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UNIVERSITY OF GRONINGEN

Abstract

Creating the graviton, a massless spin 2 perspective on gravity

by Jasper PLUIJMERS

General relativity is a theory that has withstand numerous tests over the
past 100 years. Although it works so well on a lot of levels there still are a
few big open questions. Historically general relativity has been a geometric
theory with lots of focus on curvature. This research presents an alterna-
tive, non geometric, way to derive the main feature of general relativity:
the Einstein Hilbert. By constructing a theory out of a massless spin 2 par-
ticle it provides a different perspective on the theory. We start by creating
a Lorentz invariant field operator and show that the gauge invariance of-
ten said to be fundamental to general relativity is a natural consequence of
the deviating little group of a massless particle. Subsequently it is shown
that with this gauge invariance the only linear theory you can write down
is exactly Einstein Hilbert around flat space. Thereafter the full non lin-
ear theory is recovered by demand a consistent coupling to the fields own
energy-momentum tensor. Finally some of these calculations are also done
on the 5 dimensional extension of Einstein Hilbert: Gauss Bonnet.
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Chapter 1

Introduction

1.1 Brief history of gravity

For as long as humans have lived on this earth, they have noticed things
fall to the ground. It is remarkable that the force we now consider weak has
been the one that mankind has actively interacted with the most. During
history all over the world scientists had tried to create a correct theory for
gravity. Even the ancient greeks already had a basic understanding. Aristo-
tle explained gravity by saying all objects move to their natural place. For
basic elements earth and water this natural place was apparently the center
of the universe, which was considered the center of the earth[1].

In 1687 Isaac Newton published the Philosophiae Naturalis Principia.
In this work he described, among other things, that every particle in the
universe attracts all other particles with a force that is proportional to the
product of their masses and inversely proportional to the distance between
them squared [2]:

Fg = G
m1m2

r2
(1.1)

This theory is valid for most practical purposes on earth, but had some
fundamental flaws. A famous example is the precession of the perihelion
of mercury. This effect was observed in 1859 by Urbain Le Verrier and could
not be explained by Newtonian gravity (1.1). It suffices to say a new theory
had to be found, which came over 300 years after Newtons law.

FIGURE 1.1: The orbit of mercury changed over time, inex-
plicable by Newtons law of gravity [3]

1.2 Relativity

After publishing his special theory of of relativity in 1905 (citation) Einstein
had a big task in front of him. In contrast to the nicer behaved Maxwell
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equations which were an inspiration for his theory of relativity, Newtons
law of gravity described an instantaneous force at any distance. This did
not match with the fundamental speed of the speed of light in the universe.
Key to developing this new theory was his equivalence principle: There is
no local experiment which tells you if you are at rest in a uniform grav-
itational field or accelerating at a constant rate. After almost a decade of
hard work and conversations with his fellow physicists, he published the
Einstein field equations [4]:

Rµν −
1

2
Rgµν = κTµν . (1.2)

This set of general covariant equations relate the curvature of spacetime to
the energy momentum tensor, which represents the amount of energy and
momentum. They characterize gravity not as a force, but as the curvature
of spacetime through which objects travel over geodesics according to the
geodesic equation:

ẍα + Γαµν ẋ
µẋν . (1.3)

The equations had a lot of appealing properties. Obvious ones, such that
in empty space where Tµν = 0 the curvature is also zero as well as more
complicated ones. In weak fields where the amount of mass involved is
low and speeds are much lower than the speed of light the equations still
approximate Newtons universal law of gravitation. Maybe the biggest clue
that the field equations were correct was that they predicted the precession
of the perihelion of mercury, which was the first test of many to come.

1.3 Tests

Already in 1919 the first deflections of light by gravity were smartly ob-
served by looking at stars close to the sun during a total eclipse [5]. Nowa-
days gravitational lensing is a useful tool for astronomers to be able to
see objects hidden behind supermassive objects in the universe, or even
to be able to study events multiple times due to the different path lengths
the light has to take around an object[6]. Even in the last decade predic-
tions from general relativity were observed. When looking for an effect
analogous to the electromagnetic waves that appear with moving electric
dipoles, he predicted general relativity to also be able to produce waves.
This was first indirectly observed by the decay of the orbital period of a bi-
nary pulsar system [7]. In 2015, a 100 years after their prediction, the first
direct observation of a gravitational wave was done by LIGO [8], showing
an almost perfect fit to the predicted waveforms 1.2. Taking into account
these, and many more, tests and the fact that even our daily life is affected
by the effects of general relativity in the Global Positioning System it is save
to say that it has been a spectacularly successful theory.
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FIGURE 1.2: The detected waveforms of gravitational
waves caused by the merge of a pair of black holes [8]

1.4 Problems

The theory is however not complete. In contrast to the other fundamen-
tal forces General Relativity is not compatible with the standard model be-
cause there are problems in quantizing it. Specifically perturbatively quan-
tized general relativity is non-renormalizable which so far has not been
solved. Furthermore the allows for mathematical singularities such as the
center of a black hole, which you do not expect to be a physical effect [9].

1.5 An alternative route

As the theory is not complete and there are still open problems it is useful to
look at it from another perspective. General Relativity started as a geomet-
ric effect, which Einstein and others build up from principles. It is however
not the only way to get to this theory. This research presents another, more
systematic way to derive the Einstein Hilbert action and tries to answer the
question:

• Can general relativity be derived by constructing a self consistent field
theory of a massless spin 2 particle?

To answer this question we are in the second chapter going to try and con-
struct a field operator that can be used to create Lorentz invariant theories.
This will bring some constraints on that action. In the third chapter we are
going to find which actions we can create while complying to those con-
straints. The fourth action will extract from the free theory we find in the
previous chapter the full non linear Einstein Hilbert action. Finally we are
going to take a look at the higher dimensional extension to Einstein Hilbert:
Gauss Bonnet. We are going to look at the same procedures as we did for
Einstein Hilbert and see if they also hold up for that theory.
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Chapter 2

On the origin of gauge
invariance

2.1 Introduction

The purpose of this chapter is to show the origin of the need for gauge
symmetry in a gravity theory. To show this I will first show why a similar,
but different, symmetry appears in a massless spin 1 vector particle, the
U(1) symmetry. The massless spin 1 vector field is the photon. The gauge
symmetry in the spin 2 massless particle will follow analogously. To show
this we will try to construct a field operator for the particle, made out of
creation and annihilation operators. To construct a Lorentz invariant theory,
the action has to contain terms with this field operator in such a way that
it is Lorentz invariant. As will be clear from this chapter this is quite a
straightforward task for massive particles, but not for massless particles.
For this chapter we will follow parts of chapter 2 and 5 of [10].

2.2 Spin-1

A field operator is constructed out of a linear combination of annihilation
and creation operators, it will have the general structure [10]:

ψ(x) = (2π)−
3
2

∫
d3p

∑
σ

[ba(~p, σ)(~p, σ)eipx + ca†(~p, σ)v(~p, σ)e−ipx]. (2.1)

In the field operator b and c are numbers, a and a† are the annihilation and
creation operators and u and v are coefficient functions. These coefficient
funct The next step is to find the coefficient functions such that ψ trans-
forms in a covariant way under lorentz transformations and can be put in a
lorentz invariant theory. In other words, it would be useful if the operator
transforms as a Lorentz vector:

U(Λ)ψµ(x)U−1(Λ) = Λµνψ
ν(x). (2.2)

The Λ matrices are Lorentz matrices with the property that ΛσνΛνρ = δσρ , with
δσρ the Kronecker delta. This means that if you transform a term like ψνψν
the Lorentz matrices cancel and the term is invariant under those Lorentz
transformation.
The transformation matrices U(Λ) commute with everything in the field
operator except for the creation and annihilation operators. So to study the
transformation properties of the field operator we first want to look at the
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transformation properties of the creation operator. The key to this chapter
will be in the difference of the transformation properties of the creation
operator for a massive or a massless particle. First we will cover the massive
case.

2.2.1 Massive

A massive particle state in the most general sense is represented by its mo-
mentum and its spin. In braket notation this will look like:

|~p, σ〉 (2.3)

The creation operator creates these single particle states by acting on the
vacuum state:

a†(~p, σ)|0〉 = |~p, σ〉. (2.4)

As the field operator is going to be build up out of these creation and an-
nihilation operators, it is necessary to find how these operators transform
under a Lorentz transformation. To do this it is useful to define a standard
momentum and relate all other states to this momentum via a standard
boost. Using a massive particle it is very intuitive to use the rest frame as
this standard momentum, in which pµ = kµ = (m, 0, 0, 0), with m the mass
of the particle. This boost allows us to write any state as:

|~p, σ〉 = L(~p)|0, σ〉. (2.5)

With L(~p) the boost that takes kµ to pµ, i.e. Lµν (~p)kν = pµ.

Every Lorentz transformation can be rewritten in such a way that it first
takes the particle to the ~p = 0 state, then performs a transformation that
is part of the little group and finally boosts the particle to the desired mo-
mentum. The little group is the group of all transformations that leave the
momentum of a particle unchanged:

U(Λ)|~p, σ〉 = L(Λp)W (Λ, p)L−1(p)|~p, σ〉 (2.6)

= L(Λp)W (Λ, p)L−1(p)L(p)|0, σ〉 = L(Λp)W (Λ, p)|0, σ〉 (2.7)

HereinW (Λ, p) is a transformation in the little group of kµ such thatWµ
ν (Λ, p)kν =

kµ. For the rest frame of a massive particle only spatial rotations leave the
momentum unchanged. The group of spatial rotation is SO(3), 3 dimen-
sional rotations in the spatial dimensions. The representation of the group
SO(3) are known and are characterized by the spin, J, of the particle it is
acting on. The result is a (2J+1)x(2J+1) unitary matrix that mixes the |0, σ >
state into a linear combination of other states with different spins, but leaves
the momentum untouched.

W (Λ, p)|0, σ〉 =
∑
σ′

Dσσ′(Λ, p)|0, σ〉 (2.8)
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We can combine (2.7) and (2.8) to see that the Lorentz transformation trans-
forms the single particle state by the SO(3) matrices and a boost:

U(Λ)|~p, σ〉 =
∑
σ′

Dσσ′(Λ, p)|Λ~p, σ′〉. (2.9)

We can find a relation between (2.9) and the creation operator:

U(Λ)|~p, σ〉 = U(Λ)a†(~p, σ)|0〉
= U(Λ)a†(~p, σ)U−1(Λ)U(Λ)|0〉
= U(Λ)a†(~p, σ)U−1(Λ)|0〉. (2.10)

Combining (2.9) and (2.10) will give us the transformation properties of the
creation operator:

U(Λ)a†(~p, σ)U−1(Λ) =
∑
σ′

Dσσ′a†( ~Λp, σ′). (2.11)

The annihilation operator then transforms as the hermitian conjugate:

U(Λ)a(~p, σ)(U−1(Λ) =
∑
σ′

D∗σσ′(Λ, p)a( ~Λp, σ′). (2.12)

Field operator

Looking back at (2.1), everything in this operator commutes with the Lorentz
matrices, except for the annihilation and creation operators. So the trick is
to choose the coefficient functions u and v in such a way that they can ab-
sorb similarly to the transformation of a and a†.

