
Temporal Logic bot with reflexivity and

transitivity as constraints

Bachelor’s Project Thesis

Thalia Najjar, s3614794, r.najjar@student.rug.nl,

Supervisor: prof. dr. L.C. Verbrugge

Abstract: A Twitter bot that regularly publishes new tautologies in Temporal Logic (TL) was
implemented in this study. The design of the bot relies on exhaustively generating TL formulas
before testing them with the reflexive and transitive constraints using a semantic tableau system.
Various shortcuts have been implemented to enhance the system’s performance. Its efficiency is
assessed with regards to its soundness and completeness, its run time relatively to the complexity
of the formulas, as well as by comparing it to a pre-existing temporal logic bot. The system
appeared to be sound but not complete and has a consistent average run time per formula for
formulas having four connectives and less.

1 Introduction

A fact that is true today might not have always
been true in the past and might not always be true
in the future. Expressing a single fact at two dif-
ferent moments in time requires the use of two dif-
ferent propositions in Propositional Logic or First-
Order Logic, but not in Temporal Logic. Temporal
Logic is a form of Modal Logic that integrates the
concept of time. A single proposition can be eval-
uated at different moments in time, among which
the present, once in the past, once in the future, al-
ways in the past or always in the future (Goranko
and Rumberg, 2020).

In this research, a temporal logic bot will be de-
signed with the reflexive and transitive restrictions.
The bot will induce new formulas all the while reg-
ularly posting tautologies on the social networking
service Twitter.

1.1 Temporal Logic

Introduced in the late 1950s by Arthur Prior, Tense
Logic (TL), later also called Temporal Logic, is a
system of rules that expresses and reasons about
propositions with regards to time. Troubled by
philosophical matters related to time, namely pre-
destination and free will, Prior put forward Tense
Logic (Øhrstrøm and Hasle, 1993). Since then,
Prior’s TL proposal has been revised and its appli-

cations have broadened as it is now used for the ma-
nipulation of time-dependent data, database man-
agement or reasoning in artificial intelligence. The
embodiment of TL is a collection of worlds related
to one another with respect to time. In order to for-
malize the new reasoning instigated by Tense Logic,
four new temporal operators were established, in
addition to the wonted truth-functional operators
(Goranko and Rumberg, 2020):

- F (or 〈F〉) at some time in the future
- P (or 〈P〉) at some time in the past
- G (or [F]) at all future times
- H (or [P]) at all past times

At first glance, it seems like temporal logic
has introduced four new tenses in logic. However,
in actual fact, combining temporal connectives
yields additional tenses that logical formulas may
make use of (Øhrstrøm and Hasle, 1993). On this
account, temporal logic has introduced fifteen new
tenses in logic rather than four, as assessed by
Hamblin and Prior (Goranko and Rumberg, 2020).

For temporal logic, Kripke semantics are fol-
lowed. In Kripke models, the set of all worlds is
referred to as W. When working with TL, the rela-
tions between the different worlds is primordial as
they unveil their temporal links. For all w1, w2 ∈
W, if w1 is related to w2 (w1Rw2), then w1 is in the
past of w2, and w2 is in w1’s future.

1



Additionally, the Tense Logic considered in this
research is paired with the reflexive and transi-
tive restrictions. Time is a concept that is hard to
bound. The reflexive relation (ρ) discloses the fact
that every world is related to itself. Implementing
this world restriction entails that the past extends
up until the present moment and the future starts
now. Hence, for all w ∈ W, wRw holds.

Similarly, time can be thought of as a linear pro-
gression of discrete moments. A moment that is in
the past of the present’s past will also be in the past
of the current instant. The transitive restriction (τ)
captures this property. It is a relationship between
three worlds defined as: for all w1, w2, w3 ∈ W, if
w1 is related to w2 (w1Rw2) and w2 is related to w3

(w2Rw3), then w1 is related to w3 (w1Rw3) (Priest,
2008).

1.2 Tableau rules for TL

The tableau method, invented in 1955 by Evert
Willem Beth, is often used in logic to check whether
a certain formula or inference is valid. It relies on
setting up a tree structure that is sequentially de-
veloped as the tree’s formulas are worked out.

The goal of a semantic tableau is, for sentences,
to try and refute the original sentence by untan-
gling its negation or, in the case of an inference, to
try and prove that its premises may be true while
the conclusion is false. In this research, the focus
will be placed on formulas rather than inferences.
If the negation of a sentence is satisfiable, then the
sentence itself is not valid. However, if a negation
cannot be satisfied, then it means that the original
formula is valid.

When a branch in a tableau features two contra-
dicting formulas, it is inconsistent and is said to be
closed. A branch that does not contain any incon-
sistencies is open. Additionally, a branch is said to
be complete when all rules than can be applied to it
have already been applied (Nour, 2002). If a branch
is open and complete, then the negation of the origi-
nal formula is satisfiable, which means the formula
is not a tautology and this specific branch serves
as a counter-example. However, if all branches of
a tableau close, then the negation of the formula
is not satisfiable which implies the original formula
has been proved. From this follows, as mentioned by
Smullyan (1995) in the refinement of Beth’s work,
“[...] every formula provable by the tableau method

must be a tautology”.

Tableau rules may only be applied on the
main connective of a formula. They follow pre-
established rules derived from the semantics of the
connective at hand. For the connectives that are not
specific to Tense Logic, namely the negation (¬),
the conjunction (∧), the disjunction (∨), the impli-
cation (⊃) and the bi-implication (↔) connectives,
the tableau rules are the same as the usual tableau
rules that comply with Kripke’s semantics (Priest,
2008). However, new tableau rules were created for
the newly introduced connectives.

First, the tableau rules for connectives G and H
are:

GA,i HA,i
irj jriy y
A,j A,j

These two rules should be applied to all j such
that the relation irj or jri appears on the branch
respectively for GA,i and HA,i.

Additionally, the tableau rules for connectives F
and P are:

FA,i PA,iy y
irj jri
A,j A,j

For both FA,i and PA,i ’s rules, the j used is new.
It should be introduced by these rule applications
through the irj or jri relation respectively for con-
nectives F and P.

Nonetheless, the above mentioned tableau rules
are not the only new rules in TL. Four additional
rules need to be defined, which reflect the semantics
of the negated temporal connectives:

¬GA,i ¬HA,i ¬FA,i ¬PA,iy y y y
F¬A,i P¬A,i G¬A,i H¬A,i

By further application of tableau rules and in
an attempt to simplify the tableau’s unfolding, the
four rules above may be applied using the following
shortcuts:

2



¬GA,i ¬HA,i ¬FA,i ¬PA,iy y irj jri

irj jri
y y

¬A,j ¬A,j ¬A,j ¬A,j

Similarly to previous rules, ¬GA,i and ¬HA,i in-
troduce a new j with its corresponding world rela-
tion, while ¬FA,i and ¬PA,i are applied to all j
such that irj and jri respectively appear on the
considered branch (Priest, 2008).

