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Abstract: To combat human-error in driving and increase car safety, a tremendous amount of
research has been conducted in the field of automated driving. However, there is evidence that
complete autonomous control is not desirable when it comes to the safest driving experience.
Adaptive automation is a system where the level of automation is adjusted to the state of the
operator. In the context of driving, such a system could change its level of automation to the
cogntive load of the driver to counteract the negative effects of cognitive overload or underload.
For such a system to function, a robust method of measuring cognitive load is required.

This study investigated whether cognitive load, here defined as a combination of working mem-
ory load (WML) and visuospatial demands, has an influence on working memory performance
and driving performance. Furthermore, we also used eye-tracking to find out whether pupil size
and eye-fixations are influenced by cogntive load.

A simulated-driving experiment with eye-tracking was conducted in which WML and visu-
ospatial demands were manipulated separately. In the simulation participants drove on a straight
highway for 60 minutes. WML was manipulated by an n-back task (n = 0, 1, 2, 3, 4), by do-
ing a speed-regulation-task. Visuospatial demands were manipulated by a change in the driving
environment: a construction site with reduced lane width, increasing driving difficulty.

Results indicate that working memory performance is only influenced by WML. Driving perfor-
mance is only affected by an increase in visuospatial demands. Furthermore, pupil-size predicted
WML, but not visuospatial demands. Lastly, the number of eye-fixations on the speedometer
decreased when WML increased.

1 Introduction

In today’s society, practically everyone uses a car to
get around. Only in the United States, each house-
hold has an average of 1.88 vehicles at home (I.
Wagner, 2021). In 2017, only 9% did not possess a
car or light truck (I. Wagner, 2019).

When you look at the leading causes of death of
Americans, the third position, below hearth disease
and cancer, is ’accidents’ (Murphy et al., 2018).
21.9%, of these accidents are deaths related to mo-
tor vehicle crashes (J. Elflein, 2021). de Waard
(1996) states that most car accidents can be at-
tributed to human error. This emphasizes that re-
search relating to car-safety and autonomous driv-
ing is of utmost importance.

The act of driving a car is a cognitively demand-
ing task. A driver has to carry out multiple tasks si-

multaneously, such as monitoring information from
inside and outside the vehicle, controlling the car,
and adhering to traffic rules. Moreover, the driver
is located in a highly dynamic environment, where
unforeseen events can take place at any moment.
All these sub-tasks demand cognitive resources,
which are in limited supply (Salvucci and Taat-
gen, 2008). An important concept in this context is
mental workload. It is described as the ratio of cog-
nitive demands to allocated resources (de Waard,
1996). This means that mental workload is a mea-
sure of how much a task demands from the driver’s
cognition in relation to the cognitive resources that
are available. Cognitive load can be categorized in
two regions (Wickens, 2008). The first one being
cognitive underload, where the cognitive demand
is less than the cognitive resources available. The
other one is cognitive overload, where the cognitive
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demand is higher than the cognitive resources avail-
able. The latter poses a problem, which is described
by Meister (1976) in a relational model that maps
task demand to task performance. In this model,
a region is described where extreme levels of load,
that is overload, lead to diminished performance in
the task at hand.

In driving, two cognitive components are es-
sential; working memory and visual attention
(de Waard, 1996). A large demand is made on work-
ing memory, as the complex representation of the
environment has to be retained and updated con-
stantly. It has been shown that the ability to fo-
cus decreases under conditions where cognitive load
on working memory is high (Lavie, 2010). Also, a
study claims that variability in growth and capac-
ity of working memory in adolescents is associated
with a higher rate of car crashes (Walshe et al.,
2019). Driving is largely a visual task, as the driver
has to constantly make estimations of the visuospa-
tial relation of surrounding objects, such as cars,
lane indicators, and other obstacles. Furthermore,
it is required to perceive information from inside
and outside the vehicle. Brooks et al. (2018) have
linked a decrease in driving performance to an in-
crease in peristimulus alpha activity, which indi-
cates deficient visuospatial attention.