Coefficient Functions

For a massive vector spin 1 field, the Lorentz representation is that of 4
vectors, where D(Λ)µν = Λµν . Due to convention it is common to write the
coefficient functions as polarization vectors with the following relation be-
tween them [10]:

uµ(~p, σ) = (2p0)−1/2eµ(~p, σ) (2.13)

Again, we are going to describe write the polarization vectors in the rest
frame and transform them to arbitrary momentum with the same Lorentz
boost we saw in (2.5): eµ(~p, σ) = Lµν (~p)eν(0, σ). In that rest frame these
polarization vectors are given by:

eµ(0, 0) = [0, 0, 0, 1], eµ(0,±1) =
1√
2

[0, 1,±i, 0] (2.14)

The spatial part of these four vectors are eigenstates of SO(3) with eigen-
values 0 and ±1. As this is exactly the little group of the particles we need
them to describe we can conveniently write this little group transformation
as:

W (λ, p)µνe
ν(0, σ) =

∑
σ′

Dσσ′(Λ, p)eµ(0, σ′). (2.15)
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The matrices Dσσ′ are the exact same matrices as by which the creation
operator transformed in the previous chapter. We can combine this little
group transformation and the earlier mentioned boost such that the general
Lorentz transformation Λµν transforms the polarisation vectors like this:

λµνe
ν(~p, σ) =

∑
σ′

Dσσ′(Λ, p)eµ( ~λp, σ′). (2.16)

It is useful to switch around the µ
ν and the matrices Dσσ′ . Considering that

those matrices are unitary, we can write them like:∑
σ′

D∗σσ′(Λ, p)eµ(~p, σ′) = λ−1µ
νe
µ( ~λp, σ).(2.17)

The building blocks of the field operator (2.1) are multiplications of the form
a(~p, σ)eµ(~p, σ)eipx or hermitian conjugate of that. According to the trans-
formation rules we established, we can now transform this term.First The
transformation matrices commute with everything except a. Then a trans-
forms according to the single particle state. finally the polarization vector
’absorbs’ the matrices Dσσ′ .

a(~p, σ)eµ(~p, σ)eipx → U(Λ)a(~p, σ)u(~p, σ)eipxU−1(Λ) (2.18)

= U(Λ)a(~p, σ)U−1(Λ)eµ(~p, σ)eipx (2.19)

=
∑
σ′

D∗σσ′(Λ, p)a( ~Λp, σ′)eµ(~p, σ)eipx (2.20)

= λ−1µ
νa( ~Λp, σ)eν( ~λp, σ)eipx (2.21)

The hermitian conjugate of this term transforms similarly, such that for the
complete field operator ψµ it transforms as:

U(Λ)ψµ(x)U−1(Λ) = λ−1µ
νψ

ν(Λx) (2.22)

It is now easy to construct a Lorentz invariant theory, as the only require-
ment is that indices of the field operator are contracted with each other. An
simple example of Lorentz invariant lagrangian of a massive vector is:

L =
1

2
(∂µψν)(∂µψν)− m

2
ψµψµ (2.23)

As you can see, under a Lorentz transformation each term picks up a Lorentz
matrix and its inverse and therefore it is Lorentz invariant.

2.2.2 massless

Single particle state

Now moving on to the massless spin 1 particle, the first part of the previous
section can be repeated for the massless case. The first problems arise when
looking at the standard momentum for massless particles. As there is no
rest frame for a massless particle as they are always traveling at c for every
observer. There can be no rest momentum pµ = (m, 0, 0, 0) for these parti-
cles, instead of this we choose a standard momentum pµ = qµ = (q, 0, 0, q),
a particle traveling along the z-axis. From now on the standard boost L(~p)
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will take a particle from this standard momentum to the momentum ~p

|~p, σ〉 = L(~p)|~q, σ〉 (2.24)

Again, we can describe a lorentz transformation as the combination of an
inverse standard boost, a little group operator and a boost to the desired
momentum.

U(Λ)|~p, σ〉 = L(Λp)W (Λ, p)L−1(p)|~p, σ〉
= L(Λp)W (Λ, p)L−1(p)L(p)|~q, σ〉 = L(Λp)W (Λ, p)|~q, σ〉 (2.25)

Little group

The little group of this standard momentum is different from the little group
of the rest momentum we used for the massive particle. When we look at
the standard momentum qµ there is an obvious SO(2) symmetry. By ro-
tating along the direction of motion the x and y directions get rotated into
each other. This leaves the motion in the z direction, and thus our standard
momentum, invariant.

A more complicated part of the little group is a combination of boosts
and rotations. To see this, start with a boost in the y direction. After this
boost we apply a rotation around the x axis such that the orientation of the
momentum is entirely in the z direction again. Finally the particle can be
boosted back to its original energy

Λ(1)µ
νq
ν = q′µ = (γq, 0, γβq, q). (2.26)

Λ(2)µ
νq
′ν = q′′µ = (γq, 0, 0, γq) (2.27)

Λ(3)µ
νq
′′ν = q′′′,µ = (q, 0, 0, q) (2.28)

The combination of Λ
(1)µ

ν , Λ
(2)µ

ν and Λ
(3)µ

ν is an element of the little group
of qµ. In general this can be done with any boost in the x or y direction or
a combination of those and form a subgroup. A general transformation of
this form looks like this:

Sµν (α, β) =


1 + ξ α β −ξ
α 1 0 −α
β 0 0 −β
ξ α β 1− ξ

 (2.29)

with α and β any real numbers and ξ = 1
2(α2 + β2). A quick inspection of

this matrix shows that indeed Sµν qµ = qν and therefore it is part of the little
group of q

Structure little group

So the little group consists of the following 2 transformation matrices:
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Sµν (α, β) =


1 + ξ α β −ξ
α 1 0 −α
β 0 1 −β
ξ α β 1− ξ

Rµν(θ) =


0 0 0 0
0 cos(θ) sin(θ) 0
0 − sin(θ) cos(θ) 0
0 0 0 0


These transformations are both subgroups, with the Sµν part being an in-
variant subgroup, as:

S(α, β)S(α′, β′) = S(α+ α′, β + β′) (2.30)
R(θ)R(θ′) = R(θ + θ′) (2.31)

R(θ)S(α, β)R−1(θ) = S(α cos θ + β sin θ,−α sin θ + β cos θ) (2.32)

Close to the identity this subgroup can be described by

W (α, β, θ) = 1 + iαA+ iβB + iθJ (2.33)

with the generators A, B and J given by:

Aµν =


0 −i 0 0
−i 0 0 i
0 0 0 0
0 −i 0 0

Bµ
ν =


0 0 −i 0
0 0 0 0
−i 0 0 i
0 0 −i 0

 (2.34)

Jµν =


0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

 (2.35)

From these generators it is possible to calculate the commutation relations:

[J3, A] = iB (2.36)

[J3, b] = −iA (2.37)

[A,B] = 0 (2.38)

Because the generators A and B commute it is possible to have diagonalize
a particle state for both of those eigenvalues i.e. both the following state-
ments hold for the same state Ψa,b.

AΨq,a,b = aΨq,a,b (2.39)
BΨq,a,b = bΨq,a,b (2.40)

As we saw in equation (2.32) the rotation subgroup rotates the other two
generators into each other. This means that whenever we find any state
with eigenvalues α and β, you can find a continuous set of eigenvalues by
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rotating the and β operators.

U [R(θ)]AU−1[R(θ)] = Acosθ −Bsinθ (2.41)
U [R(θ)]BU−1[R(θ)] = Asinθ −Bcosθ (2.42)

If such a state would exist, also states with eigenvalues Acosθ − Bsinθ
would have to exist. We have never seen this continuous degree of free-
dom (θ) in any particle. Therefore it is postulated that for all real particles
the eigenvalues α = β = 0 and as such when acting with operators A and
B on a state they vanish AΨq = BΨq = 0

So the general little group elementU(W ) can be build up likeU(S(α, β))U(R(θ)) =
eiαA+iβBeiJθ which when acting on a state Ψq,σ produces

eiαA+iβBeiJθΨq,σ = eiθσΨq,σ. (2.43)

Single particle state

Analogously to the massive case, the single particle states for massless par-
ticles transform under a general Lorentz transformation like:

U(Λ)|p, σ〉 = e−iS(α,β)R(Θ)|Λp, σ〉 = e−iσΘ|Λp, σ〉 (2.44)

By using the same logic as in (2.10) you can see the creation operator trans-
forms as:

U(Λ)a†(~p, σ)U−1(Λ) =

√
(Λp)0

p0
e−iσS(α,β)R(Θ)a†(~pΛ, σ). (2.45)

Coefficient functions

Just like in the massive case, the trick now is to find coefficient functions
that transform in such a way that the field operator transforms covariantly.

ψ(x)µ = (2π)−
3
2

∫
d3p

∑
σ

[ba(~p, σ)uµ(~p, σ)eipx + ca†(~p, σ)vµ(~p, σ)e−ipx]

(2.46)
The goal is that this field transforms according to some representation of
the Lorentz group, so:

U(Λ)ψµ(x)U−1(Λ) = Λµνψ
ν(x). (2.47)

As we know that the creation operator satisfies the transformation rule
(2.45) the coefficient functions u and v would have to follow similar trans-
formation rules. Now we need, for our vector case, to find the functions
uµ and vµ that comply with these relations. Again for conventional reasons
these are written as dimensionless polarization vectors eµ with the follow-
ing relation:

uµ(~p, σ) ≡ 1√
2p0

eµ(~p, σ). (2.48)
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This polarization vector can then be boosted back to our standard momen-
tum with the standard lorentz boost, e.g.

eµ(~p, σ) = L(~p)µνe
ν(~q, σ) (2.49)

If the polarization vectors would behave similar to the single particle state
it has to pick up a phase under the rotational part of the little group and the
more complex part should act on it trivially:

eµ(~k, σ)eiσθ = R(θ)µνe
ν(~k, σ) (2.50)

eµ(~k, σ) = S(α, β)µνe
ν(~k, σ) (2.51)

It is easy to find vectors that comply with the first condition, these are the
following polarization vectors:

eµ(~q,±1) =
√

2


0
1
±i
0

 . (2.52)

Now to satisfy the second relation with these we find the very specific con-
ditions α ± iβ = 0, which is not a possibility as it should hold for general
α, β. This is a problem, the vectors we are looking for turns out to not exist.
The only solution is to still take the spin-1 vector and just accept that there
is a non trivial addition in the transformation, that is to say: the polariza-
tion vectors, and thus the field operator does not transform like a proper
4-vector. Doing this the polarization vector does transform like this:

W (θ, α, β)µνe
ν(~k, σ) = eσiθ[eµ(~k, σ) +

(α+ iσβ)
√

2|~k|
kµ]. (2.53)

If you now do the same calculation we did in (2.21) for the massless field
operator, it will transform like this:

U(Λ)ψ(x)µU−1(Λ) = Λ−1µ
νψ(x)(Λx) + ∂µΩ(x,Λ) (2.54)

This means that the field of the massless particle does not transform like a
vector at all under Lorentz transformation. The lagrangian we wrote down
for them massive vector field is not valid for the massless field.

Interaction terms

We still want to write down a theory with this massless vector field and it
still needs to be Lorentz invariant. It is not enough anymore to just contract
the indices of the field with itself, the lagrangian also has to be invariant
under the extra transformation rule in (2.54). It had a gauge invariance.
An option is to let the field appear in the lagrangian in an antis-ymmetric
combination:

Fµν = ∂µψν − ∂νψµ. (2.55)

Under lorentz transformations the extra term vanishes which makes Fµν a
tensor even though the field is not a vector. You can then work with this
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tensor to make the Lorentz invariant term:

FµνF
µν . (2.56)

Another option is to couple the field ψ to a conserved vector Jµ such that
∂µJ

µ = 0. Under a Lorentz transformation this coupling would transform
like this:

AµJ
µ → (Aµ + ∂µΩ)Jµ. (2.57)

(2.58)

In an action this last term vanishes by integrating by parts and the term
transforms like a tensor.