Moreover, the temporal logic discussed in this
paper has been paired with the reflexive (ρ) and
transitive (τ) constraints. Each constraint has a
corresponding tableau rule. On the one hand, the
tableau rule for ρ is, for all i on the branch:

•y
iri

On the other hand, the tableau rule for τ is, for
all irj and jrk on the branch:

irj
jrky
irk

1.3 Research question

Within the framework of the Bachelor’s Project, a
tense logic bot is designed. Its aim is to generate
new tautologies to be posted on the Twitter social
media. The design of the logic bot relies on testing
tense logic formulas with the reflexive and transi-
tive constraints, using a semantic tableau system.

The research question for this Bachelor Project
thus is: How much of an efficient temporal logic
twitter bot can we set up using semantic tableaux,
with reflexivity and transitivity as constraints?
In particular,

• Can the bot generate a sound and complete
logic?

• How does the complexity of the formulas affect
its efficiency?

• How does it perform compared to another tem-
poral logic bot?

The programmed system will be evaluated by in-
vestigating whether it satisfies the soundness and
completeness properties of logic, and by testing its
efficiency with regards to the complexity of the for-

mulas. Additionally, the system will be compared
to a pre-existing logic bot (de Vries, 2018). All of
these examinations aim at testing the usability and
the efficacy of the set up logic bot.

1.4 Soundness and completeness in
Kripke’s models

In logic, two properties attest the fact that validi-
ties are provable, which are the soundness and com-
pleteness properties. The soundness theorem is de-
scribed, for a finite set of premises Σ, as: “If Σ ` A,
then Σ � A”. That is, a formula A that is provable
from a set of sentences Σ must also be a logical
consequence of Σ. Strictly speaking, the soundness
theorem asserts that a wrong inference may not be
proved.

The completeness theorem is the converse of the
soundness theorem. Its definition is, for a finite set
of premises Σ: “If Σ � A, then Σ ` A”. Thus, if a
formula A is a logical consequence of the set of for-
mulas Σ, then it must be provable from Σ (Priest,
2008). Strictly speaking, the completeness theorem
claims that any correct inference can be proved.

1.5 Twitter bot

Launched in 2006, the social networking service
Twitter is an American microblogging system that
allows users to publish posts called tweets. A sin-
gle tweet can hold a maximum of 280 characters
(Rigolin, 2018).

Twitter offers an open application interface that
allows users to pair the social media application
to another application. This research’s logic bot
will be programmed using the class-based, object-
oriented programming language Java before con-
necting it to the Twitter service.

On Twitter, a logic bot that regularly publishes
tautologies in classical propositional logic already
exists, namely the @mathslogicbot account. The
project at hand aims at building a similar logic bot
for another type of logic, temporal logic.

2 Methods

2.1 Programming language

The semantic tableau system is designed using the
class-based, object-oriented programming language

3

https://twitter.com/mathslogicbot?lang=en


Java. Java allows for a well planned and structured
code through the use of classes. The object-oriented
approach is convenient as it allows for a practical
partitioning of the tableau elements for an efficient
system. Java is a multi-threaded programming lan-
guage, which means it allows for the parallel run
of different tasks. Nevertheless, like any program-
ming language, Java has drawbacks, namely that it
is memory-consuming and runs slower than other
programming languages such as C or C++.

Designing a temporal logic bot that induces
tautologies calls for both extensive understanding
of human-like processing as well as adequate
proficiency in the programming language at hand
as to implement efficient computing techniques.

2.2 Formula Factory

Before checking temporal logic formulas using the
semantic tableau method, an algorithm meant to
generate these logical formulas is set up. The aim
is to start by generating the least complex formu-
las and to sequentially increase their complexities
by having more and more connectives. When the
length of the generated formulas reaches the 280
character limit actuated by Twitter, the formula
factory is terminated.

The formulas are stored in a tree structure. The
root of the tree is the main connective of the for-
mula and the leaves of the tree are the individual
atoms used to build the formula.

In order to generate the formulas, three atoms
are made available to use, namely a, b, and c. The
number of atoms available is set to three in an at-
tempt to control the number of formulas generated
while allowing for some variability.

As mentioned above, the program progressively
generates more and more complex formulas. For
that, previously created formulas are used when
generating a formula with a higher complexity.
That is, first of all, all atomic formulas are gener-
ated (simply a, b, and c). Then, all possible formu-
las that only have one connective are created. For
that, the system loops over the set of all connectives
{¬, G, H, F , P , ∧, ∨, ⊃, ↔} and combines them
in every possible way with the previously created
less complex formulas, namely the atomic formulas.
Next, all TL formulas that have two connectives are
produced by undergoing the same process. Formu-

las with zero and one connectives are loaded from
files. All formula combinations yielding a formula
with two connectives are built. The process is re-
peated over and over again by sequentially increas-
ing the complexity of the formulas, looping over all
connectives and assembling the required combina-
tions. For example, in the case of formula complex-
ity three, unary connectives are only combined with
formulas that have complexity two. Binary connec-
tives combine formulas that have complexity zero
with others that have complexity two as well as
two formulas with complexity one, and so on for all
formula complexities. The pseudocode of the main
function can be found in Appendix A.1, and the
general structure of the formula factory is depicted
in Figure 2.1.

Figure 2.1: Schematic representation of the for-
mula factory implementation

If the commutative laws hold with the connective
at hand, a formula equivalent to an other already
generated one is not produced. The reason for this
is that the aim of the bot is to create new distinct
tautologies, which is why duplicates are undesir-
able for the system. All binary connectives except
the implication are commutative. On that account,
the production of formulas that have as main con-
nective an implication has a slightly different im-
plementation.

External files are used to save and monitor the
logical formulas being dealt with. One .ser file per
formula complexity is used to write all generated
temporal logic formulas with this complexity. Once
the formula factory creates all new formulas with
a given formula complexity, they are written in the
appropriate .ser file before moving on to the next
formula complexity. All of these formulas are then
serially checked by the semantic tableau solver.

4



2.3 Tableau solver

As to try and obtain an efficient program, check-
ing the validity of formulas using semantic tableaux
should take advantage of both human-like proce-
dures and additional shortcuts.

The tableau is stored in a tree structure. Its
nodes may either be formula nodes or relation
nodes. When first setting up a tableau, the eval-
uated formula is negated. This negated sentence
constitutes the tableau’s initial list. In an attempt
to reduce the number of rules applied, double nega-
tions are simplified as soon as possible. Thus, the
initial list is simplified if necessary and is set to be
true in world 0. It is then used as the tableau tree’s
root and is added to the queue of rules to be ap-
plied. At first, the tree is only formed by two nodes:
the simplified initial list and the reflexive relation
0r0. As propositions are worked out, new nodes
are added to the tree. Every time a formula node
is added, double negations are simplified whenever
they are present as to find contradictions more eas-
ily. Shortcuts are thus taken advantage of to reduce
the run time of the system. Simplifications do not
alter the soundness and completeness of the logic at
hand, which is why they may be applied. The pseu-
docode of the main function of the Tableau Solver
can be found in Appendix A.2.