To account for undesired levels of cognitive load,
’adapative automation’ can be used. It refers to a
system where the level of automation is adjusted
to the state of the operator (Byrne and Parasura-
man, 1996). One might wonder why a fully auto-
mated system would not be preferable. A study in
the aviation industry showed that automation can
have a negative result on situational awareness in
terms of over-dependence on the system, decreased
vigilance and lack of understanding the system’s
capabilities (Endsley and Kiris, 1995). Also, a hu-
man factors study found that driving performance
was worse when participants had to regain control
of an automated vehicle while they were distracted
by a secondary task (Merat et al., 2012). These in-
stances indicate that automation can lead to cogni-
tive underload, which in turn can lead to a decrease
in performance. This is where adaptive automation
is preferable, a system that will only increase au-
tomation when cognitive load is too high.

For such a system to function, a method that
measures cognitive load must be developed. Ex-
amples of physiological measures of cognitive load

are EEG (Antonenko et al., 2010), heart rate (Paas
et al., 1994) and pupil dilation (van Gerven et al.,
2004). Findings of Scheunemann et al. (2019) show
that there is an interaction between visuospatial de-
mands and working memory on the brain level and
in task performance. To further consolidate an in-
teraction between these two cognitive systems, this
research tries to find an effect of working mem-
ory load and visuospatial demands on pupil dila-
tion. We therefore ask the question ”Can pupil-
lometry predict cognitive load while driving?”. Fur-
thermore, we investigate the relationship between
eye-fixations on a speedometer and cognitive load.
An inverse relationship is to be expected, due to
the fact there is a limited supply of cognitive re-
sources (Salvucci and Taatgen, 2008). This means
that when cognitive load increases, a lack of cog-
nitive resources arises, which in turns could mean
that the participant has less capacity to check the
speedometer. For this, we try to answer the ques-
tion ”Does cognitive load have an influence on the
frequency of speedometer checking?”.

Additionaly, we also focus on driving behavior.
To effectively estimate when cognitive load is too
high, we use two aforementioned measurements
that could suffer from cognitive overload, namely
working memory performance and driving behav-
ior. Scheunemann et al. (2019) found that an in-
crease in cognitive load in one domain could lead
to a decrease in performance in the other domain.
They showed that an increase in working mem-
ory load, decreased driving performance, where the
measurement of driving performance is related to a
visual task. Also, they showed that an increase in
visuospatial demands led to a decrease in working
memory performance. They claim that this interac-
tion between two cognitive systems is caused by a
competition of limited cognitive resources (Salvucci
and Taatgen, 2008). Scheunemann et al. (2019) pro-
posed some improvements in their paper. Mainly,
they addressed that their way of increasing work-
ing memory load was not perfect: increasing levels
of working memory load were tested on a shorter
time frame. This study accounts for this. We are
therefore interested if we can replicate these results.
To investigate this we try to answer the following
two questions: ”Does cognitive load have an influ-
ence on working memory performance?” and ”Does
cognitive load have an influence on driving perfor-
mance?”.
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To be able to answer the two questions related to
eye-tracking and the two question related to driving
behavior, a simulated driving experiment with eye-
tracking is conducted where working memory load
and visuospatial demands are manipulated. The ex-
periment is mostly replicated from two other stud-
ies, namely Unni et al. (2017) and Scheunemann
et al. (2019), which both tried to predict varying
working memory loads and visuospatial demands,
and corresponding brain areas.

The experiment consisted of the participant driv-
ing on a simulated highway. The working memory
load was manipulated by conducting a modified n-
back task during driving (Unni et al., 2017). The
n-back task is a way to gradually increase cogni-
tive working memory load (Kirchner, 1958). This
n-back task was performed in terms of a speed-
regulation task, as the participant has to adjust its
speed to the speed sign that was seen n speed signs
back.

Visuospatial demands were manipulated by hav-
ing two highway conditions; a non-construction
condition and a construction condition. The non-
construction condition was a normal three-lane
highway, while the construction condition was a
three-lane highway with narrower lanes and the
left-most lane being obstructed. This increases the
visuospatial demands which increases the driving
difficulty (Scheunemann et al., 2019).

2 Methods

2.1 Participants

A total of 38 volunteers (23 male, 12 female, 3
other) aged 20-36 (M = 23.1 ± 3.0). All drivers
possessed a driver’s license. All participants signed
an informed consent form prior to the experiment
and were compensated e12 for their participation.

2.2 Experimental Set-up

The experiment took place on a simulated straight
three-lane highway, see Figure A.1 (see Appendix).
The features of the environment were minimal. Ei-
ther side of the road was coloured green, signify-
ing grass. There were no median strips dividing the
road from the rest of the environment. Other traf-
fic consisted of a single car (referred to as autocar),

represented by a blue rectangle. The autocar would
stick to traffic rules such as overtaking from the
left, staying on the right lane as much as possible,
and following the current speed limit. Additionally,
the car was programmed to stay in a certain range
from the participants car, ensuring that the simu-
lated car would stay relevant.