2.3 Spin 2

The spin 2 particle will be represented by a symmetric tensor hµν . Building
the spin 2 field operator in the same way as for spin 1, it will look like this:

hµν(x) = (2π)−
3
2

∫
d3p

2p0

∑
σ=−2,+2

[ba(~p, σ)eµν(~p, σ)eipx + ca†(~p, σ)eµν ∗ (~p, σ)e−ipx].

The transformation of this field will be completely analogous to that of the
spin 1 field. We would now need a polarization tensor similar to the po-
larization vectors of the previous section, as the single particle state also
behaves similar. It turns out that the particle will transform as the direct
multiplication of 2 spin 1 fields. As a consequence the polarization tensor
that is used to describe the field will be:

eµν±2 = eµ±1e
ν
±1. (2.59)

Where the latter two are the polarization vectors from the previous section.
The transformation of this polarization tensor is then also easy to derive,
for a general lorentz group element Λ:

Λµνρλe
ρλ(~p) = Λµρe

ρ(~p)Λνλe
λ(~p) (2.60)

= eσiθ[eµ( ~Λp) +
(α+ iσβ)
√

2〉~k〉
kµ]W ν

λ e
λ (2.61)

= e2σiθ[eµ( ~Λp) +
(α+ iσβ)
√

2〉~k〉
(Λp)µ][eν( ~Λp) +

(α+ iσβ)
√

2〉~k〉
(Λp)ν ]

(2.62)

= e2σiθ[eµ( ~Λp)eν( ~Λp) +
(α+ iσβ)
√

2〉~k〉
(Λp)µeν( ~Λp)+ (2.63)

(α+ iσβ)
√

2〉~k〉
(Λp)νeµ( ~Λp) +

(α+ iσβ)2

2〉~k〉2
(Λp)µ(Λp)ν ] (2.64)

= e2σiθ[eµν + (Λp)µξν + (Λp)νξµ]. (2.65)
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In the last step, the final term of the previous step is split in such a way that

ξµ =
(α+ iσβ)
√

2〉~k〉
eµ +

(α+ iσβ)2

4〉~k〉2
kµ. (2.66)

When Lorentz transforming the massless spin 2 field operator a similar
thing happens as in the spin 2 case, except it now picks up not 1 but 2
extra terms.

U(Λ)hµν(x)U−1(Λ) = (Λ−1)µλ(Λ−1)νρh
λρ(Λx) + ∂νΩµ(x,Λ) + ∂µΩν(x,Λ)

(2.67)

Interaction terms

So just like the vector, the tensor does not transform like a proper Lorentz
tensor. Under a Lorentz transformation two extra terms appear. There-
fore to make a lagrangian Lorentz invariant it needs to not only be con-
tracted with other tensors, the lagrangian also needs to be invariant under
the gauge transformation:

hµν− > hµν + ∂µξν + ∂νξµ (2.68)

The next chapter will deal with how that lagrangian can be constructed.
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Chapter 3

On the terms of a massless
spin-2 action

3.1 Introduction

The previous chapter has shown that in order to be Lorentz invariant, a
massless spin-2 theory also has to be invariant under linear diffeomorphisms.
This chapter will focus on showing that, when expanded on a flat back-
ground, general relativity is in fact this massless spin 2 field. To show this
two approaches are shown that lead to the same result. First a top down
approach, wherein the usual Einstein-Hilbert action is expanded around
flat space. The second half will be a bottom up approach. An analysis of a
general action of such a massless spin-2 field shows that when demanded
that it is invariant under the diffeormorphisms, the constraints on the coef-
ficients show the same structure as we find in the first half.

3.1.1 Top down

The first section will show that when you expand the Einstein-Hilbert ac-
tion around flat space up to quadratic terms in derivatives and the fields
you will find a specific combinations of contractions of derivatives and the
field hµν . To start, the Einstein-Hilbert action, up to an overall constant, is
given by:

S =

∫
d4x
√
−gR. (3.1)

Wherein R is the Ricci scalar, given by gµνRµν and g is the determinant of
gµν . The following definitions of curvature terms will be used:

Rµν =Rρµρν (3.2)

Rλµρν =∂ρΓ
λ
µν − ∂νΓλµρ + ΓγµνΓλγρ − ΓγµρΓ

λ
γν (3.3)

Γρµν =
1

2
gργ(∂νgµγ + ∂µgνγ − ∂γgµν) (3.4)

The metric tensor is expanded with a perturbation around flat space:

gµν = ηµν + hµν , (3.5)
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The inverse metric tensor transforms a little different, to find δ(gµν) we start
with the identity: gµαgβν = δαβ

δ(gµαgβµ) =δ(δαβ ) = 0 (3.6)

δ(gµαgβµ) =gµαδ(gβν) + δ(gµα)gβν . (3.7)

Combining these equations gives:

δ(gµα)gβµ =− gµαδ(gβν) (3.8)

δ(gµα)gβµg
βν =− gµαδ(gβν)gβν (3.9)

δ(gµα)δνµ =− gµαδ(gβν)gβν (3.10)

δ(gνα) =− gµαhβµgβν . (3.11)

Up to first order in h, which is all we are interested in, this last equation
results into:

δ(gµν) = −hµν (3.12)

Where hµν = ηµαηνβhαβ . This also preserves the identity:

gµαgβµ = (ηµα − hµα)(ηβµ + hβµ) = (3.13)

ηµαηβµ + ηµαhβµ − hµαηβµ +O(h2) ≈ (3.14)
δαβ + hµµ − hµµ = δαβ . (3.15)

The action (3.1) consists of 3 parts:
√
−g,gµν andRµν . As we want to expand

this action up to 2 powers of h and the leading terms in Rµν are of order 1
already we only need to find

√
−g and gµν up to order 1.

The determinant

If g is the determinant of gµν we can write it as follows:

g =det(gµν) = (3.16)
det(ηµν + hµν) =det(ηµν)det(1 + ηµνhµν) = (3.17)

−det(1 + h) = −etr(ln(1+h) ≈− eh+O(h2) ≈ −(1 + h). (3.18)

Where in the last row the usual expansions for log(1 + x) and ex were used
and the following identity [11]:

det(A) = etr(ln(A)). (3.19)

The corresponding term in the action becomes:

√
−g ≈ (1 + h)

1
2 ≈ 1 +

1

2
h (3.20)

First Order Ricci Tensor

The Ricci tensor is given by:
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Rµν = Rρµρν =∂ρΓ
ρ
µν − ∂νΓρµρ + ΓργρΓ

γ
µν − ΓργνΓγµρ (3.21)

The leading term in Γρµν is linear in h. So while in the first two terms Γρµν
should be considered up to second order, in the last two terms of (3.21) we
only need to evaluate Γρµν up to first order. The full Christoffel symbol is
given by:

Γρµν =
1

2
gργ(∂νgµγ + ∂µgνγ − ∂γgµν). (3.22)

After the expanding we are left with:

Γρµν ≈
1

2
(ηργ − hργ)(∂ν(ηµγ + hµγ) + ∂µ(ηνγ + hνγ)− ∂γ(ηµν + hµν)).

(3.23)

As the Minkowski metric does not depend on any coordinate, ∂µηνγ = 0
and the resultant Christoffel symbol is:

Γρµν ≈
1

2
(ηργ − hργ)(∂νhµγ + ∂µhνγ − ∂γhµν). (3.24)

Up to first order (3.24) becomes:

Γ(1)ρ
µν =

1

2
ηργ(∂νhµγ + ∂µhνγ − ∂γhµν) (3.25)

=
1

2
(∂νh

ρ
µ + ∂µh

ρ
ν − ∂ρhµν). (3.26)

Consequently the first two terms are:

∂ρΓ
(1)ρ

µν =
1

2
(∂ρ∂νh

ρ
µ + ∂ρ∂µh

ρ
ν − ∂ρ∂ρhµν). (3.27)

∂νΓ(1)ρ
µρ =

1

2
(∂ν∂ρh

ρ
µ + ∂ν∂µh

ρ
ρ − ∂ν∂ρhµρ). (3.28)

Substracting these two terms results in the Ricci tensor up to first order:

R(1)
µν =∂ρΓ

(1)ρ
µν − ∂νΓ(1)ρ

µρ (3.29)

=
1

2
(∂ρ∂νh

ρ
µ + ∂ρ∂µh

ρ
ν − ∂ρ∂ρhµν − ∂ν∂ρhρµ − ∂ν∂µhρρ + ∂ν∂

ρhµρ)

(3.30)

=
1

2
(∂ρ∂µh

ρ
ν − ∂ρ∂ρhµν − ∂ν∂µhρρ + ∂ν∂

ρhµρ) (3.31)

=
1

2
(∂ρ∂µh

ρ
ν + ∂ν∂

ρhµρ − ∂ν∂µh−�hµν), (3.32)

where � = ∂µ∂
µ.

Second Order Ricci Tensor

The second order part of the Christoffel symbols looks as follows:

Γ(2)ρ
µν = −1

2
hργ(∂νhµγ + ∂µhνγ − ∂γhµν). (3.33)
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The first two second order terms are the derivative of this Christoffel sym-
bol, namely:

∂ρΓ
(2)ρ

µν =− 1

2
∂ρ[h

ργ(∂νhµγ + ∂µhνγ − ∂γhµν)] (3.34)

=− 1

2
[∂ρh

ργ(∂νhµγ + ∂µhνγ − ∂γhµν) (3.35)

+hργ∂ρ(∂νhµγ + ∂µhνγ − ∂γhµν)]. (3.36)

And:

∂νΓ(2)ρ
µρ =− 1

2
∂ν [hργ(∂ρhµγ + ∂µhργ − ∂γhµρ)] (3.37)

=− 1

2
[∂νh

ργ(∂ρhµγ + ∂µhργ − ∂γhµρ) (3.38)

+hργ∂ν(∂ρhµγ + ∂µhργ − ∂γhµρ)] (3.39)

=− 1

2
[∂νh

ργ∂µhργ + hργ∂ν∂µhργ ]. (3.40)

Again, subtracting these two gives us the following result:

∂ρΓ
(2)ρ

µν − ∂νΓ(2)ρ
µρ = −1

2
[∂ρh

ργ(∂νhµγ + ∂µhνγ − ∂γhµν) (3.41)

+hργ(∂ρ∂νhµγ + ∂ρ∂µhνγ − ∂ρ∂γhµν − ∂ν∂µhργ) (3.42)
−∂νhργ∂µhργ ]. (3.43)

The other two terms, as mentioned earlier, only require the Christoffel sym-
bols up to first order. The first one:

Γ(1)ρ
γρΓ

(1)γ
µν =

1

4
(∂γh

ρ
ρ + ∂ρh

ρ
γ − ∂ρhγρ)(∂µhγν + ∂νh

γ
µ − ∂γhµν) (3.44)

=
1

4
(∂γh(∂µh

γ
ν + ∂νh

γ
µ − ∂γhµν). (3.45)

And the second one:

Γ(1)ρ
γνΓ(1)γ

µρ =
1

4
(∂γh

ρ
ν + ∂νh

ρ
γ − ∂ρhγν)(∂µh

γ
ρ + ∂ρh

γ
µ − ∂γhµρ) (3.46)

=
1

4
[∂γh

ρ
ν∂µh

γ
ρ + ∂γh

ρ
ν∂ρh

γ
µ − ∂γhρν∂γhµρ (3.47)

