
A logical approach to unify and translate

diffusion models in a more general framework

Bachelor’s Project Thesis

Konstantin Rolf, s3750558, k.rolf@student.rug.nl,

Supervisor: Dr Z. Christoff

Abstract: Social influence has been a topic of increasing importance in the rise of social net-
works like Facebook or Instagram. Especially the propagation of opinions in such networks has
been topic of interest. Different opinion diffusion models tried to capture this behavior. Addi-
tionally, epidemiology uses very similar models to look at the spread of diseases in epidemics.
This study investigates diffusion models of different origins and combines them using a deter-
ministic finite state machine (DFA). A special translation is shown that converts a weighted and
biased threshold model to an undirected and unweighted threshold model. To make diffusion
models more approachable, a website tool is implemented that shows the behaviors of multiple
diffusion models for common types of graph typologies. The website is also capable of showing
the previously mentioned model translation.

1 Introduction

The diffusion of beliefs, trends, behaviors or infor-
mation has become a major research field in the
past three decades. The fast growth of the internet,
and especially social media, led to a rapid decrease
in communication time. One of the most interest-
ing characteristics during this development was the
emergent behavior of so-called viral events (Pöyry,
Laaksonen, Kekkonen, and Pääkkönen (2018)).
The analogy came from the research in epidemics
and describes the exponential spreading of virus
infections through the population. Viral events
have very similar characteristics by achieving ex-
ponential growth rates across the internet commu-
nity. A single image or video can spread through
the internet in days and reach millions of peo-
ple. The recent development of algorithms by plat-
forms like YouTube favored this development by in-
troducing a ’trending’ section that features videos
that may become viral. As a result, many re-
searchers have become interested in the dynamics
of these events and tried to model them by using
the approaches from epidemiology. The Susceptible-
Infected-Susceptible (SIS) and Susceptible-Infected-
Recovered (SIR) models are commonly used to
model the behavior of diseases. The key difference

between those models is that the SIR model as-
sumes that agents become immune after infection
while the SIS model allows multiple infections.

Researchers in social influence developed very sim-
ilar techniques to model the decision-making pro-
cess of individuals inside social groups. DeGroot
(1974) proposed one of the first opinion diffusion
models that simulates the influence in a group by
a trust matrix that works analogous to a Markov
Chain. Another type of opinion diffusion model
are threshold models which try to model social in-
fluence through thresholds that determine when
it is beneficial for a person to change its opin-
ion (Christoff and Grossi (2017); Baltag, Christoff,
Rendsvig, and Smets (2019); Easley and Kleinberg
(2010)). Liu, Seligman, and Girard (2014) created
a similar model that uses a three-state automa-
ton to model the behavior with an additional neu-
tral state. Another type of model was defined by
Grandi, Lorini, and Perrussel (2015) who created
two different versions of propositional opinion dif-
fusion models: The majority decision model adopts
a state if the agent observes a clear majority among
its friends and its own opinion. The unanimity de-
cision model adopts a state if the agent observes a
unanimous consens among its friends.

The presented models which originated in the re-

1

search fields of epidemiology and opinion diffusion
are very similar in the sense that they are mod-
elling the propagation of events though a network.
On the other hand, they use very different imple-
mentations and model architectures to achieve this.
This thesis tries to answer the question in which
way these models are interchangeable in represent-
ing the same problem domain. Can those diffusion
models be converted to each other or is it possi-
ble to unify them in some kind of ’super model’?
Section 2 starts by explaining the models in de-
tail and show the underlying assumptions that are
made by each model. Section 3 considers a gener-
alization of the models in form of a deterministic
finite automata (DFA). Section 4 defines a transla-
tion between a weighted uni-directional threshold
model and a uni-directional threshold model. Ad-
ditionally, a tool is implemented that is able to sim-
ulate the models and study their characteristics in
different scenarios.

2 Different Types of Models

The introduction already mentioned some models
that are used in epidemiology and opinion diffusion.
This section aims at giving a general overview of
these models and their assumptions. More specif-
ically, the section will provide each model a defi-
nite name that is used in the later sections to unify
and translate the model definitions. Diffusion mod-
els can generally be classified by the graph over
which they are defined (weighted/unweighted; di-
rected/undirected), by the amount of states the
models requires, and by some kind of transition
function to update the model in discrete time inter-
vals. The following section will showcase the models
that are present in literature and also present slight
modifications and generalizations of those models.
This section describes the models in a more qualita-
tive way. Section 3 will give more formal definitions
of the models.

Threshold Models Mt-BI and Mt-UNI:
Threshold models were introduced as a way to
model the propagation of beliefs and opinions in
social networks (Easley and Kleinberg (2010)).
They are defined as an unweighted undirected
graph. Each agent is influenced uniformly by its
direct neighbors. Threshold models are mostly

described with a binary state (agents may either
follow the belief or not). However, it is also possible
to extend the model definition to include an arbi-
trary finite amount of states (a possible extension
is proposed by Grandi et al. (2015) who implement
a more general type of threshold model with any
amount of states). This section will only consider
binary threshold models with two states that
will be called P and ¬P . Therefore, every agent
propagates its state to all of its direct neighbors.
An agent adopts a new belief if the amount of all
its neighbors, following this belief, is greater equal
than a predefined threshold. This update policy
may be defined in a uni-directional way: Nodes will
only change from ¬P to P . However, it can also
be defined in a bi-directional way in which nodes
may also change from P to ¬P if the threshold
statement is not fulfilled. Both types of threshold
models are fully deterministic with a discrete set
of two states.

