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1 Introduction

1.1 Motivation and Research Goals

The AGOR cyclotron at KVI-CART is able to accelerate all stable ions over a wide energy range.
After the extraction of the ions from the cyclotron they need to be transported to the rooms in which
the experiments take place. This guidance system comprises many magnet elements and beam profile
monitors. In order to guarantee that minimal beam losses occur during transport and to achieve a
sufficiently small beam profile size at the experimental sites, each of these magnet elements must be
set correctly.

Currently, the tuning of the magnets is done manually. The initial settings are calculated by means
of ion-optical calculations after which fine-tuning is done by the operators. Due to the large number
of magnets in the system, this is a very time-consuming process. Furthermore, due to the different
strategies used by different operators the reproducibility of the beam properties at the experimental
sites is also limited.

The tuning procedure requires the adjustment of many parameters. The effect of these parameters
can be calculated via mathematical relations derived from the physics of ion transport. By using these
relations during tuning, the number of required iterations before the optimal parameters are achieved
will be reduced, and convergence to a global minimum is more likely. However, it would be difficult to
impossible for the operator to make full use of these mathematical equations without a calculation tool
because of the large number of computations that are required. Therefore it would be advantageous
to automate the process, which will improve both tuning speed and reproducibility.

The goal of this thesis is to develop and test an algorithm for beam tuning based on a linear ion-optics
model. The actual system is not linear since magnets generally contain higher-order terms, however
by utilizing symmetries in the beamline and by keeping the beam centroid deviations as well as the
beam size sufficiently small it is possible to neglect the effects of these higher-order terms.

To control the beam it is necessary to know its properties along the length of the beamline. For this
purpose beam profile monitors (BPM) are set up at fixed locations in the system. These are only able
to measure the profile of the beam. To also measure the angle of the beam the quadrupole variation
method is used.

When the initial beam conditions are known, the beam can be aligned and focused. This will be
divided into two steps. In the first step, the beam centroid is aligned with the reference trajectory
using the steering and bending magnets in the system.

In the second step, the quadrupole magnets will be adjusted such that minimum beam sizes are
achieved at desired locations in the beamline. By design of the beamline, these locations generally
coincide with the locations of the beam profile monitors. By minimizing the beam sizes at these
locations the best agreement between the actual and designed beam properties is achieved.

To validate the algorithms they will first be tested using simulations based on linear optics. Afterward,
they will be tested experimentally at the AGOR cyclotron to investigate the effects of the nonlinear
terms and misalignment of beam elements on convergence and accuracy of the algorithm.
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1.2 Research Questions

The introduction above gives the motivation and required steps for the beamline algorithm. These
can be summarized into the main research question (MQ) and a set of sub-questions (SQ)

MQ: How to create an algorithm for alignment and focusing of the beam coming from the cyclotron?

SQ1 How to measure the initial conditions of the beam?

SQ1.1 How to extract the beam centroid values from the beamprofile measurements which
measure the entire beam?

SQ1.2 What values of quadrupole strengths should be used to sample beam positions?

SQ1.3 What is the effect of statistical errors of the measurements on the behaviour of the
control system?

SQ2 How to perform the required corrections to the beam?

SQ2.1 What is the size of correction needed based on the position and angle deviation of
the beam?

SQ2.1 How do positional alignment errors of the magnets in the beamline affect the accu-
racy and precision of the algorithm?
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2 Theory

In this section the basic theory behind ion optics and the first order approximation is explained. The
material is primarily drawn from the textbook Physik der Teilchenbeschleuniger und Ionenoptik by
F. Hinterberger [1].

2.1 Forces Used in Particle Acceleration and Bending

The main governing force in ion optics is the Lorentz force

F = q (E + v ×B) (1)

where F is the force experienced by a charged particle, q is the charge of the particle, v is the velocity of
the particle, and E and B are the electric field and magnetic field at the particle location respectively.

From this equation, it can be seen that only the electric field can be used to accelerate the ions.
The force caused by the magnetic field B is always perpendicular to the velocity, due to the cross
product, which means that it can only be used to change the direction of the ions. Another important
consequence of the B being related to the velocity is that a magnetic field is much more suited to
steer high-energy beams than an electric field. To illustrate this, two equations are given for a particle
that follows a circular trajectory in an electric or magnetic field. For an electric field the following
equation holds

E⊥ρ =
γmv2

q
=
pv

q
(2)

where E⊥ is the electric field component perpendicular to the particle velocity, ρ is the radius of
curvature of the particle, m is the particle rest mass, γ is the relativistic Lorentz parameters and
p = γmv is the relativistic particle momentum. The quantity E⊥ρ is called the electric rigidity and is
a measure of how difficult it is to deflect the particle using an electric field.

A similar quantity can be defined for the magnetic field

B⊥ρ =
p

q
(3)

where B⊥ is the magnetic field component perpendicular to the particle velocity. The quantity Bρ is
called the magnetic rigidity.

Often beam impulse is given in units of GeV/c, while electric and magnetic fields are given in SI-units,
the following relation can be used to convert the quantities

1 [eTm] = 0.299 792 458 [GeV/c] (4)

Table 1 shows a numeric example of bending ions using magnetic and electric fields. For the beam
which has a large impulse and velocity, a magnetic field of 1 T is needed, which can physically be
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achieved. However the required electric field is 91.19 MV/m, which is not feasible. The maximum
electric field that can be achieved in vacuum using polished metals is approximately 10 MV/m. In the
case of a low impulse and velocity beam both the magnetic and electric field can be used, as seen in
the table.

Table 1: Numerical example showing the effect of deflecting a proton beam using a magnetic and
electric field. The protons are bend with a radius of ρ = 1 m

Beam Impulse
(MeV/c)

Particle
velocity (c)

Magnetic
Rigidity (Tm)

Required Magnetic
Field (T)

Electric
Rigidity (MV)

Required Electric
Field (MV/m)

299.8 0.304 1 1 91.19 91.19
29.98 0.0319 0.1 0.1 0.9564 0.9564

2.2 Magnet Elements

In the section, a physical description is given of the magnets that are used to control the beam. These
magnets all consist out of three main components, which are the copper coils, a magnetic yoke, and
the pole shoes. Current is fed through the copper coils which produce a magnetic field according to
Maxwell’s equations. The magnetic yoke provides mechanical structure to the magnet and provides a
path of return for the magnetic field lines. The produced magnetic field enters and leaves the vacuum
or air space in the magnet via the pole shoes. The shape of these pole shoes determines the shape of
the magnetic field in the vacuum and consequently determines the guiding properties of the magnet.
A formal derivation of the pole shoe shapes and accompanying magnetic fields can be found in [2].

2.2.1 Dipole Magnet

A dipole magnet is used to bend the beam, when bending a beam in the horizontal plane a homogeneous
magnetic field that only has a vertical component should be produced by the magnet. This is achieved
by making the pole shoes parallel to each other and parallel to the bending plane of the reference
particle. The bending direction can be switched by changing the polarity of the current through the
magnet, which in turn reverses the magnetic field. Four popular designs for a dipole magnet can be
seen in Figure 1. The C-magnet has the advantage that it is open on one side, which means that
installing and removing diagnostic equipment is easier. However, its magnetic field will be slightly
asymmetric because the magnetic yoke is larger on one side which amplifies the magnetic field there.
Furthermore, since the poles exert a force on each other [3] and the bending stiffness of the design is
low, the yoke needs to be thicker than for other designs. The H-magnet has higher symmetry, however,
it is less compact and requires a larger yoke. The window frame magnet also has high symmetry and
is more compact, however, the coils have to be curved at the entrance and exit of the magnet to allow
the ion beam to pass through. It is also possible to wrap the coils around the vertical parts of the
yoke to simplify the design. This will however reduce the quality of the magnetic field.
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Figure 1: Cross section of three different types of dipole magnets. Image adapted from [1].

The relation between the magnetic flux density and current supplied to the magnet can be seen in
Figure 2. The graph flattens off at a high value of the magnetic flux density because of saturation
effects of the iron yoke. There is also a small hysteresis effect present as indicated by the zoomed-in
region. The beamline design is such that the magnets always operate inside the linear region of the
graph, furthermore, the hysteresis effect is sufficiently small such that it can be neglected. The linear
part can be described by the following equation

B = µ0
nI

g
− µ0

lFe
g
HFe ≈ µ0

nI

g
(5)

where µ0 is the permeability of free space, n is the number of coil windings, I is the current through
the coils, g the gap size, lFe the path-length of the magnetic field through the magnetic yoke and
HFe the magnetic field strength along this path. The last approximation can be made because the
permeability of iron µFe is much higher than that of a vacuum H = B/µ0 � HFe = B/µFe.
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Figure 2: B-I curve for one of the bending magnets which is used in the beamline.

2.2.2 Quadrupole Magnet

An image of a basic quadrupole magnet can be seen in Figure 3. It has four poles, each is surrounded
by a copper coil. The magnitude of the current flowing through each coil is the same, however to
produce the north and south poles, the current in coils surrounding opposite poles has opposite sign.
The function of a quadrupole magnet is to focus the beam, to achieve this it produces the following
magnetic field

|Bx| =
B0

a
y, |By| =

B0

a
x (6)

where B0 is the magnitude of the field at the tip of the pole shoes, a is the radius of the circle tangent
to all pole shoes, and x and y are the coordinates as described in Figure 3. Because the field increases
linearly with the distance from the central trajectory particles which have large positional deviations
will experience a larger force, which causes focusing. However, because of the shape of the field lines,
the quadrupole magnet can only focus in one direction and causes de-focusing in the other direction.
The quadrupole drawn in Figure 3 focuses positive ions moving into the paper in the x-direction
and defocuses in the y direction. By reversing the polarity of the supplied current the focusing and
de-focusing directions can be switched.
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Figure 3: Cross section of a quadrupole magnet. Image adapted from [2].

The relation between the magnetic field gradient and the current supplied to the magnet can be seen
in Figure 4. Similar to the dipole magnets, the graph flattens off for high values of the field gradient,
because of the saturation effects in the iron yoke. Also, a small hysteresis effect is observed. If this
small effect is neglected, the magnetic field gradient of a quadrupole is approximately given by

B0

a
=

2µ0
a2

(nI −HFelFe) ≈ 2µ0
nI

a2
(7)

the approximation can again be made because the permeability of the iron core µFe is much larger
than that of a vacuum, which means that B0/µ0 � HFe = B0/µFe.
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Figure 4: Gradient vs current curve for one of the quadrupole magnets that is used in the beamline

2.2.3 Effective Length of a Magnet

The magnetic field produced by a magnet extends beyond the faces of the magnet, a plot of the
magnetic field versus the distance travelled can be seen in Figure 5. This field distribution is often
simplified by replacing it by a rectangle with an effective length Leff and height B0, which has the
same surface area as the original distribution. The effective length for a dipole can then be calculated
as

Leff =
1

B0

∫ ∞
−∞

B(s)ds (8)

where B is the magnetic flux density of the dipole, the effective length of a quadrupole can be deter-
mined by

Leff =
1

g0

∫ ∞
−∞

g(s)ds (9)

where g is the magnetic field gradient of the quadrupole
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Figure 5: Illustration of the effective length of a magnet, the field approximation using a rectangle
is indicated by the dotted line.

2.3 Coordinate System

To simplify the mathematics and provide more insight into the underlying physics, the coordinate
system is defined with respect to a reference particle following the designed central trajectory of
the beam. This choice of coordinate system will later facilitate the derivation of the first order
approximation of the beam description, under the assumptions that the deviations of the transverse
positions and angles of the particles with respect to the reference trajectory are small. An image
of such a coordinate system is given in Figure 6. The transverse components of the position of the
particles are given by the x and y coordinates. These are defined to lie in a plane perpendicular to the
vector which is tangent to the central trajectory and whose origin coincides with the central particle
location.

The x-axis is defined to lie in the plane of the reference orbit of a particle in a dipole magnet.
The direction of x, when looking along the beam direction, is to the left. The y-axis is defined to be
perpendicular to x and points such that a right-handed coordinate system is formed. Other conventions
are also possible, another common one found in literature is where the x-axis points to the right and
the y and z axes are switched. However all these conventions will ultimately lead to the same results,
therefore either can be used based on preference.

Generally, the x and y-axis are referred to as the radial and axial directions respectively. The intersect
of the x-y plane with the central particle trajectory is given by the s coordinate. In this way, the
position of a described particle can be described as

r(s) = r0(s) + x(s)ux(s) + y(s)uy(s) (10)

In the case where the reference particle moves in a straight line, it is possible to attach a Cartesian
coordinate system to it, with the z-axis tangential to the us vector. In such a frame a line element
can be described as.

11
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dr = uxdx+ uydy + uzdz (11)

When the reference particle follows a curved trajectory with curvature h = 1/ρ0 the line element is
described by the following equation.

dr = uxdx+ uydy + us (1 + hx) ds (12)

Figure 6: Coordinate system which is used to derive the linear ion optics [1].

For a formal full description of a particle, a total of six coordinates are needed, which are the position
and momentum components of the particle along each axis (x,px,y,py,z,pz). However, this form is not
well suited to be expressed in terms of the solutions to the equations of motion. To achieve this we
divide the transverse momenta by the momentum of the reference particle p0.

px
p0

=
mγ dxdt
mγ dsdt

=
dx

ds
= x′

py
p0

=
mγ dydt
mγ dsdt

=
dy

ds
= y′

(13)

in the linear approximation the following equations can be used instead, which are derived from Eqs.
(11) and (12)
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x′ =
dx

ds
=

dx

(1 + x
ρ0

)dz
≈ dx

dz

y′ =
dy

ds
=

dy

(1 + x
ρ0

)dz
≈ dy

dz

(14)

the expressions of z and pz are written down in terms of solutions to the equations of motion. First z
is replaced with l, which is the distance between the described particle and reference particle projected
along the reference trajectory. For pz the approximation is made that the longitudinal momentum
pz is much larger than the transverse momenta px and py. This allows the total momentum p to be
written as pz ≈ p, which gives

pz − p0
p0

≈ p− p0
p0

= δ (15)

where p is the momentum of the described particle and p0 is the momentum of the reference particle.
Using the quantities defined above the 6-dimensional vector x(s) is defined, which contains all of the
necessary particle information.

x(s) =



x1
x2
x3
x4
x5
x6

 =



x
x′

y
y′

l
δ

 =



Radial position deviation
Radial angle deviation
Axial position deviation
Axial angle deviation
Longitudinal position deviation
Relative impulse deviation

 (16)

It should be noted that often x′ and y′ will be described in terms of angles, θ and, φ instead of the
definition given by Eq. (13).

x′ =
dx

dz
= tan θ ≈ θ

y′ =
dy

dz
= tanφ ≈ φ

(17)

the last approximation is valid for x′ and y′ � 1.

2.4 Equations of Motion and First Order Approximation

The motion of the particles under the effect of an external force F is described by the relativistic form
of Newton’s second law of motion

dp

dt
= F (18)
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the relativistic momentum of the particle is

p = mγv (19)

where m is the rest mass of the particle, γ is the Lorentz factor and v is the particle velocity. The
external force is equal to the Lorentz force with zero electric field

F = qv ×B (20)

note that since the force is always perpendicular to the velocity the magnitude of the velocity does
not change, which means that mγ is constant. Substituting Eqs. (19) and (20) into Eq. (18) gives

mγv̇ = qv ×B (21)

For a general case v̇ can be replaced by r̈ where r(t) is a vector, which depends on the time t,
containing the particle coordinates defined with respect to an arbitrary stationary point in the space

mγr̈ = qv ×B (22)

the coordinate system, which we have defined in Section 2.3, is attached to the central particle which
travels with velocity vs and has a radius of curvature ρ0, these quantities are related via the angular
velocity ω

vs = ωρ0 (23)

the trajectory of a particle which does not follow the reference trajectory is described in Figure 7, its
z velocity component vz, expressed in the reference coordinate system, is equal to

vz = ω (ρ0 + x) (24)

its centripetal acceleration ar is given by

ar = −ω2 (ρ0 + x) (25)

next, Eq. (22) is split into an x and y component. The total acceleration in the x-direction is the sum
ẍ+ ar.

ẍ− ω2 (ρ0 + x) =
q

γm
(vyBz − vzBy)

ÿ =
q

γm
(vzBx − vxBz)

(26)

14
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to simplify these equations some approximations will be made. The velocity components vx and vy are
much smaller than vz, likewise Bz is much smaller than Bx and By, the products of these quantities
is therefore negligible. Furthermore in the linear approximation

v =
√
v2x + v2y + v2z = vz

√
1 + x′2 + y′2 ≈ vz

p = γmv ≈ γmvz = γmρ0ω

(
1 +

x

ρ0

) (27)

using these approximations Eq. (26) transforms into

ẍ− ω2 (ρ0 + x) = −q
p
v2zBy

ÿ =
q

p
v2zBx

(28)

to eliminate time from this equation the relation ds /dt = vs = ρ0ω is used

d

dt
=

d

dt
=

d

ds

ds

dt
= ρ0ω

d

ds
d2

dt2
=

d

dt

d

dt
= (ρ0ω)2

d2

ds2

(29)

substituting this result together with the relation vz = ω (ρ0 + x) into in Eq. (28) gives (where the
position derivative is indicated with apostrophes instead of dots for time derivative)

x′′ − 1

ρ0

(
1 +

x

ρ0

)
= −q

p
By

(
1 +

x

ρ0

)2

y′′ =
q

p
Bx

(
1 +

x

ρ0

)2
(30)

To simplify even further the magnetic fields are expanded using a Taylor expansion. Since the x − z
plane is chosen as the magnetic symmetry plane Bx(−y) = −Bx(y), which eliminates any even terms
from the Taylor expansion

By(x) = By(0) +
dBy
dx

x+
1

2!

d2By
dx2

x2 +O(x3)

Bx(y) =
dBx
dy

y +
1

3!

d3

dy3
y3 +O(y5)

(31)
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for the first-order approximation, these expressions are truncated to the first order. Furthermore, the
momentum of the particles is also approximated linearly

p = p0 + p− p0 = p0 + ∆p = p0

(
1 +

∆p

p0

)
= p0 (1 + δ)

1

p
=

1

p0

1

1 + δ
=

1

p0

1− δ
(1 + δ)(1− δ)

=
1

p0

1− δ
1− δ2

≈ 1− δ
p0

(32)

under the assumption that δ = (p− p0)/p0 � 1. This result is substituted into equation (30) together
with p0 = qB0ρ0. Furthermore we assume that x/ρ0, y/ρ0 and δ are all small such that their nonlinear
or cross terms can be put to zero. Combining all these steps gives the following linear approximation
to the equations of motion.

x′′ +
1 +

dBy

dx
ρ0
B0

ρ20
x =

δ

ρ0

y′′ − 1

ρ20

(
dBx
dy

ρ0
B0

)
y = 0

(33)

in a quadrupole magnet the field gradients are equal in magnitude and are described by the dimen-
sionless field index n

n = −dBy
dx

ρ0
B0

= −dBx
dy

ρ0
B0

(34)

this simplifies the equations of motion to

x′′ +
1− n
ρ20

x =
1

ρ0
δ

y′′ +
n

ρ20
y = 0

(35)

In a hard edge model of the magnets where the field is constant with respect to s within the magnet
and zero outside n is constant, this reduces the equations of motion to the equation of a harmonic
oscillator with spring constants kx = (1− n)/ρ20 and ky = n/ρ20.

x′′ + kxx =
1

ρ0
δ

y′′ + kyy = 0

(36)
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The equation of motion in y is homogeneous, with the initial conditions y′(0) = y′0, y(0) = y0, its
solutions are

y(s) =


y0 cos

√
kys+ y′0

sin
√
kys√
ky

for ky > 0

y0 cosh
√
kys+ y′0

sinh
√
kys√

ky
for ky < 0

y0 + y′0s for ky = 0

(37)

The equation of motion for x inhomogeneous, which means that the solution is the sum of the homo-
geneous solution and particular solution.

x(s) = x(s)hom + x(s)part (38)

The homogeneous solutions are the harmonic oscillator solutions

x(s)hom =


c1 cos

√
kxs+ c2 sin

√
kxs for kx > 0

c3e
√
kxs + c4e

−
√
kxs for kx < 0

c5 + c6s for kx = 0

(39)

where c1 through c6 are constants determined by the initial conditions of the system. A particular
solution can be found via inspection and is equal to

x(s)part =
δ

kxρ0
(40)

using these results together with the initial conditions x′(0) = x′0, x(0) = x0, the following solutions
are obtained

x(s) =


x0 cos

√
kxs+ x′0

sin
√
kxs√
kx

+ δ 1−cos
√
kxs

kxρ0
for kx > 0

x0 cosh
√
kxs+ x′0

sinh
√
kx√

kx
− δ 1−cosh

√
kxs

kxρ0
for kx < 0

x0 + x′0s+ δ s2

2ρ0
for kx = 0

(41)

for elements in which the reference trajectory follows a straight line, these equations can be simplified
using ρ0 →∞ and B0ρ0 = p0

x(s) =


x0 cos

√
kxs+ x′0

sin
√
kxs√
kx

for kx > 0

x0 cosh
√
kxs+ x′0

sinh
√
kx√

kx
for kx < 0

x0 + x′0s for kx = 0

(42)
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Figure 7: Illustration of a particle which does not follow the central trajectory of the beamline [1].