When solving a semantic tableau, tableau rules
may be applied in any order, but not all applica-
tion orders yield the same length and complexity
of tableaux. Therefore, as the aim of this system
is to maximize efficiency while minimizing the run
time, a priority queue is implemented. All rule ap-
plication priorities are displayed in Table 2.1. They
have been determined based on how straightfor-
ward their rule applications and resulting tableaux
are. For example, rule applications that do not split
a branch (e.g.: ∧, ¬∨ and ¬ ⊃) have priority over
rule applications that do split a branch (e.g.: ∨,
¬∧ and ⊃). Thus, whenever a rule is applied, its
resulting formulas are added to this queue depend-
ing on the priorities of their operations. All unap-
plied rules need to be in the priority queue. Every
time a new rule is applied, it is removed from the
priority queue. Literals are excluded from it. All
tableau rules are defined within the relevant con-
nective class.

There are four rule applications that have been
implemented differently, namely the rules for G, H,

¬F and ¬P . All rules featured in Table 2.1 are ap-
plied once, after which their formula is never con-
sidered again. However, not all rule applications op-
erate in the same way in temporal logic. The four
rule applications G, H, ¬F and ¬P are exemptions
to this general one-application principle. These op-
erations are universal, as they are to be carried out
on as many relations as applicable. Their imple-
mentation thus applies the following procedure: if
a relation node is added, its branch is traversed to
see if such a universal rule that may be applied to
the relation at hand is featured on the branch. If it
is, the tableau rule is applied on the newly added
relation. However, it may also happen that the uni-
versal rule is added to a branch after a relation node
that is in its scope. In order to account for it, the
universal tableau rules are to be evaluated by look-
ing for relevant relation nodes on their branch as
soon as they are added to it.

Priority Rules
1 ¬¬
2 ∧, ¬∨ and ¬ ⊃
3 F , P , ¬G and ¬H
4 ∨, ⊃ and ¬∧
5 ↔ and ¬ ↔

Table 2.1: Priority of the tableau rules to be
applied

At every unfolding of a rule, new formulas are
to be added to the tree. In order to avoid having
an ineffective lengthy tableau, a node on which the
splitting of a branch is not dependent is only added
if it is not already featured on its branch. However,
if the splitting of a branch is dependent on this
node addition, not adding a duplicated node would
result in erroneous results. Therefore, in this case,
the identical node is not dropped. Nevertheless,
splitting rules are also optimized. Before applying
a splitting rule, the two resulting sub-branches are
compared. A branch is then only separated in two if
its sub-branches are different. Therefore, purpose-
less branch splittings are eluded.

Whenever a new formula node is added to the
tableau, its branch is immediately traversed to
check whether its negation already appears on it.
This is done to close branches as soon as possible
and is also how a human would solve a tableau.

5



If the negation of the formula is present on the
branch, the considered branch must close. A branch
closing is reflected in the system by the deletion
of all nodes that are specific to it. The informa-
tion stored in this branch is not relevant to the
tableau solver anymore. Keeping it would be in-
efficient. Thus, when a contradiction is detected,
the root of the considered branch is searched for
by traveling upwards through the nodes. When it
is found, the branch featuring the contradiction is
deleted from the tableau tree. If a contradiction is
detected when adding the last node of an opera-
tion application, then the branch deletion is imme-
diately executed. Otherwise, if the rule application
is not complete yet, adding new nodes afterwards
from the same operation application may still alter
the status of the tableau, which is why the branch
is not erased right away but rather at the end of the
current rule application. To better illustrate this is-
sue, take for instance the application of a splitting
rule. If the node of the left sub-branch is first added
and a contradiction is found, deleting the left child’s
branch results in the erasure of the parent branch
as well, even though there still is a right sub-branch
that has not been added yet. Such case figures cause
invalid conclusions, which is why branch deletions
are not applied instantly, but rather at the end of
each rule application.

If all of the tableau’s nodes are erased, it means
that the tableau is closed, which entails that the
evaluated formula is a tautology.

Whenever a new relation node is added to the
tableau, constraints are to be reviewed as not to
skip any new world relation. The reflexivity restric-
tion is applied every time a new world is introduced.
Similarly, the transitivity restriction is applied as
soon as its introducing pattern is detected. Addi-
tionally, the G, H, ¬F and ¬P connectives are to
be reviewed at every relation node addition, as dis-
cussed above.

Upon the creation of the tableau, a limit on the
number of formulas that may be applied as well as
on the number of worlds that may be introduced
are determined. The defined limits are set up to
prevent the creation of infinite tableaux. Both of
them depend on the number of connectives that
compose the evaluated sentence. These maximal
values are both set to be three times the complex-
ity of the studied formula. The limits have been
established based on code efficiency, Java capaci-

ties and logic principles. That is, as to get an effi-
cient system, infinite tableaux should be detected
and stopped as early as possible. Java also has ca-
pacity limits on the length of stacks that it may
handle, which makes it compelling to restrict un-
bounded tableaux. A middle ground thus had to be
found to balance between the prevention of infinite
tableaux and the successful detection of tautologies
with long tableaux. It came to be a limit of three
times the number of connectives in the initial sen-
tence for both the number of worlds introduced and
the number of formulas applied.

There are three case figures by which the tableau
checking can be terminated.

- The tableau tree is empty as a result of the
closing of all of its branches. The tableau is
closed, the evaluated formula is a tautology

- The priority queue is empty. All rules that may
be applied have been applied but the tableau
still has an open branch. This open branch is
also complete, and the evaluated formula was
therefore not a tautology

- The number of rules applied matches or ex-
ceeds the set limit. The tableau is still open
but not complete. The formula is either not a
tautology, or it requires an extensive number
of rule application in order to close

2.4 Twitter posting

After being checked by the tableau solver, formu-
las that are detected as tautologies are stored in
an Array List while waiting to be posted to the
Twitter social media. The connection between Java
and Twitter is established using a Java library for
the Twitter API called Twitter4J. For demonstra-
tion purposes, the system is initially programmed
to post one tautology every twenty minutes of ter-
minal activity. However, it will be modified to a
longer time interval of once every 6 hours upon its
hosting on the online platform Heroku. As discussed
earlier, Java is a multi-threaded programming lan-
guage. It thus enables the parallel run of different
tasks. By that means, the formula factory paired
with the tautology checking is ran at the same time
as the Twitter posting.

6



2.5 Experiment

Once the logic bot is completed, its performance is
tested to assess the efficiency of the program and
answer the defined research question. On the one
hand, the soundness and completeness properties
of the set up logic are evaluated. The proofs are
worked out in section 3.2. On the other hand, the
bot’s computational features are analyzed. The run
times of the two main parts of the system, namely
the formula factory and the tableau solver, are mea-
sured independently for different formula complex-
ities. In addition, the used memory storage as well
as the system’s performance compared to a pre-
existing temporal tableau solver are also investi-
gated.