Uni-directional threshold models have some inter-
esting characteristics: Once adopting a new belief,
an agent will keep his belief because there is no way
an agent could change back to its original belief.
Hence, beliefs propagate through the network until
a stable configuration is reached. It is possible to
make a formal definition that describes whether a
so-called cascade will reach all nodes. A cluster of
density p containing a set of nodes is defined such
that each node has at least a fraction of p neighbors
in the set. The definition of a cascade is extended
such that a cluster of size 1 − p stops any cascade
and that a cascade of 1−p is the only reason that a
cascade is stopped (Easley and Kleinberg (2010)).
On the other hand, bi-directional threshold models
may never reach stable configurations because the
update policy may allow agents to change its belief
multiple times. The most simple configuration for
such a model would be a model with threshold 0.5
and two nodes that are connected to each other
with different initial states. Such a model would
periodically fluctuate between two configurations
with opposite states.

In the following, the uni-directional threshold
model will be denoted by Mthreshold-UNI or simply
as Mt-UNI. Similarly, the bi-directional threshold
model will be denoted by Mthreshold-BI or simply as
Mt-BI. Special instances of the threshold model will

2

be defined as Mt(t) where t determines the global
threshold. Conclusively, Mt-BI(0.5) indicates a bi-
directional threshold model with global threshold
of 0.5.

Weighted Threshold Models Mwt-BI,
Mwt-UNI: The definition of a simple undi-
rected and unweighted threshold model Mt-BI or
Mt-UNI can be extended to a more general case of
weighted and directed threshold model Mwt-BI or
Mwt-UNI. The previous definition assumed equal
influence across all neighbors. The requirement can
easily be removed by allowing any positive weight
with the constraint that the sum of the incoming
weights adds up to one. Similarly, it is possible
to remove the assumption of a global threshold
and turn it into a node-specific threshold. Lastly,
the graph must be transformed into a directed
graph. The definition of an undirected graph in the
original threshold model Mt-BI or Mt-UNI can be
implicitly seen as a directed graph already because
the nodes value incoming connections differently
depending on the amount of incoming nodes. The
transition function works exactly the same as
an unweighted threshold model except that each
neighbor node is valued according to the weight of
its edge with a node-specific threshold.

DeGroot Models Mdeg: DeGroot models were
proposed by DeGroot (1974) in 1974 and tried to
apply the findings in stochastic theory and specifi-
cally Markov Chains to opinion diffusion. The De-
Groot model is a time-homogeneous Markov Chain
that models social decision-making processes by the
usage of a stochastic trust matrix T that represents
how much agents value the opinions of other agents.
Therefore, each agent may be influenced from ev-
ery other agent with a unique weight. The state of
the model at time point t is represented as a vector
pt containing one value in the range [0, 1] for each
agent. A single discrete time step may be computed
by multiplying the trust matrix with the vector pt
holding the current state: pt+1 = M ∗ pt. The limit
of the trust matrix M (limn→∞Mn) can be used
to compute the stable configuration for every initial
agent configuration (if there is one). DeGroot mod-
els are fully deterministic with a continuous state.
In the following, DeGroot models will be denoted
by Mdeg.

Threshold Automata Mta: The threshold au-
tomata model was introduced by Liu et al. (2014)
and is defined over an undirected and unweighted
graph. The transition function uses a three-state
automata with a set of four input symbols. Nodes
may either follow the belief Bp, have a disbelief
B¬p, or follow no belief ¬Bp ∧ ¬B¬p which is
abbreviated as Up. The input symbols are defined
as weak and strong influence in both directions
to model the influence from neighboring nodes.
A node is strongly influenced to believe in p if
and only if all of its neighbors and at least one
neighbor are believing in p (Liu et al. (2014)
assume a threshold of 100% for their model).
The same applies to strong influence in ¬p. A
weak influence is given when at least one of its
neighbors believes in p and the amount of agents
disbelieving in p is not greater than a certain
threshold (conservatively 0% is assumed). The
same applies to weak influence in ¬p.

The finite state machine uses a simple transition
table to update the state according to the axioms
of influence. A strong influence in p or ¬p causes
the state to switch to Bp or B¬p respectively. A
weak influence in p and a missing strong influence
in p or ¬p causes the state to switch from Bp to
Up. Similarly, a weak influence in ¬p and a miss-
ing strong influence in ¬p causes the state to change
from B¬p to Up. The finite state machine described
by Liu et al. (2014) can be seen in Figure 2.1. Mod-
els may reach a stable limit distribution or may also
fluctuate periodically between states. The thresh-
old automata model will be denoted as Mta from
here on.

Probabilistic Models Msir, Msis: The proba-
bilistic models, namely the SIS and SIR models,
were invented to model the propagation of infec-
tious diseases through the population (Easley and
Kleinberg (2010)). Both models are defined as an
unweighted and directed graph with the only differ-
ence in the amount of states. The SIS model con-
tains the susceptible (S) and infectious (I) state.
The SIR model contains a third state which is called
removed (R). The general behavior of the model
may be described by three simple rules that dis-
tinguish the current state of the node (Easley and
Kleinberg (2010)):

3

Figure 2.1: Transition table of a finite state ma-
chine by Liu et al. (2014).

• Susceptible: The node does not have the dis-
ease, but may be infected at any future time
step.

• Infectious: The node has the disease. It stays
in this state for a fixed number of time steps. It
may infect any susceptible neighbor node with
a probability of p during every time step.

• Removed: After the node was infected, it will
either become susceptible again (SIS model)
or gain resistance to all future infections (SIR
model) which is the same as removing the node
from the graph.

The behavior of diseases in these models may be
classified by the R factor. It describes how many
other nodes are on average getting infected by an
infected node. Diseases that have a factor of R < 1
are gradually dying out. SIS models with a factor
R ≥ 1 can sustain themselves. Any disease in the
SIR model will eventually die out because there is
only a finite amount of nodes that can be infected.
The SIS model will be denoted by Msis(p, ti) and
Msir(p, ti) where p gives the probability of an infec-
tion spreading to a neighbor node and tt gives the
time the node stays infected.