2.5 Transfer matrices

The equations derived in Section 2.4 are linear in x0, x
′
0 and δ, this allows each ion optical element to

be described in terms of a 6x6 transfer matrix R. The particle vector after the element can be deduced
from the vector before the element using this matrix

x1 = Rx0 (43)

if a system consists out of multiple elements the total transfer matrix can be determined by multiplying
the individual matrices. The total transfer matrix of a particle that first travels through element R1,
then R2, until Rn is given by

R = Rn · · ·R2R1 (44)

next, the matrices for all the beam elements are given. Each transfer matrix can be found from the
solutions of the equations of motion with a certain spring constant. It should be noted that the
determinant of every transfer matrix R is equal to one, which is a consequence of the conservation of
phase space volume of a beam.

2.5.1 Drift Space

For a drift space kx = ky = 0 and which gives
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R =



1 L 0 0 0 0
0 1 0 0 0 0
0 0 1 L 0 0
0 0 0 1 0 0
0 0 0 0 1 L/γ2

0 0 0 0 0 1

 (45)

where L is the drift space length and γ is the Lorentz factor.

2.5.2 Quadrupole

For the quadrupole matrices we define a parameter k

k =
|B0|
a

1

(Bρ)0
(46)

where a is the radius of the aperture, B0 is the magnetic field at the pole tips, and (Bρ)0 is the
momentum of the reference particle divided by its charge

(Bρ)0 =
p0
q
. (47)

For a radial focusing and axial defocusing quadrupole kx = k and ky = −k and vice versa for radial
defocusing quadrupole and axial focusing dipole. The effective length of the quadrupole is denoted by
L.

radial focusing and axial defocusing

R =



cos
√
kL sin

√
kL√
k

0 0 0 0

−
√
k sin

√
kL cos

√
kL 0 0 0 0

0 0 cosh
√
kL sinh

√
kL√
k

0 0

0 0
√
k sinh

√
kL cosh

√
kL 0 0

0 0 0 0 1 L/γ2

0 0 0 0 0 1


(48)

radial defocusing and axial focusing

R =



cosh
√
kL sinh

√
kL√
k

0 0 0 0√
k sinh

√
kL cosh

√
kL 0 0 0 0

0 0 cos
√
kL sin

√
kL√
k

0 0

0 0 −
√
k sin

√
kL cos

√
kL 0 0

0 0 0 0 1 L/γ2

0 0 0 0 0 1


(49)
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2.5.3 Parallel Pole Wedge Bending Magnet

For a parallel pole wedge bending magnet we only have the spring constant part resulting from the
curved trajectory in the x-direction

kx =
1

ρ20
, ky = 0 (50)

the bending angle α can be calculated via

α =
L

ρ0
(51)

where ρ0 is the radius of curvature of the central trajectory and L is the effective length of the magnet.

R =



cosα ρ0 sinα 0 0 0 ρ0 (1− cosα)
sinα
ρ0

cosα 0 0 0 sinα

0 0 1 ρ0α 0 0
0 0 0 1 0 0

− sinα −ρ0 (1− cosα) 0 0 1 ρ0
α
γ2
− ρ0 (α− sinα)

0 0 0 0 0 1


(52)

2.5.4 Combined Function Magnet

The combined function magnet is a dipole magnet whose poles are not parallel, an example can be
seen in Figure 8. This type of magnet is described by a combination of a parallel pole dipole magnet
and a quadrupole magnet. The magnet is characterized by a field index n

n = − ρ

B0

(
∂Bz
∂r

)
r=ρ

(53)

where ρ is the radius of curvature of the central trajectory, B0 is the magnetic field at the central
trajectory and, r is the radius of curvature of the described particle. This field index can be written
in terms of the quadrupole and dipole parameters

n = kρ20 (54)

where ρ0 and k are the parameters described in Eqs. (51) and (46) respectively. For 0 < n < 1 the
magnet is weak focusing and the transfer matrix (excluding the entries for l) is given by
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R =



cos
√

1− nα ρ0 sin
√
1−nα√

1−n 0 0
ρ0(1−cos

√
1−nα)

1−n

−
√
1−n sin

√
1−nα

ρ0
cos
√

1− nα 0 0 sin
√
1−nα√
1−n

0 0 cos
√
nα ρ0 sin

√
nα√

n
0

0 0
√
n sin

√
nα

ρ0
cos
√
nα 0

0 0 0 0 1


(55)

Strong focusing magnets are characterised by |n| > 1. A strong focusing magnets which focus in the
radial direction and defocus in the axial direction have n < 0,

R =



cos
√

1− nα ρ0 sin
√
1−nα√

1−n 0 0
ρ0(1−cos

√
1−nα)

1−n

−
√
1−n sin

√
1−nα

ρ0
cos
√

1− nα 0 0 sin
√
1−nα√
1−n

0 0 cosh
√
|n|α ρ0 sinh

√
|n|α√

|n|
0

0 0

√
|n| sinh

√
|n|α

ρ0
cosh

√
|n|α 0

0 0 0 0 1


(56)

a strong focusing magnet with n > 1 focuses strongly in the axial direction and defocuses in the radial
direction

R =



cosh
√
|1− n|α ρ0 sinh

√
|1−n|α√

|1−n|
0 0

ρ0
(
1−cosh

√
|1−n|α

)
1−n√

|1−n| sinh
√
|1−n|α

ρ0
cosh

√
|1− n|α 0 0

sinh
√
|1−n|α√
|1−n|

0 0 cos
√
nα ρ0 sin

√
nα√

n
0

0 0 −
√
n sin

√
nα

ρ0
cos
√
nα 0

0 0 0 0 1


(57)

N

S

Figure 8: Shape of the magnetic field inside a focusing bending magnet. Image adapted from [4].
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2.5.5 Rotation of Transverse Coordinates

To describe a magnet element that is rotated around the z-axis, a rotation of the transverse coordinates
is required. This rotation is described by the following matrix, in which the rotation angle α is positive
for a clock-wise rotation around the z-axis, as indicated in Figure 9

R =



cosα 0 sinα 0 0 0
0 cosα 0 sinα 0 0

− sinα 0 cosα 0 0 0
0 − sinα 0 cosα 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (58)

the total transfer matrix Rt of a magnet element Re that has been rotated under an angle α, can be
obtained by sandwiching Re between two rotation matrices

Rt = R(−α)ReR(α) (59)

the matrix R(α) rotates the axes such that they coincide with the local coordinate system of Re. After
the transformation Re is applied the axes are transformed back to the original coordinate system using
R(−α).

αx

y

x’ y’

Figure 9: Original (blue) and rotated (red) coordinate systems, the axes which are rotated under a
positive angle α are indicated with a prime, the rotated element is indicated with a square.
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2.6 Phase Ellipse

The theory that is developed so far allows the description of the trajectory of a single particle through
the system. To describe the beam, which consists of many particles, a phase space ellipse is used.
First, the simple case of a 2-dimensional ellipse is described, afterwards, the description of the full
6-dimensional ellipse is given. The fact that the beam can be described by an ellipse is a direct
consequence of the first-order description of the ion-optics and can be derived from Eq. (35), with a
non-constant k, which is also known as Hill’s equation.

x′′(s)− k(s)x(s) = 0 (60)

the full derivation can be found in [2].

For a two dimensional particle beam which travels in the x-z plane, the phase ellipse is represented by
the symmetric 2x2 matrix

σx =

(
σ11 σ12
σ12 σ22

)
(61)

the equation for the phase ellipse is

x>σ−1x x = 1 (62)

with x = [x, x′]> is the vector from the origin to a point on the ellipse. Expanding the equation yields
the equation of an ellipse.

x′
2
σ11 − 2xx′σ12 + x2σ22 = σ11σ22 − σ212 = ε2x (63)

the quantity εx is related to the area of the ellipse, which is also called the emittance Ex of the beam

Ex = πεx = π
√

detσx = π
√
σ11σ22 − σ212 (64)

the ellipse is plotted in Figure 10, together with the physical interpretation of the ellipse parameters.
These physical parameters of the beam, which are the maximum half-width (xmax) and divergence
(x′max) are given by

xmax =
√
σ11

x′max =
√
σ22

(65)

the correlation between these parameters is given by the dimensionless parameter

r12 =
σ12√
σ11σ22

. (66)
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Figure 10: Phase ellipse plotted with the physical interpretation of the parameters [1].

To describe the beam in the full six dimensional phase space, the following symmetric 6x6 matrix is
used

σ =



σ11 σ12 σ13 σ14 σ15 σ16
σ12 σ22 σ23 σ24 σ25 σ26
σ13 σ23 σ33 σ34 σ35 σ36
σ14 σ24 σ34 σ44 σ45 σ46
σ15 σ25 σ35 σ45 σ45 σ56
σ16 σ26 σ36 σ46 σ46 σ66

 (67)

the diagonal elements give the physical parameters of the beam

xmax =
√
σ11, x′max =

√
σ22

ymax =
√
σ33, y′max =

√
σ44

lmax =
√
σ55, δmax =

√
σ66

(68)

the off-diagonal elements specify the correlation between the parameters via

rij =
σij√
σiiσjj

. (69)
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To transform the phase space ellipsoid through a system, represented by a transfer matrix R, it can
be proven from Eq. (62) that the following relation holds

σ(s) = R(0 � s)σ(0)R(0 � s)> (70)

using this transformation it can be proven that the volume of the phase space ellipsoid is conserved.
The volume of a six-dimensional ellipsoid is given by

V =
16

3
π
√

detσ (71)

from the transformation we obtain that

detσ(s) = det(Rσ(0)R) = det(R) det(σ(0)) det(R) = detσ(0) (72)

since det(R) = det
(
R>
)

= 1, this means that the volume of the phase space ellipsoid is conserved.

2.7 Statistical Definition of the Beam

In this section a statistical description of the beam will be given. To introduce the topic an example
is first given for the radial phase ellipse, afterwards the theory is extended to the full six-dimensional
phase space.

In the previous section it was noted that the particles are encircled by the phase ellipse, however it
was not yet mentioned what the density distribution of the particles inside the phase ellipse is. A
realistic description of the beam uses the Gaussian distribution, whose two-dimensional form is given
by

ρ(x) =
1

2π det(Σ)
exp

(
−1

2
x>Σ−1x

)
(73)

where x = (x, x′)> is vector containing the particle coordinates, and Σ is the covariance matrix of the
distribution. The entries of Σ can be calculated as

Σ11 =
1

n− 1

n∑
i=1

(xi − x)2

Σ12 =
1

n− 1

n∑
i=1

(xi − x)(x′i − x′)

Σ22 =
1

n− 1

n∑
i=1

(xi − x′)2

(74)

where the sums are taken over all particles in the cross-section of the beam. An example plot of Eq.
(73) can be seen in Figure 11.
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Figure 11: Two dimensional Gaussian, with Σ11 = 0.6 mm2, Σ22 = 0.9 mrad2, and Σ12 = 0 mm mrad,
describing the density distribution of the particles within the phase ellipse.

The relation between Σ and σx as defined in Eq. (61) is not fixed. One definition, referred to as the
1σ-emittance is to use σx = Σ such that the phase ellipse described in Eq. (62) becomes

x>Σ−1x = 1 (75)

the contour line described by this equation encloses 39.3% of the total intensity. The emittance of this
distribution can be calculated using Eq.(64)

ε1σx =
√

detσx =
√

Σ11Σ22 − Σ2
12. (76)

Another possibility is to use the 2σ-emittance, such that σx = 4Σ, this time the contour line described
by

x>Σ−1x = 4 (77)

encloses 86.5% of the intensity, the emittance becomes

ε2σx =
√

detσx = 4
√

Σ11Σ22 − Σ2
12 = 4ε1σx (78)

.

The last common definition is to use the 3σ-emittance, such that σx = 9Σ, the contour line described
by

x>Σ−1x = 9 (79)
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encloses 98.9% of the total intensity, the emittance is equal to

ε3σx =
√

detσx = 9
√

Σ11Σ22 − Σ2
12 = 9ε1σx (80)

.

It is clear that depending on the definition of σx the values of the emittances vary greatly, therefore
it should always be mentioned which definition is used, these σ-emittance definitions hold for any
dimensions of Σ. In the rest of this thesis the 2σ-emittance will be used unless otherwise stated.

To obtain the beam profile as measured on the beam monitors the projection of the two dimensional
Gaussian distribution is made onto the x-axis, which yields another one-dimensional Gaussian. This
Gaussian, when normalized to one, is described by the equation

ρ(x) =
1√

2πΣ11
exp

(
−1

2

x2

Σ11

)
(81)

A plot of this can be seen in 12. It should be noted that this approximation only works well in the
range of

√
Σ11 ≤ x ≤ 3

√
Σ11. Inside the beam pipe there is always a background of scattered particles,

this background deviates strongly from a Gaussian distribution and therefore causes the intensity at
positions outside of

√
Σ11 ≤ x ≤ 3

√
Σ11, to be higher than expected from Eq. (81). Furthermore

the Gaussian distribution extends to infinity, while the actual beam size is limited by the beam pipe
diameter.

-4 -2 0 2 4
0.0

0.1

0.2

0.3

0.4

x (mm)

ρ
(m
m

-
1
)

σ σ

3σ 3σ

Figure 12: Normal distribution, using Σ11 = 1.0 mm2 of a x-profile as measured on the beam
monitors, the σ in the graph corresponds to

√
Σ11. Image adapted from [1].

To extend this theory to the six-dimensional phase space we define the six dimensional Gauss distri-
bution
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ρ(x) =
1

(2π)3
√

det(Σ)
exp

(
−1

2
x>Σ−1x

)
(82)

where σ is the 6x6 beam matrix and x = (x, x′, y, y′, l, δ) is now the six-dimensional vector containing
the coordinates. The lower dimensional phase spaces, such as the phase ellipse or the beam profile,
can be obtained by projecting this distribution onto the appropriate axes. The entries of the Σ matrix
can in general be calculated as

Σii =
1

n− 1

n∑
j=1

((xi)j − xi)2

Σik =
1

n− 1

n∑
j=1

((xi)j − x)((xk)j − xk)
(83)

where xi is the ith component of the particle vector.

2.8 Quadrupole Variation Method

To perform corrections to the beam centroid, both the position and angle of the beam need to be
known at specific locations. The beam monitors which are stationed at different positions along the
beamline are only able to measure the beam profile, from which the position can be derived. To obtain
the angle of the beam centroid the quadrupole variation method is used.

In the quadrupole variation method, multiple measurements need to be made under different settings
of the quadrupole magnets in the beamline. The quadrupoles which are varied need to be in between
the location at which the angle should be known and a beam monitor downstream of this position. At
least two measurements need to be made, however, more measurements will lead to a more accurate
value of the angle and position.

For the quadrupole variation method it is known that there is no coupling between the x and y
coordinates in the beamline, as can be seen from the transfer matrices of the elements that are used
in the system. This allows the transfer matrix to be simplified to a two-dimensional form. The
resulting equations will be derived for the x-direction, however, the same equations can be applied to
the y-direction.

The total transfer matrix of the system between the initial position and beam profile monitor is given
by

R =

(
R11 R12

R21 R22

)
(84)

from Eq. (43) the x-coordinate is given by

x1 = R11x0 +R12x
′
0 = f(g) (85)
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where f(g) is a function depending on the gradients of the quadrupoles which are varied. If a total
of N measurements are taken then the initial beam conditions can be determined by minimising the
following function [5]

N∑
i=1

(xmi − f(gi)) (86)

where xm is the measured position of the centroid of the beam. The beam is measured using wire
harps, which project the intensity of the beam onto the x and y axes, therefore xm is calculated as [6]

xm =

∑N
i=1 xI∑N
i=1 I

(87)

where I is the measured intensity at location x.

For an accurate measurement, the beam size must be kept small, therefore in the case where multiple
quadrupoles can be used their combined settings should give a small beam size at the beam profile
monitor. Furthermore, the sensitivity of xm to the quadrupole strengths needs be sufficiently high
such that random errors do not dominate the measurements.

To demonstrate the effect of quadrupole settings on the beam size an example section of the beamline is
taken in which a quadrupole triplet is present, which can be seen in Figure 13. In a quadrupole triplet,
the same current is fed through the outer two quadrupoles, which also have the same dimensions. The
current through the inner quadrupole has opposite polarity, such that it has an opposite focus with
respect to the outer ones.

Qx1a Qx1b Qx1c

0.3 m 0.4 m 0.3 m
0.3 m 0.3 m 1.4 m0.8 m

(x0 , x0’)
Screen
(x1 , x1’)

Figure 13: Image of a quadrupole triplet in the beamline.

For this example a beam matrix will is taken with σ11 = 1 cm2, σ22 = 10 mrad2 and all other entries
zero. The field gradient of the first and third quadrupole is g1 and the field gradient of the inner
quadrupole is g2. The plot of the beam size as a function of the field gradients can be seen in
Figure 14, it is observed that there are multiple combinations possible which give a small beam size.
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Figure 14: Graph of beam size in the x-direction as a function of varying the magnetic field settings
in a triplet quadrupole variation.

3 Control System

To set up the control system several pieces of information are needed. Below an overview of the beam
guidance system is given with the positions of all the steering, bending, and quadrupole magnets as
well as the beam profile monitors. Also, the equations of magnets with incorrect settings will be
derived, and the relation between the magnetic field flux density and current supplied to the magnets
is given.

