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Abstract: This thesis aims to provide necessary and sufficient conditions for impulse controllability of switched
Differential algebraic equations (DAEs) when the switching signal is unknown. Several necessary and sufficient
conditions for impulse controllability have been derived in the literature, under the supposition that the
switching signal is fixed using geometric control theory. This thesis generalises these conditions such that they
ensure impulse controllability when a switching signal has not been specified. Firstly, regular DAEs will be
analysed through Wong sequences and the quasi-Weierstrass form. Secondly, a different solutional framework
called the piecewise-smooth distributions will be introduced. Thirdly, some geometric notations regarding
DAEs will be briefly covered. Afterwards, switched DAEs will be introduced formally and several notions for
impulse controllability under unknown switching signals will be introduced. The results will firstly be derived
from switched DAEs with 2-modes before generalising this to switched DAEs with p+ 1-modes.
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1 Introduction

In practice, many physical applications can be modelled through systems of ODEs. These are derived from the
combination of physical laws and conservation laws. For example, the motion of any object in three dimensions can be
modelled through its kinematics subject to the law of conservation of energy, or an electrical circuit with an arbitrary
amount of components can be modelled through the governing physical laws of the components coupled with Kirchhoff’s
laws∗.

Moreover, Kirchhoff’s laws contain no differential operator. Such laws can mathematically be interpreted as al-
gebraic constraints. In the case of Kirchhoff’s laws, the algebraic constraint can easily be solved and hence, one
variable can be eliminated to obtain an ODE description of the system. From a mathematical viewpoint, algebraic
constraints do not necessarily have to be solvable. If it is desired to study a set of differential equations coupled with
an unsolvable algebraic constraint, then a system of ODE’s will not accurately describe the system’s behaviour over time.

This can be solved by modelling this set of differential equations coupled with an algebraic constraint as a differential-
algebraic-equation, or DAE in short. This is obtained by incorporating the algebraic constraint in the system
formulation. For example, consider the following simple electrical system:

−
+u(·) Lv

i

Figure 1.1: A simple electrical circuit consisting of an inductor and a voltage source.

Let u(t) denote the output of the voltage source, i the current over the inductor L and v the voltage over the
inductor L. The dynamics of the inductor can be modelled by d

dt i = 1
Lv and Kirchhoff’s second law states that v−u = 0.

The ODE description of the system can be obtained by eliminating the algebraic constraint, giving the following ODE
d
dt i = 1

Lu. To obtain the DAE description, let x = [ i v ]
>

, then if one writes the dynamics of the inductor combined
with Kirchhoff’s law in system formulation one obtains the DAE description:[

L 0
0 0

]
ẋ =

[
0 1
0 1

]
x+

[
0
−1

]
u (‡)

Observe that in the example above Kirchhoff’s second law remains applicable for all time the circuit is active, since
the circuit is closed for all time. However, what if one models a circuit that will not remain closed for all time?
Mathematically, this corresponds to a sudden change in the algebraic constraint. In the following example it will be
demonstrated that several DAE descriptions are required to model such electrical circuits:

−
+u(·) Lv

i

−
+u(·) Lv

i

[
L 0
0 0

]
ẋ =

[
0 1
0 1

]
x+

[
0
−1

]
u

[
L 0
0 0

]
ẋ =

[
0 1
1 0

]
x+

[
0
0

]
u

Figure 1.2: Electrical system, consisting of an inductor L connected to a voltage source u(·) with a switch. The
circuit on the left and right will be referred to as mode 0 and mode 1 respectively.

As can be observed, both modes of the circuit are modelled using different DAE descriptions. Combining these
descriptions yields a switched DAE description of the electrical circuit. Both DAEs describe different modes of the
electric circuit, either the loop is closed or not.

∗In particular, Kirchhoff’s second law states that the voltage sum around a closed loop equals 0, which is a rephrasing of the law of
conservation of energy

2



Without performing a thorough analysis, several observations can be made regarding this electrical circuit. Again,
let the closed circuit be mode 0 and the open circuit be mode 1. Suppose mode 0 is active on (−∞, 0) and mode 1
active on [0,∞). If the switch from mode 0 to mode 1 occurs at t = 0, observe that the current drops to zero, therefore
experiencing a jump discontinuity. However, v = 1

L
d
dt i. What phenomena will v experience at t = 0? From electronics it

is well known that a spark or impulse can possibly jump across the switch, possibly damaging the electrical components.

Sparks are not a consequence of the loop structure changing from closed to open, but rather, are a consequence from a
jump in the current. However, this is not necessary. Consider the following circuit:

−
+u(·)

R1

Lv

i

R0

−
+u(·)

R1

Lv

i

R0

Figure 1.3: Electrical system where the switch induces an impulse in the voltage accross the inductor L. The
circuit on the left and right will be referred to as mode 0 and 1, respectively.

Assume that R0 6= R1. Let the system on the left be mode 0 and the system on the right be mode 1. Using Ohm’s
law, one is able to relate the current across the inductor with the input. Kirchhoff’s first law states that the current
that flows out of the red node is equal to the current flowing out of one of the resistors. To make this more rigorous,
suppose the switching happens at τ ∈ (0,∞). Kirchhoffs second law states:

R0i(t) + v(t)− u(t) = 0, t ∈ [0, τ)

R1i(t) + v(t)− u(t) = 0, t ∈ [τ,∞)

This constraint can be solved explicitly this in terms of one of the state variables, namely the current. Hence, the
current flowing out of the red node:

i(t) =

{
(u(t)− v(t))/R0 t ∈ [0, τ)

(u(t)− v(t)/R1 t ∈ [τ,∞)
(�)

Again, the dynamics of the inductor can be modelled by v = L d
dt i. Let x = [ i v ]

>
. Hence, the system formulation is

given as follows: [
L 0
0 0

]
ẋ =

[
0 1
R0 1

]
x−

[
0
1

]
u(t), t ∈ [0, τ)[

L 0
0 0

]
ẋ =

[
0 1
R1 1

]
x−

[
0
1

]
u(t), t ∈ [τ,∞)

Again, intuition seems to suggest that if the current experiences a jump discontinuity, one would expect a Dirac impulse
to occur in the voltage. However, it will be shown later in this thesis that for this specific circuit no impulses can occur.

The previous examples have shown that sparks occur as a consequence of a derivative of a jump discontinuity.
But how does one express them with proper mathematical rigor? As can be observed through the examples, the
classical solution framework of ODE’s do not well define the time derivative of a jump discontinuity. Therefore, one
has to extend the solutional framework and the theory of distributions or generalized functions will be explored
in order to find a suitable space of distributions one can use.

Impulses have the ability to damage electrical components, and thus, should be prevented. In the aforementioned
examples, one can find inputs that prevent the impulses from happening. Consider the first circuit again:
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−
+u(·) Lv

i

−
+u(·) Lv

i

Consider mode 0 on the interval [0, τ) and consider mode 1 on the interval [τ,∞). Let u(t) = 2t− τ on [0, τ) and
u(t) = 0 else. Applying Kirchhoff’s second law yields that v(t) = 2t− τ , and since 1

Lv(t) = d
dt i:

i(t) = 1
L

∫ t

0

v(s)ds = t
L (t− τ)

Hence, one has that i(τ−) = 0. Since the current will be zero at t = τ , one has that the current experiences no jump
discontinuity, and hence, v doesn’t experience an impulse.

As observed in the aforementioned examples, impulses can occur but can also be prevented. The big problem with
this approach is that both inputs explicitly require that the switching time τ is known. However, in many practical
applications this is not necessarily known, and therefore impulse controllability in terms of unknown switching times
has to be investigated.

This thesis will focus on deriving necessary and sufficient conditions for preventing impulses in the solution of a
switched DAE using geometric control theory, as can be seen in [1], [4], [6]. The approach to the preliminaries will be
similar as was done in [4]. Firstly, in section 2 several analytic notions will be explored for DAEs using a sequence
of subspaces. In section 3 the distributional framework will be explored and a suitable space of distributions will be
setup. Furthermore, in section 3 several geometric notions regarding DAEs will be introduced that will be of use for
the analysis and switched DAEs will be introduced formally along with defining impulse controllability for fixed and
unknown switching behaviours. Finally, section 4 will deal with the analysis of a switched DAE for the 2-mode case
and (p+ 1)-mode case.
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2 Regular Linear descriptor systems

2.1 Introduction

DAEs, or linear descriptor systems, have to be properly studied before studying switched linear descriptor systems.
Therefore, the homogeneous case will only be considered for now, i.e.

Eẋ = Ax, x(0) = x0 ∈ Rn (2.1)

Where E,A ∈ Rn×n and in general, E is assumed to be singular. These systems can simply be identified by their matrix
2-tuple (E,A). The difference between a DAE and an ODE is the fact that DAEs can contain unsolvable algebraic con-
straints, and therefore, makes it harder to solve. For an ODE, one should take note that E is non-singular, and can then
therefore be inverted. It is feasible to explore if these parts can be decoupled, as this will simplify the analysis significantly.

This desired decoupling can be achieved by transforming (E,A) into the Quasi-Weierstrass form, under the supposition
that (E,A) is regular. This is defined as follows:

Definition 1. Let E,A ∈ Rn×n. It is said that the matrix pair (E,A) is regular if, and only if, (det(sA−B)) is not
the zero polynomial.

The Quasi-Weierstrass form can explicitly be calculated using the Wong sequences, and will be explored in the
next subsection.

2.2 Wong Sequences

Consider the DAE as in (2.1) and assume x(t) is a differentiable solution. Consider the linear subspace V0 = Rn. If
x(t) ∈ V0 for all t ∈ R, then also ẋ(t) ∈ V0, since any linear subspace of a finite dimensional vector space is closed
under differentiation with the standard Euclidean topology.

Observe that using (2.1) and that ẋ ∈ V0, one consequently has x(t) ∈ A−1EV0 =: V1. Observe that this rea-
soning can be applied inductively, giving Vi+1 = A−1(EVi) and one therefore obtains a sequence of subspaces V0,V1, . . .
in which the solution x(t) lies. Additionally, the observation shows that V0 ⊆ V1, therefore by induction it can be
shown that {Vi}i∈N is a nested decreasing sequence of subspaces, i.e. V0 ⊆ V1 ⊆ . . . ⊆ Vi ⊆ Vi+1.

Since Vi ⊆ Rn for all i ∈ N, one has that dim(Vi) 6 n < ∞ for all i ∈ N. The dimension of Vi can only de-
crease in the first n-steps. Thus, after at most n-steps, one has that Vn+1 = Vn, which shows that the sequence {Vi}i∈N
will terminate in at most n steps. However, it could be that the sequence terminates in less than n-steps. Therefore,
let the terminating index k∗ denote the first value for which Vk∗ = Vk∗+1 holds. The limiting subspace will be denoted
by V∗. Since x(t) lies in every subspace of the sequence, one must have that x(t) ∈ V∗ for all t > 0.

It seems feasible to be able to decompose Rn as the direct sum of V∗ and some other subspace. In order to
find this other subspace, one can define a similar sequence of subspaces, namely Wi+1 = E−1(AWi) with W0 = {0},
which is a nested increasing sequence of subspaces. By similar reasoning, this will terminate in at most n steps and the
limiting subspace will be denoted by W∗.

If we want to show that Rn = V∗
⊕
W∗, it can simply be checked that n = dim(V∗) + dim(W∗) and V∗ ∩W∗ = {0}.

For the first result, a lemma will be stated:

Lemma 1. Assume that (E,A) is regular. Let σ(E,A) = {λ ∈ C|det(λE −A) = 0}. Let λ ∈ R \ σ(E,A). Then the
subspaces Vi,Wi satisfy the following relationships:

1. Vi = Im
(
(A− λE)−1E

)i
2. Wi = ker

(
((A− λE)−1E

)i
3. dimVi + dimWi = n

Proof. The first 2 arguments can be proven by induction, which can be found in [1]. The last claim follows from
applying the rank-nullity theorem to Vi,Wi, which proves the last claim.

Now, it can be proven that one indeed has that Rn = V∗
⊕
W∗. This will be done in the following theorem:

Theorem 1. Assume that (E,A) is regular, and define the Wong sequences as Vi+1 = A−1(EVi) and Wi+1 =
E−1(AWi). Both of these sequences will converge in at most n iterations and convergence in the same amount of steps.
Denote the limiting subspaces by V∗,W∗. Then one has that Rn = V∗

⊕
W∗.
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Proof. As a consequence of the 3th statement of Lemma 1, one must have that both sequences convergence in the
same amount of steps.

Again, using the 3th statement of Lemma 1, one obtains that dimV∗ + dimW∗ = n. Hence, it only needs to
be shown that V∗ ∩W∗ = {0}. Let k∗ denote the terminating index for both V∗,W∗, such that Vk∗ = V∗, Wk∗ =W∗.

Suppose that x ∈ Vk∗ ∩ Wk∗ . Define the linear map Ê :=
(
(A− λE)−1E

)
for some λ ∈ R \ σ(E,A). Then,

using the first two statements of Lemma 1 one must have that:

x ∈ Im Êk
∗
∩ ker Êk

∗

Hence, there exists z ∈ Rn such that x = Êk
∗
z. Furthermore, since x ∈ ker Êk

∗
, one has that Ê2k∗z = 0, which

shows that z ∈ ker Ê2k∗ . However, since W∗ := Wk∗ = W2k∗ , one has that z ∈ ker Êk
∗
. However, this shows that

x = Êk
∗
z = 0. Hence, 0 is the only element in V∗ ∩W∗ and the claim has been proven.