The participant could see a black dashboard that
filled the bottom of the screen. The speed of the
car was shown in the center of the dashboard, rep-
resented by an integer. When the left or right in-
dicators were pressed, they would appear on the
dashboard in the respective sides as yellow blink-
ing arrows. The simulation had three rear-view mir-
rors: one on the top, one on the left, and one on the
right. The autocar was visible in the corresponding
mirrors depending on the distance from the car.

In the construction condition the leftmost lane
was closed off by a row of pylons. The lanes were
separated by a full yellow line and were narrower
than the non-construction condition, see Figure
A.2 (see Appendix). Precisely, the non-construction
condition had lanes that were 3.5 meters wide, fol-
lowing the widths of Germany’s national highways.
The construction site lanes have a smaller width of
2.5 meters.

Speed signs that passed were identical to gen-
eral speed signs in The Netherlands; black digits
enclosed by a red circle.

Within each trial the participants were presented
with at least nine speed signs at intervals of 20 sec-
onds. The first speed sign was presented after 5
seconds. For n-back tasks with n > 0, there was a
build-up phase of n speed signs preceding the nine
speed signs where the participant would perform
the task. For example, for n = 4, the build-up phase
would be the first four speed signs. After the build-
up phase, the task of regulating speed would start.
Due to a difference in length of build-up phases per
n-back trial, each trial differed in number of speed
signs; for each n-back, n speed signs were added.
For a schematic overview of the n-back task, see
Figure 2.1.

Participants interacted with the simulation us-
ing a steering wheel with indicators and a throttle
and brake pedal (Driving Force GT by Logitech).
The steering wheel was secured to the table in front
of the screen and remained in the same location
for all participants. The pedals were placed on the
floor such that participants could move it closer
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Figure 2.1: Example of n-back experimental
paradigm to manipulate working memory load.
(A) Consider a scenario where the participant
is about to pass the 80 km/h speed sign and
the previous four speed signs were as shown in
the schematic. (B) For the corresponding n-back
task, participants had to memorize the last n
speed signs and drive at the n-th speed sign
which occurred previously. For example, at 1-
back, the participant’s target speed is the previ-
ous sign (140 km/h) and has to keep the current
speed sign in memory (80 km/h). Figure taken
from Unni et al. (2017), caption adapted from
Scheunemann et al. (2019).

or further depending on their level of comfort. An
eye-tracking camera (EyeLink Portable Duo by SR
Research), placed between the screen and the steer-
ing wheel, was used to continuously record the
eye movements and pupil size of participants. The
method of tracking that we employed was remote
tracking using a target sticker on the participant’s
forehead. This method was chosen because stabi-
lizing the head using a head rest was not feasible
considering the set-up with the steering wheel.

2.3 Experimental Procedure

The procedure of the experiment follows that of
Scheunemann et al. (2019) closely. The experiment
consisted of 20 trials in total, divided by a short
break into two blocks of 10 trials each. The par-
ticipant was allowed to take a short brake be-
tween the blocks. Within a block, each n-back trial
(n = 0, 1, 2, 3, 4) appeared twice: once with a con-
struction site and once without. The order of the
trials was determined pseudorandomly with a few

conditions. Firstly, no n-back level could appear
twice in a row. Secondly, the construction/non-
construction conditions were alternated from trial
to trial. These constraints on the randomization
were incorporated with the aim of avoiding habitu-
ation effects for the memory task and the visuospa-
tial demands. Finally, the order of the trials in the
first block was reversed to form the order of trials
in the second block.

Prior to performing the experiment, the partici-
pant was given instructions about the driving and
the memory task. They then performed a practice
round (one 2-back trial with no construction and
a total of 5 speed signs) to get accustomed to the
simulation and the steering wheel. Next, the eye-
tracker was calibrated. This involved the partici-
pant following a target around the computer screen
with their eyes. This procedure was repeated twice:
once to calibrate and once to validate whether that
calibration was accurate. If the validation was in-
accurate, calibration was performed again.

