
Translation Incorrectness and KAT

Author: Antal Huisman

Supervisors: Dan Frumin, Jorge A. Pérez

Computing Science
RuG

Juli 2021

Contents

1 Introduction 2

2 Preliminaries 3
2.1 Hoare Logic . 3
2.2 Incorrectness Logic . 4
2.3 Kleene Algebra with Tests . 7
2.4 Relational Algebra . 9

3 Translation from PHL to KAT 10
3.1 Definition of the Translation . 10
3.2 Soundness and Completeness . 10

4 Translation from Incorrectness to KAT 11
4.1 Finding the Translation . 11
4.2 Soundness of the Translation . 12
4.3 Alternative translation attempts . 14

5 Challenges with proving Completeness 16
5.1 Eliminating Hypothesis . 16
5.2 Eliminating the > . 16

6 Conclusion 17

1

1 Introduction

Program verification is checking if programs comply on certain specifications. One possible type of specifica-
tions states that the program is error- and bug-free. In most programs we permit that the occasional error
slips though, but for some programs this rule must be strict. For example in a hospital, we wouldn’t want a
machine to crash while a patient is hooked up to it. Encryption should not become predictable because of
a bug. This is why Program Correctness is important.

In our studies we had the course Program Correctness. In it we learned methods to prove programs
correct. One of the methods was a rigorous mathematics called Hoare Logic. In Hoare Logic you prove
program correct by applying particular rules. But the vast majority of the time we are not working with
programs that work correctly. We are working with buggy programs that we want to make correct. It is
fruitless to try to prove that such a program is correct.

What if instead you could prove a bug existed in the code? You could test inputs one by one. To prove
the program is error-free, you’d have to check all, potential infinite, inputs. Recently a paper was published
about Incorrectness Logic [1]. Incorrectness Logic is an axiomatic approach, like Hoare Logic. Unlike Hoare
Logic, it instead can prove that a program contains an error.

There is a formal Algebraic structure behind Hoare Logic. This structure is called Kleene Algebra with
Tests (KAT). It is an extension of Kleene Algebra, which is used for regular expressions. We learned about
Kleene Algebra in the course Languages and Machines.

This structure allows us to use an equational, algebraic reasoning to verify programs. Instead of applying
the propositional rules in Hoare Logic to prove a program correct, we now simply evaluate an equation in
KAT. With this structure we can more easily make general statements about programs. You could prove
that two programs are equivalent, which is harder to do with Hoare Logic.

The structure of Incorrectness Logic seems similar to that of Hoare Logic. If there were a Algebraic
structure of Incorrectness Logic, then finding an error with Incorrectness Logic could similarly be reduced to
solving an equation. That would mean that we can detect errors by solving an equation, instead of testing
inputs one-by-one. This could speed up error detection algorithms.

Which brings me to my research question:
Can we represent Incorrectness Logic with Kleene Algebra with Tests?

To answer this question we have to answer three questions:

– What is the translation from Incorrectness Logic to KAT?

– Is this translation sound?

– Is this translation complete?

In the rest of the thesis we will give a partial answer to these questions. In Section 2 will recall the
preliminaries on Hoare Logic, and introduce Incorrectness Logic and KAT. Section 3 will detail the translation
of Hoare Logic to KAT and its soundness and completeness. We will answer the first two questions in Section
4 and then discuss the difficulties in answering the third question in Section 5.

2

2 Preliminaries

2.1 Hoare Logic

Propositional Hoare Logic (PHL) is used to prove if a program is correct.
Hoare Logic uses triples of the form {b}p{c}. In the triple {b}p{c}, b is the pre-condition, c is the post-

condition and p is the code. The triple is true if the post-condition is an over-approximation of the result of
applying the pre-condition to the code. The result of applying the code p to the pre-condition b is included
in the post-condition c.

Hoare Logic over-approximates the result based on the presumption. In other words, in every triplet the
result is only what is true in every possible path the code can take the presumption. If this result is the
expected result of the program, we have proven that the program is correct.

We demonstrate Hoare Logic on an example to contrast it later with Incorrectness Logic. Consider the
following program p:

// Pre-condition: z = 11

if (x == 39)

then if (y == 5)

then z := 42;

ifend

ifend

// Post-condition: z = 11 or z = 42

The code with its specifications would result in the triple: {z = 11}p{z = 11 ∨ z = 42}.
This triple {z = 11}p{z = 11 ∨ z = 42} is correct. It’s easy to see that there are only two options: either

the assignment z := 42 is applied or not. Thus the post-condition is either z = 11 or z = 42.

