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A B S T R A C T

MTObjects is a segmentation method which segments astronomical
images. The main difference between the state-of-the-art SExtractor
and other techniques, is that MTObjects performs segmentation by
means of creating a MaxTree of the image. MTObjects uses a smooth-
ing technique, Gaussian Blur, in a significance test, to see whether a
node in the MaxTree is significant. The σ parameter is set to 3. There
lies an improvement in distinguishing noise from faint light-emitting
objects and nested objects for MTObjects. Hence, adaptive smoothing
methods could improve the workings of MTObjects. This thesis looks
into different smoothing techniques to denoise astronomical images.
Next to the Gaussian blur, we test the Perona Malik Diffusion method
and develop a smoothing method based on Kernel Density Estimation.
The smoother based on the Kernel Density Estimation can be made
adaptive to the local intensity level and the local curvature. We investi-
gate the performance of these techniques by comparing the smoothed
noised image to a noiseless image, by means of denoising metrics. The
denoising metrics used are the Peak-Signal-to-Noise-Ratio (PSNR), the
Structural Similarity Index (SSIM) and the Normalized Root Means
Squared Error (NRMSE). We perform a grid-search to investigate
the optimal parameter settings. Both the Perona Malik Diffusion and
the smoothing based on the Kernel Density Estimation outperform
the Gaussian Blur, where it is also interesting that the optimal Gaus-
sian Blur has a σ = 1.14. The Perona Malik Diffusion which uses a
conduction gradient function of the gradient of the blurred image
is generating the best results in terms of the denoising metrics, in a
standard image and an astronomical image. Also, a major drawback
of the KDEsmoother is the running time, which is 1166 seconds for a
500 by 500 pixel image. The large running time makes it infeasible to
use this method on large astronomical images. Hence, this research
suggests that MTObjects could improve its workings by adjusting the
significance test by using the Perona Malik Diffusion instead of a
Gaussian Blur.
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1
I N T R O D U C T I O N

Astronomical images contain enormous amount of information about
the universe, ranging from easily identifiable planets and stars to
vague light-emitting sources and noise. The latter two give a challenge
to distinguish and when done by humans is, apart from very time
consuming, vulnerable to errors. Techniques have been developed to
recognize what is a light-emitting object and what is noise, and the
challenge for such techniques is to be as good as the human classifica-
tion, and eventually outperform the labeling done by humans.

For the last two decades, SourceExtractor, or SExtractor in short,
has been a state-of-the-art technique for the above posed problem [3].
The technique defines the sources by using a thresholding approach
and comparing the resulting peak values with the local determined
background value. In the near past, several techniques have been
developed which aim to outperform SExtractor. The most promising
techniques are Profound [12], NoiseChisel [1] and MTOBjects [17].
Where the latter technique is unique in the workings compared to the
former three techniques since MTObjects considers multiple threshold
levels per object.

MTObjects approaches the same former stated problem by divid-
ing the objects in the image hierarchically by using the Max-Tree
technique for thresholding. The root node in this tree consists of the
image thresholded at the background value, hence the complete image,
where the tree is divided further based on increasing threshold values.
Then, MTObjects uses a significance test to filter out noise, followed
by a step which finds objects out of these significant nodes. The main
advantages of MTObjects compared to SExtractor are that MTObjects
performs better at extracting faint parts of objects and at extracting
and subdividing nested objects [17].

To reduce the noise in the image, MTObjects smooths the image by
using a Gaussian Blur while doing the significance test. This smooth-
ing technique is adopted from SExtractor. The Gaussian Blur technique
is the widely used technique to reduce noise in an image, where the
image is being convolved by a Gaussian Kernel. The Gaussian Blur is
equivalent to the solution of a two-dimensional isotropic diffusion [8].
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2 introduction

Since the technique is used uniformly for the entire image, we could
question its applicability for the above stated problem. The reason for
this is since there is a large difference in the intensity and size of light-
emitting objects, as in the density of such objects in different parts of
the image. We could pose that to reduce the noise in such an image,
that a different type of smoothing could be used for large objects with
a high intensity compared to smaller light emitting objects. Hence, it
would be worthwhile to look in to adaptive smoothing methods.

For this thesis, we will consider two adaptive smoothing methods
and evaluate their workings while used in the MTObjects technique.
The first adaptive smoothing technique we will consider is a technique
which will be based on the Kernel Density Estimate (KDE) [14]. We
will smooth the image by using the KDE to multiply each intensity
value of each pixel by it’s locally determined kernel. The second adap-
tive smoothing technique Anisotropic Diffusion (AD) [10]. We will
test whether these smoothing techniques will obtain resulting images
which are more similar to a given image when we feed in those im-
ages with Poisson noise added. In terms of the goal to adding one
of these smoothing methods to MTObjects, is to preserve the vague
light-emitting objects better and the structure of nested objects. For
the latter, we hypothesize that the anisotropic part for both smoothing
methods will improve the outcome .

One of the main questions that arise is whether the KDE has to be
used to decide the intensity value of the smoothed image, or whether
this method can be used to determine the weights for the weighted
sum of the resulting pixel in the smoothed image. We want to scale
the kernel based on the square root of the intensity level, since the
noise follows a Poisson distribution on the photon count. Hence, the
larger the intensity, the smaller the kernel, where the upper limit cor-
responds to the delta function, i.e. a 1 by 1 pixel kernel with a value
of 1. How to determine what the minimum and maximum kernel
size must be needs to be simulated. Next to making the kernel size
adaptive, we aim to make the kernels shape adaptive also by adjusting
the shape of the kernel based on the local curvature, as is done in the
recognition of blood vessels [15]. Adapting the shape of the kernel
in Kernel Density Estimation has been done earlier by [2]. To obviate
from the infinite support kernel when using the Gaussian kernel, we
will use an Epanechnikov Kernel [6], as is done for the Kernel Density
Estimation in [20]. We will determine the eigenvalues of the local sec-
ond order derivatives for a given pixel, and make the kernel smaller
in the direction of the highest curvature, and expand the kernel width
at the direction of the lowest curvature. The rate in which the kernel
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needs to be squished will be determined on the local eigenvalues of
the curvature. We will investigate whether we need to keep the size of
the surface kernel to be dependent only on the pixel intensity, or also
on the eigenvalues.

The aim of using Kernel Density Estimation is to be able to deter-
mine what parameters are optimal for using Anisotropic Diffusion.
Kernel Density Estimation will have a significant higher computational
cost than the Anisotropic Diffusion, and hence the aim of developing
a smoother based on that technique will be to gain information about
AD parameters instead of actually using the technique as a smoothing
technique for MTObjects. Since the astronomical images for MTOb-
jects are 80,000 by 80,000 pixel images containing double precision
floats, we will small images and add Poisson Noise to those images to
simulate the effect of those astronomical images.

A brief explanation of MTObjects, the considered smoothing meth-
ods and the feedback metrics will be presented in the Methods section,
Chapter 2. The results of the outcomes of testing MTObjects with the
different smoothing methods will be presented in the Results section,
Chapter 3. Thereafter, we will conclude this thesis with presenting our
conclusions on the research we have done and will propose topics for
future research in the Conclusion section, Chapter 4.





2
M E T H O D S

This section is divided into three parts. At First, we discuss how we
present and handle images in this paper. After that, we are showing
the workings of MTObjects. And the last part of this section will be the
smoothing method which is based on the Kernel Density Estimation.

2.1 image

2.1.1 Input Image

The input image is represented as I[i, j], with width w and height h
such that i ∈ [0, w] and h ∈ [0, h]. We use gray-scale images such that
for every pair (i, j) we have a single intensity value, I[i, j] ∈ [0, 255] for
standard 8-bit images. The astronomical images consist of 64-bit float
values, however the range of possible values does not cover the whole
float range. A pixel represents the photon count for that given area,
where the range of possible value is between 1e− 14 and 1e− 12, and
hence we have I[i, j] ∈ [1e− 14, 1e− 12].

2.1.2 Poisson Noise

The goal of creating a smoother based on the Kernel Density Esti-
mation is to estimate the underlying photon count distribution for
the given pixels of the input image of astronomical images. To model
noise as is present in such images, we add Poisson Noise to the input
image. To generate Poisson Noise, we can simply create an image for
every pixel i ∈ [0, w] and j ∈ [0, h] we have

IPN[i, j] = Pois(I[i, j]) (2.1)

2.1.3 FITS Images

To be able to compare the impact that the different smoothing tech-
niques have on the workings of MTObjects, we have chosen to run (a
first set of) experiments on 10 simulated images. The advantage of
using such a type of images instead of using real images, is that the
ground-truth is exact, as was discussed in Chapter 1. All 10 simulated
images have a size of 10,000 by 10,000 pixels. As is common for astro-
nomical images, the images are stored in FITS files. To handle such
images we use the astropy.io package [11], which is a package which
specially developed for working with astronomical images and data.