For the evaluation of the system’s run time,
as mentioned earlier, the formula factory and the
tableau solver are studied separately. For formulas
with complexities that are lower than four, the run
time for each and every formula is measured and
then averaged per formula complexity. The num-
ber of generated formulas grows exponentially as
the formula complexity increases. The current sys-
tem is ran on a personal device, on which the pro-
gram only runs when the device is in use. In these
circumstances, the extensive production and solv-
ing of formulas with complexities that are equal to
or higher than four requires a few days per formula
complexity. For that reason, not all possible formu-
las are tested in these cases. Instead, for formulas
with complexities four and five, only part of the
possible formulas are considered. Nevertheless, to
account for their variability and complexity, more
and more formulas are tested as the formula com-
plexity increases. For that, the custom number of
tested formulas is dependent on the considered for-
mula complexity. The formulas tested are derived
from all possible connective and lower complex-
ity formula combinations in an attempt to assess
a larger range of rule applications rather than only
testing similar formulas. Here again, their run times
are measured separately for each formula then aver-
aged per formula complexity. The number of tested
formulas for formula complexities zero to five are 3,
42, 840, 21273, 66182 and 265595 respectively. For
this purpose, available pre-built Java methods are
used to accurately measure the run time.

With the aim of maximizing the efficiency of the
formula factory, previously generated formulas are

saved in serializable files. The memory usage of
these serialized formulas is studied by analysis of
their resulting files.

Moreover, the performance of the designed bot
is also assessed by comparing it to a pre-existing
temporal logic tableau solver. This bot has been
designed by de Vries (2018). For that compari-
son, fifteen arbitrary formulas are determined and
tested on both systems for formula complexities
ranging between 1 and 6. The run time of both
tableau solvers are measured and averaged per for-
mula complexity using pre-built formulas. O. de
Vries’ solver automatically outputs the time needed
to compute the solving, which is the value that is
used for comparison. The extensive list of tested
formulas is shown in Appendix B.1 and B.2. A com-
bination of both tautologies and non-tautologies
are tested for every considered formula complex-
ity. The connectives that constitute the formulas
are varied as to test and compare a wider range of
operations.

3 Results

3.1 The Twitter account

The outcome of the designed logic bot can be ob-
served on the Twitter account @tenselogicbot.

3.2 Soundness and completeness

The soundness and completeness theorems rele-
vant to Kripke’s models have been proved in Priest
(2008). In this section, the soundness and complete-
ness properties relevant to this project’s character-
istics, namely the temporal connectives as well as
the accompanying constraints, will be discussed.

3.2.1 Soundness

Definition 3.1 (Faithful).
Let I = 〈W,R, v〉 be any modal interpretation and
let b be any branch of a TL tableau.
Then I is faithful to b iff there is a map f from the
natural numbers to W such that:

• For every node D, i on b, D is true at f(i) in
I;

• If irj is on b, f(i)Rf(j) in I.

We say that f shows I to be faithful to b.

7

https://fse.studenttheses.ub.rug.nl/16691/1/AI_BA_2018_ODeVries.pdf
https://fse.studenttheses.ub.rug.nl/16691/1/AI_BA_2018_ODeVries.pdf
https://twitter.com/tenselogicbot


Lemma 3.1 (Soundness lemma).
Let b be any branch of a tableau, and let
I = 〈W,R, v〉 be any modal interpretation
where R is reflexive and transitive.
If I is faithful to branch b, and a TL tableau rule
is applied to b, then that rule produces at least one
extension b′ such that I is faithful to b′.

Proof:
Suppose that f shows I to be faithful to b.
For every TL tableau rule and for both considered
constraint rules (ρ, τ), it will be proven that f
shows I to be faithful to at least one extension b′

resulting from the rule applications.
Suppose GA, i occurs on b, and the tableau rule

of G is applied. This results in the extended branch
b′. Since I is faithful to b, every formula on b is true,
including GA that is true at f(i). For all i and j,
and for every relation irj on b, f(i)Rf(j). For every
irj occurring on b, the branch b is extended with
A, j. A is true at f(j) by the semantics of G. Hence,
I is faithful to branch b′, extended from b.

Suppose HA, i occurs on b, and the tableau rule
of H is applied. This results in the extended branch
b′. Since I is faithful to b, every formula on b is true,
including HA that is true at f(i). For all j and i,
and for every relation jri on b, f(j)Rf(i). For every
jri occurring on b, the branch b is extended with
A, j. A is true at f(j) by the semantics of H. Hence,
I is faithful to branch b′, extended from b.

Suppose FA, i occurs on b, and the tableau rule
of F is applied. This results in the extended branch
b′. Since I is faithful to b, every formula on b is
true, including FA that is true at f(i). Thus, for
some w ∈ W , f(i)Rw, and A is true at w. Let f ′

be the same as f except that f ′(j) = w. There-
fore f ′(i)Rf ′(j) and A is true in f ′(j). Hence, I is
faithful to branch b′, extended from b.

Suppose PA, i occurs on b, and the tableau rule
of P is applied. This results in the extended branch
b′. Since I is faithful to b, every formula on b is
true, including PA that is true at f(i). Thus, for
some w ∈ W , wRf(i), and A is true at w. Let f ′

be the same as f except that f ′(j) = w. There-
fore f ′(j)Rf ′(i) and A is true in f ′(j). Hence, I is
faithful to branch b′, extended from b.

Rule for reflexivity ρ: Suppose that i occurs on b,
and the constraint rule of ρ is applied. The branch b
is extended and results in the extended branch b′ on
which iri occurs. Since I is faithful to b, f(i) ∈ W

and thus f(i)Rf(i) by the semantics of reflexivity.
Hence, I is faithful to branch b′, extended from b.

Rule for transitivity τ : Suppose that irj and jrk
occur on b, and the constraint rule of τ is applied.
This results in the extended branch b′. Since I is
faithful to b, every formula on b is true, including
irj and jrk, and thus f(i)Rf(j) and f(j)Rf(k).
The branch b is extended with irk and f(i)Rf(k)
by the semantics of transitivity. Hence, I is faithful
to branch b′, extended from b.

Theorem 3.1 (Soundness theorem).
For a finite set of rules Σ,
If Σ `Kt

ρτ
A, then Σ �Kt

ρτ
A

Proof:
The soundness theorem is proved by contraposition
using the soundness lemma.
Suppose Σ 2Kt

ρτ
A. Then there is an interpretation

I = 〈W,R, v〉 in which R is reflexive and transitive
that makes every premise in Σ true, and A false at
some world, w ∈ W . Let f be any function such
that f(0) = w. This shows I to be faithful to the
initial list.