Hoare Logic Rules

As a refresher, the rules are given in Figure 1.

Skip Axiom

{b}skip{b}

Assignment Axiom

{b[E/x]}x := E{b}

Composition
{b}p{c} {c}q{d}

{b}p; q{d}

Weakening
b′ → b {b}p{c} c→ c′

{b′}p{c′}

Conditional
{b ∧ c}p{d} {¬b ∧ c}q{d}
{c}if b then p else q ifend{d}

While
{b ∧ c}p{c}

{c}while b then p done{¬b ∧ c}

Figure 1: Hoare Logic rules.

With these rules you can prove simple programs correct. There are extensions of Hoare Logic to reason
with, for example, functional programming or parallel programming.

In the example, we could also arrive to its answer by applying the rules to get the narrowest over-
approximation:

{z = 11}p{(x 6= 39 ∧ z = 11) ∨ (x = 39 ∧ y 6= 5 ∧ z = 11) ∨ (x = 39 ∧ y = 5 ∧ z = 42)}

Then apply the Weakening Rule to arrive at the given triple {z = 11}p{z = 11 ∨ z = 42}. Note that with
the Rule of Weakening we are able to remove conjunctions from the post-condition.

3

2.2 Incorrectness Logic

While Hoare Logic proves a program is correct, Incorrectness Logic [1] is used to prove that errors exist.
Incorrectness Logic uses the triples [b]p[ok : c] and [b]p[er : d], where b is the presumption, p is the code, c
are the states that are reachable and d the states of b that resulted in an error. These two triples are usually
combined in the quadruple [b]p[ok : c][er : d] or the triple [b]p[ε : c]. Incorrectness Logic is written similar as
Hoare Logic, but to differentiate the two, square brackets are used instead of curly brackets.

Hoare Logic over-approximates the result based on the presumption. In Incorrectness Logic we instead
under-approximate the result based on the presumption. The post-condition must be reachable. In other
words, for every output in the post-condition c there is a input in the pre-condition b that would lead to the
output if the code p is applied to the input.

If one possible path leads to an error, then that error is possible in the program. Thus the point is to
discard all paths that don’t lead to an error and keep specific paths that would lead to an error.

Incorrectness Logic Rules

The Incorrectness Rules are given in Figure 2. The functions are defined in Figure 3.

Empty Under-approximation

[p]C[false]

Consequence

p→ p′ [p]C[q] q′ → q

[p′]C[q′]

Disjunction
[p1]C[q1] [p2]C[q2]

[p1 ∨ p2]C[q1 ∨ q2]

Unit

[p]skip[ok : p][er : false]

Sequencing (short circuit)

[p]C1[er : r]

[p]C1;C2[er : r]

Sequencing (normal)

[p]C1[ok : q] [q]C2[r]

[p]C1;C2[r]

Iterate Zero

[p]C∗[ok : p]

Iterate Non-zero
[p]C∗;C[q]

[p]C∗[q]

Backwards Variant (n is fresh)

[p(n) ∧ nat(n)]C[ok : p(n+ 1) ∧ nat(n)]

[p(0)]C∗[ok : ∃n, p(n) ∧ nat(n)]

Choice (where i = 1 or i = 2)

[p]Ci[q]

[p]C1 ∧ C2[q]

Error

[p]Error()[ok : false][er : p]

Assume

[p]Assume(B)[ok : p ∧B][er : false]

Figure 2: Incorrectness Logic rules.

While
while B do C done

(Assume(B);C)∗;Assume(¬B)

Conditional
if B then C else C’ ifend

(Assume(B);C) + (Assume(¬B);C ′)

Assert
Assert(B)

(Assume(B)) + (Assume(¬B);Error())

Figure 3: Incorrectness Logic functions.

Notice that Incorrectness Logic doesn’t have explicit rules for if and while, but they are constructed by
the other rules.

4

Example 1

To compare Incorrectness Logic with Hoare Logic, let’s look at the same program of the previous section.
In the previous example we had the post-condition z = 11∨ z = 42 with Hoare Logic. Is this post-condition
also correct with Incorrectness Logic?

// Pre-condition: z = 11

if (x == 39)

then if (y == 5)

then z := 42;

ifend

ifend

// Post-condition: z = 11 or z = 42?