5
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2.1.4 Denoising Metrics

In the former section, we noted that the astronomical images have a
photon distribution where the noise is close to Poisson distributed on
the photon count. The aim of the smoothing method we will develop is
to denoise the image as best as possible. There exists several denoising
metrics for images, which give a metric to the difference of two given
images. One of the most-used metric is the Peak Signal-to-noise[16].
However, this denoising metric also receives a lot of criticism, since
there exist cases where the visual outcome of the denoising is not
close to the metric, i.e. PSNR can give a resulting metric which states
that the image is close to the original, while visually this is not true
[7]. Hence, we will generate two alternative metrics, Structural Simi-
larity [18] and the Normalized Root Mean Squared Error. These three
metrics will be used to set the parameters of our smoothing method,
and will compare the resulting smoother with (1) no smoothing or the
noise image, (2) a simple Gaussian Blur and (3) Anisotropic Diffusion.

The PSNR metric is given by

PSNR(I1, I2) = 10 log10
max(I2

1 )

MSE(I1, I2)
(2.2)

where

MSE(I1, I2) =
1

MN

M

∑
i=1

N

∑
j=1

(I1(i, j)− I2(i, j))2 (2.3)

The SSIM metric [18] is defined by

SSIMi,j = l(xi,j, yi,j)× c(xi,j, yi,j)× s(xi,j, yi,j) (2.4)

where

l(x, y) = 2µxµy+C1
µ2

x+µ2
y+C1

(2.5)

c(x, y) = 2σxσy+C2

σ2
x+σ2

y+C2
(2.6)

s(x, y) = σxy+C3
σxσy+C3

(2.7)

Where µx and σx represent the mean and standard deviation of a 7 by
7 pixel window where the center pixel of this window is the observed
pixel in image in the noiseless image, and µy and σy represent the
mean and standard deviation of a 7 by 7 pixel window where the
center pixel of this window is the observed pixel in image in the
(smoothed) noisy image. Ci represents a small constant determined by
the data range of the image. This data range is set by the minimum
and maximum intesnity value of the noiseless image.
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Figure 2.1: Max-Tree approach for an image where (a) is the 2D image (b)
is the division of the image in it’s Peak Components and (c) the
corresponding Max-Tree build from the given peak components.
Image used from Teeninga et al. [17]

Then, the final SSIM metric is given by mean of all the SSIMi,j.
And finally the NRMSE is given by

NRMSE =

√
MSE

max(I1)−min(I1)
(2.8)

2.2 mtobjects

MTObjects is a method which segments astronomical images into back-
ground, nebulas and light-emitting objects. MTObjects first determines
a background value for the whole image. This value is calculated by
taking the mean of the pixel values of flat tiles, where these flat tiles
are parts of the image which do not have any objects in them. This
background is set as parent node in the Max-Tree, where the tree
is expanded by using an increasing threshold value, until the leaves
consist of the peak components of the input image. The building
of such a Max-Tree is presented in Figure 2.1. In the original paper
[17], the authors present 4 statistical tests to determine whether each
node of the Max-Tree is a significant node, i.e. if the node is an object.
The significance tests are based on a power attribute of the parent
node or the ancestor node of the node which is observed. The most
used significance test of these 4 tests is the test which is based on
the power attribute on the ancestor node, and the area of the node
while a Gaussian Blur is used on the image. For this statistical test,
we will research whether we can increase the workings of MTObjects
by changing the smoothing method from Gaussian Blur to a more
advanced and adaptive smoothing method. Finally, MTObjects uses
deblending to identify nested objects.



8 methods

2.3 kernel density estimation

2.3.1 Kernel Density Estimation

Kernel Density Estimation (KDE) is a technique which attempts to
find an underlying distribution from a given set of observed data
points. We call this a non-parametric methodology to calculate the
distribution [14].

To give an introduction to this concept, a similar more crude way to
determine a distribution of observed data points in a one dimensional
data set is a histogram. To create the histogram, we simply determine
an interval size t in which we count all the observations which lie
in between n and n+t for any given n. A two dimensional graph is
created this way which is an approximation of the actual distribution
on which the observed data points lie. The interval size n and the
placing of the intervals (determining of the start interval which is
between 0 =< n =< t) are prone to errors which could lead to
complete different outcomes of the estimated distribution.

Hence, a more sophisticated method is developed which is less sen-
sitive to the way the initial model is set, as mentioned above with the
case of a histogram, the Kernel Density Estimation has been developed.
This technique does not set an interval size where it sums the number
of observations in between, but sets a distribution with mean µ = xi
where xi is the value of the observation i and the variance σ2 is chosen
by the user of the model. To make such a Kernel Density Estimation, a
distribution needs to be chosen which will be placed on all the obser-
vations, where the uniform distribution and the normal distribution
are the most commonly used. Each of these distributions are added
to create the approximated underlying distribution of the observed
data points. Another advantage of Kernel Density Estimation, is that
whenever we use a distribution such as the Normal Distribution, we
end up with a continuous distribution as result, compared to the
discrete histogram.

Since Kernel Density Estimation is a way to smooth data points, we
could also use it as a smoothing method for images. Note, however,
that an image is a 2d histogram, where every pixel is a 2d bin where
such a bin represents the counted photons for this given area. Hence,
using Kernel Density Estimation is not an alternative density estimator
to a histogram when used for images. Next to that, using isotropic
kernels in Kernel Density Estimation, we have an equivalent technique
to a Gaussian Blur. The difference between these two techniques, is
that the Gaussian Blur uses an weighted average of neighbourhood
pixels to determine a smoothed pixel value, and the Kernel Density
Estimation adds a kernel multiplied by the considered pixel at the
pixel location in the smoothed image. This is again equivalent for
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isotropic kernels. The advantage, however, of using the Kernel Density
Estimation comes when we change the kernel size and/or shape based
on the local information. The local information of the pixel influences
the size and/or the shape of the kernel, and hence influences neigh-
bourhood pixels. If we would make a Gaussian Blur adaptive, the
resulting pixel would be influenced on the local information.

2.3.2 Epanechnikov Kernel

Since the Gaussian Kernel has infinite support and since we want to
fold the kernel inwards at the borders of the image, we do need to
cutoff the Kernel. However, the cutoff will be hard to determine with
a shape adapted kernel. As an alternative, we use the Epanechnikov
Kernel[6] which has a finite support. The d-dimensional Epanechnikov
Kernel with bandwidth b is given by:

Kε(x) =

 d+2
2·cd

(1− x · x) if x · x < 1

0 otherwise
(2.9)

In Figure 2.2 we show both the Gaussian Kernel and the Epanechnikov
Kernel with a σ = 7 and bandwidth b = 7 To get a variance of 1, we
need to multiply the standard deviation by

√
5.

Since we only use the 2-dimensional variant, we can fill in d = 2,
where cd is the volume of a d-dimensional unit sphere, which equals
to π for d = 2. Hence, we get

Kε(x) =

 1
b
√

5
4

2π

(
1− x

b
√

5
· x

b
√

5

)
if x · x < b2 · 5

0 otherwise
(2.10)

To use an anisotropic kernel, we must input a 2x2 bandwidth matrix
instead of a bandwidth scalar. This 2× 2 matrix is the same as the

Figure 2.2: kernels
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co-variance matrix for a simple 2d Gaussian distribution. We end up
with the following formula for the kernel

Kε(x) =

 1
det B

√
5

4
2π

(
1− B−1

(
x√
5
· x√

5

))
if x · x < det B2 · 5

0 otherwise

(2.11)

2.3.3 Boundaries

When using convolution techniques, such as Gaussian Blur, to smooth
an image, it is common to pad the image such that the smoothing
can cope with pixels where the kernel otherwise would consider
pixels outside of the boundaries of the given input image. In the case
of convolutions, one can simple pad the image by (k− 1)/2 pixels,
where one of the most used types of padding is mirror padding. We
could apply padding for the KDE smoothing, where we could use
mirror padding determined by the size of the maximum kernel we
use. However, since we want to adjust the shape, next to the size, of
the kernel, and the shape is determined on the local curvature, we
would need to determine the upper bound of the kernel size. This
could lead to a large padding which leads to a large increase of the
computation time, especially if we consider the 80,000 by 80,000 FITS
images. Whenever we would use mirror padding, we would obtain
the same results if we mirror (or fold) the kernel inwards instead of
mirroring the image at the borders, as is shown in Figure 2.3. For this
folding technique, we do not need to determine any padding size and
we also do not need to increase the image size.

(a) (b) (c)

Figure 2.3: Whenever the kernel is exceeding the image border (a), we fold
the exceeding parts of the kernel (b) inwards and add the kernel
values to the corresponding pixels which lie in the image (c).

