
faculty of science
and engineering

mathematics and
applied mathematics

Computing Arakelov–
Green Functions on
Metrized Graphs

Bachelor’s Project Mathematics

July 2021

Student: R.M. van Dijk

First supervisor: Dr. J.S. Müller

Second assessor: O. Lorscheid

With special thanks to E. Kaya

Computing Arakelov–Green Functions on Metrized Graphs 2

Abstract

Arakelov–Green functions on metrized graphs have important applications in number theory,
and it is therefore useful to have an easy method of computing their values. This thesis provides
an introduction to metrized graphs and Arakelov–Green functions, before recalling several of
Zubeyir Cinkir’s findings in this field. We use these results to construct formulas for Arakelov–
Green functions with respect to any admissible metric, which allow us to devise an efficient
algorithm to compute the functions’ values. We conclude by applying this algorithm to five
different examples using an implementation in Sage.

Contents

1 Introduction 3
1.1 Graph theory in brief . 3
1.2 Metrics and measures . 4

2 Metrized graphs 6
2.1 Parametrized and metrized graphs . 6
2.2 The metric on metrized graphs . 10
2.3 Measures on metrized graphs . 13
2.4 The discrete Laplacian matrix . 14
2.5 Polarized metrized graphs . 14

3 Piecewise smooth functions on a metrized graph 15
3.1 Derivatives on metrized graphs . 15
3.2 The Laplacian operator . 16

4 Voltage and resistance functions 18
4.1 Metrized graphs as electrical networks . 18
4.2 Explicit formulas for the resistance function . 18

5 Arakelov–Green functions 21
5.1 Arakelov–Green functions . 21
5.2 The canonical measure . 22
5.3 Divisors and admissible metrics . 24

6 An algorithm to compute Arakelov–Green functions 29
6.1 Initialization . 29
6.2 The connectivity matrix . 29
6.3 Computing κD on each edge . 31
6.4 Computing the Arakelov–Green matrix . 31
6.5 Consistency checks . 33

7 Computational examples 34
7.1 The circle graph . 34
7.2 Joint circles . 34
7.3 A canonical divisor . 35
7.4 The epsilon invariant on a tesseract . 37
7.5 The epsilon invariant on a banana graph . 38

8 Conclusion 39

A Sage code 41
A.1 The MetrizedGraph class . 41
A.2 Well-definedness test . 48
A.3 Vertex value test . 49

Computing Arakelov–Green Functions on Metrized Graphs 3

1 Introduction
Metrized graphs are interesting for many fields of science, including circuit design, neurobiology,
quantum physics and tropical geometry [1]. In particular, certain functions on these metrized graphs,
known as Arakelov–Green functions, have important applications in number theory, as explained by
Zhang in [17].

In [8], Zubeyir Cinkir gives a set of formulas for the Arakelov–Green function gµcan with respect to
the canonical measure, which in turn allowed him to design an efficient algorithm to compute its
values. He also suggests an approach to extend these formulas so that it can be used to compute
gµD , which is a generalization of gµcan introduced in by Zhang in [17]. However, Cinkir does not give
any concrete expressions or proofs for this method.

The main goal of this Bachelor’s thesis is to determine these formulas for gµD . Then, with these
expressions, we devise an algorithm to efficiently compute values of gµD , and implement it in Sage.

The remainder of this section recalls preliminaries from graph and measure theory. Section 2 details
the fundamental notions related to metrized graphs, along with some elementary but important
results. Section 3 discusses ideas from calculus, such as differentiation and smoothness, but applies
them to functions on metrized graphs. Section 4 considers two such important functions, called the
voltage and resistance functions. Theorem 4.8 summarizes one of Cinkir’s findings concerning the
resistance function.

Section 5 defines Arakelov–Green functions, gives Cinkir’s main result in Theorem 5.9, and extends
it in Theorem 5.20. Section 6 uses Theorem 5.20 for an algorithm to compute values of gµD , which we
apply to a number of examples in Section 7. Specifically, Section 7.4 discusses the epsilon invariant
and provides a method to compute it.

1.1 Graph theory in brief

A graph is, loosely speaking, a collection of points (vertices) along with a collection of links between
pairs of vertices (edges). More concretely, a simple graph is defined as follows:

Definition 1.1 (Simple graphs). An undirected simple graph is a pair G = (V (G), E(G)), where
V (G) is a set, and E(G) a set of unordered pairs of elements in V (G):

E(G) ⊂ {{p, q} : p, q ∈ V (G) and p 6= q} .

A directed simple graph G is constructed similarly, except that E(G) consists of ordered pairs:

E(G) ⊂ {(p, q) : p, q ∈ V (G) and p 6= q} .

In either case, the elements of V (G) are called vertices and the elements of E(G) are called edges.
The end points of an edge are the entries of the pair.

An example of a simple graph is given in Figure 1a: the vertices are denoted as points, and edges
are pictured as line segments between those vertices.

Our definition can be extended to general graphs, which can have self-loops (an edge connecting
a vertex to itself, see Figure 1b) and multiple edges (more than one edge for a pair of points, see
Figure 1c), but for our purposes, an intuitive idea of those properties, and thus of graphs in general,
suffices.

(a) A simple graph. (b) A graph with a self-loop. (c) A graph with a double edge.

Figure 1: Graphs.