Propositional Opinion Diffusion Mmaj-POD,
Mu-POD: These type of models were created by
Grandi et al. (2015) and are based on the research
in binary opinion diffusion models and judgement
aggregation theory. The models originated from a
different background, but the resulting models are

related to the threshold model Mt-BI. The model
is defined as an undirected unweighted graph with
an arbitrary amount of states. At each discrete time
step the agents aggregate all of their neighbor opin-
ions (voting) and change their own belief according
to the transition function. Grandi et al. (2015) de-
fine the majoritarian propositional opinion diffu-
sion (maj-POD) to update the agent’s belief when
it notices a strict majority in the beliefs of its neigh-
bors including its own opinion. They also define the
unanimous rule (u-POD) to update the agent’s be-
lief if and only if all of the agent’s influencers share
the same opinion. The model by majority model
will be denoted by Mmaj-POD and the unanimity
model by Mmaj-POD.

2.1 Assumptions

Table 2.1 generalizes the assumptions that are
made by the presented models. The assumptions
of each model can be presented as a list of the
factors: deterministic (the outcome can be solely
determined by the initial configuration), weighted
(the edges of the graphs are valued), reflexive (the
current state of the node directly influences the
next state), irreflexive (the next state is indepen-
dent of the current state), equal influence (all in-
coming edges to a node are valued equally in the
transition function), states (the amount of states
that the model uses). The usual definitions of re-
flexiveness and irreflexiveness are defined on the ba-
sis of recurrent edges in a graph. This thesis uses
a more abstract approach that defines them on the
fact that the current state has an influence on the
next state. For example, the SIS and SIR mod-
els are used in an irreflexive graph. However, it is
not possible to determine the next state of a node
by only looking at the neighbor nodes because the
node behaves differently depending whether it is
infected, susceptible or recovered. This means that
there is some kind of implicit reflexive connection
in the SIS and SIR model that makes the next state
dependent on the current state.

2.2 Jargon

Literature (Easley and Kleinberg (2010); DeGroot
(1974); Baltag et al. (2019); Christoff and Grossi
(2017); Grandi et al. (2015); Liu et al. (2014)) uses
interchangeable terminology to describe diffusion

4

models. This paragraph aims at providing a uni-
fied jargon that will be used in the following sec-
tions. The network of nodes that is frequently de-
scribed as network, social network, agent group is
used as graph. The graph’s entities, which may be
described as nodes, agents or actors, will be de-
noted as nodes. The entities that connect two nodes
together will be described as edges. The state of
an agent, which is frequently described by opinion,
(social) belief, information or status, will be called
state.

3 Unified Model

3.1 Automata Theory

This section will consider the similarities between
the models and describe how they can be seen as
subsets of a more general kind of model. The follow-
ing paragraph will focus be on the definition and
transition functions of a single node. The goal is
finding a general transition function that is capable
of modelling the transition functions of all diffusion
models defined in Table 2.1. The first step towards
a more general function is classifying the transition
function of each model by the minimum amount
of computational complexity needed to simulate

Table 2.1: Characteristics of all diffusion mod-
els: (1) deterministic, (2) weighted, (3) re-
flexive, (4) irreflexive, (5) equal influence, (6)
states, (Y) Yes, (N) No, (I1) the model is im-
plicitly weighted because equal influence may
give an edge different weight depending on the
amount of neighbor nodes, (K) variable number
of states. See Section 2.1 for definitions of the
assumptions.

1 2 3 4 5 6

Mt-BI Y I1 N Y Y 2
Mt-UNI Y I1 Y N N 2
Mwt-BI Y Y N Y N 2
Mwt-UNI Y Y Y N N 2
Mdeg. Y Y N N N [0, 1]
Mta Y I1 Y N Y 3
Msis N I1 Y N Y 2
Msir N I1 Y N Y 3
Mu-POD Y I1 N Y Y K
Mmaj-POD Y I1 Y N Y K

them. The automata theory distinguishes between
four different types of machines that grow in com-
puting power and capabilities: Combinational Logic
(CL), Finite-State Machines (FSM), Pushdown Au-
tomatons (PD) and Turing Machines (TM).

Bounds: Each machine adds some computa-
tional power that allows accepting additional lan-
guages that cannot be accepted by a machine of
lower class. Hence, the natural upper bound for a
general model is a TM as it is the highest order
of automata type. However, this is merely a useful
definition as it just describes that each model may
be simulated by a modern computer (a computer is
assumed to have TM capabilities even though it is
in principle bounded in its memory). A more con-
venient approach is finding the lower bound that is
still able to represent all transition functions. The
advantage in this approach is that the model does
not get too abstract to make meaningful conclu-
sions.

Combinational Logic: The first step is check-
ing which models can be represented by the lowest
class of automata (Combinational Logic). CL is a
time-independent logic that uses the logical combi-
nators of propositional logic to determine the state
of the automata. Time-independence describes that
the state of the automata is completely determined
by the input. Hence, CL automatas are not capable
of storing any state (or using the state to determine
the next state) because this would violate the as-
sumption of time-independence. Even with this re-
striction, it is still possible to build simple diffusion
models which can be represented by CL automata.
Examples for this are the Mt-BI and Mwt-BI mod-
els which are defined by a single equation that is
independent of the state of the node. On the other
hand, the Mt-UNI and Mwt-UNI models do not sat-
isfy this requirement because they behave differ-
ently depending on the current state. Another ex-
ample is the Mu-POD model that checks for a unan-
imous consens in the neighboring nodes which is
not dependent on the current state of the node. In
general, the Mt-BI, Mwt-BI and Mu-POD models are
the only models that can be completely represented
by CL. More precise, all models that are classified
as being irreflexive in Table 2.1 can be represented
by CL because the definition of irreflexiveness cap-

5

tures the assumptions of time-independence in CL.
All other models may require some kind of internal
state (reflexive connections) to determine the next
state. The ’may’ is important in this case because
certain edge cases of models are still reducible to
CL. For example, a DeGroot model without reflex-
ive connections is time-independent. However, the
DeGroot model cannot be represented by CL gen-
erally.