After calibration, the experiment began. Every
trial (excluding the very first one) was preceded by
an eye-tracking drift correction. This required the
participant to look at a target at the center of the
screen. If the measured eye position deviated too
far from the position of the target, calibration was
performed again. Otherwise the deviation was auto-
matically taken into account with recording of the
eye position. After drift correction, a pop-up mes-
sage appeared telling the participant which n-back
task they should perform in the next trial. The per-
centage of total trials they had already completed
was also shown in the message. The participant had
to press an OK button on the steering wheel to start
the trial. Unlike in the experiment by Scheunemann
et al. (2019), we did not include warning messages
telling participants to change their speed when it
was incorrect, as this could instigate an unwanted
effect of the participant trying to guess the correct
speed.

2.4 Data collection

Behavioral data was recorded to track the partic-
ipant’s driving behavior and performance on the
n-back task. The raw variables were recorded ev-
ery 5 milliseconds. To assess the participant’s driv-
ing behavior, the steering angle of the steering
wheel was recorded. Also, how much the brake-
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and accelerate-pedals were pressed was recorded.
The position of the participant’s car and the au-
tocar was recorded as well. The speed of the car
was also recorded and used to determine the er-
ror rate of the speed regulation task. The moment
when a speed sign appears was also recorded, which
is useful to determine when the participant is ex-
pected to change his/her speed. Lastly, a variable
was recorded that tracked when the indicators were
used. This helps determine when a lane change was
initiated and how long it took.

The eye-tracker recorded a number of raw vari-
ables at a rate of 500 Hz, two of which are relevant
for the current study. Eye positions were measured
in x and y coordinates relative to the PC moni-
tor (1920 × 1080 px). Pupil size was measured in
terms of diameter in arbitrary units. The eyetracker
recorded only one eye (specifically the left) as this
is most common in eye-tracking experiments (Hut-
ton, 2019).

2.5 Data analysis

A number of participants were excluded for each
analysis. 16 participants were excluded for all anal-
yses either due to incorrect trial lengths or the par-
ticipant having outlying error-rates in 0-back and
1-back trials, which were regarded as the task per-
formance not being indicative of a real attempt.
For the eye-tracking analysis, 6 more participants
were excluded because of missing data, resulting in
a sample group of 16. For the speed regulation task
performance and the lane deviation, no more par-
ticipants were excluded, resulting in a sample group
of 22. For the steering reversal rate, 15 participants
were excluded due to missing data, resulting in a
sample group of 7. For the number of collisions, 3
participants were excluded, resulting in a sample
group of 19.

Driving behavior

To analyse the working memory performance in the
speed regulation task, error-rates were calculated.
The error-rate was calculated in terms of a pro-
portion; it is the percentage of target speeds that
the participant failed to reach, expressed as a value
from 0 to 1, where 0 is 0% error-rate and 1 is 100%
error-rate. Each trial was scored manually by check-
ing, for each speed sign, if the participant reached

a target speed and stayed on this target speed for a
significant time; error rate = incorrect target speed
in trial / number of speed signs in trial.

To analyse the driving performance, lane devia-
tion was calculated for each trial over all partici-
pant. The lane deviation measure is used to com-
pare driving performance between different levels
of working memory performance and visuospatial
demands. Lane deviation is defined as the average
deviation from the lane center over a trial. Lane
changing manoeuvres were excluded as they are an
intended deviation from the lane center and should
therefore not be included. Lane deviation is de-
noted in an arbitrary unit, as the values are based
on the specifics of the lanes and cars.

Additionally, the number of collisions were anal-
ysed as a measure of driving performance. It is ex-
pressed as the proportion between number of col-
lisions and number of interactinos. A collision is
defined as the simulated car and the participant’s
car touching. An interaction is defined as the par-
ticipants car overtaking the simulated car, where a
possible collision can occur. The proprtion is calcu-
lated as follows; proportion collisions = number of
collisions / number of interactions

To support both measures of driving perfor-
mance, another measure is used to validate the dif-
ference in driving difficulty. To measure driving dif-
ficulty, steering reversal rate is calculated. Steering
reversal rate is a frequency measure, which provide
an indication of driving difficulty, rather than driv-
ing performance (McLean and Hoffman, 1975).

Steering reversal rate was defined as the num-
ber of times the center of the steering wheel was
crossed. Steering reversal rate generally increases as
driving difficulty increases, as more steering correc-
tion are necessary to driving correctly (MacDonald
and Hoffman, 1980). The steering reversal rate is
expressed per second; steering reversal rate = total
steer reversals in trial / number of seconds in trial

Eye-tracking

The eye-tracking data consisted of fixations, sac-
cades and blinks. Fixations where used, as they are
the most reliable measurements of both pupil size
and fixation location.