The answer is no. In Incorrectness Logic the post-condition must be reachable. The post-condition z =
11 ∨ z = 42 includes the state x = 39 ∧ y = 5 ∧ z = 11. There is no pre-condition that would lead to this
post-condition, because if x = 39 ∧ y = 5, then z becomes 42.

The reason for this restriction is that we do not want to create a false-positive error, where we detect
an error when there is none. It is possible that an error occurs when x = 39 ∧ y = 5 ∧ z = 11 later in the
program. For example with the code x := x / (z - 2y- 1). This code p would prevent that error. With
the post-condition z = 11∨ z = 42, this possibility is included and with it we included a false-positive error.

The correct triple with all information is:

[z = 11]p[(x 6= 39 ∧ z = 11) ∨ (x = 39 ∧ y 6= 5 ∧ z = 11) ∨ (x = 39 ∧ y = 5 ∧ z = 42)].

You may have noticed that the correct triple is the same as the narrowest over-approximation from the
Hoare Logic example. This is because the triple is the exact answer, which is both the narrowest over-
approximation and the biggest under-approximation.

Example 2

Let’s say we are only interested in the post-condition z = 42. We either suspect an error occurs later in the
code when the post-condition is z = 42 or we know for a fact that no errors occur later when z = 11. We
can then just remove the z = 11 part to get the triple [z = 11]p[ok : x = 39 ∧ y = 5 ∧ z = 42].

// Pre-condition: z = 11

if (x == 39)

then if (y == 5)

then z := 42;

ifend

ifend

// Post-condition: x = 39 and y = 5 and z = 42

What we did is apply the Rule of Consequence. With the Rule of Consequence we are able to remove dis-
junctions from the post-condition. In contrast, the Weakening Rule of Hoare Logic can remove conjunctions.

5

Why can we apply this Rule? Look at all the paths the code can take.

if

z = 11

x 6= 39

if

z = 11

y 6= 5

z = 11

y = 5

x = 39

(x 6= 39 ∧ z = 11) ∨ (x = 39 ∧ y 6= 5 ∧ z = 11) ∨ (x = 39 ∧ y = 5 ∧ z = 42).

A path splits at every if and while statement. At the bottom are the results of each path. Disjunctions
separate different paths. Note that this is the post-condition of the previous example.

Each path either contains an error or results in a successful termination. The results of the other paths
has no influence on whether a path succeeds or fails. We are only interested in errors, so we can remove
paths that lead to success. To remove paths, we should be able to remove disjunctions in the post-condition.
Because the Rule of Consequence can remove disjunctions, it can also remove paths with errors.

Example 3

What if we had the pre-condition true? Would then the triple [true]q[ok : z = 42] be correct?

// Pre-condition: true

if (x == 39)

then if (y == 5)

then z := 42;

ifend

ifend

// Post-condition: z = 42?

The answer is yes, which may be surprising.
The short explanation is this: the triple [z = 42]q[ok : z = 42] is obviously correct. We then apply the

Rule of Consequence on the pre-condition to get the given triple [true]q[ok : z = 42].
Here is an explanation why we can do this. The biggest under-approximation triple is

[true]q[x 6= 39 ∨ (x = 39 ∧ y 6= 5) ∨ (x = 39 ∧ y = 5 ∧ z = 42)]

We can rewrite the post-condition of this

(x 6= 39 ∧ (z = 42 ∨ z 6= 42)) ∨ (x = 39 ∧ y 6= 5 ∧ (z = 42 ∨ z 6= 42)) ∨ (x = 39 ∧ y = 5 ∧ z = 42)

into the equivalent post-condition

z = 42 ∨ (x 6= 39 ∧ z 6= 42) ∨ (x = 39 ∧ y 6= 5 ∧ z 6= 42)

6

We have three paths with the results: z = 42, (x 6= 39∧ z 6= 42) and (x = 39∧ y 6= 5∧ z 6= 42). With the
Rule of Consequence we pick the post-condition z = 42 to get the given triple.

In the previous example the paths had the same structure as the code, where the paths will split at every
if and while. This example shows that a path is more flexible than that. It doesn’t have to follow the exact
tree structure.

Error

Incorrectness Logic also includes triples with the error part. The special Error() function creates an error
and it has the definition [b]Error()[er : b]. The special function was added, because it was outside the scope
to automatically detect bugs, like for dividing by zero or integer overflow.

Let’s look at this example r with Error().