Computing Arakelov–Green Functions on Metrized Graphs 4

A (finite) path on a graph G is a subset {e1, e2, . . . , en} ⊂ E(G) such that there is a set of distinct
vertices {p1, p2, . . . , pn+1} ⊂ V (G) satisfying ei = {pi, pi+1}; a path between p, q ∈ V (G) is a path
such that p = p1 and q = pn+1. A graph is called connected if there is a path between any two
vertices p, q ∈ V (G).

In our visual analogy, a graph is connected if we can draw all of its edges without lifting our pen.
Thus, all graphs in Figure 1 are connected.

Definition 1.2 (Valence). Let G = (V (G), E(G)) be an undirected graph. For a vertex p ∈ V (G),
the valence vG(p) is the number of edges that connect to p, where self-loops are counted twice.

We call a graph finite if it has finitely many vertices. Note that on a finite simple graph, the valence
of any vertex is finite.

More information about graphs and related topics can be found in [11].

1.2 Metrics and measures

Let X be a set. A metric d on X is a non-negative, symmetric map d : X2 → R with the property
that d(x, y) = 0 if and only if x = y, and which satisfies the triangle inequality

d(x, y) ≤ d(x, z) + d(z, y)

for any x, y, z ∈ X. Intuitively, a metric measures the “distance” between two points in X. The
pair (X, d) is called a metric space; when the metric d is obvious from the context, we simply refer
to the metric space with X. For instance, when we mention the real line R, we refer to the metric
space (R, d), where d(x, y) = |x− y|.

We call a set S ⊂ X open in (X, d) if, for every x ∈ S, there exists an ε > 0 such that

{y ∈ X : d(x, y) < ε} ⊂ S.

The collection of all open sets in (X, d) is called the topology of the metric space. A map f : X → X ′,
where (X ′, d′) is another metric space, is continuous if for any open set S ′ in (X ′, d′), the preimage
f−1(S ′) is also open in (X, d).

A σ-algebra on X is a collection Σ of subsets of X, satisfying the following three properties:

i) We have X ∈ Σ;

ii) If S ∈ Σ, then X \ S ∈ Σ;

iii) If S1, S2, . . . ∈ Σ, then ∪∞i=1Si ∈ Σ.

The elements of Σ are called measurable sets. On a metric (or any topological) space (X, d), we can
define a natural σ-algebra called the Borel σ-algebra, denoted B(X, d), or B(X) when d is obvious.
This is the smallest σ-algebra on X that contains all sets in its topology.

Given a σ-algebra Σ on X, we can define a (signed) measure on the measurable space (X,Σ), which
is a map µ : Σ→ R ∪ {−∞,∞} that satisfies µ(∅) = 0 and

µ

(
∞⊔
i=1

Si

)
=
∞∑
i=1

µ(Si)

for any disjoint S1, S2, . . . ∈ Σ. Informally speaking, a measure measures the “size” of the measurable
sets in the corresponding σ-algebra; note that that size can be negative and infinite. A measure on
a measurable space with Borel σ-algebra is also called a (signed) Borel measure.

For each measure µ, there exist measurable sets S+ and S− such that X = S+ t S− and such that
µ(S) ≥ 0 for all measurable S ⊂ S+, and µ(S) ≤ 0 for all measurable S ⊂ S−. The variation |µ|
of µ is then defined as

|µ|(S) = µ(S ∩ S+)− µ(S ∩ S−).

Computing Arakelov–Green Functions on Metrized Graphs 5

Given a measure µ, a measurable set S and a suitable† function f : X → R, we can integrate f over
S with respect to µ. Perhaps the most famous method of integration derived this way is Lebesgue
integration, using the Lebesgue measure. In situations of interest to us, Lebesgue integration is
equivalent to Riemann integration. Another important measure is the Dirac measure:

Example 1.3. Let X be a metric space and B(X) its Borel σ-algebra. Given a fixed point p ∈ X,
the Dirac measure δp is defined as

δp(S) :=

{
1 if p ∈ S,
0 if p /∈ S.

Now, let f : X → R and S ∈ B(X). We integrate f over S with respect to δp as follows:∫
S

f(x)dδp(x) = δp(S)f(p).

We can construct another measure by taking several p1, p2, . . . , pn ∈ X and c1, c2, . . . , cn ∈ R:

µ :=
n∑
i=1

ciδpi .

The integral of f with respect to this measure is given by∫
S

f(x)dµ(x) =
n∑
i=1

ci

∫
S

f(x)dδpi(x) =
n∑
i=1

ciδpi(S)f(pi).

More on the theory of metric spaces can be found in [15]; more about measure and integration in
[10].

†The function must be integrable with respect to the measure; all functions that we consider in this thesis are
integrable, so we will not discuss this notion in detail.

Computing Arakelov–Green Functions on Metrized Graphs 6

2 Metrized graphs

2.1 Parametrized and metrized graphs

In Figure 1, we drew the edges of a graph as line segments (or, more generally, as curves). However,
in Definition 1.1, edges are only formal links between vertices: they do not contain any points
themselves, let alone a continuum like our drawings suggest. Still, it seems natural to extend the
definition of a graph and regard edges as more than just abstract pairs.

This extension is formalized in the notion of a parametrized graph: simple graphs whose edges, as
the name suggests, have parametrizations.