Finite-State Machine: The next step is check-
ing which transition functions can be represented
by the next higher class of automata. FSMs are
especially interesting because they are the lowest
class of automata that may use internal state in
their transition function. FSMs can be classified
into the three different subcategories of determinis-
tic finite automatons (DFAs), non-deterministic fi-
nite automatons (NDAs) and probabilistic automa-
tons (PAs). DFAs are regularly defined as a five
tuple D = (Q,Σ, δ, q0, F) where Q determines the
set of possible states; Σ determines the alphabet of
possible inputs; δ determines the transition func-
tion that maps a state q ∈ Q and an input symbol
σ ∈ Σ to the next state; q0 ∈ Q is the initial state;
and F ⊂ Q determines the set of accepting states.
The definition of a DFA requires that each transi-
tion in δ is unique and that each transition must
be triggered by an input symbol. A simple example
of a DFA can be seen in Figure 3.1. NDAs are a
more general case of DFAs where these restrictions
are not given. That means that the transitions in
δ do not need to be unique and that the system
can change state without input symbols. PAs are
an even more generalized version of NDAs where
transitions between states can have specific proba-
bilities. Following the generalizations, every DFA is
a NDA and every NDA is a PA, but not the other
way around. However, the additional generalization
does not add any power to the machine. Any lan-
guage that can be accepted by a PA or NDA can
also be accepted by a DFA. That means that every
NDA and PA can also be represented by a regular
DFA. For example, any NDA can be represented
by a DFA by applying the powerset constructions
even though an n state NFA can result in a DFA
with up to 2n states (Rabin and Scott (1959)).

Liu et al. (2014) (the Mta model) already used a
three-state DFA in conjunction with quantifier logic

a c

b

q1
q0

q1q1

q0

q0

Figure 3.1: Example of a simple FSM that ro-
tates between three states on input q1 or repeats
the current state on q0.

to build a transition function for the nodes in their
model. The input to the FSM are simple thresh-
old rules that can be determined by the states of
the neighboring nodes (Wp, W¬P , Sp and S¬P).
Similarly, theMt-UNI,Mwt-UNI andMmaj-POD mod-
els can be represented by DFAs in the same man-
ner. This follows from the fact that each model
has a finite amount of states where the next state
can be solely determined by the current state and
the inputs from the neighboring nodes. Also, all
transitions are unique and all transitions are re-
quire an external input symbol. The Msir and Msis

models do not fulfill this requirement because they
have probabilistic transitions and can change in-
fection state without external input symbols. How-
ever, they can still be represented by PAs which are
generally reducible to DFAs.

Conclusion: In summary, all transition func-
tions that were discussed so far can be represented
by DFAs. The only exception to this is the DeGroot
model which was not mentioned till now. The ma-
jor problem of the DeGroot model is the continuous
state space which is defined as: Q = {x ∈ R | 0 ≤
x ≤ 1}. Hence, it is not possible to build a DFA
because the system would need an infinite amount
of states which violates one of the basic assumption
of a DFA. However, it is still possible to represent
DeGroot models as DFAs by relaxing the require-
ment of a perfect translation or unification. The in-
finite continuous state space can be represented by
a finite amount of intervals. With intervals getting
smaller, the amount of states needed to describe the
DeGroot model increases to infinity. Non-perfect

6

translations/unifications are not the priority of this
thesis, which is the reason why they will not be dis-
cussed any further. Table 3.1 gives a summary of
this section by listing the lower bound automaton
for each model.

3.2 Unified Model M

So far, the section only considered the transition
function of a single node. In Table 3.1 it was shown
that the most powerful automata needed is a DFA
(without considering the DeGroot model). If we
use the definition of a DFA as general transition
function and start looking at the full graph of
nodes, the whole structure becomes very similar to
the definition of a cellular automaton. A cellular
automaton is a (possible infinite) set of DFAs
which is ordered in a grid-like pattern where the
single DFAs use their neighbors as input. A graph
does not necessarily fulfill the definition of a grid-
like pattern, but the collection of nodes connected
by edges works similar to a set of interconnected
DFAs that use their neighboring DFAs as input.

As the next step, a general model def-
inition is given that will be applied to
all diffusion models. The model is created
as a five-tuple M = (G,Q,Q0,Σ, δ) with
G = (V,E) as a graph containing a set of
nodes V = {v1, v2, ...} and a set of weighted edges
E = {(v1, v2, w1), (v2, v1, w2), ...}. The graph is

Table 3.1: Lower bound automaton for each
model: Combinational Logic (CL), Finite-State
Machine (FSM), Pushdown Automaton (PD)
and Turing Machine (TM). The Mdeg model re-
quires a superset of the DFA.

Model Lower Bound
Mt-BI CL
Mt-UNI DFA
Mwt-BI CL
Mwt-UNI DFA
Msis PA = DFA
Msir PA = DFA
Mta DFA
Mdeg. DFA ⊂
Mmaj-POD DFA
Mu-POD CL

directed such that (v1, v2, w) 6= (v2, v1, w). By
definition, the graph will not contain two edges
that differ only in the weight (the graph is not
a multigraph). The second value in the model
definition, Q, describes the set of finite states that
is used in the DFA. The initial state of the model
is described as Q0 and is a vector containing the
initial configuration such that each element of
Q0 ∈ Q. Σ gives the set of input symbols to the
DFA. Lastly, the transition table σ describes a
relation from the set of states and set of input
symbols to other states.