// pre-condition: b = true

if (x == 1)

then Error()

else x := 1

ifend

All paths that do not lead to an error, have the result x = 1. Thus the ok post-condition is x = 1.
For the error post-condition, remember that it is the part of the input that leads to an error. The part of
the input that leads to an error is x = 1.

This will result in the quadruple: [true]r[ok : x = 1][er : x = 1]. This example shows that the two post-
condition in the Incorrectness quadruple do not have to be disjoint. For simplicity, for now we do not consider
the error post-conditions.

2.3 Kleene Algebra with Tests

Kleene Algebra with Tests [2] is a Kleene Algebra with an added Boolean Algebra. Is usually shorted to
KAT. Formally, it is the structure :

(K,B,+, ·, ∗,− , 0, 1)

where:

– B ⊆ K.

– (K,+, ·, ∗, 0, 1) is a Kleene Algebra.

– (B,+, ·,− , 0, 1) is a Boolean Algebra.

and − is only defined on B.
The elements of B are called tests. We use the letters b, c, d, e for elements of B and the letters p, q, r for
elements of K. For Kleene Algebra the operations +, ·, ∗ represent non-deterministic choice, concatenation,
the Kleene star respectively. For Boolean Algebra the operations +, ·,− represent disjunction, conjunction,
negation respectively. The elements of K represent the code of the program, while the elements of B represent
states that are true in that place in the code.

7

Both Kleene Algebra and Boolean Algebra have the following axioms:

x+ (y + z) = (x+ y) + z Associative

x+ y = y + x Commutative

x+ 0 = x Identity unit 0

x+ x = x Idempotent

x(yz) = (xy)z Associative

1x = x1 = x Identity unit 1

x(y + z) = xy + xz Distribution of · over +

(x+ y)z = xz + yz Distribution of · over +

0x = x0 = 0 Annihilation

In addition Kleene Algebra has the following axioms for the Kleene star:

p∗ = 1 + p∗p (1)

p∗ = 1 + pp∗ (2)

q + pr v r → p∗q v r (3)

q + rp v r → qp∗ v r (4)

where v is the partial order defined as:

a v b def←→ a+ b = b (5)

The partial order is reflexive, anti-symmetric and transitive.
Boolean Algebra has the following added axioms:

a+ 1 = 1 Identity Property

ab = ba Commutative

aa = a Idempotent

a+ ab = a Absorption

a(a+ b) = a Absorption

aa = 0 Complement

a+ a = 1 Complement

a = a Involution

a+ b = ab De Morgan Law

ab = a+ b De Morgan Law

With KAT we can encode the functions if, then, else and while, do. [3]
The encodings are:

skip→ 1

p; q → pq

if b then p ifend→ (bp+ b)

if b then p else q ifend→ (bp+ bq)

while b do p done→ (bp)∗b

8

As an example, let’s encode the earlier code:

if (x == 39)

then if (y == 5)

then z := 42;

ifend

ifend

Where b is x == 39, c is y == 5 and p is z := 42.
We will get: (b(cp+ c) + b). Or written out: bcp+ bc+ b

2.4 Relational Algebra

Kleene Algebra with Tests [2] can create a model of Relational Algebra. Note that this is only a subset of
Relational Algebra [4].

Relational Algebra is the Algebra of binary relations. Binary relations, like functions, have an input and
an output. But, unlike functions, not all inputs need to have an output and an input can have multiple
outputs. This is why Relational Algebra is also used as a model for programs. The binary relations are the
code of the program and the input and output are the states between code.

In the model with KAT, the code p, q, r are still the binary relation. But the tests b, c, d . . . would also
have to be relations. Instead they are a relation like the identity function ι with restricted input and output.

A more formal definition: Let X be a set of states. Let K and B be binary relations in X × X and ◦
be the relational composition. All binary relations in set B are subsets of the identity relation ι. ∗ is the
reflexive transitive closure of a relation.

Then the relational Kleene Algebra is a structure in the form:

(K,B,∪, ◦, ∗,− ,∅, ι)

We need to add an Kleene Algebra variable > to reason with Incorrectness Logic. It is the everywhere-
true binary relation from Relational Algebra. Intuitively, > acts as a clean slate where everything is true
again. There is no code equivalent for >.

Unfortunately it is an open problem if the > from Relational Algebra can be added to Kleene Algebra.
There is no complete axiomatisation of > in Kleene Algebra. For example, the equation >p>p> = >p>
holds in Relational Algebra. No proof has been found in Kleene Algebra, so we don’t know if it holds there.