By repeatedly applying the Soundness lemma,
we find a resulting extended branch b such that I
is faithful to every initial section of it. If b is closed,
then two contradicting formulas occur on some of
its initial section. Given that I is faithful to b, this
is impossible, which means that the tableau is open.
Hence, Σ 0Kt

ρτ
A.

Thus, we conclude that if Σ `Kt
ρτ

A, then Σ �Kt
ρτ

A, which entails the logic is sound.

3.2.2 Completeness

Definition 3.2 (Induced interpretation). Let b be
any open complete branch of a TL tableau. We say
that an interpretation I = 〈W,R, v〉 is an interpre-
tation induced by b iff:

• W = {wi : i occurs on b};
• wiRwj ∈ R iff irj occurs on b;
• If p, i occurs on b, then vwi(p) = 1;

if ¬p, i occurs on b, then vwi(p) = 0; otherwise
vwi(p) can be anything that one likes (either 0
or 1)

Lemma 3.2 (Completeness lemma).
Let b be any open complete branch of a TL tableau.
Let I = 〈W,R, v〉 be an interpretation induced by b.

8



Then, for all formulas D and for all i, the following
holds:

If D, i is on b, then D is true at wi

If ¬D, i is on b, then D is false at wi

Proof:
For every TL tableau rule and for both considered
constraint rules (ρ, τ), the completeness lemma will
be proven by induction on the complexity of D.

Suppose GA, i occurs on b. Since b is complete,
then for all j such that irj occurs on b, A, j also
occurs on b. By induction hypothesis, for all wi such
that wiRwj , A is true in j. Hence, GA is true at
wi, as required.

Suppose HA, i occurs on b. Since b is complete,
then for all j such that jri occurs on b, A, j also
occurs on b. By induction hypothesis, for all wi such
that wjRwi, A is true in j. Hence, HA is true at
wi, as required.

Suppose FA, i occurs on b. Since b is complete,
then there exists a j such that irj and A, j occur
on b. By induction hypothesis, wiRwj and A is true
in j. Hence, FA is true at wi, as required.

Suppose PA, i occurs on b. Since b is complete,
then there exists a j such that jri and A, j occur
on b. By induction hypothesis, wjRwi and A is true
in j. Hence, PA is true at wi, as required.

Rule for reflexivity ρ: For every wi ∈ W , iri oc-
curs on b by the semantics of reflexivity.

Rule for transitivity τ : For wi, wi, wi ∈ W ,
suppose that wiRwj and wjRwk hold. Then irj
and jrk occur on b, which means by the semantics
of transitivity that irk occurs on b. Hence, wiRwk,
as required.

Theorem 3.2 (Completeness theorem).
For a finite set of rules Σ:
If Σ �Kt

ρτ
A, then Σ `Kt

ρτ
A

Proof:
The completeness theorem is proved by contrapo-
sition using the completeness lemma.
Suppose Σ 0Kt

ρτ
A.

Let I = 〈W,R, v〉 be an interpretation induced by
an open branch b, in which R is reflexive and tran-
sitive. Then, by the completeness lemma, I makes
every premise in Σ true at w0, and A false at w0.
Hence, Σ 2Kt

ρτ
A.

However, the completeness lemma can only be ap-
plied to open and complete branches. The tableau

checking implemented in this research has, in some
cases, a branch b that is open but not complete
while the tableau is complete. In these cases, the
completeness lemma cannot be applied to their
branches and the completeness theorem does not
hold. Consequently, the implemented logic is not
complete.

3.3 Run time of the system

The plotted results of the system’s average ob-
served run time as a function of formula complex-
ity are displayed in Figure 3.1, both for the pro-
duction of formulas and their tableau solving. As it
can be seen in the graph, as the formula complexity
increases from zero to three, the run time needed
for the system to complete both analysed tasks de-
creases. However, the opposite behavior is observed
as the formula complexity increases from three to
five since the run times of both tasks increases as
well. For the tableau solving, formulas with com-
plexities one to four have approximately the same
average run time which fluctuates around 0.2 ms.

Figure 3.1: Graph showing the average run time
per tested formula as a function of formula com-
plexity, both for the formula factory and the
tableau solver

3.4 Memory usage of the system

By letting the system run, new serializable files are
being generated and saved to the local directory.
For the first five formula complexities, the memory

9



usage of the obtained serialized files is monitored.
The resulting memory usage is shown in Table 3.1.
It can be seen that the memory usage of each file as
a whole is increasing exponentially as formula com-
plexity increases. However, the average memory us-
age of each individual formula is about the same for
most complexities, between 110 and 119 bytes, ex-
cept for formulas that do not have any connective,
for which the average memory usage per formula is
188.7 bytes.

Formula Number Total Average
complexity of memory memory

formulas usage usage (bytes)

0 3 566 bytes 188.7

1 42 5 KB 119

2 840 98 KB 116.7

3 21273 2.5 MB 117.5

4 601860 66.3 MB 110.2

Table 3.1: Obtained memory usage of the saved
generated formulas for formula complexities
zero to four

3.5 Comparison with another tem-
poral logic bot

Figure 3.2 displays the average run times obtained
when running the same formulas on both O. de
Vries and the current bot’s systems. The run time
obtained with this research’s bot is consistently
lower than the pre-existing bot’s run times across
all formula complexities.

In other respects, the tableau solvers’ obtained
run times were plotted separately for tautological
and non-tautological tested formulas. The result-
ing plots are shown in Figures 3.3 and 3.4 respec-
tively. Figure 3.3 reveals that the pre-existing logic
bot solves tautologies’ tableaux faster than the new
designed bot. However, this research’s bot is more
robust when it comes to non-tautological formulas,
as shown Figure 3.4.

4 Conclusion

4.1 Discussion

In this research, a Twitter logic bot that regu-
larly publishes tautologies in TL was designed. It
makes use of the semantic tableau method. Based

Figure 3.2: Graph showing the comparison of
the average tableau solvers run time per tested
formula as a function of formula complexity for
both considered systems

Figure 3.3: Graph showing the comparison of
the average tableau solvers run time per tested
tautology as a function of formula complexity
for both considered systems

on the obtained results, the set up logic appeared
to be sound but not complete. This defect is related
to the implementation of the stopping condition
meant to prevent infinite tableaux. For some tau-
tologies, working out their tableau resembles work-
ing out an infinite tableau, only it eventually closes.
In the design of this bot, the cutting off of branches

10



Figure 3.4: Graph showing the comparison of
the average tableau solvers run time per tested
non tautological formula as a function of formula
complexity for both considered systems

does not take into account such case figures. Hence,
some open but not complete branches are disre-
garded in a tableau that is considered complete.
Still, infinite tableaux branches are also open but
not complete. Implementing a limit on the num-
ber of formulas applied solves more problems than
those it creates in the set up system. For that rea-
son, cutting off branches is kept to the detriment of
detecting some tautologies. As a result, the system
at hand is not complete. Nonetheless, the tableaux
of formulas that are not tautologies do not close.
On that account, the designed system is sound.