+∂νh
ρ
γ∂µh

γ
ρ + ∂νh

ρ
γ∂ρh

γ
µ − ∂νhργ∂γhµρ (3.48)

−∂ρhγν∂µhγρ − ∂ρhγν∂ρhγµ + ∂ρhγν∂
γhµρ] (3.49)

=
1

4
[2∂γh

ρ
ν∂ρh

γ
µ − 2∂γh

ρ
ν∂

γhρµ + ∂νh
ρ
γ∂µh

γ
ρ ] (3.50)

=
1

2
[∂γh

ρ
ν(∂ρh

γ
µ − ∂γhρµ) +

1

2
∂νh

ρ
γ∂µh

γ
ρ ]. (3.51)
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Combining all these pieces gives us the total Ricci tensor:

R(2)
µν = −1

2
[∂ρh

ργ(∂νhµγ + ∂µhνγ − ∂γhµν) (3.52)

+hργ(∂ρ∂νhµγ + ∂ρ∂µhνγ − ∂ρ∂γhµν − ∂ν∂µhργ) (3.53)

−1

2
∂νh

ργ∂µhργ −
1

2
∂γh(∂µh

γ
ν + ∂νh

γ
µ − ∂γhµν) (3.54)

+∂γh
ρ
ν(∂ρh

γ
µ − ∂γhρµ)]. (3.55)

The Action

Combining all these parts and keeping only the terms up to quadratic order
in h, we can write down the linearized action in these four terms:

S(2) + S(1) =

∫
d4x(1 +

1

2
h)(ηµν − hµν)(R(1)

µν +R(2)
µν ) (3.56)

=

∫
d4x[ηµνR(1)

µν − hµνR(1)
µν +

1

2
hR(1)

µν + ηµνR(2)
µν ]. (3.57)

The last line consists of all the terms quadratic order or lower. The only
linear term is the first one, namely:

ηµνR(1)
µν =ηµν

1

2
(∂ρ∂µh

ρ
ν + ∂ν∂

ρhµρ − ∂ν∂µh−�hµν) (3.58)

=∂ρ∂µh
ρµ −�h. (3.59)

Next up are the 3 quadratic terms:

−hµνR(1)
µν =− 1

2
hµν(∂ρ∂µh

ρ
ν + ∂ν∂

ρhµρ − ∂ν∂µh−�hµν), (3.60)

1

2
hηµνR(1)

µν =
1

2
(h∂ρ∂µh

ρµ − h�h) (3.61)

and

ηµνR(2)
µν = ηµν

1

2
[(

1

2
∂γh− ∂ρhργ)(∂νhµγ + ∂µhνγ − ∂γhµν) (3.62)

−hργ(∂ρ∂νhµγ + ∂ρ∂µhνγ − ∂ρ∂γhµν − ∂ν∂µhργ) (3.63)
1

2
∂νh

ργ∂µhργ − ∂γhρν(∂ρhγµ − ∂γhρµ] = (3.64)

1

2
[(

1

2
∂γh− ∂ρhργ)(2∂µhµγ − ∂γh) (3.65)

−hργ(2∂ρ∂
µhµγ − ∂ρ∂γh−�hργ) (3.66)

−1

2
∂µhργ∂µhργ − ∂γhρµ(∂ρhγµ − ∂γhρµ] = (3.67)

−1

2
h∂γ∂µhµγ +

1

4
h�h+

1

2
hργ∂ρ∂

µhµγ −
1

4
hργ�hργ . (3.68)

In the last step integration by parts is used to go from the form ∂h∂h to
h∂∂h, assuming the terms are integrated in the action the fields go to zero
at infinity. Finally, adding all these terms together gives us the complete
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inearized action:

S(2) + S(1) =

∫
d4x(1 +

1

2
h)(ηµν − hµν)(R(1)

µν +R(2)
µν ) (3.69)

=

∫
d4x[ηµνR(1)

µν − hµνR(1)
µν +

1

2
hR(1)

µν + ηµνR(2)
µν ] (3.70)

=

∫
d4x[∂ρ∂µh

ρµ −�h+
1

2
h∂γ∂µhµγ −

1

4
h�h (3.71)

−1

2
hργ∂ρ∂

µhµγ +
1

4
hργ�hργ ]. (3.72)

The linear terms vanish because they are a total derivative so we are left
with:

S =

∫
d4x

1

2
h∂γ∂µhµγ −

1

4
h�h− 1

2
hργ∂ρ∂

µhµγ +
1

4
hργ�hργ . (3.73)
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3.1.2 Bottom up

In this section another approach is taken to come to the same result. For
this a general lagrangian consisting of two powers of hµν and two pow-
ers of ∂µ will be demanded to be invariant under the linearized diffeomor-
phisms. First the different possible terms will be written down. After that
their transformations and their conditions to be invariant will be studied.

The Terms

These are the four independent contractions that are the building bricks of
the action:

∂αhµν∂
αhµν (3.74)

∂µh
µν∂αhνα (3.75)
∂νh∂µh

µν (3.76)
∂µh∂

µh. (3.77)

You can write down different combinations, such as hµν�hµν , but for each
one it would be possible to show it is equivalent for one of the four terms
above under relabeling of indices or integrating by parts. Under the linear
diffeomorphisms discussed in the previous chapter, the metric perturbation
hµν transforms like this:

hµν → hµν + ∂µξν + ∂νξµ. (3.78)

The other two variables, h and hµν transform like this:

hµν =ηµαηνβhαβ (3.79)

→ ηµαηνβ(hαβ + ∂αξβ + ∂βξα) =hµν + ∂µξν + ∂νξµ (3.80)

and

h = ηµνhµν → ηµν(hµν + ∂µξν + ∂νξµ) = h+ 2∂µξ
µ. (3.81)

The Action

The most general action can be written out like this:

S =

∫
d4xa∂αhµν∂

αhµν + b∂µh
µν∂αhνα + c∂νh∂µh

µν + d∂µh∂
µh, (3.82)

With real numbers a,b,c and d. To find the values for these numbers we
are going to transform all the terms in the action and then find the correct
values that leave the action invariant. The individual terms transform like
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this:

∂αhµν∂
αhµν →∂α(hµν + ∂µξν + ∂νξµ)∂α(hµν + ∂µξν + ∂νξµ) (3.83)

=∂αhµν∂
αhµν + ∂αhµν∂

α∂µξν + ∂αhµν∂
α∂νξµ (3.84)

+∂α∂µξν∂
αhµν + ∂α∂µξν∂

α∂µξν + ∂α∂µξν∂
α∂νξµ (3.85)

+∂α∂νξµ∂
αhµν + ∂α∂νξµ∂

α∂µξν + ∂α∂νξµ∂
α∂νξµ (3.86)

=∂αhµν∂
αhµν + 4∂αhµν∂

α∂µξν (3.87)
+2∂α∂νξµ∂

α∂µξν + 2∂α∂νξµ∂
α∂νξµ, (3.88)

∂µh
µν∂αhνα →∂µ(hµν + ∂µξν + ∂νξµ)∂α(hµν + ∂µξν + ∂νξµ) (3.89)

=∂µh
µν∂αhµν + ∂µh

µν∂α∂µξν + ∂µh
µν∂µ∂νξµ (3.90)

+∂µ∂
αξν∂µhµν + ∂µ∂

µξν∂α∂µξν + ∂µ∂
αξν∂µ∂νξµ (3.91)

+∂µ∂
νξµ∂αhµν + ∂µ∂

νξµ∂α∂µξν + ∂µ∂
νξµ∂α∂νξµ (3.92)

=∂µh
µν∂αhνα + 2∂µh

µν∂α∂νξα + 2∂µh
µν∂α∂αξµ (3.93)

+3∂µ∂
µξν∂α∂νξα + ∂µ∂

µξν∂α∂αξν , (3.94)

∂νh∂µh
µν →∂ν(h+ 2∂αξ

α)∂µ(hµν + ∂µξν + ∂νξµ) (3.95)
=∂νh∂µh

µν + ∂νh∂µ∂
µξν + ∂νh∂µ∂

νξµ (3.96)
+2∂ν∂αξ

α∂µh
µν + 2∂ν∂αξ

α∂µ∂
µξν + 2∂ν∂αξ

α∂µ∂
νξµ (3.97)

=∂νh∂µh
µν + 2∂νh∂µ∂

νξµ (3.98)
+2∂ν∂αξ

α∂µh
µν + 4∂ν∂αξ

α∂µ∂
µξν , (3.99)

and

∂µh∂
µh→∂µ(h+ 2∂αξ

α)∂µ(h+ 2∂βξ
β) (3.100)

=∂µh∂
µh+ 2∂µh∂

µ∂βξ
β (3.101)

+2∂µ∂αξ
α∂µh+ 4∂µ∂αξ

α∂µ∂βξ
β. (3.102)

If all terms other than the original terms need to vanish, such that there are
no terms left with ξ in them, the following five equations need to hold:

∂µh∂
µ∂µξβ(4d+ 2c) =0 (3.103)

∂ν∂αξ
α∂µh

µν(2c+ 2b) =0 (3.104)
∂αhµν∂

α∂µξν(2b+ 4a) =0 (3.105)
∂ν∂αξ

α∂µ∂
µξν(4c+ 4d+ 3b+ 2a) =0 (3.106)
∂µ∂

µξν∂α∂αξν(b+ 2a) =0. (3.107)
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The first three equations give us the following relations between the num-
bers:

4d+ 2c =0 (3.108)

d =− 1

2
c (3.109)

2c+ 2b =0 (3.110)
c =− b (3.111)

2b+ 4a =0 (3.112)

a =− 1

2
b. (3.113)

This gives us the conditions to construct an invariant action:

a = −1

2
b =

1

2
c = −d (3.114)

The last two equations are redundant, but for consistency we can check
them as well:

4c+ 4d+ 3b+ 2a = 0 (3.115)
4(2a) + 4(−a) + 3(−2a) + 2a = (3.116)

8− 4− 6 + 2 = 0 (3.117)
b+ 2a = 0 (3.118)
−2 + 2 = 0. (3.119)

Every combination of coefficients that comply to these conditions will form
an invariant metric under the linearized diffeomorphisms. This means that
it is possible to write down the following action up to an overall constant:

S =

∫
d4xC[

1

2
∂αhµν∂

αhµν − ∂µhµν∂αhνα + ∂νh∂µh
µν − 1

2
∂µh∂

µh].

(3.120)

Or, if integrated by parts and absorbing −1
2 into the constant:

S =

∫
d4xD[

1

4
hµν�h

µν − 1

2
hµν∂µ∂

αhνα +
1

2
h∂ν∂µhµν −

1

4
h�h]. (3.121)

With D a real number. As predicted, this is the same action we found in
the previous section (3.73). We can conclude that up to quadratic order in
h, the Einstein-Hilbert action and the massless spin-2 action differ only by
an overall constant.
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Chapter 4

From linearized to the full
theory

4.1 Introduction

Now that we are convinced that a theory describing linear massless spin
2 particle is the same as general relativity up to quadratic terms in h, it is
time to look at the full theory. In this chapter we will try to construct a
non-linear theory out of the linear action found in chapter 2. To do this we
need to find a consistent energy-momentum tensor for this action such that
the field couples to itself. First we will try to add this energy-momentum
tensor to the action naively but we will see that this is only possible after an
endless series of corrections. To make it consistent we are using a shortcut
by Deser, called the Deser trick. In the end it turns out that by coupling it
to its own energy-momentum tensor we retrieve the full Einstein Hilbert
action.