We use the following equations of > for our proof. We will use that > is the ”largest” element in K:

∀x ∈ K : x v > (6)

An implication of > that we will use, is:
>a = 0→ a = 0 (7)

9

3 Translation from PHL to KAT

3.1 Definition of the Translation

Hoare Logic can be translated into KAT with the two equivalent equations [1]:

{b}p{c} holds iff bpc = 0

Which means intuitively that code p with the pre-condition b and post-condition c will never terminate.

{b}p{c} holds iff bp = bpc

Which means intuitively that checking the post-condition c for the code p with the pre-condition b is redun-
dant.

With the code now a variable, there is no need for the Assignment Axiom in KAT. We instead tread the
assignment as an hypothesis. Thus in general the implication in Hoare Logic where every {bi}pi{ci} is an
assignment

{b1}p1{c1}, {b2}p2{c2}, . . . , {bn}pn{cn}
{b}p{c}

will be translated into KAT as the Horn formula:

b1p1c1 = 0 ∧ b2p2c2 = 0 ∧ · · · ∧ bnpncn = 0→ bpc = 0

3.2 Soundness and Completeness

To prove that a translation holds, we need to prove that it is sound and complete. Soundness means that
every statement that can be proven in Hoare Logic can also be proven in KAT. For that we only need to
check that every rule in Hoare Logic will also hold after the translation. Completeness means that if an
translation of an assertion holds in KAT, it will also hold in Hoare Logic.

The translation is sound. The Composition Rule, the Consequence Rule, the Conditional Rule and the
While Rule all hold in KAT [5].

The completeness proof is harder to construct. We would need to prove that for every implication in
KAT of the form:

b1p1c1 = 0 ∧ b2p2c2 = 0 ∧ · · · ∧ bnpncn = 0→ bpc = 0

the implication in Hoare Logic also holds:

{b1}p1{c1}, {b2}p2{c2}, . . . , {bn}pn{cn}
{b}p{c}

This is impossible to do. The fact that the implication is true, does not give the steps for a proof of the
implication in Hoare Logic.

Instead they prove that KAT is complete for all universal Horn formulas that are relational valid of the
form:

r1 = 0 ∧ r2 = 0 ∧ · · · ∧ rn = 0→ p = q

They do this by eliminating the hypothesis. They prove that the formula r = 0→ p = q is equivalent with
an equation p′ = q′. Since KAT is complete for all valid equations, the translation is also complete.

10

4 Translation from Incorrectness to KAT

We will be focusing only one triples of the form [b]p[ok : c]. We ignore the error part for now.
The reason for that is that this triple is simpler. The intention was that after the translation of this form
was proven, the translation would be extended with the error part. This didn’t happen.

4.1 Finding the Translation

Hoare Logic and Incorrectness Logic can be encoded [1] in Relational Algebra as the formulas:

{b}p{c} holds iff >; assume(b); p v >; assume(c)

[b]p[c] holds iff >; assume(b); p w >; assume(c)

Where assume(p) is defined as the binary relation:

If b ⊆ Σ then let assume(b) = {(σ, σ) | σ ∈ b}

where Σ is the set of states σ. > is the everywhere-true binary relation and v and w are the order operations.
Relations that will become Booleans, have the form: {(σ, σ) | σ ∈ a}. Thus >; assume(b); p should be

read in KAT as: >bp.
We will first check if the Hoare Logic formula is correct. Translating the Relational Algebra into Kleene

Algebra, we get:

>bp v >c multiply both sides with c

>bpc v >cc using axiom aa = 0 and p0 = 0

>bpc v 0 by the axiom: a v b is equivalent with a+ b = b

>bpc+ 0 = 0 using axiom a+ 0 = a

>bpc = 0 by (7)

bpc = 0

Now we have the given formula.

We can get the KAT formula for the Incorrectness Logic using the same method. Unfortunately the >
gets in the way and therefore we can not multiply on the left side. Translating the Relational Algebra into
Kleene Algebra, we get:

>bp w >c using the axiom: a v b is equivalent with a+ b = b

>bp+>c = >bp

Thus we get the formula: >bp+>c = >bp.
This equation means intuitively that the results from the post-condition c are included in the results of

applying the pre-condition b on the code p.