2.3 The quasi-Weierstrass form

The key in linear algebra is to associate linear maps with linear subspaces, which will also turn out to be the key for
the quasi-Weierstrass form. The quasi-Weierstrass form will decouple the DAE into an ODE and a simpler DAE, for
which the latter can easily be solved through a lemma. As stated in the introduction, the Wong sequences can be used
to find the desired form. The following theorem will be the core of this subsection:

Theorem 2. Let (E,A) be regular. Then there exists invertible maps S, T ∈ Rn×n such that the matrix pair (E,A)
will be transformed as:

(SET, SAT ) =

([
I 0
0 N

]
,

[
J 0
0 I

])
(2.2)

Where I is the n1×n1identity matrix, N a n2×n2 nilpotent matrix, i.e. there exists q ∈ N such that Nq = O, and J is
some n1 × n1 matrix. In particular, the maps can be constructed with regards to the Wong sequences: Let V∗ := Im(V ),
W∗ := Im(W ) be full rank matrices. Then take T = [V,W ] and S = [EV,AW ]−1.

Proof. See e.g. [3].

This result will prove its use to show that any linear descriptor system will have a solution that is unique under the
supposition that (E,A) is regular. Therefore, we will now take a look at the inhomogeneous case. Let f : R→ Rn be a
smooth map, then the inhomogeneous case is stated as follows:

Eẋ = Ax+ f, x(t0) = x0 ∈ Rn (2.3)

In order to easily prove this, a convenient lemma will be introduced:

Lemma 2. Let X be a Banach space and let T : X → X be a bounded linear operator. Suppose that
∑∞
k=0 ‖T‖k <∞.

Then one has that:

(I − T )−1 =

∞∑
k=0

T k (2.4)

Proof. (See [2]) Since X is a Banach space, and furthermore
∑∞
k=0 ‖T‖k <∞, one has that

∑∞
k=0 T

k converges and
‖T k‖ → 0

Next, define Sn =
∑n
k=0 T

k, then it can be shown that (I − T )Sn → I. This follows from a direct computation:

(I − T )Sn =

n∑
k=0

T k −
n+1∑
k=1

T k = I − Tn+1 → I

Additionally, one can note that (I − T )Sn → (I − T )S. Hence, it has been shown that (I − T )S = I, and therefore the
statement has been proven.

The result in Lemma 2 can significantly be simplified if the bounded linear operator in question also happens to be
nilpotent. Now, consider again equation (2.3). Using Theorem 2 and Lemma 2, it can be shown that any DAE has a
solution that is uniquely determined by its initial conditions, given that (E,A) is regular and f is a smooth map.

Theorem 3. Let (E,A) be regular and assume that f : Rn → R is a smooth map. Then for all smooth f there exists a
solution to (2.3), which is uniquely determined by some initial condition x(t0) for some fixed t0 ∈ R
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Proof. Firstly, consider the DAE as in (2.3) and suppose the corresponding Wong sequences have been constructed
V∗,W∗. Let V∗ := ImV and let W∗ := ImW .

Next, suppose that [EV,AW ] is invertible. Consider the change of basis given by the map T. If one applies this change
of basis whilst pre-multiplying with S := [EV,AW ]−1 yields:

SET ẋ = SATx+ Sf =: SATx+ g

Decompose x such that x = [v, w]> and decompose g such that g = [g1, g2]>, then if Theorem 2 is applied one obtains:[
I 0
0 N

] [
v̇
ẇ

]
=

[
J 0
0 I

] [
v
w

]
+

[
g1

g2

]
Which is equivalent to solving v̇ = Jv + g1 and Nẇ = w + g2. Clearly, v can be given using the standard so called
variation of constants formula, which can be found e.g. [5]. Thus it leaves us to show that Nẇ = w + g2 is uniquely
determined by w(t0). Observe that:

Nẇ = w + f2 ⇐⇒
(
N

d

dt
− I
)
w = f2

Next, recall that Nq = O. Define T = N d
dt with underlying Banach Space (C∞(R), ‖ · ‖∞ + ‖ d

dt (·)‖∞). Using Lemma
2, one derives the final solution:

w(t) = −
q−1∑
k=0

(
N

d

dt

)k
f2(t)

= −
q−1∑
k=0

Nkf
(k)
2 (t)

(2.5)

Therefore, using the variation of constants formula one can conclude that the solution of v(t) is uniquely determined by
v(t0). Similarly, using (2.5) one can conclude that the solution of w(t) is uniquely determined by w(t0).

As can be observed, the quasi-Weierstrass form can play a powerful role for proving theorems regarding linear
descriptor systems. However, it might still be unclear how the associated matrices J,N are actually computed.
Therefore, it might be worthwhile investigating how these matrices can be computed.

Using Theorem 2, one can compute explicit expressions involving J,N and other known matrices. This is stated in the
following corollary:

Corollary 1. Suppose that [EV,AW ] is invertible, furthermore, assume Theorem 2 is applicable. Let S, T be given as
in Theorem 2. Then one can explicitly compute J,N as follows:

J = (EV )†AV

N = (AW )†EW
(2.6)

Where † denotes the Moore-Penrose pseudo inverse (from now on referred to as pseudo inverse) which is given as
follows for a full rank matrix A ∈ Rn:

A† := (A>A)−1A> (2.7)

Proof. This can be observed by explicitly computing SET and SAT , as in Theorem 2, and equate the terms and omit
the trivial equations. Therefore, if S and T are given as in Theorem 2 then one obtains:

[V,W ]E = [EV,AW ]

[
I 0
0 N

]
=⇒ EW = AWN

[V,W ]A = [EV,AW ]

[
J 0
0 I

]
=⇒ AV = EV J

(2.8)

Next, as assumed [EV,AW ] is invertible, therefore EV,AW have to be full rank. Thus, their pseudoinverses do exist.
Therefore, if the equations in (2.8) are solved for J and N , one obtains their final result:

AWN = EW =⇒ N = (AW )†EW

EV J = AV =⇒ J = (EV )†AV

7



The next step in our analysis would concern finding a solution to the associated linear descriptor system. However,
as shown, this solution is uniquely determined by some initial condition. This can cause several problems.

Consider the homogeneous system as in (2.1). Using Wong sequences, one can find V∗,W∗. As has been noted, if a
solution x is in V∗ for some fixed time t∗ > 0, then it must be that x(t) ∈ V∗ for all t > t∗. However, what if one
considers x(t∗) := x0 /∈ V∗? Then the solution to the corresponding initial value might not be smooth for all t > t∗. If
a corresponding solution is not smooth for an initial value, then this initial values is called inconsistent. An example
of this will be explored in the introduction of the mathematical preliminaries, showing that impulses can occur for
inconsistent initial values.

For now, the focus will be put on consistent initial values, i.e. initial values for which a smooth solution can
be guaranteed. In the next section this formula will be derived for the inhomogeneous case, i.e. (2.3).

2.4 Explicit solution formula for consistent initial values

In Theorem 3 a lot of the work has already been put down. The only thing that has to be done is that the solutions
have to be combined into vector form. The following projectors will play a crucial role when the solutions in Theorem
3 are to be combined in vector form:

Definition 2. Consider a regular matrix pair (E,A) and consider its quasi-Weierstrass form and the associated
matrices given in Theorem 2. Then the consistency-, differential- and impulse projectors are given as follows:

Π(E,A) = T

[
In1×n1 On2×n1

On1×n2
On2×n2

]
T−1

Πdiff
(E,A) = T

[
In1×n1

On2×n1

On1×n2 On2×n2

]
S

Πimp
(E,A) = T

[
On1×n1

On2×n1

On1×n2
In2×n2

]
S

(2.9)

In general, the subscripts denoting the dimensions of the identity - or null matrix will be omitted for clarity sake.

A matrix is said to be a a projector (in the usual sense) if it is idempotent. Observe that the consistency projector
is always a projector in the usual sense, but the differential- and impulse projectors are not necessarily such projectors.
The following computation shows that the consistency projector is idempotent:

Π2
(E,A) = T

[
I O
O O

]
(T−1T )

[
I O
O O

]
T−1 = T

[
I O
O O

]2

T−1 = T

[
I O
O O

]
T−1 = Π(E,A)

The second observation that can be made is that these projectors are independent of the matrices T, S. This is
because the projectors, and furthermore, T, S are dependent on the Wong limits V∗,W∗ and their dimensions.

Using these projectors, one can find the explicit solution formula for (2.3). This result will be stated in the fol-
lowing theorem:

Theorem 4. Let (E,A) be a regular matrix pair and let Π(E,A),Π
diff
(E,A),Π

imp
(E,A) be as in definition 2. Define the

matrices Adiff, Eimp as follows:
Adiff := Πdiff

(E,A)A, Eimp := Πimp
(E,A)E

Then the solutions for (2.3), for c ∈ Rn, are given by†

x(t) = eA
difftΠ(E,A)c+

∫ t

0

eA
diff(t−s)Πdiff

(E,A)f(s)ds−
q−1∑
i=0

(Eimp)iΠimp
(E,A)f

(i)(t) (2.10)

Proof. As said, Theorem 3 has already put some work down. In particular, if x solves (2.3), then y =: [ v w ]
>

= T−1x
must solve v̇ = v + [ I O ]Sf and Nẇ = w + [O I ]Sf .

Observe that Adiff = T [ J O
O O ]T−1 and that Eimp = T [O O

O N ]T−1. Using the variation of constants formula, see
e.g. [5], one finds that the solution for v is given as:

v(t) = eJtv(0) +

∫ t

0

eJ(t−s)[ I O ]Sf(s)ds

†Observe that if a different initial time t0 is preferred rather than 0, then one can apply the translation t→ (t− t0).
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Using (2.5), one can derive the solution for w(t):

w(t) = −
q−1∑
k=0

Nk[O I ]Sf (k)(t)

The last step is combining these solutions in vector notation, and invert the initial change of basis. The first step in
the computation is as follows:

x(t) = T

[
v
w

]
= T

[
v
0

]
+ T

[
0
w

]
(2.11)

Firstly, the terms in (2.11) will be computed explicitly for clarity’s sake. The trick to keep in mind is to rewrite
everything in a more general matrix form, so to speak. Now, only the term involving v will be computed. This yields:

T

[
v
0

]
= T

[
eJtv(0)

0

]
+ T

[∫ t
0
eJ(t−s)[ I O ]Sf(s)ds

0

]
= T

[
eJt O
O O

] [
I O
O O

] [
v(0)
w(0)

]
+

∫ t

0

T

[
eJ(t−s) O
O O

] [
I O
O O

]
Sf(s)ds

Next, one should take note that:[
eJt O
O O

]
=

[
eJt O
O eO

] [
I O
O O

]
= exp

{[
J O
O O

]
t

}[
I O
O O

]
Additionally, observe that exp(DAD−1) = Dexp(A)D−1. Hence, Dexp(A) = exp(DAD−1)D. Using these expressions,

one is able to rewrite T [ v 0 ]
>

again. Firstly, define T−1c := [ v(0) w(0) ]
>

This yields:

T

[
v
0

]
= T

[
eJt O
O O

] [
v(0)
w(0)

]
+

∫ t

0

T

[
eJ(t−s) O
O O

] [
I O
O O

]
Sf(s)ds

= eT [ J O
O O ]T−1tT

[
I O
O O

]
T−1c+

∫ t

0

eT [ J O
O O ]T−1(t−s)T

[
I O
O O

]
Sf(s)ds

=eA
difftΠ(E,A)c+

∫ t

0

eA
diff(t−s)Πdiff

(E,A)f(s)ds

(2.12)

Therefore, one only has to compute T [ 0 w ]
>

and can combine the beforehand derived expression for T [ v 0 ]
>

. This is a
lot more straightforward and can be computed as:

T

[
0

w(t)

]
=

[
0

−T
∑q−1
k=0N

k[O I ]Sf (k)(t)

]
= −

q−1∑
k=0

T

[
O O
O Nk

] [
O O
O I

]
Sf (k)(t)

= −
q−1∑
k=0

(
T

[
O O
O N

]
T−1

)k
T

[
O O
O I

]
Sf (k)(t) = −

q−1∑
k=0

(
Eimp

)k
Πimp

(E,A)f
(k)(t)

(2.13)

By inspection, one can observe that if one adds equation (2.12) with equation (2.13) one derives the result in Theorem
4, and hence, the statement has been proven.

As noted at the end of section 2.3, this formula only gives a sufficiently smooth result for consistent initial conditions.
For the study of switched DAEs one has to incorporate inconsistent initial conditions into the defined solution framework.
This new framework will be explored in the next chapter. Once this new solution framework has been defined, several
concepts regarding switched DAEs will be introduced (e.g. ITP, impulse controllability). However, only the underlying
solutional space will be altered for inconsistent initial conditions, and the above solution formula will still be valid if
u(t) is assumed piecewise-continuous, as is mentioned [4, Remark 4.5].

