : X → Map(Y,Z), x 7→ f(x, · ),
and a continuous map g : X → Map(Y,Z) to g̃ : X × Y → Z, (x, y) 7→ g(x)(y). We then only need to show
that these assignments send continuous maps to continuous maps, for this shows the bijection in the mentioned
example indeed restricts to a bijection on mapping spaces.

Let us first check the first assignment sends a continuous map f : X×Y → Z to a continuous map. LetK ⊆ Y
be compact, and O ⊆ Z be open. Then f̃−1(N(K,O)) = {x ∈ X | f(x,K) ⊆ O} = {x ∈ X | (x,K) ⊆ f−1(O)},
which is open by Lemma 6.5 below. This shows f̃ is continuous.

Now, let a continuous map g : X → Map(Y,Z), and an open set O ⊆ Z be given. Then g̃−1(O) = {(x, y) ∈
X × Y | g(x)(y) ∈ O} = {(x, y) ∈ X × Y | y ∈ g(x)−1(O)}. Note that g(x) ∈ Map(Y, Z) is continuous, so
g(x)−1(O) is open in Y . Let (x0, y0) ∈ g̃−1(O) = {(x, y) ∈ X × Y | y ∈ g(x)−1(O)} be fixed. Since Y is locally
compact, there is a compact set Kx0

⊆ Y and an open set Ux0
⊆ Y such that y0 ∈ Ux0

⊆ Kx0
⊆ g(x0)−1(O).

The set N(Kx0
, O) is open in Map(Y, Z), so Ox0

= g−1(N(Kx0
, O) = {x ∈ X | g(x)(Kx0

) ⊆ O} is open in X,
and contains x0. Now, for every (x, y) ∈ Ox0

× Ux0
it holds that g(x)(y) ∈ g(x)(Ux0

) ⊆ g(x)(Kx0
) ⊆ O, since

x ∈ Ox0 . This shows that (x0, y0) ∈ Ox0 × Ux0 ⊆ g̃−1(O), and therefore g̃ is also continuous.

Lemma 6.5. Let X and Y be topological spaces, and let K ⊆ Y be compact and O ⊆ X ×Y be open. Then the
set U = {x ∈ X | (x,K) ⊆ O} is open.

Proof. Let x0 ∈ U . Then there are for each y ∈ K open OyX ∈ X and OyY ∈ Y such that (x0, y) ∈ OyX ×O
y
Y ⊆

O. It is clear that the sets OyX × O
y
Y cover the compact set (x0,K), so there is a finite number of element

y1, . . . , yn ∈ K such that the sets OyiX ×O
yi
Y cover (x0,K). It now holds that OX =

⋂n
i=1O

yi
X is open in X and

contains x0, and it is not difficult to see that if x ∈ OX , then x ∈ U . This shows U is open in X.

There is a similar adjunction when we are considering pointed spaces and homotopy classes of continuous
pointed maps. To prove it, we first restrict the above adjunction to pointed spaces and pointed continuous
maps.

Notation 6.6. We let Map•( · , · ) denote the Hom-functor Topopp
∗ × Top∗ → Top∗. For two pointed spaces

X and Y , the constant map on the base point of Y is preferred element of Map•(X,Y ), and Map•(X,Y ) is
equipped with the subspace topology inherited from Map(X,Y ). #

Proposition 6.7. Let Y be a pointed locally compact space. Then there is an adjunction − ∧ Y a Map•(Y, · )
of functors Top∗ → Top∗.

Proof. [13] Let X and Z be pointed spaces. The adjunction of Proposition 6.4 sends a pointed map g : X →
Map•(Y, Z) to the continuous map g̃ : X × Y → Z, (x, y) 7→ g(x)(y), which is pointed as well. Even more is
true: for (x, y) ∈ X ∨ Y ⊆ X × Y , we have g̃(x, y) = ∗, since g(∗) : Y → Z is the constant map to the base
point, and g(x) is pointed for every x ∈ X. Therefore, the characteristic property of the quotient gives us a
continuous map g : X ∧ Y → Z.

Conversely, if f : X ∧Y → Z is pointedly continuous, then it induces a pointed continuous map f̂ : X×Y →
Z, and our adjunction of Proposition 6.4 then produces a continuous map f̃ : X → Map(Y,Z), x 7→ f̂(x, · ).
Since f̂ factors through X ∧ Y , f̃ maps actually to the subspace Map•(Y, Z) and is pointed as such a map.

It is not difficult to show that these two assignments between Map•(X ∧ Y,Z) and Map•(X,Map•(Y,Z))
are bijections, which shows the claim.

Definition 6.8. Let X be a pointed topological space. The loop space ΩX is defined as Map•(S1, X). ♦

From its definition, it is immediately clear that taking the loop space is a functor Ω : Top∗ → Top∗.
Furthermore, Remark 3.46 lets us translate the previous adjunction to the following result:

1This bijection does not need to be continuous, even though it maps between mapping spaces.
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Corollary 6.9. (suspension-loop adjunction) There is an adjunction Σ a Ω of functors Top∗ → Top∗.

Lemma 6.10. Let X and Y be two non-pointed resp. pointed spaces. Then π0(Map(X,Y )) ∼= [X,Y ] resp.
π0(Map•(X,Y )) ∼= [X,Y ]•, naturally in both X and Y .

Proof. (Proposed by drs. J. Becerra) We only show the statement in the pointed case, as the non-pointed case is
treated similarly. Any path in Map•(X,Y ) corresponds one-to-one and naturally to a map I+ → Map•(X,Y ).
Via the adjunction of Proposition 6.7 it therefore corresponds via a natural bijection to a map X ∧ I+ → Y ,
which is a pointed homotopy X → Y .

Corollary 6.11. Let X ∈ Top and Y ∈ Top∗. Then there is a bijection [X+, Y ]• ∼= [X,Y ], which is natural in
both X and Y .

Proof. (Also proposed by drs. J. Becerra) The previous lemma and the adjunction between ·+ and the forgetful
functor Top∗ → Top from Remark 1.26 give bijections [X+, Y ]• ∼= π0(Map•(X+, Y )) ∼= π0(Map(X,Y )) ∼= [X,Y ]
which are natural in both spaces.

Proposition 6.12. Let Y be a pointed locally compact space. Then there is a natural bijection [− ∧ Y, · ]• ∼=
[−,Map•(Y, · )]•.

Proof. By Lemma 6.10 and Proposition 6.7, we have

[− ∧ Y, · ]• ∼= π0(Map•(− ∧ Y, · )) ∼= π0(Map•(−,Map•( · , · ))) ∼= [−,Map•(Y, · )]•

naturally.

Corollary 6.13. (suspension-loop adjunction in the homotopy category) There is a natural bijection
[Σ( · ), · ]• ∼= [ · ,Ω( · )]•.

6.2 Ω-spectra

Loop spaces are key in systematically producing generalised reduced cohomology theories, and a cleverly defined
sequence together with some extra structure regarding loop spaces does the trick. These are the Ω-spectra. We
will not consider nontrivial examples of such spectra in this section, but leave those for later parts, such as
Lemma 6.51 and Section 6.5. Rather, we will discuss their properties in relation to cohomology here. First we
will explore the natural structure loop spaces carry to make this possible.

Recall that the loop space of a given pointed topological space X is the topological space ΩX = Map•(S1, X)
of pointed loops on X (hence of course the name). As such, it carries the same operations that descend to the
group law and inversion on the fundamental group, namely concatenation and reversion of loops. It is therefore
a “group up to homotopy”, which we call an H-group.

Definition 6.14. [13] A topological space (X, ∗) with two continuous maps m : X ×X → X and i : X → X
and a fixed element e ∈ X is called an H-group if it satisfies the following conditions:

(i) m(m( · , · ), · ) ' m( · ,m( · , · )) as maps X ×X ×X → X.
(ii) m(e, · ) ' idX ' m( · , e) as maps X → X.
(iii) m(i(−),−) ' ce ' m(−, i(−))) as maps X → X (so all entries must be the same element), where ce is

the constant map that maps every element of X to e.
X is a pointed H-group if it has base point e and m and i are pointed maps. ♦

Lemma 6.15. Let X be a pointed topological space. Let cX : S1 → X be the constant loop on ∗ in X. Then
ΩX is a pointed H-group with respect to concatenation and reversion of loops, and with cX as unit element.

Lemma 6.16. [13] Let Z a pointed H-group. Then [X,Z]• carries naturally the structure of a group for all X.
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Remark 6.17. Here, naturality means that for every homotopy class [f ] of continuous map X → Y , each
representative f : X → Y induces a group homomorphism − ◦ f : [Y,Z]• → [X,Z]•, which does not depend on
the chosen representative. O

Proof. (†) Let m and i denote the multiplication and inversion map, and e ∈ Z the unit element belonging to
the pointed H-group structure on Z. For two pointed continuous maps g, h : Y → Z, we let f ? g := m ◦ (f, g) :
Y → Z, y 7→ m(f(y), g(y)), which is clearly a pointed map, since f , g and m are. If f ' f ′ and g ' g′ pointedly,
then (f, g) ' (f ′, g′) pointedly as maps Y → Z × Z, and hence f ? g ' f ′ ? g′ pointedly. Therefore we get
an induced binary operation ? on [Y,Z]•. We also set inv(f) = i ◦ f : Y → Z. This also passes to a map
inv : [Y,Z]• → [Y, Z]•.

If cY : Y → Z, y 7→ e is the constant pointed map, then the properties of m and i as in the definition of a
pointed H-group above imply that ? is associative, has cY as unit element and inv is the inversion operation
on [Y, Z]•. This shows that [Y, Z]• carries a group structure. Now suppose f : X → Y and g, h : Y → Z are
pointed maps. Then (g ?h) ◦ f = (g ◦ f) ? (h ◦ f) is clear from the definition of ?, so passing to homotopy classes
of maps, f induces a group homomorphism [Y,Z]• → [X,Z]•. If f ' f ′ pointedly, then (g ? h) ◦ f ' (g ? h) ◦ f ′
pointedly, so this group homomorphism depends only on the homotopy class [f ].

Note that the natural unit element of [X,Z]• coincides with the preferred base point.

Remark 6.18. Using Lemmata 5.18 and 5.25, we defined a group structure on [ΣX,Z]• which was natural in X.
For two pointed maps f, g : ΣX → Z, the group law was [f ]?[g] = [(f∨g)◦q], where q : ΣX → ΣX/X ∼= ΣX∨ΣX
is the quotient map. We can also define a natural group structure on [ΣX,Z]• by pulling back the natural group
structure on the set [X,ΩZ]• with which it is in bijection. A careful inspection of the suspension-loop adjunction
and the description of the groups law on [X,ΩZ]• given in the proof of the previous lemma will reveal that
these two group structures actually coincide. In particular, this shows that the suspension-loop adjunction
[ΣX,Z]• ∼= [X,ΩZ]• is an isomorphism of groups.

Note that we cannot use the same argument as in Remark 5.26 to show these two group structures coincide,
since we needed there that there is also a natural group structure when we plug in the space ΣX ∨ ΣX. This
latter space is however not generally a suspension itself, so we cannot apply our knowledge that sets of the form
[ΣY,Z]• carry group structures. This also means that [ΣX,Z]• need not be an abelian group. O

Lemma 6.19. Let Z be a pointed topological space and let Ω2Z = Ω(ΩZ) denote its second loop space. Then
[X,Ω2Z]• carries naturally the structure of an abelian group.

Proof. [6] We only need to show that the natural group structure on [X,Ω2Z]• is abelian. Since the reduced
suspension ΣS1 ∼= S1 ∧ S1 is actually homeomorphic to S2, and not only pointedly homotopy equivalent, the
suspension-loop adjunction allows us to see an element of Ω2Z = Map•(S1,Map•(S1, Z)) as a map S2 → Z. We
already saw in the verification that the group structure on higher homotopy groups was abelian that this means
that Ω2Z is an abelian H-group: it is also commutative up to homotopy. The group structure on [X,Ω2Z] as
described in the proof of Lemma 6.16 now shows that for any two maps f, g : X → Ω2Z it holds that f ?g ' g?f
pointedly, so [f ] ? [g] = [g] ? [f ] in [X,Ω2Z]•.

Using Lemma A.25, we suggestively summarise the results so far in the following way.

Lemma 6.20. Let Z be a given pointed topological space.
(i) [ · ,ΩZ]• is a functor hTopopp

∗ → Grp.
(ii) For n ≥ 2, [ · ,ΩnZ]• is a functor hTopopp

∗ → Ab.
(iii) There is a natural isomorphism [Σ( · ), Z]• ∼= [ · ,ΩZ]• of functors hTopopp

∗ → Grp.
(iv) For n ≥ 2, there is a natural isomorphism [Σ( · ),Ωn−1Z]• ∼= [ · ,ΩnZ]• of functors hTopopp

∗ → Ab.

It looks like we are close to defining for a fixed pointed space Z a reduced cohomology theory X 7→ [X,Ω∗Z]•,
but this fails for three reasons, as [11] explains: firstly, we need also cohomology groups in negative degrees,
secondly, the sets [X,ΩnZ]• are not necessarily abelian groups for n = 0, 1, and thirdly, a careful inspection of
Definition 5.1 of a generalised reduced cohomology theory and part (iii) of the above lemma will reveal that the
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latter statement is then not the suspension isomorphism in a reduced cohomology theory, since the indices are
the wrong way around. If we want to form a reduced cohomology theory and have a suspension isomorphism,
then rather than to begin with a topological space Z and define higher cohomology groups by using the higher
loop spaces, we have to work the other way around and start with some sort of “infinite loop space” and as we
define higher reduced cohomology groups use the “lower loop spaces”, and moreover hope that this approach
also turns the zeroth and first cohomology group into actual abelian groups and gives us cohomology groups in
negative degrees. This is the intuition behind the definition of an Ω-spectrum.

Definition 6.21. An Ω-spectrum is a sequence (Kn)n≥0 of pointed CW-complexes together with pointed weak
homotopy equivalences ϕn : Kn → ΩKn+1. ♦

Although the weak homotopy equivalences are part of the data of an Ω-spectrum, we often omit them in
notation. We must also remark that our earlier usage of the term “infinite loop space” was somewhat correct:
given an Ω-spectrum (Kn), each Kn, and especially K0 is sometimes called an infinite loop space, for the clear
reason that it is weakly homotopy equivalent to ΩmKn+m for all m ≥ 0.

Remark 6.22. [11] There are three things worth mentioning about the definition of an Ω-spectrum. First of
all, it is not necessary to restrict it to CW-complexes. It is only that for our purposes it is more convenient to
do so. It is a consequence of pointed CW-approximation (Theorem 4.58) and Proposition 4.54 that there is for
our purposes not really a difference between these two possible definitions. Namely, in Theorem 6.26 we will
see that the Hom-functors in hCW∗ determined by the elements of an Ω-spectrum induce a reduced cohomology
theory on CW∗, and these Hom-functors are naturally isomorphic if we replace the elements of the spectrum by
spaces that admit weak homotopy equivalences to our original spaces.

Secondly, Milnor [18] showed that for any pointed CW-complex Z, the loop space ΩZ is pointedly homotopy
equivalent to a pointed CW-complex. By the Whitehead Theorem then, if Y is a pointed CW-complex as well, a
pointed weak homotopy equivalence Y → ΩZ is a pointed homotopy equivalence. As such, the weak homotopy
equivalences in an Ω-spectrum are all pointed homotopy equivalences.

Lastly, CW-approximation shows that any element Kn of an Ω-spectrum is determined up to pointed homo-
topy equivalence by the loop space ΩKn+1. Indeed, there exists a pointed CW-approximation K for this space
(and hence also a pointed weak homotopy equivalence K → ΩKn+1), and any two of these are pointedly homo-
topy equivalent in such a way that the weak homotopy equivalences they come with are identified up to pointed
homotopy, as we argued in Proposition 4.59. Following [11], we can use this same argument to define, given
an Ω-spectrum (Kn)n≥0, also the spaces Kn for negative n, namely inductively as pointed CW-approximations
of the loop spaces ΩKn+1. The particular choice of CW-approximation does not matter for our purposes, but
since the proof of the CW-approximation Theorem in [11] gives us an explicit example, for definiteness we take
that one each time. O

Convention 6.23. From now on, when mentioning an Ω-spectrum, we will always assume it also carries these
spaces with negative indices and weak homotopy equivalences with negative indices as structure maps. �

Definition 6.24. [16] Given two Ω-spectra (Kn) and (K ′n), with structure maps (ϕn) and (ϕ′n), respectively,
a morphism of Ω-spectra (or just “map”) between them is a collection fn : Kn → K ′n of continuous maps such
that each square

Kn ΩKn+1

K ′n ΩK ′n+1

ϕn

fn Ωfn+1

ϕ′n

commutes. (This is of course a special case of morphisms in a diagram category.) In this way, the collection of
Ω-spectra and maps between them forms a category, denoted by Ω−spec. ♦

Remark 6.25. It is not entirely standard to take these morphisms in the category of Ω-spectra. For instance,
Adams [1] takes homotopy classes of maps as morphisms. We choose however to follow May [16] because we
will not be concerned with the subtleties that come with the more advanced theory of Ω-spectra that justify
some modifications. O
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We are now in the endgame of this thesis: the following theorem is the first central one with regards to our
topic of representability of cohomology theories.