Definition 2.1 (Parametrized graph). Let G = (V (G), E(G)) be a finite, undirected simple graph.
Although E(G) consists of undirected edges, each edge e = {p, q} gives rise to two directed edges,
called orientations: (p, q) and (q, p). We can refer to the edge e and one of its orientations (p, q)
interchangeably by fixing (p, q) to be the orientation of e.

With each edge e ∈ E(G), we associate a length λe > 0, and for an orientation (p, q) of e,
a parametrization ϕ(p,q). That is, a bijection ϕ(p,q) : [0, λe] → e such that ϕ(p,q)(0) = p and
ϕ(p,q)(λe) = q.

For the two orientations (p, q) and (q, p) of the same edge, we require that ϕ(p,q)(t) = ϕ(q,p)(λe − t).
Additionally, for two distinct edges e, e′ ∈ E(G) with fixed orientations, there is no t ∈ (0, λe) and
t′ ∈ (0, λe′) such that ϕe(t) = ϕe′(t

′).

Denote by P (G) the set of parametrizations for the edges in E(G). Then, we call the triple
(V (G), E(G), P (G)) a parametrized graph. When clear from the context, we simply refer to
it as G. The total length of a parametrized graph is

λ(G) :=
∑

e∈E(G)

λe.

Example 2.2. Consider the parametrized graph in Figure 2. Each edge has a length as indicated,
and we fix their orientations as (1, i), (i,−1) and (−1, 1). Now, we parametrize the edges as

ϕ(1,i)(t) := eit, ϕ(i,−1)(t) := ieit, ϕ(−1,1)(t) := −eit.

These maps are indeed bijective on their respective domains, and

ϕ(1,i)(0) = 1, ϕ(1,i)(
1
2
π) = i;

ϕ(i,−1)(0) = i, ϕ(i,−1)(
1
2
π) = −1;

ϕ(−1,1)(0) = −1, ϕ(−1,1)(π) = 1.

None of the parametrizations intersect each other on the interior of their domains, either, so we have
constructed a valid parametrized graph.

1

i

−1

1
2
π1

2
π

π

Figure 2: A parametrized graph with vertices in the complex plane.

Now that we can consider edges as curves rather than abstract links, we can look more closely at
the points on an edge. Given an oriented edge e of a parametrized graph G, and a point x = ϕe(t)
for some t ∈ (0, λe), how can we amend G so that x is also a vertex? The most natural way to do
this is by subdividing our edge.

Computing Arakelov–Green Functions on Metrized Graphs 7

6 2 4 4 2 2 2 2

Figure 3: An edge and some subdivisions.

Definition 2.3 (Subdivisions of an edge). Let G and G′ be parametrized graphs such that e ∈ E(G)
with length λe, and e′1, e

′
2, . . . , e

′
n ∈ E(G′) with lengths λ′e′1

, λ′e′2
, . . . , λ′e′n . We say that {e′1, e′2, . . . , e′n}

is a subdivision of e, written ςG′(e) = {e′1, e′2, . . . , e′n}, if λe =
∑n

i=1 λ
′
e′i

and we can fix orientations

for e, e′1, . . . , e
′
n such that

ϕe(t) =

ϕe′1(t) if 0 ≤ t ≤ λ′e′1
,

ϕe′2

(
t− λ′e′1

)
if λ′e′1

≤ t ≤ λ′e′1
+ λ′e′2

,
...

ϕe′n

(
t−
∑n−1

i=1 λ
′
e′i

)
if
∑n−1

i=1 λ
′
e′i
≤ t ≤

∑n
i=1 λ

′
e′i
.

An edge, parametrized as a line segment, is pictured in Figure 3 along with three of its subdivisions.

Definition 2.4 (Refinements of parametrized graphs). Let G and G′ be parametrized graphs. We
say that G′ is a refinement of G, written G′ ≤ G, if

E(G′) =
⋃

e∈E(G)

ςG′(e).

Proposition 2.5 (Refinements preserve total length). Let G′ ≤ G be parametrized graphs. Then
λ(G′) = λ(G).

Proof. This is equivalent to saying that the union in Definition 2.4 is disjoint. Suppose that there
exists an edge e′ ∈ E(G′) such that e′ ∈ ςG′(e1) and e′ ∈ ςG′(e2), where e1, e2 ∈ E(G). Then there
exist λ′1 ∈ [0, λe1) and λ′2 ∈ [0, λe2)

† such that

ϕe1(t) = ϕe′(t− λ′1) for λ′1 ≤ t ≤ λ′1 + λ′e′

and
ϕe2(t) = ϕe′(t− λ′2) for λ′2 ≤ t ≤ λ′2 + λ′e′ .

In particular, if we pick any t1 ∈ (λ′1, λ
′
1 + λ′e′) and put t2 = t1− λ′1 + λ′2, then t2 ∈ (λ′2, λ

′
2 + λ′e′) and

ϕe1(t1) = ϕe′(t1 − λ′1) = ϕe′(t2 − λ′2) = ϕe2(t2).

By the requirements in Definition 2.1, this is not possible if e1 6= e2. Therefore,

E(G′) =
⊔

e∈E(G)

ςG′(e),

which implies that ∑
e′∈E(G′)

λ′e′ =
∑

e∈E(G)

 ∑
e′∈ςG′ (e)

λ′e′

and thus that

λ(G) =
∑

e∈E(G)

λe =
∑

e∈E(G)

 ∑
e′∈ςG′ (e)

λ′e′

 =
∑

e′∈E(G′)

λ′e′ = λ(G′).