Afterwards, the focus will be put on switched DAEs. However, it is beneficial to introduce a lemma regarding
projections that will be of use when the analysis will be shifted towards switched DAEs. Let P be a projection matrix,
that is it satisfies P = P 2. Projections have the property that Py = y if y ∈ Im(P ). This property is equivalent to
(P − I)y = 0 which is in turn equivalent to y ∈ ker(P − I). This property will be proven in the following lemma:

Lemma 3. Let P ∈ Rn×n be a projection matrix. Then one has that:

Im(P ) = ker(P − I)

Proof. In order to show the equality, it will be shown that Im(P ) ⊆ ker(P − I) and ker(P − I) ⊆ Im(P ), or equivalently
Im(P ) ⊆ ker(P − I) and Im(P ) ⊇ ker(P − I). These two steps will be abbreviated by (⊆), (⊇) respectively:
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(⊆) Let y ∈ Im(P ), thus ∃x ∈ Rn such that y = Px. Since P is idempotent, one has that P 2 = P , hence
Py = P 2x = Px = y. Thus Py = y, which is equivalent to (P − I)y = 0, hence y ∈ ker(P − I). This shows that
Im(P ) ⊆ ker(P − I).

(⊇) Let y ∈ ker(P − I), and as shown in the previous section this implies that Py = y. This directly shows that y is
mapped to itself under P , and is trivially in Im(P ). Hence, it has been shown that Im(P ) ⊇ ker(P − I).

Hence, one can conclude that Im(P ) = ker(P − I) and the desired statement has been proven.

10



3 Mathematical preliminaries

3.1 Distributional framework

As was discussed in the previous section, it can not always be ensured that the solution is smooth for all time. In
particular, this has to do with the choice of the initial condition. Such inconsistent initial values can ensure that the
solution of the DAE contains jumps, or even impulses.

Before introducing this new solutional framework, it might be worthwile to perform an exploratory analysis on
a DAE with an inconsistent initial value. However, in order to work with impulses, a more refined definition has to be
given before proceeding.

Let f be a piecewise smooth function discontinuous at t = a. The idea will be to compute the derivative of f
at t = a. Let ε > 0 be sufficiently small such that one can approximate f(a− 1

2ε) ≈ f(a−) and f(a+ 1
2ε) ≈ f(a+).

Since ε is sufficiently small, one can approximate the derivative of t = a as follows:

df

dt
(a) ≈

f(a+ 1
2ε)− f(a− 1

2ε)

ε
≈ [f(a+)− f(a−)] 1

ε

Formally, to find df
dt (a) one needs to let ε→ 0, however this is problematic as then df

dt (a) will be undefined. Therefore,
the idea will be to make this idea more consistent in terms of its inverse operation: integration. If one considers the
integral of df

dt (a) on the interval (a− 1
2ε, a+ 1

2ε), one expects that this is equal to the jump discontinuity. Using the
midpoint approximation one can see this actually holds:

∫ a+
1
2 ε

a− 1
2 ε

df

dt
(t)d(t) ≈

∫ a+
1
2 ε

a− 1
2 ε

[f(a+)− f(a−)] 1
εdt = f(a+)− f(a−)

This gives us an idea as to how intuitively define an impulse, or rather, Dirac impulse which will be done below:

δa :≈ lim
ε→0

{
1
ε t ∈ (a− 1

2ε, a+ 1
2ε)

0 else

Where :≈ means loosely defined. Hence, one can express the derivative of f at t = a in terms of this impulse as follows:

df

dt
(a) = [f(a+)− f(a−)]δa

Continuing on the example with inconsistent intial values, consider the following homogeneous DAE:[
0 1
0 0

]
ẋ = x, x :=

[
x(1)

x(2)

]
, x0 :=

[
0
1

]
, t ∈ [0,∞) (3.1)

It can already be observed that this initial condition is not consistent: according to Theorem 4, one has that x(t) = 0
for all t > 0 since Π(E,A) = O.

It seems that x(2) will experience a jump in the solution, as x(0−) = x0 whilst x(0+) = 0, thus x(2)(0−) = 1

and x(2)(0+) = 0. However, that is not all. Observe that x(1) =
(
x(2)

)′
= x0δ0 := x0δ, hence x(1) will experience a

Dirac impulse.

However, this raises serious questions as to how one must interpret the derivative of a jump. As has been learned in
traditional calculus courses, a piecewise continuous function that is discontinuous at a point will also not be differentiable
at that point. Therefore, the traditional solutional space of sufficiently smooth functions is insufficient, and thus the
space of piecewise smooth distributions will be adopted and explored in this subsection.

Distributions, in contrast to regular functions, map test functions‡ to a real number. This is a neat property,
as this implies that any locally integrable function f induces a distribution fD, by considering the following integral:

fD(ϕ) =

∫
R
ϕ(t)f(t)dt (3.2)

Back to our example given in (3.1), the key property that is utilized is the use of indicator functions. Observe that
there exists ε > 0 such that the solution x(t) equals 1[−ε,0)[

0
1 ] for all t > 0. To this end, we first define the space of

piecewise-smooth functions:

‡A test function is a smooth function for which the complement of its kernel is compact.
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Definition 3. The space of piecewise-smooth functions, C∞pw, is defined as follows:

C∞pw :=

α =
∑
i∈Z

1[ti,ti+1)αi

∣∣∣∣∣{ti ∈ R|i ∈ Z} discrete
ti < ti+1

αi C∞ ∀i ∈ Z


As can be observed, x(t) is in C∞pw. However, C∞pw is not a suitable candidate for our solutional space, since C∞pw

is not closed under differentiation. As discussed earlier, this is due to the possible presence of Dirac impulses in the
solution. Therefore, the space of piecewise-smooth distributions will be introduced as follows:

Definition 4. The space of piecewise-smooth distributions, DpwC∞ , is defined as:

DC∞pw
:=

α = fD +
∑
t∈T

Dt

∣∣∣∣∣
f ∈ C∞pw ,

T ⊆ R discrete,∀t ∈ T :
Dt ∈ span{δt, δ′t, ...}


Here, the Dirac delta (or Dirac impulse) δt is defined as a distribution as δt(ϕ) := ϕ(t). Observe that DpwC∞ is

closed under differentiation, since linear combinations of the Dirac delta with all its derivatives are allowed to be in
DpwC∞ .

However, after defining this new solutional framework, how must one interpret the solution of a DAE with an
inconsistent initial value? This can be interpreted as an initial trajectory problem, which indicates that the DAE has
been inactive before the initial time. This enables us to study the impulsive behaviour of a DAE. Let the initial time
be 0, then the ITP for a non-homogeneous DAE can be more symbolically defined as follows:

Definition 5. The initial trajectory problem (ITP) for a DAE is given as follows:{
x(t) = x0, t < 0

Eẋ = Ax+ f, t > 0

Next, several important properties of distributions will be stated:

Corollary 2. Let D be a distribution, ϕ some test function and let α be some smooth function. Then the following 3
properties hold:

1. D′(ϕ) := −D(ϕ′)

2. αD(ϕ) = D(αϕ)

3. (αD)′ = α′D + αD′

Next, there are several ways to ”evaluate” some distribution D at some time τ . As explored in the motivating
example, one is able to left/right evaluate D at some time. However, we are also interested in evaluating if D experiences
an impulse at time τ . The following definition will make the aforementioned points concrete:

Definition 6. Let τ ∈ R and let D := fD +
∑
t∈T Dt. Then the left/right evaluation of D is given by:

D(τ−) := f(τ−) = lim
ε→0

f(τ − ε),

D(τ+) := f(τ+) = f(τ)
(3.3)

Moreover, the impulsive part of D at τ , denoted by D[τ ], is given by:

D[τ ] =

{
Dτ , if τ ∈ T
0, else

(3.4)

Additionally, as already suspected in the introduction of this thesis, the Dirac delta must be the distributional
derivative of the indicator function. This will be proven in the following corollary:

Corollary 3. Let D be the distribution induced by the indicator function 1[t,∞). Let ϕ be a test function, that is, ϕ

has compact support. Let the Dirac delta centered at t, i.e. δt : ϕ→ ϕ(t), be defined by the integral §:

δt(ϕ) =

∫
R
ϕ(x)δ(x− t)dx = ϕ(t)

Then one has that D′ = δt.

Proof. Let ϕ be a test function. Since the support is compact, one must have that ϕ is equal to 0 at ±∞ Using
Corollary 2, one has that:

D′(ϕ) := D(−ϕ′) = −
∫
R
ϕ′(x)1[t,∞)dx =

∫ t

∞
ϕ′(x)dx = ϕ(t) =: δt(ϕ)

§This integral is not well defined in the classical sense of Riemann integration. In order to properly define this integral, a measure
theoretical approach can be taken. One can define the Dirac measure δa which maps a set X to 1 if a ∈ X and maps X to 0 if a /∈ X. Then
the integral can be reformulated as a Lebesque integral

∫
R f(t)dδa(t) = f(a)
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3.2 Geometric notations for DAEs

Before introducing switched DAEs, some geometrical notions regarding linear descriptor systems have to be introduced.
To this end the inhomogeneous DAE will be considered with an input, restricted to a finite interval, i.e.:

Eẋ = Ax+Bu, t ∈ [t0, T ] (3.5)

Observe that (3.5) can be identified with the triplet (E,A,B). Using Theorem 4, one can observe that the solution of
(3.5) can be written as the linear combination of a part independent of the input and a part dependent on the input,
referred to as the autonomous - and strictly controllable part, respectively. Specifically:

x(t) =: xu(t, t0;x0) = eA
diff(t−t0)Π(E,A)x0 +

∫ t

t0

eA
diff(t−s)Bimpu(s)ds−

q−1∑
i=0

(Eimp)iBimpu(i)(t)

≡ xaut(t, t0;x0) + xu(t, t0) (3.6)

For now, without loss of generality, the initial time is set to 0, otherwise one simply applies a translation t→ (t− t∗) if
t∗ is desired to be the initial time. In essence, the strictly controllable part of the trajectory has the ability to steer the
final solution to some other state. This raises a question: what are the states that can be reached for some smooth
input? To this end, the reachable subspace can be defined as follows:

R =

{
xT ∈ Rn

∣∣∣∃T > 0 ∃ smooth solution (x, u) of (2),
with x(0) = 0 and x(T ) = xT

}
(3.7)

Next, as argued in the first subsection, the Wong sequences can be very useful to study the solution behaviour of (2.1).
However, for the non-homogeneous problem one can define the augmented Wong sequences as follows for i = 0, 1, 2, . . .:

Vi(E,A,B) = A−1(EVi−1
(E,A,B) + ImB) =: Vi

Wi
(E,A,B) = E−1(AVi−1

(E,A,B) + ImB) =:Wi

Where V0 := Rn and W0 := {0}, and the terminating sequences will be denoted by V∗i ,W∗i . Sometimes it is convenient
to explicitly indicate for which matrix triplet the Wong limits are computed, but in general, one only has to indicate
for which mode the augmented Wong limits are computed. For this section, the former convention will be supposed
and when switched DAEs are studied the latter convention will be supposed. Furthermore, the star superscript will be
removed. In general, V(E,A,B) is called the augmented consistency space. For the homogeneous problem, (2.1), the
Wong limit V =: V(E,A) is called the consistency space. More concretely, these subspaces are defined as follows:

V(E,A) :=

{
x0 ∈ Rn

∣∣∣∃ smooth solution x(t) of (2.1),
with x(0) = x0

}
(3.8)

V(E,A,B) :=

{
x0 ∈ Rn

∣∣∣∃ smooth solution (x, u) of (3.5),
with x(0) = x0

}
(3.9)

Since any trajectory xu(t, t0;x0) can be decomposed into the sum of an autonomous part xaut(t, t0;x0) and a strictly
controllable part xu(t, t0), one can conjecture that V(E,A,B) = V(E,A) +R. However, the statement can be enforced by
changing the sum into a direct sum and by changing the reachable space into one of its subspaces. This can be proved
formally and will be done in the following lemma:

Lemma 4. Let V(E,A) be the consistency space and let V(E,A,B) be the augmented consistency space the DAE as defined
in (3.5) . Let R denote the reachable subspace of the aforementioned DAE. Define 〈A|B〉 := Im[B AB ... An−1B ] and

define Bimp = Πimp
(E,A)B. Then one has that:

V(E,A,B) = V(E,A) ⊕ 〈Eimp|Bimp〉 = V(E,A) +R

Proof. Let x0 ∈ V(E,A,B), in other words, x0 is a consistent initial value. Thus, there exists a smooth solution (x, u)
that solves the equation Eẋ = Ax+Bu with x(t0−) = x0 on [t0, T ]. Using Theorem 4 one has that ∃c ∈ Rn such that:

x(t0+) := x(t0) = Π(E,A)c−
q−1∑
i=0

(
Eimp

)i
Bimpu(i)(t0) = Π(E,A)c− [Bimp EimpBimp ... (Eimp)

q−1
Bimp ]

 u(t0)

...
u(q−1)(0)


Observe that the aforementioned equation can almost be expressed in terms of 〈Eimp|Bimp〉, only if the nilpotency
index q is swapped for the dimension of E, n. As can be observed in the proof of Theorem 4, the nilpotency index of
Eimp is equal to the nilpotency index of E.
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Observe that, since Eimp is nilpotent, it has eigenvalue 0 with multiplicity n, and hence, χEimp = xn. Further-
more, one has that Eq = 0, hence its minimal polynomial¶ is equal to xq. In this case, the Cayley-Hamilton theorem
states that the minimal polynomial divides the characteristic polynomial, and therefore one must have that q 6 n.