2.3.4 Pilot Estimate

Whenever an adaptive kernel is used for Kernel Density Estimation,
where the adaptivity depends on the local information, a pilot estimate
could be used. The pilot estimate is a technique which uses a simple,
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or simpler, approximation of the underlying distribution which creates
a continuous support of the observed data[20]. Consider for example
that we use the Gaussian Blur or a KDE with the normal distribution.
The continuous support is needed to calculate the first and second
order derivatives of the observed data which can be used to shape the
kernel. Another advantage of the using a pilot estimate is whenever
there exists noise which is an outlier, the local information, or local
differences, can be such that it influences the shape of the kernel too
extremely. Whenever the pilot estimate is used, the extreme outliers
are flattened or smoothed out, and hence the adaptivity of the kernel
will be less influenced. We refer to the pilot estimate as: IPE.

2.3.5 Kernel Size

We let the size of the kernel be dependent on the intensity of the
pixel, the pilot estimated photon count, of the blurred image. The
higher intensity pixels shouldn’t have a widespread influence on
neighbouring pixels, where lower intensity pixels (background pixels)
should have a high ranging influence. Hence, we want the kernel to
be smaller for higher intensities. We use the bandwidth matrix B to
adjust the size. Note that if we use a isotropic kernel, we can use the

bandwidth scalar b, since the matrix will be B =

[
b 0

0 b

]
. To calculate

b, we try the following options, for the resulting smoothed images see
Chapter 3.

2.3.6 Kernel Shape

We adapt the kernels of the KDEsmoother based on the local informa-
tion[2]. To adjust the shape of the kernel based on local curvature, we
need to determine the eigenvalues with corresponding eigenvectors of
the local Hessian [15]. Hence, we use Sobel operators, denoted as Sx

and Sy for the Sobel operators in the x and the y directions, to generate
the first- and second-order derivatives of the image. For input image
I we have Sx(I) = Idx and Sy(I) = Idy for the first-order derivative
images in the x and the y direction, respectively. Consequently, we
have Sx(Idx) = Idxx, Sx(Idy) = Sy(Idx) = Idxy and Sy(Idy) = Iyy for the
second-order derivative images. For pixel pair i, j we have that the
Hessian matrix is given by

Hi,j =

[
Idxx(i, j) Idxy(i, j)

Idxy(i, j) Idyy(i, j)

]
(2.12)

An eigenvalue decomposition gives us the eigenvalues λ1 and λ2 with
corresponding eigenvectors e1 and e2. Let λ1 be the eigenvalue with
the largest absolute value, i.e. |λ1| ≥ |λ2|. The eigenvalues represent
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the magnitude of the curvature in the direction of the eigenvectors.
Hence, we adjust the shape of a given kernel by these eigenvalues,
and then rotate such that the kernel aligns with the eigenvectors.
In the former section, we determined how the size of the kernel will be
adjusted. To keep the size of the surface of the kernel equal, we adjust
the size of the kernel in e1 and e2 direction such that the determinant
of a given bandwidth matrix equals the determinant of an isotropic
kernel for that given size. This determinant is equal to the squared
value of the single bandwidth value b, i.e. det(B) = b2 = b We use the
following ratio

r =
|λ1|

|λ1|+ |λ2|
(2.13)

Where 0.5 ≤ r ≤ 1. Hence, we specify

bα = b× (1 + α× (r− 0.5)) (2.14)

B =

[
bα 0

0 b2

bα

]
(2.15)

For any value of 0.5 ≤ r ≤ 1 we have that det B = b2, and hence the
kernel surface remains equal for all kernels at a given intensity value.

After creating the anisotropic bandwidth matrix based on the eigenval-
ues, we rotate this matrix such that is is perpendicular to the eigenvec-
tor corresponding to the highest eigenvalue. The idea is that we want
the kernel to be smaller in the direction of the highest eigenvalue, and
wider in the other direction.

2.3.7 Smoothed Image

To generate the smoothed image, we start with an w× h sized image
IS where IS[i, j] = 0 for all i ∈ [0, w] and j ∈ [0, j]. Then, for every
(i, j), we generate a kernel Ki,j, depending on the intensity in IPE[i, j].
The size of this kernel Ki,j is (wK, hK). We multiply this kernel by the
pixel intensity of the original input image, i.e. Ki,j ∗ I[i, j] and add
the resulting kernel to the smoothed image IS where the center of
the kernel is placed at IS[i, j]. If there exist parts of the kernel which
exceeds the pixel boundaries of the smoothed image, we fold the
kernel inwards.
The number of pixels the kernel has to it’s boundary are: xK = wK−1

2
in the x-direction and yK = hK−1

2 in the y-direction. Hence, we have
the following equation:

IS[i− xK : i + xK, j− yK : j + yK] = Ki,j ∗ I[i, j] (2.16)
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To see what the resulting distribution of kernels is, we also generate
an image w× h sized zero image IBK, where for every pixel we add
the kernel without multiplying the given kernel by the pixel intensity.
Which results in

IBK[i− xK : i + xK, j− yK : j + yK] = Ki,j (2.17)

The pseudo-code of the KDEsmoother can be seen in Appendix A.

2.4 anisotropic diffusion

Gaussian smoothing is a form of isotropic diffusion, which basically
means that the smoothing is done equally in all directions. Anisotropic
Diffusion is the counterpart to this standard form of smoothing, and
one of the first adaptive smoothing methods introduced which does
not smooth in all directions. The first form of this method was in-
troduced by Perona and Malik in [10]. We will use the traditionally
introduced smoothing technique, however, we must note that there
exist many variations on this technique [19].

To show how Anisotropic Diffusion works, we first introduce the
following notation for the Gaussian Blur

∂I(x, y, t)
∂t

= ∆I (2.18)

where I is the image function, x, y are the x- and y-coordinates, t is
the variance used for the Gaussian Kernel. ∆ is the notation for the
Laplacian operator. Hence, we note that

∆I = (Ixx + Iyy)

Now, we introduce the Perona Malik formula for Anisotropic Diffusion

∂I(x, y, t)
∂t

= ∇(c(x, y, t)∇I) (2.19)

Where div is the divergence operator and ∇ is the gradient operator.
The diffusion process is steered by the c(x, y, t), where this function is
given by

c(x, y, t) = g(|∇I(x, y, t)|) (2.20)

Finally, we have to choose the conduction function g()̇. Perona and
Malik propose two different conduction tensor functions, where the
first is given by:

g(∇I) = e(−(|∇I(x,y,t)|/κ)2
(2.21)
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And the second conduction tensor function is given by:

g(∇I) =

(
1−

(
|∇I(x, y, t)|

κ

)2
)−1

(2.22)

In their paper, Perona and Malik [10] state that the second increases
the stability of the diffusion operation. Hence, we choose Equation 2.22

as conduction tensor function.

2.4.1 Perona-Malik diffusion on intensity

The Perona-Malik diffusion, as presented above, has the aim to smooth
an image with preserving its edges. In the astronomical images which
MTObjects attempts to segment, there exist no hard edges except for
peaks. Hence, it seems interesting to adjust the Perona-Malik diffusion
such that the diffusion is steered by the intensity level instead of the
local gradients. Adjusting the diffusion method this way, gives the
following formula:

g(∇I) =

(
1−

(
I(x, y, t)|

κ

)2
)−1

2.4.2 Gaussian Blur for Perona-Malik Diffusion

In Catté et al.[4], it is suggested to increase the stability of the Perona
Malik diffusion, the input of the conduction tensor function could be
lightly blurred by a Gaussian Blur. The reason for this is to reduce
the influence of noise, e.g. if there is a peak signal which is noise, the
local information of the structure has a high impact on the diffusion
equation. Hence, when you blur the input of the conduction tensor
function, you reduce the impact of noise in this equation. The resulting
equation is

g(∇Gσ ∗ I) =

(
1−

(
|∇Gσ ∗ I(x, y, t)|

κ

)2
)−1

Interestingly, the blurring the input of the conduction tensor function
is equivalent to the approach of the pilot estimate for the Kernel
Density Estimation, both techniques use a Gaussian Blur to reduce the
impact of noise on local information which is used for both smoothing
methods.

2.4.3 Algorithm

In each iteration of the Anisotropic Diffusion, the resulting image is
the sum of the image at time step t− 1 and the result of Equation 2.19.
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The second part of the equation is multiplied by a weight γ, where
Perona and Malik[10] state that the performance is best when setting
γ = [0.10, 0.25]. We adopt this by setting the γ parameter equal to
γ = 0.10. The reason for setting the lower bound is that γ and the
number of iterations together influence the degree of how smoothed
the resulting image is, and since we test the number of iterations, we
want the influence per iteration by the γ parameter be low. We will
test the influence on what is the optimal set of parameters for the
number of iterations and the κ parameter on the three different perfor-
mance metrics, the MSE, SSIM and PSNR, as mentioned in Chapter 2.
Furthermore, we will test both conduction tensor functions as given
in Equation 2.21 and Equation 2.22 where we will generate results for
using the gradient on the image as input, and using the raw intensity
as input in both cases. Finally, we will test the influence of blurring
the input of both conduction tensor functions by the Gaussian Blur.
We want the image to be slightly blurred, and hence we use σ = 1.
The pseudo-code of this algorithm can be seen in Appendix A.