A few general functions will be defined to note
special subsets of nodes and edges that will be
commonly used in the next step. The functions
Source(e), Destination(e) and Weight(e) are used
to access the members of the edge tuple e =
(vs, vd, w). The functions in(v) = {e|e ∈ E ∧
Destination(e) = v} and out(v) = {e|e ∈ E ∧
Source(e) = v} refer to the set of incoming and
outgoing edges for a node v. The magnitude oper-
ator |a| is used to count the number of members
in a certain set. Therefore, |in(v)| and |out(v)| re-
fer to the amount of incoming and outgoing edges
from node v. These definitions are commonly called
the ’indegree’ and ’outdegreee’ of node v. With this
logic, it is already possible to define the require-
ments of the models in Table 2.1 in a more formal
way:

Additionally, a helper function State(v) will be de-
fined that is used to access the state of node v.
With that, it is possible to define a function that
returns the set of all neighboring input nodes that
follow a certain state. The function takes the node
v and a state q as parameters and returns the
set of all incoming connections that also have this
state. Hence, |ifx(v,¬P)| would count the amount
of neighbor nodes with incoming edges that have
state ¬P .

ifx(v, q) = {e ∈ in(v) | State(Source(e)) = q}
(3.1)

With these definitions, all diffusion models in Table
2.1 (except to the DeGroot model) can be consid-
ered as specific instances of the general model M .
The following section will present the generaliza-
tion in more detail.

7

Figure 3.2: Requirements used to describe dif-
fusion models.

1. Undirected Graph: For all ex =
(v1, v2, wx) ∈ E there exists one
ey = (v2, v1, wy) ∈ E. Note, that an undi-
rected graph does not assume that the weight
for both connections is the same (wx 6= wy).

2. Reflexive Graph: The next state of all nodes
can be determined only by the inputs from
neighbor nodes and the current state.

3. Irreflexive Graph: The next state of all
nodes can be determined only by the inputs
from neighbour nodes.

4. Stochastic: For every v ∈ V :
4.1 input:

∑
e∈in(v) Weight(e) = 1

4.2 output:
∑

e∈out(v) Weight(e) = 1

5. Equal influence: For every v ∈ V ∧e ∈ in(v):
Weight(e) = 1/|in(v)|. Equal influence across
inputs implicates a stochastic input (4.1).

Bi-directional Threshold Model Mt-BI: The
model requires an undirected graph (requirement
1, see Figure 3.2), equal influence across all neigh-
bors (requirement 4, see Figure 3.2) and irreflex-
ivity(requirement 3, see Figure 3.2). The threshold
model is binary state which are denoted by P and
¬P which yields Q = {P,¬P}. We can define the
transition function δ in equation 3.3 by defining an
axiom S that checks whether the threshold function
is fulfilled. Hence, the list of possible input symbols
is Σ = {S,¬S}.

δ(v) =

{
P, if S(v)

¬P, otherwise
(3.2)

The axiom S can be written as a proportion of the
neighbors following P and ¬P (equation 3.3) or
by a summation of the states (equation 3.4). The
latter one requires that the states P and ¬P are
numerically equivalent to 1 and 0.

S(v) =
1

|in(v)|
|ifx(v, P)| ≥ t (3.3)

S(v) =
1

|in(v)|
∑

e∈in(v)

State(Source(e)) ≥ t (3.4)

It was already shown that this model can be rep-
resented by CL (Section 3.1). It is also possible to
create a simple DFA from equation 3.2 that is in-
dependent of the state:

P ¬P

S

S ¬S

¬S (3.5)

Uni-directional Threshold Model Mt-UNI:
The uni-directional threshold model is the same
as the bi-directional threshold model except for
the update policy which does not allow models to
switch back from P to ¬P . This model may not
be represented by CL because the model behaves
differently depending on whether it is in state P or
¬P . The following DFA with the axiom in equation
3.3 or equation 3.4 describes this model.

P ¬P

S

S ∨ ¬S ¬S

(3.6)

Weighted bi-directional threshold model
Mwt-BI: The weighted threshold model can be
represented by the same DFA as shown in 3.5 but
with a slightly adapted axiom S(v) shown in equa-
tion 3.7 where the weight of the incoming edges is
taken into account. The node-specific threshold is
called tv.

S(v) =

∑
e∈in(v)

Weight(e) ∗ State(Source(e))

|in(v)|
≥ tv
(3.7)

Weighted uni-directional threshold model
Mwt-UNI: This model uses the same axiom as the
weighted bi-directional threshold model (equation
3.7) with the DFA 3.6.

8

SIS Model Msis: The probabilistic SIS model is
highly dependent on the amount of time steps tI
for which a node stays infected. The easiest way
to model such a transition is by creating a state for
each infection step. Hence, a model with tI infection
steps may be represented by a state machine with
tI + 1 states such that Q = {S, I1, I2, ..., ItI}. A
checkmark for infected neighboring nodes can be
defined by combining all neighbor nodes that are
in one of the infected states.

Infected(v) = {x | x ∈ ifx(v, I1)∨
x ∈ ifx(v, I2) ∨ ... ∨ x ∈ ifx(v, IIt)}

(3.8)

The probability of a node staying susceptible Is
can then be calculated using equation 3.9. Conse-
quently, the counter probability 1 − Is gives the
probability that the node becomes infected.

Is = (1− p)|Infected(v)| (3.9)

Using this equation, it is possible to create a transi-
tion function seen in equation 3.10. It becomes clear
that the model is a PA by looking at the two possi-
ble choices in the transition table when the node is
in state S. The model also requires state transitions
without external input which is a requirement by a
DFA. However, the given PA can be reduced to a
DFA.

S I0

I1

I2It

1− Is

Is

...

(3.10)

SIR Model Msir: The SIR can be defined in a
similar way as the SIS model. The model uses the
same fixed number of time steps tI in the infec-
tion process, but the node transitions to a recov-
ered state afterwards. Hence, the model contains
tI + 2 states such that Q = {S,R, I1, I2, ... , ItI}.

The transition function for the SIR model is shown
in equation 3.11. The finite state machine is ex-
actly the same as the PA described in Msir except
that the machine moves to state R after it cycled
through all infection states.

S I0

I1

I2It

R

1− Is

Is

...