Hence, rewriting the aforementioned equation yields:

x(t0) = Π(E,A)c−
q−1∑
i=0

(
Eimp

)i
Bimpu(i)(t0) = Π(E,A)c−

n−1∑
i=0

(
Eimp

)i
Bimpu(i)(t0)

= Π(E,A)c− [Bimp EimpBimp ... (Eimp)
n−1

Bimp ]


u(t0)

...
u(q−1)(t0)

0
...
0


Hence, observe that any consistent initial value x(t0) can be decomposed into an element of Im Π(E,A), 〈Eimp|Bimp〉.
From this it can be concluded that V(E,A,B) = Im Π(E,A) + 〈Eimp|Bimp〉. A similar approach can be taken to show
that Im Π(E,A) = V(E,A). Hence it has been shown that V(E,A,B) = V(E,A) + 〈Eimp|Bimp〉.

If it can be shown that V(E,A) ∩ 〈Eimp|Bimp〉 = {0}, the direct sum has been established. Let y ∈ 〈Eimp|Bimp〉.
Then there exists vectors β1, . . . , βq ∈ Rn such that:

y =

q−1∑
i=0

(
Eimp

)i
Bimpβi+1 = Πimp

(E,A)Bβ1 +

q−2∑
i=0

Πimp
(E,A)E

(
Eimp

)i
βi+2

= Πimp
(E,A)

(
Bβ1 +

q−2∑
i=0

E
(
Eimp

)i
βi+2

)
∈ Im Πimp

(E,A)

Hence, one can conclude that 〈Eimp|Bimp〉 ⊆ Im Πimp
(E,A) ⊆ W

∗
(E,A). Next, using Theorem 1, one has that V(E,A)

⊕
W(E,A) =

Rn, and hence, one must have that V∗(E,A) ∩ 〈E
imp|Bimp〉 = 0, and thus V∗(E,A,B) = V∗(E,A)

⊕
〈Eimp|Bimp〉.

The reachable subspace contains all points xT that can be reached in finite time T > 0 starting from the origin. Hence,
any xT can be written as:

xT =

∫ T

0

eA
diff(t−s)Bdiffu(s)ds−

q−1∑
i=0

(Eimp)iBimpu(i)(T )

As can be observed, xT can be expressed as a linear combination of some integral and an element of 〈Eimp|Bimp〉,
and therefore one must have that 〈Eimp|Bimp〉 ⊆ R. This shows us that V(E,A) + 〈Eimp|Bimp〉 ⊆ V(E,A) +R. In order
to show that V(E,A) +〈Eimp|Bimp〉 ⊇ V(E,A) +R it only has to be shown that the integral term in xT is in V(E,A) = Im Π.

Using Lemma 3, it can equivalently be shown that:

Π

∫ T

0

eA
diff (s−t)Bdiffu(s)ds =

∫ T

0

eA
diff (s−t)Bdiffu(s)ds

Furthermore, one should take note that:

Π ·Πdiff = T

[
I O
O O

]
T−1T

[
I O
O O

]
S = T

[
I O
O O

]
S = Πdiff

Hence, a computation verifies that:

Π

∫ T

0

eA
diff (s−t)Bdiffu(s)ds = Π

∫ T

0

∞∑
k=0

1
k! (A

diff)kBdiff(s− t)ku(s)ds

= Π

(∫ T

0

Bdiffu(s)ds+

∫ T

0

∞∑
k=1

1
k! (A

diff)kBdiff(s− t)ku(s)ds

)

= Π

(
Bdiff

∫ T

0

u(s)ds+Adiff

∫ T

0

∞∑
k=0

1
(k+1)! (A

diff)kBdiff(s− t)ku(s)ds

)

= Π ·Πdiff

(
B

∫ T

0

u(s)ds+A

∫ T

0

∞∑
k=0

1
(k+1)! (A

diff)kBdiff(s− t)ku(s)ds

)
¶The minimal polynomial of a matrix A is defined as the polynomial p such that p is the lowest degree polynomial for which the equality

p(A) = 0 holds.
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= Πdiff

(
B

∫ T

0

u(s)ds+A

∫ T

0

∞∑
k=0

1
(k+1)! (A

diff)kBdiff(s− t)ku(s)ds

)

=

∫ T

0

eA
diff (s−t)Bdiffu(s)

Hence, the integral term is in V(E,A), which implies that V(E,A) +R ⊆ V(E,A) + 〈Eimp|Bimp〉, which completes the
proof.

Impulses can also occur in the solution as was noted in the introductory example of section 2. As the solution
formula already suggests, impulses will occur if the input is discontinuous at some t > 0. Furthermore, this statement
can be reinforced. One should take note that the solution formula suggests that the nilpotency index of E determines
the minimum degree of smoothness for u if impulses are to be prevented. More symbollically, if q is the nilpotency
index of E, then u will cause no impulse if u ∈ Cq. This can be observed through a simple example. Consider the
following DAE on [0,∞): [

0 0
1 0

]
ẋ = x+

[
1
0

]
u (3.10)

Suppose the input is discontinuous at some fixed time τ > 0 and let x0 ∈ R2 be some fixed initial state. For this
example, the solution formula will be explicitly computed in order to observe the relation between the input and the
state. Firstly, let us compute the Wong limits V∗(E,A),W

∗
(E,A):

V0
(E,A) = R2, V1

(E,A) = Im[ 0
1 ], V2

(E,A) =: V∗(E,A) = {0},
Thm 1
=⇒ W∗(E,A) = R2

Hence, pick V = ∅ and W = I2×2. Then, using Theorem 2, one has that T = W and S = (AW )−1 = W−1. Furthermore,
since dimV∗(E,A) = 0, then one has that according to Definition 2 it must be that Π(E,A) = Πdiff

(E,A) = O2×2. Furthermore,

since ST = TS = I2×2, one has that Πimp
(E,A) = TT−1I2×2 = I2×2. Hence, one has:

Adiff = Πdiff
(E,A)A = O2×2, B

diff = Πdiff
(E,A)B = O2×1

Eimp = Πimp
(E,A)E = E, Bimp = Πimp

(E,A)B = B

Furthermore, since E2 = O2×2, one has that q = 2. The solution formula can now be simplified, as all matrices and
parameters are now apparent. This yields the following:

x(τ) = eA
diffτΠ(E,A)x0 +

∫ τ

0

eA
diff(τ−s)Bimpu(s)ds−

q−1∑
i=0

(Eimp)iBimpu(i)(t)

= O2×2x0 +

∫ τ

0

O2×2u(s)ds−
1∑
i=0

EiBu(i)(τ)

= −
[
u(τ)

u′(τ)

]
(3.11)

Observe that, since u is discontinuous at τ , one has that u(t) is piecewise-continuous with a single jump at τ . Therefore,
there exists u1, u2 such that u restricted to [0, τ) or [τ,∞) is equal to u1, u2 respectively. Using some algebra and
Corollary 2, one obtains for u(t) and u′(t):

u(t) = u1(t)1[0,τ)(t) + u2(t)1[τ,∞)(t) = u1(t)1[0,τ)(t) + u2(t)1[τ,∞)(t) + u1(t)1[τ,∞)(t)− u1(t)1[τ,∞)(t)

= u1(t) + (u2(t)− u1(t))1[τ,∞)

∴ u′(t) = u′1(t) + (u′2(t)− u′1(t))1[τ,∞) + (u2(t)− u1(t))δτ (t)

Hence, as can be observed, the (distributional) derivative of the input experiences a Dirac impulse, and this impulse
can only be prevented if and only if u1(τ−) = u2(τ+) Furthermore, since x(2)(τ) = u′(τ), one additionally has that the
state experiences a Dirac impulse aswell. Additionally, one can take note that if u′(τ) experiences a jump discontinuity.
It is desired to find a space of initial states such that the solution the impulses in the solution (x, u) can be prevented.
This property is known as impulse controllability.

If one interprets the DAE as an ITP, then it remains unknown how one must evaluate the impulsive part of x,
as this is not given in Theorem 4. The following lemma will make this explicit:

Lemma 5. Asssume (E,A) is regular, and let the ITP be given in Definition 5. If u[0] = 0, then the impulsive part of
the solution with initial state x(0−) = x0 can be computed as follows:

x[0] = −
n−1∑
i=0

(Eimp)i+1(I −Π)x0δ
(i) −

n−1∑
i=0

(Eimp)i+1
i∑

j=0

Bimpu(i−j)(0+)δ(j)
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Proof. See proof of [4, Theorem 5.1].

Back to the example from the introduction as in figure 1.3, using Lemma 1 and 5 and Corollary 1, one can show that
the aforementioned electrical circuit won’t cause any impulses. In particular, for this circuit one has that the nilpotent
matrix in the quasi-Weierstrass form is equal to the zero matrix. Recall that the circuit had the following dynamics:[

L 0
0 0

]
ẋ =

[
0 1
R0 1

]
x−

[
0
1

]
u(t), t ∈ [0, τ)[

L 0
0 0

]
ẋ =

[
0 1
R1 1

]
x−

[
0
1

]
u(t), t ∈ [τ,∞)

For now, let A =

[
0 1
Rk 1

]
, where k = 0, 1. Let λ = 0, then observe that det(−A) 6= 0, and thus, 0 ∈ R \ σ(E,A).

Using Lemma 1, one finds for W∗:

W∗ =W2 = ker((A−1E)2) = ker

((
−1
Rk

[
1 −1
−Rk 0

] [
L 0
0 0

])2
)
∼= ker

([
L2 0

−L2Rk 0

])
= span

[
0
1

]
≡ ker(E)

And hence, W = [ 0 1 ]
>

. Using Corollary 1, one finds for N :

N = (AW )†EW = O, ∵W ∈ ker(E)

Hence, if one applies Lemma 5 one trivially has that x[0] = 0 for both modes, and thus, both modes are impulse free.
In the upcoming definition impulse controllability for the DAE will be given in terms of the ITP. Additionally, using
the already defined subspaces one is able to derive a subspace for all states that are impulse controllable.

Definition 7. The DAE (3.5) is called impulse controllable if for all x0 ∈ Rn there exists a solution (x, u) of the ITP
(5) with x(0−) = x0 and (x, u)[0] = 0. All states that are impulse controllable lie in the impulse controllable space,
which is defined as:

C imp
(E,A,B) :=

x0 ∈ Rn
∣∣∣∣∣
∃ solution (x, u) ∈ Dn+m

pwC∞

of (5) such that
x(0−) = x0 and(x, u)[0] = 0

 (3.12)

By Definition 6, one is able to rephrase this definition into a more compact statement, which says that C imp
(E,A,B) = Rn.

Additionally, the impulse controllable subspace can be expressed in terms of the consistency spaces and other more
elemental subspaces of the system. This result will be stated in the following proposition:

Proposition 1. Consider the DAE as in (3.5) for t0 = 0 and define the impulse controllable - and augmented
consistency space as in (3.12),(3.9) respectively. Then one can express the impulse controllable space as follows

C imp
(E,A,B) = V(E,A,B) + ker(E) = V(E,A) +R+ ker(E) = V(E,A) + 〈Eimp|Bimp〉+ kerE (3.13)

Before proving the proposition, an additional lemma is needed in order to reduce some work. This lemma relates
the consistency projector to the matrix E:

Lemma 6. Let the DAE be given as in (3.5). Then one has the following result:

ker(E) ⊆ ker(Π(E,A)) (3.14)

Proof. The quasi-Weierstrass form will be deployed to explicitly determine the subspaces involved in (3.15). To this
end, consider the full rank matrices S, T , the nilpotent matrix N and the quasi-Weierstrass form of E as in Theorem 2.
Since S, T are full rank matrices, one has that ker(E) ∼= ker(SET ). Hence:

ker(E) ∼= ker(SET ) = ker

([
In1 O
O Nn−n1

])
Let ker(N) := span{ζ1, . . . , ζm} ⊆ Rn−n1 , where ζ1, . . . , ζm ∈ Rn−n1 . Using the rank-nullity theorem, one must have
that dim ker(N) =: m 6 n− n1. Hence, one can simplify:

ker(E) = ker

([
In1

O
O Nn−n1

])
= span

{[
0n1

ζ1

]
, . . . ,

[
0n1

ζm

]}
Here, 0n1 denotes the vector in Rn1 with all entries equal to 0. Let bi denote the standard basis of Rn−n1 for
i ∈ {1, . . . , n− n1}. Similarly, for Π(E,A) as in Definition 2 one can find for its kernel:

ker(Π(E,A)) ∼= ker

([
In1

O
O O

])
= span

{[
0n1

b1

]
, . . . ,

[
0n1

bn−n1

]}
⊇ span

{[
0n1

ζ1

]
, . . . ,

[
0n1

ζm

]}
= ker(E)

Which finishes the proof.
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Now, using Lemma 6, one is able to prove Proposition 1.

Proof. Using Lemma 4, the second and third equality follow directly from the first equality. Again, the subspace
equality will be shown by proving both inclusions, abbreviated by (⊆), (⊇) respectively.