Theorem 6.26. There is a functor C : Ω−spec→ rCohomTh which sends an Ω-spectrum (Kn) to the generalised
reduced cohomology theory X 7→ [X,Kn]• on pointed CW-complexes.

Proof. We have two show two things: first, given an Ω-spectrum (Kn), we have to check that the assignment
X 7→ [X,Kn]• defines a generalised reduced cohomology theory on CW-complexes, and second, we need to check
that this assignment respects maps of Ω-spectra and morphisms of generalised reduced cohomology theories.

Let us start with the first statement, following [11]. For each n ∈ Z, there is a weak homotopy equivalence
Kn → Ω2Kn+2, so Proposition 4.54 and Lemma 6.20 imply that X 7→ [X,Kn]• is a functor hCWopp

∗ → Ab.
This is the same as saying it is a functor CWopp

∗ → Ab which satisfies homotopy invariance.
Now, the Puppe sequence 4.22 implies that this functor also satisfies the exact sequence condition 5.1(ii),

and the universal property of the wedge product implies that it also satisfies the wedge axiom of a reduced
cohomology theory: indeed, for a wedge sum

∨
α∈AXα, we get a bijection [

∨
α∈AXα,Kn]•

∼−→
∏
α∈A[Xα,Kn]•

induced by the inclusions Xα ↪→
∨
α∈AXα. By naturality of the abelian group structure on the sets appearing

above, each such inclusion induces a group homomorphism, and hence the their product induces a group
homomorphism as well. Since the latter is apparently bijective, it is an isomorphism of abelian groups.

Therefore we only need to give the suspension isomorphisms. For each n ∈ Z, there is a natural isomorphism

[ · ,Kn]•
ϕn◦−−−−−→
∼

[ · ,ΩKn+1]•
∼−→ [Σ( · ),Kn+1]• by Proposition 4.54 and Lemma 6.20 (so this second isomorphism

is induced by the suspension-loop adjunction). We define the suspension isomorphism ςn to be the inverse of
this isomorphism. This shows that the assignment C is well-defined on the level of objects.

(†) As for its functoriality, let (fn : Kn → K ′n) be a map between two Ω-spectra (Kn) and (K ′n). Each fn
induces a natural transformation [ · ,Kn]• → [ · ,K ′n]•, so we only need to check this transformation commutes
with the suspension isomorphisms. For a pointed CW-complex X, there is a commutative diagram

[X,Kn]• [X,ΩKn+1]•

[X,K ′n]• [X,ΩK ′n+1]•

ϕn◦−

fn◦− Ωfn+1◦−

ϕn◦−

since ϕ′n ◦ fn = Ωfn+1 ◦ ϕn. Now consider the diagram

[X,ΩKn+1]• [ΣX,Kn+1]•

[X,ΩK ′n+1]• [ΣX,K ′n+1]•

∼

Ωfn+1◦− fn+1◦−

∼

with the horizontal isomorphisms induced by the suspension-loop adjunction. It commutes by said suspension-
loop adjunction, so we obtain a commutative diagram

[X,Kn]• [X,ΩKn+1]• [ΣX,Kn+1]•

[X,K ′n]• [X,ΩK ′n+1]• [ΣX,K ′n+1]•

ϕn◦−

fn◦−

∼

Ωfn+1◦− fn+1◦−

ϕn◦− ∼

with the inverses of the suspension isomorphisms as rows. By naturality of all maps, the diagram is natural
in X, and this shows (fn) induces a morphism between the generalised reduced cohomology theories C(Kn)
and C(K ′n). It is easy to see that this assignment respects composition and the identities, which shows C is a
functor.
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6.3 The Brown Representability Theorem

We want to strengthen the result of Theorem 6.26 and prove what will be the main result of this thesis, namely
that any generalised reduced cohomology theory on CW-complexes, and consequently (by Theorem 5.11) any
generalised cohomology theory on CW-complexes, is representable by an Ω-spectrum. This means that each
individual functor of which such a theory consists is representable by a CW-complex, and the collection of these
CW-complexes forms an Ω-spectrum. Alternatively, the functor C of Theorem 6.26 is essentially surjective.

The most difficult part of the proof is finding a CW-complex that represents a single functor of a reduced
cohomology theory, and this part of the proof deserves its own theorem, as its arguments apply to more
than cohomology functors alone. Almost this entire section will be dedicated to this theorem, called the
Brown Representability Theorem.2 At the end of this section, we apply the theorem to give a proof of the
CW-approximation Theorem and then move on to the representability of generalised and reduced cohomology
theories.

Now let us get started. Recall the kind of restriction introduced in Notation 5.16, and the definition of a
semi-Brown functor in Definition 5.17.

Notation 6.27. We denote by cCW the full subcategory of CW consisting of path-connected CW-complexes,
and by cCW∗ the full subcategory of CW∗ consisting of path-connected pointed CW-complexes. #

Remark 6.28. By Lemma 3.30, any connected pointed CW-complex is also path-connected, so any CW-
complex can be written as disjoint union of its path-connected components, something which is not generally
possible for arbitrary topological spaces, since the topology of the disjoint union of the path-connected compo-
nents may not agree with the topology on the space itself. O

Definition 6.29. A functor F : cCWopp
∗ → Set∗ is called a Brown functor if it satisfies the following three

properties:
(i) (Homotopy invariance) If f, g : X → Y are two pointedly homotopic maps, then Ff = Fg.

(ii) (Mayer-Vietoris axiom) Suppose X ∈ cCW∗ can be written as X = A∪B for two path-connected pointed
subcomplexes A and B of X, such that both A and B have the base point of X as their base point. Then,
if a ∈ FA and b ∈ FB satisfy a|A∩B = b|A∩B , then there is an x ∈ FX such that x|A = a and x|B = b.

(iii) (Wedges) If (Xα)α∈A is a family of spaces in cCW∗, then the inclusions Xα ↪→
∨
α∈AXα induce an

isomorphism F (
∨
α∈AXα)

∼−→
∏
α∈A F (Xα). ♦

Remark 6.30. (By drs. J. Becerra) We can restate the Mayer-Vietoris axiom a bit more category theoretically
(that is, only in terms of objects and arrows) as follows: by the universal property of the pullback (see Example
A.46(ii)) of the diagram FA → F (A ∩ B) ← FB induced by the inclusions, and the fact that there is a
commutative diagram

FX FA

FB F (A ∩B)

induced by the inclusions (since the corresponding diagram before applying F is commutative as well), there is
a map FX → FA×F (A∩B) FB fitting in the diagram

FX

FA×F (A∩B) FB FA

FB F (A ∩B)

2There are multiple related theorems deserving of the name Brown Representability Theorem. We reserve it for Theorem 6.31
which contains the representability of a single functor, although statements regarding representability of reduced or generalised
cohomology theories are also known under this name.
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The Mayer-Vietoris axiom now is that this map is surjective. O

Theorem 6.31. (Brown Representability Theorem) Let F : cCWopp
∗ → Set∗ be a Brown functor. Then

there exists a path-connected pointed CW-complex K and an element u ∈ FK such that the natural transforma-
tion Tu : [ · ,K]• → F of functors determined by Tu,X : [X,K]• → FX, [f ] 7→ Ff(u) is a natural isomorphism.

As said above, the proof is quite long, and there is still a bit of preparatory work to be done. First we want
to remark a few things.

Remark 6.32. Let F be a contravariant functor from a category C to the category of sets, pointed sets or
abelian groups, respectively (it will be clear from context). A pair (K,u) ∈

∫
C
F is called universal for the

functor F if there is a natural isomorphism HomC( · ,K)
∼−→ F determined by HomC(X,K)

∼−→ FX, f 7→ Ff(u)
for all X ∈ C. By the Yoneda Lemma, any representable functor allows such a pair (as that lemma produces
the element u ∈ FK from any natural isomorphism that shows F is representable). Moreover, although this
pair is not unique (since there may be multiple natural isomoprhisms from HomC( · ,K) to F ), the object K is
unique up to isomorphism, for instance by Corollary A.36. O

Lemma 6.33. Let K be an arbitrary pointed topological space. Then [ · ,K]• is a Brown functor.

Proof. [11] The homotopy and wedge axiom are clearly satisfied (and were already covered by the way in Lemma
5.18). For the Mayer-Vietoris axiom, let X = A∪B be as in its statement and let f : A→ K and g : B → K be
two pointed maps. Suppose the homotopy classes [f ] and [g] restrict to the same element in [A ∩B,K]•. This
means that f |A∩B ' g|A∩B pointedly. Let H be a pointed homotopy between f |A∩B and g|A∩B . The diagram

A ∩B A

(A ∩B)× I A× I

K

c7→(c,0)
f

c7→(c,0)

H

commutes, so by the homotopy extension property, the dashed homotopy exists. It is a pointed homotopy
since H is and the diagram above commutes. Therefore, f is pointedly homotopic to a map f ′ that satisfies
f ′|A∩B = g|A∩B . We can glue f ′ and g to form a map h : X → K, and [h] restricts to [f ′] = [f ] on A and to
[g] on B. This shows that [ · ,K]• satisfies the Mayer-Vietoris axiom and hence is a Brown functor.

This shows that being a Brown functor is not only sufficient, but also necessary in order for a functor to be
representable (assuming the Brown Representability Theorem holds in the first place).

Convention 6.34. From now on, suppose F : cCWopp
∗ → Set∗ is a Brown functor. �

We advise the reader to quickly take a look again at section 5.3 again, where we already deduced a lot of
results about Brown functors, which we will use here again, most notably Lemma 5.25. Here, we will follow the
proof of Theorem 6.31 as given in [4] and [11].

Lemma 6.35. For any X ∈ CW∗ and for all pairs (K,u) ∈
∫
cCW∗

F , the map Tu,X : [ΣX,K]• → F (ΣX) is a
group homomorphism.

Proof. Let X,K ∈ CW∗ be arbitrary. We recall from Remark 6.18 that the natural group structure on [ΣX,K]•

given by the suspension-loop adjunction and the natural group structure on it given by the fact that [ · ,K]• is
a semi-Brown functor (Lemma 5.18) coincide.

Write the group law on F (ΣX) as m( · , · ) once more. Let (K,u) ∈
∫
cCW∗

F be arbitrary, and let two

homotopy classes [f ], [g] ∈ [ΣX,K]• be given. Then Tu,X([f ] ? [g]) = F ([f ] ? [g])(u) = F ((f ∨ g) ◦ q)(u) =
Fq ◦ F (f ∨ g)(u) = m(Ff(u), Fg(u)) = m(Tu,X [f ], Tu,X [g]) by Lemma 5.21, which shows that Tu,X is a group
homomorphism. Since both X and the pair (K,u) were arbitrary, we are done.
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Lemma 6.36. The functor F satisfies the exact sequence axiom in Definition 5.1(ii).

Proof. By considering the mapping cylinder, it suffices by homotopy invariance of F to cover only the case of a
pointed inclusion of a subcomplex into a CW-complex. Therefore, let ι : X ↪→ Y be such an inclusion. Then the

composition X
ι
↪−→ Y

ιY
↪−→ Cι is pointedly null-homotopic (which we also showed in the proof of Lemma 4.21).

Since the constant pointed map c : X → Cι factors as X → ∗ ↪→ Cι and F sends each maps to pointed maps
of sets, Lemma 5.22 implies that Fc : F (Cι) → FX is the constant pointed map. By homotopy invariance,
Fι ◦ FιY = F (ιY ◦ ι) = Fc, which shows that imFιY ⊆ kerFι.

On the other hand, suppose y ∈ FY is such that Fι(y) = ∗ ∈ FX. For the inclusion ιX : X → CX,
FιX is a pointed map F (CX) → FX, so the base point of F (CX) restricts thus to the base point of FX.
Note that X,Y,CX,Cι ∈ cCW∗, and hence the decomposition Cι = CX ∪ Y satisfies the requirements of the
Mayer-Vietoris axiom (where it should be noted that CX ∩ Y = X). This yields an element x ∈ F (Cι) such
that FιY (x) = y, which shows kerFι ⊆ imFιY . This shows F satisfies the exact sequence axiom.

Now we can turn to the main part of the proof of the Representability Theorem. The following definition
hints at the strategy of the proof.

Definition 6.37. Let (K,u) be a pair with K ∈ cCW∗ and u ∈ FK. For n ≥ 1, we say (K,u) is n-universal
if the homomorphism Tu,Si : πi(K)→ F (Si) is an isomorphism for all 1 ≤ i < n and surjective for i = n. The
pair is π∗-universal if it is n-universal for all n ≥ 1. ♦

In other words, the pair is n-universal if it satisfies the Brown Representability Theorem for spheres Si, with
1 ≤ i < n, and satisfies it “half” for the sphere Sn (of course, we cannot consider the sphere S0, since this not
a path-connected space). It will turn out that the theorem follows once we can show that F is representable
on this subcategory of spheres, which constitutes to finding a π∗-universal pair (K,u). This happens often
when working with CW-complexes, as we have seen: usually, we first show results for spheres and use the
CW-structure to generalise them to all CW-complexes.

The next lemma shows that we can extend any given pair (Z, z) ∈
∫
cCW∗

F to a π∗-universal pair, which in
particular shows existence of π∗-universal pairs.

Lemma 6.38. For (Z, z) ∈
∫
cCW∗

F there exists a π∗-universal pair (K,u) such that Z is a subcomplex of K

and u|Z = z.

Put differently, the conditions on K and u are saying that the inclusion Z ↪→ K gives a map (Z, z)→ (K,u)
of pairs.

Proof. We will inductively construct n-universal pairs (Kn, un) such that Z is a subcomplex of Kn and un|Z = z.

To begin with, let K1 = Z ∨
(∨

α∈F (S1) S
1
α

)
, where S1

α is just an indexed copy of S1. This space

is clearly a path-connected pointed CW-complex. Since the respective inclusions induce an isomorphism
F (K1) ∼= FZ ×

∏
α∈F (S1) F (S1) by the wedge axiom, there must be an element u1 ∈ F (K1) such that u1|Z = z

and u1|S1
α

= α for all α ∈ F (S1). Since for any α ∈ F (S1) the inclusion loop ια : S1 ↪→ S1
α ⊆ K1 satisfies (as

shown above) Tu1,S1(ια) = Fια(u1) = u1|S1
α

= α ∈ F (S1), the pair (K1, u1) is 1-universal.

Now for the inductive step, assume we have already constructed an n-universal pair (Kn, un) such that Z
is a subcomplex of Kn and un|Z = z (an overview of the construction in this and the following paragraphs is
given in Figure 6.1). The group homomorphism Tun,Sn : πn(Kn)→ F (Sn) is then surjective, but not necessarily
injective. Let for each α ∈ kerTun,Sn a representative fα : Sn → Kn be given, and set f =

∨
α∈kerTun,Sn

fα :∨
α∈kerTun,Sn

Snα → Kn. (In this whole induction step, we will when writing the indices α assume they range

over kerTun,Sn .) There is a deformation retraction mf → Kn (and this reduced mapping cylinder is also a

path-connected pointed CW-complex), so there is also a pointed bijection F (Kn)
∼−→ F (mf ) induced by this

map, by homotopy invariance of F . Therefore, we can consider un as an element of F (mf ), and by definition
of f , it holds that un restricts to the trivial element of F (

∨
α S

n
α): indeed, the inclusion ι :

∨
α S

n
α ↪→ mf is

associated by the deformation retract mf → Kn with the map f , and hence the restriction of un to
∨
α S

n
α
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equals by homotopy invariance of F and Lemma 5.21 the element Ff(un) =
∏
α Ffα(un) = ∗ by definition of

the fα, and this is indeed the trivial element.
By Lemma 6.36), f and the inclusion Kn ↪→ Cf induce an exact sequence F (Cf) → F (Kn) → F (

∨
α S

n
α),

which implies that there is an element w ∈ F (Cf) such that w|Kn = un.
Now, for each map fα : Sn → Kn, note that Cfα is obtained by attaching a single (n+ 1)-cell to Kn along

fα. This means that Cf is obtained by attaching for each α an (n + 1)-cell to Kn along fα, and in particular
this shows Cf is also a path-connected and pointed CW-complex. We now let Kn+1 = Cf ∨ (

∨
β∈F (Sn+1))S

n+1
β ,

which is a path-connected and pointed CW-complex and clearly contains Z as a subcomplex. Like before, there
must by the wedge axiom exist an element un+1 that restricts to w on Cf and to β on each Sn+1

β , and since w
restricts to un on Kn and un restricts to z on Z, un+1 also restricts to z on Z.