To effectively compare pupil size measurements,
baseline correction must be applied. It accounts
for fluctuations in pupil size during the experiment
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Figure 3.1: Error-rate in the speed regula-
tion task for every combination of n-back level
and visuospatial demand across all participants.
Black vertical lines indicate standard error of
the mean (n = 22). Black horizontal lines in-
dicate significant difference in means between
subsequent n-back levels of paired sample t-test.

(Mathôt et al., 2018). The baseline period we chose
was between the start of the trial and the appear-
ance of the first speed sign, which is a 5 second win-
dow. This mean pupil size during this time frame
is used to correct the pupil size of that trial. In our
study, subtractive baseline correction is used; cor-
rected pupil size = pupil size - baseline pupil size
The result is an arbitrary unit.

Lastly, the fixations on the speedometer are anal-
ysed. To measure this, an area of interest must be
chosen, that is, when a fixation is on the speedome-
ter. As this area appeared to differ within trials
and between participants, the bounds of this area
were chosen manually. Fixations on the speedome-
ter were expressed as a percentage of the total
number of fixations during a trial; fixations on
speedometer = fixations on speedometer in trial /
total fixation in trial

3 Results

3.1 Driving Behavior

Error-Rate in Speed Regulation Task

Figure 3.1 shows the performance on the speed reg-
ulation task in terms of error-rate. For 2-back and

n-back level p-value Bonferroni

0-back 1-back 3.80e−4 4.00e−3

0-back 2-back 2.52e−7 2.52e−6

0-back 3-back 1.15e−9 1.15e−8

0-back 4-back 3.04e−11 3.04e−10

1-back 2-back 0.006 0.062
1-back 3-back 1.06e−6 1.06e−5

1-back 4-back 1.01e−8 1.01e−7

2-back 3-back 1.35e−5 1.35e−4

2-back 4-back 4.27e−7 4.27e−6

3-back 4-back 0.311 1.00

Table 3.1: Results of paired sample t-test, which
tests if there is a significant difference in mean
error-rate between every n-back condition. Bon-
ferroni correction is applied. Values in bold in-
dicate a significant difference.

3-back, driving in the construction condition re-
sults in a higher error-rate. For 0-back and 4-back,
there appears to be no evident difference. 1-back
results in a slight increase of error-rate in the non-
construction site. Altogether, no consistent pattern
can be observed between the two visuospatial con-
ditions. However, there seems to be an effect be-
tween n-back level and error-rate; as n-back level
increases, error-rate increases. Only between 3-back
and 4-back, the error-rates appear quite similar.

A two-way repeated measures ANOVA with fac-
tors visuospatial demands and n-back level showed
a main effect only for n-back level [F (4, 84) =
26.46, p < 0.001] and a marginal interaction ef-
fect between the two factors [F (4, 84) = 2.51, p =
0.048].

To further investigate the main effect of n-back
level on error-rate, a paired sample t-test is per-
formed. When interpreting Table 3.1, the Bonfer-
roni p-values are used, as it corrects for a poten-
tially inflated type-1 error. Table 3.1 shows that
there is a significant difference in mean error-rate
for all n-back pairs, except for the pair 1-back -
2-back and 3-back - 4-back. This is also shown by
the horizontal lines in Figure 3.1. It creates a group-
ing effect of the n-back levels: 0-back (lower n-back
level), 1-back and 2-back (middle n-back level) and
3-back and 4-back (higher n-back level).
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Figure 3.2: Steering reversal rate for every com-
bination of n-back level and visuospatial de-
mand across all participants. Black vertical lines
indicate standard error of the mean (n = 7).

Steering Reversal Rate

Figure 3.2 shows the steering reversal rate for ev-
ery condition. When we look at steering reversal
rate between n-back levels, there appears to be
no increase or decrease in steering reversal rate
when n-back level increases. However, between con-
struction and non-construction, there seems to be
a clear difference, where the construction condition
has a higher steering reversal rate than the non-
construction condition.

A two-way repeated measures ANOVA with
factors visuospatial demands and n-back level
showed a main effect only for visuospatial demands
[F (1, 6) = 28.93, p < 0.001].

The main effect of visuospatial demands on steer-
ing reversal rate indicates that the construction site
increases driving difficulty.