(⊆) Let x0 ∈ C imp
(E,A,B). Then there exists an impulse-free solution (x, u) that solves the ITP as in Definition 5. Using

Lemma 5, one can compute that:

x[0] = 0 = −
n−1∑
i=0

(Eimp)i+1(I −Π)x0δ
(i) −

n−1∑
i=0

(Eimp)i+1
i∑

j=0

Bimpu(i−j)(0+)δ(j)

= −
n−1∑
i=0

(Eimp)i+1(I −Π)x0δ
(i) −

n−1∑
i=0

n−1∑
j=0

(Eimp)i+1Bimpu(i−j)(0+)δ(j)

= −
n−1∑
i=0

(Eimp)i+1(I −Π)x0δ
(i) −

n−1∑
j=0

n−1∑
i=j

(Eimp)i+1Bimpu(i−j)(0+)δ(j)

= −Eimp
n−1∑
k=0

(
(Eimp)i(I −Π)x0 +

n−1∑
i=k

(Eimp)kBimpu(i−k)(0+)

)
δ(k)

Since x[0] = 0, one must have that for all k ∈ {0, . . . , n− 1}:

(Eimp)k(I −Π)x0 +
n−1∑
i=k

(Eimp)kBimpu(i−k)(0+) ∈ kerE

In particular, for k = 0 one obtains:

(I −Π)x0 +

n−1∑
i=0

(Eimp)kBimpu(i)(0+) ∈ kerE

Hence, there exists γ ∈ kerE such that (I −Π)x0 +
∑n−1
i=0 (Eimp)kBimpu(k−i)(0+) = γ, then:

x0 = Πx0 −
n−1∑
i=0

(Eimp)kBimpu(i)(0+) + γ

Which shows that C imp
(E,A,B) ⊆ Im Π + 〈Eimp|Bimp〉+ kerE = V(E,A,B) + kerE.

(⊇) Suppose that x0 ∈ V(E,A,B). By definition of the augmented consistency space as in (3.9), there exists a smooth
solution (x, u) of Eẋ = Ax + Bu such that x(0) = x0. Since it is a smooth solution, one by default has that

(x, u)[0] = 0, thus x0 ∈ C imp
(E,A,B). Next, suppose that x0 ∈ ker(E). If one chooses the zero input u = 0, one has

that a jump occurs at t = 0, where x(0−) = x0 and x(0+) = 0. However, since the input is chosen smoothly, the

input won’t cause any impulses to occur in the solution. Hence, one has that x[0] = 0. Hence, x0 ∈ C imp
(E,A,B). By

linearity it follows directly that V(E,A,B) + ker(E) ⊆ C imp
(E,A,B), and thus, the desired statement has been proven.

3.3 Switched DAEs

Equipped with our mathematical preliminaries on non-switched DAEs, we can now return to the study of switched
DAEs. A switched DAE is a combination of several DAEs called modes, linked together through a switching signal σ,
which is a function that maps the time t to the active mode. Let p ∈ N be the last mode of the switched DAE, then
there are p+ 1 modes {0, . . . , p}. The matrix triplet in the regular DAE (E,A,B) now changes whenever one switches
mode. This triplet will be denoted by (Ei, Ai, Bi) for mode i. Thus, since the matrix triplet changes per mode, one
has that the matrix triplet of a switched DAE is piecewise-constant, and therefore, one can define appropriate maps
to capture this behaviour, namely Eσ : t → Eσ(t), Aσ : t → Aσ(t), Bσ : t → Bσ(t), where it has been assumed that
t ∈ [0, T ). Hence, the switched DAE takes the following form:

Eσẋ = Aσx+Bσu, t ∈ [0, T ) (3.15)

The aforementioned switched DAE with coefficient matrices (Eσ, Aσ, Bσ) will be denoted by Σ(Eσ, Aσ, Bσ) A switched
DAE can be interpreted as a repeated ITP. It is nontrivial that an arbitrary ITP has a unique solution under the
supposition that (E,A) is regular. This is shown in [4]. It will be assumed throughout this thesis that the matrix pair

17



(Ei, Ai) is regular for all i ∈ {0, . . . , p}.

Observe that a switched DAE Σ(Eσ, Aσ, Bσ) can be associated with the collection
{
{Ek, Ak, Bk}k=p

k=1, σ
}

. If one

interprets the switched DAE as a repeated ITP, one can rewrite this as several DAE’s restricted to their own interval.
However, if an arbitrary distribution is chosen, then this restriction doesn’t necessarily have to exist, as is shown in [4,
Remark 2.4]. Distributions chosen from DpwC∞ do have a well defined restriction to intervals, as can be seen in [4,
p. 7]. Furthermore, if the switching times do not accumulate, then the following result can be formulated:

Corollary 4. [4, Corollary 5.2] Consider the switched DAE as in (3.15) and suppose that (Ek, Ak) is regular. Define
the following class of switching signals:

S :=

{
σ : R 7→ {0, . . . , p}

∣∣∣ σ has locally finite many switches,
σ constant on (−∞, 0)

}
Then there exists a global solution x ∈ (DpwC∞)

n
which is uniquely determined by x(0−).

Impulse controllability is yet to be defined in terms of the switched DAE. The following definition characterizes this:

Definition 8. Let the switched DAE be given as in (3.15) for some fixed switching signal σ ∈ S on some interval [0, T ).
The system is called impulse controllable if for all x0 ∈ V(E0,A0,B0) there exists a solution pair (x, u) ∈ (DpwC∞)

n+m
for

(3.15) with x(0+) = x0 which is impulse free, i.e. (x, u)[t] = 0 for all t ∈ [0, T ).

Observe that, by definition, if no switches occur one must have that the switched DAE is trivially impulse controllable
due to the definition of the augmented consistency space. As Definition 8 states, one chooses the initial state to be in
the augmented consistency space of the initial mode. Then, by definition of the augmented consistency space, there
exists a smooth solution (x, u) that solves the DAE belonging to the first mode, which by definition exhibits no impulses.

It is worthwile to note the differences between the defining properties for impulse controllability for a DAE and
a switched DAE. In the DAE case, see Definition 3.12, one interprets the DAE as an ITP for which the DAE was
”inactive” before t = 0. The reason why the definition uses the condition that (x, u)[0] = 0, rather than (x, u)[t] = 0, is
because the solution can already be made impulse free for t > 0. For the switched DAE case, see Definition 8, one
interprets the switched DAE as a repeated ITP. It could be that if a solution is smooth in one mode, it is not necessarily
sufficiently smooth in the next mode. For example, consider the following switched DAE for some fixed τ ∈ (0,∞):

Γ :

{
[ 1 0
0 0 ]ẋ = x, t ∈ [0, τ)

[ 0 0
0 1 ]ẋ = x, t ∈ [τ,∞)

Observe that V0 = Im Π0 = Im[ 1
0 ] and V1 = Im Π1 = Im[ 0

1 ]. Hence, a solution that is smooth in mode 0 is not smooth
in mode 1, unless the solution is trivial.

The modes in themselves follow the geometric notations discussed in the previous subsection, and will be labelled using
a subscript instead of the usual matrix triplet, i.e. C imp

1 denotes the impulse controllable space of mode 1 corresponding
to the matrix triplet (E1, A1, B1).

To establish impulse controllability under the independence of the switching signal, one has to ensure that the
switched DAE Σ(Eσ, Aσ, Bσ) is impulse controllable for any chosen switching signals. Therefore, it has to be explored
what kind of switching signals are appropriate to be admitted.

In many practical applications the order in which the switches occur is fixed. Thus, it seems reasonable to assume
that the switching will happen in a fixed order. Hence, by possibly relabeling of the modes, one must have that the
switching happens from mode 1 to mode 2 and so forth. This collection of switching signals Sn takes the form:

Sp =

{
σ : R→ {0, ..., p}

∣∣∣∣∣∃{ti}i=pi=1 such that t0 < ti−1 < ti < T =: tp+1 ∀i ∈ {2, ..., p}
and σ(t) =

∑p
i=0 i1[ti,ti+1)(t)

}
(3.16)

However, it might be feasible to also explore impulse controllability for a bigger class of switching signals. In practice
one can have that due to component failure not all modes are reachable anymore. Hence, the order in which the modes
will appear becomes arbitrary.

Define ρ : {0, . . . p} → {0, . . . , p} as the mode projector. One can think of ρ as the bijective function that per-
mutes the original set {0, . . . , p} in such a manner to obtain the correct order in which the switching will occur. Define
Pp as the collection containing all possible mode projectors. In the upcoming the convention ρ(i) := ρi will be supposed.

Finally, the class of switching S̃n signals take the following form:

S̃p =

{
σ : R→ {0, ..., p}

∣∣∣∣∣∃{ti}i=pi=1 ∃ρ ∈ Pp such that t0 < ti−1 < ti < T =: tp+1 ∀i ∈ {2, ..., p}
and σ(t) =

∑p
i=0 ρi1[ti,ti+1)(t)

}
(3.17)
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In order to finally establish impulse controllability for open switching times, one is able to define two system class
containing the switched DAEs Σ(Eσ, Aσ, Bσ) for all σ in Sp, S̃p respectively. Two system classes can be identified,

namely Σp {(Ek, Ak, Bk)} and Σ̃p {(Ek, Ak, Bk)} as defined below:

Σp {(Ek, Ak, Bk)} := {Σ(Eσ, Aσ, Bσ) | σ ∈ Sp} (3.18)

Σ̃p {(Ek, Ak, Bk)} :=
{

Σ(Eσ, Aσ, Bσ) | σ ∈ S̃p
}

(3.19)

Observe that the system classes Σp {(Ek, Ak, Bk)} and Σ̃p {(Ek, Ak, Bk)} can be identified with the collections{
{Ek, Ak, Bk}k=p

k=1,Sp
}

, and
{
{Ek, Ak, Bk}k=p

k=1, S̃p
}

, respectively. Impulse controllability is yet to be defined in

terms of the aforementioned system classes. It seems like a natural extension to require that every switched DAE in the
system class must be impulse controllable. This suggest that a distinction has to be made between strong - and weak
impulse controllability of system classes, because Σp {(Ek, Ak, Bk)} ⊂ Σ̃p {(Ek, Ak, Bk)}. This is done in the following
definition:

Definition 9. Let Σ(Eσ, Aσ, Bσ) be some switched DAE with p + 1 modes for some switching signal σ. It is said
that Σ is weakly impulse controllable if Σ(Eσ, Aσ, Bσ) is impulse controllable for all σ ∈ Sp and Σ is strongly impulse

controllable if Σ(Eσ, Aσ, Bσ) is impulse controllable for all σ ∈ S̃p. In terms of the system classes, Σ is weakly
impulse controllable if ∀Σ̄ ∈ Σp {(Ek, Ak, Bk)} one has that Σ̄ is impulse controllable. Similarly, Σ is strongly impulse

controllable if ∀Σ̄ ∈ Σ̃p {(Ek, Ak, Bk)} one has that Σ̄ is impulse controllable.

One should also take note that if a mode projector has been fixed, one is able to relabel the system to the trivial
order. Consider the switched DAE Σ(Eσ, Aσ, Bσ) for some σ ∈ S̃p. Hence, there exists a mode projector ρ ∈ Pp such
that σ =

∑p
i=0 ρ(i)1[ti,ti+1).

Observe that the maps Eσ, Aσ, Bσ are equal to Eρ(i), Aρ(i), Bρ(i) if t ∈ [ti, ti+1). Define Pi = Eρ(i), Qi = Aρ(i)
and Ri = Bρ(i) and let γ =

∑p
i=0 i1[ti,ti+1). Observe that Σ(Eσ, Aσ, Bσ) ∼= Σ(Pγ , Qγ , Rγ), whilst Σ(Pγ , Qγ , Rγ) has

the trivial order.

This can even be generalized. Redefine P ρi = Eρ(i), Q
ρ
i = Aρ(i) and Rρi = Bρ(i) and let γ =

∑p
i=0 i1[ti,ti+1).

Hence, if Σ(Eσ, Aσ, Bσ) is a switched DAE for some σ ∈ S̃p, one has that Σ(Eσ, Aσ, Bσ) ∼= Σ(P ργ , Q
ρ
γ , R

ρ
γ), where ρ

has been induced by σ.

This implies that in order to verify if a system is strongly impulse controllable, one has to verify that the sys-
tem is weakly impulse controllable for all mode projectors ρ ∈ Pp.
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4 Impulse controllability for open switching times

4.1 Introduction

This thesis aims to provide necessary and sufficient conditions for impulse controllability of switched DAEs given
unknown switching times. Impulse controllability will be characterized in terms of the aforementioned geometric
notations of the modes in order to guarantee the independence of the switching signal. It might be worthwile
investigating an example for which the impulse controllability can be ensured independent of the switching signal. To
this end, consider the following switched DAE Σ̃:

Σ̃ :


[

1 0 0
0 0 0
0 1 0

]
ẋ = x+

[
1
1
0

]
u(t), 0 6 t < t1[

0 0 1
0 1 0
0 0 0

]
ẋ = x+

[
0
1
1

]
u(t), t1 6 t < t2[

0 1 0
1 0 0
0 0 0

]
ẋ = x+

[
0
1
0

]
u(t), t2 6 t

(4.1)

Where ti are assumed to be unknown for all i = 1, 2, 3. Clearly Σ̄ is impulse controllable regardless of the switching
times if all modes are in themselves fully impulse controllable, that is, if C imp

i = Rn for all i = 1, 2, 3. In order to
actually show that all modes are in itself fully controllable, several subspaces have to be computed for each mode, i.e.
the kernel of E alongside (3.9),(3.8),(3.12). The following table ensures that the involved subspaces become apparent:

Table 4.1: Table of important subspaces of the switched DAE Σ̃

Mode V(Ei,Ai) V(Ei,Ai,Bi) kerEi C imp
i

1 Im
[

1
0
0

]
Im
[

1 1 1
1 0 0
0 0 1

]
= R3 Im

[
0
0
1

]
Im
[

1 1 1
1 0 0
0 0 1

]
= R3

2 Im
[

0
1
0

]
Im
[

1 0 0
1 1 1
0 0 1

]
= R3 Im

[
1
0
0

]
Im
[

1 0 0
1 1 1
0 0 1

]
= R3

3 Im
[

1 0
0 1
0 0

]
Im
[

1 0
0 1
0 0

]
Im
[

0
0
1

]
Im
[

1 0
0 1
0 0

]
+ Im

[
0
0
1

]
= Im

[
1 0 0
0 1 0
0 0 1

]
= R3

In the preceding example it has been assumed that the initial time t0 = 0 and the final time T →∞. Additionally,
in the aforementioned example it is assumed that the order of the switches is fixed. Thus this means that in the
aforementioned example impulse controllability has been ensured for all σ ∈ S3. Therefore, the system Σ̄ is weakly
impulse controllable.