(
∨
α S

n
α, ∗) (Sn+1

β , β)

(Z, z) (Kn, un) (Cf,w) (Kn+1, un+1)

(mf , un)

f=
∨
α fα

Figure 6.1: For all β ∈ F (Sn+1), this diagram commutes in
∫
cCW∗

F .

In particular, this implies that the inclusion ιKn : Kn ↪→ Kn+1 induces a commutative diagram

πi(Kn) πi(Kn+1)

F (Si)

πi(ιKn )

Tun,Si Tun+1,S
i

for any i ≥ 1. Indeed, for any representative g : Si → K of a homotopy class [g] ∈ πi(Kn), we have Tun+1,Si ◦
πi(ιKn([g]) = Tun+1,Si([ιKn ◦ g]) = F (ιKn ◦ g)(un+1) = Fg ◦ FιKn(un+1) = Fg(un) = Tun,Si([g]).

Now, since Kn+1 arises from Kn by attaching only (n + 1)-cells, Corollary 4.53 tells us that πi(ιKn) is
an isomorphism for 1 ≤ i < n and a surjection for i = n. By the induction hypothesis, the same holds for
Tun,Si , and hence the same holds for Tun+1,Si . Furthermore, we have kerTun+1,Sn = πn(ιKn) (kerTun,Sn) by
surjectiveness of all maps, and for all α ∈ kerTun,Sn we attached an (n+1)-cell to Kn along a map fα : Sn → Kn

representing α. That means that each fα ◦ ιKn is pointedly null-homotopic in Kn+1, so the kernel of Tun+1,Sn is
trivial, which means this map is also an isomorphism. Lastly, Tun+1,Sn+1 is surjective by construction, similarly
to the case of Tu1,S1 . Therefore, (Kn+1, un+1) is (n+ 1)-universal.

We have therewith constructed for each n ≥ 1 an n-universal pair (Kn, un) that contains Z as a subcomplex
and such that un restricts to ui on Ki for all 1 ≤ i ≤ n and to z on Z.

We now will produce the π∗-universal pair (K,u) with the help of our n-universal pairs (Kn, un). Namely,
we let K be the colimit of the diagram

K1 K2 K3 . . .
ιK1

ιK2

Therefore, K is a pointed CW-complex, that is path-connected (for any two x, y ∈ K, there is an n with
x, y ∈ Kn, and Kn is path-connected) and contains Z as a subcomplex.

We will use the mapping telescope construction of Definition 4.19 to find an element u ∈ FK that restricts
to un on each Kn (we summarise the next paragraphs in Figure 6.2). We let tK = ∪∞n=1Kn ∧ [n, n + 1]+ be
the reduced mapping telescope of K. By Lemma 4.20, the inclusion ι : K → tK is a homotopy equivalence,
and this means that Fι : F (tK) → FK is a pointed bijection. Define A = ∪n≥1 oddKn ∧ [n, n + 1]+ and

66



B = ∪n≥2 evenKn ∧ [n, n + 1]+. Then A ∪ B = tK and A ∩ B =
∨∞
n=1Kn, whereas A '

∨
n≥1 oddKn and

B '
∨
n≥1 evenKn. We have already seen how this implies that there are a ∈ FA and b ∈ FB that restrict to

un on Kn for n ≥ 1 odd or even, respectively, and since un+1|Kn = un, a and b both restrict to un on Kn for
all n ≥ 1. Since a ∈ FA and b ∈ FB therefore restrict to the same element of

∏
n≥1 F (Kn) ∼= F (

∨
n≥1Kn) =

F (A ∩ B), the Mayer-Vietoris axiom implies that there is a t ∈ F (tK) such that t restricts to both a and b
on A and B, respectively, and consequently to un on Kn for all n. Under the previously established bijection
Fι : F (tK) → FK, there is an u ∈ FK that restricts to un on Kn for all n. This of course also means that u
restricts to z on Z.

(A, a)

(Z, z) (Kn, un) (K,u) (tK , t)

(B, b)

ι

Figure 6.2: For all n ≥ 1, this diagram commutes in
∫
cCW∗

F .

Finally, we have to verify that (K,u) is π∗-universal. For this, now let ιKn : Kn ↪→ K denote the inclusion of
Kn into K, and consider the commutative diagram

πi(Kn) πi(K)

F (Si)

πi(ιKn )

Tun,Si Tu,Si

for any i ≥ 1 (which is commutative for the same reason that the earlier diagram of this form was, namely
that u restricts to un on Kn for all n). If we choose n > i+ 1, then both πi(ιKn) and Tun,Si are isomorphisms
by Corollary 4.53 and the fact that (Kn, un) is n-universal. Therefore, for all i, the map Tu,Si must be an
isomorphism. This shows (K,u) is indeed a π∗-universal pair and completes the proof.

Lemma 6.39. Let (K,u) be a π∗-universal pair, and let (X,X ′) be a CW-pair in cCW∗. Then for each x ∈ FX
and each map f : X ′ → K that satisfies Ff(u) = x|X′ , there exists a map g : X → K that extends f and satisfies
Fg(u) = x.

In other words, the lemma asserts that given any diagram

(X ′, x′) (K,u)

(X,x)

f

g

in
∫
cCW∗

F , the dashed arrow g always exists.

Proof. By homotopy invariance of F , we may replace K by the mapping cylinder mf (and u by the corresponding
element of F (mf )). Therefore, we may to begin with already assume that f : X ′ → K is an inclusion of a
subcomplex. Since Ff(u) = x|X′ by assumption, this means that u|X′ = x|X′ . Set Z = X ∪X′ K (we again
present an overview in Figure 6.3). The Mayer-Vietoris axiom tells us that there is a z ∈ FZ such that z|K = u
and z|X = x. Now we use the previous lemma to extend the pair (Z, z) to a π∗-universal pair (K ′, u′). Since K
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is a subcomplex of Z, it is a subcomplex of K ′, and since u′ restricts to z on Z, and the latter restricts to u on
K, the inclusion ι : K ↪→ K ′ satisfies Fι(u′) = u. Once again, we obtain a commutative diagram

πn(K) πn(K ′)

F (Sn)

Tu,Sn

πn(ι)

Tu′,Sn

for all n, in which the maps Tu,Sn and Tu′,Sn are isomorphisms by π∗-universalness of (K,u) and (K ′, u′).
Therefore, the inclusion ι : K ↪→ K ′ induces isomorphisms on all homotopy groups, and since K is path-
connected, Remark 4.47 says that it is consequently a weak homotopy equivalence, and a homotopy equivalence
by the Whitehead Theorem3. By Proposition 4.7 (applied to the map (K,K)→ (K ′,K) induced by ι), K is a
deformation retract of K ′, so Fι : FK ′ → FK is a bijection. Since X ⊆ Z ⊆ K ′ is a subcomplex of K ′, the
inclusion i : X ↪→ K ′ is homotopic relative to X ′ to a map g : X → K, which therefore extends f . Moreover,

this means that Fg : FK → FX coincides with the map FK
(Fι)−1

−−−−→ FK ′
Fi−→ FX. Since u′|K = u and

u′|X = (u′|Z)|X = z|X = x, we have Fg(u) = Fg(u′|K) = Fi(u′) = u′|X = x, which completes the proof.

(X ′, x|X′) (K,u)

(X,x) (Z, z) (K ′, u′)

f

ι

i

g

Figure 6.3

Now we can prove the Brown Representability Theorem.

Proof of Theorem 6.31. We only need to show that an arbitrary π∗-universal pair (K,u) is universal for the
functor F . For this, let X ∈ cCW∗ be arbitrary. Note that F (∗) = ∗ implies that the unique map ι : ∗ → K
satisfies u|∗ = Fι(u) = ∗. The previous lemma applied to the CW-pair (X, ∗) implies then that the map
Tu,X : [X,K]• → FX, [f ] 7→ Ff(u) is surjective.

Now for injectivity, suppose that two pointed maps f, g : X → K satisfy Ff(u) = Fg(u). These maps f and
g induce a continuous map h : X ∧∂I+ → K. Note that X ∧∂I+ is path-connected, so if we let p : X ∧ I+ → X
be the projection (or rather, the map through which the projection X × I → X factors in the quotient), then
Fp : FX → F (X ∧ I+) is well-defined. If we set x := F (f ◦ p)(u) = Fp ◦ Ff(u) = Fp ◦ Fg(u) = F (g ◦ p)(u) ∈
F (X∧I+) and let i : X∧∂I+ ↪→ X∧I+ be the inclusion, then the pointed homeomorphism X∧I+ ∼= X∨X and
Lemma 5.21 imply that x|X∧∂I+ = Fi(u) = F (f ◦p◦i)(u) = F (f∨f)(u) = (Ff, Ff)(u) = (Ff, Fg)(u) = Fh(u).

We can thus apply the previous lemma to the CW-pair (X ∧ I+, X ∧ ∂I+), the map h, and the element x,
and obtain a map H : X ∧I+ → K which extends h, which is thus a pointed homotopy from f to g. This means
that [f ] = [g] in [X,K]•, which shows injectivity of Tu,X . Therefore Tu is a natural isomorphism of functors
[ · ,K]• → F .

As promised, we can now give a proof of the CW-approximation Theorem, and even a slightly stronger
statement. Note that we did not use the CW-approximation in the proof of the Brown Representability Theo-
rem, nor in any statements that were referenced to therein.

3This step right here illustrates why we have restricted ourselves to path-connected pointed CW-complexes, rather than all
pointed CW-complexes.
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Theorem 6.40. Let X be a pointed topological space that contains a pointed CW-complex A as a subspace,
whose intersection with each path-connected component of X is path-connected. Then there exists a pointed
CW-pair (Y,A) and a pointed weak homotopy equivalence Y → X which restricts to the identity on A.

Proof. (†) First consider the case in which X is path-connected, so that A is also path-connected. We have
already seen that the functor [ · , X]• : cCW∗ → Set∗ is a Brown functor. The inclusion ι : A ↪→ X induces the
element [ι] of [A,X]•, so by Lemma 6.38 the pair (A, [ι]) can be extended to a π∗-universal pair (Y, [f ′]) where
Y is a path-connected pointed CW-complex that contains A as a subcomplex and [f ′] ∈ [Y,X]• is such that
[ι] = [f ′ ◦ i], where i : A ↪→ Y is the inclusion. In other words, the restriction of a representative f ′ : Y → X of
[f ′] to the subcomplex A is homotopic to the inclusion ι. Since (Y,A) has the homotopy extension property, f ′

is homotopic to a map f : Y → X that restricts to the identity on A, and note that therefore (Y, [f ]) is also a
π∗-universal extension of (A, [ι]).

We also showed that any π∗-universal pair represents the Brown functor, so there is also a natural isomor-
phism [ · , Y ]• ∼= [ · , X]• determined by [Z, Y ]• → [Z,X]•[g] 7→ [f ◦ g] for all Z ∈ cCW∗. Now, taking Z = Sn

for all n ≥ 1, we see that f induces isomorphisms πn(Y ) → πn(X) for all n ≥ 1. Since X and Y are also
path-connected, f induces a (pointed) bijection π0(Y ) → π0(X), and moreover the choice of base point does
not matter for the higher homotopy groups by Remark 4.47. Therefore, f is the required weak homotopy
equivalence, which restricts to the identity on A.

Now, if X is not path-connected, index the path-connected components of X as Xα, and the path-connected
intersection of Xα with A as Aα. we can use the above procédé to come up with CW-approximations fα :
(Yα, Aα) → (Xα, Aα) that restrict to the identity on Aα for each such component. Let Y =

⊔
α Yα and

f : (Y,A)→ (X,A) be the map induced by the fα. Since all these latter maps are weak homotopy equivalences,
so is f . Indeed, for arbitrary y ∈ Yα ⊆ Y , we have πn(Y, y) ∼= πn(Yα, y) and πn(X, f(y)) = πn(Xα, fα(y)), and
moreover πnf is associated with πnfα under these isomorphisms. Since each of the fα restrict to the identity
on Aα, we see that f restricts to the identity on A, and hence we are done.

We now end this section with addressing the representability of reduced cohomology theories first, and
generalised cohomology theories afterwards.

Lemma 6.41. Let h̃∗ be a reduced cohomology theory. Then for each n ∈ Z, the functor h̃n satisfies the
Mayer-Vietoris axiom, and is hence a Brown functor.

Proof. [11] Let X = A∪B be a decomposition of a pointed CW-complex into pointed subcomplexes, and write
jA : A∩B ↪→ A, jB : A∩B ↪→ B, iA : A ↪→ X and iB : B ↪→ X for the respective inclusions. Suppose there are
a ∈ h̃n(A) and b ∈ h̃n(B) that restrict to the same element in h̃n(A∩B), that is, such that h̃njA(a) = h̃njB(b).

Exactness of the Mayer-Vietoris sequence (Corollary 5.14) now implies that there exists an x ∈ h̃n(X) such that

h̃niA(x) = a and h̃niB(x) = b, which is to say that x restricts to a on A and to b on B, which shows h̃n satisfies
the Mayer-Vietoris axiom.

Theorem 6.42. Let h̃∗ be a generalised reduced cohomology theory on CW(2), and let C : Ω−spec→ rCohomTh

be the functor of Theorem 6.26. Then there exists an Ω-spectrum (Kn) and a natural isomorphism h̃∗ ∼= C(Kn)
of reduced cohomology theories. In other words, C is essentially surjective.

Proof. We add some details to the proof given in [11]. Let U : Ab → Set∗ be the forgetful functor. The
Brown Representability Theorem (which we can apply by the previous lemma) gives us for each n ∈ Z a space

K ′n ∈ cCW∗ and a natural isomorphism U ◦ h̃n ∼= [ · ,K ′n]• seen as functors cCWopp
∗ → Set∗. For an arbitrary

pointed CW-complex X (not necessarily path-connected), the suspension isomorphism and the suspension-loop

adjunction imply that U ◦ h̃n(X) ∼= U ◦ h̃n+1(ΣX) ∼= [ΣX,K ′n+1]• ∼= [X,ΩK ′n+1]• naturally as pointed sets.
Now, as said earlier, the spaces ΩK ′n+1 are pointedly homotopy equivalent to CW-complexes [18], but for self-
containedness, we let Kn be a CW-approximation of ΩK ′n+1 (which is essentially unique by Lemma 4.59) for

each n ∈ Z. Using Proposition 4.54, we obtain a natural isomorphism U ◦ h̃n ∼= [ · ,Kn]• of functors CW∗ → Set∗.
Another application of the suspension isomorphism and the suspension-loop adjunction gives [ · ,Kn]• ∼=

U ◦ h̃n ∼= U ◦ h̃n+1 ◦ Σ ∼= [Σ( · ),Kn+1]• ∼= [ · ,ΩKn+1], so the Yoneda Lemma implies that this isomoprhism is
induced by a homotopy equivalence Kn → ΩKn+1. Lemma 4.45 now implies that the (Kn) form an Ω-spectrum.
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Lastly, we need to show that for each n ∈ Z and X ∈ CW∗ the pointed bijection [X,Kn]• ∼= h̃n(X) is a group

homomorphism. If we can establish that, then h̃n ∼= [ · ,Kn]• as functors CWopp
∗ → Ab and the Ω-spectrum

(Kn) respresents the reduced cohomology theory h̃∗.
Now, to show this pointed bijection is a group homomorphism, note that we have isomorphisms [X,Kn]• ∼=

[X,ΩK ′n+1]• ∼= [ΣX,K ′n+1]• and h̃n+1(ΣX) ∼= h̃n(X) of abelian groups, and therefore it suffices to show that

the pointed bijection h̃n(ΣX) ∼= [ΣX,K ′n]• is a group homomorphism for each n. Let un ∈ h̃n(K ′n) be the
object that induces the isomorphism of the Brown Representability Theorem. For two maps f, g : ΣX → K ′n,
the equation Tun,ΣX([f ]+ [g]) = Tun,ΣX [f ]+Tun,ΣX [g] that would show this map is a homomorphism of abelian

groups translates to h̃n([f ] + [g])(un) = h̃n[f ](un) + h̃n[g](un), and by Lemma 5.27, this holds. Therefore the
bijection in the Representability Theorem is indeed a homomorphism, which finishes the proof.