Lane deviation

Figure 3.3 shows the lane deviation from the cen-
ter for each condition. First, we look at the differ-
ence between the construction condition and non-
construction. For each n-back level except 1-back,
we see a higher lane deviation in the construction
site. When we look at the difference in lane devi-
ation between n-back levels, there seems to be an
increase in lane deviation, which is only visible in
the construction condition.

Figure 3.3: Lane deviation from the center of
the lane for every combination of n-back level
and visuospatial demand across all participants.
Black vertical lines indicate standard error of
the mean (n = 22).

Figure 3.4: Number of collisions relative to num-
ber of interactions for every combination of n-
back level and visuospatial demand across all
participants. Black vertical lines indicate stan-
dard error of the mean (n = 19).

A two-way repeated measures ANOVA with
factors visuospatial demands and n-back level
showed a main effect only for visuospatial demands
[F (1, 21) = 14.52, p < 0.001].

The main effect of visuospatial demands on the
lane deviation indicates that the construction site
decreases driving performance, as participants de-
viate more in the construction site.
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Figure 3.5: Mean pupil size for every condition.
Pupil size was correct by using subtractive base-
line correction. Vertical lines indicate standard
error of the mean (n = 16).

Car collisions

Figure 3.4 shows the number car collisions in pro-
portion to the number of interaction for every con-
dition. When we look at the difference between vi-
suospatial demands for each n-back level, we see
a clear difference. For each n-back level, the con-
struction condition has a higher number of colli-
sions than the non-construction condition. Looking
at the the difference in collisions between n-back
levels, no coherent pattern can be observed.

A two-way repeated measures ANOVA with
factors visuospatial demands and n-back level
showed a main effect only for visuospatial demands
[F (1, 18) = 124.32, p < 0.001].

The main effect of visuospatial demands on
the proportion of collisions : interactions indicates
that the construction site decreases driving perfor-
mance.

3.2 Pupil size

Figure 3.5 shows the mean pupil size for each con-
dition in terms of n-back level and visuospatial de-
mands. When we look at pupil size over n-back lev-
els, the figure shows that n-back level has no consis-
tent effect on pupil size in the non-construction con-
dition, as from 0-back to 2-back, the pupil size de-
creases, to then increase on 3-back and then drops
again on 4-back. However, for the construction con-

Figure 3.6: Fixations on the speedometer as a
percentage of total fixations for every conditions
over all participants. Bars indicate standard er-
ror of the mean (n = 16).

dition we see a more stable pattern, when n-back
increases, pupil size seem to increase as well, only
for 4-back there is a small drop, but still higher than
0,1,2-back. When looking at the differences between
visuospatial demands for each n-back level, pupil
sizes seem to be lower for the construction site in
0,3,4-back, but no real difference is observed for 1-
back and 2-back.

A two-way repeated measures ANOVA showed
a main effect between n-back level and pupil size
[F (4, 60) = 2.97, p < 0.05] and no effect of visu-
ospatial demands or an interaction effect between
the two factors.

3.3 Eye fixations

Figure 3.6 shows the number of fixations on the
speedometer. It shows a negative correlation be-
tween n-back level and fixations on the speedome-
ter. Evidently, there is no effect between visuospa-
tial demands, as the lines are nearly identical.

As expected, performing a two-way repeated
measures ANOVA showed a main effect between
n-back level and pupil size [F (4, 60) = 47.68, p <
0.001] and no effect of visuospatial demands or an
interaction effect between the two factors.
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4 Discussion

In this research, we tried to answer multiple ques-
tions related to cognitive load during driving. The
first two questions are answered by analysing eye-
tracking data and the second two questions are an-
swered by analysing behavioral driving data.

First, we focus on the eye-tracking findings.
Starting with the question ”Can pupil size predict
cognitive load?”.

We found that there was a main effect of n-back
level on pupil size. This is also supported when we
look at Figure 3.5, we see that for the higher n-back
levels, namely 3-back and 4-back, the pupil size is
higher than that of the lower n-back levels. This
means that an increase in n-back level, and there-
fore an increase in WML leads to increasing pupil
size. As for visuospatial demands, Figure 3.5 shows
that there is no coherent pattern between construc-
tion and non-construction in terms of pupil size;
for 0-back, 3-back and 4-back the pupil size seems
lower in construction site, but for 1-back and 2-
back, no real difference is observed. Additionally, no
significant effect of visuospatial demands is found
on pupil size.