3.1 Beam Guidance system

The full beamline guidance system can be seen in Figure 15. At the start of the system, pairs of
steering magnets are present to correct the angle and position of the beam coming from the cyclotron.
After this point, the beam centroid should be aligned with the designed trajectory. If the bending
magnets are set correctly the beam should stay aligned along the entire system which means that no
further steering magnets are needed. To monitor the beam several profile monitors are installed in
the system. Most monitors can measure the beam in both the axial and radial direction, these have a
label starting with HX, some monitors are present which can only measure in the axial radial or axial
direction, indicated with labels starting with HH or HV respectively. There is also a section in the
beamline in which the beam is bent upwards by 2.6°, indicated by Bup. This section will be ignored
initially since it requires a different control system from the rest of the system.
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Figure 15: Schematic overview of the beamline.
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3.2 Equations of Magnets with Incorrect Settings

The transfer matrices above are derived for the case where the beam centroid is aligned with the
reference particle trajectory. However, initially, the beam will be misaligned which means that these
matrices are not valid. In this section equations describing the particle motion in the misaligned
system will be given for steering and bending magnets. Two general equations that hold for every
dipole magnet are

ρ =
p

B
(88)

α =
BL

p
(89)

where ρ is the radius of curvature of the particles in the field of the magnet, p is the momentum of
the particle divided by its charge, B is the magnetic flux density, α is the bend angle of the magnet,
and L is the effective length of the magnet.

3.2.1 Steering Magnet

The equations for a steering magnet will be derived for a two-dimensional case, which is allowed since
there is no coupling between the x and y coordinates in the beam. Therefore these equations hold in
both the radial and axial direction.

The typical length of a steering magnet is around 20-30 cm, and the bending angle is small, in the
order of mrad. This means that its effect can be approximated by an instantaneous kick that occurs
at the center of the magnet, which is proven in Appendix A. To correct for both angle and position, a
pair of steering magnets is needed, which can be seen in Figure 16. This system can be written into
the following matrix equation

[
x1
x′1

]
=

[
L1 L2

1 1

] [
α1

α2

]
+

[
x0 + x′0L1

x′0

]
(90)

where x0 and x′0 are the position and angle deviation of the beam centroid at the center of the first
steering magnet, x1 and x′1 are the position and angle deviation of the beam centroid at a distance L2

from the center of the second steering magnet, and L1 and L2 are the distances from the centers of the
first and second steering magnet respectively to the end of the section, as can be seen in Figure 16,
and α1 and α2 are the bending angles of the first and second steering magnet respectively.

In the desired case of x1 = x′1 = 0 the system reduces to

[
L1 L2

1 1

] [
α1

α2

]
= −

[
x0 + x′0L1

x′0

]
(91)
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By solving this system of equations it is possible to obtain the required values of α1 and α2. The
change in angle α for a steering magnet is equal to the bending angle of a dipole, which means they
can be calculated using Eq. (89).

S1 S2

L1

L2

(x1,x’1)(x0, x’0)

Figure 16: Pair of steering magnets which can be used to correct for position and angle. Reference
trajectory is indicated in black, while the described particle trajectory is given in blue.

3.2.2 Bending Magnet

An image of a bending magnet with incorrect settings can be seen in Figure 17, the resulting equations
are as follows, the derivation can be found in Appendix B

x1 = cos (α0)x0 + ρ sin (α0)x
′
0 + ρ (1− cosα0)

ρ− ρ0
ρ

x′1 = −sinα0

ρ
x0 + cos (α0)x

′
0 + sin (α0)

ρ− ρ0
ρ

(92)

where α0 and ρ0 are the designed bending angle and radius of curvature, and ρ is the actual radius of
curvature. These equations can be written into a matrix form as follows

x1x′1
δρ

 =

 cosα0 ρ sinα0 ρ(1− cosα0)

− sinα0
ρ cosα0 sinα0

0 0 1

x0x′0
δρ

 (93)

where δρ = (ρ − ρ0)/ρ. These equations are analogous to Eq. (52), which is because p and ρ are
related through Eq. (88). This means that a wrong value of the magnetic field is essentially the same
as a wrong momentum of the described particle.

The equation describing a bending magnet which bend to the left can be found using Eq. (59), a
magnet bending to the left is rotated by an angle of 180° with respect to a magnet bending to the
right
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x1x′1
δρ

 =

cos (−180°) 0 0
0 cos (−180°) 0
0 0 1

 cosα0 ρ sinα0 ρ(1− cosα0)

− sinα0
ρ cosα0 sinα0

0 0 1

cos (180°) 0 0
0 cos (180°) 0
0 0 1

x0x′0
δρ


x1x′1
δρ

 =

 cosα0 ρ sinα0 −ρ(1− cosα0)

− sinα0
ρ cosα0 − sinα0

0 0 1

x0x′0
δρ


(94)

α0

α

x0’

x1’

x0

x1ρ ρ
0

Figure 17: Image of a bending magnet with a wrong magnetic field value (blue), compared to a
bending magnet with the correct magnetic field value (black).

3.2.3 Combined Function Magnet

Some magnets in the beamline are a combination of a dipole and quadrupole magnet. These are also
needed to align the beam centroid, however, the equations are different to that of a steering magnet
due to the added quadrupole field. Because the bending angle is small we approximate the effect of
this magnet to a quadrupole in which an instantaneous kick is applied at the center, the proof of this
can be found in Appendix C. The transfer matrices can be found using Eqs. (48) and (49). If the
quadrupole component of the field is focusing it is equal to

[
x1
x′1

]
=

(
cos
√
kL sin

√
kL√
k

−
√
k sin

√
kL cos

√
kL

)[
x0
x′0

]
+

 α sin
√
kL
2√

k

α cos
√
kL
2

 (95)
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if the quadrupole component is defocussing the following transfer function holds

[
x1
x′1

]
=

(
cosh

√
kL sinh

√
kL√
k√

k sinh
√
kL cosh

√
kL

)[
x0
x′0

]
+

 α sinh
√
kL
2√

k

α cosh
√
kL
2

 (96)

4 Control Algorithms

4.1 General Strategy

The goal of the control system is to achieve a beam whose centroid is aligned with the reference
trajectory of the system and whose size is minimized at specified locations in the system. For the
initial alignment of the system a lookup table is used, this will result in approximately correct values
which allows the ion beam to reach the beam monitors at which the cross-sectional profile of the
beam is measured. To perform subsequent fine-tuning of the magnet settings information on the
beam position and angle needs to be known. The position can be calculated using the measured
cross-sectional beam profile, the angle can be measured from the quadrupole variation method.

For the alignment of the beam centroid it is important to note that a beam can only be adjusted using
elements upstream of its position. This allows the control to be done sequentially, where the beam
centroid is first aligned in one section before moving on to the next. This greatly reduces the number
of parameters that need to be tweaked simultaneously.

The overview in Figure 15 shows that the steering magnets are located at the start of the beamline.
Since a pair of steering magnets is present for the x and y coordinate, it is possible to align the beam
centroid with the reference trajectory after steering magnet Sx. If the beam centroid is not aligned
with a quadrupole axis when the quadrupole strength is changed, the beam centroid trajectory will
change. Therefore it is import to first adjust the quadrupole component of the combined function
magnets Sx,y and Sy such that the desired spot size is achieved at Hx, before doing the beam centroid
alignment. Once the steering magnets have been used to align the beam, it will stay aligned until
it encounters a bending magnet with incorrect settings. Using the control algorithm this bending
magnet will be adjusted such that the beam will be aligned again. This step is repeated for each
bending magnet in the beamline until the end is reached.

4.2 Control Loop Steering Magnet

4.2.1 General Form

The goal of the control loop for the steering magnets is to achieve zero beam centroid angle and
position at the end of the steering magnet pair. Since measurements of the beam centroid can only
be made in discrete steps, see Section 2.8, a control loop is proposed which operates in the discrete-
time domain. The controller which is proposed performs corrections to the beam centroid based on a
measured error, the loop can be seen in Figure 18, the state-space form of this system is
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x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k) + y0
(97)

where x is the state vector, y the output vector, u the input vector and y0 is a constant disturbance
term. For the case of the steering magnets the output vector is equal to the beam centroid position
and angle at the end of the steering magnet pair, and the state vector is equal to the current supplied
to the steering magnets,

y =

(
x1
x′1

)
, x =

(
I1
I2

)
, (98)

the matrices C and D, and the vector y0 can be determined from Eqs. (5), (89) and (90)

C =
µ0n

p

[
L1Ls1
g1

L2Ls2
g2

Ls1
g1

Ls2
g2

]
, D =

[
0 0
0 0

]
, y0 =

(
x0 + x′0L1

x′0

)
(99)

where Ls1 and Ls2 are the lengths of the first and second steering magnet respectively, L1 and L2

are the lengths as described in Figure 16, g1 and g2 are the gap sizes of the first and second steering
magnet respectively and p is the particle momentum divided by its charge. The goal of the controller
is to put y to zero, it can be shown from simple block diagram algebra, using the loop in Figure 18,
that

y(k + 1) = (CAC−1 − CB)y(k) + (I − CAC−1)y0 (100)

By inspection the following matrices are proposed, where In denotes the n x n identity matrix

A = I2, B = C−1 =
p

µ0n(L1 − L2)

[
g1
Ls1

−g1L2

Ls1

− g2
Ls2

g2L1

Ls2

]
(101)

substituting these equations into Eq. (100) gives the trivial solution

y(k + 1) = 0 (102)

from this, it is observed that under ideal circumstances the control loop should always converge to
the desired solution in one step. The effect of deviations from our ideal model is discussed in the next
section.
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B

A

C1

𝑧
+
+

x(k+1) x(k) y(k)

-1
u(k)

+
+

y0

Figure 18: Control loop for the steering magnets.

4.2.2 Stability and Convergence Rate

In the previous section it was determined that for an ideal system, the system would converge in a
single step, however since the plant parameters are not exactly known it will not be possible to choose
our controller exactly as the inverse of the plant. Furthermore, a paraxial approximation was used in
deriving the plant model. To analyze this problem a new matrix B̃ is defined, which is not exactly
equal to C−1, writing down the closed-loop equation again gives

y(k + 1) = (I2 − CB̃)y(k) (103)

After n iterations the value of y will be given by [7]

y(n) = (I2 − CB̃)ny(0) (104)

this system will be stable if the eigenvalues λi of (I2 − CB̃) satisfy |λi| ≤ 1 [8]. To estimate the
magnitude of error that is allowed B̃ is written as B multiplied by a constant value γ, which simplifies
the matrices to

I2 − γCB = I2 − γCC−1 = (1− γ)I2 (105)

which has eigenvalues λ1 = λ2 = 1 − γ, therefore the system is stable if 0 ≤ γ ≤ 2. This would
mean that for instability of the system to occur, the estimate of the plant behaviour would have to
be off by a factor 2, or be negative of the real plant. This margin far exceeds the deviations caused
by measurement uncertainties or approximations, therefore the system is deemed stable. The stable
behaviour of the system depends on the value of γ, for 0 < γ < 1 the system will asymptotically go to
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zero without oscillating, for 1 < γ < 2 the system will go asymptotically to zero, but it will cross the
zero position multiple times. These behaviours are demonstrated in Figure 19.
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(a) Angle of the beam centroid versus the step
number of the algorithm for γ=0.9
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(b) Position of the beam centroid versus the step
number of the algorithm for γ=0.9
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(c) Angle of the beam centroid versus the step
number of the algorithm for γ=1.1
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(d) Position of the beam centroid versus the step
number of the algorithm for γ=1.1
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(e) Angle of the beam centroid versus the step
number of the algorithm for γ=2.1
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(f) Position of the beam centroid versus the step
number of the algorithm for γ=2.1

Figure 19

4.2.3 Effect of Measurement Errors

One aspect that has not been considered yet is the possibility of positional misalignments of the
magnets in the beamline. The equation describing a particle traveling through a misaligned quadrupole
or dipole magnet is [9]

x(1) = Rx(0) + Fm +Gx(0) (106)
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where R is the transfer matrix of the magnet, F and G are matrices depending on the magnet properties
and magnitude of misalignment, and m is the misalignment vector

m =



δx
θx
δy
θy
δz
θz

 (107)

where δx, δy, δz are the displacements of the magnet in the x, y, and z direction and θx, θy, and θz
are the rotations about the x, y, and z axes respectively. All rotations are defined to be positive when
rotating in the clockwise direction looking in the positive direction of the axis. Since the quadrupoles
are used for measuring, a misalignment of them will add a fixed error in the measurement step, this
can be seen in Figure 20, where the added error can, in general, be described by a matrix E and an
added vector b, these both depend on the magnet settings and the magnitude of the misalignment.
Using this the closed-loop solution of the system is

y(k + 1) = (CAC−1 − CBE)y(k)− CBb + (I − CAC−1)y0 (108)

Using the matrices given in Eq. (101), this simplifies to

y(k + 1) = (I − E)y(k)− b (109)

which, assuming the system is stable, has the steady state solution,

ysteady = −E−1b (110)

which means that when misalignment is present in the system there will always be a steady-state error
whose magnitude depends on the settings of the magnets and magnitude of the misalignment. Note
that this steady-state error cannot be removed using an integrator because it is caused by an error in
the measurements and not by the properties of the plant. The misalignment is also unknown so it is
not possible to correct for it by correcting the error signal before it is fed into the controller. For a
numerical example using values from the beamline see Section 5.2.
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Figure 20: Discrete control loop with measurement error represented by the matrice E and vector b.

4.3 Control Loop bending Magnet

4.3.1 General Form

The goal of the bending magnet control system is to achieve zero beam centroid angle and position
at the exit face of the bending magnet, which means that there are two controlled variables. There
is only one tunable parameter, which is the current supplied to the magnet, which means that the
system is overdetermined. For now, it will be assumed that the beam centroid angle and position are
zero at the entrance face (x0 = x′0 = 0), which makes the system solvable. Later on, solutions will be
discussed for when this is not the case.

According to Eq. (93), under the assumptions that x0 = x′0 = 0, x1 and x′1 will be zero when ρ = ρ0,
which is the goal of the control loop. To reduce the sensitivity to misalignment errors of the beam
profile monitors a least squares solution for calculating ρ is proposed, for a right bending magnet this
yields

ρ = −(x1 + 2ρ0)(−1 + cosα0) + x′1ρ0 sinα0

2 + x′21 − 2 cosα0 − 2x′1 sinα0
(111)

where x1 and x′1 are the beam centroid position and angle at the exit of the bending magnet, and can
be obtained from the quadrupole variation method. The bending radius for a left bending magnet is
calculated using

ρleft =
(x1 − 2ρ0) (−1 + cosα0) + x′1ρ0 sinα0

2 + x′21 − 2 cosα0 + 2x′1 sinα0
(112)

The control loop can be seen in Figure 21. The following state-space description is used,
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x(k + 1) = Ax(k) +Bu(k)

y(k) = Cx(k) +Du(k)
(113)

where the output vector y(k) is 1
ρ and the state vector is the current of the magnet I, from Eqs. (5),

(88) and (93) it can be seen that the matrices C and D are equal to

C =
µ0n

pg
, D = 0 (114)

From block diagram algebra the following closed loop solution can be found for y, where r = 1
ρ0

is the
reference value

y(k + 1) = C(AC−1 −B)y(k) + CBr (115)

for the desired solution, where y tracks the reference value r the following gains A and B are proposed

A = 1, B = C−1 =
pg

µ0n
(116)

which simplifies the closed-loop solution to

y(k + 1) = r (117)

it is observed that under ideal conditions the output converges to the reference value within one step.

B

A

C1

𝑧
+
+

x(k+1) x(k) y(k)

1

u(k)
r +

-

Figure 21: Control loop for a bending magnet, r is the reference value, C is a gain determined by
the plant, the gains A and B can be adjusted for optimal control.
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4.3.2 Stability and Convergence rate

Similarly to the steering magnet control, the plant model will not be exactly equal to the real system.
To check the stability in this case a matrix B̃ is defined, which is approximately equal to B = C−1,
writing out the closed-loop solution again gives

y(k + 1) = (1− CB̃)y(k) + CB̃r (118)

which, assuming the system is stable has the following steady-state solution [7]

ysteady =
CB̃

1− (1− CB̃)
r = r (119)

so as long as the choice of B does not cause instability, the output vector will converge asymptotically
to the reference value r. The speed of convergence depends on how well B̃ approximates C−1. Similarly
for the steering magnets, B̃ can be written as B multiplied by a constant gain γ, such that B̃ = γB,
substituting this into the closed-loop solution gives

y(k + 1) = (1− γCB)y(k) + γCBr = (1− γ)y(k) + γr (120)

after n iterations the value of y is equal to

y(n) = (1− γ)n(y0 − r) + r (121)

Calculating the rate of convergence gives

lim
n→∞

y(n+ 1)− r
y(n)− r

= lim
n→∞

(1− γ)n+1(y0 − r)
(1− γ)n(y0 − r)

= 1− γ (122)

Similarly to the steering magnet control loop, the convergence rate is determined by γ.

4.3.3 Effect of Measurement Errors

Similar to Section 4.2.3 measurement errors can occur by the misalignment of the quadrupole magnets
used in the quadrupole variation method. Again these effects can be simulated by a gain E and an
added scalar b as indicated in Figure 22. The closed-loop solution, assuming A=1 and B=C−1 is given
by

y(k + 1) = (1− E)y(k) + (r − b) (123)

The steady-state solution, assuming the system is stable is given by
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ysteady =
r − b
E

(124)

again it is observed that the effect of misaligned quadrupoles causes a steady-state error, this error can
also not be corrected by using an integrator. For a numerical example using values from the beamline
see Section 5.2.
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Figure 22: Control loop for a bending magnet, r is the reference value, C is a gain determined by the
plant, the gains A and B can be adjusted for optimal control. The effect of positional misalignment
of the quadrupoles used for measuring is simulated using the gain E and the scalar b.

5 Simulation Results and Discussion

5.1 Sensitivity Analysis of Quadrupole Variation Method

In the methods that are developed so far it is assumed that there is no error or uncertainty present
in the system. However in a real system there will always be some noise present due to natural
fluctuations of the involved parameters, further uncertainty is added due to the finite precision of
measurements of the required parameters. In this section the effects of these uncertainties on the
behaviour of the quadrupole variation method is investigated.