(3.11)

Propositional Opinion Diffusion Mmaj-POD,
Mu-POD: The model is defined as an undirected
graph (requirement 1, see Figure 3.2) with equal
influence (requirement 5, see Figure 3.2). The
definition is not limited to a binary state and may
contain any finite amount of states Q. Liu et al.
(2014) describe two different approaches to model
the opinion diffusion:

Mmaj-POD: The majoritarian case where a node
changes its belief if there exists a strict majority in
the beliefs of the neighbor nodes and its own belief.
The definition requires that the model is reflexive
such that each node is connected to itself. For each
state x, an axiom Sx (equation 3.12 gives an exam-
ple with three states) is introduced that specifies
whether the majority case is fulfilled. All axioms
are mutually exclusive because there may only be
a single majority (or no majority) at any point in
time.

Mu-POD: The unanimity case describes the rule
where a node changes its belief if there is an unan-
imous consens among the neighboring nodes. This
definition is irreflexive (requirement 3, see Figure
3.2) because the next state is not dependent on the
current state. For each state x, an axiom Sx is intro-
duced (equation 3.13 gives an example with three
states) that specifies whether there is a unanimous
consens among the neighbors.

9

S0 =|ifx(v, P0)| > |ifx(v, P1)|
∧ |ifx(v, P0)| > |ifx(v, P2)|

S1 =|ifx(v, P1)| > |ifx(v, P0)|
∧ |ifx(v, P1)| > |ifx(v, P2)|

S2 =|ifx(v, P2)| > |ifx(v, P0)|
∧ |ifx(v, P2)| > |ifx(v, P1)|

Up =¬S0 ∧ ¬S1 ∧ ¬S2

(3.12)

S0 =|ifx(v, P0)| = |in(v)|
S1 =|ifx(v, P1)| = |in(v)|
S2 =|ifx(v, P2)| = |in(v)|
Up =¬S0 ∧ ¬S1 ∧ ¬S2

(3.13)

With these axioms it is possible to build a DFA
(equation 3.14). The DFA is the same for the unan-
imous case and the majority case. Table 3.1 de-
scribes that the lower bound for the majority model
is a DFA and for the unanimity model it is CL. This
does not become clear when looking at the axioms
or at the DFA. It is based on the fact that the defi-
nition of Mmaj-POD is reflexive while the definition
of Mu-POD is irreflexive.

P0 P1

P2

S2S2

S1S0

S1

S0

Up ∨ S2

Up ∨ S1Up ∨ S0

(3.14)

Figure 4.1: A one-way bridge in Mt=0.5 that
transfers the state from node A to B but not
from B to A.

4 Conversion of Mwt-BI to
Mt-BI(t = 0.5)

The previous sections showed that it is possible to
unify the model definitions by using a more general
concept of a DFA. Another approach is the exact
translation between models. Is it possible to rep-
resent the same behavior of a certain model by a
different model? For some cases it is certainly possi-
ble. Easley and Kleinberg (2010) already discussed
a basic translation between the SIS and the SIR
model. The following section will show a translation
of a uni-directional, directed and weighted thresh-
old model with unique thresholds (Mwt-UNI) to an
uni-directional, unweighted and undirected thresh-
old model with a global threshold Mt-UNI(t = 0.5).
First, it is important to note that the DFAs are the
same in both cases. The only difference between
those models is the way in which they aggregate the
neighbor opinions. The weighted threshold model
gives each connection a specific weight and has a
node-specific threshold.

Adding intermediate nodes that emulate the be-
havior of the weights and node-specific thresholds
enables the conversion between those models. The
core concept of the conversion is a construct of
three nodes that works as an one-way bridge (see
Figure 4.1) in Mt-BI(t = 0.5). It allows a state
transfer from node A to B, but blocks the trans-
fer from node B to A. This is due to a cluster that
blocks the cascade coming from side B: The node on
the left of B will never change its opinion because
it has two neighbors from side A that prevent the
node from reaching the 0.5 threshold. A cascade
coming from node A does not hit this blockade and
reaches node B.

These structs are used to emulate the behavior
of the weighted and directed edges. Because the

10

structs only allow a one-sided transfer they work
the same way as directed edges. It is possible to
simulate the influence of the weights by adding any
number of structs that fulfills the relation to the
other inputs and the threshold. For example, if a
node A has a threshold of 2/4 and receives an in-
put with weight 1/4 from B and another input with
weight 3/4 from C, this could be represented by one
struct from B to A, three structs from C to A, and
two nodes emulating the threshold. More generally,
the least common divisor of the threshold and all
incoming weights divided by the weight of the cur-
rent edge yields the amount of blockers needed to
emulate the connection. This approach is repeated
for all weights. Lastly, the graph needs to be bal-
anced because the structs do not only exhibit an in-
fluence on the target node B but also on the source
node A. Each struct adds an additional influence
of two ¬P nodes to A. This influence needs to be
balanced by adding two counter nodes with state
P to ensure that the model behaves in the same
way. The following algorithm describes the steps in
more detail:

1. For each node in Mwt-BI consider the weights
of all incoming edges ein and the node’s thresh-
old t. Let k be the least common multiple of
this set (the set contains fractional values; all
values are expanded with a value that turns
them into them integers).

2. For this node replace each incoming edge e =
(vsource, vdestination, w) with N = k/w con-
structs of three nodes v1, v2, v3 with belief ¬P
where vsource is connected to v1; v1 to v2 and
v3; v2 and v3 to vdestination (an example can be
seen in Figure 4.1 where A is vsource and B is
vdestination).

3. Add 2k/w number of counter nodes to vsource
that follow the belief of P .

4. Add t/w nodes with belief of ¬P that are con-
nected to vdestination that simulate the thresh-
old.

5 Implementation

A substantial part of the project is the development
of a website that is capable of simulating the dif-
fusion models and the conversion between models.