We can therefore conclude that pupil size only
predicts one component of cognitive load, namely
working memory load, and not visuospatial de-
mands.

The second question we asked relating to eye-
tracking was, ”Does cognitive load have an effect
on the frequency of speedometer checking?”

The results in Figure 3.6 gave us a clear pic-
ture; the number of fixations on the speedometer
decreased as n-back level increased. Moreover, a
main effect of n-back level on the number of fixa-
tions was found. As for visuospatial demands, both
the plot as well as the statistical test indicated that
there was no effect on the number of fixations on
the speedometer.

From this we can conclude that only working
memory load has an effect on the frequency of
speedometer checking. Increased working memory
load leads to a decrease in speed-keeping attempts,
possibly due to a lack of cognitive resources.

In the context of practical applications, we have
shown that an important component of cognitive
load, namely working memory load, can be pre-
dicted by pupil size. One could think of a setting
where eye-tracking is used to indicate when the

working memory might be overloaded during driv-
ing. It also further consolidates the consensus that
pupil dilation is a viable measure of cognitive load
(van Gerven et al., 2004). Furthermore, we have
shown the effect of working memory load on speed-
keeping, which shows that an overloaded working
memory decreases focus on speed-regulation. This
is consistent with findings of Lavie (2010), she
showed that the ability to focus decreased when
working memory load increased.

In general, incorporating eye-tracking equipment
in a car seems like a feasible approach towards
adaptive automation. As shown, pupil dilation can
be used to measure cognitive load to some de-
gree, giving us a possible time-frame of higher risks
in human-driving. Additionally, eye-fixations might
give us an indication of how loaded our working
memory is, which might also provide us with points
in time where additional automation is required.

Next, we will discuss the questions related to
driving behavior. Starting with the question ”Does
cognitive load have an influence on working mem-
ory performance?”

As Figure 3.1 shows, working memory perfor-
mance decreases as working memory load increases.
This is also consistent with the statistical tests.
However, there was no difference in working mem-
ory performance between visuospatial demands;
there was no coherent pattern in Figure 3.1 and
no effect of visuospatial demands in the statistical
tests.

We can conclude that working memory perfor-
mance is only influenced by one of the two compo-
nents of cognitive load in driving, namely work-
ing memory load. This is not in line with what
we expected. As Scheunemann et al. (2019) argued
for a competition of cognitive resources, where the
two relevant domains in driving, namely visuospa-
tial attention and working memory, could nega-
tively impact one another. They showed that an
increase in demands for the cognitive domain asso-
ciated with visuospatial attention led to decrease in
working memory performance, which is correspon-
dent with the cognitive system of working memory.
Our results do not show this inter-domain interac-
tion. They only show a decrease in working memory
performance, when working memory load increases.

A possible explanation for the difference in re-
sults might be that our participants were not in-
structed which of the two tasks, namely driving
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and the speed regulation task, to prioritize. Partic-
ipants might have prioritized the n-back task over
driving correctly, diminishing the effect of the vi-
suospatial demands. However, Scheunemann et al.
(2019) also stated that this might have happened
in their study. In their experiment, the participant
only received feedback (warning messages that indi-
cated that they were driving at an incorrect speed)
on the working memory task. They believe that
this might have shifted the focus of the experiment
to the speed regulation task. It is hard to deter-
mine whether this effect actually occurred, and if
it explains the difference. Investigating when par-
ticipants prioritize a specific task, in a dual-task
paradigm, might be an interesting idea for future
studies.

The remaining question we still have to answer
was ”Does cognitive load have an influence on driv-
ing behavior?”

For this we first validated when task difficulty
was increased. We did this by adopting a frequency
measure, which is usually a measure of task diffi-
culty (McLean and Hoffman, 1975). The used mea-
sure was steering reversal rate.

Figure 3.2 showed that for steering reversal rate,
the construction condition seemed to increase driv-
ing difficulty, as the steering reversal rate was
higher than that of the non-construction condition.
However, we did not see an increase in driving dif-
ficulty for increased working memory load. Both
findings were consistent with the statistical tests.

As the steering reversal rate indicated that the
construction site increased driving difficulty, we
could then look at the measures of driving perfor-
mance.