Combining Corollary 6.11 with the previous theorem and the equivalence of categories CohomTh→ rCohomTh
of Theorem 5.11 (and in particular Corollary 5.12), we obtain the following equally important theorem.

Theorem 6.43. Let h∗ be a generalised cohomology theory on CW(2). Then there exists an Ω-spectrum (Kn)
such that

(i) for all pairs (X,X ′) ∈ CW(2) and all n there is an isomorphism hn(X,X ′) ∼= [X/X ′,Kn]•, which is
natural in the pair (X,X ′);

(ii) for all CW-complexes X and all n there is an isomorphism hn(X) ∼= [X,Kn], which is natural in X.

6.4 Eilenberg-MacLane spaces

Let us now look at reduced singular cohomology again. We are going to more closely investigate the Ω-spectrum
that respresents it. Given an abelian group A, any space Kn that satisfies H̃n( · ;A) ∼= [ · ,Kn]•, must, plugging
in the spheres Sm and using Corollary 5.15 and Example 2.11, satisfy

πm(Kn) ∼= H̃n(Sm;A) ∼=

{
A, if m = n,

0, if m 6= n.

This leads us to the following definition.

Definition 6.44. [7] Let n ≥ 0 and G be a set which is a group if n ≥ 1 and abelian in case n ≥ 2. A pointed
CW-complex K is an Eilenberg-MacLane space of type K(G,n) if πm(K) = 0 for m 6= n and πn(K) ∼= G. ♦

Example 6.45. From covering theory we know that any pointed space X that allows a contractible universal
covering space X̃ is an Eilenberg-MacLane space of type K(π1(X), 1). Indeed, X is path-connected since X̃ is,
and for n ≥ 2, Sn is path-connected and satisfies π1(Sn) = 0 (for instance by Corollary 4.41). Therefore, any

pointed map f : Sn → X lifts via the universal covering map p : X̃ → X to a pointed map f̃ : Sn → X̃ [10], as
illustrated in the diagram

X̃

Sn X

p

f

f̃

Since X̃ was assumed to be contractible, f = p ◦ f̃ is pointedly null-homotopic. Therefore πn(X) = 0 for n ≥ 2.
This shows that the only possibly nontrivial homotopy group of X is π1(X), so X is an Eilenberg-MacLane
space of type K(π1(X), 1).

This means for instance that the circle S1 is a K(Z, 1), as it has R as universal covering space. By the
Seifert-Van Kampen Theorem then,

∨n
i=1 S

1 is a K(Fn, 1), where Fn is the free group on n generators. It is
also possible to show that the infinite dimensional complex projective space CP∞ is a K(Z, 2) [13]. M
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Remark 6.46. (†) It is clear that the discrete set G is an Eilenberg-MacLane space of type K(G, 0), and
that any Eilenberg-MacLane space of this type is homotopy equivalent to this space. Indeed, if K is any such
space, that we have π0(K) ∼= G, and we can write {Kg | g ∈ G} for the path-connected components of K.
By definition, for each such path-connected component we have πm(Kg) = 0 for all m ≥ 0. The Whitehead
Theorem implies that any inclusion ∗ ↪→ Kg is a homotopy equivalence, and therefore K ' G. O

Convention 6.47. For the following passage, let A be an abelian group and write (Kn) for the Ω-spectrum
representing reduced singular cohomology with coefficients in A. �

By the above remark, we have K0 ' A as a discrete space, and obviously we have Kn ' ∗ for negative
n. For positive n, we have seen that Kn is an Eilenberg-MacLane space of type K(A,n). This is all that we
can say, in the sense that this is enough: it turns out that any choice of Eilenberg-MacLane spaces forms an
Ω-spectrum and represents reduced singular cohomology, as we will demonstrate below. For now, we wish to
show uniqueness of Eilenberg-MacLane spaces of type K(A,n) for all n, and not just n = 0. To do so, we
need an important theorem in algebraic topology, which we introduce here without proof (and not in the most
general form).

We first however need to talk a bit about singular homology again. It is not difficult to show that Hn(Sn) ∼= Z
for all n ≥ 0 since it satisfies all the Eilenberg-Steenrod axioms in Definition 1.46. Now, this means that there
is a generator α ∈ Hn(Sn) of this group, which is unique up to sign. Fix a particular choice. Consider
for a path-connected space X (not necessarily a CW-complex) the Hurewicz homomorphism h : πn(X) →
Hn(X), [f ] 7→ Hnf(α) (note that path-connectedness of X implies that base points do not matter). That this
is a homomorphism follows similarly as Lemma 5.27.

Theorem 6.48. (Hurewicz) Let X be a path-connected space.
(i) If n = 1, the Hurewicz map induces an isomorphism π1(X)ab ∼−→ H1(X).

(ii) If n ≥ 2 and πi(X) = 0 for 0 ≤ i ≤ n−1, then the Hurewicz map h : πn(X)→ Hn(X) is an isomorphism.

Proof. This is shown in [11].

Proposition 6.49. Let n ≥ 0 and let K be an Eilenberg-MacLane space of type K(A,n). Then K ' Kn

pointedly, where Kn is as in Convention 6.47.

Proof. We already covered the case n = 0 in Remark 6.46, so let us take n ≥ 1. Our proof, roughly following
[7], will be a prime example of abstract nonsense and will use a few large results obtained over the past pages.

Let un ∈ Hn(Kn;A) be the element that induces the natural isomorphism [ · ,Kn]•
∼−→ H̃n( · ;A) = Hn( · ;A)

(since n ≥ 1). We have Hn(K) ∼= πn(K) ∼= A by the Hurewicz Theorem, with the Hurewicz map h providing
the first isomorphism, and moreover we have Hn−1(K) ∼= πn−1(K) = 0 by the same theorem. The Universal
Coefficient Theorem 2.20 now implies that the map Φ given by said theorem is an isomorphism Hn(K;A)

∼−→
HomAb(Hn(K), A)⊕Ext1

Z(Hn−1(K), A) ∼= HomAb(Hn(K), A)⊕Ext1
Z(0, A) ∼= HomAb(Hn(K), A), by Proposition

B.42(ii). All in all we obtain an isomorphism

ΨK : [K,Kn]• H̃n(K;A) = Hn(K;A) HomAb(Hn(K), A)) HomAb(πn(K), A).∼ Φ
∼

−◦h
∼

Let f : K → Kn represent an element [f ] ∈ [K,Kn]•, let a group homomorphism ϕ : Cn(K)→ A (where Cn(K)
is a group appearing in the singular chain complex, last encountered in the first two chapters) represent the
element Hnf(un) ∈ Hn(K;A) and let γ : Sn → Kn represent an element [γ] ∈ πn(Kn). If α is a generator of
Hn(Sn) (represented by a ∈ Cn(Sn)), the description of the Hurewicz isomorphism h : πn(K)→ Hn(K) above
implies (after careful inspection) that the homomorphism ΨK([f ]) : πn(K)→ A is determined by ΨK([f ])([γ]) =
ϕ ◦ Cnγ(a), where Cnγ : Cn(Sn)→ Cn(K) is the induced map on the n-th singular chain group.

There is for n ≥ 1 a preferred isomorphism πn(Kn)
∼−→ A obtained in a similar manner as the composition

ΨSn : πn(Kn) = [Sn,Kn]• H̃n(Sn;A) = Hn(Sn;A) HomAb(Hn(Sn), A)) A.∼ Φ
∼

g 7→g(α)

∼
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This isomorphism can be seen (after another careful inspection) to send the element πnf([γ]) = [f ◦ γ] to
ϕ ◦ Cnγ(a) as well. All in all, we obtain an isomorphism

[K,Kn]• HomAb(πn(K), A) HomAb(πn(K), πn(Kn)),
ΨK
∼ ∼

ΨSn◦−

which by our previous observations sends [f ] to πnf (we will celebrate this result by deducing Lemma 6.52
below from it). Now, since πn(K) ∼= A ∼= πn(Kn), there is an isomorphism πn(K)→ πn(Kn) on the right of the
isomorphism above, which is apparently induced by (a pointed homotopy class of) a pointed map f : K → Kn.
Since the homotopy groups of K and Kn are trivial everywhere else, this map f is a pointed weak homotopy
equivalence between CW-complexes, and therefore a pointed homotopy equivalence K → Kn by the Whitehead
Theorem.

Notation 6.50. Since all Eilenberg-MacLane spaces of type K(A,n) are apparently pointedly homotopy equiv-
alent, we write by a slight abuse of notation simply K(A,n) for any such space. #

Lemma 6.51. The sequence (K(A,n)) in n forms an Ω-spectrum (the Eilenberg-MacLane spectrum) that rep-

resents H̃n( · ;A).

Proof. Since we found in (Kn) an Ω-spectrum and all Eilenberg-MacLane spaces of the same type are pointedlty
homotopy equivalent, this is clear.

We draw a few further conclusions from the proof of Proposition 6.49.

Lemma 6.52. Let n ≥ 1.
(i) For every pointed CW-complex X, there is an isomorphism [X,K(A,n)] ∼= [X,K(A,n)]•.

(ii) If X is a pointed CW-complex such that πi(X) = 0 for 0 ≤ i ≤ n−1, then taking the n-th homotopy group

induces an isomorphism [X,K(A,n)]•
πn−−→
∼

HomAb(πn(X), πn(K(A,n))).

(iii) If A′ is another abelian group, then there is an isomorphism Hn(K(A′, n);A) ∼= [K(A′, n),K(A,n)]• ∼=
HomAb(A

′, A).

Proof. The first statement follows by Lemma 6.51 and Theorem 6.43 from the isomorphisms [X,K(A,n)] ∼=
Hn(X;A) = H̃n(X;A) ∼= [X,K(A,n)]•, as n ≥ 1. The second statement is shown just as the case for X an
Eilenberg-MacLane space in the proof of Proposition 6.49 (as we only needed to apply the Hurewicz Theorem
to this first Eilenberg-MacLane space, which only requires the restrictions imposed on X in the statement). The
third statement is obvious now.

Corollary 6.53. (†) Let n ≥ 1, and denote by hEM∗(n) the full subcategory of hCW∗ consisting of Eilenberg-
MacLane spaces of type K(A,n), where A ranges over all abelian groups (and n is fixed).

(i) The functor πn : hEM∗(n)→ Ab is an equivalence of categories.
(ii) There is a fully faithful functor k( · , n) : Ab → hTop∗ that sends an abelian group A to a particular

Eilenberg-MacLane space k(A,n) of type K(A,n).

Proof. The functor πn : hEM∗(n) → Ab is fully faithful by Lemma 6.52(ii), and is essentially surjective by
definition of the Eilenberg-MacLane spaces (as for any abelian group A the existence of K(A,n) is guaranteed
by representability of reduced singular cohomology). By Proposition A.28, therefore, it is an equivalence of
categories. This shows the first claim. For the second, note that there must now be a functor k( · , n) : Ab →
hEM∗(n) such that πn(k(A,n)) ∼= A naturally in A for any abelian group A, which means that k(A,n) is an
Eilenberg-MacLane space of type K(A,n). After considering the inclusion hEM∗(n) → hTop∗, we see that
k( · , n) is also a fully faithful functor Ab→ hTop∗.

Remark 6.54. This is certainly a nontrivial equivalence of categories, and a particularly daring mathematician
could now try to study abelian group theory by devoting his or her live to the study of Eilenberg-MacLane
spaces. In this sense, one could say that most of abelian group theory is apparently hidden within the Eilenberg-
MacLane spaces. However, it is clear that the more useful observation is that much of the homotopy theory of
Eilenberg-MacLane spaces can be entirely captured within the language of abelian groups. O
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Now, for another application of the representability of singular cohomology, we will talk about cohomology
operations. As we shortly states at the beginning of Chapter 2, one of the advantages that singular cohomology
has over singular homology is that the abelian groups of the former can be combined within a single ring,
whereas the latter does not (at east not naturally). We could ask if there is even more algebraic structure lying
around. What happens if we also allow us to vary the coefficients? This is a rough justification for the following
definition.4

Definition 6.55. [7] Given m,n ≥ 0 and two abelian groups A and A′, a cohomology operation of type
(n,m,A,A′) is a natural transformation Hn( · ;A)→ Hm( · ;A′). ♦

Example 6.56. We will give a nontrivial example of a cohomology operation that arises quite naturally (pun

intended), taken from [7]. Consider for any prime p the short exact sequence 0 Z Z Z/pZ 0.
·p

By definition of the singular cochain complex, it can be seen to induce for each topological space X a short
exact sequence

0 C•(X,Z)) C•(X,Z) C•(X,Z/pZ) 0
(·p)◦−

of said cochain complexes. By Theorem B.30, we obtain a long exact sequence

. . . Hn−1(X;Z/pZ) Hn(X;Z) Hn(X;Z) Hn(X;Z/pZ) Hn+1(X;Z) . . .
δn−1 δn

of cohomology. The Bockstein homomorphisms are the maps δn : Hn(X;Z/pZ) → Hn+1(X;Z). They are
natural in X because the long exact sequence of cohomology in Theorem B.30 is. Therefore, they define natural
transformations Hn( · ;Z/pZ) → Hn+1( · ;Z), and hence give us for all n ≥ 0 cohomology operations of type
(n, n+ 1,Z/pZ,Z). M

The representability of singular cohomology allows us to determine in some cases the number of such coho-
mology operations of a certain type.

Lemma 6.57. Let m,n ≥ 0 and let A and A′ be two abelian groups.
(i) If n > m, there are no cohomology operations of type (n,m,A,A′) except the trivial one.

(ii) The cohomology operations of type (n, n,A,A′) are in bijection with HomAb(A,A
′).

Proof. By the Yoneda Lemma and the fact that Eilenberg-MacLane spaces represent singular cohomology, we
have an isomorphism Nat(Hn( · ;A),Hm( · ;A′)) ∼= Hm(K(A,n);A′). If m < n, then the Hurewicz Theorem 6.48
implies that Hm(K(A,n);A′) = 0, which shows that in this case there are no cohomology operations of type
(n,m,A,A′). If m = n, then Lemma 6.52(iii) implies that Hn(K(A,n);A′) ∼= HomAb(A,A

′).

We already have shown that Eilenberg-MacLane spaces K(A,n) exist and are unique for abelian groups A,
but have not touched on the existence nor uniqueness of all types. We will not need it, but state the result
nonetheless.

Lemma 6.58. Let n and G be as in the definition of an Eilenberg-MacLane space. Then there exists a CW-
complex K which is an Eilenberg-MacLane space of type K(G,n). Moreover, all such spaces are pointedly
homotopy equivalent.

Proof. We already covered the case in which n = 0 and the case in which G is abelian. The only remaining
case, existence and uniqueness of a K(G, 1) for G not abelian, is shown in [11].

The following corollary is a result too beautiful not to include here.

Corollary 6.59. (†) Let (Gn)n≥0 be a sequence of a set G0 and groups Gn for n ≥ 1, which are abelian in case
n ≥ 2. Then there exists a CW-complex K such that πn(K) ∼= Gn for all n.

4This definition is actually really interesting and important, but we have simply not explored enough algebraic topology here to
fully justify it.
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Proof. Simply let K ′ =
∏∞
n=0K(Gn, n), equipped with the regular product topology (so K ′ is not necessarily a

CW-complex). Since [ · ,K ′]• ∼=
∏∞
n=0[ · ,K(Gn, n)]• for every choice of base point in K ′, we have πn(K ′) ∼= Gn

for all K. Now we can pick for K a CW-approximation of K ′, and we are done.

We end this section with two among the most important theorems about reduced and generalised cohomology
theories that we can now relatively easily prove. The second could also have been proven at the end of the
previous section, but it is more naturally stated along with the first one.

Theorem 6.60. (Uniqueness of ordinary cohomology)[11]
(i) Let h∗ and k∗ be two ordinary cohomology theories on CW(2). If h0(∗) ∼= k0(∗), then h∗ ∼= k∗ as cohomology

theories.
(ii) Let h̃∗ and k̃∗ be two reduced cohomology theories on CW∗ that satisfy h̃n(S0) ∼= 0 ∼= k̃n(S0) for n 6= 0. If

h̃0(S0) ∼= k̃0(S0), then h̃∗ ∼= k̃∗ as reduced cohomology theories.