We will generate results of using both the gradient and the intensity
on the conduction tensor function, using a Gaussian Blur on the input
of the conduction tensor function, and testing the parameter κ and the
number of iterations.

2.5 technicalities

The source-code of the methods and experiments is done in Python
version 3.7x. Experiments are done on the Zeus server and the Pere-
grine HPC. Zeus is a server managed by Dr. M.H.F. Wilkinson1 at
the Rijksuniversiteit Groningen. The server has Dell R815 Rack Server
with four 16-core AMD Opteron processors and 512 GB of RAM mem-
ory [9]. Peregrine is the the High Performance Cluster (HPC) from
the Rijksuniversiteit Groningen. We run the training on a CPU node
consisting of 24 cores @ 2.5 GHz (two Intel Xeon E5 2680v3 CPUs) 2.
The running times of the different methods will be compared on the
Peregrine HPC.

1 m.h.f.wilkinson@rug.nl
2 https://wiki.hpc.rug.nl/peregrine/





3
R E S U LT S

In this section we present the results of the different smoothing
methods, where we test the parameters for the Gaussian Blur, the
Perona-Malik Diffusion and the KDEsmoother method. We perform a
grid-search on the different parameters, and determine based on the
denoising metrics how to tune the parameters. We split the results
section up into two parts, where we test the method on a standard
photographic image, and on an astronomical telescope image which is
relevant for MTObjects. We will use a simulated image in the astro-
nomical case, to be able to compare the resulting smoothed images to
a noiseless image and be able to know the underlying ground truth
segmentation. Finally, we will run the optimal smoothing method
with corresponding parameters on the complete set of simulated im-
ages, to see the increase on MTObjects when compared to the original
smoothing method, which is a Gaussian blur with σ = 3. Also, we will
generate the results of the performance of MTObjects on the noiseless
images, to see where the opportunities of improvement lie, in the
preprocessing or in the MTObjects method itself.

3.1 standard photographic image

In this section, we use a photographic image called ’Lena’, which is
a common used image in the field of Image Processing due to the
high amount of detail. The image is presented in Figure 3.1. The
reason we perform the smoothing methods on a standard image, next
to an astronomical image, is that we can compare whether a given
technique’s performance is due to the technique, or is only better
suited for one of these images. Also, since we have developed a new
smoothing method, it is interesting to see its performance not only on
MTObjects related images, but also to a more general image.

17
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Figure 3.1: Colored image of Lena, which we use as a standard image to
compare the performance of the different proposed smoothing
techniques on.

We convert the image of Lena to a one channel gray-scale image,
which can be seen in Figure 3.2a. As described in Chapter 1, we use
Poisson noise on the image to simulate the noise distribution on the
astronomical images. The gray-scale image with Poisson noise can be
seen in Figure 3.2b. The histograms of the pixel intensities of the gray-

(a) The gray-scale image of Lena.
(b) The gray-scale image of Lena, with

added Poisson noise.

scale image of Lena and the Lena image with Poisson noise added are
presented below in Figure 3.3. We are interested in the distribution of
the pixel intensities, since we use a modified Perona-Malik diffusion
based on the local pixel intensity, and use a size adaption for the
kernel in the KDEsmoother based on the intensity level. For the latter,
we use a scaling based on the minimum and maximum of the pixel
intensity of the whole image, hence, we want to verify whether there
are for example no outliers which changes the behaviour of this scaling.
When we look at Figure 3.3, we see that this is not the case. Finally, we
can also compare the two histograms to see whether the noise model
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is correct, and the distribution is still similar to the noiseless image,
which is also the case.

(a) (b)

Figure 3.3: Histogram of pixel intensities for (a) the gray-scale image of Lena
and (b)the gray-scale image of Lena with Poisson noise.

3.2 tuning of parameters .

In this section, we show the tuning of the parameters for the Gaussian
Blur, the Perona-Malik diffusion and the KDEsmoother. The tuning is
done by performing a grid-search on the different denoising metrics.
We use the PSNR as the metric to optimize on. We present the results
of 3 different denoising metrics, PSNR, SSIM and NRMSE, as was
proposed in Chapter 2. As a benchmark, we use the above mentioned
metrics given by the gray-scale image and the Poisson noise image
shown in Table 3.1. Also, we present the results of the metrics using the
original noiseless image as input, which gives the upper-bounds (or
lower-bound for the NRMSE) of these metrics. The denoising metrics
on a noiseless image and the simulated image are given below, in
Table 3.1.

PSNR SSIM NRMSE

Noised image 25.814 0.572 0.084

Original Image ∞ 1.000 0.000

Table 3.1: The denoising metrics PSNR, SSIM and NRMSE given for Lena.
The metrics are given where the input image is compared to the
original gray-scale image of Lena. As input, the noised and the
noiseless image are used, to give the upper-bounds and lower-
bounds.

3.2.1 Gaussian Blur

In the original MTObjects paper [17], a Gaussian Blur with σ = 3 is
used. To get a full comparison how well both the adaptive smooth-
ing methods, the Perona-Malik diffusion and the KDEsmoother are
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working, we test different values for σ of the Gaussian Blur on the
three denoising metrics. Hence, we can see how a non-adaptive, or
isotropic, smoother is working when tuned to the denoising metrics.
The resulting plot can be seen in Figure 3.4.

Figure 3.4: Denoising metrics PSNR, SSIM and NRMSE plotted on σ as
parameter for Gaussian Blur, using the gray-scale Lena image as
ground truth and the smoothing on the Poisson noise image. Note
that we have inverted NRMSE. The optimal σ for each metric is
at 0.73, 1.05 and 0.73 for PSNR, SSIM and NRMSE, respectively.

As can be seen in Figure 3.4, the slopes of PSNR, SSIM and the
inverse of the NRMSE metrics are similar, where the optimal values
for σ are also close, i.e.the optimal σ is equal to 0.73, 1.05 and 0.73
for PSNR, SSIM and NRMSE, respectively. In in Table 3.2 below, the
optimal denoising metrics for the Gaussian Blur on the Lena image
are given next to the denoising metrics when using a Gaussian Blur
with σ = 3.

PSNR SSIM NRMSE

Optimal value 31.344 0.848 0.044

σ = 3 24.601 0.719 0.096

Table 3.2: Tuning of the σ-parameter for the Gaussian Blur smoothing
method, used on the gray-scale Lena image with Poisson noise.
The denoising metrics for σ = 3 are also displayed, the value for
the parameter used in the Gaussian Blur in MTObjects.The optimal
values of σ are 0.73, 1.05 and 0.73 for the PSNR, the SSIM and the
NRMSE, respectively.
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3.2.2 Perona-Malik diffusion

The Perona-Malik diffusion has 2 parameters which we want to opti-
mize by means of a grid-search on the denoising metrics. We want to
optimize κ and the number of iterations. The third parameter of the
Perona-Malik diffusion, γ, is a stability parameter which is set to 0.1
for all experiments.

As proposed in Chapter 2 the Perona-Malik diffusion in 4 different
variants:

• Conduction Function uses the local gradients

• Conduction Function uses the local gradients of a slightly blurred
image

• Conduction Function uses the local intensity value

• Conduction Function uses the local intensity value of a slightly
blurred image

We optimize the these two parameters on the three different denois-
ing metrics, where the resulting graphs are depicted in Figure 3.5 on
the next page and the resulting values of the optimal metrics can be
seen in Table 3.3.

PSNR SSIM NRMSE

Perona-Malik 32.105 0.866 0.041

Perona-Malik with Blur 32.494 0.875 0.039

Perona-Malik intensity 30.813 0.836 0.047

Perona-Malik intensity with Blur 30.783 0.835 0.047

Table 3.3: Tuning of the κ-parameter and the number of iterations for the
Perona-Malik diffusion, used on the gray-scale Lena image with
Poisson noise. The denoising metrics are displayed for the 4 differ-
ent variants of the Perona-Malik diffusion.

For standard images, such as the Lena image we use, it seems
that the variant of the Perona-Malik Diffusion where the conduction
function uses the gradient of the blurred image outperforms the other
variants, for all three denoising metrics. The corresponding parameters
for this optimal variant are κ = 5 with 9 iterations for the PSNR and
the NRMSE, and κ = 3 with 23 iterations. For the variants which
run on the intensity instead of the gradient, a higher κ parameter
increases the resulting image in terms of denoising. When κ converges,
the influence of the conduction function is reduced, and hence the
influence of the local information is reduced. We can interpret that in
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(a) PSNR (b) SSIM (c) NRMSE

(d) PSNR (e) SSIM (f) NRMSE

(g) PSNR (h) SSIM (i) NRMSE

(j) PSNR (k) SSIM (l) NRMSE

Figure 3.5: Denoising metrics used on Perona-Malik Diffusion where we plot
on κ and the number of iterations used. We display the results
for all variants of the Perona-Malik Diffusion we use, where the
Conduction Function has as input: for (a)-(c) gradients, (d)-(f)
gradients of blurred image, (g)-(i) intensities, (j)-(l) intensities of
blurred image. Where for each variant, we display the PSNR,
SSIM and NRMSE from left to right. Note, that we use 1-NRMSE,
to compare the distribution of the grid-search to the PSNR and
the SSIM metrics.

the case of using the intensity as input for the conduction function,
the diffusion prefers to be as isotropic as possible. Comparing these
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results, we see that the Perona-Malik Diffusion indeed performs worse
than the Gaussian Blur for the intensity based versions. However, the
gradient based methods outperform the Gaussian Blur.