†See Definition 2.3 for an expression for λ′1 and λ′2, which depend on the other edges in the respective subdivisions.

Computing Arakelov–Green Functions on Metrized Graphs 8

Proposition 2.6 (Refinements preserve valence). Let G′ ≤ G be parametrized graphs. For any
p ∈ V (G), we have p ∈ V (G′) and vG′(p) = vG(p).

Proof. Subdividing an edge preserves its end points as vertices, and preserves the end points’ valence.
Since E(G′) exclusively consists of edges that form subdivisions of edges in E(G), the valence of each
end point of each edge in E(G) is preserved. This means precisely that the valence of each vertex in
V (G) is preserved.

Proposition 2.7 (Partial ordering [1, Section 2]). The relationship G′ ≤ G in Definition 2.4 defines
a partial order on the set of parametrized graphs.

Proof. We will go through the axioms of a partial order one by one.

(Reflexivity) Clearly, E(G) = ∪e∈E(G){e}, and ςG(e) = {e} is a subdivision of e, so G ≤ G.

(Antisymmetry) Let G′ ≤ G and G ≤ G′. From Proposition 2.6, we know that G′ ≤ G implies
that V (G′) ⊃ V (G), and G ≤ G′ implies that V (G) ⊃ V (G′), so V (G) = V (G′). Now, considering
the definition of a subdivision, the relations G′ ≤ G and V (G) = V (G′) can only hold if ςG′(e) = {e}
for each e ∈ E(G). This implies that E(G′) = ∪e∈E(G){e} = E(G) and thus that G = G′.

(Transitivity) Let G′′ ≤ G′ and G′ ≤ G. Then E(G′′) consists of subdivisions of the edges in
E(G′), which in turn consists of subdivisions of edges in E(G). Thus, for any edge e ∈ E(G) we
have the subdivision

ςG′′(e) =
⋃

e′∈ςG′ (e)

ςG′′(e
′),

so G′′ ≤ G.

Not only do refinements allow us to compare parametrized graphs, they also give us an intuitive way
to group parametrized graphs together, using the concept of equivalence.

Definition 2.8 (Equivalent parametrized graphs). Let G and G′ be two parametrized graphs. We
say that G and G′ are equivalent, written G ∼ G′, if there exists a parametrized graph G′′ such
that G′′ ≤ G and G′′ ≤ G′.

Let us check that Definition 2.8 describes an equivalence relationship.

(Reflexivity) Since refinements are a partial ordering, we have that G ≤ G, so G ∼ G.

(Symmetry) Let G ∼ G′, so there is a G′′ such that G′′ ≤ G and G′′ ≤ G′. Clearly, this also implies
that G′ ∼ G.

(Transitivity) Let G ∼ G′ and G′ ∼ G′′. This means that there are G1 and G2 such that

G1 ≤ G, G1 ≤ G′, G2 ≤ G′, G2 ≤ G′′.

We claim that there is a G3 such that G3 ≤ G1 and G3 ≤ G2. To that end, write

E(G1) =
⋃

e∈E(G′)

ςG1(e), E(G2) =
⋃

e∈E(G′)

ςG2(e).

We focus on a single edge e ∈ E(G′), for which we write

ςG1(e) = {e1
1, e

1
2, . . . , e

1
n1
}, ςG2(e) = {e2

1, e
2
2, . . . , e

2
n2
}.

Each of these collections of edges gives rise to a collection of vertices by taking the end points of
each edge in the subdivision:

νG1(e) :=
{
p : p is an end point of some e1 ∈ ςG1(e)

}
=
{
p1

1, p
1
2, . . . , p

1
n1+1

}
,

νG2(e) :=
{
p : p is an end point of some e2 ∈ ςG2(e)

}
=
{
p2

1, p
2
2, . . . , p

2
n2+1

}
.

Computing Arakelov–Green Functions on Metrized Graphs 9

This allows us to construct a new subdivision of e (whose orientation we fix, but it does not matter
which orientation we choose):

ςG3(e) =
{

(pi, pi+1) : pi, pi+1 ∈ νG1(e) ∪ νG2(e) such that ϕ−1
e (pi) < ϕ−1

e (pi+1)

and there is no p′ ∈ νG1(e) ∪ νG2(e) such that ϕ−1
e (pi) < ϕ−1

e (p′) < ϕ−1
e (pi+1)

}
.

The length of each e3 = (p, q) ∈ ςG3(e) is given by λe3 := ϕ−1
e (q)− ϕ−1

e (p), and the parametrizations
are constructed to satisfy the equation in Definition 2.3, so that ςG3(e) is indeed a subdivision of e.
Furthermore, our construction ensures that ςG3(e) also contains subdivisions of each e1 ∈ ςG1(e) and
each e2 ∈ ςG2(e).

Repeating this construction for each e ∈ E(G′) yields a parametrized graph G3 that is a refinement
of both G1 and G2. By the transitivity property of the partial ordering, this implies that G3 ≤ G
and G3 ≤ G′′, which means that G ∼ G′′.