4.2 Energy-momentum tensor

Let us start with the action found in chapter 2:

S =

∫
d4x

1

4
hµν�h

µν − 1

2
hµν∂µ∂

αhνα +
1

2
h∂ν∂µhµν −

1

4
h�h. (4.1)

=

∫
d4x

1

2
hµν [

1

2
�δαµδ

β
ν −

1

2
∂µ∂

αδβν −
1

2
∂ν∂

αδβµ + ηµν(∂α∂β +
1

2
�ηαβ)]hαβ

(4.2)

=

∫
d4xhµνεαβµνhαβ (4.3)

Right now this is only a free theory, the equations of motion are as follows:

εαβµνhαβ = 0 (4.4)

A ’graviton’ should couple to all forms of energy and mass. As the graviton
also carries momentum and energy it has to couple to itself. This makes it
different from the photon which, as the force carrier of electrodynamics,
couples to electric charges but does not carry this charge. In other words,
the graviton has to couple to its own energy-momentum tensor where the
photon does not. That is, we want to add a term to the action that, when
varied with respect to hµν gives the energy-momentum tensor of the action.
Let’s say Λµν is the energy-momentum tensor that corresponds to action
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above. You could add it to the action in the following way:

S =

∫
d4x

1

4
hµν�h

µν − 1

2
hµν∂µ∂

αhνα +
1

2
h∂ν∂µhµν −

1

4
h�h+ hµνΞµν .

(4.5)

If δ(h
ργΞργ)
δ(hµν) = Λµν the field now couples to the energy-momentum tensor of

our first action (4.3) and its equations of motion look like this:

εαβµνhαβ = Λµν . (4.6)

The problem now lies in that our action has changed with the addition
of Ξµν and Λµν is not the energy-momentum tensor of action (4.5) any-
more. Since Ξµν is some tensor quadratic in hµν , we have added cubic
terms to the action that also contribute to its energy-momentum tensor. You
could remedy this by adding an second term as a correction to the energy-
momentum tensor so it covers the new action (4.5). Except you will run into
the exact same problem, you have added a quartic term that contributes to
the energy-momentum tensor. It has been claimed that continuing adding
these terms results into an infinite sum that only when completed turns into
a valid theory, namely the Einstein Hilbert action[12].

Deser trick

4.2.1 A new action

It can also be done in a different, simpler, way with only one addition to the
action. This is called the Deser argument and we will follow a combination
of his paper [12] and two other sources ([13], chapter 3.2 and [14], appendix
B) in some more detail. To see this we are going to start with the follow-
ing action. Two new fields are introduced. The first one is fµν , which is
symmetric, and the second one Γαµν which is symmetric in its lower indices.

S =

∫
d4x[fµν(∂αΓαµν − ∂νΓαµα) + ηµν(ΓαµνΓραρ − ΓαρµΓραν)] (4.7)

No further assumptions are made for now so Γαµν is not the usual connec-
tion, but the observant reader can recognize this action as a ’linearized’
form of the first order formalism of gravity up to quadratic terms in the
fields (fΓ and ΓΓ terms).

The first order formalism is a different way to describe general relativity.
Instead of starting with the Ricci scalar and using the metric as the only
variable and the connection as a function of the metric, both the metric and
the ’connection’ are independently varied. By doing that the equations of
motion of the first order action set the same relation between the metric
and the connection as the second order formalism assumes and therefore is
equivalent to it. We can show a similar relation for these linear versions of
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those theories. The equations of motions of (4.7) are:

δS

δfµν
=∂αΓαµν −

1

2
[∂νΓαµα + ∂µΓανα] = 0 (4.8)

δS

δΓξµν
=ηµνΓρξρ +

1

2
ηαβΓµαβδ

ν
ξ +

1

2
ηαβΓναβδ

µ
ξ − η

νβΓµξβ − η
µβΓνξβ (4.9)

−∂ξfµν +
1

2
∂ρf

ρµδνξ +
1

2
∂ρf

ρνδµξ (4.10)

=ηµνΓρξρ + ηαβΓ
(µ
αβδ

ν)
ξ − 2ηβ(νΓ

µ)
ξβ − ∂ξf

µν + ∂ρf
ρ(µδ

ν)
ξ = 0 (4.11)

In this last equation the symmetry in Γαµν is used. Two identities can be
found via the last equation, the first one by contracting it with δξµ and the
other one by contracting with ηµν .

ηξνΓρξρ +
1

2
ηαβΓναβ + 2ηαβΓναβ − ηνβΓξξβ (4.12)

−ηξβΓνξβ − ∂ξfνξ +
1

2
∂ρf

ρν + 2∂ρf
ρν = 0 (4.13)

ηαβΓναβ = −∂ρfρν (4.14)

and

4Γρξρ + ηαβηµξΓ
µ
αβ − 2Γβξβ − ∂ξf + ∂ρf

ρ
ξ =0 (4.15)

2Γρξρ + ηαβηµξΓ
µ
αβ + ηνξf

ρν =∂ξf (4.16)

Γρξρ =
1

2
∂ξf, (4.17)

where in the last step the first contraction is used. This last result can then
be used to write (4.11) as:

−∂ξfµν +
1

2
ηµν∂

ξf + ∂ρf
ρ
µδ

ξ
ν + ∂ρf

ρ
ν δ

ξ
µ = 2Γξµν − Γααµδ

ξ
ν − Γαανδ

ξ
µ. (4.18)

When you take the ∂ξ derivative of this equation and plug it into equation
(4.8) you get:

−�fµν +
1

2
ηµν�f + ∂ν∂ρf

ρ
µ + ∂µ∂ρf

ρ
ν = 0. (4.19)

By contracting with ηµν you find the relation �f = −2∂µ∂ρf
ρ
µ . This equa-

tion is equal to equation (4.4) after using this relation and performing the
field redefinition fµν = 1

2ηµνh− hµν .

4.2.2 Calculating the energy-momentum tensor

If fµν has to couple to its own energy-momentum tensor we need to find
a term that when added to the action coupled to fµν provides this energy-
momentum tensor, but does not contribute to this calculation. A way to find
this tensor is covariantizing the action, that is promoting the flat metric to a
general metric and introducing covariant derivatives. Then vary the action
with respect to this metric.
The flat minkowski metric we used before,ηµν , is promoted to a general
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metric Gµν . The covariant derivative that comes with this metric is ∆µ.
The two fields have to receive transformation properties with respect to
this metric, the first field, fµν is chosen to transform as a tensor density of
weight 1. As a tensor density transforms with a

√
g factor it is not needed to

introduce this factor in the lagrangian whenever a fµν appears. The other
field, Γαµν , transforms as a normal tensor.
The covariant action looks like this:

S =

∫
d4x[fµν(∆αΓαµν −∆νΓαµα) +

√
−GGµν(ΓαµνΓραρ − ΓαρµΓραν)]. (4.20)

The energy-momentum tensor of this action is:

Tαβ =
1√
−G

δ(S)

δ(Gαβ)

∣∣∣∣
Gαβ

, (4.21)

but because our variable is trace-shifted the energy-momentum tensor of
our original action is:

ταβ = Tαβ −
1

2
ηαβT

µ
µ (4.22)

When expanding the covariant derivatives, the first term can be written like
this:

fµν(∆αΓαµν −∆µΓανα) =fµν(∂αΓαµν + Θα
βαΓβµν −Θβ

µαΓαβν −Θβ
ναΓαβµ) (4.23)

−fµν(∂µΓαµν + Θα
βµΓβαν −Θβ

µαΓαβν −Θβ
νµΓααβ) (4.24)

=fµν(∂αΓαµν + Θα
βαΓβµν − 2Θβ

µαΓαβν) (4.25)

−fµν(∂µΓαµν −Θβ
νµΓααβ) (4.26)

=fµν(∂αΓαµν − ∂µΓαµν + Θα
βαΓβµν (4.27)

− 2Θβ
µαΓαβν + Θβ

νµΓααβ). (4.28)

Where Θα
µν is the connection corresponding to the metric Gµν , which is de-

fined in the usual way:

Θα
µν =

1

2
Gαρ[∂µGνρ + ∂νGµρ − ∂ρGµν ] (4.29)

Now we can start to calculate the variation of the action, we need to find
all terms that depend on G and find out what happens if you vary it with
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respect to to that metric:

δS =

∫
d4x[fµν

δ(∆σΓσµν −∆νΓσµσ)

δ(Gαβ)
(4.30)

+
δ(
√
−GGµν)

δ(Gαβ)
(ΓσµνΓρσρ − ΓσρµΓρσν)]δ(Gαβ) (4.31)

=

∫
d4x[(fµνδτρΓκµν − 2fκνΓτρν + fκτΓσσρ)

δ(Θρ
κτ )

δ(Gαβ)
(4.32)

+(
√
−Gδ(G

µν)

δ(Gαβ)
− 1

2

√
−GGθτ

δ(Gθτ )

δ(Gαβ)
Gµν) (4.33)

(ΓσµνΓρσρ − ΓσρµΓρσν)]δ(Gαβ) (4.34)

=

∫
d4x[(fµνδτρΓκµν − 2fκνΓτρν + fκτΓσσρ)

δ(Θρ
κτ )

δ(Gαβ)
(4.35)

+(
√
−G)(ΓσαβΓρσρ − ΓσραΓρσβ) (4.36)

− 1

2

√
−GGαβGµν(ΓσµνΓρσρ − ΓσρµΓρσν)]δ(Gαβ). (4.37)

The first part can be worked out like this:∫
d4xδ(Gαβ)[fµνδτρΓκµν − 2fκνΓτρν + fκτΓσσρ]

δ(Θρ
κτ )

δ(Gαβ)
= (4.38)∫

d4xδ(Gαβ)
1

2
[fµνδτρΓκµν − 2fκνΓτρν + fκτΓσσρ] (4.39)

[δ(Gρξ)(∂κGτξ + ∂τGξκ − ∂ξGτκ) (4.40)

+Gρξ(∂κδ(Gτξ) + ∂τδ(Gξκ)− ∂ξδ(Gτκ))]
1

δ(Gαβ)
(4.41)

When setting Gµν equal to ηµν the first term will become zero, so we only
continue with the second term:∫

d4xδ(Gαβ)
[
fµνδτρΓκµν − 2fκνΓτρν + fκτΓσσρ

]
(4.42)

(Gρξ(∂κδ(Gτξ) + ∂τδ(Gξκ)− ∂ξδ(Gτκ))]
1

δ(Gαβ)
(4.43)

=

∫
d4xδ(Gαβ)[Gτ(αGβ)ξ∂κ +Gκ(αGβ)ξ∂τ −Gκ(αGβ)ξ∂τ ] (4.44)

[fµνδτρΓκµν − 2fκνΓτρν + fκτΓσσρ]G
ρξ. (4.45)

Now we can set Gµν equal to ηµν and the complete, but still trace shifted,
energy-momentum tensor reads:

1√
−G

δ(S)

δ(Gαβ)

∣∣∣∣
Gαβ=ηαβ

= ταβ = (ΓσαβΓρσρ − ΓσραΓρσβ) (4.46)

− 1

2
ηαβη

µν(ΓσµνΓρσρ − ΓσρµΓρσν)] (4.47)

+ ∂κ(ηαβf
µνΓκµν − 2fκνητ(αΓτβ)ν − 2fν(βΓτα)ν+

(4.48)

+ 2ηρκfν(βηα)τΓτρν + 2fκ(αΓσβ)σ − η
ρκfαβΓσσρ) (4.49)
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This makes the final energy-momentum tensor:

Tαβ = ταβ −
1

2
ηαβτ (4.50)

= ΓσαβΓρσρ − ΓσραΓρσβ (4.51)

+
1

2
∂κ[

1

2
ηρκηαβ(

1

2
fΓσσρ − fντ Γτρν)− 2fκνητ(αΓτβ)ν (4.52)

− 2fν(βΓκα)ν + 2ηρκfν(βηα)τΓτρν + 2fκ(αΓσβ)σ − η
ρκfαβΓσσρ] (4.53)

The next step is coupling this energy-momentum tensor in the action. This
will be done by adding fµν(ΓαµνΓραρ − ΓαρµΓραν) to (4.7):

S =

∫
d4x[fµν(∂αΓαµν − ∂νΓαµα) + (ηµν + fµν)(ΓαµνΓραρ − ΓαρµΓραν)]. (4.54)

Note that this adds no factors of ηµν nor any derivatives to the action, so if
we were to do this procedure again we would find the exact same energy-
momentum tensor. In different words, the new term does not contribute
to the energy-momentum tensor like the contributions from the attempts
in the beginning of this chapter. Because only the simple part from the en-
ergy momentum tensor is added to the action, it would seem that this term
would only allow a small part of the energy-momentum tensor to appear in
the equations of motion. However, the equations of motion of Γαµν change
in such a way that the desired equations are found in terms of h:

εαβµνhαβ = Tµν . (4.55)

The free action is now sourced by its own energy-momentum tensor!