The goal of the implementation is an open-source
accessible tool that creates a more natural under-
standing of the differences and similarities between
the models. Therefore, the tool is implemented as
a freely accessible website that can simulate the
diffusion behaviors of all models listed in this the-
sis. In general, the behavior of each model differs
significantly for different graph topologies which
is the reason that there are multiple predefined
graph topologies available. The implementation
and the available set of topologies is based on the
NetworkX framework (Hagberg, Schult, and Swart
(2008)) which is available under the 3-clause BSD
license. A list of all available graph topologies is
given in the appendix A. The visual implemen-
tation is based on the Plotly Dash framework
(Plotly Technologies Inc. (2015)) which integrates
interactive graphs on websites (MIT license). The
source code for the visual tool is also published
under MIT license and can be accessed at https:
//github.com/KonstantinRr/graph-translator. A
detailed guide on running the project can be found
in the README file.

The diffusion website can be used to show the
diffusion behavior of the presented models in dif-
ferent topologies. In the following section, a few
examples of diffusion behavior are shown. Figure
5.1 shows the limit of the diffusion behavior of
a threshold model Mt-BI(0.5) with a threshold of
0.5. It becomes visible that the limit distribution
ends up in clusters having the same state. It can
also be observed that the edges of clusters are al-
ways in positions with low density connections to
other clusters. Especially interesting is the cluster
of four nodes at the top right of the graph. These
nodes switch periodically between states at every
tick because each node has a majority of neighbors
with a different opinion. These nodes are the only
nodes in the distribution which are unstable. Fig-
ure 5.3 shows a similar limit distribution for the
Mmaj-POD(s = 5) model. The same topology used
in the previous example was initialized with ran-
dom states s0, s1, s2, s3, s4. The stable state shows
clear edges between clusters at positions with a low
density.
Figure 5.2 shows the limit distribution of the model
Msir(p = 0.05, ti = 20) on the same graph. Each
node has a probability of 0.05 to get infected for
each neighbor node at the time step. The node stays

11

https://github.com/KonstantinRr/graph-translator
https://github.com/KonstantinRr/graph-translator

Figure 5.1: Example limit distribution of
Mt-BI(0.5) on a random geometric graph with
m = 100 and c = 0.25. There is a clear distribu-
tion into clusters with a periodically changing
cluster of four nodes at the top right.

infected for 20 steps and may infect other nodes.
The Figure shows that all nodes except two nodes
became infected and are now recovered.

6 Discussion

In the previous sections it was shown how different
diffusion models work (see Section 2) and that they
can be represented by deterministic finite automa-
tons (see Section 3.1). The DeGroot model was the
only model that required higher order complexity
which cannot be represented by a DFA. Section 3.2
then defined a set of DFAs as nodes connected by
edges in a more formal way and presented the DFA
transition tables for multiple diffusion models. This
showed that it is indeed possible to unify the model
definitions by finding the lower bound automaton
that has enough complexity to represent the mod-
els. Section 4 introduced a translation between the
Mwt-UNI and Mt-UNI to show that it is also pos-
sible to translate specific instances of models into
each other. The given translation worked by adding
nodes that emulate the behavior of the weights and
thresholds.

Figure 5.2: Example limit distribution of Msir =
0.05 on a random geometric graph with m = 100
and c = 0.25. All nodes except two nodes have
become infected and recovered.

Figure 5.3: Example limit distribution of
Mmaj-POD s=5 on a random geometric graph with
m = 100 and c = 0.25 and initial random state.
The nodes form clusters that have the same
state. Similar to Figure 5.1 all edges of the clus-
ters are in low-density regions.

12

This thesis showed that all models are equivalent
on a more abstract level. As a next step, the simi-
larities and differences between the DFAs could be
investigated in more detail. Specifically, it should be
possible to combine the DFAs presented in this the-
sis to create a single DFA that is able to simulate
all models. Another approach is the implementa-
tion of the DeGroot model in automata logic. This
could happen through the usage of a more powerful
automata (at least a push down automaton) or by
using simplifications to reduce the state space. The
research in this domain may give rise to a better
understanding of the connections between diffusion
models. Models from epidemiology and opinion dif-
fusion combined yield a better understanding why
certain events in social media behave similar to vi-
ral events.

References

Alexandru Baltag, Zoé Christoff, Rasmus K.
Rendsvig, and Sonja Smets. Dynamic Epis-
temic Logics of Diffusion and Prediction in So-
cial Networks. Studia Logica, 107(3):489–531,
June 2019. ISSN 1572-8730. doi: {10.1007/
s11225-018-9804-x}.

Zoé Christoff and Davide Grossi. Stability
in Binary Opinion Diffusion. In Alexan-
dru Baltag, Jeremy Seligman, and Tomoyuki
Yamada, editors, Logic, Rationality, and In-
teraction, Lecture Notes in Computer Sci-
ence, pages 166–180, Berlin, Heidelberg, 2017.
Springer. ISBN 9783662556658. doi: {10.1007/
978-3-662-55665-8}.

Morris H. DeGroot. Reaching a Consensus. Journal
of the American Statistical Association, 69(345):
118–121, March 1974. ISSN 0162-1459. doi: 10.
1080/01621459.1974.10480137.

David Easley and Jon Kleinberg. Networks,
crowds, and markets: reasoning about a highly
connected world. Cambridge University Press,
New York, 2010. ISBN 9780521195331. OCLC:
ocn495616815.

Umberto Grandi, Emiliano Lorini, and Laurent
Perrussel. Propositional Opinion Diffusion.
pages 989–997. ACM, 2015.

Aric A. Hagberg, Daniel A. Schult, and Pieter J.
Swart. Exploring network structure, dynamics,
and function using networkx. In Gaël Varoquaux,
Travis Vaught, and Jarrod Millman, editors, Pro-
ceedings of the 7th Python in Science Conference,
pages 11 – 15, Pasadena, CA USA, 2008.

Fenrong Liu, Jeremy Seligman, and Patrick Gi-
rard. Logical dynamics of belief change in
the community. Synthese, 191(11):2403–2431,
July 2014. ISSN 1573-0964. doi: 10.1007/
s11229-014-0432-3.