Since all three axioms are satisfied, Definition 2.8 describes an equivalence relationship between
parametrized graphs. Hence, we can group parametrized graphs with the same general structure
into equivalence classes.

Definition 2.9 (Metrized graph). A metrized graph Γ is an equivalence class of parametrized
graphs. A parametrized graph G is called a model for the metrized graph Γ if it is in the equivalence
class Γ.

Remark 2.10. The construction we used to define metrized graphs is based on the correspondence
sketched in [1, Section 2], but formalizes notions such as refinements and equivalence, and defines
parametrizations as a property of metrized graphs. A different but equivalent definition of a metrized
graph is given in [1, Definition 2].

A metrized graph is strictly speaking not a graph itself, but we can relate it with the properties of
a parametrized graph. Given a metrized graph Γ, we can choose a model G and equip Γ with the
vertex set V (Γ) := V (G), edge set E(Γ) := E(G) and set of parametrizations P (Γ) := P (G). This
choice is not unique, but when we choose a vertex set, the set of edges and parametrizations uniquely
follow from the corresponding model.

Proposition 2.5 tells us that the total length λ(Γ) := λ(G), where G is an arbitrary model for Γ,
is well-defined.

Instead of an equivalence class of graphs, we can also consider Γ as a set of points: we say that
p ∈ Γ if there exists a model G for Γ such that p ∈ V (G). The valence v(p) is then defined as
v(p) = vG(p), where G is any model for Γ such that p ∈ V (G). Proposition 2.6 ensures that this
value is also well-defined.

Given a point x ∈ Γ, a model G for Γ and an edge e = {p, q} ∈ E(Γ) = E(G), we say that x ∈ e if
x = p, x = q, or there is a refinement G′ of G such that {p, x}, {x, q} ∈ E(G′). Note that if x ∈ e is
not an end point, we must have that v(x) = 2.

When we write Γ− e, we mean Γ without the interior of the edge e. That is, for e = {p, q},

{x ∈ Γ : x /∈ e} ∪ {p, q}.

This notation will be used throughout this thesis.

Proposition 2.11 (Identifying points on a metrized graph). Let Γ be a metrized graph and G a
model for Γ. A point x is a point of Γ if and only if there is an edge e ∈ E(G) and a tx ∈ [0, λe]
such that, for some orientation of e,

ϕe(tx) = x.

In particular, x ∈ e if and only if there exists a tx ∈ [0, λe] such that ϕe(tx) = x.

Computing Arakelov–Green Functions on Metrized Graphs 10

Proof. Let e = (p, q) ∈ E(G) and suppose that x ∈ e. If x = p, then ϕe(0) = x. If x = q, then
ϕe(λe) = x. If x ∈ e \ {p, q}, then there exists a refinement G′ ≤ G with e′1 = (p, x) ∈ E(G′) and
e′2 = (x, q) ∈ E(G′). By the definition of refinement, this is only possible if {e′1, e′2} is a subdivision
of e. Therefore,

ϕe(λ
′
e′1

) = ϕe′1(λ
′
e′1

) = x.

Now suppose that there exists a tx ∈ [0, λe] such that ϕe(tx) = x. If tx = 0, then x = p so x ∈ e. If
tx = λe, then x = q so x ∈ e. Suppose that tx ∈ (0, λe). We can construct a subdivision {e′1, e′2} of e
as follows.

Put e′1 = (p, x) with length λ′e′1
= tx, and e′2 = (x, q) with λ′e′2

= λe − t∗. Parametrize these edges

with ϕe′1(t) = ϕe(t) and ϕe′1(t) = ϕe(t+ tx). Then {e′1, e′2} is indeed a subdivision of e.

This subdivision gives rise to a refinement G′ ≤ G with (p, x), (x, q) ∈ E(G′), so x ∈ e.

Remark 2.12. Proposition 2.11 gives us a method to explicitly describe an abstract point x ∈ Γ.
Let V (Γ) be some choice of vertex set, and fix the orientation of each edge in the corresponding
edge set E(Γ). Then, x = ϕe(tx) for some e ∈ E(Γ) and some tx ∈ [0, λe]. In fact, if x /∈ V (Γ), this
expression is unique.

We can simplify notation by denoting x by the pair (e, tx), which are called the coordinates of x.
If the edge we are working on is clear from the context, we may also refer to x with the coordinate
tx alone. Typically, by abuse of notation, we use x to denote both the abstract point of Γ and the
real number tx.

Example 2.13. Recall the parametrized graph G from Example 2.2. We want to determine the
points of the metrized graph Γ that arises from G, using Proposition 2.11. To that end, we consider
the union of images

ϕ(1,i)

(
[0, 1

2
π]
)
∪ ϕ(i,−1)

(
[0, 1

2
π]
)
∪ ϕ(−1,1) ([0, π])

=
{
et : t ∈ [0, 1

2
π]
}
∪
{
iet : t ∈ [0, 1

2
π]
}
∪
{
−et : t ∈ [0, π]

}
=
{
et : t ∈ [0, 2π]

}
= {z ∈ C : |z| = 1} .

So Γ is the unit circle in the complex plane.

2.2 The metric on metrized graphs

From this section onward, we assume that parametrized graphs are connected, and thus that models
of a metrized graph are connected. Given a vertex set V (Γ) for a metrized graph Γ, we say that an
edge e = {p, q} ∈ E(Γ) is a bridge if the models for Γ are connected, but the models for Γ− e are
not. In that case, the models for Γ− e consist of two disconnected subgraphs, which in turn give rise
to two metrized graphs: Γp containing p, and Γq containing q. We will use this notation throughout
the rest of this thesis.