The results obtained for the run time of the for-
mula factory are that the average time needed to
generate a single formula decreases as the number
of connectives in the formula increases from zero
to three. Generating formulas with complexity zero
follows an exclusive process, as it does not build up
on any pre-generated formula. For all other formula
complexities, the generation of a single formula in
the designed system is executed in one unique step,
which is:

- For formulas that have as main connective a
unary operator, the combination of the unary
connective with a sub-formula retrieved from
a serialized file

- For formulas that have as main operator a bi-
nary connective, the combination of the binary

connective with two sub-formulas loaded from
serialized files

The only element that varies in the formula factory
from one formula complexity to another is the num-
ber of connectives that the loaded formulas have,
not the number of steps needed to generate the cur-
rent formula.
The number of generated formulas increases ex-
ponentially as the formula complexity increases.
Therefore, the loading of a formula file with for-
mula complexity n generates less formulas than the
loading of the formula file with formula complexity
(n + 1). As a result, as the formula complexity in-
creases, the number of newly generated formulas
per single file loading increases. Since all formula
production require the same number of steps, gen-
erating more formulas from a single file loading is
what yields a decreased average production time.

Still, the run time increases as formula complex-
ity increases from three to five. This observation
is due to how the testing was performed. As ex-
plained in Section 2.5, for formula complexities
zero to three, all possible TL formulas are included
in the testing. However, after formula complexity
three, only part of the possible TL formulas are
considered. The way they have been selected is by
only generating a portion of all possible formulas
for each file loading combination. As a result of
the control on the amount of formulas tested, the
complete potential of every file loading is not ex-
ploited, which means that more file loading results
in less formulas generated. This in turn decreases
the average measured run time, although the for-
mula generation requires the same single step as for
lower complexities.

The results obtained for the tableau solver run
time revealed a similar pattern as for the formula
factory. The run time of the solver decreases
as formula complexity increases from zero to
three but then increases as formula complexity
increases from three to five. Here again, the
relation observed between the run time and
formulas with complexities three to five is due to
the way the testing has been performed. When
generating formulas, the system always loops over
all connectives in the same order, namely {¬, G,
H, F , P , ∧, ∨, ⊃, ↔}. Hence, in all serialized
files, the first fragment of formulas all have as
main connective unary connectives. For formula
complexities four and five, only part of the possible

11



TL formulas are tested. The tested formulas were
collected by taking the first few generated formulas
from all possible connective and lower complexity
formula combinations. As a result, tested formulas
inadvertently are predominantly constructed with
temporal connectives. Temporal connectives are
prone to generate infinite tableaux, which have
a higher run time than non-infinite tableaux,
yielding the observed results.
Formulas with complexities one to four have about
the same average run time. Regardless of testing
induced effects, the tableau solver seems to handle
increasing complexities rather consistently.

The observed memory usage’s exponential
growth is related to the exponential growth of the
number of formulas rather than to the increasing
complexity of the formulas themselves. This can
be deduced from the average memory usage per
formula that remains more or less constant for all
formula complexities. Nonetheless, formulas with
complexity zero appear to be an outlier to this
consistent average memory usage. This is due to
the fact that a whole file is used to only store
three formulas. For all higher order formulas, the
memory usage of the empty file alone is averaged
over a larger number of formulas.
The exponential growth of the memory usage is
an issue for the continuous run of the program.
That is, up until now, the reached serialized
formula complexity is four. This file requires a
memory usage equal to 66.3 megabytes. As this
value increases exponentially with the formula
complexity increase, formula complexity six will
probably require a memory usage of 18 gigabytes
and formula complexity eight, 7 tetrabytes. All
resources in our current scope (local device/ online
hosting application/ Raspberry Pi) have memory
limits that will be reached early on. Nonetheless,
the amount of formulas generated with formula
complexities four and lower is already enough to
keep the logic bot running on Twitter for years.

The current bot was also compared to a pre-
existing logic bot (de Vries, 2018). The observed
run time differences between the two tableau
solvers are likely caused in part by the many dis-
similarities of the two bots. The primary relevant
difference is the fact that both bots have differ-
ent aims. The tableau solver set up by de Vries

(2018) aims at producing as output a human-like
tableau, whereas this project only provides as out-
put whether or not the tested formula is a tautol-
ogy. As a result, the former has to follow all custom-
ary tableau steps while the latter has as objective
to cut down as many steps as possible. This ma-
jor difference induces various implementation dif-
ferences that impact the run time of the system.
For instance, the omission of duplicated nodes or
branches additions in this designed bot helps reduce
the complexity of the tableau. Also, the pre-existing
bot provides as output the printed tableau tree.
This additional action requires some non-negligible
execution time.

Besides the different goals of the tableau solvers,
the constraints that apply to the considered TL
also differ, which alters the tautological property of
some formulas. That is, adding restrictions to TL
affects the modal interpretation which may either
result in simpler tableaux in some cases, or more
cluttered ones in others. Both compared systems
are transitive, but the current bot is also reflex-
ive, while the pre-existing bot is dense and non-
branching towards the future and past. In some
cases, these constraint differences yield different
tableaux in the two systems for similar formulas,
which also affects the run time.

Concerning the implementation of the systems,
a first notable difference to discuss is the different
programming languages used. Java, used in this re-
search, is a compiled language while Python, used
in de Vries (2018)’s research, is an interpreted lan-
guage. This entails that Java has a shorter exe-
cution time than Python. Additionally, the imple-
mentation of the tableau itself in both codes is dif-
ferent. In the pre-existing bot, the tableau tree is
represented in a list, while this research stores the
tableau in a tree structure. A list structure allows
for a more efficient tableau search as well as the
storing of a larger number of formulas.

Apart from the system’s differences, the per-
formed testing experiment may have also inter-
fered with the obtained results. For each formula
complexity considered, fifteen formulas were tested.
This amount is minimal, and tested formulas do not
account for all of TL’s formula variability. The test-
ing of both systems should be performed multiple
times on a wider range of formulas for more accu-
rate results. Furthermore, the tested formulas were
half methodically and half randomly selected. It

12



was made sure that all different connectives would
be featured in each list and that both tautologies
and non tautologies would be represented. This for-
mula monitoring may have also altered the results.

Looking at the run times obtained for tautologi-
cal and non-tautological TL formulas separately in
both systems, tautologies are solved more quickly
in the pre-existing bot, while the tableau of formu-
las that are not tautologies are executed faster in
the current bot. Regarding the tested tautologies,
the pre-existing bot appears to be more efficient
in their solving. Although, an important point
to note it that the formulas represented on both
traces are not identical. The differing restrictions
applied to the considered TL, as discussed above,
tweaks the tautological property of some formulas,
which may interfere with the observed results.
The difference observed for non-tautological for-
mulas may be due to the fact that the pre-existing
logic bot takes care to provide a counter model
for each formula that is not a tautology, which
increases its run time.