In general for a function y = f(x1, x2, . . . , x3) the standard deviation of y can be estimated using [10]

sy =

√(
∂y

∂x1

)2

s2x1 +

(
∂y

∂x2

)2

s2x2 + . . .+

(
∂y

∂x1

)(
∂y

∂x2

)
s2x1x2 + . . . (125)

where sy is the standard deviation of y, sxi is the standard deviation of xi and sxixj is the covariance
between xi and xj . This equation is an approximation that holds when the standard deviations are
sufficiently small such that the first order is dominant in the expansion of f around x1, x2, . . . , xn. The
partial derivative terms inside the square root are sometimes also called the sensitivity coefficients since
they indicate how sensitive sy is to the standard deviations of the variables xi

The equations describing x0 and x′0 as obtained from the quadrupole variation method are
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x0 =
C21x2 − C22x1
C12C21 − C11C22

x′0 =
C12x1 − C11x2
C12C21 − C11C22

(126)

where the following notation was used

C1j = [R11]j , C2j = [R12]j (127)

where Cj1, Cj2 are the elements of total transfer matrix R for the jth measurement. Using this notation
the sensitivity coefficients for the non-covariance terms become,

(
∂x0
∂x1

)2

=
C2

22

(C12C21 − C11C22)2
,

(
∂x0
∂x2

)2

=
C2

21

(C12C21 − C11C22)2(
∂x0
∂C11

)2

=
C2

22(C22x1 − C21x2)2

(C12C21 − C11C22)4
,

(
∂x0
∂C12

)2

=
C2

12(C22x1 − C21x2)2

(C12C21 − C11C22)4(
∂x0
∂C22

)2

=

(
x1

C12C21 − C11C22
+
C11(C22x1 − C21x2)2

(C12C21 − C11C22)2

)2

(
∂x0
∂C21

)2

=

(
x2

C12C21 − C11C22
+
C12(C22x1 − C21x2)2

(C12C21 − C11C22)2

)2

(128)

it is observed that every denominator term in these expressions contains some power of C12C21 −
C11C22, if this term gets small the sensitivity coefficients will blow up. To give a numerical example
a simple section of beamline is considered where only one quadrupole is used to adjust the bending
magnet B1, which is shown in Figure 23.

QB2 HXB2

2.07 m 0.47 m

Figure 23: Section of the beamline that is used to tune B1

The only parameter that can be changed in this system is the magnetic field gradient of the quadrupole
QB2.In this example this is done by giving a base value G0 and a fractional change x such that the
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two magnetic field values used in the measurement are given by G0(1−x) and G0(1+x). The constant
variables in this problem are given in Table 2

Table 2: Numerical values used in testing sensitivity of quadrupole variation method.

Element Item Value Unit

Beam properties at exit face B1 x0 0.1 cm
x′0 1 mrad
p 0.6144 GeV c−1

Drift spaces B1→QB2 2.07 m
QB2 →HXB2 0.47 m

Quadrupole QB2 Effective Length 0.3 m

Bending magnet B1 Effective Length 2.88307 m
Bending angle 70 °

Using these values the sensitivity values are plotted against the fractional change in magnetic field
strength for different base magnetic field values, this can be seen in Figure 24.
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Figure 24: Sensitivity coefficients of the respective parameters describing x0, the denominator of the
sensitivity coefficient is indicated in the top right of each graph.

The same steps are repeated for the sensitivity analysis of x′0
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Figure 25: Sensitivity coefficients of the respective parameters describing x′0, the denominator of the
sensitivity coefficient is indicated in the top right of each graph.
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In the real system the sensitivity of x0 and x′0 to measurement errors the variables involved in the
quadrupole variation method should be minimized, according to the results presented here this means
that the magnetic field gradient in the quadrupoles should have to varied as much as possible. However,
when changing the magnetic field gradient away from the optimal value the beam size is increased.
The beamsize should not exceed the dimensions of the transport pipes, since then beam intensity
will be lost to the walls. Furthermore, a larger beam size will lead to a larger statistical error in the
determination of the beam centroid paramters. Therefore an optimum value will have to be found,
this value will be different for different sections of the beamline.

5.2 Effect of Misalignment of Magnet Elements on Algorithms

When a magnet element is misaligned it will introduce a systematic error into the system. This
will affect the convergence properties of the algorithm. These effects will first be tested on a small
scale, starting with the algorithm which controls the steering magnets. The section of the beamline
which is used for this includes steering magnets Sx,y and Sx as well as the quadrupole triplet QX1a,
QX1b and QX1c, the measurements for the quadrupole variation method are made using beam monitor
HXB1. The misalignments are initially only applied to the quadrupole triplet magnets. The maximum
misalignment for a single magnet is estimated to be approximately 0.3 mm. Depending on how these
misalignments are distributed throughout the system the size of the beam centroid displacement varies.
First a worst case scenario is assumed where the effect of the misalignment is largest. The relevant
parameters are given in Table 3, for the quadrupole variation method quadrupoles QX1a and QX1c
where simultaneously varied by ±10% of their original values for a total of two measurements.
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Table 3: Numerical values used in testing the effect of misalignment of magnet elements on the
developed algorithms, the drift space distances are measured from the exit of one element to the face
of the next, negative magnetic field gradients indicate a defocusing quadrupole.

Element Item Value Unit

Beam properties at entrance face QX01 x0 0.2 cm
x′0 2 mrad
p 0.6144 GeV c−1

Drift spaces Sx,y→ QX02 0.8 m
QX02 → Sx 0.174 m
Sx →HXX1 0.6440 m
HXX1 →QX1a 0.174 m
QX1a →QX1b 0.3 m
QX1b →QX1c 0.3 m
QX1c →HXB1 1.227 m

Quadrupole QX01 Effective Length 0.2 m
Magnetic field gradient 17.46 T m−1

Quadrupole QX02 Effective Length 0.2 m
Magnetic field gradient -9.37 T m−1

Steering magnet Sx Effective Length 0.2 m

Quadrupole QX1a Effective Length 0.3 m
Magnetic field gradient 10.7 T m−1

misalignment (x-direction) 0.3 mm

Quadrupole QX1b Effective Length 0.4 m
Magnetic field gradient -9.96 T m−1

misalignment (x-direction) -0.3 mm

Quadrupole QX1c Effective Length 0.4 m
Magnetic field gradient 10.7 T m−1

misalignment (x-direction) 0.3 mm

The results from using the steering algorithm on this system can be seen in Figure 26. We see
that after one iteration the algorithm converges to a steady state error, of 0.14 cm for the position
and −0.41 mrad for the angle. This is because the measured values from the quadrupole variation
algorithm are different than the actual values of the system, due to misalignment of the magnets. This
systematic error in the measurement also causes a systematic error in the correction using the steering
magnets.
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Figure 26: Convergence of a) position and b) angle of the beam centroid when using the steering
magnet algorithm if misalignment is present

The algorithm for the bending magnet is also tested using the same geometry as described in Figure 23
and Table 2. Measurement using the quadrupole variation method were made using QB2 with a base
magnetic field gradient of 5.31 T m−1 and a variation of ±10%. The beam centroid at the entrance was
assumed to be aligned and QB2 was misaligned by 0.3 mm in the x-direction. Initially a the bending
radius of the bending magnet was set to 1.01 times the designed value. The convergence plots can be
seen in Figure 27. Again the algorithm converges in one iteration, the steady state errors for position
and angle are 0.08 mm 0.05 mrad respectively. These error are much smaller than for the steering
magnets since there is only one misaligned magnet which is used for measuring.
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Figure 27: Convergence of a) position and b) angle of the beam centroid when using the bending
magnet algorithm on B1 if misalignment is present
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5.3 Measuring the Magnet Misalignment

In this section, it will be investigated whether it is possible to measure the misalignment of a magnet
using the beam profile monitors. Two methods are proposed, in the first method, the misalignment is
measured for a single quadrupole at a time, while in the second method the misalignments of multiple
magnets can be measured simultaneously. An analysis on the accuracy of both methods is also done.

5.3.1 Measuring the Misalignment of a Single Magnet

In this method, two beam profile monitors are used, which need to be located on either side of the
quadrupole magnet whose misalignment is being measured. In the first step, all of the quadrupoles
in between the two beam profile monitors are turned off, this allows the beam centroid position and
angle at the first beam monitors to be calculated.

x′0 =
x1 − x0
Ltot

(130)

where x0 and x′0 are the beam centroid position and angle measured at the first beam monitor, x1 is
the beam centroid position measured at the second beam monitor, and Ltot is the distance between
the monitors. Afterwards, the quadrupole is turned on. The effect of a misaligned quadrupole on the
beam is described by [9]

x(1) = Rx(0) + Fm +Gx(0) (131)

where x(0) and x(1) are the particle vectors at the entrance and exit of the quadrupole magnet, R is
the transfer matrix of the quadrupole, m is the misalignment vector

m =



δx
θx
δy
θy
δz
θz

 (132)

where δx, δy, δz are the displacements of the magnet in the x, y, and z direction and θx, θy, and
θz are the rotations about the x, y, and z axes respectively. All rotations are defined to be positive
when rotating in the clockwise direction, looking in the positive direction of the axis. The origin of
the rotation axes is the reference trajectory position at the entrance of the magnet. The matrices F
and G are given by

F = A1 −RA0

G = RB0 −B1R
(133)
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where R is again the transfer matrix of the quadrupole and the matrices A0, A1, B0, and B1 are given
by

A0 =



1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0

 , A1 =



1 0 0 L 0 0
0 0 0 1 0 0
0 −L 1 0 0 0
0 −1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0



B0 = B1 =



0 δz θz 0 0 0
0 0 0 θz 0 0
−θz 0 0 δz 0 0

0 −θz 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,

(134)

using Eq. (131) a particle traveling through a drift space, a quadrupole, and another drift space can
be described as

x(1) = Rd2RqRd1x(0) +Rd2Fm +Rd2GRd1x(0) (135)

where Rd1 and Rd2 are the transfer matrices of the first and second drift space and Rq is the transfer
matrix of the quadrupole.

The misalignment vector has 6 components, to limit the number of measurements that have to be
made only the components which affect the beam significantly should be considered. From Eq. (131)
it can be seen that δz and θz only appear as cross terms with components from the x vector, since
both quantities are small, their product can be neglected. The rotational misalignments θx and θy
are defined with respect to the face of the magnet. This rotation around the face can be split into a
rotation around the center and a displacement. Rotation around the center of the magnet does not
affect the beam significantly since the average distance from the axis remains approximately the same.
Therefore only the displacement components δx and δy remain. The x and y coordinates are still
decoupled, therefore they can be determined separately, the equations for x are written down here.

Using the above assumptions the displacement vector components simplify to θx = θy = δz = θz = 0.
Using this, the first component from Eq. (135) for a quadrupole which focuses in x can be written in
terms of the individual matrix elements as

xm =
(
R11
q +R12

d2R
21
q

)
x0 +

(
R12
q +R12

d1

(
R11
q +R12

d2R
21
q

)
+R12

d2R
22
q

)
x′0 +

(
F 11 + F 21R12

d2

)
δx (136)
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where the matrix indices are given in superscript, xm is the beam centroid position measured at the
second beam profile monitor when the quadrupole is turned on, and x0 and x′0 are the beam centroid
position and angle at the first beam profile monitor respectively.

This equation can be solved for the unknown variable δx,

δx =
−(R11

q +R12
d2R

21
q )x0 − (R12

q +R12
d1(R

11
q +R12

d2R
21
q ) +R12

d2R
22
q )x′0 + xm

F 11 + F 21R12
d2

(137)

the value for x′0 can be found using Eq. (130), x0 and xm can be measured, and the other variables
are known, which means that δx can be calculated.

To estimate the precision of this measurement a sensitivity analysis is performed via propagation of
error using partial derivatives. The analytical derivatives of Eq. (137) are too complex to analyze
directly, therefore numerical values are substituted in, which can be found in Table 5. The numerical
values correspond to the first quadrupole triplet in the beamline consisting of quadrupoles QX1a,
QX1b, and QX1c. The imaging properties under in standard operating conditions of this triplet can
be seen in Figure 28.
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Figure 28: Imaging properties of the quadrupole triplet QX1a, QX1b, and QX1c under standard op-
erating conditions, the first and last quadrupoles focus in the x-direction, while the center quadrupole
focuses in the y-direction. The location and size of the quadrupoles is indicated with an open bracket.

The sensitivity coefficients are defined as

∂Y

∂X
(138)
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where Y is the output variable and X is an input value. The sensitivity coefficients corresponding to
the magnet displacement measurements can be found in Table 4. It can be seen that all the sensitivity
coefficients are relatively small. It is estimated that the displacements of the magnets are in the order
of 0.3 mm, using the calculated sensitivity coefficients, estimated errors, and Eq. (125) it can be seen
that using this method the precision of the beam profile monitors needs to be of the same order to
measure the displacements accurately.

Table 4: Sensitivity coefficients of the displacements of quadrupoles QX1a, QX1b and QX1c, denoted
by δx1. δx2 and δx3 respectively. The predicted error indicates the estimate of the measurement
uncertainty of the respective input variables.

Magnet displacement (m)

δx1 δx2 δx3

Input variable Unit Sensitivity Coefficient (m/Unit) Predicted error Unit

x0 m 0.798 0.605 0.411 0.5 mm
x1 m −0.296 −0.130 0.056 0.5 mm
xm m 0.498 0.526 0.533 0.5 mm
Ld1 m 5.95× 10−4 4.51× 10−4 3.06× 10−4 2.0 mm
Ld2 m 3.00× 10−4 5.66× 10−4 1.14× 10−3 2.0 mm
Lq m 4.16× 10−3 4.33× 10−3 6.98× 10−3 4.0 mm
k m−2 4.46× 10−4 6.54× 10−4 4.15× 10−4 0.075 m−2
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Table 5: Numerical values used in determining the sensitivity of the method used to determine the
alignment error of a single quadrupole. The beam properties at HXB1 are different for measuring
the misalignment of the different quadrupoles, these different measurements are indicated by writing
δx1, δx2, and δx3 in parenthesis for the measurements corresponding to quadrupole QX1a, QX1b, and
QX1c respectively.

Element Item Value Unit

Beam properties at HXX1 p 0.6144 GeV c−1

x0 1.0 mm

Beam properties at HXB1 x1 3.5 mm
xm (δx1) 1.1 mm
xm (δx2) 1.8 mm
xm (δx3) -0.58 mm√
σx (δx1) 5.7 mm√
σy (δx1) 15 mm√
σx (δx2) 3.7 mm√
σy (δx2) 15 mm√
σx (δx3) 2.7 mm√
σy (δx3) 15 mm

Drift spaces HXX1→QX1a 0.526 m
HXX1→QX1b 1.126 m
HXX1→QX1c 1.826 m
QX1a →HXB1 2.527 m
QX1b →HXB1 1.827 m
QX1c →HXB1 1.227 m

Quadrupole QX1a Effective Length 0.3 m
Field gradient 5.3 T m−1

misalignment (x-direction) 0.3 mm

Quadrupole QX1b Effective Length 0.4 m
Field gradient 5.1 T m−1

misalignment (x-direction) 0.3 mm

Quadrupole QX1c Effective Length 0.3 m
Field gradient 10 T m−1

misalignment (x-direction) 0.3 mm

5.3.2 Measuring the Misalignment of Multiple Magnets

In this section, it is explained how the misalignment of multiple quadrupole magnets can be measured
simultaneously. Similar to the previous section only the displacements of the magnets will be con-
sidered since they have the largest effect on the beam centroid. Using these assumptions it will be
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possible to write down a system of multiple quadrupoles and drift spaces into equations that are linear
in the misalignment parameters and the initial beam conditions. This system can be easily solved
using an inverse matrix operation to solve for these unknown parameters.

The assumption that δz = θz = 0 is important to keep the linearity of the system. This can be
demonstrated by setting up a simple system consisting out of two drift spaces with a misaligned
quadrupole in between. The full expression becomes

x(1) = Rd2RqRd1︸ ︷︷ ︸
M

x(0) +Rd2F︸ ︷︷ ︸
N

m +Rd2GRd1︸ ︷︷ ︸
O

x(0) (139)

The matrices A and B do not depend on any of the misalignments or on the x(0) vector, however the
matrix O, since it includes G, is a function of δz and θz, which means that it adds cross terms of
the misalignment vector and the x(0) vector to the equation. By setting δz = θz = 0, the matrix G
becomes zero and the cross-terms disappear, preserving the linearity of the system. For the case when
δz = θz = 0, it is possible to expand the system of n+ 1 drift spaces and n quadrupoles to

x(1) = Rdn+1(RqnRdnRqn−1Rdn−1 . . . Rq1Rd1)x(0)

+Rdn+1

n∑
i=1

RqnRdnRqn−1Rdn−1 . . . Rqi+1Rdi+1Fimi (140)

where Rdi and Rqi are the transfer matrices corresponding to the ith drift space and ith quadrupole
in the system respectively, and mi is the misalignment vector corresponding the ith quadrupole. From
this equation it can easily be seen that the system is linear in terms of the misalignment parameters
and the initial beam conditions. To calculate the quadrupole displacements it is possible to take the
first component of Eq. (140) and set up a linear system of equations, this is demonstrated for a system
of four drift spaces and three quadrupoles, as also found in the beamline

x(1) = Rd4Rq3Rd3Rq2Rd2Rq1Rd1︸ ︷︷ ︸
A

x(0) +Rd4Rq3Rd3Rq2Rd2F1︸ ︷︷ ︸
B

m1 +Rd4Rq3Rd3F2︸ ︷︷ ︸
C

m2 +Rd4F3︸ ︷︷ ︸
D

m3

(141)

where the matrices A B C and D are defined to simplify the system. For this system there are
5 unknowns, which are the three magnet displacements and the initial beam centroid position and
angle, this also means that at minimum 5 measurements need to be made. Writing down the first
component of Eq. (141) in matrix form for 5 measurements gives

A1
11 A1

12 B1
11 C1

11 D1
11

A2
11 A2

12 B2
11 C2

11 D2
11

A3
11 A3

12 B3
11 C3

11 D3
11

A4
11 A4

12 B4
11 C4

11 D4
11

A5
11 A5

12 B5
11 C5

11 D5
11



x0
x′0
δx1
δx2
δx3

 =


xm1

xm2

xm3

xm4

xm5

 (142)
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where xmi is the ith measurement taken from the beam profile monitor at the end of the last drift
space, the superscripts of the matrix elements indicate different values corresponding to the different
quadrupoles gradients used during the measurements. Next, it will be determined how sensitive this
method is to errors, for now only errors from the measurements are considered. The sensitivity
coefficients can be seen in Table 6, these values were minimized with respect to the magnetic field
gradients of the quadrupoles using the constraint that the magnetic field values are between −15 T m−1

and 15 T m−1 and that the maximum beam size at the second beam profile monitor is 1.5 cm in both the
x and y direction, the beam size is defined as 2σ, where σ is the standard deviation of the Gaussian
beam profile. The simulated annealing algorithm was used for minimization 1, the magnetic field
gradients resulting from this optimization can be found in Table 7. The geometry of the system is the
same as given in Table 5.

The obtained sensitivity values in Table 6 are significantly larger than the values found in Table 4.
The sensitivity values indicate how much the uncertainty of the δxi variables increases with the
uncertainty of the measurements beam centroid position xmi. The norm in Table 6, when multiplied
with the measurement uncertainty of a beam profile monitor, gives the minimum uncertainty of the
measured δxi values. The calculated uncertainty of δxi will increase even further if the sensitivity
coefficients of the magnetic field gradients and drift and quadruple lengths are added. When looking
at the norm of the sensitivity coefficients in Table 6, the accuracy of the beam monitors needs to be
a at least a factor 20-40 times better than the alignment errors in order to be able to measure the
alignment errors. Since the alignment errors are expected to be around 0.3 mm the required beam
monitor accuracy must be at minimum 7.5 µm-15 µm which is not realistic.

Table 6: Sensitivity values, the norm is calculated as
√∑5

i=1 s
2
i , where si are the sensitivity coeffi-

cients corresponding to one outcome variable.