Remark 6.61. In particular, this implies that any ordinary cohomology theory h∗ on CW(2) is naturally
isomorphic to the singular cohomology theory H∗( · , · ; h0(∗)), and the reduced statement is also true (below we
will see that this is actually the way we prove this theorem). Note that this also implies that hn(X,X ′) = 0 for
all CW-pairs (X,X ′) and all n < 0. O

Proof. (†) First note that both statements are equivalent by Corollaries 5.12 and 5.15. We will therefore only

prove the second. Let (Kn) an Ω-spectra that represents h̃∗, and write A = h̃0(S0). By Corollary 5.15, we

must have πm(Kn) = [Sm,Kn]• ∼= h̃n(Sm), which is trivial if m 6= n and isomorphic to A if m = n. Therefore,
every Kn must be an Eilenberg-MacLane space of type K(A,n), and therefore (Kn) is the Eilenberg-MacLane

spectrum. This implies that h̃∗ is naturally isomorphic to H̃n( · ;A). The same holds for k̃∗, so h̃∗ ∼= k̃∗ as
reduced cohomology theories.

Remark 6.62. If the reader is familiar with de Rham cohomology on smooth manifolds, he or she might recall
the De Rham Theorem, that states that singular cohomology with coefficients in R is isomorphic to de Rham
cohomology on smooth manifolds [14]. This is related to the above theorem, since all smooth manifolds are
homotopy equivalent to a CW-complex [18]. O

Theorem 6.63. (Uniqueness of generalised cohomology)[11]
(i) Let h∗ and k∗ be two generalised cohomology theories on CW(2), and suppose there is a morphism η : h∗ →

k∗ of generalised cohomology theories in CohomTh. If ηn∗,∅ : hn(∗,∅) → kn(∗,∅) is an isomorphism for
all n, then η is an isomorphism of cohomology theories.

(ii) Let h̃∗ and k̃∗ be two reduced cohomology theories on CW∗, and suppose there is a morphism η : h̃∗ → k̃∗

of generalised cohomology theories in rCohomTh. If ηnS0 : h̃n(S0) → k̃n(S0) is an isomorphism for all n,
then η is an isomorphism of reduced cohomology theories.

Proof. (†) By Corollaries 5.12 and 5.15 both statements are equivalent, so we will only show the second. Let

(Kn) and (K ′n) be two Ω-spectra that represent h̃∗ and k̃∗, respectively. This means that for each n, the
natural transformation ηn induces a natural transformation [ · ,Kn]• → [ · ,K ′n]•, which by the Yoneda Lemma
is induced by a unique pointed homotopy class [fn] of maps Kn → K ′n. Choose a particular such map for each
n.

Since ηn commutes with the suspension isomorphism, we have ηnSm to be an isomorphism for every m ≥ 0.

Therefore, fn induces isomorphisms [Sm,Kn]•
∼−→ [Sm,K ′n]• for each m. Write K̂n and K̂ ′n for the path-

connected components of Kn and K ′n that contain the base point. By the Whitehead Theorem, fn|K̂n :

K̂n → K̂ ′n is a pointed homotopy equivalence. This means that [fn|K̂n ] ◦ − : [ · , K̂n]•
∼−→ [ · , K̂ ′n]• is a

natural isomorphism of functors for each n. Also note that, by definition, the ηn commute with the suspension
isomorphism, and therefore the maps [fn] ◦ − commute with the suspension-loop adjunction.
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Now let X be any pointed CW-complex. Since ΣX is path-connected, we find isomorphisms fitting in a
commutative diagram

h̃n(X) [X,Kn]• [ΣX,Kn+1]• [ΣX, K̂n+1]•

k̃n(X) [X,K ′n]• [ΣX,K ′n+1]• [ΣX, K̂ ′n+1]•

ηnX

∼

[fn]◦−

∼

[fn+1]◦−

∼

[fn+1|K̂n+1
]◦−∼

∼ ∼ ∼

Therefore, ηnX is an isomorphism for all pointed CW-complexes X and all integers n, which shows that η : h̃∗ →
k̃∗ is an isomorphism of reduced cohomology theories.

Remark 6.64. The above theorems also holds when we replace ordinary, generalised or reduced cohomology
theories with ordinary, generalised or reduced homology theories, as shown in [11]. (The axioms of a reduced
homology theory are not important to us, but can be guessed from Definitions 1.46 and 5.1.) O

Remark 6.65. The above two uniqueness theorems, as well as the existence and uniqueness of Eilenberg-
MacLane spaces can also be proven more constructively, without using the representability of cohomology, as is
for instance done in [13] and [11]. In fact, when doing so, we can conclude that the Eilenberg-MacLane spaces
using the same abelian group form an Ω-spectrum, and uniqueness of ordinary cohomology theories (and its
reduced version) then allow us to conclude that it must represent singular cohomology. However, such a proof
would require much work5, while they follow relatively easily from the representability of cohomology.

Note also that if we take representability of cohomology as a given, that then the first uniqueness theorem
reduces to showing that any pointed CW-complex X with homotopy groups concentrated in a single degree is
unique up to pointed homotopy equivalence, while the second reduced to the Whitehead Theorem. In other
words, we managed to reduce statements about cohomology to purely homotopy theoretic statements. This is
exactly what the representability of cohomology says is possible. O

6.5 Two further examples of cohomology theories

We will end this thesis by giving two more examples of reduced cohomology theories defined on a subcategory
of topological spaces, and address their representability. This section serves mainly to illustrate that there
are more interesting cohomology theories in algebraic topology, which also can be representable, and give the
examples of stable cohomotopy and topological K-theory. We only give a short introduction and omit proofs.
We however would like to note that behind each of these examples lies a whole field of study.

Definition 6.66. Let X be a pointed topological space. The n-th cohomotopy group of X is the set πn(X) :=
[X,Sn]•. ♦

Generally, these cohomotopy groups actually do not carry group structures. A notable exception is of course
when X is pointedly homotopy equivalent to a reduced suspension. This can be a motivation to consider the
spaces πn+k(ΣkX) = [ΣkX,Sn+k]•, which are groups for k ≥ 1, and are even abelian if k ≥ 2. The functor Σ
provides us with natural maps [Y,Z]• → [ΣY,ΣZ]• for all pointed spaces Y and Z, so we can form the colimit
πns (X) of the diagram

πn(X) πn+1(Σ1X) πn+2(Σ2X) . . . ,Σ Σ

which turns out to actually exist, to carry a natural abelian group structure, and, although we will not show it
here, to constitute to a cohomology theory on CW∗ [1]. We call π∗s stable cohomotopy theory, and it turns out
that it is represented by an Ω-spectrum QS0, where Q : Top∗ → Ω−spec is a certain functor [1].

5While working on this thesis, I actually typed out a large part of the proof of uniqueness of cohomology, and it would have
taken me at least five pages to show it completely. Existence and uniqueness of Eilenberg-MacLane spaces would require a similar
amount of pages to show it directly.
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Topological K-theory, on the other hand, measures in a sense how many vector bundles there exist over a
given compact space. Of course, we will now need to define a vector bundle.

Definition 6.67. Let X be a topological space. A complex vector bundle over X consists of a topological space
E, together with a continuous surjection p : E → X such that:

(i) For each x ∈ X, Ex := p−1(x) carries the structure of an vector space over C.
(ii) For each such x there exist an open neighbourhood U ⊆ X of x and an integer n ≥ 0 such that:

(a) There is a homeomorphism ϕ fitting in the commutative diagram

p−1(U) U × Cn

X

p

ϕ

∼

pr1

(b) For each x′ ∈ U , the map ϕ(x′, · ) : p−1(x′) → {x′} × Cn is a linear map (and consequently an
isomorphism). ♦

If we denote by CHaus the full subcategory of Top consisting of compact spaces, then the set Vect•C(X)
consisting of isomorphism classes of complex vector bundles over a compact space X actually carries a natural
commutative monoid structure, and Vect•C turns out to be a functor CHausopp → CMon [12]. Even more is true:
homotopic maps induce the same homomorphisms of commutative monoids by a result shown in [2], so Vect•C
factors through the homotopy category hCHausopp.

Now, the forgetful functor U : Ab→ CMon admits a left adjoint K : CMon→ Ab, known as the Grothendieck
construction [2], and we can then define K(X) := K(Vect•C(X)). This gives us a homotopy invariant functor

K : CHausopp → Ab. Now, for a pointed compact space X, with i : ∗ ↪→ X the inclusion, we set K̃X := ker(Ki).

We now define K̃2n = K̃ and K̃2n+1 = K̃ ◦ Σ for n ∈ Z. This is the reduced cohomology theory on CHaus∗
(with the exact sequence axiom stated slightly differently than we did it for pointed CW-complexes) which is
called (reduced) topological K-theory [12].

We cannot apply the Brown Representability Theorem to conclude that it is representable, since it is not
defined for all CW-complexes. However, it does turn out to be representable [1]. To describe the representing
objects, let BU(n) = G(C∞, n) be an infinite Grassmanian, if desired defined as the colimit of the diagram

G(Cn, n) G(Cn+1, n) G(Cn+2, n) . . .

There exist natural maps BU(n)→ BU(n+ 1) sending V ⊆ C∞ to V ⊕ C ⊆ C∞ ⊕ C ∼= C∞, and their colimit

gives us a space BU . It turns out that K0 is represented by BU × Z, and therefore K̃1 is represented by
Ω(BU × Z) [1].

There is something called Bott periodicity, which states that there is a pointed weak homotopy equivalence
BU × Z→ Ω2(BU × Z) [3]. This gives us an Ω-spectrum

. . . Ω(BU × Z) BU × Z Ω(BU × Z) BU × Z . . .

that represents K-theory on CHaus∗ [1].
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Discussion and conclusion

In this thesis, we have given an introduction to cohomology theories on CW-complexes, and have shown their
representability by an Ω-spectrum. As such, we have obtained a strong link between cohomology on the one
hand, and homotopy theory of CW-complexes on the other.

Cohomology originated in a desire to measure holes in topological spaces in order to define homotopy
invariants on topological spaces. These are of use in particular because they can help us determine if two given
spaces are homotopy equivalent. We covered singular homology first and then dualised its construction to obtain
singular cohomology as an important example of cohomology, and have shown a few of its properties. These
properties were then used to define what we wanted a generalised cohomology theory to be, and as such, by
studying singular cohomology we already gained some familiarity with generalised cohomology theories.

In order to show such theories are representable, we restricted ourselves to CW-complexes, which we then
introduced. They turned out to satisfy quite a few pleasant properties with regards to homotopy theory, such as
the homotopy extension property, but also results like the Cellular Approximation Theorem and the Whitehead
Theorem. These results, and the CW-approximation Theorem, all were very important to us in later parts, and
justified devoting a separate chapter to them.

Reduced cohomology theories on pointed CW-complexes, and in particular the equivalence of categories
between the reduced and unreduced generalised cohomology theories on the CW-complexes, allowed us to pass
the question of representability of generalised cohomology on these spaces to a question of representability of the
reduced cohomology theories. This was an important step, as it allowed us to apply the Brown Representability
Theorem, using which we finally showed that all the reduced cohomology theories on pointed CW-complexes
are representable by an Ω-spectrum, and therefore that all unreduced cohomology theories on CW-pairs are as
well.

The Brown Representability Theorem holds, as we saw, for more general functors than the ones in a coho-
mology theory alone, and we saw in our proof of the CW-approximation Theorem one example of that. We also
studied the Eilenberg-MacLane spaces, that represent (reduced) singular cohomology, in some detail, and drew
a few conclusions about them and singular cohomology. In cohomology operations, namely, lies part of the study
of additional algebraic structure on singular cohomology. Lastly, we gave two other examples of representable
cohomology theories on certain topological spaces, next to singular cohomology.

The proof of the Brown Representability Theorem used many abstract concepts from category theory and
ideas that could be captured or generalised in that language. This was already noted by Brown himself in [5],
and he defined a type of pairs of categories which he called a homotopy category, which admits an abstract
definition of a Brown functor, which are then shown to be representable. This provides us with a generalisation
of the theorem to a multitude of situations.

Also, Ω-spectra are special cases of something called spectra. A spectrum is a sequence (Kn)n≥0 of pointed
topological spaces together with maps (not necessarily weak homotopy equivalences) ϕn : ΣKn → Kn+1, and
via the suspension loop adjunction, each Ω-spectrum defines a spectrum. The interplay between spectra and
Ω-spectra in particular is a central topic in modern algebraic topology, with books like [15], [1], and [17] being
devoted to it. The functor Q : Top∗ → Ω−spec which we mentioned when covering stable cohomotopy theory in
Section 6.5 actually arises in that context, for instance in [17]. Spectra can be used to produce both cohomology
and homology theories, and are needed in order to talk about the representability of generalised homology
theories, which we did not do in this thesis [7].

Next to stable cohomotopy, there is also stable homotopy theory, and determining the way it acts on the
spheres is also a central topic in modern algebraic topology, with [7] calling the computation of the stable
homotopy groups of S0 “the holy grail of homotopy theory”.

Topological K-theory was one of the first generalised cohomology theories that were stuied extensively, and
has a wide range of applications both within and outside of algebraic topology [12]. We only briefly mentioned
its main idea, but it would certainly deserve to have a separate thesis written about it.

Lastly, we would like to note that cohomology can also be studied further by using spectral sequences. We
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will not explain what they are here, but instead refer to [13] for an exposition. It also provides ways to show
certain results about homotopy theory that we already encountered in this thesis, such as the Hurewicz Theorem.
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Appendix A

Category theory

Category theory is absolutely indispensable in many areas of (theoretical) mathematics. Originally founded in
the context of abstract algebra and algebraic topology [22], it has shown to capture many different mathematical
ideas in a unified language, and it enables mathematicians to look straight at the fundamentals of the matter.
Here, we quickly give an overview of the material that is needed in this thesis.

A.1 Categories and functors

The idea of a category originates from the observation that in (theoretical) mathematics, we often study objects
that have a certain structure between them, and do that by in turn studying maps between those objects that
preserve or respect that structure in some sense. To get an overview of these objects and maps, we arrive at the
following definition. All the definitions and propositions in this appendix can be found in [22]. We omit many
proofs, but it should be noted that many of them are actually quite doable for any reader.

Definition A.1. A category C is an object that consists of
(i) a collection obC of objects,

(ii) for any two objects X,Y ∈ obC, a collection HomC(X,Y ) of morphisms between X and Y ,
(iii) for every object X ∈ obC an identity morphism idX ∈ HomC(X,X),
(iv) for any three objects X,Y, Z ∈ obC a map

◦ : HomC(X,Y )×HomC(Y,Z)→ HomC(X,Z), (f, g) 7→ g ◦ f,

called composition such that

(a) for all X,Y ∈ obC and every f ∈ HomC(X,Y ), it holds that f ◦ idX = f and idY ◦ f = f ,
(b) for all X,Y, Z, T ∈ obC and every f ∈ HomC(X,Y ), g ∈ HomC(Y, Z) and h ∈ HomC(Z, T ), it holds

that h ◦ (g ◦ f) = (h ◦ g) ◦ f . ♦

Notation A.2. We will write f : X → Y for a morphism f ∈ HomC(X,Y ), and write X ∈ C instead of
X ∈ obC. We will also often shorten a composition g ◦ f to simply gf . #

Remark A.3. In the above definition, the use of the word “collection” is intentional. We do not always want
the size of categories or the morphisms between two objects to be limited by a set. Our definition suffices for our
purposes, but the reader may ask how rigorous it is. For a proper investigation of the foundations of category
theory, see [8]. O

Example A.4. In principle every collection of objects and arrows that satisfies the conditions in Definition A.1
is a category. However, there are some important examples (which were of course some of the reasons categories
were introduced):
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(i) The collection of all sets with maps of sets between them (and the identity and composition as usual)
forms the category Set.

(ii) The collection of all abelian groups and homomorphisms between them forms the category Ab.
(iii) The collection of all topological spaces and continuous maps between them forms the category Top.
(iv) The collection of all pointed topological spaces and pointed continuous maps between them forms the

category Top∗. Recall that a pointed topological space is a pair (X, ∗), where X is a topological space and
∗ ∈ X. A pointed continuous map f : (X, ∗)→ (Y, ∗) is a continuous map f : X → Y such that f(∗) = ∗.

(v) Similarly, the collection of all pointed sets and pointed maps between them forms the category Set∗.
(vi) The collection of all topological spaces and homotopy classes of continuous maps between them forms

the homotopy category of topological spaces hTop1. That is, for two topological spaces X and Y , we set
HomhTop(X,Y ) = {f : X → Y | f is continuous}/∼, and take the composition law [g] ◦ [f ] := [gf ] for two
composable morphisms f and g in Top. We know from topology that this is well-defined.