In Figure 3.3, lane deviation was calculated.
Once again, apart from the 1-back level, each n-
back level had more lane deviation in the construc-
tion site. Supported by the statistical, which found
that visuospatial demands had a main effect on
lane deviation, we can conclude that visuospatial
demands indeed have an effect on driving perfor-
mance. Furthermore, Figure 3.3 showed a slight
effect of increased lane deviation as n-back levels
increase for the construction site. Statistical tests
showed otherwise, as no significant effect of n-back
level was found on driving performance.

Figure 3.4 showed the other measure of driving
performance, namely number of collisions. It was
in line with the findings for lane deviation; the

construction condition had more collisions and was
therefore associated with decreased driving perfor-
mance. And again, no effect was found for increased
working memory load.

We can conclude that, once again, only one com-
ponent of cognitive load has an influence on driving
performance, namely visuospatial demands. This is
not consistent with the findings of Scheunemann
et al. (2019). They found an interaction between
two cognitive domains; they showed that an in-
crease in working memory performance led to a de-
crease in driving performance, where performance
was related to a highly visual measure, namely lane
deviation.

A possible reason for the difference might be that
Scheunemann et al. (2019) used a highly realistic
virtual reality simulation, when our study used a
relatively simple visualization of a car dashboard.
It is probable that it was more difficult in our sim-
ulation to perceive when the car was correctly cen-
tered, and as both lane deviation and number of
collisions require a good perception of lane center-
ing, this might have caused a difference in results.

For both findings relating to driving behavior
there are practical implications. We have shown
that working memory performance can predict the
amount of working memory load in driving, which
is a surface level observation. However, a malfunc-
tioning working memory does lead to more risks
in driving (Walshe et al., 2019), therefore our find-
ings emphasize the importance of adaptive automa-
tion to notice and react when working memory load
is too high. Furthermore, driving performance is
an indicator of a visually more demanding driving
task. It gives a better grasp of when a driver might
need additional support, possibly in lane-keeping.

It is important to note that our study has some
limitations. First of all, a number of participants
were excluded in our study. As this differed for basi-
cally each analysis, the sample group is inconsistent
across analyses. As already mentioned, the driving
simulation that we used lacked realism. The traffic
consisted of a single other car and the control of the
car is not likely to be a realistic counterpart of an
actual car. These limitations reduce the statistical
power of our results.

Future studies could try to improve the realism
of the driving simulation. By increasing the number
of other traffic participants, as well as a more re-
alistic car-control. Additionally, one could combine
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this with our more complete version of the speed-
regulation task and see what results they find.

5 Conclusion

Our study has shown that eye-tracking is a valu-
able asset in the field of adaptive automation.
Pupil size in driving proved to be an indicator of
working memory load. Additionally, eye-fixations
on the speedometer showed that as working mem-
ory load increased, the number of fixations de-
creased. This shows that as WML increases, our
speed-regulation capabilities decrease. Both find-
ings could be used to find valuable time-frames
where additional automation is required. We also
sought to find a possible effect of visuospatial de-
mands on eye-fixations and pupil size, but no signif-
icant effect was observed. Furthermore, driving per-
formance and working memory performance gave
us more valuable insights. We found that driving
performance in terms of lane deviation and num-
ber of collisions was a predictor of visuospatial de-
mands. Similar to the eye-tracking results, adaptive
automation can use driving performance to detect
when a driver might be visually overloaded. Also,
the speed regulation task showed that increasing
WML decreased the working memory performance,
which in itself is not so valuable, but it emphasizes
the importance of finding better ways to detect dif-
ferent levels of cognitive load.

We believed that there were two components of
cognitive load that were most important, namely
working memory load and visuospatial attention.
As can be seen in our results, we did not find a mea-
sure that predicted both components. This shows
there is still a lot to discover about the interac-
tions of different components of cognitive load dur-
ing driving. When the effect of each subtask in driv-
ing can be figured out independently, it provides us
with valuable information of how to perfect adap-
tive automation and increase overall car-safety.
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A Appendix

Figure A.1: The driving simulation for the non-construction condition. The orange arrow is the
indicator that blinks three times once the participant presses the blinker. The number at the
center of the dashboard shows the current speed of the participant’s car. At the top and on both
sides of the screen are mirrors which are used to see the simulated car approaching from behind.

Figure A.2: The driving simulation for the construction condition. All lanes are more narrow than
in the non-construction condition and the leftmost lane is closed off by a row of pylons. The blue
rectangle on the right-most lane is the simulated car.
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