4.2.3 Einstein Hilbert

When adding the total derivative ηµν [∂αΓαµν − ∂νΓαµα] and redefining the
fields ηµν + fµν to

√
−ggµν the first order form of gravity, and thus the

Einstein Hilbert action, is retrieved and the end goal reached:

S =

∫
d4x
√
−g[gµν(∂αΓαµν − ∂νΓαµα) + gµν(ΓαµνΓραρ − ΓαρµΓραν)] (4.56)

=

∫
d4x
√
−gR. (4.57)

From the linear action, just by coupling the field to its own energy-momentum
tensor, we have recovered the full non linear Einstein Hilbert action. It is
quite amazing that the infinite sum mentioned in the first section turns into
a single correction in the deser trick. Although one could say it is cheating
a bit to start from the already known first order formalism, this is just a
shortcut to get to the end result faster.
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Chapter 5

Adding an extra dimension

5.1 Gauss Bonnet

Apart from the Hilbert-Einstein action you could write down more actions
as a function of the curvature tensor, these theories are called f(R) theo-
ries. In general these theories do not produce useful results because when
you introduce quadratic or higher order terms of the curvature tensor, you
automatically introduce higher derivatives of the metric tensor field. As
higher than second order derivatives in the equations of motion cause prob-
lems like instabilities and ghosts. In 1970, Lovelock ([15]) found all possible
rank-2 tensors retrieved from the variational principle that:

• Are symmetric.

• Are divergence free.

• Contain the metric and its first two derivatives.

It turns out that in 4 dimensions only the Einstein-Hilbert action is a valid
candidate, all other non-problematic terms are zero. When looking at 5
dimensions a new nonzero term appears, the Gauss-Bonnet term:

S =

∫
d5x
√
−g[R2 − 4RµνRµν +RµνρσRµνρσ]. (5.1)

This is the only combination of terms quadratic in the curvature that do
not contribute to the equations of motions with derivatives higher than the
second one of the field. In this chapter we are going to take a look at lin-
earizing the Gauss Bonnet terms and trying to find if they also uniquely
turn into the action that we get by forcing gauge invariance.

5.1.1 Bottom up

Quadratic

As Gauss Bonnet has two powers of the curvature tensor, the leading terms
would be of the form ∂∂h∂∂h. Similarly to (3.1.2) we can write down all
contractions of this form:

a�hµν�hµν (5.2)

b�hµα∂α∂
βhµβ (5.3)

c∂µ∂αh
µα∂ν∂βhνβ (5.4)

d∂µ∂νh
µν�h (5.5)

e�h�h (5.6)



Chapter 5. Adding an extra dimension 30

These can be Incorporated into the most general action:

S =

∫
d5xa�hµν�hµν + b�hµα∂α∂

βhµβ + c∂µ∂αh
µα∂ν∂βhνβ (5.7)

+ d∂µ∂νh
µν�h+ e�h�h. (5.8)

Again transforming all these terms according to the gauge transformation
from (2) gives us the following terms:

�hµν�hµν → �hµν�hµν + 4�hµν�∂µξν + 2�∂νξµ�∂µξν (5.9)
+ 2�∂νξµ�∂νξµ

�hµα∂α∂
βhµβ → �hµα∂α∂

βhµβ + 2�∂µξα∂α∂
βhµβ (5.10)

+ 2�∂αξµ∂α∂
βhµβ + �∂αξµ∂α∂

β∂βξµ

+ 3�∂αξµ∂α∂
β∂µξβ

∂µ∂αh
µα∂ν∂βhνβ → ∂µ∂αh

µα∂ν∂βhνβ + 4∂µ∂αh
µα�∂βξβ (5.11)

+ 4�∂αξ
α�∂βξβ

∂µ∂νh
µν�h→ ∂µ∂νh

µν�h+ 2∂µ∂νh
µν�∂αξ

α (5.12)
+ 2�∂µξ

µ�h+ 4�∂µξ
µ�∂νξ

ν

�h�h→ �h�h+ 4�h∂νξ
ν + 4�∂µξ

µ�∂νξ
ν . (5.13)

To eliminate the terms with ξ in it the following equations need to hold:

�hµν�∂µξν(4a+ 2b) = 0 (5.14)
�∂νξµ�∂µξν(2a+ 3b+ 4c+ 4d+ 4e) = 0 (5.15)

�∂νξµ�∂νξµ(2a+ b) = 0 (5.16)
�∂µξα∂α∂βhµβ(2b+ 4c+ 2d) = 0 (5.17)

�∂µξ
µ�h(2d+ 4e) = 0 (5.18)

In other words, the parameters have the following relations:

a =− 1

2
b (5.19)

d =− 1

2
e (5.20)

c =− 1

2
(b+ d) (5.21)

This is different from the 2 derivative case, where we found a unique set
of terms with only an open overall constant. For this 4 derivative case the
most general gauge invariant action looks like this:

S =

∫
d5x[−1

2
b�hµν�hµν + b�hµα∂α∂

βhµβ −
1

2
(b− 2e)∂µ∂αh

µα∂ν∂βhνβ

(5.22)

− 2e∂µ∂νh
µν�h+ e�h�h].

The difference is that in the 2 derivative case all equations of motion only
contained up to 2 derivatives. For these terms all terms contribute to fourth



Chapter 5. Adding an extra dimension 31

order derivatives in the equations of motion as seen by this:

∂β∂α
∂(∂σ∂ξhσξ�h)

∂(∂α∂βhµν)
= ∂µ∂ν�h+ ηµν�∂σ∂ξhσξ. (5.23)

As they only produce fourth order derivatives, the only way to combat this
is to set both parameters b and c to zero such that there are no quadratic
terms with 4 derivatives

Third power

The next option is making terms third order in the field. While earlier the
order of the derivatives and the field did not matter as you could switch
them around by integration by parts, now we can identify 4 different forms:

hh∂∂∂∂h, (5.24)
h∂h∂∂∂h, (5.25)
h∂∂h∂∂h, (5.26)
∂h∂h∂∂h. (5.27)

Not all of these terms are completely independent as any of them can be
written as the combination of 2 others by integrating by parts:

h∂∂h∂∂h→ ∂h∂h∂∂h+ h∂h∂∂∂h, (5.28)
h∂h∂∂∂h→ hh∂∂∂∂h+ h∂h∂∂∂h. (5.29)

For this part we are going to focus on all the terms of the form h∂∂h∂∂h. If
you write down all contractions of this form you get 45 independent terms.
The first step is to take the last two occurences of h and transform them
under linear diffeomorphisms like this:

hµν∂
µ∂νhαβ∂

α∂βh→ hµν∂
µ∂ν(hαβ + ∂αξβ + ∂βξα)∂α∂β(h+ 2∂ρξ

ρ) (5.30)

Demanding that all terms with ξ disappear puts restrictions on the combi-
nation of terms. Within the collection of 45 terms there are 7 groups that
are independently invariant under these transformation. These groups are
written down in (A.2). Just like in the quadratic terms the relations can be
further specified by demanding second order equations of motion. Varying
these terms with respect to hσκ leaves you with only second order terms,
but varying with respect to ∂ξ∂γhθκ gives rise to second, third and fourth
order terms:

∂ξ∂γ
δ(hµν∂

µ∂νhαβ∂
α∂βh)

δ(∂ξ∂γhθκ)
= ∂µ∂ν(hµν∂

θ∂κh) + ηθκ∂α∂β(hµν∂
µ∂νhαβ)

(5.31)

= ∂µ∂νhµν∂
θ∂κh+ ηθκ∂α∂βhµν∂

µ∂νhαβ) (5.32)

+hµν∂
µ∂ν∂θ∂κh+ ηθκhµν∂

α∂β∂µ∂νhαβ (5.33)

+2∂µhµν∂
ν∂θ∂κh+ 2ηθκ∂αhµν∂

β∂µ∂νhαβ. (5.34)

Demanding all terms with third or fourth order terms to disappear splits
the terms in two parts, those that start with h and those that start with hµν .
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Finally, the first occurrence of h can still be transformed under the gauge
transformation:

hµν∂
µ∂νhαβ∂

α∂βh→ 2∂µξν∂
µ∂νhαβ∂

α∂βh. (5.35)

Naively, this is unique for each of the 45 terms, but when considering inte-
gration by parts you can write down this term as:

2ξν�∂
νhαβ∂

α∂βh+ 2ξν∂
µ∂νhαβ∂µ∂

α∂βh. (5.36)

By again demanding all terms with ξ vanish the two leftover sections mix
and the final unique combination of terms is:

S =

∫
d5x[hµν∂

µ∂νhαβ∂
α∂βh −2hµν∂

µ∂νhαβ∂
α∂ρhβρ − 2hµν∂

µ∂αhνβ∂α∂βh

+ 2hµν∂
µ∂αhνβ∂β∂ρh

ρ
α +2hµν∂

µ∂αhνβ∂α∂ρh
ρ
β + hµν∂

µ∂νhαβ�hαβ

− 2hµν∂
µ∂αhνβ�hαβ +hµν∂

α∂βhµν∂α∂βh− 2hµν∂
α∂βhµν∂α∂ρh

ρ
β

+ hµν∂
α∂βhµν�hαβ −hµν∂µ∂νh�h+ 2hµν∂

µ∂αhνα�h

+ hµν∂
µ∂νh∂α∂βhαβ −2hµν∂

µ∂αhνα∂β∂ρh
βρ − 1hµν�h

µν�h

+ hνν�h
µν∂α∂βh

αβ +2hµν∂
µ∂αhαβ∂

β∂ρhνρ − 2hµν�h
µα∂α∂ρh

νρ

− 2hµν∂
µ∂αhαβ�h

νβ +hµν�h
µα�hνα + 2hµν∂

µ∂αh�hνα

+ hµν∂
µ∂αhαβ∂

ν∂ρhβρ +hµν∂
α∂βhµα∂β∂ρh

ρν − 2hµν∂
µ∂αh∂α∂

βhνβ

− 2hµν∂
µ∂αhαβ∂

β∂νh +hµν∂
µ∂αh∂ν∂αh− hµν∂α∂βhµρ∂α∂βhρν

+ 2hµν∂
α∂βhµρ∂α∂

νhβρ +hµν∂
α∂βhµρ∂α∂ρh

ν
β − 2hµν∂

α∂βhµρ∂ν∂ρhαβ

+ hµν∂
µ∂αhβρ∂

ν∂ρhβα −hµν∂µ∂αhβρ∂ν∂αhρβ +
1

2
h�h�h

− h�h∂µ∂νhµν +
1

2
h∂µνh

µν∂α∂βhαβ − 1

2
h�hµν�h

µν

+ 2h�hµν�h
µν −1h�hµν∂

µ∂νh+ 2h∂µ∂νh∂
µ∂ρhνρ

− 1h∂µ∂νh
µρ∂ν∂αh

α
ρ −1h∂µ∂νh

µρ∂ρ∂
αhνα −

1

2
h∂µ∂νh∂

µ∂νh

+
1

2
h∂µ∂νh

αβ∂µ∂νhαβ −h∂µ∂νhαβ∂α∂µhνβ +
1

2
h∂µ∂νh

αβ∂α∂βh
µν ]

This action is quite monstrous, but there is structure hidden in this. The
Gauss Bonnet terms vanish in 4 dimensions because of a set of 5 anti sym-
metric indices [16], this structure should also be present in these terms, al-
though it is not easily seen.