The aim of this project was to create an efficient
temporal logic Twitter bot. Overall, the goal has
been achieved. Nevertheless, there are some tem-
poral logic tautologies within the character limit
of Twitter that are not detected due to an im-
plemented stopping condition. The designed for-
mula factory seems to be efficient for all formu-
las, regardless of the number of connectives they
have. Yet, storing the generated formulas in seri-
alizable files will early on create memory issues.
The tableau solver of the system seems to perform
rather well and consistently for all formula com-
plexities. Nonetheless, infinite tableaux remain a
weakness in the system, both for its resulting in-
flated run time and its stopping condition that pre-
vents the detection of some tautologies.

4.2 Future improvements

Building up on this system’s drawbacks, finding a
solution to solve the logic’s completeness issue is
a path that could be explored. For that, one idea
would be to use as the tableau’s data structure a list
rather than a tree in the programming of this bot.
Lists can handle more objects than a tree structure
and they relate them more easily to one another.
Nevertheless, this change alone will probably not

solve the completeness issue. Some tautologies may
have extremely long tableaux that eventually close.
Implementing a data structure with more capac-
ity than the current one will not suffice to over-
come this issue. Therefore, another path to explore
would be the detection of patterns and unwritten
rules of infinitely long tableaux that close. This pat-
tern identification will not only help overcome the
completeness problem, but will also help enhance
the system’s efficiency if it was to be generalized to
any pattern, not only infinite tableaux tautology
patterns, as it would reduce the system’s run time.

Similarly, another improvement that could boost
the system’s performance is the detection of tau-
tologies based on previously detected tautologies.
For instance, if sentence S is a tautology, then
(S ∨ P ) will, for any TL sentence P , also be a tau-
tology. Therefore, in an attempt to optimize the
efficiency of the tableau, detected tautologies could
be stored in a well planned way to later simplify
other tableau solving.

The designed bot can be improved in various
ways, but the last one that will be discussed here is
taking parenthesis simplification into account. The
current bot only handles one connective at a time.
If it is presented a formula such as (a∧ a∧ a), it is
dealt with as ((a∧a)∧a). It thus requires the appli-
cation of two rules in the tableau solving, whereas
both applied rules are the same and both connec-
tives have the same priority in the formula. That
being said, both of these rules could have been ap-
plied at the same time. Taking this into account
in the implementation could enhance the system’s
efficiency and decrease its run time.

Regarding the memory usage issue, an interest-
ing route to take would be to find another way
to store the TL formulas. Formulas build up on
one another as the complexity increases, so rather
than serializing each and every generated formu-
las, storing a code of some sort that indicates what
the formulas are or how to generate them would
be less memory consuming than serializing every
generated formula, which would help overcome the
memory problem.

References

de Vries, O. (2018). A Tableau Prover for Non-
Branching Transitive Temporal Logic with Den-

13



sity as Constraint.

Goranko, V. and Rumberg, A. (2020). Temporal
Logic. In Zalta, E. N., editor, The Stanford En-
cyclopedia of Philosophy. Metaphysics Research
Lab, Stanford University, summer 2020 edition.

Nour, A. (2002). The Tableau Method for a Logi-
cal System Based on a Finite Poset. Journal of
Applied Non-Classical Logics, 12(1):43–62.

Øhrstrøm, P. and Hasle, P. (1993). AN Prior’s re-
discovery of tense logic. Erkenntnis, 39(1):23–50.

Priest, G. (2008). An introduction to non-classical
logic: From if to is. Cambridge University Press.

Rigolin, V. H. (2018). What is Twitter? How Do
I Get Started? Why Should I Become a User?
Journal of the American Society of Echocardiog-
raphy, 31(3):A31–A32.

Smullyan, R. M. (1995). First-order logic. Courier
Corporation.

14



A Appendix

Functions

Algorithm A.1 Formula Factory main function

resetNewGeneratedFormulasArray()
generateAtomicFormulas()
running ⇐ true
complexity ⇐ 0
while running do

resetNewGeneratedFormulasArray()
for connective in allConnectives do
connective.generateFormulas(complexity)

end for
complexity ⇐ complexity + 1
if newlyGeneratedFormulas is empty then
running ⇐ false

else
serializeFormulas()

end if
end while

Algorithm A.2 Tableau Solver main function

initialList⇐ negatedFormula(formulaEvaluated)
initialList⇐ initialList.simplify()
formulaPriorityQueue.add(initialList)
nbOfFormulasApplied⇐ 0
maxNbOfFormulasApplied⇐ 3 ∗ evaluatedFormulaComplexity
maxNbOfWorlds⇐ 3 ∗ evaluatedFormulaComplexity
addReflexivity(0, tableau, tableauRoot)
while tablea is open do
formulaToBeWorkedOut⇐ formulaPriorityQueue.poll()
formulaToBeWorkedOut.applyRule(tableau)
if formulaPriorityQueue is empty or nbOfFormulasApplied ≥ maxNbrOfFormulasApplied
then

break
end if

end while

15



B Appendix

Formula Tested Pre-existing New TL Tautology
complexity formula TL bot run bot run or not

time (in s) time (in s)

1

Ga 0.28340275 0.0061674 No
Fa 0.000765 0.0044476 No
Ha 0.3135175 0.0042859 No
Pa 0.0069245 0.0041044 No
¬a 0.000681042 0.0041138 No

(a ∧ a) 0.000508084 0.0040778 No
(a ∧ b) 0.001256708 0.0040464 No
(a ∨ a) 0.000918417 0.0044007 No
(a ∨ b) 0.001708084 0.0047259 No
(a ⊃ a) 0.000880166 0.0039921 Tautology
(a ⊃ b) 0.000885542 0.0041164 No
(a↔ a) 0.001333875 0.0046232 Tautology
(a↔ b) 0.000907542 0.0041504 No
(b ⊃ a) 0.002824875 0.0041662 No
(c↔ c) 0.000735084 0.0040619 Tautology

2

GGa 0.399813416 0.0235236 No
HFa 0.211463708 0.0039147 No

F (a ⊃ a) 0.000486209 0.003716 No/ Tautology
(a ⊃ Fa) 0.000983833 0.0054645 No/ Tautology
H(a↔ a) 0.001301334 0.0036482 Tautology

(a ⊃ (b ⊃ c)) 0.001215958 0.0034926 No
((a ⊃ a) ∨ a) 0.000705792 0.0035933 Tautology

(a ∨ ¬a) 0.0008525 0.0040385 Tautology
(Hb↔ a) 0.882078458 0.0039676 No

((c↔ b) ∧ a) 0.001420166 0.0041176 No
((a↔ b)↔ a) 0.002986792 0.0046537 No
¬(a ⊃ b) 0.002296292 0.0037432 No
(Ga ⊃ a) 0.000880125 0.0038377 No/ Tautology
FGa 0.000640792 0.0069486 No