Outcome variables (m)

x0 x′0 δx1 δx2 δx3

Input variable (m) Sensitivity Coefficient (unitless)

xm1 −27.1 7.08 −22.0 −17.4 −14.0
xm2 −29.4 9.96 −22.9 −16.4 −8.82
xm3 17.6 −5.32 14.2 10.83 7.48
xm4 26.5 −7.85 21.1 16.0 10.9
xm5 13.4 6.862 10.6 8.08 5.44

norm 52.8 15.9 42.0 31.8 21.9

1Minimization was done in Mathematica Version 12.2, Wolfram Research, Champaign, IL
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Table 7: Magnetic field gradients used in measuring the quadrupole displacements which minimize
the sensitivity coefficients found in Table 6.

Measurement number Gradient QX1a (T/m) Gradient QX1b (T/m) Gradient QX1c (T/m)

1 8.54 1.11 -11.1
2 8.20 0.664 -8.09
3 5.29 11.0 -9.00
4 11.9 -10.5 -6.66
5 -15.0 10.9 -15.0

5.4 Misalignment of Steering Magnets

The effects of misalignment of the quadrupoles which are used in the quadrupole variation method
are discussed in Section 5.2, however, effects of misalignment of the steering magnets which are used
to control the beam centroid have not been investigated.

The derivation of the equation describing the behaviour of the particle vector when travelling through
a misaligned steering magnet is given in Appendix D. It can be derived by adjusting the equations for
a misaligned bending magnet given in [9], to a steering magnet. The equation is given by

x(1) = Rx(0) + (A1 −RA0)m + (RB0 −B1R)x(0) + (B1 + I3) b (143)

where x(1) and x(0) are the particle vectors at the exit and entrance face of the magnet respectively,
the matrices A0, A1, B0 and B1 are identical to the matrices given in Eq. (134), m is the misalignment
vector as given in Eq. (132), and I3 is the 3x3 identity matrix. The matrix R and vector b describe
the transport of the particle when no misalignment is present (m = B0 = B1 = 0), such that

x(1) = Rx(0) + b. (144)

Using the approximation that the effect of the steering magnets can be represented by an instantaneous
kick at the center of the magnet, the matrix R and vector b describing the effect of a steering magnet
are

R =



1 L 0 0 0 0
0 1 0 0 0 0
0 0 1 L 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 , b =



αL
2
α
φL
2
φ
0
0

 (145)

where L is the length of the steering magnet, α is the bending angle in the x-z plane and φ is the
bending angle in the y-z plane.
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substituting this into Eq. (143) and writing out all the terms gives

x(1) = xu(1) + xp(1) =



x0 + Lx′0 + αL
2

x′0 + α

y0 + Ly′0 + φL
2

y′0 + φ
l
δ

+



αδz + φLθz
2

φθz

φδz − αLθz
2

−αθz
0
0

 (146)

where xu(1) is the unperturbed particle vector and xp is a vector containing the perturbations due
to misalignment. From this, it is observed that all misalignment parameters in xp(1) appear as cross-
terms with the bending angles α and φ, since these quantities are both small, their product can be
neglected. Therefore any misalignment present in the steering magnet will not have a significant effect
on the beam control.

Next misalignment in the combined function magnets is investigated, Eq. (143) is again used, the
matrix R and vector b can be obtained from Eq. (95) and (96). The calculations will be done for
combined function magnet whose quadrupole component focuses in the x direction and defocuses in
the y direction, but the same conclusions can be found when switching the focusing direction

R =



cos
√
kL sin

√
kL√
k

0 0 0 0

−
√
k sin

√
kL cos

√
kL 0 0 0 0

0 0 cosh
√
kL sinh

√
kL√
k

0 0

0 0
√
k sin

√
kL cos

√
kL 0 0

0 0 0 0 1 0
0 0 0 0 0 1


, b =



α sin
√
kL
2√

k

α cos
√
kL
2

α sin
√
kL
2√

k

α cos
√
kL
2

0
0


(147)

These values are also substituted into Eq. (143), the solution was simplified by eliminating all cross-
terms involving the misalignment parameters, particle coordinates, or bending angles since these terms
are very small, which means that their product can be neglected

x(1) = xu(1) + xp(1)

=



x0 cos
√
kL+

x′0 sin
√
kL√

k
+

α sin
√
kL
2√

k

−x0
√
k sin

√
kL+ x′0 cos

√
kL+ α cos

√
kL
2

y0 cosh
√
kL+ sinh

√
kL√
k

+
φ sinh

√
kL
2√

k

y0
√
k sinh

√
kL+ y′0 cosh

√
kL+ φ cosh

√
kL
2

l
δ


+



δx(1− cos
√
kL) + θy(L− sin

√
kL√
k

)

θy(1− cos
√
kL) +

√
kδx sin

√
kL

δy(1− cos
√
kL) + θx(−L+ sin

√
kL√
k

)

θx(−1 + cos
√
kL)−

√
kδy sin

√
kL

0
0


(148)
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where xu(1) is the unperturbed particle vector and xp is a vector containing the perturbations due to
misalignment. It is observed that xp(1) does not depend on α or φ, i.e. xp(1) does not change during
the tuning process. When including the misalignment effect, Eq. (144) can be written as

x(1) = Rx(0) + b + c (149)

where x(1) and x(0) are the particle vectors at the entrance and exit of the combined function magnet,
R and b are defined as before, and c is a vector containing the misalignment effect, which does not
depend on the tuning parameters α and φ. To analyze the effect of the addition of c on the control
algorithm, the forward equation for the pair of combined function magnets used to align the beam
centroid in the y-coordinate is written down. This section consists out of two combined function
magnets, Sxy and Sy, separated by a drift space of length L1, followed by a second drift space from the
combined function magnet Sy to beam monitor HX of length L2. The equation relating the particle
vector at the end of the section x(1) to the particle vector at the start of the section x(0), when no
misalignment is present, is given by

x(1) = Rd2Rs2Rd1Rs1x(0) +Rd2Rs2Rd1bs1 +Rd2bs2 (150)

where Rd1 and Rd2 are the transfer matrices of the first and second drift space respectively, Rs1 and
bs1 are the transfer matrix and constant vector of the first combined function magnet, and Rs2 and
bs2 are the transfer matrix and constant vector of the second combined function magnet.

By rewriting this to include the misalignment effect c, the forward equation becomes

x(1) = Rd2Rs2Rd1Rs1x(0) +Rd2Rs2Rd1c1 +Rd2c2 +Rd2Rs2Rd1bs1 +Rd2bs2 (151)

where c1 and c2 are the vectors containing the misalignment effects for the first and second combined
function magnets respectively. Comparing Eqs. (150) and (151) it is observed that the terms in front
of the b vectors, which contain the effect of the bending part of the combined function magnet, are the
same. The only difference is that the terms Rd2Rs2Rd1c1 and Rd2c2 are added, which are independent
of α and φ, in addition to the already present independent term Rd2Rs2Rd1Rs1x(0). In other words
the added constants act like a different initial particle vector in Eq. (150), denoted by x(0) given by

x(0) = x(0) +R−1s1 c1 + (Rs2Rd1Rs1)
−1 c2 (152)

where x(0) is the particle vector at the beginning of the system which has misalignment present. Since
it is known that the system converges in one step for any initial vector x(0), it can be seen that the
misalignment of the combined function magnets, or steering magnets, does not affect the performance
of the algorithm, it only changes the applied current to the magnets once convergence is reached.
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5.5 Finding the Optimal Beam Centroid Angle and Position

5.5.1 Optimal beam transport for steering magnets in x-direction

If misalignment is present in the system, it is not possible to align the beam centroid with the designed
trajectory everywhere in the system. Therefore a criterion needs to be found which gives the optimal
beam parameters in terms of the misalignment parameters. In the second step of the beam tuning
process, the quadrupoles will be tuned to achieve minimum beam sizes at specified locations. If the
beam centroid is far away from the quadrupole axes, the beam trajectory will change significantly
during this tuning process, which should be avoided. Therefore, the objective will be to minimize the
average distance from the beam centroid to the quadrupole axes in the beamline. As a secondary
effect, this objective will also lower beam loses during transport, since the closer the beam follows the
designed trajectory, the lower the number of particles lost in the beamline walls.

The distance from the beam centroid to the quadrupole axes is given by the x and y coordinates of the
beam centroid. To calculate the average distance, these coordinates should be written as a function
of the distance, s, along the reference trajectory. The function describing x(s) and y(s) in a beamline
section will be a piecewise function, in which each sub-function corresponds to an element, e.g. a drift
space, quadrupole, or bending magnet. From this piecewise function, the equations describing the
beam trajectory in the quadrupoles are extracted and used to construct the objective function, which
should be minimized to find the optimal beam parameters.

This piecewise function is constructed according to the diagram shown in Figure 29. The transfer
matrices of each element can be written as a function of the distance along the reference trajectory s
by replacing the element length L with s. To calculate the sub-function of a misaligned quadrupole
Eq. (131) should be used instead of a single transfer matrix. By multiplying the transfer matrix with
the beam vector at the start of the element, a sub-function describing the beam centroid trajectory
is created, which is defined along the entire length of the element. To calculate the sub-function of
the next element the starting distance L0 and particle vector x are updated. Note that the updating
of the starting point L0 and the shift R(s− L0) in the piecewise functions are not strictly necessary,
as can be seen in the objective function defined in Eq. (153), however, it makes the results easier to
interpret. The result is a six-dimensional beam vector that contains the piecewise functions describing
every beam coordinate in terms of the initial beam vector and distance s. For the objective function,
only the piecewise functions describing x and y are required. An example of how such a piecewise
function looks for x can be seen in Figure 30.
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Start with:
• Initial beam vector 

x = (x0, x0’, y0, y0’, l, δ)
• L0 = 0

Find transfer matrix R(s) 
and length Lel of element 

L = Lo+Lel

Write down subfunction:
R(s-L0)x, L0 ≤ s ≤ L

and append to piecewise 
function

Last 
element

Stop

L0 = L
x = R(Lel)x

Go to next element

yes

no

Figure 29: Diagram showing the construction of the piecewise functions describing the beam centroid
trajectory through the beamline.

To create the objective function, the sub-functions corresponding to the quadrupoles, denoted by qi
for the ith quadrupole in the beamline section, are extracted from the piecewise function and the
following objective function is constructed. Note that this objective function is defined for transport
regarding the x-coordinate, an analogous expression can be found for the y-coordinate

fobj(x0, x
′
0) =

n∑
i=1

(∫ Lei

Lsi

qi(s)ds

)2

, (153)

where fojb is the objective function, which is a function of the initial beam conditions x0 and x′0, n
is the number of quadrupoles, and Lsi and Lei are the starting and ending coordinates of the ith
quadrupole. The optimal initial beam conditions can be found by minimizing Eq. (153) with respect
to x0 and x′0 since this will minimize the average distance from the beam centroid to the quadrupole
axes. Since the functions qi are linear in x0 and x′0, the squared integrals will be convex functions,
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the sum of convex functions is also convex [11], which means that the objective function fobj will be
convex. Therefore, minimization is straightforward and can be done using numerical or analytical
methods.

It should be noted that since the square inside Eq. (153) is on the outside of the integral, solutions in
which the beam centroid crosses the center of the quadrupole, i.e. the average value of x on the left
and right side of the quadrupole is equal, will also yield a minimum value of the objective function,
since for that quadrupole the integral term will be zero. For the purposes of beam tuning, this is also
a valid solution since the symmetry will approximately cancel out the effects on the beam centroid
due to changes in the quadrupole focusing strength.
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Figure 30: Plot of a piecewise function describing the transport of the beam centroid through the
beamline. The subfunctions which give the transport through the quadrupoles are indicated in red.
The area under the graph is shaded to indicated the size of the integral in that region.

To demonstrate this technique an example is given for the steering magnets Sx,y and Sx, which steer
the beam in the x-direction. At the exit of the steering magnets, it is possible to steer the beam to
every possible combination of x0 and x′0, therefore the goal is to pick these values such that Eq. (153)
is minimized. The section of beamline which comes after the steering magnets is given in Figure 31.
The settings for all the quadrupoles are given in Table 8.
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QX1a QX1b QX1c QB1A QB1B

HXX1

0.53 m 0.3 m 0.3 m 0.3 m 2.81 m

0.3 m 0.4 m 0.3 m 0.3 m 0.3 m

Figure 31: Section of the beamline which comes after steering magnets Sx,y and Sx.

Figure 32 shows the beam centroid trajectory for the optimum solution, found by minimizing Eq. (153),
and the trajectory when the beam conditions at HXX1 are set to x = 0 and x′ = 0. The quadrupoles
have misalignments as given in Table 8. It can be seen that the non-optimized solution performs much
worse. The average absolute distances from the quadrupole axes for the optimized and non-optimized
case are 0.338 mm and 0.783 mm respectively.
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Figure 32: Plot of the beam centroid as it travels through the beamline section, the optimum solution
where the distance to the center of the quadrupoles is minimized is shown in orange, the solution when
setting the initial beam conditions x0 and x′0 to zero is shown in blue.

To minimize Eq. (153) for a system with misalignments, the misalignments need to be known, which
is usually not the case. To compare the performance of the algorithm, in which it is assumed that all
misalignments are zero, to the optimum solution by given by minimizing Eq. (153), a Monte Carlo
simulation is performed. If the optimum solution performs much better than the algorithm, it will be
useful to measure the misalignment of quadrupoles in the real system, such that the optimum solution
for the real system can be calculated and implemented into the algorithm.
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For each run in this simulation, each quadrupole is given a random misalignment drawn from a uniform
distribution with bounds of −0.3 mm and 0.3 mm. For each set of misalignments, the steady state
response of the steering algorithm is computed, substituted into Eq. (153), and compared to the
minimum of Eq. (153). The steady state solution is defined as values of x0 and x′0 as the number of
iterations of the algorithm goes to infinity.

The steady state solution depends on the measurements that the algorithm obtains from the quadrupole
variation method. If the quadrupoles that are used in the measurement have a misalignment, but the
algorithm assumes that all misalignments are zero, the measured beam conditions will deviate from
the real beam conditions. Because the algorithm performs the corrections to the steering magnets
based on wrong beam condition values, the steady state solution will be different from x0 = x′0 = 0.
The measured values from the quadrupole variation method, and therefore also the steady state so-
lution, are dependent on the magnetic field gradients and misalignments of the quadrupoles used in
the quadrupole variation method. To calculate the steady state solution, the quadrupole gradient
values from Table 8 were used. During each quadrupole variation method, two measurements were
taken, where QX1a and QX1c were set to 0.9 and 1.1 times the default values for the first and second
measurement respectively, the other quadrupoles were kept constant. The misalignments were varied
according to the Monte Carlo simulation, and the measurements for the quadrupole variation method
were taken using beam profile monitor HXB1. The optimum solution, which could be achieved by the
system if all misalignment parameters were known, was also calculated for each set of misalignments,
by constructing the Eq. (153), which depends on the misalignments and minimizing it with respect to
x0 and x′0 using numerical methods. In total 104 runs were done.

Figure 33 shows the results of this simulation, it can be seen that the performance of the algorithm is
close to that of the minimum solution. The average absolute distance to the quadrupole axes using the
steady state solution was 0.178 mm, and for the minimum solution, it is 0.151 mm, the spread in the
datapoints is given by the box-and-whisker plots in Figure 34. This means that, under the assumptions
of this simulation, using the optimum solution does not yield significantly better performance than
the standard algorithm.
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Figure 33: Monte Carlo simulation results showing the minimum values of the objective function
and the values of the objective function that results from applying the algorithm. For clarity only 103

out of 104 runs are shown.
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Figure 34: Box-and-whisker plot of the average absolute distance to the quadrupole axes davg for
the minimum and steady state algorithm solution. The whiskers show the minimum and maximum
value, the box shows the 25th percentile, median and 75th percentile.
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Table 8: Numerical values used in optimizing beam transport for the x-coordinate, in the section
after the pair of steering magnets.

Element Item Value Unit

Beam properties p 0.6144 GeV c−1

Drift spaces HXX1→QX1a 0.526 m
QX1a→QX1b 0.300 m
QX1b→QX1c 0.300 m
QX1c →QB1A 2.811 m
QB1A →QB1B 0.300 m

Quadrupole QX1a Effective Length 0.3 m
Field gradient 10.7 T m−1

misalignment (x-direction) 0.3 mm

Quadrupole QX1b Effective Length 0.4 m
Field gradient -9.96 T m−1

misalignment (x-direction) -0.3 mm

Quadrupole QX1c Effective Length 0.3 m
Field gradient 10.06 T m−1

misalignment (x-direction) 0.3 mm

Quadrupole QB1A Effective Length 0.3 m
Field gradient 9.28 T m−1

misalignment (x-direction) -0.3 mm

Quadrupole QB1B Effective Length 0.3 m
Field gradient -7.95 T m−1

misalignment (x-direction) 0.3 mm

5.5.2 Optimal beam transport for steering magnets in y-direction

Next, the optimal beam transport for the y-coordinate, using steering magnets Sx,y and Sy, is investi-
gated. The objective function in Eq, (153) is again used, where x0 and x′0 are replaced with y0 and y′0.
Using the same geometry as in Table 8, with the displacements in y instead of x, the optimum solution,
found by minimizing Eq. (153), is compared with the solution where the initial beam parameters are
y0 = 0 and y′0 = 0. The result can be seen in Figure 35. It is observed that in the case of y0 = 0 and
y′0 = 0, the beam centroid deviates greatly from the reference trajectory, this is because quadrupoles
QX1c and QB1a are both defocussing in y, which amplify the effects of the magnet misalignments.
For the optimal solution the average absolute distance from the quadrupole axes is 0.166 mm and for
the zero initial conditions, it is equal to 3.87 mm.
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Figure 35: Plot of the beam centroid as it travels through the beamline section, the optimum solution
where the distance from the beam centroid to the center of the quadrupoles is minimized is shown in
orange, the solution when the initial beam conditions are set to zero is shown in blue.

To investigate the performance of the algorithm, which again assumes all misalignments are zero,
a Monte Carlo simulation with the same settings as in Section 5.5.1, including the settings for the
quadrupole variation method, was done. The results of this can be seen in Figure 36. It is observed
that the steady state solution performs significantly worse for higher minimum values of the objective
function, where the effect of the misalignment is the highest. For lower values of the minimum
objective function, the performance of the algorithm becomes more in line with that of the optimum.
Furthermore, most of the points are located near the lower left of the graph, this indicates that the
situation where the misalignments have a small effect on the transport is more likely than the case
where the misalignments have a large effect. The average absolute distance from the quadrupole axis
for the optimum case is 0.067 mm, for the steady state value of the algorithm is it equal to 0.244 mm.
This large discrepancy is most likely due to the fact the consecutive defocusing quadrupoles QX1c and
QB1a, are not corrected for by the algorithm.
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Figure 36: Monte Carlo simulation results showing the minimum the minimum value of the objective
function and the value of the objective function that results from applying the algorithm. For clarity
only 103 out of 104 runs are shown. A line showing the correlation of the datapoints has been added
to better compare the two methods.

Since the algorithm performs much worse in this case, a different strategy is proposed. To implement
the optimal solution in the algorithm it is necessary to know all the quadrupole misalignments with
sufficient accuracy, which might be difficult. Therefore another method is proposed, which uses the
fact that there is a certain correlation between the y-coordinate measured at beam profile HXB1 and
the optimal solution, found by minimizing Eq. (153). By measuring this y, which is only a single
measurement, it is possible to predict the optimal solution.