Not only is Σ̄ weakly impulse controllable, Σ̄ is strongly impulse controllable, as the order in which the modes
occur won’t change that all modes are fully impulse controllable. Therefore, Σ̄ is impulse controllable regardless the
chosen mode projector ρ. Thus, Σ̄ is impulse controllable for all σ ∈ S̃3. In turn this implies again that Σ̃3 is impulse
controllable, showing that Σ̄ is strong impulse controllable.

Looking back at the aforementioned example it seems trivial that Σ̃ is strongly impulse controllable, as all the
impulse controllable spaces of the modes equal R3. However, observe from the preceding table that V(Ek,Ak,Bk) ⊆ C imp

q

for all k, q ∈ {1, 2, 3}. This implies that any smooth trajectory in mode k will cause no impulses, but can cause jumps,
when switched to mode q. Before formalising this it might be fruitful to consider another example for which the impulse
controllable spaces aren’t necessarily equal to Rn:

Σ̄ :



[
1 0 0 0 1
0 0 0 0 0
0 0 1 0 1
0 0 0 0 0
0 0 0 0 0

]
ẋ = x+

[
0
0
1
0
0

]
u(t), 0 6 t < t1[

0 0 0 0 0
0 1 0 1 0
0 0 0 0 0
0 0 0 1 1
0 0 0 0 0

]
ẋ = x+

[
0
0
0
1
0

]
u(t), t1 6 t < t2[

1 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 1 0 0

]
ẋ = x+

[
0
0
1
0
0

]
u(t), t2 6 t

(4.2)

Where V(Ei,Ai,Bi) =: Vi. As can be observed from Table 4.2, no mode is fully impulse controllable. However, any
smooth trajectory starting in mode p will cause no impulse when switched to mode q whenever p, q ∈ {1, 2, 3}. This is a
consequence of the fact that Vp ⊆ C imp

q for all p, q ∈ {1, 2, 3}. This implies that, regardless σ ∈ S̃3, one must have that
no impulses (perhaps jumps) occur in the state whatever the initial state is in the augmented consistency space of the
first active mode. Hence, one must have that Σ̄ is strongly impulse controllable, as every system in Σ̃3{(Ek, Ak, Bk)} is
impulse controllable.
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Table 4.2: Table of important subspaces of the switched DAE Σ̄

Mode Vi kerEi C imp
i

1 Im

[
1 0
0 0
0 1
0 0
0 0

]
Im

[
0 0
1 0
0 0
0 1
0 0

]
Im

[
1 0
0 0
0 1
0 0
0 0

]
+ Im

[
0 0
1 0
0 0
0 1
0 0

]
= Im

[
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

]

2 Im

[
0
0
0
1
0

]
Im

[
1 0
0 0
0 1
0 0
0 0

]
Im

[
0
0
0
1
0

]
+ Im

[
1 0
0 0
0 1
0 0
0 0

]
= Im

[
1 0 0
0 0 0
0 1 0
0 0 1
0 0 0

]

3 Im

[
1 0
0 0
0 1
0 0
0 0

]
Im

[
0 0
0 0
0 0
1 0
0 1

]
Im

[
1 0
0 0
0 1
0 0
0 0

]
+ Im

[
0 0
0 0
0 0
1 0
0 1

]
= Im

[
1 0 0 0
0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]

4.2 Switched DAE with 2 modes

For now, consider Σ(Eσ, Aσ, Bσ) on the interval [0, T ) as a switched DAE with 2 modes with matrix pairs
{(E0, A0, B0), (E1, A1, B1)} for some switching signal σ. The set of mode projectors take the form P2 = {id, ρ}, where
ρ0 = 1, ρ1 = 0. For now, the initial mode will refer to the value of the mode projector at i = 0 and the final mode will
refer to the value of the mode projector at i = 1. Assume that the switch happens at some arbitrary time τ ∈ [0, T ). It
seems like a natural extension to express impulse controllability of Σ(Eσ, Aσ, Bσ) in terms of the switching time. If the
state reaches the impulse controllable space of the final mode just before the switch happens, one can ensure that no
impulses will occur in the solution. This will be shown in the following lemma:

Lemma 7. Consider the switched DAE Σ(Eσ, Aσ, Bσ) on the interval [0, T ) for some σ ∈ S2 and let τ ∈ (0, T ) be
some fixed switching time. Σ(Eσ, Aσ, Bσ) is impulse controllable if and only if for all x0 ∈ V0 there exists an input u(t)
such that x(τ−) ∈ Cimp

1 .

Proof.(=⇒) Assume Σ(Eσ, Aσ, Bσ) is impulse controllable, then there exists a smooth solution (x, u) ∈ Dn+m
pwC∞

such that the trajectory and input are impulse-free on [0, T ). Hence, (x, u) is an impulse-free solution of
E1ẋ = A1x+ B1u for t ∈ [τ,∞). Define g(t) := x(t+ τ) and ũ(t) := u(t+ τ). Hence, (g, ũ) is an impulse-free

solution of E1ġ = A1g +B1ũ for t ∈ [0,∞), thus g(0−) := x(τ−) ∈ C imp
1 .

(⇐=) Let x0 ∈ V(E0,A0,B0). Assume that x(τ−) =: xτ ∈ C imp
1 is a given. By definition of the augmented consistency

space, one has that (x, u1) are smooth solutions on the interval [0, τ) with x(0−) = x0. Hence, (x, u1) are

impulse free on [0, τ). Additionally, since x(τ−) ∈ C imp
1 , one can find impulse free solutions (y, u2) such that

it solves E1ẏ = A1y + B1u2 with y(0) = xτ on t ∈ [0,∞). Define u(t) = u1(t)1[0,τ) + u2(t − τ)1[τ,∞) and
z(t) = x(t)1[0,τ) + y(t− τ)1[τ,∞). It can be shown that ż contains no impulses:

ż(t) =
d

dt
[x(t) + (y(t− τ)− x(t))1[τ,∞)] = x′(t) + (y′(t− τ)− x′(t))1[τ,∞) + (y(t− τ)− x(t))δτ

The impulse will have no effect if y(0) − x(τ−) = 0, which is satisfied by construction. Hence, (z, u) is an
impulse-free solution on [0,∞), thus Σ(Eσ, Aσ, Bσ) is impulse controllable.

Lemma 7 will play a crucial role in determining a necessary geometric condition for weak/strong impulse controllability
for switched DAEs with 2 modes. To derive such a geometric condition, observe that (3.6) suggests the solution can be
written as the sum of an element of the image of the consistency projector and an element of the reachable subspace, for
any mode. Lastly, as can be observed in the examples, a relationship has to be established between the aforementioned
subspaces of the first mode with the impulse controllability subspace of the second mode. Before stating this as a
theorem, one first has to introduce a seperate lemma:

Lemma 8. Let V(E,A) := Im Π denote the consistency space of the DAE (2.1). Let Λ := eA
diff

. Then one has that

Λ`V(E,A) ⊆ V(E,A) for all ` ∈ R.

Proof. Fix ` ∈ R, and let x1 ∈ Λ`V(E,A), hence ∃x0 ∈ V(E,A) such that x1 = Λ`x0. Furthermore, there exists a smooth
solution x̄(t) that solves the DAE (2.1) with x̄(0) = x0. Using the solution decomposition for u = 0, one has that x̄
takes the following form:

x̄(t) = ΛtΠx0 = Λtx0

Define x̃(t) := x̄(t+ `). Observe that x̃ still solves the DAE (2.1) whilst remaining smooth. Therefore x̃(0) := x̄(`) = x1

must be in V(E,A). Hence, Λ`V(E,A) ⊆ V(E,A) for all ` ∈ R

Theorem 5. Consider the switched DAE Σ(Eσ, Aσ, Bσ) on the interval [0, T ) for some σ ∈ S2. Σ is weakly impulse
controllable if and only if Im Π0 ⊆ Cimp

1 +R0, where Πi denotes the consistency projector of (Ei, Ai, Bi).
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Proof.(=⇒) Assume Σ is weakly impulse controllable. Let (x, u) ∈ Dn+m
pwC∞ be an impulse-free solution for Σ(Eσ, Aσ, Bσ)

for some fixed σ ∈ S2 given some initial trajectory x(0+) = x0 ∈ V(E0,A0,B0). Using the solution formula
decomposition, one finds that for t ∈ [0, τ):

x(t) = eA
diff
0 tΠ0x0 + xu(t, 0) =: Λt0Π0x0 + xu(t, 0)

Clearly Π0x0 ∈ Im Π0 and xu(t, 0) ∈ R0 for all t ∈ [0, τ). Using Lemma 8, one can conclude that that

Λt0Π0x0 ∈ Im Π0 for all t ∈ [0, τ). In particular, let x1 := Λτ0Π0x0, and using Lemma 7 one has that x(τ−) ∈ C imp
1 ,

then one finds that:

x(τ−) = x1 + xu(τ−, 0)

x1 = x(τ−)− xu(τ−, 0) ∈ C imp
1 +R0

Which shows that if Σ1
0[Ek, Ak, Bk) is weak impulse controllable one has that Im Π0 ⊆ C imp

1 +R0.

(⇐=) Assume that Im Π0 ⊆ C imp
1 +R0 and fix x0 ∈ V0. Since x0 ∈ V0, there must exist a smooth solution (x̃, ũ) that

solves the DAE E1
˙̃x = A1x̃+B1ũ with x̃(0) = x0 for t ∈ [0, τ). Using the solution formula decomposition, one

finds:

x̃(t) = Λt0Π0x0 + xũ(t, 0)

x̃(τ−) = Λτ0Π0x0 + xũ(τ−, 0) =: x1 + η

Where x1 := Λτ0Π0x0 and η := xũ(τ−, 0). Using Lemma 8 one has that x1 ∈ Im Π0. Furthermore, since

Im Π0 ⊆ C imp
1 +R0, ∃α ∈ C imp

1 ∃β ∈ R0 such that x1 = α+β. By definition of R0, there exists a smooth solution
(x̄, ū) such that x̄(τ−) = β + η with x̄(0) = 0. If one defines x̂(t) = x̃(t) − x̄(t) and û(t) = ũ(t) − ū(t), then
(x̂, û) solves the DAE E1

˙̂x = A1x̂+Bû, with x̂(0) = x̃(0)− x̄(0) = x0 − 0 = x0 and x̂(τ−) = x̃(τ−)− x̄(τ−) =

α+ β + η − (β + η) = α ∈ C imp
1 .

Hence, the solution (x̂, û) can be extended from mode 0 to mode 1 in an impulse free manner. Since α ∈ C imp
1 ,

there exists a solution (ŷ, k̂) such that it solves E1
˙̂y = A1ŷ + B1k̂ with ŷ(0) = α for t ∈ [0,∞) in an impulse

free manner. Define x(t) = x̂(t)1[0,τ) + ŷ(t − τ)1[τ,T ) and u(t) = û(t)1[0,τ) + k̂(t − τ)1[τ,T ), then (x, u) is an
impulse-free solution for Σ(Eσ, Aσ, Bσ) for all t ∈ [0, T ). Hence, Σ is weak impulse controllable.

Lemma 7 was required as a stepping stone for Theorem 5, which characterizes impulse controllability for a system
Σ(Eσ, Aσ, Bσ) with 2 modes. The beauty of Theorem 5 is that it is a necessary condition for impulse controllability of
Σ1

0[Ek, Ak, Bk] for any σ ∈ S2 whilst being independent of the switching signal, which implies that Σ[Eσ, Aσ, Bσ) is
weak impulse controllable if Theorem 5 is satisfied. Furthermore, Theorem 5 can be interpreted as a condition that
guarantees impulse controllability if one switches from mode 0 to mode 1. Hence, Theorem 5 can be rephrased to
guarantee strong impulse controllability. One only has to guarantee impulse controllability for the other mode projector,
or in other words, one has to guarantee that one can switch impulse-freely from mode 1 to mode 0. Therefore, if the
theorem is rephrased one obtains:

Theorem 6. Consider the switched DAE Σ(Eσ, Aσ, Bσ) on the interval [0, T ) for some σ ∈ S̃2. Σ is strong impulse

controllable if and only if Im Π0 ⊆ Cimp
1 +R0, and Im Π1 ⊆ C imp

0 +R1.