5.1.2 Top down

Quadratic

Just as with Einstein Hilbert we are now going to expand these higher or-
der curvatures around flat space to see if they agree on the findings in the
previous sections. When only considering terms up to 2 powers of h we
only have to consider the curvature terms linear in h. These are:
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R(1)
µνρσ =

1

2
(∂ρ∂νhσµ + ∂σ∂µhνρ − ∂ρ∂µhσν − ∂σ∂νhρµ),

R(1) = ∂β∂µhµβ −�h,

R(1)
µν =

1

2
(∂β∂νhµβ + ∂µ∂

βhβν − ∂µ∂νh−�hµν).

The quadratic contractions of these curvatures are up to linear order:

R(1)2 = ∂β∂µhµβ∂
α∂νhαν + �h�h− 2∂β∂µhµβ�h,

R(1)
µνR

(1)µν = −1

2
∂α∂

νhµα∂
β∂νhµβ +

1

2
h∂α∂

νhµα∂µ∂
βhβν

− 1

2
∂α∂

νhµα∂µ∂νh+
1

4
�hµν�hµν +

1

4
�h�h,

R(1)
µνρσR

(1)µνρσ = �hµν�h
µν + ∂ρ∂νhσµ∂

σ∂µhνρ − 2�hσµ∂ν∂
µhσν .

Adding these quadratic curvature terms to each other with arbitrary pa-
rameters:

aR(1)2 + bR(1)µνR(1)
µν + cR(1)µνρσR(1)

µνρσ = (c+
1

4
b)�hµν�hµν

− (
1

2
b+ 2c)�hσµ∂ν∂

µhσν + (a+
1

2
b+ c)∂β∂µhµβ∂

α∂νhαν

− (2a+
1

2
b)∂β∂µhµβ�h+ (a+

1

4
b)�h�h.

This equation is exactly the same as (5.22) if you make the following substi-
tutions wherein the primed variables are those of (5.22):

b′ = −c− 1

4
b (5.37)

e′ = a+
1

4
b (5.38)

Because we still only want second order equations of motion, these terms
should disappear. This only happens when a, b, c are exactly the Gauss Bon-
net terms 1,−4, 1. That the linearized form of the Gauss Bonnet terms break
down to a structure invariant under linearized diffeomorphisms and no
equations of motion higher than second order in derivatives is not a sur-
prise, as they were constructed this way. However, it is not guaranteed that
at a linear level there would be more possibilities, which we have shown do
not exist. This means that at least up to quadratic order in the field and 4
derivatives we are in the same situation as with Einstein Hilbert in that the
only possible terms to write down are the linearized forms of the quadratic
curvature terms. More specifically they also have to be present with the
exact Gauss Bonnet parameters.

Third order

Due to time constraints expanding Gauss Bonnet up to third order in the
field is not done in this research. However, because by construct of the
lovelock terms we expect them to end up at an action that is both invari-
ant under the linear diffeomorphisms and do not give rise to equations of
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motion higher than second order in the derivative. As we found from the
bottom up method that there is one of such combinations third order in h
we strongly expect the Gauss Bonnet terms, when expanded, to be exactly
that combination of terms. A few starting points are given in (B).
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Chapter 6

Conclusion

We started the research with constructing Lorentz covariant field operators.
For a massive particle this was problem less, we showed that the field op-
erator of a massive spin 1 particles transforms exactly like a vector under
Lorentz transformations. The field operator of a massless particle however,
picks up an extra term or 2 extra terms for spin 1 and spin 2 respectively.
For an action constructed out of these operators it means that in the mas-
sive case contracting the field with another vector is enough to make a term
Lorentz invariant. For the massless field operators the action has to be in-
variant under these extra terms on top of that condition, showing why you
need a gauge invariant theory.

In chapter 3 we looked into what the consequences of this gauge invari-
ance are for the action. For linear terms the only combination that could
be written down is a total derivative. The four quadratic terms can only be
written down in a single way if you want to preserve this invariance. When
starting with the Einstein Hilbert action and expanding the metric around
flat space the linear and quadratic terms are the exact same as the ones we
found by demanding the gauge invariance. This means that up to quadratic
order the only way to construct a valid action is linearized Einstein Hilbert.

The next chapter was about trying to couple this spin 2 particle to itself.
As it would couple to all mass and energy which the particle would carry
energy itself it should couple to itself. They naive way to do this results
in a infinite series of corrections, but following the Deser trick we could get
there in one correction. The trick was to start with a different but equivalent
action that was basically a linearization of the Palatini formalism of general
relativity. We showed you can calculate the energy momentum tensor from
this action and make a coupling in the action such that we get the correct
equations of motion while not changing the calculation to this tensor. Ad-
mittedly this takes a lot of inspiration from general relativity, but it is merely
a shortcut to get to the correct answer. The result of the Deser trick was a
action that when adding a total derivative and doing a field redefinition is
the Einstein Hilbert action.

The last chapter dealt with the higher derivative extension of general
relativity which is the Gauss Bonnet action. In this chapter it is shown
that an action with 4 derivatives and quadratic in contrast to the Einstein
Hilbert case gives rise to a non unique set of terms with 2 free parameters.
It turned out that when only allowing equations of motions with up to sec-
ond order derivatives the only solution is to let all these terms be zero. For
the same check as with Einstein Hilbert the Gauss Bonnet terms were lin-
earized around flat space. First with arbitrary parameters which gave rise
to the exact same set of terms as we got by working from the bottom up.
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By again forcing only up to second order derivatives in the equations of
motion the only option is to let all terms be zero, which is exactly when
the parameters are the Gauss Bonnet parameters. For the next set of terms
we looked at 3 powers of the field with 4 derivatives. From bottom up this
again gave a unique set of terms that were both invariant under the gauge
transformation and did not give equations of motion with higher deriva-
tives.

This research should not be seen as a way to discredit Einstein in his ge-
ometrical derivation of his theory. In fact, it shows strength and beauty for
a theory to be derivable in multiple ways. The research touches a controver-
sial point by calling the theory a graviton, as quantization general relativity
is exactly the unsolved part of the theory. It is hoped that by looking at the
theory from a different perspective might spark some ideas, but for now
lets be glas there is still some answers to find for years to come.

6.1 Outlook

Obviously the research has a bit of an open end. For Gauss Bonnet only part
of calculation was done and it is hard to say if the other part would com-
pute. We would expect that the first check, linearizing Gauss Bonnet, would
give the same set of terms as calculating the ones we calculated from the
bottom up. For the Deser trick, a wise place to start would be to start with
Palatini formalism for Gauss Bonnet. The Lovelock set of higher derivative
curvature actions is the exact set of actions for which the Palatini formal-
ism is equal to the formalism where the connection is taken a function of
the metric [17]. A way to start would be to see if you can find a action
equivalent to the one found in 5 by considering only 3rd order terms of
this Palatini action. In the appendix are some formulas that can be used as
starting point.
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Appendix A

Calculations for finding the
gauge invariant action

This appendix holds the calculations for finding the quadratic terms for the
action with 4 derivatives.

A.1 Quadratic

�hµν�hµν → �(hµν + ∂µξν + ∂νξµ)�(hµν + ∂µξν + ∂νξµ) (A.1)
= �hµν�hµν + �hµν�∂µξν + �hµν�∂νξµ (A.2)

+�∂µξν�hµν + �∂µξν�∂µξν + �∂µξν�∂νξµ (A.3)
+�∂νξµ�hµν + �∂νξµ�∂µξν + �∂νξµ�∂νξµ (A.4)

= �hµν�hµν + 4�hµν�∂µξν + 2�∂νξµ�∂µξν + 2�∂νξµ�∂νξµ (A.5)

�hµα∂α∂
βhµβ → �(hµα + ∂µξα + ∂αξµ)∂α∂

β(hµβ + ∂µξβ + ∂βξµ) (A.6)

= �hµα∂α∂
βhµβ + �hµα∂α∂

β∂µξβ + �hµα∂α∂
β∂βξµ (A.7)

+�∂µξα∂α∂
βhµβ + �∂µξα∂α∂

β∂µξβ + �∂µξα∂α∂
β∂βξµ (A.8)

+�∂αξµ∂α∂
βhµβ + �∂αξµ∂α∂

β∂µξβ + �∂αξµ∂α∂
β∂βξµ (A.9)

= �hµα∂α∂
βhµβ + 2�∂µξα∂α∂

βhµβ + 2�∂αξµ∂α∂
βhµβ (A.10)

+�∂αξµ∂α∂
β∂βξµ + 3�∂αξµ∂α∂

β∂µξβ (A.11)

∂µ∂αh
µα∂ν∂βhνβ → ∂µ∂α(hµα + ∂µξα + ∂αξµ)∂ν∂β(hνβ + ∂νξβ + ∂βξν)

(A.12)

= ∂µ∂αh
µα∂ν∂βhνβ + ∂µ∂αh

µα∂ν∂β∂νξβ + ∂µ∂αh
µα∂ν∂β∂βξν

(A.13)

+∂µ∂α∂
µξα∂ν∂βhνβ + ∂µ∂α∂

µξα∂ν∂β∂νξβ + ∂µ∂α∂
µξα∂ν∂β∂βξν

(A.14)

+∂µ∂α∂
αξµ∂ν∂βhνβ + ∂µ∂α∂

αξµ∂ν∂β∂νξβ + ∂µ∂α∂
αξµ∂ν∂β∂βξν

(A.15)

= ∂µ∂αh
µα∂ν∂βhνβ + 4∂µ∂αh

µα�∂βξβ + 4�∂αξ
α�∂βξβ

(A.16)
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∂µ∂νh
µν�h→ ∂µ∂ν(hµν + ∂µξν + ∂νξµ)�(h+ 2∂αξ

α) (A.17)
= ∂µ∂νh

µν�h+ ∂µ∂νh
µν�2∂αξ

α (A.18)
+∂µ∂ν∂

µξν�h+ ∂µ∂ν∂
µξν�2∂αξ

α (A.19)
+∂µ∂ν∂

νξµ�h+ ∂µ∂ν∂
νξµ�2∂αξ

α (A.20)
= ∂µ∂νh

µν�h+ 2∂µ∂νh
µν�∂αξ

α + 2�∂µξ
µ�h+ 4�∂µξ

µ�∂νξ
ν (A.21)

�h�h→ �(h+ 2∂µξ
µ)�(h+ 2∂νξ

ν) (A.22)
= �h�h+ �h�2∂νξ

ν (A.23)
+�2∂µξ

µ�h+ �2∂µξ
µ�2∂νξ

ν (A.24)
= �h�h+ 4�h∂νξ

ν + 4�∂µξ
µ�∂νξ

ν (A.25)

A.2 Third order

Written below are all 45 independent terms of the form h∂∂h∂∂h divided
into groups that are invariant under the gauge transformation on the last
two occurences of h.