Plotly Technologies Inc. Collaborative data science,
2015. URL https://plot.ly.

Essi Ilona Pöyry, Salla-Maaria Laaksonen, Arto Il-
mari Kekkonen, and Juho Ilmari Pääkkönen.
Anatomy of viral social media events. University
of Hawai’i at Manoa, 2018. ISBN 9780998133119.
doi: 10.24251/hicss.2018.272. URL https://
helda.helsinki.fi/handle/10138/237224.

Micheal O. Rabin and Dana Scott. Finite automata
and their decision problems. IBM Journal of
Research and Development, 3(2):114–125, April
1959. ISSN 0018-8646. doi: 10.1147/rd.32.0114.

13

https://plot.ly
https://helda.helsinki.fi/handle/10138/237224
https://helda.helsinki.fi/handle/10138/237224

A Appendix

Full list of supported graph topologies created by
Hagberg et al. (2008).

• Balanced Tree(r, h): Create the balanced r-ary
tree of height h.

• Barbell Graph(m1,m2): Creates the Barbell
Graph: Two complete graphs connected by a
path.

• Binomial Tree(n): Creates the Binomial Tree
of order n.

• Circular Ladder Graph(n): Creates the circu-
lar ladder graph CLn of length n.

• Cycle Graph(n): Returns the cycle graph Cn

of cyclically connected nodes.

• Dorogovtsev-Goltsev-Mendes Graph(n):
Creates the hierarchically constructed
Dorogovtsev-Goltsev-Mendes graph.

• Empty Graph(): Returns the Empty Graph
with n nodes and zero edges.

• Full Rary Tree(r, n): Creates a full r-ary tree
of n vertices.

• Ladder Graph(n): Creates the Ladder graph of
length n.

• Lollipop Graph(m,n): Creates the Lollipop
Graph; Km connected to Pn.

• Null Graph(): Creates the Null graph with no
nodes and no edges.

• Path Graph(n): Creates the Path graph Pn of
linearly connected nodes.

• Star Graph(n): Creates the star graph of order
n.

• Trivial Graph(): Creates the Trivial Graph
with one node (with label 0) and no edges.

• Turan Graph(n, r): Creates the Turan Graph.

• Wheel Graph(n): Creates the Wheel Graph.

• Random Geometric(n, c): Creates a Random
Geometric Graph in the unit cube of dimen-
sions dim.

• Paley Graph(p): Returns the Paley (p−1)/2−
regular Graph on p nodes.

• Grid 2D Graph(m,n, periodic): Creates the
two-dimensional Grid Graph.

14

https://networkx.org/documentation/networkx-2.5/reference/generated/networkx.generators.classic.balanced_tree.html#networkx.generators.classic.balanced_tree
https://networkx.org/documentation/networkx-2.5/reference/generated/networkx.generators.classic.barbell_graph.html#networkx.generators.classic.barbell_graph
https://networkx.org/documentation/networkx-2.5/reference/generated/networkx.generators.classic.binomial_tree.html#networkx.generators.classic.binomial_tree
http://networkx.org/documentation/networkx-2.5/reference/generated/networkx.generators.classic.circular_ladder_graph.html#networkx.generators.classic.circular_ladder_graph
https://networkx.org/documentation/networkx-2.5/reference/generated/networkx.generators.classic.cycle_graph.html#networkx.generators.classic.cycle_graph
https://networkx.org/documentation/networkx-2.5/reference/generated/networkx.generators.classic.dorogovtsev_goltsev_mendes_graph.html#networkx.generators.classic.dorogovtsev_goltsev_mendes_graph
https://networkx.org/documentation/networkx-2.5/reference/generated/networkx.generators.classic.empty_graph.html#networkx.generators.classic.empty_graph
https://networkx.org/documentation/networkx-2.5/reference/generated/networkx.generators.classic.full_rary_tree.html#networkx.generators.classic.full_rary_tree
https://networkx.org/documentation/networkx-2.5/reference/generated/networkx.generators.classic.ladder_graph.html#networkx.generators.classic.ladder_graph
https://networkx.org/documentation/networkx-2.5/reference/generated/networkx.generators.classic.lollipop_graph.html#networkx.generators.classic.lollipop_graph
https://networkx.org/documentation/networkx-2.5/reference/generated/networkx.generators.classic.null_graph.html#networkx.generators.classic.null_graph
https://networkx.org/documentation/networkx-2.5/reference/generated/networkx.generators.classic.path_graph.html#networkx.generators.classic.path_graph
https://networkx.org/documentation/networkx-2.5/reference/generated/networkx.generators.classic.star_graph.html#networkx.generators.classic.star_graph
https://networkx.org/documentation/networkx-2.5/reference/generated/networkx.generators.classic.trivial_graph.html#networkx.generators.classic.trivial_graph
https://networkx.org/documentation/networkx-2.5/reference/generated/networkx.generators.classic.turan_graph.html#networkx.generators.classic.turan_graph
https://networkx.org/documentation/networkx-2.5/reference/generated/networkx.generators.classic.wheel_graph.html#networkx.generators.classic.wheel_graph
https://networkx.org/documentation/networkx-2.5/reference/generated/networkx.generators.geometric.random_geometric_graph.html#networkx.generators.geometric.random_geometric_graph
https://networkx.org/documentation/networkx-2.5/reference/generated/networkx.generators.expanders.paley_graph.html#networkx.generators.expanders.paley_graph
https://networkx.org/documentation/networkx-2.5/reference/generated/networkx.generators.lattice.grid_2d_graph.html#networkx.generators.lattice.grid_2d_graph

	Introduction
	Different Types of Models
	Assumptions
	Jargon

	Unified Model
	Automata Theory
	Unified Model M

	Conversion of Mwt-BI to Mt-BI(t=0.5)
	Implementation
	Discussion
	Appendix