Example 2.14. Consider the metrized graph Γ for which a model is shown in Figure 4. We use this
model to equip Γ with the vertex set V (Γ).

The edge e ∈ E(Γ) is a bridge: if e were deleted, we would be left with a subgraph with vertices
{p1, p2, p3}, and a subgraph with vertices {p4, p5, p6}, without an edge between the two subgraphs.
These subgraphs are models for the metrized graphs Γp3 and Γp4 . Note that p1, p2, p3 ∈ Γp3 and
p4, p5, p6 ∈ Γp4 .

In general, for a bridge e = {p, q} and an edge e′ 6= e, either e′ ⊂ Γp or e′ ⊂ Γq.

With our assumption that parametrized graphs are connected, we can define a metric on parametrized
graph, which also allows us to define a metric on metrized graphs.

Computing Arakelov–Green Functions on Metrized Graphs 11

Definition 2.15 (Metric on a parametrized graph). Let G be a parametrized graph and p, q ∈ V (G).
The metric dG(p, q) is defined as the length of the shortest path between p and q. That is,

dG(p, q) := min

{
n∑
i=1

λei : {e1, e2, . . . , en} is a path between p and q

}
.

Remark 2.16. Note that dG only relies on the lengths of the edges of G, not the parametrizations
of those edges. In fact, the metric in Definition 2.15 describes a specific case of the graph dis-
tance. This quantity is thoroughly studied in graph theory and known to be a metric on connected
undirected graphs whose edges have lengths [11, Chapter 2, “Walks and connectedness”]. So, in
particular, dG is indeed a metric in the parametrized graph G.

Definition 2.17 (Metric on a metrized graph). Let Γ be a metrized graph and p, q ∈ Γ. The metric
d(p, q) is defined as

d(p, q) := dG(p, q),

where G is any model for Γ such that p, q ∈ V (G).

Lemma 2.18 (Well-definedness of the metric). Let Γ be a metrized graph with p, q ∈ Γ. The value
of d(p, q) as defined in 2.17 is independent of our choice of a model G satisfying p, q ∈ V (G).

Proof. Let G and G′ be models for Γ such that p, q ∈ V (G) and p, q ∈ V (G′). Since G ∼ G′, there
exists a model G′′ such that G′′ ≤ G and G′′ ≤ G′.

Let {e1, e2, . . . , en} ⊂ E(G) be a path between p and q such that dG(p, q) =
∑n

i=1 λei . Then there is
a path

n⋃
i=1

ςG′′(ei) ⊂ E(G′′)

between p and q with, by the same reasoning we used to prove Proposition 2.5, length

n∑
i=1

 ∑
e′′∈ςG′′ (ei)

λ′′e′′

 =
n∑
i=1

λei = dG(p, q).

Thus, the length of the shortest path on G′′ between p and q is at most dG(p, q):

dG′′(p, q) ≤ dG(p, q).

Now, let ω = {e′′1, e′′2, . . . , e′′m} ⊂ E(G′′) be a path between p and q such that dG′′(p, q) =
∑m

i=1 λ
′′
e′′i

.

Let π denote the set of end points of the edges in ω:

π = {p′′1 = p, p′′2, . . . , p
′′
m+1 = q} ⊂ V (G′′).

Intersecting this set with V (G) yields a set of vertices of G, which includes p and q:

π ∩ V (G) = {p′′k1 = p, p′′k2 , . . . , p
′′
kn∗+1

= q}.

Put e∗i = {p′′ki , p
′′
ki+1
} and consider the following path between p′′ki and p′′ki+1

:{
{p′′ki , p

′′
ki+1}, {p′′ki+1, p

′′
k1+2}, . . . , {p′′ki+1−1, p

′′
ki+1
}
}
⊂ E(G′′) (2.18.1)

p1

p2

p3 p4

p5

p6

e

Figure 4: A model for our metrized graph.

Computing Arakelov–Green Functions on Metrized Graphs 12

Only two end points of these edges are also vertices of G: p′′ki and p′′ki+1
. Hence, since G′′ is a

refinement of G, we have e∗i ∈ E(G), and the path in 2.18.1 is the subdivision ςG′′(e
∗
i).

This holds for all e∗i , so

ω =
n∗⋃
i=1

ςG′′(e
∗
i).

Therefore,

dG′′(p, q) =
m∑
i=1

λ′′e′′i =
n∗∑
i=1

 ∑
e′′∈ςG′′ (e∗i)

λ′′e′′

 =
n∗∑
i=1

λe∗i ≥ dG(p, q).

This yields dG(p, q) = dG′′(p, q) and, by the same reasoning, dG′(p, q) = dG′′(p, q). Therefore, we have
that dG(p, q) = dG′(p, q) for any models G and G′ with vertices p and q.

Remark 2.19. Since the graph distance is a metric on parametrized graphs, it follows that d from
Definition 2.17 is also a metric. Indeed, let Γ be a metrized graph, x, y, z ∈ Γ, and G a model for Γ
such that x, y, z ∈ V (G). Then d(x, y) = dG(x, y) ≥ 0, with d(x, y) = 0 only if x = y. Furthermore,
d(x, y) = dG(x, y) = dG(y, x) = d(y, x), and the triangle inequality holds:

d(x, y) = dG(x, y) ≤ dG(x, z) + dG(z, y) = d(x, z) + d(z, y).