3.2.3 Kernel Density Estimation

In this section, we tune the parameters of the smoothing method based
on the Kernel Density Estimation, the KDEsmoother, where we use
three different versions of the algorithm. First, we present the results
of the method which uses isotropic kernels with uniform size. The
parameter we tune is the bandwidth parameter which determines
the size of the kernel used for all pixels in the smoothing method. In
Figure 3.6 the results of the grid-search optimization of the bandwidth
parameter for the KDEsmoother are presented. Since we use uniform

Figure 3.6: Denoising metrics PSNR, SSIM and NRMSE plotted on b as pa-
rameter for KDE, using the gray-scale Lena image as ground truth
and the smoothing on the Poisson noise image. Note that we have
inverted NRMSE. The optimal σ for each metric is at 0.73, 1.05
and 0.73 for PSNR, SSIM and NRMSE, respectively.

kernels, we expect that this variant of the KDEsmoother performs
similar to Gaussian Blur, with a slight variation due to the difference
between the Gaussian distribution and the Epanechnikov distribu-
tion. We can see that indeed the graphs in Figure 3.6 look similar
to the graph in Figure 3.4. Note that the denoising metrics for the
KDEsmoother seems to be noncontinuous. This non-continuity occurs
when increasing the bandwidth results in increasing the used kernel
size. In Table 3.4 we show the results of the tuning of the bandwidth
on all three denoising metrics. We show the resulting optimal value,
maximum in case of PSNR and SSIM and minimum in case of NRMSE,
with the corresponding bandwidth value. Comparing the results of
the KDE smoother in Table 3.4 with the results of the Gaussian Blur
in Table 3.2, we see that the Gaussian Blur has similar results, but the
results are slightly better.
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PSNR SSIM NRMSE

Value 31.301 0.842 0.044

Bandwidth 0.70 1.07 0.70

Table 3.4: Uniform kernel size, tuned on the parameter bandwidth. We dis-
play the pairs of optimal denoising metric with corresponding
parameter.

For the size adaptive version of the KDEsmoother, we perform a
grid-search for the parameters bmin and bmax together. The resulting
graphs of the grid-search for each of the denoising metrics is presented
in Figure 3.7. We use the optimal bandwidth parameter of the uniform
KDEsmoother for the PSNR and NRMSE as upper-bound and lower-
bound, for bmin and bmax respectively. Note that this can result in a
sub-optimal value for the SSIM, since the bandwidth value of 0.7 is
not optimal for this denoising metric in the uniform case.

(a) PSNR (b) SSIM (c) NRMSE

(d) PSNR (e) SSIM (f) NRMSE

Figure 3.7: Denoising metrics used on size adaptive variant of the
KDEsmoother. We display the results for all variants of the Perona-
Malik Diffusion we use, where the Conduction Function has as
input: for (a)-(c) 11 steps of 0.01, (d)-(f) 11 steps of 0.05, Where for
each variant, we display the PSNR, SSIM and NRMSE from left
to right. Note, that we use 1-NRMSE, to compare the distribution
of the grid-search to the PSNR and the SSIM metrics.

As we can see in Figure 3.7, the optimal value for all denoising
metrics is the highest value for bmin, and the lowest value for bmax.
These are the values which represent the non-size adaptive version of
the KDEsmoother, and hence, the resulting optimal denoising values
are the same, as can be seen in Table 3.5. For the shape-adaptive
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PSNR SSIM NRMSE

Value 31.301 0.821 0.044

(bmin,bmax) (0.70, 0.70) (1.07,1.07) (0.70,0.70)

Table 3.5: KDEsmoother with adaptive kernel size, tuned on the bmin and
bmax parameters. We display the pairs of optimal denoising metric
with corresponding parameter.

version of the KDEsmoother, we use a bandwidth of bmin = 0.7 and
bmax = 0.7, i.e. the version which is not adaptive in kernel size. We use
these values for the bandwidth since these are optimal for the PSNR
and NRMSE metrics in both testes version of the KDEsmoother. We
have performed a grid-search on the α parameter, which determines
how much a kernel is adjusted in its shape. The resulting graph of
this grid-search performed for all three denoising metrics is displayed
in Figure 3.8 As we can see in Figure 3.8, increasing the adaptivity in

Figure 3.8: Denoising metrics PSNR, SSIM and NRMSE plotted on α as
parameter for the shape-adaptive KDEsmoother, using the gray-
scale Lena image as ground truth and the smoothing on the
Poisson noise image. Note that we have inverted NRMSE. The
optimal α for each metric is at 0.02, 0.00 and 0.02 for PSNR, SSIM
and NRMSE, respectively.

shape for the KDEsmoother, decreases its performance for all three
denoising metrics. However, a small value for α has a slightly better
PSNR and NRMSE than the uniform KDEsmoother. These results are
presented in Table 3.6.

PSNR SSIM NRMSE

Value 31.307 0.821 0.044

α 0.02 0.00 0.02

Table 3.6: Uniform kernel size, tuned on the parameter bandwidth. We dis-
play the pairs of optimal denoising metric with corresponding
parameter.
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3.3 comparison of smoothing techniques .

From the former sections, we summarize all the denoising metrics for
each smoother. Each smoother is optimized on the given denoising
metric. The results are displayed in Table 3.7.

PSNR SSIM NRMSE

Without smoothing 25.814 0.572 0.084

Same image ∞ 1.000 0.000

Gaussian Blur σ = 3 24.601 0.719 0.096

Gaussian Blur 31.344 0.848 0.044

Perona-Malik 32.105 0.866 0.041

Perona-Malik with Blur 32.494 0.875 0.039

Perona-Malik on Intensity 30.813 0.836 0.047

Perona-Malik on Blurred Intensity 30.783 0.835 0.047

KDEsmoother uniform 31.301 0.842 0.044

KDEsmoother size-adaptive 31.301 0.842 0.044

KDEsmoother shape-adaptive 31.307 0.821 0.044

Table 3.7: Overview of the denoising metrics for all smoothing techniques
with optimal parameter setting. These are all results of smoothing
the Lena image with noise and comparing the result to the noiseless
image of Lena.

As we can see in the overview in Table 3.7, the optimal smoother
in terms of the three denoising metrics is the Perona-Malik Diffusion
where the conduction function used the gradient combined with a
Gaussian Blur. The KDEsmoother we have developed has similar
performance to the Gaussian Blur, and the size-adaptivity and shape-
adaptivity of the KDEsmoother does not add significant increases in
performance when using the standard photographic image of Lena.
Finally, note that all smoothing methods outperform the Gaussian
Blur with a σ = 3, even when we do not smooth the image at all. We
display the smoothed image for the optimal parameters for the best
performing variant of each smoothing method in Figure 3.9 on the
next page.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.9: Overview of the original and the smoothed images of Lena,
where the following images are presented: (a) Gray-scale Lena,
(b) Lena with Noise, (c) Gaussian Blur with σ = 3, (d) Optimal
Gaussian Blur, (e) Optimal Perona-Malik Diffusion, (f) Optimal
KDEsmoother.
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3.4 astronomical images

The KDEsmoother was developed with the objective to reduce the
noise in astronomical images, and hence we also perform the same
experiments, as on the standard photographic image presented in the
former section, on an astronomical image. We use an image from a set
of simulated images, which are similar to the real astronomical images
which are used for MTObjects. The advantages of using simulated im-
ages are that we have the exact underlying ground truth segmentation
of these images and we can generate images with and without noise.
These noiseless images are crucial for our experiments to generate the
denoising metrics. We use a set of 10 simulated images, where each of
these images consist of 10,000 by 10,000 pixels. We display the first of
these images, img0.fits below in Figure 3.10.

(a) noiseless (b) with noise

Figure 3.10: The first of the ten simulated Fits images, where we have the
noiseless image in (a), and the same image with a Poisson noise
model added in (b). To visualize, we have used an Histogram
Equalization stretch.

Since the running time of the KDEsmoother is high, we were not
able to perform a grid-search to search for the optimal parameters
for the KDEsmoother on these full images. Also, performing a grid-
search on the Perona-Malik Diffusion is slow on these large images.
Hence, we use a crop of the img0.fits simulated image. This crop is
presented in Figure 3.11.
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(a) noiseless (b) with noise

Figure 3.11: Crops of the simulated image (Fig. 9), where (a) is the original
image without noise and (b) is the same crop with a Poisson
noise model added. To display the images, we used a Histogram
Equalization Stretch.