Proof. Using Theorem 5, one already has that Σ is weak impulse controllable. Hence, in order to show that Σ is weakly
impulse controllable for the other mode projector, one only has to show that impulse controllability can be ensured for
any switching signal of the form:

∀τ ∈ (0, T ) : σ(t) = 1[0,τ)(t)

Thus, one has that one has to guarantee impulse controllability for switches from mode 1 to mode 0. Hence, if one
rephrases Theorem 5 by swapping the subscripts, then one derives the other given expression, which ensures weak
impulse controllability. Hence, Σ is strongly impulse controllable.

In order to investigate impulse controllability of switched DAEs for arbitrary switching signals one has to first
properly define what problem framework will be applied.

4.3 Switched DAE with p+ 1 modes

Consider a switched DAE with Σ(Eσ, Aσ, Bσ) with p + 1 modes {(Ek, Ak, Bk)}pk=0 on the interval [0, T ) for some
switching signal σ, where T > 0 is fixed.

By simply generalising Theorem 5 and 6 one can already obtain sufficient conditions for weak and strong impulse
controllability. Observe that Theorem 5 can be generalized as a condition for impulse controllability when one switches
from mode n to mode m, where n,m ∈ {0, . . . , p}. The following lemma will be formulated:
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Lemma 9. Consider the switched DAE Σ(Eσ, Aσ, Bσ) with p+ 1 modes on the interval [t0, tf ) for some switching

signal σ ∈ S̃p. Fix n,m ∈ {0, . . . , p} and suppose σ induces a switch from mode n to mode m. Let Γmn (Eγ , Aγ , Bγ) be
a switched DAE with matrix pairs {(En, An, Bn), (Em, Am, Bm)} for some γ ∈ S2. The switch from mode n to mode
m of Σ(Eσ, Aσ, Bσ) can be performed impulse-freely if Γmn is weak impulse controllable. Using Theorem 5 gives the
following condition:

Im Πn ⊆ C imp
m +Rn

If impulses can be prevented when one switches from mode i−1 to mode i ∀i ∈ {1, . . . , p}, one has that Σ(Eσ, Aσ, Bσ)
is weak impulse controllable. This yields the following result:

Theorem 7. Consider the switched DAE Σ(Eσ, Aσ, Bσ) with p+ 1 modes on the interval [t0, tf ) for some switching
signal σ ∈ Sp. If one has for all i ∈ {0, . . . , p− 1}:

Im Πi ⊆ C imp
i+1 +Ri

Then Σ is weak impulse controllable for all t ∈ [0, T ).

Proof. Suppose that Im Πi ⊆ C imp
i+1 +Ri for all i ∈ {0, . . . , p− 1} and fix x0 ∈ V0. Let ti ∈ (t0, tf ) denote the switching

time from mode i− 1 to mode i, and furthermore, assume that ti are distinct ∀i ∈ {1, . . . , p}.

Since x0 ∈ V0, one has that the solution pair (x0, u0) is smooth on [t0, t1). Using the solution decomposition
one finds for x0 at t = t1−:

x0(t1−) = Λt10 Π0x0 + xu0(t1−, 0)

Using Lemma 8, one has that y0 := Λ0Π0x0 ∈ Im Π0, and hence, ∃α0 ∈ C imp
1 ∃β0 ∈ R0 such that y0 = α0 + β0. Define

η0 := xu0(t1−, 0). Since β0 + η0 ∈ R0, there exists a smooth solution (x̄0, ū0) of E0(x̄0)′ = A0(x̄0) +B0ū
0 on t ∈ [t0, t1)

such that x̄0(t0) = 0 and x̄0(t) = β0 + η0. Hence, the solution (x̂0, û0) = (x0 − x̄0, u0 − ū0) is a smooth solution of

E0(x̂0)′ = A0x̂
0 +B0û

0 on [t0, t1) with x̂0(t0) = x0 and x̂0(t1−) = α0 ∈ C imp
1 .

This argument has to be generalized for all modes. Let (xi, ui) denote the solution for the DAE Ei(x
i)′ = Ai(x

i)+Bi(u
i)

on the interval t ∈ [ti, ti+1) with xi(ti) := αi−1. One can derive the following:

xi(ti+1−) = Λ
ti+1−ti
i Πiαi−1 + xui(ti+1−, ti) =: yi + ηi

Similarly, yi := Λ
ti+1

i Πiαi−1 ∈ Im Πi, hence ∃αi ∈ C imp
i+1 ∃βi ∈ Ri such that yi = αi + βi. By definition of Ri, there

exists a smooth solution (x̄i, ūi) such that x̄i(ti) = 0 and x̄i(ti+1−) = βi + ηi. Define x̂i = xi − x̄i and ûi = ui − ūi.
Hence, (x̂i, ûi) is an impulse-free solution of Ei(x̂

i)′ = Ai(x̂
i) + Biû

i for t ∈ [ti, ti+1) for all i ∈ {1, . . . , p − 1} with
x̂i(ti) = αi−1 and x̂i(ti+1−) = αi. Additionally, since αp−1 ∈ C imp

p , there exists a solution (x̂p, ûp) such that it solves
Ep(x̂

p)′ = Ap(x̂
p) +Bpû

p on t ∈ [tp, tf ) with y(tp) = αp−1.

Define tp+1 := tf and consider x(t) =
∑p
i=0 x

i(t)1[ti,ti+1) and u(t) =
∑p
i=0 u

i(t)1[ti,ti+1). Observe that (x, u) is
an impulse-free solution for Σ(Eσ, Aσ, Bσ) on [t0, tf ) for any fixed switching signal σ ∈ Sp, which shows that Σ is weak
impulse controllable.

Similarly, one can use this approach to derive a sufficient condition for strong impulse controllability. Observe that,
for some fixed n ∈ {0, . . . , p} one has that:

Im Πn ⊆ Cm +Rn ∀m ∈ {0, . . . , p} =⇒ Im Πn ⊆
p⋂

m=0

Cm +Rn

Using this, one can find a sufficient condition for strong impulse controllability Σ:

Theorem 8. Consider the switched DAE Σ(Eσ, Aσ, Bσ) with p+ 1 modes on the interval [t0, tf ) for some switching

signal σ ∈ S̃p. If for all i ∈ {0, . . . , p} one has:

Im Πi ⊆
p⋂
k=0

C imp
k +Ri

Then one has that Σ is strongly impulse controllable.

Proof. Observe that strong impulse controllability is equivalent to weak impulse controllability for all mode projectors.
Fix ρ ∈ Pp. Observe that the given statement can be rewritten as:

Im Πρ(i) ⊆
p⋂
k=0

C imp
k +Rρ(i) ⊆ C imp

ρ(i+1) +Rρ(i)
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Since ρ has been fixed, one can relabel the modes without loss of generality, such that ρ = id. Then the derived
statement is equivalent to the weak impulse controllability condition in Theorem 7 for some fixed ρ ∈ Pp. Since the
statement can be repeated for any ρ ∈ Pp, one has that Σ is weak impulse controllable for all ρ ∈ Pp, and thus, Σ is
strong impulse controllable.

Furthermore, this condition was derived by fixing n, but one is also able to fix m and let n be free, this yields the
following sufficient condition:

Theorem 9. Consider the switched DAE Σ(Eσ, Aσ, Bσ) with p+ 1 modes on the interval [t0, tf ) for some switching

signal σ ∈ S̃p. If for all i ∈ {0, . . . , p} one has:

Im
[
Π0 . . . Πp

]
⊆ C imp

i +

p⋂
k=0

Rk

Then one has that Σ is strong impulse controllable.

Proof. Fix n,m ∈ {0, . . . , p}, this condition is equivalent to:

Im Πn ⊆ Im
[
Π0 . . . Πp

]
⊆ C imp

m +

p⋂
k=0

Rk ⊆ C imp
m +Rn

As already seen, the condition Im Πn ⊆ Cimpm + Rn is equivalent to Theorem 8, and hence, Σ is strongly impulse
controllable.

The problem with Theorems 7, 8 and 9 is that they are listed as sufficient conditions. Whilst it has been proven that
these conditions are sufficient, no reasoning is given as to why they are not necessary. Future research has to determine
if Theorems 7, 8 and 9 are or aren’t necessary, either by providing a proof or a simple counterexample to the necessity.

To derive (possibly) necessary geometric conditions for which the system Σ is either weak or strong impulse controllable,
this thesis will make use of a sequence of subspaces which will be similar to the backward approach as was done in [6,
p. 5]. Before proceeding it seems worthwile to investigate several important results of [6] which can serve as a guide to
build up the abstraction. In the upcoming it will be assumed that the mode projector is the identity map.The method
starts with the impulse controllable space of the last mode, i.e. mode p, call this Kbp. Then Kbp−1 is the set of points

that can reach the impulse controllable space of mode p when the system behaves as in mode p− 1. Similarly, Kbp−2

are the points such that it can reach Kbp−1 when the system behaves as in mode p− 2. If this sequence is continued,

one will eventually find the last subspace in the sequence Kb1. This subspace contains all points that can be steered
into C imp

p from mode 1 and onward.

The following sequence of subspaces that will be introduced will be the same as was introduced in the backward

approach in [6] for some fixed σ ∈ Sp. Define Λ̃i−1 := eA
diff
i−1(ti−ti−1). Consider the following sequence of subspaces

going backwards, computed for i = p, p− 1, . . .:

Kbp = C imp
p (4.3)

Kbi−1 = Im(Πi−1) ∩
(

Λ̃−1
i−1K

b
i +Ri−1

)
+ 〈Eimp

i−1 |B
imp
i−1 〉+ ker(Ei−1)

If Σ(Eσ, Aσ, Bσ) is restricted to the interval [ti−1, ti), one has that all states at t = t−i−1 that can reach Kbi impulse

freely at t = t−i is given by the set Kbi−1. This will be shown in the following theorem:

Theorem 10. (See [6, Lemma 19]) Consider the switched DAE Σ(Eσ, Aσ, Bσ) restricted to the interval [ti−1, ti) for
some fixed σ ∈ Sp. Then Kbi−1 is the largest set of points at t−i−1 that can reach Kbi impulse-freely.

Proof. The proof will be split up in 2 steps, which are:

1. First, it is shown that ∀x(t−i−1) := xi−1 ∈ Kbi−1 there exists an input such that this solution reaches Kbi impulse

freely. Or put differently, one must have xu(t−i , t
−
i−1;xi−1) ∈ Kbi . It will be shown that there exists an input u for

all xi−1 in either Im(Πi−1) ∩
(

Λ̃−1
i−1Kbi +Ri−1

)
, 〈Eimp

i−1 |B
imp
i−1 〉 and ker(Ei−1) for which xu(t−i , t

−
i−1;xi−1) ∈ Kbi .

Then, by using linearity, it can be concluded that all points in Kbi−1 can reach Kbi impulse-freely.

2. The last step will show that Kbi−1 is indeed the largest set of points at t = t−i−1 for which the set Kbi can be reached

impulse-freely at t = t−i . This will be done by showing that if (x, u) is an impulse-free solution for Σ(Eσ, Aσ, Bσ)
on [ti−1, ti), one must have that x(t−i ) := xi ∈ Kbi . Then it will be shown that x(t−i−1) := xi−1 ∈ Kbi−1.
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(Step 1) 1. Let xi−1 ∈ Im(Πi−1) ∩
(

Λ̃−1
i−1Kbi +Ri−1

)
. Since xi−1 ∈ Im Πi−1, it serves as a consistent initial value for

mode i− 1 and therefore it produces no impulses when the zero input is chosen. Hence, ∃(x̂, 0) such that it
solves Ei−1( ˙̂x) = Ai−1x̂ on [ti−1, ti) with x̂(t−i−1) = xi−1. Furthermore, since xi−1 ∈ Im Πi−1, one has that
Πi−1xi−1 = xi−1. Using the solution decomposition (3.6), one has that:

x̂(t−i ) = eA
diff
i−1(ti−ti−1)x̂(t−i−1) =: Λ̃i−1x̂(t−i−1)

Additionally, since xi−1 ∈ Λ̃−1
i−1Kib + Ri−1, ∃α ∈ Kib ∃β ∈ Ri−1 such that xi−1 = Λ̃−1

i−1α + β. Using the

expression for x̂(t−i ) one finds:

x̂(t−i ) = Λ̃i−1xi−1 = α+ Λ̃i−1β ∈ Kib +Ri−1

Observe that the reachable subspace Ri−1 is Adiff
i−1 invariant. Hence, it is also Λ̃i−1 invariant.

Hence, ∃ξ ∈ Kbi ∃η ∈ Ri−1 such that x̂(t−i ) = ξ + η. Choose a smooth solution (x̃, u) of Σ(Eσ, Aσ, Bσ) on
[ti−1, ti) such that x̃(t−i−1) = 0 and x̃(t−i ) = −η. Hence, the solution (x, u) := (x̂+ x̃, u) exhibits no impulses

on [ti−1, ti) such that x(t−i−1) = x̂(t−i−1) + x̃(t−i−1) = xi−1 and x(t−i ) = x̂(t−i ) + x̃(t−i ) = ξ ∈ Kbi .

2. Let xi−1 ∈ 〈Eimp
i−1 |B

imp
i−1 〉. As has been noted in the proof of Lemma 4, one has that 〈Eimp

i−1 |B
imp
i−1 〉 ⊆ Ri−1.

All points in Ri−1 are the states that can be reached smoothly on [ti−1, ti) from the origin. By applying
a translation, Ri−1 is equivalent to all initial states that can be steered to the origin on [ti−1, ti). Hence,
there exists an input u such that xu(t−i , t

−
i−1, xi−1) = 0 ∈ Kbi .