A(hµν∂
µ∂νhαβ∂

α∂βh− 2hµν∂
µ∂νhαβ∂

α∂ρhβρ − 2hµν∂
µ∂αhνβ∂α∂βh (A.26)

+2hµν∂
µ∂αhνβ∂β∂ρh

ρ
α + 2hµν∂

µ∂αhνβ∂α∂ρh
ρ
β + hµν∂

µ∂νhαβ�hαβ (A.27)

−2hµν∂
µ∂αhνβ�hαβ + hµν∂

α∂βhµν∂α∂βh− 2hµν∂
α∂βhµν∂α∂ρh

ρ
β (A.28)

+hµν∂
α∂βhµν�hαβ) (A.29)

B(hµν∂
µ∂νh�h− 2hµν∂

µ∂αhνα�h− hµν∂µ∂νh∂α∂βhαβ (A.30)

+2hµν∂
µ∂αhνα∂β∂ρh

βρ + 1hµν�h
µν�h− hνν�hµν∂α∂βhαβ) (A.31)

C(2hµν∂
µ∂αhαβ∂

β∂ρhνρ − 2hµν�h
µα∂α∂ρh

νρ − 2hµν∂
µ∂αhαβ�h

νβ (A.32)

+hµν�h
µα�hνα + 2hµν∂

µ∂αh�hνα + hµν∂
µ∂αhαβ∂

ν∂ρhβρ (A.33)

+hµν∂
α∂βhµα∂β∂ρh

ρν − 2hµν∂
µ∂αh∂α∂

βhνβ − 2hµν∂
µ∂αhαβ∂

β∂νh (A.34)

+hµν∂
µ∂αh∂ν∂αh (A.35)

D(hµν∂
α∂βhµρ∂α∂βh

ρ
ν − 2hµν∂

α∂βhµρ∂α∂
νhβρ − hµν∂α∂βhµρ∂α∂ρhνβ

(A.36)

+2hµν∂
α∂βhµρ∂ν∂ρhαβ − hµν∂µ∂αhβρ∂ν∂ρhβα + hµν∂

µ∂αhβρ∂
ν∂αh

ρβ)
(A.37)

E(h�h�h− 2h�h∂µ∂νh
µν + h∂µνh

µν∂α∂βhαβ) (A.38)
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F (h�hµν�h
µν − 4h�hµν�h

µν + 2h�hµν∂
µ∂νh (A.39)

−4h∂µ∂νh∂
µ∂ρhνρ + 2h∂µ∂νh

µρ∂ν∂αh
α
ρ + 2h∂µ∂νh

µρ∂ρ∂
αhνα (A.40)

+h∂µ∂νh∂
µ∂νh) (A.41)

G(h∂µ∂νh
αβ∂µ∂νhαβ − 2h∂µ∂νh

αβ∂α∂
µhνβ + h∂µ∂νh

αβ∂α∂βh
µν) (A.42)

Demanding no equations of motion with higher than second order deriva-
tives groups these 7 groups into 2 big groups with the following relation
between the constants:

D = −A (A.43)
C = A (A.44)

B = −A (A.45)
G = −F (A.46)
E = −F (A.47)

If now the gauge transformation invariance is done on the first occurence
of h, the final relation is:

F = −1

2
A (A.48)
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Appendix B

Formula’s usable for future
research

To help someone picking up at the open end of this research, here are some
formula’s that might be useful:

B.0.1 Third Power

This is the action that we want to expand around, if only interested in terms
that are third order in the field h, we need to consider 6 terms:

S =

∫
d5x
√
−g[R2 − 4RµνRµν +RµνρσRµνρσ].

S(3) =

∫
d5x[R2 − 4RµνRµν +RµνρσRµνρσ](3)

+
1

2
h[R2 − 4RµνRµν +RµνρσRµνρσ](2).

R(2) =
1

2
[−3hµν∂ρ∂µh

ρ
ν + 2hργ∂ρ∂γh+ 2hµν�hµν − hµν∂ν∂ρhµρ

+2∂µh∂νhµν −
1

2
∂γh∂γh− 2∂ρh

ργ∂µhµγ

+
1

2
∂µhργ∂µhργ − ∂γhρµ∂ρhγµ]

R
(2)
αβ =− 1

2
[∂ρh

ργ∂αhβγ + ∂ρh
ργ∂βhαγ − ∂ρhργ∂γhαβ

+hργ∂ρ∂αhβγ + hργ∂ρ∂βhαγ − hργ∂ρ∂γhαβ − hργ∂ρ∂βhργ

−1

2
∂hργ∂βh

ργ − 1

2
∂γh∂αhγβ −

1

2
∂γh∂βhγα

+
1

2
∂γh∂

γhαβ + ∂γhρβ∂
ρhγα − ∂γhρβ∂γhρα]

ΓγνσΓµγρ =
1

4
∂νh

γ
σ∂γh

µ
ρ +

1

4
∂νh

γ
σ∂ρh

µ
γ −

1

4
∂νh

γ
σ∂

µhγρ

+
1

4
∂σh

γ
ν∂γh

µ
ρ +

1

4
∂σh

γ
ν∂ρh

µ
γ −

1

4
∂σh

γ
ν∂

µhγρ

−1

4
∂γhνσ∂γh

µ
ρ −

1

4
∂γhνσ∂ρh

µ
γ +

1

4
∂γhνσ∂

µhγρ
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(RµνρσRµνρσ)(3) =Rµνρσ(1)R(2)
µνρσ +Rµνρσ(2)R(1)

µνρσ

=Rµνρσ(1)(ηαµR
α(2)
νρσ + hαµR

α(1)
νρσ )

+(ηανηβρηξσR
µ(2)
αβξ − h

ανηβρηξσR
µ(1)
αβξ

−ηανhβρηξσRµ(1)
αβξ − η

ανηβρhξσR
µ(1)
αβξ )R(1)

µνρσ

=(2ηανηβρηξσR
µ(2)
αβξ − h

ανηβρηξσR
µ(1)
αβξ

−ηανhβρηξσRµ(1)
αβξ − η

ανηβρhξσR
µ(1)
αβξ + ηνξηρβησγhµαR

α(1)
ξβγ )R(1)

µνρσ

(RR)(3) = 2R(1)R(2) =[−3hµν∂ρ∂µh
ρ
ν + 2hργ∂ρ∂γh+ 2hµν�hµν − hµν∂ν∂ρhµρ

+2∂µh∂νhµν −
1

2
∂γh∂γh− 2∂ρh

ργ∂µhµγ

+
1

2
∂µhργ∂µhργ − ∂γhρµ∂ρhγµ][∂ρ∂µh

ρµ −�h]

R(1)
µν =

1

2
[∂ρ∂µhρν + ∂ρ∂νhρµ − ∂µ∂νh−�hµν ]

(RµνRµν)(3) =ηαµηβνR(2)
µνR

(1)
αβ +R(1)

µν (ηαµηβνR
(2)
αβ − h

αµηβνR
(1)
αβ − η

αµhβνR
(1)
αβ)

=R(1)
µν [2ηαµηβνR

(2)
αβ − h

αµηβνR
(1)
αβ − η

αµhβνR
(1)
αβ ]

=R(1)
µν [2ηα(µην)βR

(2)
αβ − 2hα(µην)βR

(1)
αβ ]

As R(2)
µν is symmetric

−2hαµηβνR
(1)
αβ = −hαµ∂ρ∂αhρν − hαµ∂ρ∂νhρα + hαµ∂α∂

νh+ hαµ�hνα

2ηµαηνβRαβ =− 1

2
[2∂ρh

ργ∂(µhν)
γ − ∂ρhργ∂γhµν + 2hργ∂ρ∂

(µhν)
γ

−hργ∂γρhµν + hργ∂µ∂νhργhργ +
1

2

µ

hργ∂νhργ

+∂γh∂
(µhν)γ − 1

2
∂γh∂

γhµν − ∂γhρν∂ρhγµ

+∂γh
ρν∂γhµρ ]

B.0.2 Bootstrapping Gauss Bonnet

An idea to extend the Deser trick to Gauss Bonnet is to write down the
Palatini form of the Gauss Bonnet terms and keep the terms that contain 3
fields as with Einstein Hilbert the terms with 2 fields were kept.

R2 = gµνRµνg
αβRαβ (B.1)

RµνR
µν = Rµνg

µαgνβRαβ (B.2)
RµναβR

µναβ = gλµR
λ
ναβg

ξνgθαgδβRµξθδ (B.3)

‘linearizing‘ these up to 3 fields:
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R2 → 2fµνηαβ(∂ρΓ
ρ
µν∂ξΓ

ξ
αβ − ∂ρΓ

ρ
µν∂βΓξαξ − ∂νΓρµρ∂ξΓ

ξ
αβ + ∂νΓρµρ∂βΓξαξ)(B.4)

+ 2ηµνηαβ(∂ρΓ
ρ
µνΓξθξΓ

θ
αβ − ∂ρΓ

ρ
µνΓξθβΓθαξ − ∂νΓρµρΓ

ξ
θξΓ

θ
αβ + ∂νΓρµρΓ

ξ
θβΓθαξ)(B.5)

RµνR
µν → (fαµηβν + ηαµfβν)(∂ρΓ

ρ
µν∂ξΓ

ξ
αβ − ∂ρΓ

ρ
µν∂βΓξαξ − ∂νΓρµρ∂ξΓ

ξ
αβ + ∂νΓρµρ∂βΓξαξ) +(B.6)

+ ηαµηβν(∂ρΓ
ρ
µνΓξθξΓ

θ
αβ − ∂ρΓ

ρ
µνΓξθβΓθαξ − ∂νΓρµρΓ

ξ
θξΓ

θ
αβ + ∂νΓρµρΓ

ξ
θβΓθαξ (B.7)

+ ∂ρΓ
ρ
αβΓξθξΓ

θ
µν − ∂ρΓ

ρ
αβΓξθνΓθµξ − ∂βΓραρΓ

ξ
θξΓ

θ
µν + ∂βΓραρΓ

ξ
θνΓθµξ) (B.8)

RµναβR
µναβ → (−fλµηξνηθαηδβ + ηλµf

ξνηθαηδβ + ηλµη
ξνfθαηδβ + ηλµη

ξνηθαf δβ)(B.9)
( ∂αΓλνβ∂θΓ

µ
ξδ − ∂αΓλνβ∂δΓ

µ
ξθ − ∂βΓλνα∂θΓ

µ
ξδ + ∂βΓλνα∂δΓ

µ
ξθ) (B.10)

+ ηλµη
ξνηθαηδβ(∂αΓλνβΓµγθΓ

γ
ξδ − ∂αΓλνβΓµγδΓ

γ
ξθ (B.11)

− ∂βΓλναΓµγθΓ
γ
ξδ + ∂βΓλναΓµγδΓ

γ
ξθ (B.12)

+ ∂θΓ
µ
ξδΓ

λ
εαΓενβ − ∂θΓ

µ
ξδΓ

λ
εβΓενα (B.13)

− ∂δΓ
µ
ξθΓ

λ
εαΓενβ + ∂δΓ

µ
ξθΓ

λ
εβΓενα (B.14)
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