Note, that the above presented images are generated by using a
Histogram Equalization. Combined with the simulation technique
to generate these images, there seem to be artifacts in the noiseless
image which look like squares. It should be further investigated if
the simulation of these noiseless images can be improved to exclude
these artifacts, but the Histogram Equalization makes signifies these
artifacts, while in the actual data they are less significant. We generate
the denoising metrics where we use the noiseless and the image
without noise as input, to see what the upper-bound and lower-bound
are. These metrics are displayed below in Table 3.8.

PSNR SSIM NRMSE

Noised image 42.279 0.936 0.226

Original image ∞ 1.0 0.0

Table 3.8: The denoising metrics PSNR, SSIM and NRMSE given for the crop
of the astronomical image. The metrics are given where the input
image is compared to the noiseless image. As input, the noisy
and the noiseless image are used, to give the upper-bounds and
lower-bounds.

For these astronomical images, we also display the histogram of
the pixel intensities to see the distribution of these intensities. These
histograms below in Figure 3.12. Interestingly, there seem to be high
outliers such that the most pixel values lie within the smallest 10%
range.
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(a) (b)

Figure 3.12: Histogram of pixel intensities for (a) the gray-scale astronomical
image and (b)the gray-scale astronomical image with noise.

3.4.1 Gaussian Blur on Astronomical Image

We tune the parameter σ of the Gaussian Blur, and get the resulting
graphs which are depicted in Figure 3.13 below.

Figure 3.13: Denoising metrics PSNR, SSIM and NRMSE plotted on σ as
parameter for Gaussian Blur, using the gray-scale astronomical
image as ground truth and the smoothing on the Poisson noise
image. Note that we have inverted NRMSE. The optimal σ for
each metric is at 1.14, 2.76 and 1.14 for PSNR, SSIM and NRMSE,
respectively.

From the graph presented above, we can see that the SSIM value is
converges to 1 and has minimal differences when changing σ. Further-
more, increasing σ further did not decrease the value of the SSIM a
lot. The reason for this is when comparing the astronomical image to
the photographic image of former section, the underlying structure
of the astronomical image does stay similar, i.e. there does not exist
that much detail within the image as was the case with ’Lena’. Hence,
it is harder to deduce an optimal value for the SSIM when reducing
the noise in this image, while we aim for reducing noise. Hence, we
can conclude that the SSIM is not a suitable denoising metric for the
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use of smoothing the astronomical images. For sake of completeness,
we report the SSIM with the remainder of the experiments, but we
will focus mainly on the PSNR and NRMSE to draw conclusions from
about the smoothing techniques. For the PSNR and the NRMSE, we
can see that the distribution is similar to the grid-search performed
on the photographic image in Figure 3.4, but that the curve is less
steep. This also is reflected in the higher optimal bandwidth values
presented in Table 3.9.

PSNR SSIM NRMSE

Optimal Value 52.338 0.997 0.071

σ = 3 45.716 0.997 0.152

Table 3.9: Tuning of the σ-parameter for the Gaussian Blur smoothing
method, used on crop of the simulated astronomical image. The
denoising metrics for σ = 3 are also displayed, the value for the
parameter used in the Gaussian Blur in MTObjects. The optimal
σ for each metric is at 1.14, 2.76 and 1.14 for PSNR, SSIM and
NRMSE, respectively.

Interestingly, when looking at the above presented table, we see a
large difference in performance when smoothing the image with an
optimal σ as with σ = 3, as was used originally by MTObjects.
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3.4.2 Perona-Malik diffusion

In this section we present the results of performing a grid-search
for the parameters of the four different variants of the Perona-Malik
diffusion tested on the denoising metrics PSNR, SSIM and NRMSE
using the crop of the astronomical image. We again, as in Section 3.2.2,
use γ = 0.1 as regularizing parameter. Since κ is a determining the
influence of the local gradient, or intensity level, we adjust the range
of this parameter to be suitable to the astronomical images. Since, the
range of the intensity level is between 1e− 14 and 1e− 12, we set the
range of κ to this range. The results of the performed grid-search for
each denoising metric is presented in Figure 3.14.

PSNR SSIM NRMSE

Perona-Malik 58.990 0.999 0.033

Perona-Malik with Blur 61.681 0.999 0.024

Perona-Malik intensity 59.221 0.999 0.032

Perona-Malik intensity with Blur 59.350 0.999 0.032

Table 3.10: Tuning of the κ-parameter and the number of iterations for the
Perona-Malik diffusion, used on the crop of the astronomical
image. The denoising metrics are displayed for the 4 different
variants of the Perona-Malik diffusion.

The variant of the Perona-Malik diffusion which has the best per-
formance when looking at the PSNR and the NRMSE, is the variant
which uses the blurred gradient as input for the conduction function,
as was also the case with the ’Lena’ image. The optimal metrics are
obtained with κ = 2.7e− 13 for 132 iterations. Note, that the number
of iterations is a lot higher compared to the case when using the
Perona-Malik Diffusion on a standard image. We can also see this
behaviour in the Gaussian Blur, where a higher value for σ means a
preference for a more blurred image, which is also how we can inter-
pret the high number of iterations. The two variants which use the
Intensity as input for the conduction function have a relative higher
performance when comparing with the results for the photographic
image, which was what we expect. However, these variants are still
outperformed by using the version based on the Gradient.
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(a) PSNR (b) SSIM (c) NRMSE

(d) PSNR (e) SSIM (f) NRMSE

(g) SSIM (h) PSNR (i) NRMSE

(j) PSNR (k) SSIM (l) NRMSE

Figure 3.14: Denoising metrics for the smoothed cropped astronomical image
by the Perona-Malik Diffusion where we plot on κ and the
number of iterations used. We display the results for all variants
of the Perona-Malik Diffusion we use, where the Conduction
Function has as input: for (a)-(c) gradients, (d)-(f) gradients
of blurred image, (g)-(i) intensities, (j)-(l) intensities of blurred
image. Where for each variant, we display the PSNR, SSIM
and NRMSE from left to right. Note, that we use 1-NRMSE, to
compare the distribution of the grid-search to the PSNR and the
SSIM metrics.
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3.4.3 KDEsmoother on Astronomical Image

In this section we present the results of the KDEsmoother used on
the cropped simulated astronomical image, which is shown in Fig-
ure 3.11(b). We use three variants of the KDEsmoother:

• KDEsmoother with uniform kernels (same size and isotropic for
each pixel).

• KDEsmoother with size-adaptive kernels

• KDEsmoother with shape-adaptive kernels

First, we start with using the KDEsmoother with uniform kernels.
The results of the grid-search performed on the denoising metrics
for different values of the bandwidth parameter are shown in in
Figure 3.15.
Again, we can compare this graph to the graph of the grid-search

Figure 3.15: Denoising metrics PSNR, SSIM and NRMSE plotted on b as
parameter for KDE, using the gray-scale Lena image as ground
truth and the smoothing on the Poisson noise image. Note that
we have inverted NRMSE. The optimal σ for each metric is at
1.16, 2.79 and 1.16 for PSNR, SSIM and NRMSE, respectively.

optimization of the σ-parameter for the Gaussian Blur, in Figure 3.13.
As was the case in former section with the photographic image, we
see that the distributions are equivalent, and that the largest difference
is the discontinuity in the KDEsmoother. This discontinuity is due to
the change in kernel size at the given bandwidth value. The optimal
values for the bandwidth parameter for each of the denoising metrics
is given in Table 3.11

Performing a grid-search on the size-adaptive version of the KDE-
smoother results in the following graphs, displayed in Figure 3.16. We
use the optimal bandwidth value for the PSNR and the NRMSE of
the KDEsmoother with uniform kernels as upper-bound for the bmin
parameter and as lower-bound for the bmax parameter, which is a value
of 1.16. As we can see in Figure 3.16, in contrast with the photographic
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PSNR SSIM NRMSE

Value 52.514 0.997 0.069

Bandwidth 1.16 2.79 1.16

Table 3.11: Uniform kernel size, tuned on the parameter bandwidth using the
crop of the astronomical image. We display the pairs of optimal
denoising metric with corresponding parameter.

(a) PSNR (b) SSIM (c) NRMSE

Figure 3.16: Denoising metrics used on size adaptive variant of the
KDEsmoother. We display the results for combinations of bmin
and bmax such that: for (a)-(c) 11 steps of 0.1. Note, that we use
1-NRMSE, to compare the distribution of the grid-search to the
PSNR and the SSIM metrics.

image of Lena, we do have optimal values for the denoising metrics
where bmin 6= bmax. Hence, the hypothesis that increasing the smooth-
ing at lower intensity values and vice versa holds. The optimal values
for these bandwidth parameters are given in Table 3.12. Note, that the

PSNR SSIM NRMSE

Value 56.793 0.998 0.042

(bmin,bmax) (0.71, 2.41) (1.16,3.16) (0.71, 2.41)

Table 3.12: Optimal denoising metrics for the size-adaptive version of the
KDEsmoother, where the grid-search is performed on the bmin
and the bmax parameters.

value of the SSIM can be neglected, since it uses the maximum values
of the grid for both the bmin and the bmax parameter. Also, we did not
use the optimal bandwidth value for corresponding to the SSIM as
upper-bound and lower-bound for the bmin and bmax.