(vii) The empty category 0 is the category without objects or morphisms. The trivial category 1 is the category
with one object and one morphism, namely the identity on that object. M

Definition A.5. Let C be a category. C is locally small if for any two objects X,Y ∈ C, HomC(X,Y ) is a set,
and C is small if furthermore obC is a set. ♦

Definition A.6. Let C′ and C be two categories. Then C′ is a subcategory of C if obC′ forms a subcollection
of obC, and for any two X,Y ∈ C′, HomC′(X,Y ) is a subcollection of HomC(X,Y ). ♦

Definition A.7. Let C and D be two categories. The product category C × D is the category that consists of
pairs (X,Y ) of an object X ∈ C and an object Y ∈ D, and with morphisms (f, g) : (X1, Y1) → (X2, Y2) that
consist of a morphism f : X1 → X2 in C and a morphism g : Y1 → Y2 in D. ♦

Definition A.8. Let a category C be given. The opposite category Copp, also called the dual category, is defined
as obCopp = obC, and for any two X,Y ∈ Copp, we set HomCopp(X,Y ) = HomC(Y,X). Composition is defined
for X,Y, Z ∈ HomCopp(X,Y ) as HomCopp(X,Y ) × HomCopp(Y, Z) → HomCopp(X,Z), (f, g) 7→ f ◦ g (where ◦ is
composition in C). ♦

Remark A.9. We should note that this duality in the definition of a category means that each categorical
construction has a “co-construction” obtained by reversing all the arrows. Similarly, every result has a co-
result, which can be proved by reversing all the arrows in the proof of the original statement. This allows us to
prove two results at once each time. Most of the time, we omit the dual construction, definition or result, but
sometimes, when we think it is important enough, mention the dual concept. O

Definition A.10. Let C be a category and f : X → Y a morphism in C. Then f is an isomorphism if there
exists a morphism g : Y → X such that gf = idX and fg = idy. If f is an isomorphism, this map g is called its
inverse and is often denoted by f−1. Two objects X and Y in C are isomorphic if there exists an isomorphism
X → Y , and we sometimes write X ∼= Y . ♦

Example A.11. (i) In any category C, the identity morphisms idX are isomorphisms X → X for any X ∈ C.
(ii) An isomorphism in Set is a bijection of sets, and an isomorphism in Top is a homeomorphism. In hTop,

an isomorphism is a homotopy equivalence between topological spaces.
(iii) The composition of two composable isomorphisms in a category C is again an isomorphism. The inverse

f−1 of an isomorphism f is also an isomorphism, and (f−1)−1 = f . M

The above definition of an isomorphism applies to all categories, so we do not need to explicitly define
isomorphisms between specific objects that form a particular category anymore. However, we will still sometimes
do this, just to also give a bit more classical introduction to new material for readers that are not that used to
category theory.

1This terminology is not entirely standard. Since I am simply a Backelor’s student, I like to call it this, but others sometimes
like to call it the naive homotopy category, since a subcategory (see Definition A.6) of it is actually more natural and convenient to
study, which is then dubbed the (true) homotopy category. We will, as is clear, not adopt this convention.
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Categories are not only used to get an overview of objects and structure respecting maps between them.
Categories themselves are mathematical objects, with the structure of objects, arrows and composition. To
study category theory, or describe constructions we come across in other mathematics, we would like to have a
sense of a structure respecting map between categories. The following definition gives us just that.

Definition A.12. Let C and D be two categories. A (covariant) functor F between C and D is an object
consisting of

(i) for any object X ∈ C, an object F (X) ∈ D,
(ii) for any morphism f : X → Y in C, a morphism F (f) : F (X)→ F (Y ) in D, such that

(a) F (idX) = idF (X) for all X ∈ C,
(b) F (gf) = F (g)F (f) for all composable morphisms f and g in C.

We write this as F : C→ D.
A contravariant functor F between C and D is a covariant functor F : Copp → D. We again write this as

F : C→ D. ♦

When we refer to a functor, it is understood that we talk about a covariant functor. A contravariant functor
C → D is either explicitly called that, or referred to as a functor Copp → D. In cases where it cannot cause
confusion, we shorten F (X) and F (f) to FX and Ff , respectively.

Example A.13. (i) Any category C has an identity functor idC that sends every object X and morphism f
to itself, that is, idCX = X and idCf = f .

(ii) For any locally small category C, there are three functors baring the name Hom-functor. Firstly, there
is for any C ∈ C the covariant Hom-functor HomC(C, · ) : C → Set, X 7→ HomC(C,X), which sends a
morphism f : X → Y in C to the morphism

HomC(C, f) = f ◦ − : HomC(C,X)→ HomC(C, Y ), h 7→ f ◦ h.

(See Figure A.1.) Secondly, there is for any C ∈ C the contravariant Hom-functor HomC( · , C) : Copp →
Set, X 7→ HomC(X,C), which sends a morphism f : X → Y in C to the morphism

HomC(f, C) = − ◦ f : HomC(Y,C)→ HomC(X,C), h 7→ h ◦ f.

(See Figure A.1.) Lastly, there is the bifunctor HomC( · , · ) : Copp × C → Set, (X,Y ) 7→ HomC(X,Y ),
which sends morphisms f : X1 → X2 and g : Y1 → Y2 in C to the morphism

HomC(f, g) = g ◦ − ◦ f : HomC(X2, Y1)→ HomC(X1, Y2), h 7→ ghf.

(See Figure A.1.) This Hom-functor is contravariant in the first argument, and covariant in the second.

C X X C X2 Y1

Y Y X1 Y2

h

f f

h

gh
f

Figure A.1: The induced maps of the Hom-functors.

(iii) There are many examples of so-called forgetful functors. These are functors that “forget” part of the struc-
ture of objects, essentially leaving the category unchanged: it sends objects and morphisms to themselves,
but in a category with less structure in it. Examples are Ab → Set, which sends an abelian group to the
underlying set, and Top∗ → Top, which forgets the choice of base point.

(iv) Any commutative diagram of sets, topological spaces, groups, rings, etc. can be considered to be a functor.
To give an example, suppose that

X1 X2

X3

f2

f3

f1
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is a commutative diagram in some category C. If we let S be the formal category

1 2

3

ϕ3

ϕ2
ϕ1

(where we omitted the identity morphisms) such that ϕ1ϕ3 = ϕ2, then the first diagram is a functor
X : S→ C, i 7→ Xi which sends a morphism ϕi to fi.

(v) The composition of two functors F : C→ D and G : D→ E is the map GF = G ◦ F : C→ E, which sends
an object X ∈ C to GFX ∈ E, and a morphism f : X → Y in C to the morphism GFf : GFX → GFY
in E. This is easily seen to be a functor, and for any F : C → D, G : D → E, and H : E → K, it satisfies
H(GF ) = (HG)F and F ◦ idC = idD ◦ F . M

Proposition A.14. Let F : C → D be a functor between two categories, and suppose C is a commutative
diagram of objects and arrows in C. Then its image F (C) is a commutative diagram in D.

Corollary A.15. Let F : C → D be a functor, and suppose f : X → Y is an isomorphism in C. Then
Ff : FX → FY is an isomorphism in D.

The following definition allows us to state a partial converse to Proposition A.14, but it will turn out that
it in itself is also an important concept.

Definition A.16. Let F : C→ D be a functor between locally small categories. Then
(i) F is full if the assignment HomC(X,Y )→ HomD(FX,FY ), f 7→ Ff is surjective for all X,Y ∈ C,

(ii) F is faithful if the assignment HomC(X,Y )→ HomD(FX,FY ), f 7→ Ff is injective for all X,Y ∈ C.
A functor that is both full and faithful is called fully faithful. ♦

Definition A.17. A subcategory is called full if the inclusion functor is full. ♦

The following lemma is not difficult to show and a good exercise for a reader that is new to category theory,
and hence we omit the proof.

Lemma A.18. Let F : C → D be a fully faithful functor between two locally small categories. Given a
commutative diagram D of objects in the image F (C), and arrows in D, there is a commutative diagram C in C
that is mapped by F on D.

Corollary A.19. Let F : C→ D be a fully faithful functor between two locally small categories, and let X,Y ∈ C.
Suppose h : FX → FY is an isomorphism in D. Then there is a unique isomorphism f : X → Y in C such that
Ff = h.

Corollary A.20. Let F : C → D be a fully faithful functor between two locally small categories, and let
Y ∈ F (C). Then there is up to isomorphism a unique X ∈ C such that FX = Y . In particular, given a
commutative diagram D in D, there is a commutative diagram C in C such that F (C) = D, and it is unique up
to isomorphism in its objects, and once the objects are chosen, unique in its morphisms.

A.2 Natural transformations and the Yoneda Lemma

Definition A.21. Let F,G : C→ D be two functors. A natural transformation or morphism η from F to G is
an object that consists of the following: for each object X ∈ C a morphism ηX : FX → GX in D, such that for
every morphism f : X → Y in C the square

FX FY

GX GY

ηX

Ff

ηY

Gf

commutes in D. We write this as η : F → G. ♦
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Note that we can compose natural transformations by composing the morphisms they consist of: given
two natural transformations η : F → G and ε : G → H, their composition is the natural transformation
εη : F → H defined by (εη)X = εXηX (this is easily seen to be a natural transformation). There is also an
identity transformation idF : F → F , consisting of maps idFX : FX → FX. In this way, we arrive at the
so-called functor category.

Definition A.22. Let C and D be two categories. The functor category Fun(C,D) is the category that has
functors F : C → D as objects, and natural transformations η : F → G between these functors as morphisms.
For two functors F : C→ D and G : C→ D in Fun(C,D), we write Nat(F,G) = HomFun(C,D)(F,G). ♦

Example A.23. For any category C and shape of a commutative diagram, there exists a category consisting
of commutative diagrams in C that have that shape. As we remarked in Example A.13(vii), any commutative
diagram of a fixed shape can be made a functor X : S→ C from some small formally commutative category S,
which determines the shape of the diagram. The category of commutative diagrams in C of shape S is then the
functor category Fun(S,C). M

In the light of Definition A.10, the following definition is obsolete, but we give it anyway.

Definition A.24. Let F,G : C → D be two functors. A natural transformation η : F → G is an isomorphism
between F and G if there exists a natural transformation ε : G→ F such that εη = idF and ηε = idG. In this
case F and G are said to be (naturally) isomorphic, and we sometimes write F ∼= G. ♦

Lemma A.25. Let F,G : C → D be two functors. A natural transformation η : F → G is an isomorphism if
and only if ηX : FX → GX is an isomorphism for each X ∈ C.

Definition A.26. A functor F : C→ D is an equivalence of categories if there exists a functor G : D→ C and
two natural isomorphisms FG ∼= idD and GF ∼= idC. If such an equivalence of categories exists, C and D are
equivalent categories. ♦

Definition A.27. A functor F : C→ D is essentially surjective if for every D ∈ D, there is a C ∈ C such that
FC ∼= D. ♦

Proposition A.28. A functor F : C → D is an equivalence of categories if and only if it is fully faithful and
essentially surjective.

Proof. The proof can be found in [24].

Proposition A.29. Let C,D and E be locally small categories, let F : D→ E be a fully faithful functor, and let
G1, G2 : C→ D be two functors. Suppose there is a natural isomorphism FG1

∼= FG2. Then there is a natural
isomorphism G1

∼= G2.

Proof. A natural isomorphism FG1
∼= FG2 consists of commutative diagrams in F (D) for each morphism

f : X → Y in C, so Lemma A.18 gives us an essentially unique natural transformation G1 → G2. By Lemma
A.25 and Corollary A.19 this natural transformation is in fact an isomorphism.

Notation A.30. Let C be a locally small category. For an object C ∈ C, we write

hC := HomC(C, · ) : C→ Set, and hC := HomC( · , C) : Copp → Set #

Remark A.31. There is a functor h : C → Fun(Copp,Set) : X 7→ hX , which sends a morphism f : X → Y to
the natural transformation hf : hX → hY consisting for each Z ∈ C of the morphism (hf )Z : HomC(Z,X) →
HomC(Z, Y ), g 7→ fg.

Likewise, there is a functor h : Copp → Fun(C,Set) : X 7→ hX , which sends a morphism f : X → Y to
the natural transformation hf : hY → hX consisting for each Z ∈ C of the morphism (hf )Z : HomC(Y,Z) →
HomC(X,Z), g 7→ gf . O
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Definition A.32. Let C be a locally small category, and let F : C→ Set and G : Copp → Set be two functors.
Then F is representable if there is an object C ∈ C such that there is a natural isomorphism F

∼−→ hC , and
then C is said to represent F . G is co-representable if there is an object C ∈ C such that there is a natural
isomorphism G

∼−→ hC , and then C is said to co-represent G. ♦

Theorem A.33. (Yoneda Lemma) Let C be a locally small category. There is a natural isomorphism

Nat(h( · ),−)
∼−→ −( · )

of functors C×Fun(C,Set)→ Set. Explicitly, for X ∈ C and a functor F : C→ Set, the bijection of sets is given
by

Nat(hX , F )
∼−→ FX, (η : hX → F ) 7→ ηX(idX)

with inverse
FX

∼−→ Nat(hX , F ), x 7→ (ηY : hXY → FY, f 7→ Ff(x))Y ∈C.

In particular, the functor h : Copp → Fun(C,Set) : X 7→ hX is fully faithful.

Proof. The proof is doable for the interested reader, but a bit long. It can be found in [22].

Theorem A.34. (Dual Yoneda Lemma) Let C be a locally small category. There is a natural isomorphism

Nat(h( · ),−)
∼−→ −( · )

of functors Copp × Fun(Copp,Set) → Set. Explicitly, for X ∈ C and a functor F : Copp → Set, the bijection of
sets is given by

Nat(hX , F )
∼−→ FX, (η : hX → F ) 7→ ηX(idX)

with inverse
FX

∼−→ Nat(hX , F ), x 7→ (ηY : hXY → FY, f 7→ Ff(x))Y ∈C.

In particular, the functor h : C→ Fun(Copp,Set) : X 7→ hX is fully faithful.

Corollary A.35. Let C be a locally small category, and suppose there is for two objects X,Y ∈ C a natural
isomorphism hX

∼−→ hY . Then X and Y are isomorphic.

Proof. This follows from the fact that h : Copp → Fun(C,Set) : X 7→ hX is fully faithful, and Corollary A.19.

Corollary A.36. Let F : C → Set be a representable functor. Then the object C that represents F is unique
up to isomorphism.

A.3 Adjunctions, limits and colimits

Definition A.37. Let F : C → D and G : D → C be two functors between locally small categories. An
adjunction between F and G is a natural isomorphism

α : HomD(F ( · )), · ) ∼−→ HomC( · , G( · )).

In this case, F is left adjoint to G, and G is right adjoint to F , and sometimes write F a G. ♦

Unwinding the definitions (and using Lemma A.25 ), we see that an adjunction from F to G consists of
bijections of sets

αX,Y : HomD(FX, Y )
∼−→ HomC(X,GY )

for each X ∈ C and Y ∈ D, which are natural in both X and Y .

Example A.38. Adjoint functors are truly all around in mathematics, but we will for reasons of length only
give two examples that are of interest to us.

84



(i) For any set Y , the functor −× Y : Set→ Set is left adjoint to the Hom-functor HomSet(Y, · ) : Set→ Set.
The bijection of Hom-sets sends a map f : X × Y → Z to the map X → HomSet(Y, Z), x 7→ f(x, · ), and
inversely, a map g : X → HomSet(Y, Z) to a map X × Y → Z, (x, y) 7→ g(x)(y). This adjunction is also
known as the exponential law of sets: if we let ZY denote HomSet(Y, Z), then the adjunction says that
there is a bijection Z(X×Y ) ∼= (ZY )X , which is natural in both X and Z.

(ii) The forgetful functor U : Top → Set is left adjoint to the functor · triv which sends a set X to the
topological space X with trivial (indiscrete) topology. Furthermore, U is right adjoint to the functor · disc

which sends a set X to the topological space X with discrete topology. M

Proposition A.39. Let C and D be two locally small categories, and suppose a functor G : D → C is right
adjoint to both the functors F1 : C → D and F2 : C → D. Then F1 and F2 are naturally isomorphic. Dually,
right adjoints are also unique up to natural isomorphism.

Proof. There are by definition of adjointess natural isomorphisms

h( · )F1 = HomD(F1( · ), · ) ∼= HomC( · , G( · )) ∼= HomD(F2( · ), · ) = h( · )F2

By the Yoneda Lemma, h : Copp → Fun(C,Set) : X 7→ hX is fully faithful, and therefore Proposition A.29
applies and immediately yields an isomorphism F1

∼= F2. The dual statement is proved similarly.

Convention A.40. In what follows, S will be a small category. �

Let C be a category, and X : S→ C a functor. For an object s ∈ S, we will shorten X(s) to Xs.