So Definition 2.17 indeed defines a metric on a metrized graph. Additionally, notice that d is
independent of the parametrizations, similarly to dG.

With Definition 2.17 in mind, we can regard a metrized graph as a metric space. From this point
onward, when we mention a metrized graph Γ, we refer to the metric space (Γ, d), equipped with
the metric d from Definition 2.17.

Given a map between a metrized graph and another metric space, we can now make sense of the
notion of continuity.

If two distinct edges e, e′ ∈ E(Γ) are bridges, the closest neighbours of e and e′ are defined as the
points on e respectively e′ that are a minimal distance from each other, i.e. the entries of the unique
pair

〈e, e′〉 := (x, x′)

for which
d(x, x′) = min {d(y, y′) : y ∈ e and y′ ∈ e′} .

The closest neighbours of a pair of edges are end points of the respective edges. Specifically, when
e = (p, q) and e′ = (p′, q′), then there are four options for closest neighbours:

〈e, e′〉 ⊂ {(p, p′), (p, q′), (q, p), (q, q′)} .

This terminology and observation will be used later, too.

Example 2.20. Consider the metrized graph with the vertex set of the model in Figure 5. The
edges e and e′ are bridges, and the closest neighbours are given by

〈e, e′〉 = (p2, p5).

p1
p2

p4

p3

p5

p6
e e′

Figure 5: A model for a metrized graph with two bridges.

Computing Arakelov–Green Functions on Metrized Graphs 13

Note that we do not need to know the length of the edges to determine the closest neighbours: a
path between, for instance, p1 and p5 will always be longer than the shortest path between p2 and
p5, because the former path will always include e.

2.3 Measures on metrized graphs

Now that we consider metrized graphs as metric spaces, we can equip the metrized graph Γ with the
Borel σ-algebra B(Γ). On the resulting measurable space (Γ,B(Γ)), we can define Borel measures.
We are particularly interested in measures of the form in Lemma 2.21:

Lemma 2.21 (Borel measures on metrized graphs). Let Γ be a metrized graph equipped with vertex
set V (Γ), and let n ∈ Z. For each edge e, let ge : Γ→ R be a continuous and bounded function, and,
for each i ∈ {1, 2, . . . , n}, let ci ∈ R. Then

µ =
∑
e∈E(Γ)

ge(x)dx|e +
n∑
i=1

ciδpi , (2.21.1)

where dx|e denotes the Lebesgue measure on e, and δp the Dirac measure on Γ, is a Borel measure
on Γ.

Proof. Let e ∈ E(Γ). Since e is closed in Γ, e is in B(Γ). The Lebesgue measure dx is defined on
the Borel σ-algebra of e, and the topology of e is given by

{open sets of e} = {S ∩ e : S is open in Γ},

which implies that
B(e) = {S ∩ e : S ∈ B(e)}.

Therefore, the measure
dx|e(S) := dx(S ∩ e)

is defined on B(Γ). Scaling dx|e with a real-valued continuous and bounded function does not change
its domain of definition.

As we saw in Example 1.3, the Dirac measure is a Borel measure, so δp for p ∈ Γ is a Borel measure
on Γ. Scaling δp with a real constant does not change its domain of definition.

Thus, all terms in 2.21.1 are Borel measures. Summing finitely many Borel measures again yields a
Borel measure, so the measure in 2.21.1 is a Borel measure on Γ.

For a function f : Γ→ R and an edge e ∈ E(Γ), we integrate as follows:∫
e

f(x)dx|e =

∫ λe

0

f(ϕe(t))dt and

∫
Γ

f(x)dδp(x) = f(p).

When integrating over the entire metrized graph with respect to the Lebesgue measure, we write∫
Γ

f(x)dx :=
∑
e∈E(Γ)

∫
e

f(x)dx|e.

Thus, for a measure of the general form in Equation 2.21.1,∫
Γ

f(x)dµ(x) =
∑
e∈E(Γ)

∫ λe

0

f(ϕe(t))ge(ϕe(t))dt+
n∑
i=1

cif(pi).

To compute this integral, we need to fix an orientation for each edge, but the value is independent
of our choice.

Computing Arakelov–Green Functions on Metrized Graphs 14

2.4 The discrete Laplacian matrix

Definition 2.22 (Discrete Laplacian matrix [8, Section 2]). Let Γ be a metrized graph with vertex
set V (Γ) = {p1, p2, . . . , pn}. Then the discrete Laplacian matrix of Γ (for this vertex set) is an
n× n matrix given by L := (lij), where

lij :=

0 if i 6= j and {pi, pj} /∈ E(Γ),

− 1
λ{pi,pj}

if i 6= j and {pi, pj} ∈ E(Γ),

−
∑

k∈{1,2,...,n}\{i} lik if i = j.

The discrete Laplacian matrix need not be invertible, so L does not necessarily have an inverse.
However, it does have a pseudo-inverse L+:

Definition 2.23 (Moore–Penrose pseudo-inverse [7, Section 3]). Let M ∈ Rm×n. The Moore–
Penrose pseudo-inverse is defined as the matrix M+ ∈ Rn×m satisfying all of the following condi-
tions:

i) MM+M = M ;

ii) M+MM+ = M+;

iii) (MM+)T = MM+;

iv) (M+M)T = M+M .