Finally, we introduce the shape-adaptivity to the KDEsmoother. We
test whether the shape-adaptivity increases the performance for:

• The KDEsmoother with uniform kernels, where b = 0.70, cor-
responding to the optimal bandwidth for the PSNR and the
NRMSE
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• The KDEsmoother with size-adaptive kernels, where (bmin, bmax) =

(0.71, 2.41), corresponding the the optimal bandwidth parame-
ters for the PSNR and the NRMSE.

The results of the grid-search performed on α are given in Figure 3.17.

(a)

(b)

Figure 3.17: Denoising metrics PSNR, SSIM and NRMSE plotted the α param-
eter, which determines how much the kernel adapts its shape. In
(a) we have plotted the shape adaptive KDEsmoother with opti-
mal uniform size kernels, and in (b) we have plotted the shape
adaptive KDEsmoother with optimal adaptive size kernels. In
both graphs, we can see that increasing α decreases the perfor-
mance, and hence the KDEsmoother works best with isotropic
kernels.

As can be seen in both graphs in Figure 3.17, increasing α reduces
the performance of the KDEsmoother, and hence the optimal values
are in both situation where α = 0. We display the result in the overview
of all smoothing methods in Table 3.13.
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3.4.4 Overview of the results

The denoising metrics for all smoothing methods used in the former
sections are summarized in the table presented below.

PSNR SSIM NRMSE

Without smoothing 42.279 0.936 0.226

Same image ∞ 1.000 0.000

Gaussian Blur σ = 3 45.716 0.997 0.152

Gaussian Blur 52.338 0.997 0.071

]Perona-Malik 58.990 0.999 0.033

Perona-Malik with Blur 61.681 0.999 0.024

Perona-Malik intensity 59.221 0.999 0.032

Perona-Malik intensity with Blur 59.350 0.999 0.032

KDE isotropic 52.514 0.997 0.069

KDE size adaptive 56.739 0.998 0.042

KDE size & shape adaptive 56.739 0.998 0.042

Table 3.13: Overview of the denoising metrics for all smoothing techniques
with optimal parameter setting. These are all results of smoothing
the crop of the astronomical image with noise and comparing the
result to the noiseless image.

From the overview of the results presented in Table 3.13, we see
similar results when comparing with the results of the photographic
image in Table 3.7. For the astronomical image, we also have that is the
Perona-Malik Diffusion where the conduction function used the gradi-
ent combined with a Gaussian Blur is the best performing smoothing
method in terms of the three denoising metrics. The differences be-
tween the astronomical image and the photographic image are that the
variants of the Perona-Malik Diffusion which use the local intensities
instead of the local gradients seems to perform relatively better. Also,
the size-adaptivity increases the performance of the KDEsmoother
when comparing to the KDEsmoother using uniform kernels. Both
these results suggest that the hypothesis that the astronomical images
are better denoised when increasing the smoothing for lower intensity
values, and vice versa, holds.

We display the smoothed image for the optimal parameters for the
best performing variant of each smoothing method in Figure 3.9 on
the next page.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.18: Overview of the original and the smoothed images of Lena,
where the following images are presented: (a) Astronomical
image without noise, (b) Astronomical image with noise, (c)
Gaussian Blur with σ = 3, (d) Optimal Gaussian Blur, (e) Op-
timal Perona-Malik Diffusion, (f) Optimal KDEsmoother. All
presented images are displayed by using a Histogram Equaliza-
tion.
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3.4.5 Run-time comparison

The running times of the optimal methods for the Gaussian Blur, the
Perona-Malik Diffusion and the KDEsmoother are given in the table
below, Table 3.14.

Run-time (in seconds)

Gaussian Blur 0.0099

Perona-Malik Diffusion 2.1360

KDEsmoother 1166.4242

Table 3.14: Run-times of the different smoothing techniques on the 500 by
500 pixel crop of the simulated astronomical image. The running
times are displayed in seconds, where we have used the optimal
parameter setting resulted from the former performed grid-search
on the denoising metrics.

The high running time of the KDEsmoother comes from the number
of operations performed on each individual pixel in the image. For
each pixel, the local information is gathered, and a new kernel is
generated depending on this local information. It should be further
investigated how to reduce the running times of the KDEsmoother,
for example by setting parts of the operations in parallel. The running
time for the KDEsmoother also depends highly on the bandwidth
parameter, and the ratio of low intensity pixels. The latter increases
the running time since low intensity pixels use larger kernels. When
the running time is optimized for the KDEsmoother, this technique
could be considered as a smoothing technique for the astronomical
images used by MTObjects, but in this form the running time is to
high. When extrapolating the running time to the original image size,
which is 10,000 by 10,000 pixels, we would have a running time of 5 to
6 days for smoothing one image. Note, that these are even simulated
images, where the actual astronomical images have sizes of 80,000 by
80,000 pixels, which would result in a running time of almost a year
on the Peregrine HPC.
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3.4.6 Combining with MTObjects

In the former section, we have shown that based on the denoising
metrics, the optimal smoothing method seems to be the Perona-Malik
Diffusion where the conduction function uses the gradient of the
blurred image. the corresponding parameters are κ = 2.7e− 13 where
the method is used for 132 iterations. The next step of this research
is to see how this smoothing technique improves the performance of
MTObjects on the full simulated 10,000 by 10,000 pixel images. We
have displayed the resulting segmentation maps in Appendix B. For
each of the 10 simulated images, we display the following

• Image without noise

• Image with noise

• MTObjects segmentation map on noiseless image

• MTObjects segmentation map on noised image

• MTObjects segmentation map on noised image smoothed by
optimal PM diffusion

• ’Ground Truth’ segmentation map

As can bee seen in these images, the ’ground truth’ segmentation
maps we received corresponding to these image seem incorrect. Hence,
comparing the performance with the noiseless and the noised images
makes no sense and thus should be done in future work. For this
research, we wanted to compare the following metrics

• Precision

• Recall

• F1-score

• Under-merging Error

• Over-merging Error

It should be investigated what is causing these ’ground truth’ segmen-
tation maps to be off, and then the above suggested metrics can be
compared for different inputs of MTObjects of the same underlying
image. Looking at the segmentation maps in Appendix B, we can
see that the smoothed image by the Perona-Malik Diffusion seems to
be off in some areas. However, in other areas the noise seems to be
reduced and the segmentation looks more like the segmentation as
with the noiseless image as input. Note that the noiseless image as
input does not result in a ’ground truth’ segmentation map, and no
hard conclusions can be drawn from these images yet.
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MTObjects is a promising technique, which separates itself from the
alternative methods by constructing a Max-Tree. Since MTObjects
performs better prepossessing the image by a smoother, where in the
original paper a Gaussian Blur with σ = 3 is used, we considered and
constructed shape adaptive smoothing methods. We have developed
an image smoothing technique based on the Kernel Density Estimation,
which uses the local curvature and intensity to adapt it’s shape and
it’s size. Also, we have used the Perona Malik Anisotropic Diffusion,
where we have adjusted this function to run on intensity also. Using
the denoising metrics PSNR, SSIM and NRMSE to set the parameters
for these methods, we see that these adaptive smoothing methods
outperform the Gaussian Blur in terms of denoising. Hence, it looks
promising to use these techniques as preprocessing step for MTObjects.

The proposed smoothing technique, the KDEsmoother, is tested on
a ’natural’ image and on a MTObjects specific image, and compared
to the Gaussian Blur and different variants of Perona-Malik diffusion.
The denoising metrics PSNR, SSIM and NRMSE are used to evaluate
how well the image is denoised. Interestingly, the SSIM does seem
not work well for the simulated images. It could be that the window
size of 7 by 7 pixels for the SSIM is too small, and hence this should
be investigated further. Also, the SSIM could be tested on the whole
image instead of using windows. Hence, we concluded that PSNR
and the NRMSE are better suited metrics to obtain results with. All
grid-search results on these parameters had the same parameters as
optimum. As future work it could be tested how well these metrics
translate to the performance of the segmentation done by MTObjects.
Also, a further investigation in denoising metrics could be done.