In this method y at HXB1 should be measured in a specific way, following these two steps:

1. First all the quadrupoles in between beam monitors HX and HXB1 are turned off, effectively
turning them into drift spaces. The steering magnets Sx,y and Sy are used to ensure that at
beam monitor HX the beam conditions are y = 0 and y′ = 0. This can be done by making sure
that y = 0 at both monitors HX and HXB1.

2. In the second step the quadrupoles are turned back on and set to their default values, as given
in Table 8. Depending on the misalignment of the quadrupoles, y at HXB1 should change. The
new value, denoted by yHXB1 should be measured using the beam profile monitor.

There will be a certain correlation between yHXB1 and the optimum beam conditions at HX. By
simulating many possible misalignments of the quadrupoles and calculating the optimal initial beam
parameters at HX, denoted by y0 and y′0, as well as yHXB1, for each set of misalignments, it is possible
to fit a function to the data, from which the optimal conditions can be predicted.

During this process measurement error due to displacements in the quadrupoles which are used for
the quadrupole variation method should be taken into account. If the quadrupoles are not displaced
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along or rotated around the z-axis, the measurement error can be represented by

ym = yr + b (154)

where ym is the beam centroid vector, which is measured using the quadrupole variation method, yr
is the real beam centroid vector, and b is a vector containing the measurement error, which depends
on the displacements of the quadrupoles and the magnet settings during the quadrupole variation
method.

The objective of the algorithm is to steer the beam such that y = y′ = 0 at the exit of the steering
magnet pair. Since the algorithm only has access to the measured beam centroid vector ym, the
steady state result of the algorithm will be ym = 0. The algorithm can easily be adapted, by making
a substitution ym = ỹm, such that after sufficient iterations, the end result ỹm = 0 is achieved. Using
this, the following value for ỹm is proposed.

ỹm = ym − (b + g) (155)

where g is a vector containing the desired values for yr, which are ideally equal to the optimal values
obtained from minimizing Eq (153). This way, when the algorithm converges to ỹm = 0, the following
relation is obtained

0 = ym − (b + g)⇒ ym = b + g ⇒ yr = g (156)

from which it is observed that the real y value indeed converges to the desired goal g. We will refer
to b+g as the corrected optimal values. From this, it can be seen that if the corrected optimal values
are known, they can be substituted into the algorithm via Eq. (155) and the optimal beam transport
conditions g will be achieved at the exit of the steering magnets. Next, the simulations are performed
to predict the corrected optimal values.

In each iteration of the simulation, a misalignment is drawn from a uniform distribution with bounds
−0.3 mm and 0.3 mm, for each of the quadrupoles QX1a, QX1b, QX1c, QB1a en QB1b. A total of
104 iterations were done. For each iteration b + g and yHXB1 are calculated. Figure 37 shows all of
the data points obtained in this way. The figure also shows a linear relation that is fitted through the
datapoints. Finding the correct optimal values is most important when the effect of misalignment is
the greatest. This is the case when the corrected optimal values are the largest, therefore each point
was assigned a weight equal to its y0 or y′0 value before fitting. The relations were then fitted using a
weighted least-squares approach and are equal to

y0,opt = 0.196yHXB1 + 7.92× 10−5

y′0,opt = −0.379yHXB1 − 1.79× 10−4
(157)
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where y0,opt and y′0,opt are the corrected optimal values at HX (equal to b + g), and yHXB1 is y measured
at HXB1 using the previously described technique. By measuring yHXB1 in the beamline and plugging
the obtained value into Eq. (157) the corrected optimal values can be predicted. Using Eq. (155)
these values can be substituted into the algorithm.
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Figure 37: Graph of the Monte Carlo simulations, the values of b + g, whose components are
denoted by the corrected optimal solution for y0 and y′0, are plotted against y measured at HXB1
when y0 = y′0 = 0. The linear relations were fitted to the datapoints using a least squares approach.

The performance of this method, compared to the steady state solution and optimum solution can be
seen in Figure 38a. It can be seen that it performs better than the standard algorithm, which has
no information on the misalignments, but worse than the optimum solution, which has access to all
the misalignment values. Especially at higher values of the optimum values, this prediction method
functions better than the steady state solution. The average absolute distance from the axis is equal
to 0.146 mm, which is an improvement over the steady state solution of the algorithm, however still
worse than the minimum solution.

To compare the prediction method to the steady state solution further, the ratio of their respective
objective function values is plotted in Figure 38b. Points in which the ratio is smaller than one,
indicate a point in which the objective function value of the prediction method is smaller than that
of the steady state solution, therefore the performance of the prediction method is better for those
points. In total 67% of the points have a value below one. Furthermore, most of the points which have
values above one correspond to low values of the minimum of the objective function. For these points,
the objective function, which is a measure of the deviation from the ideal trajectory, is already quite
low for both methods, so the higher ratio results in a smaller performance difference, than it would
be for points with a high minimum of the objective function.

The comparison of the average absolute distance from the beam centroid to quadrupole axes between
the three different methods can be seen in Figure 39. It can be seen that for the best performance
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of the algorithm, all misalignments of the quadrupoles would need to be measured, such that the
optimum solution can be implemented into the algorithm. In the case that this is not possible, the
prediction method can be used to yield better performance over the standard algorithm.

● Steady state solution algorithm

● Prediction from linear fit
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(a) Comparison of the two methods for determin-
ing the optimal beam conditions for transport. Lines
showing the correlation of the datapoints have been
added for easier comparison.
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(b) Ratio of the objective function value of the pre-
diction from the linear fit to the steady state solution.
A horizontal line equal to one has been added to the
plot.

Figure 38: Figures illustrating the performance of the method which predicts the optimal beam
transport parameters from the linear models.
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Figure 39: Box-and-whiskers plot of the average absolute distance to the quadrupole axes davg for
the optimal solution obtained from minimizing the objective function, the steady state solution of the
algorithm, and guess of optimal conditions based on a linear relation fitted from the simulations. The
whiskers show the minimum and maximum value, the box shows the 25th percentile, median and 75th
percentile.
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5.5.3 Optimal beam conditions for a bending magnet

The same strategies as in Section 5.5.1 can be used to find the optimal settings for a bending magnet.
The bending magnet has one free parameter, being the bending radius ρ, while the beam has two
parameters that need to be controlled, which makes the system overdetermined. Since it is not
possible to find an exact solution, this method provides a way to find the optimal setting.

As an example, the section in between the bending magnet B1 and B2 is taken, which can be seen in
Figure 40. The magnet settings can be found in Table 9. To set up the objective function Eq. (153)
is again used, where the initial vector, defined at the exit face of B1, is calculated using Eq. (93). It
is assumed that the beam conditions at the entrance face of B1 are known, which leaves the bending
radius ρ as the only free parameter. The objective function can be minimized with respect to ρ using
any numerical convex minimization method.

QB2

2.073 m

HXB20.3 m

1.602 m0.471 m

Figure 40: Section of the beamline which contains the bending magnet B1 and the quadrupole QB2

To compare this method to the current algorithm, a Monte Carlo study was performed in which the
optimum solution is compared to the steady state solution of the algorithm. The displacement of
quadrupole QB2 was taken from a uniform distribution between −0.3 mm and 0.3 mm. The initial
beam conditions at the entrance face of magnet B1 were taken from uniform distributions with bounds
−1 mm ≤ x0 ≤ 1 mm and −1 mrad ≤ x′0 ≤ 1 mrad, 104 runs were done. To calculate the steady state
solution a quadrupole variation method was used where two measurements were taken in which QB2
was set to 0.9 and 1.1 the default value for the first and second measurement respectively. The
measurement were taken using profile monitor HXB2.

The results can be seen in Figure 41. The minimum values of the objective function are not shown
since they were equal to zero, within machine precision, for most runs. It can be seen that for the
steady state solution of the algorithm most of the runs end up with a reasonably low value for the
objective function. However, there is also a small possibility that the objective function value exceeds
5.0 cm4, which corresponds to an average distance from the quadrupole axes of 0.75 mm. The average
absolute distance from the beam centroid to the quadrupole axis, using the steady state solution, is
equal to 0.22 mm, for the minimum solution the average distance is equal to 0.019 mm. The spread
in datapoints is illustrated in Figure 42. This large discrepancy is because the algorithm for the
bending magnets assumes that the beam centroid is aligned at the entrance face, and also suffers from
measurement errors, due to magnet misalignments, in the quadrupole variation method. To improve
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the performance of the algorithm ways to measure the beam centroid at the entrance of the bending
magnet could be added to the algorithm. The closest beam monitors which could be used to measure
this are HXB1 and HXB2. However due to magnet misalignments and uncertainty in the beam
centroid momentum neither of these monitors will yield accurate enough measurements to be used for
correction. Furthermore, by measuring the misalignment of quadrupole QB2, the measurement error
can be corrected.
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Figure 41: Histogram of the different objective function values obtained from the Monte Carlo
simulation.
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Figure 42: Box-and-whiskers plot of the average absolute distance to the quadrupole axis davg, for
the minimum of the objective function, and the steady state solution achieved by the algorithm. The
whiskers show the minimum and maximum value, the box shows the 25th percentile, median and 75th
percentile.

Table 9: Numerical values used in optimizing beam transport in the section after bending magnet
B1.

Element Item Value Unit

Beam properties p 0.6144 GeV c−1

Drift spaces B1→QB2 2.073 m
QB2→HXB2 0.471 m

Quadrupole QB2 Effective Length 0.3 m
Field gradient 10.7 T m−1

misalignment (x-direction) 0.3 mm

Bending Magnet B1 Effective Length 2.88307 m
Bending angle 70 °

5.6 Finding Quadrupole Gradients which Create a Waist in the Beam

The goal of the second step of the tuning process is to find the quadrupole gradients which yield a
beam waist at a desired location in the beamline. These beam waists are characterized by σ12 = 0
for a horizontal waist and σ34 = 0 for a vertical waist. It will be analyzed whether the criteria of
finding a beam waist is sufficient to find the quadrupole settings which yield the best transport across
the entire beamline. An example section of the beamline will be used involving quadrupoles QX1a,
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QX1b, and QX1c, the goal is to achieve both a horizontal and vertical waist at the beam monitor
HXB1. To find all of the possible quadrupole gradients which yield a beam waist, the sum of σ12 and
σ34 is written as a function of the three quadrupole gradients. Then an equally spaced 3-dimensional
grid of quadrupole gradients was created. From each point in this grid, a gradient descent minimizer
was started. All of the minima found in this way, where σ12 + σ34 = 0, were stored and any duplicate
positions were discarded. A plot of all these points can be seen in Figure 43. It is observed that many
combinations are possible, a selection of the beam trajectories resulting from the found gradients can
be seen in Figure 44. It is observed that quadrupole gradients found using this method result in a
vastly different beam trajectory than the default settings which are used. Therefore it is concluded
that the criterion of a simultaneous beam waist at one location is not sufficient to automatically find
the optimal gradients for a quadrupole triplet. By adding criteria, such as a maximum beam size in
both the x and y direction, the choice of quadrupole gradients can be limited further. However, this is
still not sufficient to find the single best setting. To find the optimal setting it will be necessary to also
place constraints at other locations in the beamline than the place where the waist should be found.
This can be done by using the reference values for the other beamline elements and predicting the
trajectory in the rest of the beamline using those values. The same analysis was done for a quadrupole
doublet in which 4 possible gradient combinations were found which yield a simultaneous waist in the
beam, these gradients lead to similar beam trajectories as seen in Figure 44. By also limiting the
beam size at the waist location the best setting could be found from these 4 gradients.

Figure 43: Combinations of quadrupole gradients which yield a simultaneous horizontal and vertical
waist in the beam at HXB1
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(a) Default settings: QX1a = 10.7 T m−1, QX1b
= −9.96 T m−1, QX1c = 10.06 T m−1.
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(b) QX1a = 1.52 T m−1, QX1b = −5.97 T m−1,
QX1c = 11.4 T m−1
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(c) QX1a = 2.58 T m−1, QX1b = −5.90 T m−1,
QX1c = 5.65 T m−1
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(d) QX1a = 3.64 T m−1, QX1b = −5.03 T m−1,
QX1c = 5.10 T m−1

Figure 44: Beam trajectory using the default quadrupole gradients compared to the beam trajectory
using gradients obtained from finding a simultaneous horizontal and vertical beam waist at monitor
HXB1.

Table 10: Bound of the quadrupole gradients which are used for finding all possible beam waists.
Positive gradients indicate focusing in x, negative indicate defocusing in x.

Magnet Lower bound (T/m) Upper bound (T/m)

QX1a 0 20
QX1b -20 0
QX1c 0 20
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6 Experimental Results and Discussion

The verification of the steering magnet algorithm was done experimentally in the low energy beamline
at KVI, which can be seen in Figure 45. This beamline uses electrostatic elements, instead of magnetic
elements. This means that the state vector, defined in Eq. (98), contains the voltages supplied to the
steering plates, instead of a current. However, once the voltage has been converted to a steering angle
the control loop defined in Section 4.2, will also hold for the electrostatic steering plates. Similarly,
the quadrupoles are also electrostatic, but by converting the voltage to a quadrupole strength k,
all the equations defined earlier will still hold. To estimate the performance of the algorithm two
experiments were performed. In the first experiment, the accuracy of Eq. (90) is determined, in the
second experiment the accuracy of the quadrupole variation method was determined.

Source
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Figure 45: Layout of the low energy beamline, DHB1 and DHB2 are steering plates, Q1 through Q8
are quadrupoles.

6.1 Verifying the Plant Description

The following equation was used to convert the applied voltage to the steering magnet to the bending
angle

α = 29.96
Ls
2Va

∆V (158)

where α is the bending angle in radians, Ls is the length of the steering plate in metres, Va is the
accelerating voltage of the ions in volts, and ∆V is the voltage across the steering plates in volts,
the factor 29.96 was obtained by solving Poisson’s equation of electrostatics for the steering plate
geometry. The relevant values for the beamline are given in Table 12.
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For the experiment the change in beam position at monitor 6600 was measured while varying the
voltages on steering plates DHB1 and DHB2, for the reference value both steering plates were set at
a voltage of 0 V, according to Eq. (90) the change in position ∆x is then given by

∆x = L1α1 + L2α2. (159)

Table 11 shows the results of this experiment compared to the predictions from the model. It is ob-
served that the experimental ∆x values are not equal in magnitude for voltages with opposite polarity,
while this is predicted for the model. By adding 10 different noise-only profiles to a measurement and
calculating ∆x for each case the standard deviation of ∆x was calculated and was estimated to be
±0.03 mm. Therefore measurement uncertainty cannot explain this difference.

This asymmetry in the experimental ∆x values could also occur if part of the beam was blocked by one
of the elements in the beamline during some of the measurements. However, the mean and standard
deviation of the intensity of the measured profiles is 5561± 233, since the standard deviation is small
it is unlikely that this is the case. Therefore it is still unclear why the asymmetry occurs. For future
experiments, it is recommended to sweep across a larger range of voltages to see if a linear trend can
be observed which is equal to the trend predicted by the model.

It can also be seen that the model values deviate between 2.30%-23.0% from the experimental values.
It is difficult to say if this error is due to errors in our model, or due to the same reason that the
asymmetry in the measurements occurs. Errors in the model are most likely due to an incorrect value
of L1 and L2, the technical drawings which were used to obtain these values were incomplete, which
means that these values needed to be obtained by comparing multiple drawings, which might have
introduced some error in the values. To check these values measurements should be done across a
larger range of bending values. According to Eq. (159), a plane can be fitted to the datapoints, from
which L1 and L2 can be extracted.

Finally, for future experiments, it is also recommended to take measurements where the voltages
applied DHB1 and DHB2 are varied at the same time. From these measurements, it can be investigated
whether there are any interaction effects between the steering magnets, which are not predicted by
our model.

Table 11: Comparison of the change in position ∆x measured at monitor 6600 for the experiment
and the values predicted from the model. Voltage was only applied to one steering plate at a time.

Plate voltage ∆V (V) Experimental ∆x (mm) Model ∆x (mm) Relative error (%)

DHB1 +50 1.78 1.37 23.0
DHB1 −50 −1.57 −1.37 12.6
DHB2 +50 1.14 1.03 10.0
DHB2 −50 −1.05 −1.03 2.30

79



AGOR facility beam tuning

Table 12: Values used in the experimental setup, Ls1 and Ls2 are the length of the steering plates
DHB1 and DHB2 respectively.

Experiment Parameters Value Unit

Va 25150 V
L1 460 mm
L2 345 mm
Ls1 100 mm
Ls2 100 mm

6.2 Accuracy of Quadrupole Variation Method

To check the accuracy of the quadrupole variation method the voltages applied to the quadrupoles Q1
through Q5 were changed and the beam position was measured at profile monitor 5400, this position
was then used to calculate the initial beam position and angle, x0 and x′0, at monitor 6600. The
quadrupole focusing strength k for an electrostatic quadrupole is given by [1]

k =
2|V0|
a2

1

(Eρ)0
(160)

where V0 is the voltage applied to the quadrupole plates, a is the radial distance from the pole tips to
the center of the quadrupole, and (Eρ)0 is the electric rigidity of the particle, as defined in Eq. (2).
Using this definition of k, the transfer matrices of the quadrupoles are given by Eqs. (48) and (49).
The experiment data is given in Table 13.

First x0 and x′0 were determined using all of the measurements, the resulting values and standard
errors are x0 = (−0.26± 0.02) cm and x′0 = (3.2± 0.2) mrad. Next, to investigate a possible offset of
the profile monitor, a constant offset was included in the fitting procedure. In this case the estimated
beam parameters are equal to x0 = (−0.18± 0.06) cm and x′0 = (1.4± 1.0) mrad. The offset itself was
determined to be (0.12± 0.07) cm. From this it can be observed that the measured values of x0 and
x′0 are sensitive to small misalignments of the beam profile monitor.

To estimate the uncertainty in the measurements of x0 and x′0 during the tuning process, the quadrupole
variation calculations were also done using two sets of quadrupole settings at a time. For this, the first
setting was always taken to have all quadrupole voltages set to zero, the second setting was scanned
through the other measurement in Table 13. No constant offset of monitor 6600 was included in the
fitting. The calculated values can be seen in Figure 46, the sensitivity coefficients are also included in
the figure. Using the same definitions as in Eq. (128), these are defined as

80



AGOR facility beam tuning

Sensitivity x0 =

√(
∂x0
∂x1

)2

+

(
∂x0
∂x2

)2

Sensitivity x′0 =

√(
∂x′0
∂x1

)2

+

(
∂x′0
∂x2

)2
(161)

From the figure, it can be seen that the spread of the data is quite significant. However, the datapoints
which seem to be outliers also have a high sensitivity to the measured positions at monitor 6600, which
would explain why they deviate from the reference point.
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Figure 46: a) and b) show the beam centroid position measured using two sets of quadrupole settings
and the associated sensitivity coefficients. c) and d) show the beam centroid angle measured using two
sets of quadrupole settings and the associated sensitivity coefficients. The solid lines show the values
calculated by including all measurements.