(a ⊃ (b ⊃ b)) 0.00052725 0.0038592 Tautology

3

(Fa↔ Fa) 0.001011208 0.0038923 Tautology
(Ga ⊃ Fa) 0.001014 0.003623 No/ Tautology
¬(a ∧ ¬a) 0.004735 0.0040787 Tautology

((a ⊃ b) ∨ (a ⊃ a)) 0.001095042 0.0038554 Tautology
(a ⊃ ¬Gb) 0.000953542 0.0033967 No

((a ∧ b) ⊃ Fa) 0.000836 0.0037709 No/ Tautology
G(a ⊃ (a ⊃ a)) 0.000570917 0.0035061 Tautology
((a ∨ ¬a)↔ a) 0.00123075 0.0039924 No
G(a ∨ (a ⊃ a)) 0.001186125 0.0038382 Tautology

(Ga ∨ ¬a) 0.107455042 0.0035095 No
(a ⊃ (Pa ∨ a)) 0.005035875 0.0036246 Tautology

GPFa 0.425878833 0.0035605 No
(a↔ PFa) 1.655997 0.0042457 No
(GPa ⊃ a) 0.000709708 0.0036515 No

(a↔ (Fa ∨ b)) 0.217635209 0.0046622 No

Table B.1: Extensive list of tested formulas for the comparison of the two considered TL tableau
solvers

16



Formula Tested Pre-existing New TL Tautology
complexity formula TL bot run bot run or not

time (in s) time (in s)

4

(Fa ⊃ F (a ∨ b)) 0.002173 0.0046645 Tautology
(a ⊃ PFFa) 0.000718333 0.0047242 No/ Tautology
(Fa ⊃ PFa) 0.211987958 0.0045287 No/ Tautology

(Ga ⊃ ((a↔ b) ∨ a)) 0.0007638340001 0.0048043 No
((a↔ b) ∨ F (a↔ a)) 0.001166 0.005562 No/ Tautology

(((a ⊃ b) ∧ b) ∨ (a ⊃ a)) 0.000553417 0.0047099 Tautology
((b ⊃ c) ∨ ((b ⊃ a) ⊃ b))) 0.000788542 0.0048435 Tautology
((a↔ (b↔ (c↔ a))) ∧ a) 0.0007945409999 0.0065805 No

(GGHa ⊃ a) 0.001297041 0.0050846 No/ Tautology
G((a↔ b) ∨ Fa) 1.5295665 0.0047819 No

((a ⊃ a) ∧ (b ⊃ (a ⊃ b))) 0.0082965 0.0060501 Tautology
(a ∨ (b ∨ (c ∨ ¬a))) 0.00106675 0.0045642 Tautology

(Fa↔ HFa) 1.278789125 0.0056075 No/ Tautology
(¬a↔ ¬(a ∧ a)) 0.0006995000001 0.0058758 Tautology

(Pb↔ (a ⊃ (c ⊃ b))) 0.421957208 0.0052486 No

5

((a ∧ Pa) ⊃ HFa) 0.001693667 0.0284675 Tautology
((Fa ⊃ a) ∨ (a ⊃ Fa)) 0.0014005 0.0094563 Tautology

((a↔ (a ∨ a)) ∧ (b ⊃ (b ∧ b))) 0.0006356670001 0.0087552 Tautology
(HF (a ⊃ b) ∨ ¬a) 0.8383 0.0041991 No
¬((a↔ ¬a) ∧ (c↔ b)) 0.001207625 0.003889 Tautology

((a ⊃ ¬a) ∨ (c ⊃ (b ⊃ c))) 0.001230875 0.005305 Tautology
((a ∨ Pa) ⊃ FPa) 0.176562375 0.0045275 No/ Tautology
(FPGHa ⊃ a) 0.099983458 0.0042798 No/ Tautology

((a ⊃ HFa) ∨ ¬a) 0.006190917 0.0043958 Tautology
(a↔ (b↔ (c↔ (¬a↔ b))) 0.001237417 0.0054202 No
((a ⊃ (a ∨ b)) ∧ (Gb ⊃ b)) 0.0006836670002 0.0039735 No/ Tautology

((b ∨ ¬b) ⊃ (b ∨ ¬b)) 0.004628834 0.0038597 Tautology
((a ∧ a)↔ ((c ∨ (b ∨ a)) ∧ a)) 0.0007324580001 0.0044997 Tautology
((a ⊃ (¬a ⊃ a))↔ (b ∨ c)) 0.002900167 0.0039172 No
(a ∨ (((Fa ⊃ a)↔ c) ∨ a)) 0.009698917 0.0043318 No

6

((a ∧ ¬a) ∨ ¬(a ∧ ¬a)) 0.000552709 0.0038286 Tautology
((a ⊃ (¬a ⊃ a))↔ (b↔ Hc)) 0.0077755 0.0049203 No
(a ∨ (b ∨ ((a ∧ Fa) ∨ ¬a))) 0.000863458 0.0036696 Tautology

(Ga ⊃ G(Fa ∧ Pa)) 0.735242875 0.0079102 No/ Tautology
(G(a↔ b) ⊃ (Ga↔ Gb)) 0.007246333 0.0056469 Tautology

(((a↔ Ga) ∨ (a ⊃ a)) ⊃ (b ∧ b)) 0.033017042 0.0043376 No
((a↔ (a↔ a)) ∧ ¬(a ∧ ¬a)) 0.00122675 0.0039502 No
¬((b ∧ c)↔ (¬b ∧ ¬c)) 0.00137975 0.0040879 No

(a ∨ (Fa ∧ (G(b↔ c) ∨ a))) 1.857521333 0.0039533 No
(FGa ⊃ FGFa) 0.001526583 0.0046507 Tautology

((a ⊃ (b ∧ a)) ∧ ((c↔ b) ∨ ¬b)) 0.001221958 0.0043341 No
(F (a ∨ a) ⊃ (a ∨GFa)) 3.09420275 0.0040904 No
(G(c ⊃ c) ⊃ ((c ⊃ c) ∧ c)) 0.001147417 0.0038456 No
((Fa ∧ Fb) ⊃ F (a ∧ b)) 7.832815417 0.0046952 No
(¬¬a ⊃ (a ∨ ¬¬a)) 0.00097625 0.0035851 Tautology

Table B.2: Continuation of the extensive list of tested formulas for the comparison of the two
considered TL tableau solvers

17


	Introduction
	Temporal Logic
	Tableau rules for TL
	Research question
	Soundness and completeness in Kripke's models
	Twitter bot

	Methods
	Programming language
	Formula Factory
	Tableau solver
	Twitter posting
	Experiment

	Results
	The Twitter account
	Soundness and completeness
	Soundness
	Completeness

	Run time of the system
	Memory usage of the system
	Comparison with another temporal logic bot

	Conclusion
	Discussion
	Future improvements

	Appendix 
	Appendix