The results showed that the KDEsmoother using uniform ker-
nels has similar performance compared to the Gaussian Blur. Size-
adaptivity increases the performance for the KDEsmoother when used
for the astronomical images, and hence outperforms the Gaussian
Blur. The shape-adaptivity did not increase performance for either
photographic or astronomical images. We have made some design
choices in the shape-adaptive variant, such as preserving the kernel
size, which could be investigated further to see if shape-adaptivity can
improve this smoothing technique. For example, the local information
of the curvature could be prone to small objects and noise, and hence
an interesting field of research could be performed on steering the
kernels by using the information of a downsampled image. Finally,

41
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both the KDEsmoother and the Gaussian Blur where outperformed
by the Perona-Malik Diffusion for all denoising metrics. The version
of the Perona-Malik Diffusion which had the best performance, is the
variant which used the blurred gradient as input for the conduction
tensor function.

Both the KDEsmoother and the Perona-Malik Diffusion had in-
creased performance when increasing the smoothing for lower inten-
sity values for the astronomical images, where this was not the case
for the photographic images. Hence, the hypothesis holds that in the
astronomical images, the regions with high photon counts should be
smoothed less than the regions with low photon counts.

The running time of the KDEsmoother was in orders of magnitude
slower compared to the Gaussian Blur and even the Perona-Malik
diffusion. Hence, this method should be improved in terms of running
time when used on real astronomical images. Future research can be
done on using the KDEsmoother on the simulated images as presented
in this thesis, but another interesting research opportunity is to see
how well the methodology applies to real data.

Kernel Density Estimation can be used as a smoothing method, but
developing such a method introduced parameters to tune. Combined
with the slow run-time, this technique seems not suitable to set the
parameters for the Perona-Malik Diffusion. Also, the techniques are
comparable, but a big difference is that the KDEsmoother uses local
information of a given pixel to influence the local neighbourhood of
that pixel, where the Perona-Malik Diffusion uses local information of
a given pixel to influence that given pixel.

In this research we have focused on two adaptive smoothing meth-
ods which are flux preserving. It is interesting to test if the assumption
that flux preserving adaptive smoothing methods outperform non-flux
preserving methods. Since we use the smoothed images for segmenta-
tion, and keep the non-smoothed image for further operations, there
seems to be not a requirement to have a flex-preserved smoothed
image for the segmentation part. Hence, we propose for future work
to investigate into more smoothing methods and compare these to
the smoothing methods from this research. Also, Deep Learning has
proven to be a well suited method to denoise images in a field called
Super Resolution [5], and hence this could also be done in future work.
Next to using Deep Learning as a smoothing or denoising technique,
Deep Learning has proven to be a well suited technique for segmenta-
tion [13] . Hence, another interesting research topic would be to see
how well a Deep Learning Architecture can perform segmentation on
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astronomical images compared to MTObjects.

Furthermore, MTObjects has been developed for segmentation for
astronomical images which are made with telescopes. One of the requi-
sites of the images is that the underlying values in the image represent
the photon counts. In the field of microscopy, a lot of imaging is done
with photon counts, and there exists some similarity to astronomical
structures and, for example, protein structures. Hence, an interesting
divergence would be to test whether MTObjects is a suitable method
for segmentation in microscopy.





A
A P P E N D I X - P S E U D O C O D E

Algorithm 1 KDEsmoother

1: procedure KDEsmoother(I)
2: (w, h)← shape(I)
3: IS ← zeros(w, h)
4: IBK ← zeros(w, h)
5: IPE = GaussianBlur(image = I, σ = 3)
6: for i← 0, w− 1 do
7: for j← 0, h− 1 do
8: B← determineBW(IPE)

9: Ks ← EpanechnikovKernel(B)
10: K, xb, xe, yb, ye ← FoldBoundaries(Ks, i, j, w, h)
11: IS[i− xb : i + xy, j− yb : j + ye]+ = K× I[i, j]
12: IBK[i− xb : i + xy, j− yb : j + ye]+ = K

13: return IS, IK

Algorithm 2 EpanechnikovKernelGrid

1: procedure EpanechnikovKernelGrid(B)
2: r ← f loor(det(B) ∗ 7)
3: l ← r ∗ 2 + 1
4: x ← linspace(−r, r, l)
5: y← linspace(−r, r, l)
6: K ← zeros(l, l)
7: for i← 0, l do
8: for j← 0, l do
9: u← [x[i], y[j]]

10: K[i, j]← EpanechnikovKernel(u, B)

11: return K

45
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Algorithm 3 EpanechnikovKernel

1: procedure EpanechnikovKernel(u, B)
2: dB ← det(B)
3: x ← inverse(B) · (u)
4: if x · x < 5 then
5: k← 1

5×dB

4
2×π

(
1− x√

5
· x√

5

)
6: else
7: k← 0
8: return k

Algorithm 4 Perona Malik Diffusion

1: procedure PMD(I, it, kappa, gamma, op)
2: Out← I
3: for i← it do
4: gradv, gradh ← gradient(Out)
5: if op == 1 then
6: m1← c(Out) ∗ gradv

7: m2← c(Out) ∗ gradh

8: if op == 2 then
9: m1← c(gradv) ∗ gradv

10: m2← c(gradh) ∗ gradh

11: m1,← grad(m1)
12: ,m2← grad(m2)
13: Out← Out + γ× (m1 + m2)

14: return Out
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S I M U L AT E D I M A G E S A N D S E G M E N TAT I O N M A P S

In this Appendix we show the 10 simulated astronomical images,
where we display each image with and without noise. Also, we display
the segmentation maps generated by MTObjects using both the image
with and without noise, but also the image with noise smoothed by
the Perona-Malik Diffusion with optimal parameter setting which
resulted from the performed grid-search analysis in this thesis. Finally,
we display the ground truth segmentation maps of each simulated
image, but note, these segmentation maps needs to be investigated
since they seem wrong.
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(a) (b)

(c) (d)

(e) (f)

Figure B.1: Simulated Image 0, with (a) Noiseless, (b) With noise, (c) MTOb-
jects segmentation of noiseless, (b) MTObjects segmentation of im-
age with noise, (e) MTObjects segmentation of image with noise
smoothed by optimal Perona-Malik Diffusion and (f) Ground
truth segmentation map of the simulated image.



simulated images and segmentation maps 49

Figure B.2: Simulated Image 1, with (a) Noiseless, (b) With noise, (c) MTOb-
jects segmentation of noiseless, (b) MTObjects segmentation of im-
age with noise, (e) MTObjects segmentation of image with noise
smoothed by optimal Perona-Malik Diffusion and (f) Ground
truth segmentation map of the simulated image.
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Figure B.3: Simulated Image 2, with (a) Noiseless, (b) With noise, (c) MTOb-
jects segmentation of noiseless, (b) MTObjects segmentation of im-
age with noise, (e) MTObjects segmentation of image with noise
smoothed by optimal Perona-Malik Diffusion and (f) Ground
truth segmentation map of the simulated image.
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Figure B.4: Simulated Image 3, with (a) Noiseless, (b) With noise, (c) MTOb-
jects segmentation of noiseless, (b) MTObjects segmentation of im-
age with noise, (e) MTObjects segmentation of image with noise
smoothed by optimal Perona-Malik Diffusion and (f) Ground
truth segmentation map of the simulated image.
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Figure B.5: Simulated Image 4, with (a) Noiseless, (b) With noise, (c) MTOb-
jects segmentation of noiseless, (b) MTObjects segmentation of im-
age with noise, (e) MTObjects segmentation of image with noise
smoothed by optimal Perona-Malik Diffusion and (f) Ground
truth segmentation map of the simulated image.
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Figure B.6: Simulated Image 5, with (a) Noiseless, (b) With noise, (c) MTOb-
jects segmentation of noiseless, (b) MTObjects segmentation of im-
age with noise, (e) MTObjects segmentation of image with noise
smoothed by optimal Perona-Malik Diffusion and (f) Ground
truth segmentation map of the simulated image.
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Figure B.7: Simulated Image 6, with (a) Noiseless, (b) With noise, (c) MTOb-
jects segmentation of noiseless, (b) MTObjects segmentation of im-
age with noise, (e) MTObjects segmentation of image with noise
smoothed by optimal Perona-Malik Diffusion and (f) Ground
truth segmentation map of the simulated image.
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Figure B.8: Simulated Image 7, with (a) Noiseless, (b) With noise, (c) MTOb-
jects segmentation of noiseless, (b) MTObjects segmentation of im-
age with noise, (e) MTObjects segmentation of image with noise
smoothed by optimal Perona-Malik Diffusion and (f) Ground
truth segmentation map of the simulated image.
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Figure B.9: Simulated Image 8, with (a) Noiseless, (b) With noise, (c) MTOb-
jects segmentation of noiseless, (b) MTObjects segmentation of im-
age with noise, (e) MTObjects segmentation of image with noise
smoothed by optimal Perona-Malik Diffusion and (f) Ground
truth segmentation map of the simulated image.
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Figure B.10: Simulated Image 9, with (a) Noiseless, (b) With noise, (c) MTOb-
jects segmentation of noiseless, (b) MTObjects segmentation
of image with noise, (e) MTObjects segmentation of image
with noise smoothed by optimal Perona-Malik Diffusion and (f)
Ground truth segmentation map of the simulated image.
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