Another observation that can be made from the points is that the value for x0 and x′0 seem to mirror
each other, this is an indication that there is a high correlation between the determined x0 and x′0
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values. This can be checked by looking at the confidence ellipses for x0 and x′0, in Figure 47, these
include all of the measured datapoints. It can be seen that the ellipse is tilted, which indicates a
correlation in x0 and x′0. These correlations can arise from the fitting equation, the distribution of
the independent data, or the experimental uncertainties [12]. To lower the correlation, and increase
the accuracy of the measurements, more measurements could be taken. Furthermore, the quadrupole
voltages should be chosen such that for some of the measurements R11 = 0 or R12 = 0. For those
measurements, only x0 or x′0 will contribute to the value of the beam centroid position. Therefore
including these in the fit should reduce the correlation of the fitted parameters.

values corresponding to the individual measurements are spread out as much as possible since this
increases the quality of the fit.

Another method to decrease this correlation is to include information of other beam profile monitors.
Since x0 and x′0 are measured at monitor 6600, it is possible to directly measure x0 using monitor
6600, if the uncertainty of this measurement is taken into account it can serve as a constraint for the
fitting of x0 and x′0. For the experiment x0 at monitor 6600 was determined to be (0.01± 0.10) cm,
where the error is an estimation based on the uncertainty in beam monitor position. Using this as a
constraint in the fit gives x0 = (−0.11± 0.05) cm and x′0 = (2.13± 0.50) mrad. If a constant monitor
offset is used, x0 = (−0.11± 0.06) cm and x′0 = (0.06± 1.10) mrad, the offset itself is fitted to be
(0.22± 0.08) cm. The standard errors for the fit using the constraint were taken equal to the square
root of the diagonal elements of the covariance matrix. It is observed that the associated standard
errors of the determined values are larger than when not including a constraint on x0.

For future experiments, the used voltages of the quadrupoles should be chosen more carefully to
generate measured data which allows fitting with a lower correlation between x0 and x′0. Also, it
should be investigated whether it would be possible to measure the positional misalignment of the
beam monitors mechanically, to increase the accuracy of the fitted values.
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Figure 47: Confidence ellipse of x0 and x′0, three levels are shown for a confidence interval of 68%,
95% and 99%.

Table 13: Experimental results of the quadrupole variation method, the voltages listed here are the
voltages given to the horizontal plates of the quadrupoles, positive voltages indicate focusing in the
horizontal direction, while negative indicate defocusing. The position is the horizontal position, given
with respect to the center of the beam profile monitor.

Voltage Q1 (V) Voltage Q2 (V) Voltage Q3 (V) Voltage Q4 (V) Voltage Q5 (V) Position (mm)

0 0 0 0 0 1.01
0 0 0 0 −170 0.95
0 0 0 0 430 0.97
0 0 0 −70 0 0.92
0 0 264 0 0 1.41
0 1147 0 0 0 3.97

129 0 0 0 0 1.20
−390 1146 −1185 470 −170 2.14
−390 1146 −1185 470 −470 2.27
−390 1146 −1185 670 −170 2.10
−390 1146 −1185 270 −170 2.09
−390 1146 −1385 470 −170 1.87
−390 1046 −1185 470 −170 1.77
−590 1146 −1185 470 −170 1.83
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7 Conclusion

An algorithm was developed for automatic alignment of the beam centroid with the reference trajec-
tory using steering and bending magnets in the system. The system is described using a first order
description of the ion optics. The algorithm is based on a state-space representation of the system
and uses a discrete control strategy. Measurements of the beam conditions can be done using the
quadrupole variation method. Under ideal conditions, the algorithm has been shown to converge in
one step. In the case that the estimated system parameters deviate slightly from the real system
parameters, the control algorithm will still be stable but will converge at a slower rate.

Positional misalignment of quadrupoles used in the quadrupole variation method will result in a steady
state error of the beam position and angle. The magnitude of the error depends on the beamline
geometry, the gradients used during measurements, and the magnitude of the misalignments. If the
misalignments are known it is possible to compensate for their effect. A method for measuring the
displacement of the quadrupoles using the beam and the beam profile monitors was introduced. It
was shown that it is possible to measure the displacements with reasonable accuracy if the uncertainty
in the beam centroid position measured on the beam profile monitors is equal or smaller than the
displacements themselves.

Misalignment effects of the steering magnets and combined function magnets were also considered.
It has been shown that misalignment of these elements has the same effect on the system dynamics
as a different initial beam centroid position and angle. Therefore it does not affect the steady state
solution or the convergence rate of the algorithm.

When quadrupole misalignments are present, it is not possible to align the beam centroid with the ref-
erence trajectory everywhere in the system. For these cases, an objective function was defined, which
can be minimized to find the initial beam conditions which yield the smallest average distance from the
beam centroid to the quadrupole axis. To minimize the objective function, the misalignments of the
quadrupoles need to be known. Since the misalignments are currently unknown the algorithms were
tested under the assumption that all quadrupole misalignments are zero. For the steering magnets
which steer the beam in the x-coordinate this assumption led to satisfactory performance. For the
steering magnets for the y-coordinate this assumption resulted in poor performance due to two con-
secutive defocusing quadrupoles. However, it was also shown that the performance can be improved
by using a specific set of measurements involving the misalignments. The same analysis was done for
the bending magnets, where it was shown that the largest source of error originated from the unknown
beam centroid and position at the entrance of the bending magnet.

Initial investigations into automatically controlling the beam size using the quadrupoles were also
done. It was shown that having a beam waist at a specific location in the beamline is an insufficient
criterion to find the optimal quadrupole gradient settings for a section of the beamline containing three
or more quadrupoles. To create this algorithm in the future it might be necessary to do a simultaneous
optimization of the entire beamline involving all quadrupoles and all beam monitors, instead of tuning
one section at a time like for the steering and bending magnets.

Initial experiments have shown promising results for the mathematical plant description and mea-
surements using the quadrupole variation method. Future experiments for the steering plates should
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include more measurements to investigate asymmetry in the plant behaviour. This will also make
the comparison to the theoretical model easier. For the quadrupole variation method, it was found
that picking the correct quadrupole focusing strengths during measurements is important to decrease
the correlation between and increase the precision of the calculated x0 and x′0 values. Furthermore,
it was found that if a second beam monitor is present at the location at which x0 and x′0 are being
measured, the correlation effect can be compensated by including the value of x0 measured directly at
that monitor.

To verify the performance of the algorithm it should be tested in the beamline at the AGOR facility.
Once the experimental validations have taken place the algorithm can be implemented in the control
system of the beamline. The algorithms that were developed should reduce the tuning time signifi-
cantly. Also since the algorithm follows the same steps for every tuning procedure, the beams tuned
using the algorithm should show a high degree of reproducibility.
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8 Appendix

A Approximation Steering magnet

In this section a comparison is made between the real trajectory of particle traversing a steering magnet
and an approximated trajectory using an instantaneous kick at the center of the magnet, Figure 48
shows a graphical comparison. We take x′0 and x′1 as angles, instead of their definition in Eq. (13).
Furthermore, the convention will be used that a positive α bends the beam in the direction of negative
x. This is opposite to the convention used in (91) where a positive α bend the beam to positive x.
Taking this into account it is possible to use basic trigonometry to find the following exact solution
for the position and angle at the exit

x1 = x0 − ρ0 cos
(
x′0
)

+ ρ0 cos
(
x′0
)

cos (α) + ρ0 sin
(
x′0
)

sin (α)

x′1 = x′0 − α
(162)

The approximate solution can be found using two drift matrices with length L/2 and the matrix
equation (91), note that we take a positive α to bend the beam downwards which is the same convention
as in (162)

x1 = x0 + L
(
x′0 −

α

2

)
x′1 = x′0 − α

(163)

eqs. (162) and (163) show that the calculated angle using both methods is the same. To compare the
calculated position, the following formula for L is derived using trigonometry and the equation for a
circular segment [13]

L = 2ρ0 sin
(α

2

)
cos
(
x′0 −

α

2

)
(164)

substituting this in Eq. 163 gives

x1 = x0 + 2ρ0 sin
(α

2

)
cos
(
x′0 −

α

2

)(
x′0 −

α

2

)
(165)

this can be simplified using the following small-angle approximations

sin
α

2
≈ α

2

cos
(
x′0 −

α

2

)
≈ 1

(166)

which gives for the instantaneous kick approximation
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x1 = x0 + αρ0x
′
0 −

α2ρ0
2

. (167)

Next Eq. (162), which is the exact derivation, is also simplified using the following small angle
approximations

cos
(
x′0
)
≈ 1

cos (α) ≈ 1− α2

2
sin
(
x′0
)
≈ x′0

sin (α) ≈ α

(168)

which gives

x1 = x0 + αρ0x
′
0 −

α2ρ0
2

(169)

The approximate and exact equations are now equal which means that in the case that the small-angle
approximations are valid the simplified equation can be used. Since for the steering magnet, α and x′0
will be in the order of mrad the approximation will always hold.

α

x0’ 

x0’ x0

ρ0

x1

x1’ 

Lα

Figure 48: Comparison of the trajectory of an individual particle through a steering magnet (blue)
and the approximated trajectory using an instantaneous kick (red) using a hard edge model of the
magnet.
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B Bending Magnet Derivation

To simplify the derivation it is assumed that x′0 and x′1 are defined as angles, instead of the definition
in Eq. (13), which is allowed in a linear approximation. The equations will be derived according
to Figure 49. We first define our coordinate system with the origin in the center of the magnet with
incorrect settings, given by C1 in the figure. The vector containing spatial coordinates of the described
particle will be denoted with an arrow over top to avoid confusion with the x vector as defined in Eq.
(16). The spatial coordinates of the described particle in C1 when entering the magnet are given by
−→x0

−→x0(C1) =

(
−ρ sinx′0
ρ cosx′0

)
(170)

To find the spatial coordinates in C1 of the described particle at the exit of the magnet −→x0(C1) is
rotated by the angle α, this position is denoted by −→x1(C1)

−→x1(C1) =

(
cosα sinα
− sinα cosα

)[
−ρ sinx′0
ρ cosx′0

]
=

[
−ρ cos (α) sin (x′0) + ρ cos (x′0) sin (α)
ρ cos (x′0) cos (α) + ρ sin (x′0) sin (α)

]
(171)

these coordinates need to be expressed in the reference particle coordinate system, indicated with C2,
this is done by a combination of translation vector Ptran connecting the coordinate systems and a
rotation matrix Rrot(α0).

−→x1(C2) = Rrot

(−→x1(C1)− Ptrans

)

=

(
cosα0 − sinα0

sinα0 cosα0

)((
−ρ cos (α) sin (x′0) + ρ cos (x′0) sin (α)
ρ cos (x′0) cos (α) + ρ sin (x′0) sin (α)

)

−
(

−ρ sin (x′0) + ρ0 sin (α0)
−ρ0 − x0 + ρ cos (x′0) + ρ0 cos (α0)

))

=


− sin (α0)[ρ0 + x0 − ρ cos (x′0) + ρ cos (x′0) cos (α)− ρ0 cos (α0) + ρ sin (x′0) sin (α)]

+ cos (α0)(ρ sin (x′0)− ρ cos (α) sin (x′0) + ρ cos (x′0) sin (α)− ρ0 sin (α0))

cos (α0)[ρ0 + x0 − ρ cos (x′0) + ρ cos (x′0) cos (α)− ρ0 cos (α0) + ρ sin (x′0) sin (α)]

+ sin (α0)[ρ sin (x′0)− ρ cos (α) sin (x′0) + ρ cos (x′0) sin (α)− ρ0 sin (α0)]



(172)

which can be simplified using trigonometric identities

−→x1(C2) =

(
− (ρ0 + x0) sin (α0) + ρ (sin (x′0 + α0)− sin (x′0 − α+ α0))

−ρ0 + (ρ0 + x0) cos (α0)− ρ cos (x′0 + α0) + ρ cos (x′0 − α+ α0)

)
(173)

α can be derived by the fact that at the exit of the magnet the first entry of −→x1(C2) should be zero
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α = x′0 + α0 − arcsin

(
−ρ0 sin (α0)− x0 sin (α0) + ρ sin (x′0 + α0)

ρ

)
(174)

By summing the angles at the exit the following equation for x′1 can be derived

x′1 = x′0 + α0 − α

x′1 = arcsin

(
−ρ0 sin (α0)− x0 sin (α0) + ρ sin (x′0 + α0)

ρ

)
(175)

Using small-angle approximations for x′1 and x′0 allows the equation to be further simplified

x′1 = arcsin

(
−ρ0 sin (α0)− x0 sin (α0) + ρ sin (x′0 + α0)

ρ

)
sinx′1 =

−ρ0 sin (α0)− x0 sin (α0) + ρ sin (x′0 + α0)

ρ

x′1 ≈
−ρ0 sin (α0)

ρ
− x0 sin (α0)

ρ
+ sin

(
x′0 + α0

)
=
−ρ0 sin (α0)

ρ
− x0 sin (α0)

ρ
+ sinx′0 cosα0 + cosx′0 sinα0

≈ −ρ0 sin (α0)

ρ
− x0 sin (α0)

ρ
+ x′0 cosα+ sinα0

= −sinα0

ρ
x0 + cos (α0)x

′
0 + sinα0

ρ− ρ0
ρ

(176)

Next x1 is derived which is the second component of x1(C2), again small-angle approximations are
used

x1 = −ρ0 + (ρ0 + x0) cos (α0)− ρ cos
(
x′0 + α0

)
+ ρ cos

(
x′0 − α+ α0

)
x1 = −ρ0 + ρ0 cos (α0) + x0 cos (α0)− ρ

(
cos (x′0) cos (α0)− sin (x′0) sin (α0)

)
+ ρ cos (x′1)

x1 ≈ −ρ0 + ρ0 cos (α0) + x0 cos (α0)− ρ
(
cos (α0)− x′0 sin (α0)

)
+ ρ

= cos (α0)x0 + ρ sin (α0)x
′
0 + (1− cosα0)

ρ− ρ0
ρ

(177)
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Figure 49: Image used for derivation of misaligned bending magnet equations.

C Approximation Combined Function Magnet

In this section the convention will be used that a positive α bend the beam to the negative x-direction,
this is opposite to the convention in Eqs. (95) and (96) where a positive α bend the beam into the
positve x-direction. The equation for a combined function magnet is derived, the exact solution is
given by Eq. (56).

x1 = x0 cos
√

1− nα+ x′0
ρ0 sin

√
1− nα√

1− n

x′1 = x0

√
1− n sin

√
1− nα

ρ0
+ x′0 cos

√
1− nα

(178)

these values are for a coordinate system that follows the reference trajectory that is bent by the dipole
component of the field. To derive the equations for correcting the beam centroid they should be
expressed in the coordinate system of a particle that follows a straight line, which is illustrated in
Figure 50. Also in the transfer matrix it is assumed that the central axis of the quadrupole component
follows the reference trajectory, while the central axis of the quadrupoles in the beamline follow a
straigh line. However, since the bending angle is very small, the error due to this effect is very small.
To transform the equation to the correct coordinate system they are rotated with an angle α and
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translated, we again denote the positional vector with an arrow over top, the position of a described
particle entering the magnet in coordinate system C2, (−→x1(C2)), is given by

−→x1(C2) = Rrot
−→x1(C1)− Ptrans

=

(
cosα sinα
− sinα cosα

)[
0

x0 cos
√

1− nα+ x′0
ρ0 sin

√
1−nα√

1−n

]
−
[

0
−2ρ0 sin2 α

2

]

=

 sin (α)
(
x0 cos (

√
1− nα) + x′0

ρ0 sin
√
1−nα√

1−n

)
cos (α)

(
x0 cos

(√
1− nα

)
+ x′0

ρ0 sin
√
1−nα√

1−n

)
− 2ρ0 sin2 α

2


(179)

where −→x1(C1) is the positional vector of particle entering the magnet expressed in coordinate system
(C2). The first component of −→x1(C1) gives the z coordinate in coordinate system C2, thus can be
ignored, the second component gives the x1 value, which will be simplified. To get remove n the
following substitution is used

n = kρ20 (180)

where k is the same parameter as in Eq. (46), this yields

x1 = cos (α)

(
x0 cos

(√
1− kρ20α

)
+ x′0

ρ0 sin
√

1− kρ20α√
1− kρ20

)
− 2ρ0 sin2 α

2
(181)

by using the linear approximation the following simplification can be made

√
1− kρ20α =

√
α2 − kα2ρ2 =

√
α2 − kL2 ≈

√
−kL (182)

using the fact that the magnet length L is approximately equal to

L = 2ρ0 sin
(α

2

)
cos (α) ≈ αρ0 (183)

using these results in Eq. (181) gives

x1 = cos (α)

(
x0 cos

(√
−kL

)
+ x′0

ρ0 sin
√
−kL

1
α

√
−kL

)
− 2ρ0 sin2 α

2

= cos (α)

(
x0 cos

(√
−kL

)
+ x′0

sin
√
−kL√
−k

)
− 2ρ0 sin2 α

2

(184)

Using the small angle approximations cos(α) = 1 and sinα/2 = α/2
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x1 = x0 cos
(√
−kL

)
+ x′0

sin
√
−kL√
−k

− ρ0α sin
α

2
(185)

which using Eqs. (51) and (180) can be written as

x1 = x0 cos
(√
−kL

)
+ x′0

sin
√
−kL√
−k

− α
√
n sin

√
−kL
2
√
n√

−k
(186)

if α
√
n/2� 1, then this can be simplified using sin

√
kL

2
√
n
≈ sin

√
kL
2 /
√
n

x1 = x0 cos
(√
−kL

)
+ x′0

sin
√
−kL√
−k

− α
sin
√
−kL
2√
−k

(187)

which is the same as Eq. (95).

The angle deviation x′1 in coordinate system C2 is equal to x′1 in coordinate system C1, given in
Eq. (178), minus the rotation angle α

x′1(C2) = x′1(C1)− α

= −α− x0
√

1− n sin
√

1− nα
ρ0

+ x′0 cos
√

1− nα
(188)

similarly to the position equations, this can be simplfied using Eqs. (180) and (182)

x′1 = −α− x0
√
−k sin

√
−kL+ x′0 cos

√
−kL (189)

this is equal to Eq. (95) under the small angle approximation cos
√
kL/2 = cos

√
nα/2 ≈ 1
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Figure 50: Coordinate system of bent reference trajectory (C1) and coordinate system of straight
reference trajectory (C2). The reference trajectory is indicated by the blue line.