11

4.2 Soundness of the Translation

The assertion [b]p[ok : c] of Incorrectness Logic can be encoded to KAT with the following translation:

>bp+>c = >bp (8)

The rules of Incorrectness Logic translated with (8) look like this:
Consequence Rule:

b v b′ ∧ >bp+>c = >bp ∧ c′ v c→ >b′p+>c′ = >b′p (9)

Disjunction Rule:

>bp+>c = >bp ∧ >dp+>e = >dp→ >(b+ d)p+>(c+ e) = >(b+ d)p (10)

Sequencing Rule:

>bp+>c = >bp ∧ >cq +>d = >cq → >bpq +>d = >bpq (11)

Iterate Non-zero Rule:
>bp∗p+>c = >bp∗p→ >bp∗ +>c = >bp∗ (12)

Choice Rule:

>bp+>c = >bp ∨ >bq +>c = >bq → >b(p+ q) +>c = >b(p+ q) (13)

While Rule:
>bcp+>c = >bcp→ >c(bp)∗b+>bc = >c(bp)∗b (14)

Conditional Rule:

>bcp+>d = >bcp ∧ >bcq +>d = >bcq → >c(bp+ bq) +>d = >c(bp+ bq) (15)

Now I will prove that the rules of Incorrectness Logic will hold, using these translations.

Theorem 1. The formulas (9) - (15) are theorems in KAT.

Proof. The first rule to prove is the Consequence Rule (9).
Assuming the premises:

b v b′ (16)

>bp+>c = >bp (17)

c′ v c (18)

Because of the axiom that a v b is equivalent with a+ b = b, we get for (16) and (18):

b+ b′ = b′ (19)

c+ c′ = c (20)

Now the proof:

>b′p = >(b+ b′)p by (19)

= >bp+>b′p by distributivity

= >bp+>c+>b′p by (17)

= >bp+>(c+ c′) +>b′p by (20)

= >bp+>c+>c′ +>b′p by distributivity

= >bp+>c′ +>b′p by (17)

= >(b+ b′)p+>c′ by distributivity

= >b′p+>c′ by (19)

Thus the implication (9) holds.

12

Next is the Disjunction Rule (10). Assuming the premises:

>bp+>c = >bp (21)

>dp+>e = >dp (22)

Using those rules, we can now prove:

>(b+ d)p = >bp+>dp by distributivity

= >bp+>c+>dp+>e by (21) and (22)

= >(b+ d)p+>(c+ e) by distributivity

Thus the implication (10) is true.

After that is the Sequencing Rule (11). Assuming the premises:

>bp+>c = >bp (23)

>cq +>d = >cq (24)

Then the proof:

>bpq = (>bp+>c)q by (23)

= >bpq +>cq by distributivity

= >bpq +>cq +>d by (24)

= (>bp+>c)q +>d by distributivity

= >bpq +>d by (23)

Thus the implication (11) is proven.

The next proof is the Iteration Non-zero Rule (12). With the premises:

>bp∗p+>c = >bp∗p (25)

Then:

>bp∗ = >b(1 + p∗p) by the Kleene Identity (1)

= >b+>bp∗p by distributivity

= >b+>bp∗p+>c using (25)

= >b(1 + p∗p) +>c by distributivity

= >bp∗ +>c by the Kleene Identity (1)

Thus (12) holds generally.

For the Choice Rule (13), the premises are either:

>bp+>c = >bp (26)

Or:
>bq +>c = >bq (27)

Then

>b(p+ q) = >bp+>bq by distributivity

= >bp+>bq +>c by (26) or (27)

= >b(p+ q) +>c by distributivity

Thus the implication (13) holds.

13

Next is the While Rule (14). Assume:

>bcp+>c = >bcp (28)

Then:

>c(bp)∗b = >c(1 + (bp)∗bp)b by the Kleene Identity (1)

= >c(bp)∗bpb+>cb by distributivity

= >c(bp)∗bpb+>cb+>cb by Kleene axiom a+ a = a

= >c(bp)∗bpb+>cb+>bc by Boolean axiom ab = ba

= >c(1 + (bp)∗bp)b+>bc by distributivity

= >c(bp)∗b+>bc by the Kleene Identity (1)

Note that we didn’t use (28).
Then the last rule is the Conditional Rule (15). Assume the premises:

>bcp+>d = >bcp (29)

>bcq +>d = >bcq (30)

Then the proof:

>c(bp+ bq) = >cbp+>cbq by distributivity

= >bcp+>bcq by Boolean axiom ab = ba

= >bcp+>bcq +>d by (29) or (30)

= >cbp+>cbq +>d by Boolean axiom ab = ba

= >c(bp+ bq) +>d by distributivity

Thus the rules hold.