3. Let xi−1 ∈ kerEi−1. If the zero input is applied, then the solution xu(t, t−i−1, xi−1) = 0 exhibits at most
a jump if t > ti−1, which cannot be expressed as the linear combination of the Dirac impulses and its
derivatives. Hence, (x, u) is impulse free on [ti−1, ti) and furthermore 0 ∈ Kbi .

Finally, by linearity one must have that ∀xi−1 ∈ Kbi−1, there exists an input u such that the state can be steered
into Kbi .

(Step 2) Let (x, u) be any impulse free solution of Σ(Eσ, Aσ, Bσ) on [ti−1, ti) such that x(t−i ) ∈ Kbi . All it rests us
to show that x(t−i−1) ∈ Kbi−1. Since it must be that the solution is impulse-free, it must certainly be that

xi−1 ∈ C imp
i−1 := Im Πi−1 +

〈
Eimp
k |Bimp

k

〉
+ kerEi−1. Hence, ∃ξ ∈ Im Πi−1 ∃η ∈

〈
Eimp
k |Bimp

k

〉
∃ζ ∈ kerEi−1 such

that xi−1 = ξ + η + ζ. As was noted in the proof of Lemma 4, one has that 〈Eimp
i−1 |B

imp
i−1 〉 ⊆ W∗(Ei−1,Ai−1

). Using

Theorem 1 and Lemma 6, one has that xaut(t, t
−
i−1, η) = xu(t, t−i−1, ζ) = 0 for all t ∈ (ti−1, ti). From this, it can

be directly concluded that xu(t, t−i−1, ζ) ∈ Ri−1. Hence, one derives for x(t−i ):

xi = x(t−i ) := xu(t−i , t
−
i−1, xi−1) = xu(t−i , t

−
i−1, ξ + η + ζ) = xu(t−i , t

−
i−1, ξ) + xu(t−i , t

−
i−1, η) + xu(t−i , t

−
i−1, ζ)

= xaut(t
−
i , t
−
i−1, ξ) + xu(t−i , t

−
i−1, η)

= Λ̃i−1Πi−1ξ + xu(t−i , t
−
i−1, η)

= Λ̃i−1ξ + xu(t−i , t
−
i−1, η)

Hence, if γ = Λ̃−1
i−1xu(t−i , t

−
i−1, η) ∈ Ri−1, one can rewrite the aforementioned expression in terms of ξ:

ξ = Λ̃−1
i−1xi − γ

This directly shows that ξ ∈ Λ̃−1
i−1Kbi +Ri−1, and hence, ξ ∈ Im(Π)i−1 ∩

(
Λ̃−1
i−1Kbi +Ri−1

)
. Hence, it has been

shown that xi−1 ∈ Kbi−1.

As was stated in the beginning of this subsection, the space Kb0 contains the states in the initial mode for which
the impulse controllable space of the last mode can be reached in an impulse free manner. As all trajectories in the
initial mode start in its respective augmented consistency space, it seems reasonable to expect that weak impulse
controllability can be ensured if this augmented consistency space is contained in Kb0.

Theorem 11. Consider the switched DAE Σ(Eσ, Aσ, Bσ) for some fixed σ ∈ Sp defined on the interval [0, T ].
Σ(Eσ, Aσ, Bσ) is called impulse controllable if and only if V0 ⊆ Kb0.

Proof. See [6, Theorem 21].

These results have to be generalized, as right now they are dependent on some fixed switching signal σ ∈ Sp. To this
end, the notation will be slightly changed, from Kbi to ρKσi . Furthermore, the convention will be made that idKσi = Kσi .
The sequence will be slightly altered to the following:

ρKσi = C imp
ρ(p)
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ρKσi−1 = Im(Πρ(i−1)) ∩
(

Λ̃−1
ρ(i−1)

ρKσi +Rρ(i−1)

)
+ 〈Eimp

ρ(i−1)|B
imp
ρ(i−1)〉+ ker(Eρ(i−1))

Weak impulse controllability can be ensured by considering the aforementioned sequence of subspaces intersected over
all switching signals σ belonging to Sp. Then, the following result can be conjectured

Theorem 12. Let Σ(Eσ, Aσ, Bσ) be some switched DAE defined on [0, T ) for some switching signal σ ∈ Sp. Σ is weak
impulse controllable if and only if:

V0 ⊆
⋂
σ∈Sp

Kσ0

Proof.(=⇒) Assume Σ is weak impulse controllable. Fix Σ(Eσ, Aσ, Bσ) ∈ Σp {(Ek, Ak, Bk)}. By definition, Σ(Eσ, Aσ, Bσ)
is impulse controllable. Hence, Theorem 11 is applicable, and thus one must have that V0 ⊆ Kσ0 . Observe that the
result holds for any switched DAE Σ(Eσ, Aσ, Bσ) as long as σ ∈ Sp. Hence, V0 ⊆ Kσ0 for all σ ∈ Sp. Therefore,
one has that V0 ⊆

⋂
σ∈Sp K

σ
0 .

(⇐=) Fix Σ(Eσ, Aσ, Bσ) ∈ Σp {(Ek, Ak, Bk)}. It has to be shown that Σ(Eσ, Aσ, Bσ) is impulse controllable for all
σ ∈ Sp. Trivially, one has that:

V0 ⊆
⋂
γ∈Sp

Kγ0 ⊆ Kσ0

Hence, Theorem 11 is applicable and hence Σ(Eσ, Aσ, Bσ) is impulse controllable for all σ ∈ Sp. Hence, Σ is
weak impulse controllable.

The approach to strong impulse controllability is more careful, as in the preceding theorem it has been assumed
that the initial mode is always mode 0. Therefore, mode projectors have to be grouped with respect to their initial
mode. This gives rise to an equivalence relation ∼. Let ρ, µ ∈ Pp. Two mode projectors are said to be equivalent if
they share the same initial mode, or symbolically:

µ ∼ ρ ⇐⇒ µ(0) = ρ(0)

This gives rise to p equivalence classes [0], . . . , [p] all having (p− 1)! elements. All mode projectors ρ in [j] have the
property that ρ(0) = j. Next, it is feasible to introduce a class of switching signals with a fixed mode projector.
Suppose S̃p is restricted to only one mode projector, which will be denoted by Sρp , or more symbolically:

Sρp =

{
σ : R→ {0, ..., p}

∣∣∣∣∣∃{ti}i=pi=1 such that t0 < ti−1 < ti < T =: tp+1 ∀i ∈ {1, ..., p}
and σ(t) =

∑p
i=0 ρ(i)1[ti,ti+1)(t)

}
(4.4)

Then the following conjecture can be formulated:

Theorem 13. Let Σ(Eσ, Aσ, Bσ be some switched DAE defined on [0, T ) for some switching signal σ ∈ S̃p. Σ is strong
impulse controllable if and only if for all i ∈ {0, . . . , p}:

Vi ⊆
⋂
ρ∈[i]

⋂
σ∈Sρp

ρKσ0

Proof.(=⇒) Assume Σ is strongly impulse controllable. Fix µ ∈ Pp and let σ ∈ Sµp ⊆ S̃p be arbitrary. Define
Σ(Eσ, Aσ, Bσ) to be the switched DAE with matrix pairs (Ek, Ak, Bk) and the switching signal σ on the interval
[0, T ). The result in Theorem 12 can be altered to give:

Vµ(0) ⊆
⋂
σ∈Sµp

µKσ0 (4.5)

Suppose that q := µ(0) ∈ {0, . . . , p}, and let ∼ be the equivalence relation as defined before. Let [q] be the
equivalence class of all mode projectors having the initial mode equal to q. Observe that (4.5) can be rewritten as:

Vq ⊆
⋂
σ∈Sµp

µKσ0 ∀µ ∈ [q] =⇒ Vq ⊆
⋂
µ∈[q]

⋂
σ∈Sµp

µKσ0 (4.6)

Since µ ∈ Pp is fixed, it could be that µ is in any of the equivalence classes [0], . . . , [p] since Pp =
⋃p
i=0[i]. Hence,

(4.6) must hold for all equivalence classes. Hence, for all q ∈ {0, . . . , p} it must be that:

Vi ⊆
⋂
µ∈[i]

⋂
σ∈Sµp

µKσ0 ∀i ∈ {0, . . . , p} (4.7)
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(⇐=) Fix Σ(Eσ, Aσ, Bσ) ∈ Σ̃p {(Ek, Ak, Bk)}. Since σ ∈ S̃p, ∃ρ ∈ Pp such that σ(t) =
∑p
i=0 ρ(i)1[ti,ti+1)(t) with

t0 = 0, tp+1 = T . If it can be shown that Σ is weak impulse controllable for all mode projectors ρ ∈ Pp, one can
conclude that Σ is strongly impulse controllable. Using the given condition, one has that:

Vρ(0) ⊆
⋂

ρ∈[ρ(0)]

⋂
σ∈Sρp

ρKσ0 ⊆
⋂
σ∈Sρp

ρKσ0

Observe that (�) implies Theorem 11 for all mode projectors ρ ∈ Pp, and hence, Σ is weak impulse controllable
for all mode projectors ρ ∈ Pp. Thus Σ is strong impulse controllable, which finishes the proof.

From the examples in the introduction of this section, several sufficient conditions can be derived for weak and
strong impulse controllability of Σ(Eσ, Aσ, Bσ), these conditions will be listed under the following two conjectures:

Corollary 5. Let Σ(Eσ, Aσ, Bσ) be some switched DAE defined on [0, T ) for some switching signal σ ∈ Sp. Σ is weak
impulse controllable if:

Vi ⊆ C imp
i+1 ∀i ∈ {0, . . . , p}

Proof. Since Ri ⊆ Vi and Im Πi ⊆ Vi, one has that Im Πi ⊆ Vi ⊆ C imp
i+1 +Ri. Using Theorem 7, one has that Σ is weak

impulse controllable.

Corollary 6. Let Σ(Eσ, Aσ, Bσ) be some switched DAE defined on [0, T ) for some switching signal σ ∈ S̃p. Σ is strong
impulse controllable if:

1. V∗` ⊆ C imp
q ∀`, q ∈ {0, . . . , p}

2. V0 + . . .+ Vp ⊆
⋂p
q=0 C

imp
q .

3.
⋂p
k=0 C

imp
k = Rn

Proof. Observe that the first 2 statements are equivalent. As noted before, Ri ⊆ Vi. One must have that Vi ⊆⋃q
k=0 Vk ⊆

⋂p
q=0 C

imp
q ⊆

⋂p
q=0 C

imp
q +Ri. Hence Theorem 8 is applicable, which shows that the first two statements

imply that Σ is strong impulse controllable. The third statement indicates that all modes in themselves are fully
controllable. If the third statement holds, then the second statement is trivially satisfied, and hence, the third statement
also implies that Σ is strong impulse controllable.
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5 Conclusion

In this thesis several necessary conditions and sufficient conditions have been derived for impulse controllability of
switched DAEs for arbitrary switching. In practical applications, the order in which the switching occurs is fixed, but if
a switch is faulty, this fixed order cannot be ensured, hence, giving rise to different orders in which the switching occurs.
By possibly requiring that the switching signal can switch in any order, one has to make a distinction between weak -
and strong impulse controllability. By first focussing the research on switched DAEs with 2 modes, one is able to derive
necessary geometric conditions for weak - and strong impulse controllability of switched DAEs with 2 modes, as listed
under Theorems 5 and 6. These conditions could be generalized to derive sufficient conditions for weak - and strong
impulse controllability of switched DAEs with p+1 modes, as listed under Theorems 7 and 8. Afterwards, the backwards
method from [6] has been generalized to derive several necessary conditions for weak - and strong impulse controllability
of switched DAEs with p+ 1 modes, as listed in Theorem 12 and 13. From the examples in the results one can derive
several other sufficient conditions for weak - and strong impulse controllability, which are listed under Corollary’s 5 and 6.

The problems with the necessary conditions listed under Theorems 12, 13 is the uncomputability of the results.
This is due to the fact that the space Sp, S̃p contains infinitely many switching signals, for which the sequence
ρKσi has to be computed. The biggest problem in the sequence ρKσi is the presence of the evolution operator
Λ̃−1
i−1. For future research, to obtain a sequence that is computationally more efficient one must either show that

Im(Πρ(i−1)) ∩
(

Λ̃−1
ρ(i−1)

ρKσi +Rρ(i−1)

)
is Λ̃i−1 invariant, or alter the sequence slightly such that the aforementioned

statement becomes Λ̃i−1 invariant for the new choice of ρKσi .

Additionally, a different approach can be taken to derive conditions for impulse controllability. By representing
the modes as nodes on a graph and connecting the nodes with edges only if a switch between these nodes can be
performed impulse-freely, one can associate a graph with a switched DAE. For example, if the graph appears to be
strongly connected, then it seems reasonable to expect that the switched DAE is also strong impulse controllable. For
future research, in order to obtain computationally more efficient conditions one can take a look at a graph theory
approach to switched DAEs.

Lastly, since several conditions in this thesis establish either weak or strong impulse controllablility of switched
DAEs, it is yet to be investigated what kind of input or controller that ensures that the state is impulse free. When
such a controller is to be developed, one should take into account that in practice switches do not necessarily switch
instantaneous, and therefore, extra modes have to be developed that describes the behaviour of the solution in between
modes. Therefore a further direction of research is the development of a dynamic controller which prevents the
occurance of impulses in the solution.
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