For a focusing magnet with n > 1, the equations from the transfer matrix in Eq. (57) are

x1 = x0 cosh
√
|1− n|α+ x′0

ρ0 sinh
√
|1− n|α√

|1− n|

x′1 = x0

√
|1− n| sinh

√
|1− n|α

ρ0
+ x′0 cosh

√
|1− n|α

(190)

the value of x1 in the straight coordinate system is obtained using the same transformation as for Eq.
(179)

x1 = cosα

(
x0 cosh

(
α
√
|1− n|

)
+
x′0ρ0 sinhα

√
|1− n|√

|1− n|

)
− 2ρ0 sin2 α

2
(191)

since the quadrupole is de-focussing in the x-direction, n is equal to

n = kρ20 (192)

which is always positive, substituting this gives

x1 = cosα

x0 cosh

(
α
√∣∣1− kρ20∣∣)+

x′0ρ0 sinhα
√∣∣1− kρ20∣∣√∣∣1− kρ20∣∣

− 2ρ0 sin2 α

2
(193)
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which can be simplified using α� 1

α
√∣∣1− kρ20∣∣ =

√∣∣α2 − kα2ρ20
∣∣ ≈√|0− kL2| =

√
kL (194)

substituting this gives

x1 = cosα

(
x0 cosh

(√
kL
)

+
x′0ρ0 sinh

√
kL

1
α

√
kL

)
− 2ρ0 sin2 α

2

x1 = cosα

(
x0 cosh

(√
kL
)

+
x′0 sinh

√
kL√

k

)
− 2ρ0 sin2 α

2

(195)

using the small angle approximations cosα ≈ 1 and sinα/2 ≈ α/2

x1 = x0 cosh
(√

kL
)

+
x′0 sinh

√
kL√

k
− αρ0 sin

α

2
(196)

which using Eqs. (51) and (180) can be written as

x1 = x0 cosh
(√

kL
)

+
x′0 sinh

√
kL√

k
− α
√
n sin

√
−kL
2
√
n√

−k
(197)

if α
√
n/2� 1, then this can be simplified using sin

√
kL

2
√
n
≈ sin

√
kL
2 /
√
n

x1 = x0 cosh
(√

kL
)

+
x′0 sinh

√
kL√

k
− α

sin
√
kL
2√
k

(198)

using the fact that for θ � 1, sin θ ≈ sinh θ

x1 = x0 cosh
(√

kL
)

+
x′0 sinh

√
kL√

k
− α

sinh
√
kL
2√
k

(199)

which holds for
√
nα/2� 1.

For the angle deviation x′1 it is again equal to x′1 in coordinate system C1, given in Eq. (190), minus
the rotation angle α

x′1 = −α+ x0

√
|1− n| sinhα

√
|1− n|

ρ0
+ x′0 coshα

√
|1− n| (200)
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which can be simplified similar to the position equations

x′1 = −α+ x0
√
k sinh

√
kL+ x′0 cosh

√
kL (201)

which is equal to (96) under the assumption that cosh
√
kL/2 = cosh

√
nα/2 ≈ 1

D Derivation of the Effect of a Misaligned Steering Magnet

The derivations in this section is taken from the examples given in [9] of a misaligned bending magnet
and quadrupole and adapted for the case of a steering magnet.

An image of a misaligned bending magnet can be seen in Figure 51. As seen in the image, two coor-
dinate systems are defined at both the entrance and exit face of the magnet, these are the coordinate
systems of the reference trajectory and the misaligned magnet. The goal is to express the particle
vector described in the misaligned coordinate systems in terms of the coordinates in the reference
coordinate systems. Starting with the coordinate systems at the entrance face of the magnet the
following equation is proposed

xf (0) = x(0)−A0m +B0x(0) (202)

where xf (0) and x(0) are the particle vectors described in the misaligned and reference coordinate
systems at the entrance face of the magnet, A0 and B0 are matrices which need to be derived and m
is the misalignment vector given by

m =



δx
θx
δy
θy
δz
θz

 (203)

where δx, δy, δz are the displacements of the magnet in the x, y, and z direction and θx, θy, and
θz are the rotations about the x, y, and z axes respectively. All rotations are defined to be positive
when rotating in the clockwise direction, looking in the positive direction of the axis. The origin of
the rotation axes is the reference trajectory position at the entrance face of the magnet.
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Figure 51: Figure of a misaligned steering magnet, the reference trajectory and coordinate system
is indicated in blue, the local coordinate system of the misaligned magnet is indicated in red, image
adapted from [9].

First, the effect of rotation of the magnet is considered, the rotation matrices around the x, y, and z
axes are given by

Rx =

1 0 0
0 cos θx sin θx
0 − sin θx cos θx

 , Ry =

cos θy 0 − sin θy
0 1 0

sin θy 0 cos θy

 , Rz =

 cos θz sin θz 0
− sin θz cos θz 0

0 0 1

 (204)

where Rx, Ry, and Rz are the rotation matrices that describe the rotation of a point around the
x, y, and z axes. The total effect of the rotations can be found by multiplying these matrices with
each other. To simplify the results, the small-angle approximations sin θ = θ and cos θ = 1 are used,
furthermore since the rotation angles are small only first-order effects are included, note that under
these assumptions the order of rotation does not matter. The total rotation matrix Rrot is then given
by

Rrot = RxRyRz =

 1 θz −θy
−θz 1 θx
θy −θx 1

 (205)

using this rotation matrix the contribution of the rotational misalignment to the misaligned coordinates
is given by

xfryfr
zfr

 =

 1 θz −θy
−θz 1 θx
θy −θx 1

xy
z

 (206)
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where the subscript fr indicates the contribution to xf by the rotational part of the misalignment.
The translations of the magnet δx, δy, and δz change the coordinates by the amount of displacement.
Furthermore a displacement in z will act as a drift space contributing to xf and yf via x′ and y′. The
contributions of the displacement to the misaligned coordinates, indicates by the subscript fd is given
by

xfd = −δx+ x′δz

yfd = −δy + y′δz

zfd = 0

lf = l − δz
δf = δ

(207)

in first order approximation the total effect of the misalignment can be found by summing Eqs. (206)
and (207).

xf = x− δx+ x′δz + yθz − zθy
yf = y − δy + y′δz − xθz + zθx

zf = z + xθy − yθx
lf = l − δz
δf = δ

(208)

the equations for the particle angles in the misaligned coordinate system can be found using the
equations above

x′f =
∂xf
∂zf

=
∂xf
∂z

∂z

∂zf
=

(
∂x

∂z
− θy +

∂y

∂z
θz

)
∂z

∂zf

y′f =
∂yf
∂zf

=
∂yf
∂z

∂z

∂zf
=

(
∂y

∂z
− θx+

∂x

∂z
θz

)
∂z

∂zf

z′f =
∂z

∂zf
= 1− ∂y

∂zf
θx− ∂x

∂zf
θy ≈ 1

(209)

where the last approximation can be made because the partial derivatives and rotation angles are both
small quantities. Combining Eqs. (208) and (209), using the definitions ∂x/∂z = x′, ∂y/∂z = y′ and
the fact that at the entrance face z = 0, the equations simplify to
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xf = x− δx+ x′δz + yθz

x′f = x′ − θy + y′θz

yf = y − δy + y′δz − xθz
y′f = y′ + θx− x′θz
lf = l − δz
δf = δ

(210)

comparing this result to Eq. (202) the matrices A0 and B0 can be obtained

A0 =



1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0

 , B0 =



0 δz θz 0 0 0
0 0 0 θz 0 0
−θz 0 0 δz 0 0

0 −θz 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 . (211)

Next, the coordinate transformation at the exit face is derived, the following equation is proposed

xf (1) = x(1)−A0m +B1x(1) (212)

where xf (1) and x(1) are the particle vectors described in the misaligned and reference coordinate
systems at the exit face of the magnet, m is the misalignment vector described in the reference
coordinate system at the exit face, and B1 is equal to B0, where the components of m are substituted
by the components of m. The goal is to express m in terms of m, first the vector m is split up into
a rotational mθ and translational mx part

mθ =

θxθy
θz

 , mx =

δxδy
δz

 (213)

the misalignment vector at the entrance face is also split into mθ and mx. To derive the transforma-
tion, a rotation matrix O is defined which describes the rotation of points from the reference coordinate
system at the entrance face to the reference coordinate system at the exit face. Furthermore, a vector
P is proposed, which is the vector pointing from the origin of the reference coordinate system at
the entrance face to the origin of the reference coordinate system at the exit face. To simplify the
derivation the separate contributions of mx and mθ to mx and mθ are given, the total contribution
can then be found by summing the obtained results.

The contribution of mx to mx is given by the rotation matrix
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mfx = Omx (214)

the contribution of mx to mθ is zero, since parallel translations do not affect angles.

Next the contribution of mθ to mθ is given. The displacement of a point, at a certain distance from
a pivot point, due to a rotation is given by the cross product of the rotation vector and displacement
vector, this product then needs to be multiplied by O to account for the rotation of coordinate systems
from the entrance to the exit face.

mfx = O(mθ × P ) (215)

Similar to Eq. (214) the contribution of mθ to mθ is given by

mθ = Omθ (216)

In total all the contributions can be summed to obtain

mx = Omx +O(mθ × P )

mθ = Omθ.
(217)

For a steering magnet, the rotation matrix O and displacement vector P are equal to

O =

1 0 0
0 1 0
0 0 1

 , P =

0
0
L

 (218)

where L is the length of the steering magnet. Using these equations Eq. (217) can be written as



δx

θx

δy

θy

δz

θz

 =



δx+ Lθy
θx

δy − Lθx
θy
δz
θz

 (219)

Using this in Eq. (212) gives,

xf (1) = x(1)−A0m̄ +B1x(1)

xf (1) = x(1)−A1m +B1x(1)
(220)
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where

A1 =



1 0 0 L 0 0
0 0 0 1 0 0
0 −L 1 0 0 0
0 −1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0



B1 =



0 δz θz 0 0 0

0 0 0 θz 0 0

−θz 0 0 δz 0 0

0 −θz 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 =



0 δz θz 0 0 0
0 0 0 θz 0 0
−θz 0 0 δz 0 0

0 −θz 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 = B0

(221)

Now that the coordinate transforms are found, it is possible to write out the misalignment equations.
In the misaligned coordinate system, the equation describing a particle travelling through a steering
magnet is given by

xf (1) = Rxf (0) + b (222)

where R and b depend on the geometry and bending angle of the steering magnet. Substituting in
Eqs. (202) and (220) gives

x(1)−A1m +B1x(1) = R (x(0)−A0m +B0x(0)) + b (223)

solving this for x(1) and discarding all higher-order terms gives

x(1) = Rx(0) + (A1 −RA0)m + (RB0 −B1R)x(0) + (B1 + I3) b (224)

where I3 is the 3x3 identity matrix.

E Matrices for Combined Function Magnets

The control loop which is given in Section 4.2 is explained using matrices B and C, and the disturbance
vector y0, which correspond to a pair of steering magnets. In the beamline combined function magnets
are used in addition to steering magnets to align the beam centroid, which changes B, C and y0. Below
the description of B, C and y0 are given for the magnets which are used in the beamline.
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E.1 Steering Magnets y-coordinate

The magnets, Sx,y and Sy, which are used to align the beam in the y-coordinates are both combined
function magnets. The matrices B and C, and the disturbance vector y0 for the combined function
magnets can be derived by using Eqs. 95, 96 and the transfer matrix for a drift space. A image
showing pair of combined function magnets and the relevant dimensions is given in Figure 52. To
allow for consistent notation with the steering magnets for the x-coordinate all of the equations will
be given in terms of the x-coordinate. The analogous expressions for the y direction can be obtained
by switching out the variables from x to y. During regular operation Sx,y is always focusing in the
x-coordinate, while Sy is defocusing in x. For completeness sake all possible focusing combinations
are given here. To simplify the equations the following substitutions are made

• If Sx,y is focusing in x

C1 = cos
(√

k1Lq1

)
, S1 = sin

(√
k1Lq1

)
D1 = cos

(√
k1Lq1

2

)
, T1 = sin

(√
k1Lq1

2

)
– and Sy is focusing in x

σ1 = −1, σ2 = +1, σ3 = −1

• If Sx,y is defocusing in x

C1 = cosh
(√

k1Lq1

)
, S1 = sinh

(√
k1Lq1

)
D1 = cosh

(√
k1Lq1

2

)
, T1 = sinh

(√
k1Lq1

2

)
– and Sy is defocusing in x

σ1 = +1, σ2 = +1, σ3 = +1

• If Sy is focusing in x

C2 = cos
(√

k2Lq2

)
, S2 = sin

(√
k2Lq2

)
D2 = cos

(√
k2Lq2

2

)
, T2 = sin

(√
k2Lq2

2

)
,

– and Sx,y is defocusing in x

σ1 = +1, σ2 = −1, σ3 = −1

• If Sy is defocusing in x

C2 = cosh
(√

k2Lq2

)
, S2 = sinh

(√
k2Lq2

)
D2 = cosh

(√
k2Lq2

2

)
, T2 = sinh

(√
k2Lq2

2

)
,

– and Sx,y is focusing in x

σ1 = −1, σ2 = −1, σ3 = +1

(225)

where k1, k2, Lq1 and Lq2 are the quadrupole focusing strengths, as defined in Eq. (46), and effective
lengths of Sx,y and Sy respectively. Using these variables the B matrix is given by
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B =
p

µ0

(
g1

Lq1n1
B11

g1
Lq1n1

B12
g2

Lq2n2
B21

g2
Lq2n2

B22

)
with

B1,1 =
D2

√
k1
√
k2

D2

√
k2T1 +D1

√
k1
(
D2

√
k2L1 + T2

) ,
B1,2 = −

√
k1
(
D2

√
k2L2 + T2

)
D2

√
k2T1 +D1

√
k1
(
D2

√
k1L1 + T2

) ,
B2,1 = −

D1C2

√
k1
√
k2 + σ3k2S2

(
D1

√
k1L1 + T1

)
D2

√
k2T1 +D1

√
k1
(
D2

√
k2L1 + T2

) ,

B2,2 =
C2

√
k2T1 + σ3k2L2T1S2 +D1

√
k1
(
C2

√
k2 (L1 + L2) + S2 + σ3k2L1L2S2

)
D2

√
k2T1 +D1

√
k1
(
D2

√
k2L1 + T2

) ,

(226)

where µ0 is the permeability of free space, p is the particle momentum divided by its charge, L1 is
the distance between the first and second combined function magnet, L2 is the distance between the
second combined function magnet and the location at which y1 and y′1 are measured, g1, g2, n1, and
n2 are the gap sizes and the number of coil windings of Sx,y and Sy respectively. The matrix C is
given by

C =
µ0
p

(
Lq1n1

g1
C11

Lq2n2

g2
C12

Lq1n1

g1
C21

Lq2n2

g2
C22

)
with

C1,1 =
T1
(
C2 + σ3

√
k2L2S2

)
√
k1

+
D1

(√
k2 (L1 + L2)C2 + (1 + σ3k2L1L2)S2

)
√
k2

,

C1,2 = L2D2 +
T2√
k2
,

C2,1 = σ3

√
k2T1S2√
k1

+D1

(
C2 + σ3

√
k2L1S2

)
,

C2,2 = D2,

(227)

it can be checked that B = C−1, which was the requirement for fastest convergence of the control
system. The disturbance vector y0 is given by
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y0 =

(
y01
y02

)
with

y01 =
S1
(√
k2 (σ1k1 (L1 + L2)x0 + x′0)C2 + (k1 (σ1 + σ2k2L1L2)x0 + σ3k2L2x

′
0)S2

)
√
k1
√
k2√

k1C1

(√
k2 (x0 + (L1 + L2)x

′
0)C2 + (x′0 + σ3k2L2 (x0 + L1x

′
0))S2

)
√
k1
√
k2

y02 =
S1
(
σ1k1x0C2 +

√
k2 (σ2k1L1x0 + σ3x

′
0)S2

)
√
k1

+ C1

(
x′0C2 + σ3

√
k2
(
x0 + L1x

′
0

)
S2

)
(228)

where x0 and x′0 are the position and angle of the beam centroid at the start of Sx,y

Lq1

L1

(y0, y’0) (y1, y’1)

Lq2

L2

SySx,y

Figure 52: Pair of combined function magnets which can be used to correct for position and angle in
the y-direction. The reference trajectory is indicated in black, while the described particle trajectory
is given in blue.

E.2 Steering Magnets x-coordinate

To correct the angle and position of the beam centroid in the x-direction the combined function magnet
Sx,y and the regular steering magnet Sx are used. In between these magnets the combined function
magnet Sy is located, as illustrated in Figure 53. During regular operation Sx,y is focusing in x and
Sy is defocusing in x.

Using the simplifications from Eq. (225), where the definitions of k1, k2, Lq1 and Lq2 remain the same,
the matrix B can be written as
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B =
p

µ0

(
g1

Lq1n1
B11

g1
Lq1n1

B12
g2

Ls2n2
B21

g2
Ls2n2

B22

)
with

B1,1 =

√
k1
√
k2

C2

√
k2T1 + σ3k2L2T1S2 +D1

√
k1
(
C2

√
k2 (L1 + L2) + S2 + σ3k2L1L2S2

) ,
B1,2 =

−
√
k1
√
k2

C2

√
k2T1 + σ3k2L2T1S2 +D1

√
k1
(
C2

√
k2 (L1 + L2) + S2 + σ3k2L1L2S2

) ,
B2,1 =

D1C2

√
k1
√
k2 + σ3k2

(
D1

√
k1L1 + T1

)
S2

−C2

√
k2T1 − σ3k2L2T1S2 −D1

√
k1
(
C2

√
k2 (L1 + L2) + S2 + σ3k2L1L2S2

) ,
B2,2 =

C2
√
k2T1+σ3k2(L2+L3)T1S2+D1

√
k1(C2

√
k2(L1+L2+L3)+S2+σ3k2L1(L2+L3)S2)

C2
√
k2T1+σ3k2L2T1S2+D1

√
k1(C2

√
k2(L1+L2)+S2+σ3k2L1L2S2)

(229)

where Ls2 is the length of Sx, L1 is the distance between Sx,y and Sy, L2 is the distance between Sy
and the center of Sx, g1, g2, n1, and n2 are the gap sizes and the number of coil windings of Sx,y and
Sx respectively.

The matrix C is given by

C =
µ0
p

(
Lq1n1

g1
C11

Ls2n2
g2

C12
Lq1n1

g1
C21

Ls2n2
g2

C22

)
with

C1,1 =
T1(C2+σ3

√
k2(L2+L3)S2)√
k1

+
D1(
√
k2(L1+L2+L3)C2+(1+σ3k2L1(L2+L3))S2)√

k2
,

C1,2 = L3,

C2,1 = σ3

√
k2T1S2√
k1

+D1

(
C2 + σ3

√
k2L1S2

)
,

C2,2 = 1,

(230)

where L3 is the distance between the center of Sx and the position at which x1 and x′1 are measured.
It can be checked that B = C−1, which was the requirement for fastest convergence of the control
system. The disturbance vector y0 is given by
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y0 =

(
y01
y02

)
with

y01 =

√
k2C2

(√
k1 (x0 + (L1 + L2 + L3)x′0)C1 + (σ1k1 (L1 + L2 + L3)x0 + x′0)S1

)
√
k1
√
k2

+

S2

(√
k1 (x′0 + σ3k2 (L2 + L3) (x0 + L1x

′
0))C1 + (k1 (σ1 + σ2k2L1 (L2 + L3))x0 + σ3k2 (L2 + L3)x′0)S1

)
√
k1
√
k2

y02 =
S1

(
σ1k1x0C2 +

√
k2 (σ2k1L1x0 + σ3x

′
0)S2

)
√
k1

+ C1

(
x′0C2 + σ3

√
k2 (x0 + L1x

′
0)S2

)
(231)

where x0 and x′0 are the position and angle of the beam centroid at the start of Sx,y.

Lq1

L1

(x0, x’0)
(x1, x’1)

SxSx,y Sy

L2

Lq2 L3

LS2

Figure 53: Steering magnets used to correct the beam in the x-coordinate.
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