4.3 Alternative translation attempts

We got the formula: >bp + >c = >bp. Although this equation is correct, it is hard to prove completeness
with it. Here are some ideas that I explored.

Attempt 1

First, we can not use the same trick that Hoare Logic uses and multiply both sides with c. We will get:

>bp w >c multiply both sides with c

>bpc w >cc by axiom aa = 0

>bpc w >0 by axiom a0 = 0

>bpc w 0 using the axiom: a v b is equivalent with a+ b = b

>bpc+ 0 = >bpc

>bpc w 0 might seem like a nice equation, but it is actually always true and therefore useless to us.

14

Attempt 2

You could multiply both sides with c to get:

>bp w >c multiply both sides with c

>bpc w >cc by Boolean axiom aa = a

>bpc w >c

The formula >bpc w >c is not that interesting. It is however still sound: all the proofs will use the same
steps as for >bp w >c. This is left as an exercise for the reader.

Attempt 3

You could add >c to both sides to get:

>c v >bp add >c to both sides

>c+>c v >bp+>c by distributivity

>(c+ c) v >bp+>c by Boolean axiom a+ a = 1

>1 v >bp+>c by axiom a1 = a

> v >bp+>c

Combined with the fact that ∀x : x v > and the anti-symmetry of v, we get: > = >bp+>c.
This implies that the result of >bp and the result of >c together cover all possible states. c could be seen

as all unreachable states of bp.

Attempt 4

We can play with the fact that ∀x : x v >.
If we take >p v > and >b v > and we combine that with with the found equation, we get:

>bpc v >pc v >c v >bp by transitivity of v
>bpc v >bp

The formula >bpc v >bp is equivalent with the formula 0 v >bpc in Attempt 1, and thus also useless.

Attempt 5

If we multiply the formula >bpc v >pc v >c v >bp of Attempt 4 with c, we get:

>bpc v >pc v >c v >bp multiply by c

>bpcc v >pcc v >cc v >bpc by Boolean axiom cc = c

>bpc v >pc v >c v >bpc by anti-symmetry of v
>bpc = >pc = >c

If we could remove the >, we would get bpc = pc.
The formula bpc = pc is equivalent with the formula bpc = 0 and is one of the formulas I found on my

own. I have found the soundness proofs with these two formulas. The translation would also be complete,
because bpc = 0 is of the form r = 0. Unfortunately, this is just Hoare Logic where both the pre-condition
and the post-condition are negated.

15

5 Challenges with proving Completeness

5.1 Eliminating Hypothesis

Proving that the translation is complete is hard the normal way. The proof of completeness of Hoare Logic
could be reused for Incorrectness Logic if the equation >bp+>c = >bp could be rewritten.
It is possible to eliminate the hypothesis if it is in any of these forms [6]:

– in the form e = 0 where e is an expression

– in the form a ≤ 1 where a is a letter

– in the form 1 = w or a = w where a is a letter and w is a word with extra properties

– in the form S = 1 where S is a sum of letters

I focused on the first option, because we are not working with letters and we don’t have extra properties.
But I couldn’t find any equivalent equation in the form e = 0. The > prevents this.

5.2 Eliminating the >
Another problem is that I added the new symbol > to KAT. Earlier I said that is an open problem whether
we can do this. It would be better if we could replace >.

Replace with ∀

We could replace >bp+>c = >bp with ∀x : xbp+ xc = xbp, but then we get into problems.
Take for example x = b and then:

xbp+ xc = xbp take x = b

bbp+ bc = bbp by axiom aa = 0

0p+ bc = 0p by axiom 0a = 0

bc = 0

We have removed the >, but added the restriction bc = 0. This restriction is too severe: it means that the
pre-condition b needs to include the post-condition c. Thus the simple triple [x = 0]x := x + 1[ok : x = 1]
would not be accepted in this model. I am not sure, but I suspect this is the same as the formulas bpc = pc
and bpc = 0 from earlier.