Definition A.41. Let C be a category. The limit of a functor X : S→ C consists of
(i) an object limSX of C,

(ii) for every object s ∈ S a morphism πs : limSX → Xs,
subject to the conditions

(i) for every arrow ϕ : s1 → s2 in S, it holds that πs2 = X(ϕ) ◦ πs1 ;
(ii) for every T ∈ C and for every family of arrows ts : T → Xs such that ts2 = X(ϕ) ◦ ts1 for all ϕ : s1 → s2

in S, there is a unique morphism h : T → limSX satisfying ts = πsh for all s ∈ S. ♦

Definition A.42. Let C be a category. The colimit of a functor X : S→ C consists of
(i) an object colimSX of C,

(ii) for every object s ∈ S a morphism ιs : Xs → colimSX,
subject to the conditions

(i) for every arrow ϕ : s1 → s2 in S, it holds that ιs2 ◦X(ϕ) = ιs1 ;
(ii) for every T ∈ C and for every family of arrows ts : Xs → T such that ts2 ◦X(ϕ) = ts1 for all ϕ : s1 → s2

in S, there is a unique morphism h : colimSX → T satisfying ts = hιs for all s ∈ S. ♦

Notation A.43. We will write limSX, limSXs or limsXs for the limit of a functor X : S → C, and leave the
arrows in C or S implicit. In the same way, we write colimSX, colimSXs or colimsXs for the colimit of a functor
X : S→ C. #

Proposition A.44. Let C be a category, and X : S → C be a functor. If they exist, limSX and colimSX are
unique up to unique isomorphism in C.

Remark A.45. The limit or colimit of a functor need not exist. We will see later that it luckily always does in
case C = Set, and in Propositions A.49 and A.50 we present a necessary and sufficient condition for a candidate
for the (co)limit to actually be the (co)limit of a functor, at least in a locally small category. O

Example A.46. (i) Taking S to be a discrete category (that is, a category which only consists of objects
and the identity morphisms on them), the limit and colimit of a functor X : S → C are known as the
categorical product and coproduct of the objects Xs. In Set and Top, the product and coproduct are the
cartesian product and disjoint union, respectively.

85



(ii) If S is the diagram

1

2 3

ϕ

ψ

then we call the limit of a functor X : S → C the fibered product of X(ϕ) and X(ψ). It is commonly
denoted by X1 ×X3 X2.

The colimit of a functor X : Sopp → C, that is, a diagram

X3 X1

X2

X(ϕ)

X(ψ)

in C, is called the pushout (or fiber coproduct).

(a) In Set, the fibered product of two maps f : X → Z and g : Y → Z is the set X ×Z Y = {(x, y) ∈
X × Y | f(x) = g(y)}. The pushout of two maps f : Z → X and g : Z → Y is the set (X q Y )/∼,
where ∼ is the equivalence relation generated by f(z) ∼ g(z).

(b) In Top, the fibered product of two maps f : X → Z and g : Y → Z is the set X ×Z ×Y = {(x, y) ∈
X × Y | f(x) = g(y)} with the subspace topology inherited from the product space X × Y . The
pushout of two maps f : Z → X and g : Z → Y is the set (X q Y )/∼ with firstly the disjoint union
topology, and secondly the quotient topology. Here ∼ is again the equivalence relation generated by
f(z) ∼ g(z) for z ∈ Z.

(iii) If S = 0, the empty category, then a limit reduces to an object F ∈ C such that for each C ∈ C there is
precisely one morphism C 7→ F . We call this a final object. The colimit is an object I ∈ C such that for
each C ∈ C there is precisely one morphism I → C. We call this an initial object, or a co-final object.
Examples include various empty and one-point sets, spaces and algebraic objects. M

The following two propositions tell us that limits and colimits of functors X : S→ Set always exist, and give
explicit descriptions for them. Their proofs consist of simply checking this description satisfies the definition of
the limit and colimit, and are hence omitted.

Proposition A.47. Let X : S→ Set be a functor. Then limSX exists, and equals{
(xs)s∈S ∈

∏
s∈S

Xs | X(ϕ)(xs1) = xs2 for all arrows ϕ : s1 → s2

}

together with the projections maps πs to the sets Xs.

Proposition A.48. Let X : S→ Set be a functor. Then colimSX exists, and equals on the level of objects(∐
s∈S

Xs

)/
∼

where ∼ is the equivalence relation generated by xs1 ∼ X(ϕ)(xs1) for all ϕ : s1 → s2 and xs1 ∈ Xs1 . Further-
more, it has as arrows the maps

ιs : Xs

∐
s∈SXs

(∐
s∈SXs

)
/∼ .

We can now give a necessary and sufficient condition for the existence of limits and colimits in locally small
categories. Moreover, it also characterises limits and colimits in terms of universal properties, because of the
(dual) Yoneda Lemma (and in particular Corollary A.35). Their proofs are not that difficult and consist of
verifying definitions, but they can also be found in [24].
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Proposition A.49. Let C be a locally small category and X : S→ C a functor. Let L ∈ C. Then limSX exists
and is isomorphic to L if and only if there is a natural isomorphism

HomC( · , L) ∼= limSHomC( · , Xs)

of functors Copp → Set.

Proposition A.50. Let C be a locally small category and X : I → C a functor. Let C ∈ C. Then colimSX
exists and is isomorphic to C if and only if there is a natural isomorphism

HomC(C, · ) ∼= limSoppHomC(Xs, · )

of functors C→ Set.

The last major result of this section and appendix is a very useful one, and illustrates the way category
theory can summarise a lot of mathematical results in various fields of study.

Theorem A.51. Let F : C → D and G : D → C be two functors between locally small categories, and suppose
F is left adjoint to G. Then the following two statements hold true.

(i) (Left adjoints commute with colimits) Let X : S→ C be a functor, and assume that colimSX exists in C.
Then colimS(FX) exists in D, and there is an isomorphism

colimS(FX) ∼= F (colimSX).

(ii) (Right adjoints commute with limits) Let X : S → D be a functor, and assume that limSX exists in D.
Then limS(FX) exists in C, and there is an isomorphism

limS(GX) ∼= G(limSX).

Proof. [24] We only proof the first statement (since the second is its dual). By adjointness of F and G, and by
Proposition A.50, there are natural isomorphisms

HomD(F (colimSXs), · ) ∼= HomC(colimSXs, G( · ))
∼= limSoppHomC(Xs, G( · ))
∼= limSoppHomC(FXs, · ),

and by Proposition A.50 again, this implies the existence of colimS(FX) and the isomorphism colimS(FX) ∼=
F (colimSX).

Remark A.52. A functor that commutes with limits and colimits like in the theorem above is also called
continuous and cocontinuous, respectively, for a clear reason [22]. Therefore, the theorem above states that left
adjoints are cocontinuous and right adjoints are continuous. O

Example A.53. [24] The forgetful functor U : Top → Set is both a left and a right adjoint. Therefore, any
limit or colimit in Top can, if it exists, be constructed by giving the underlying limit or colimit of sets a suitable
topology. One can check that the descriptions of the limit and colimit of sets in Propositions A.47 and A.48
can be made limits and colimits of topological spaces by equipping them with the initial topology with respect
to the projection maps πs and final topology with respect to the inclusion maps ιs, repectively. Indeed, the
underlying set ensures that the unique map from the universal property in the definition of the limit and colimit
in fact exists, and it is continuous by the universal property of the initial and final topology. Therefore, all
limits and colimits exist in Top! M
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Appendix B

Homological algebra

In this appendix, we review the theory of short exact sequences of modules over rings, and use these to set
up the theory of chain complexes and homological algebra. The latter is simply the study of homology from a
purely algebraic perspective, which simplifies or at the least clarifies a lot of the proofs in algebraic topology,
and (co)homology theory in general. In the third and last section, we state the Algebraic Universal Coefficient
Theorem, which establishes a strong relation between homology and cohomology in particular cases.

We omit almost all the proofs in this appendix, but most of them can be shown to hold with rather
straightforward methods, such as diagram chasing or verifying the obvious approach works.

B.1 Exact sequences of modules

Convention B.1. Throughout this section, R will be a ring (with unit). �

Notation B.2. The category of left R-modules and R-linear maps is denoted by RMod. #

Notation B.3. Let R be a ring. Then we shorten Hom
RMod( · , · ) to HomR( · , · ). #

Definition B.4. [23] Let M be an R-module and S a set. The M -linearisation of S, denoted by M [S], is
defined as M (S). ♦

We think of such a module M [S] as the set of formal sums
∑
s∈Smss, where ms ∈ M and at most finitely

many of those are non-zero. This description becomes an R-module with term-wise addition and scalar multi-
plication.

Remark B.5. Given a map f : S → T of sets, there is an induced map M [f ] : M [S] → M [T ],
∑
s∈Smss 7→∑

s∈Smsf(s), and this is easily seen to establish M -linearisation as a functor M [ · ] : Set → RMod. Note that
this induced map is determined exactly like how a map between vector spaces is determined by how it acts on
a basis. This is no coincidence, as a vector space is a linearisation of a set of base vectors over a field. O

Proposition B.6. Let M be an R-module. Then there is a natural isomorphism M [ · ] ∼= R[ · ]⊗RM of functors
Set→ RMod.

Lemma B.7. (†) Let (Sα)α∈A be a collection of disjoint sets, and set S :=
⊔
α∈A Sα. Then the inclusions

ια : Sα ↪→ S induce an isomorphism
⊕

α∈AM [Sα]→M [S].

Proof. It is a fairly straightforward verification that M [S] with the induced inclusion maps satisfies the universal
property of the coproduct

⊕
α∈AM [Sα], and hence it is isomorphic to it.

Remark B.8. (†) Since the free module functor Set→ RMod, S 7→ R(S) is left adjoint to the forgetful functor

RMod → Set, and the Tensor-Hom adjunction says that − ⊗R M is left adjoint to HomR(M, · ), the above
Proposition is also a direct consequence of Theorem A.51. O
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The following definitions and results, until and including Proposition B.13, are taken from [24].

Definition B.9. A sequence

. . . Mn−1 Mn Mn+1 . . .
fn−1 fn

of R-modules and R-linear maps is exact if ker fn = im fn−1 for all n. A short exact sequence is an exact

sequence of the form 0 M1 M2 M3 0.
f1 f2 ♦

Lemma B.10. (i) A sequence 0 M N
f

of R-modules is exact iff f is injective.

(ii) A sequence M N 0
f

of R-modules is exact iff f is surjective.

(iii) A sequence 0 M N 0
f

of R-modules is exact iff f is an isomorphism.

(iv) A sequence 0 M 0 of R-modules is exact iff M = 0.

(v) A sequence M1 M2 M3 M4 M5
f1 f4

of R-modules, with f1 and f4 isomorphisms,

is exact iff M3 = 0.

Lemma B.11. Let 0 M1 M2 M3 0
f1 f2

be a short exact sequence of R-modules. Then

the following are equivalent:
(i) There exists a retraction of f1, that is, an R-linear map r : M2 →M1 such that rf1 = idM1 .

(ii) There exists a section of f2, that is, an R-linear map s : M3 →M2 such that f2s = idM3
.

(iii) There exists an isomorphism ϕ : M2 →M1 ⊕M3 such that the diagram

0 M1 M2 M3 0

0 M1 M1 ⊕M3 M3 0

f1

idM1

f2

ϕ idM3

ιM1
πM3

is commutative.
Moreover, is any of these conditions is met (and therewith all of them), the isomorphism ϕ of part (iii) identifies
the retraction r with the projection M1 ⊕M3 →M1, and the section s with the inclusion M3 ↪→M1 ⊕M3.

Proof. This can be found in [24].

Definition B.12. A short exact sequence of R-modules is split if it satisfies any (and hence all) of the conditions
in the previous lemma. ♦

Proposition B.13. (Five Lemma) Consider the following commutative diagram

M1 M2 M3 M4 M5

N1 N2 N3 N4 N5

g1

f1

g2

f2

g3

f3

g4

f4 f5

h1 h2 h3 h4

of R-modules with exact rows. If f1 is surjective, f2 and f4 are isomorphisms, and f5 is injective, then f3 is an
isomorphism.

Proof. [24] We only show injectivity of f3, since the proof of surjectivity turns out to be analogous. Suppose
m3 ∈ M3 is such that f3(m3) = 0. Then 0 = h3f3(m3) = f4g3(m3), and since f4 is injective, it must be
that m3 ∈ ker g3 = im g2. Let m2 ∈ M2 be such that g2(m2) = m3. Then 0 = f3g2(m2) = h2f2(m2), so
f2(m2) ∈ kerh2 = imh1. Let n1 ∈ N1 be such that h1(n1) = f2(m2). Since f1 is surjective, there exists an
m1 ∈M1 such that f1(m1) = n1, and then it follows that f2(m2) = h1f1(m1) = f2g1(m1). Since f2 is injective,
it holds that m2 = g1(m1), and then exactness of the top row gives m3 = g2(m2) = g2g1(m1) = 0. Therefore,
f3 is injective.
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The following two results can be shown by fairly straightforward diagram chases, and hence their proofs are
omitted.

Lemma B.14. [11] Consider a commutative diagram

. . . En−1 Cn Dn En Cn+1 . . .

. . . En−1 C ′n D′n En C ′n+1 . . .

hn−1 fn

γn

gn

δn

hn

γn+1

h′n−1 f ′n g′n h′n

of R-modules with exact rows. Then the sequence

. . . D′n−1 Cn C ′n ⊕Dn D′n Cn+1 . . .
hn−1◦g′n−1 γn−fn f ′n⊕δn hn◦g′n

is also exact.

Lemma B.15. (Braid Lemma) [20] Consider a commutative diagram

A B C D

E F G H

I J K

ð2

δ1 ð3

d3 ∂5

d4ð1

∂1 δ2

d2

ð4

∂4 δ5

∂2

d1 ∂3

δ3

δ4

where the sequences

E A B G K

E I J G C D

A F J K H D

ð ð ð ð

∂ ∂ ∂ ∂ ∂

δ δ δ δ δ

are exact, and the composite I → F → B is zero. Then the sequence

I F B C Hd d d d

is also an exact sequence.

B.2 Chain complexes and homological algebra

Convention B.16. Throughout this section, R will be a ring. �

Definition B.17. [24] A chain complex (C•, ∂•) of R-modules is a diagram

. . . C2 C1 C0 C−1 C−2 . . .
∂3 ∂2 ∂1 ∂0 ∂−1 ∂−2

of R-modules and R-module homomorphisms, such that ∂n ◦ ∂n+1 = 0 for all n ∈ Z. Dually, a cochain complex
(C•, ∂•) of R-modules is a diagram

... C−2 C−1 C0 C1 C2 ...∂−3 ∂−2 ∂−1 ∂0 ∂1 ∂2

of R-modules and R-module homomorphisms, such that ∂n+1 ◦ ∂n = 0 for all n ∈ Z. The homomorphisms
are called (co)differentials, the elements of the R-modules of a (co)chain complex (co)chains, elements in the
kernels of (co)differentials (co)cycles, and elements in the images of (co)differentials (co)boundaries. ♦
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Notation B.18. We usually suppress notation such as indices and write for instance ∂2 = 0 to denote either
∂n ◦ ∂n+1 = 0 or ∂n+1 ◦ ∂n = 0. We will from now on also only write C• and C• for a chain complex and a
cochain complex when there can be no confusion about the (co)differentials. #

Everything in this section can be found in [24], unless indicated otherwise.

Definition B.19. A chain map or morphism of chain complexes f• : C• → D• is a collection of R-linear maps
fn : Cn → Dn such that the diagram

. . . C2 C1 C0 C−1 C−2 . . .

. . . D2 D1 D0 D−1 D−2 . . .

∂3 ∂2

f2

∂1

f1

∂0

f0

∂−1

f−1

∂−2

f−2

δ3 δ2 δ1 δ0 δ−1 δ−2

commutes. A cochain map is defined similarly. ♦

The identity map on a chain complex is the collection of identity maps on each individual module. The
composition of two chain maps f : C• → D• and g : D• → E• is defined by (g ◦ f)n = gn ◦ fn. It can be seen
from the definition that g ◦ f : C• → E• is also a chain map. The (left) R-module chain complexes and chain
maps therefore form a category:

Notation B.20. The category of R-module chain complexes and chain maps is denoted by RChain, and the
cochain complex category is denoted by RcChain. #

Proposition B.21. (†) The categories RChain and RcChain are isomorphic.

Proof. Consider the functor F : RChain → RcChain which sends a chain complex (C•, ∂•) to the cochain
complex (C ′•, ∂′•) given by C ′n = C−n and ∂′n = ∂−n, and sends a chain map f• : C• → D• to the cochain map
f ′• : C ′• → D′• given by f ′n = f−n (that this is a functor is clear). There is a completely analogously defined
functor G : RcChain → RChain, and we see that GF = id

RChain and FG = id
RcChain. Therefore, the categories

RChain and RcChain are isomorphic.

This shows that there is no intrinsic difference between chain and cochain complexes of R-modules. This
isomorphism of categories also means that every purely categorical theoretical result, definition or example in

RChain has an associated result, definition or example in RcChain, and vice versa, obtained by “mirroring the
indices”. Therefore, we often only state those for chain complexes, unless we deem stating both important
enough. Actually, in [24], results are also only stated for chain complexes, but we now know how to dualise the
results to obtain the statements about cochain complexes, so when appropriate, we will do this.

Definition B.22. Let C• and D• be chain complexes in RChain, and suppose f : C• → D• is a chain map
between them. Then f is an isomorphism of chain complexes if there exists another chain map g : D• → C•
such that gf = idC• and fg = idD• . If there exists an isomorphism between C• and D•, these chain complexes
are said to be isomorphic. ♦

Lemma B.23. Let C• and D• be two chain complexes, and let f• : C• → D• be a chain map. Then f• is an
isomorphism of chain complexes if and only if fn : Cn → Dn is an isomorphism of modules for each n ∈ Z.

The condition that the composition of two (composable) differentials in a chain complex yields the zero map
is equivalent to im(∂n+1) ⊆ ker(∂n). Therefore, the following definition makes sense.

Definition B.24. Let C• be a chain complex. For each n ∈ Z, the n-th homology module is defined as the
quotient module

Hn(C•) = ker ∂n/im ∂n+1.

For a cochain complex C•, the n-th cohomology module is defined as the quotient module

Hn(C•) = ker ∂n/im ∂n−1. ♦
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The module structure has the follwowing explicit description: for c, c′ ∈ ker ∂n ⊆ Cn and r ∈ R, we have
[c] + [c′] = [c+ c′] and r[c] = [rc].

The homology of a chain complex measures how close a chain complex is to being an exact sequence. The
following lemma illustrates this. Its dual statement also holds, and the proofs are trivial.

Lemma B.25. A chain complex C• is exact if and only if Hn(C•) = 0 for all n ∈ Z.

Given a chain map f• : C• → D•, it holds by definition that fn−1∂n = δnfn for all n ∈ Z. This implies
fn−1(im(∂n)) ⊆ im(δn) and fn(ker(∂n)) ⊆ ker(δn). There is therefore an induced map Hn(f•) : Hn(C•) →
Hn(D•), [c] 7→ [fn(c)]. This establishes a functor Hn : RChain → RMod. Likewise, n-th cohomology is also a
functor Hn : RcChain→ RMod. The following proposition is then immediate (see Corollary A.15).

Proposition B.26. Let C• and D• be two chain complexes of R-modules. If they are isomorphic, then Hn(C•) ∼=
Hn(D•) as R-modules for all n.

Definition B.27. A sequence

. . . C• D• E• . . .

. . . . . . . . .

. . . Cn+1 Dn+1 En+1 . . .

. . . Cn Dn En . . .

. . . Cn−1 Dn−1 En−1 . . .

. . . . . . . . .

f• g•

fn+1 gn+1

fn gn

fn−1 gn−1

of chain complexes and chain maps is exact if each row in the above diagram is an exact sequence of modules.
An exact sequence 0→ C• → D• → E• → 0 of chain complexes is called a short exact sequence. ♦

Example B.28. [23] Let (C ′•, ∂
′
•) and (C•, ∂•) be two chain complexes such that C ′n is a submodule of Cn for

every n, and such that the inclusions ιn : C ′n ↪−→ Cn constitute to a chain map ι• : C ′• → C• (this happens
precisely when each ∂′n is the restriction of ∂n to C ′n). Define the quotient complex (C•/C

′
•, ∂̄•), consisting of

the quotient modules Cn/C
′
n and with the differentials ∂̄n : Cn/C

′
n → Cn−1/C

′
n−1, cn + C ′n 7→ ∂n(cn) + C ′n−1.

This is clearly R-linear, and well-defined: if cn+C ′n = c̃n+C ′n, then cn− c̃n ∈ C ′n. Therefore, ∂n(cn)−∂n(c̃n) =
∂nιn(cn− c̃n) = ιn−1∂

′
n(cn− c̃n) = ∂′n(cn− c̃n) ∈ C ′n−1, that is, ∂̄n(cn+C ′n) = ∂n(cn)+C ′n−1 = ∂n(c̃n)+C ′n−1 =

∂̄n(c̃n + C ′n). Moreover, ∂̄2 = 0, because ∂2 = 0. Lastly, let πn : Cn → Cn/C
′
n be the canonical projections.

Then ∂̄nπn = πn−1∂n is obvious, so we have a chain map π• : C• → C•/C
′
•. All in all, we obtain a short exact

sequence of chain modules

0 C ′• C• C•/C
′
• 0.

ι• π• M

Theorem B.29. Let a short exact sequence

0 C• D• E• 0
f• g•

92



of chain complexes be given. Then there exists an exact sequence

. . . Hn+1(D•) Hn+1(E•)

Hn(C•) Hn(D•) Hn(E•)

Hn−1(C•) Hn−1(D•) . . .

Hn+1(g•)

αn+1

Hn(f•) Hn(g•)

αn

Hn−1(f•)

of homology modules. This sequence is called the long exact sequence of homology.

Proof. [24] We will only give the construction of the diagonal “snake”1 maps αn, and leave it to the reader
to verify well-definedness of this map, and exactness in all degrees. Those aspects of the proof consist namely
mainly of diagram chasing, which is rather straightforward.

For [en] ∈ En, first use surjectivity of gn to pick an element xn ∈ Dn such that g(xn) = en. Since en ∈ ker dn,
it holds that gn−1δn(xn) = dngn(xn) = 0, so δn(xn) ∈ ker gn−1 = im fn−1. Since fn−1 is injective, there exists
a unique cn−1 ∈ Cn−1 with fn−1(cn−1) = δn(xn). This cn−1 satisfies fn−2∂n−1(cn−1) = δn−1fn−1(cn−1) =
δn−1δn(xn) = 0, so cn−1 ∈ ker ∂n−1 by injectivity of fn−2. We can therefore set αn : Hn(E•)→ Hn−1(C•), [en] 7→
[cn−1].

Theorem B.30. Let a short exact sequence

0 C• D• E• 0
f• g•

of cochain complexes be given. Then there exists an exact sequence

. . . Hn−1(D•) Hn−1(E•)

Hn(C•) Hn(D•) Hn(E•)

Hn+1(C•) Hn+1(D•) . . .

Hn−1(g•)

αn−1

Hn(f•) Hn(g•)

αn

Hn+1(f•)

of cohomology modules. This sequence is called the long exact sequence of cohomology.

Corollary B.31. Let

0 (C•, ∂•) (D•, δ•) (E•, d•) 0

0 (C ′•, ∂
′
•) (D′•, δ

′
•) (E′•, d

′
•) 0

f•

p•

g•

q• r•

f ′• g′•

be a commutative diagram of chain complexes and chain maps with exact rows, and let αn : Hn(E•)→ Hn−1(C•)
and α′n : Hn(E′•)→ Hn−1(C ′•) be the maps in the associated long exact sequences of homology. Then there is a
commutative diagram

. . . Hn(C•) Hn(D•) Hn(E•) Hn−1(C•) Hn−1(D•) . . .

. . . Hn(C ′•) Hn(D′•) Hn(E′•) Hn−1(C ′•) Hn−1(D′•) . . .

Hn(f•)

Hn(p•)

Hn(g•)

Hn(q•)

αn

Hn(r•) Hn(p•)

Hn−1(f•)

Hn−1(q•)

Hn(f ′•) Hn(g′•) α′n Hn−1(f ′•)

1There is a lemma called the Snake Lemma, which is a special case of this theorem. It also features these diagonal maps, which
for some people resemble snakes.
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consisting of the long exact sequences of homology. In other words, the long exact sequence of homology is
natural in the short exact sequence of chain complexes.

Proof. [23] The most difficult part is to prove naturality in the squares containing the snake maps αn. The
other squares can easily be seen to be commutative by the definition of the induced map on homology and the
commutativity of the chain complex diagram in the statement of this corollary. Hence we will only prove the
commutativity of the firstly mentioned squares.

Let [en] ∈ Hn(E•), and pick xn ∈ Dn and cn−1 ∈ Cn−1 as in the construction of αn. Then αn([en]) = [cn−1].
Now we consider the elements rn(en) ∈ E′n, qn(xn) ∈ D′n and pn−1(cn−1) ∈ C ′n−1. Then g′nqn(xn) = rngn(xn) =
rn(en), and f ′n−1pn−1(cn−1) = qn−1fn−1(cn−1) = qn−1δn(xn) = δ′nqn(xn). Therefore, from the construction of
the map α′n we get α′n([rn(en)]) = [pn−1(cn−1)], which shows commutativity of the considered square.

Example B.32. [23] As in Example B.28, let (C ′•, ∂
′
•) and (C•, ∂•) be two chain complexes such that C ′n is a

submodule of Cn for every n, and such that the inclusions ιn : C ′n ↪−→ Cn constitute to a chain map ι• : C ′• → C•
(that is, such that ∂′n is the restriction of ∂n to C ′n for each n). In the aforementioned example we constructed
the quotient complex (C•/C

′
•, ∂̄•), and saw that we have a short exact sequence

0 C ′• C• C•/C
′
• 0.

ι• π•

Let
0 D′• D• D•/D

′
• 0

ι• π•

be another short exact sequence of chain complexes of this form, and suppose that we are given a chain map
f• : C• → D• such that fn(C ′n) ⊆ D′n for all n. Then there is an induced map f̄n : Cn/C

′
n → Dn/D

′
n, c+C ′n 7→

f(c) +D′n, and we see that there is a commutative diagram

0 C ′• C• C•/C
′
• 0.

0 D′• D• D•/D
′
• 0

ι•

f•

π•

f• f̄•

ι• π•

By Corollary B.31, we obtain a commutative diagram

. . . Hn(C ′•) Hn(C•) Hn(C•/C
′
•) Hn−1(C ′•) Hn−1(C•) . . .

. . . Hn(D′•) Hn(D•) Hn(D•/D
′
•) Hn−1(D′•) Hn−1(D•) . . .

Hn(ι•)

Hn(f•)

Hn(π•)

Hn(f•)

αn

Hn(f̄•) Hn(f•)

Hn−1(ι•)

Hn−1(f•)

Hn(ι•) Hn(π•) αn Hn−1(ι•)

of the long exact sequences of homology. M

Definition B.33. Let f•, g• : (C•, ∂•) → (D•, δ•) be two chain maps. A homotopy from f• to g• consists of
R-linear maps hn : Cn → Dn+1, satisfying

gn − fn = δn+1hn + hn−1∂n

for all n ∈ Z. If there exists a homotopy from f• to g•, they are said to be homotopic. A homotopy between
cochain maps is defined analogously. ♦

Remark B.34. We do not require any commutativity of the homotopy maps with the given chain maps or
differentials in the definition above. O

It is easy to verify that homotopy is an equivalence relation on the chain maps C• → D•. It also respects
composition:
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Lemma B.35. Let f•, g• : (C•, ∂•)→ (D•, δ•) be two homotopic chain maps. For any chain map s• : D• → E•
and t• : B• → C•, the compositions s•f• and s•g• are homotopic, and the compositions f•t• and g•t• are
homotopic.

Definition B.36. The homotopy category of chain complexes of R-modules is the category RhChain having chain
complexes of R-modules as objects and equivalence classes of chain maps modulo homotopy as morphisms. The
homotopy category of cochain complexes of R-modules RhcChain is defined similarly. ♦

The preceding lemma shows that composition of morphisms in these homotopy categories is indeed well-
defined. Chain homology also behaves nicely with respect to the homotopy category, as the next proposition
shows.

Proposition B.37. Let f•, g• : (C•, ∂•)→ (D•, δ•) be two homotopic chain maps. Then Hnf = Hng for all n.

Proof. [24] Let (hn)n∈Z be a homotopy from f to g, and let c+im ∂n+1 be an element of Hn(C•). Then we have

Hnf(c+ im ∂n+1)−Hng(c+ im ∂n+1) = (f(c) + im δn+1)− (g(c) + im δn+1) = f(c)− g(c) + im δn+1

= δn+1 ◦ hn(c) + hn−1 ◦ ∂n(c) + im δn+1 = hn−1(0) + im δn+1 = 0,

since c ∈ ker ∂n.

B.3 Dual cochain complexes and the Algebraic Universal Coefficient
Theorem

Convention B.38. Throughout this section, R will be a commutative ring. �

Since R is assumed to be commutative, the Hom-sets carry naturally the structure of an R-module. Moreover,
the contravariant Hom-functor sends trivial maps to trivial maps, so we obtain the following result.

Lemma B.39. For any R-module M , HomR( · ,M) is a functor RChain
opp → RcChain.

Definition B.40. [13] Let C• be a chain complex of R-modules, and suppose M is an R-module. The dual
cochain complex (with coefficients in M) is the cochain complex HomR(C•,M). ♦

Remark B.41. Every chain map f : C• → D• induces a cochain map (f∗)• := HomR(f•,M) : HomR(D•,M)→
HomR(C•,M), which we call the dual cochain map. O

A natural question to ask is how the homology of a chain complex relates to the cohomology of the dual
cochain complex. A first guess could be that the cohomology of the dual cochain complex is the dual of the
homology of the chain complex. Put differently, given a chain complex C•, we could hope that there is a
commutative diagram

RChain RcChain

RMod RMod

HomR( · ,M))

Hn Hn

HomR( · ,M))

of functors, or at least up to natural isomorphism. There is even a homomorphism Φ : Hn(HomR(C•,M)) →
HomR(Hn(C•),M), which sends a cohomology class [ϕ] to the map Φ([ϕ]) : Hn(C•)→M, [c] 7→ ϕ(c) [13]. (This
is well-defined, but we will not show that here. The reader is of course invited to do so.) This map is the
natural candidate for an isomorphism between the cohomology of the dual cochain complex and the dual of the
homology of the chain complex. However, in general this map will not be an isomorphism. In some cases, we
can even measure the extent to which it fails to be an isomorphism. For our purposes, it is enough to consider
the case in which R is a principal ideal domain and the chain complex consists entirely of free modules. First,
we need to introduce a new functor.
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Proposition B.42. Let R be a commutative ring. There are for n ≥ 0 functors ExtnR( · , · ) : RModopp×RMod→
RMod such that the following three properties hold:

(i) There is a natural isomorphism Ext0
R( · , · ) ∼= HomR( · , · ).

(ii) If M is a free R-module and n > 0, then ExtnR(M,N) = 0 for any module N .

(iii) Let 0 M1 M2 M3 0 be a short exact sequence of R-modules, and N be an

R-module. Then there is a long exact sequence

0 HomR(M3, N) HomR(M2, N) HomR(M1, N)

Ext1
R(M3, N) Ext1

R(M2, N) Ext1
R(M1, N)

Ext2
R(M3, N) Ext2

R(M2, N) . . .

which is natural in the short exact sequence and in N .
Moreover, the functors ExtnR are determined up to natural isomorphism by these three conditions.

Proof. See [13] for the proof.

Corollary B.43. [24] If 0 M1 M2 M3 0 is a short exact sequence of R-modules,

with M3 free, and N is another R module, then the sequence

0 HomR(M3, N) HomR(M2, N) HomR(M1, N) 0

is also short exact.

Proof. This follows from the long exact sequence in Proposition B.42(iii) and from property (ii) in the same
proposition (applied to M3, as it is free).

We are now ready to state the main theorem of this section.

Theorem B.44. (Algebraic Universal Coefficient Theorem) Let R be a PID and C• a chain complex of
free R-modules. For any R-module M , there is a short exact sequence

0 Ext1
R(Hn−1(C•),M) Hn(HomR(C•,M)) HomR(Hn(C•),M) 0,Φ

where Φ is the map defined above. This sequence is natural in C•, and is split, although not naturally in C•.

Proof. For the proof, see [11], or [7] if the reader wishes to do parts of the proof as an exercise.

Corollary B.45. Let f• : C• → D• be a chain map between chain complexes of free modules, that also induces
isomorphisms on the homology modules. Then the dual map (f∗)• : HomR(D•,M) → HomR(C•,M) induces
isomorphisms on the cohomology modules.

Proof. [13] Naturality of the short exact sequence of the Algebraic Universal Coefficient Theorem gives us a
commutative diagram

0 Ext1
R(Hn−1(D•),M) Hn(HomR(D•,M)) HomR(Hn(D•),M) 0

0 Ext1
R(Hn−1(C•),M) Hn(HomR(C•,M)) HomR(Hn(C•),M) 0

Hn(f∗)
•

Since f• induces an isomorphism on each homology module, the left and right vertical arrow are isomorphisms
(by Corollary A.15). Therefore, so is the middle (for instance by the Five Lemma).
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