Replace with ∃

It would be correct to replace >bp+>c = >bp with ∃x : xbp+ xc = xbp. Unfortunately this has the trivial
solution x = 0 or the less trivial solution where xc = 0. In addition, the proofs assume that all > are the
same, but we will lose that guarantee. Look at the adjusted Sequencing Rule:

∃x : xbp+ xc = xbp ∧ ∃y : ycq + yd = ycq → ∃z : zbpq + zd = zbpq (31)

The given proof only works if z = xy = yx, and constructing a different proof for xy 6= yx seems impossible.
We could restrict in such a way that all x need to be the same. The adjusted Sequencing Rule is now:

∃x : (xbp+ xc = xbp ∧ xcq + xd = xcq → xbpq + xd = xbpq) (32)

The proofs will all be valid with a slight modification. This will eliminate the >, but it brings it own share
of problems. The equation is only meaningful if xc 6= 0 and xd 6= 0. In addition, x is not a Boolean. If we
find x, it wouldn’t necessarily tell us what inputs would result in an error.

16

Earlier we had the formula >pc v >bp. Here both sides have p, so the x replacing > could be a Boolean.
So maybe this formula works:

∃x ∈ B : (xbp+ xpc = xbp) (33)

But with this formula the Sequence Rule cannot be proven.
Still, we are now moving the goalposts. To prove that the triple [b]p[ok : c] has a bug, we would need to

find an x such that:

– xc 6= 0.

– for every i, the result of x is an input for both bipi and for ci.

– xc 6= 0 implies that for every i, xci 6= 0.

– x is not an input (Boolean Algebra), but has to be a program (Kleene Algebra).

To construct such a x or to prove that such an x exist, is more difficult that simply checking all paths.

Creation from within

We could create > for KAT by taking the transitive closure of K. This definition of > would be bigger than
all elements in K.

We cannot take the reflexive transitive closure of an infinite set, so we use a workaround. Let Σ be the
carrier of the set K. In other words, Σ is a finite set that recursively generated K. This set is finite, because
hopefully the program that the set is based on is finite. We can define > as the universal expression:

> = (p1 + p2 + · · ·+ pn)∗

where Σ = {p1, p2, . . . , pn}.
It holds that ∀x ∈ K : x v >.
The proof uses x′, which is variable x without Booleans. It’s true that ∀x : x v x′, because for all

Boolean holds: b v 1. Then ∀x′ : x′ v > follows trivially from the definition.
The problem is that this > may not be the same > from Relational Algebra.

6 Conclusion

I found the translation from Incorrectness Logic to KAT and I have proven the soundness of the translation.
I couldn’t prove the completeness, but that was a more difficult task.

The author of Incorrectness Logic notes that with correctness reasoning you may forget information on a
path, but you must remember all paths. For incorrectness reasoning you must remember the information, but
you may forget some of the paths. What does this mean in the context of KAT? Is forgetting information the
act of multiplying with c to get bpc = 0 and does that mean that the alternative formulas for Incorrectness
are useless, because I multiplied a constant?

17

References

[1] Peter W. O’Hearn. Incorrectness logic. Proceedings of the ACM on Programming Languages, 4, POPL,
Article 10 (January 2020):1–32, 2020.

[2] Dexter Kozen Frederick Smith. Kleene algebra with tests: Completeness and decidability. In: van Dalen
D., Bezem M. (eds) Computer Science Logic. CSL 1996. Lecture Notes in Computer Science, vol 1258,
2005.

[3] Dexter Kozen. On hoare logic and kleene algebra with tests. ACM Transactions on Programming
Languages and Systems, 1(1):60–76, 2000.

[4] FJ Rietman. The secrets of causality. Technical Report RUU-CS-93-29, Department of Information and
Computing Sciences, Utrecht University, 1993.

[5] Dexter Kozen. Kleene algebra with tests. ACM Transactions on Programming Languages and Systems,
19(3):427–443, 1997.

[6] Doumane A. Kuperberg D. Pous D. Pradic P. Kleene algebra with hypotheses. In: Bojańczyk M.,
Simpson A. (eds) Foundations of Software Science and Computation Structures. FoSSaCS 2019. Lecture
Notes in Computer Science, 11425, 2019.

18

	Introduction
	Preliminaries
	Hoare Logic
	Incorrectness Logic
	Kleene Algebra with Tests
	Relational Algebra

	Translation from PHL to KAT
	Definition of the Translation
	Soundness and Completeness

	Translation from Incorrectness to KAT
	Finding the Translation
	Soundness of the Translation
	Alternative translation attempts

	Challenges with proving Completeness
	Eliminating Hypothesis
	Eliminating the

	Conclusion