It can be shown that M+ exists and is unique for any M , so in particular, for any discrete Laplacian
matrix L.

Proposition 2.24 (Properties of the discrete Laplacian matrix and its pseudo-inverse [14, Theorem
10.1.2]). Let Γ be a metrized graph with equipped with V (Γ) = {p1, p2, . . . , pn}, and let L be the
corresponding discrete Laplacian matrix. Then

L+ =
(
L− 1

n
J
)−1

+ 1
n
J,

where J is the n × n matrix with all entries 1. In particular, since L is symmetric, L+ is also
symmetric.

2.5 Polarized metrized graphs

We can extend the definition of a metrized graph by assigning an integer to each point, yielding a
polarized metrized graph:

Definition 2.25 (Polarized metrized graph). Let Γ be a metrized graph and let ρ : Γ → Z≥0 be a
map satisfying ρ(p) 6= 0 for finitely many p ∈ Γ. We then call ρ a polarization and the pair (Γ, ρ)
a polarized metrized graph.

Example 2.26. Recall the complex unit circle Γ from Example 2.13. Define the polarization ρ as
ρ(1) = 1, ρ(i) = 2, and ρ(x) = 0 for all x ∈ Γ \ {1, i}. Then (Γ, ρ) is a polarized metrized graph.

Polarized metrized graphs arise from semistable models for algebraic curves, as discussed in [9] and
[12]. This theory is beyond the scope of this thesis, but we will use polarized metrized graphs later
to define the canonical divisor in Definition 5.12.

Computing Arakelov–Green Functions on Metrized Graphs 15

3 Piecewise smooth functions on a metrized graph

3.1 Derivatives on metrized graphs

Metrized graphs combine the discrete properties of graphs with the continuous properties of curves.
As such, we can consider notions such as differentiability and smoothness of functions on metrized
graphs, albeit with some peculiarities.

This section summarizes the most important definitions and results in [1, Section 3].

Definition 3.1 (Derivative at a vertex). Let Γ be a metrized graph with vertex set V (Γ) and
f : Γ→ R. Given an edge e = (p, q) ∈ E(Γ), we define the directional derivatives of the vertices
p and q along e as

Def(p) := lim
ε→0+

f(ϕe(ε))− f(p)

ε
,

Def(q) := lim
ε→0+

f(q)− f(ϕe(λe − ε))
ε

,

provided those limits exist.

Note that, if we explicitly write the orientations, D(p,q)f(p) = −D(q,p)f(p). If Def(p) exists, we say
that f is differentiable at p along e. We can also define differentiability on points that are not
vertices:

Definition 3.2 (Differentiability on non-vertices). Let Γ be a metrized graph with vertex set V (Γ),
e ∈ E(Γ) and f : Γ → R. We say that f is n-times differentiable at x ∈ e \ V (Γ) if, for some
orientation of e,

dn

dtn
f(ϕe(t))

∣∣∣∣
ϕe(t)=x

exists.

Although the existence of this quantity for one orientation directly implies that it exists for the other
orientation, the values need not be equal for both orientations. In fact, by the chain rule,

d

dt
f(ϕ(p,q)(t))

∣∣∣∣
ϕ(p,q)(t)=x

= − d

dt
f(ϕ(q,p)(t))

∣∣∣∣
ϕ(q,p)(t)=x

.

However, the second derivative on the interior of an edge is independent of the chosen orientation:

d2

dt2
f(ϕ(p,q)(t))

∣∣∣∣
ϕ(p,q)(t)=x

=
d

dt

[
d

dt

[
f ◦ ϕ(p,q)

]
(t)

] ∣∣∣∣
ϕ(p,q)(t)=x

=
d

dt

[
− d

dt

[
f ◦ ϕ(q,p)

]
(λ(p,q) − t)

] ∣∣∣∣
ϕ(q,p)(λ(p,q)−t)=x

= − d

dt

[
d

dt

[
f ◦ ϕ(q,p)

]
(λ(p,q) − t)

] ∣∣∣∣
ϕ(q,p)(λ(p,q)−t)=x

=
d2

dt2
[
f ◦ ϕ(q,p)

]
(λ(p,q) − t)

∣∣∣∣
ϕ(q,p)(λ(p,q)−t)=x

=
d2

dt2
[
f ◦ ϕ(q,p)

]
(t)

∣∣∣∣
ϕ(q,p)(t)=x

=
d2

dt2
f(ϕ(q,p)(t))

∣∣∣∣
ϕ(q,p)(t)=x

.

We can thus safely define the second derivative on the interior of an edge.

Definition 3.3 (Second derivative). Let Γ be a metrized graph with vertex set V (Γ), e ∈ E(Γ),
and let f : Γ→ R be twice differentiable at x ∈ e \ V (Γ). Then the second derivative of f at x is
defined as

f ′′(x) :=
d2

dt2
f(ϕe(t))

∣∣∣∣
ϕe(t)=x

.

Computing Arakelov–Green Functions on Metrized Graphs 16

We can now classify especially “nice” functions on metrized graphs, which we call piecewise
smooth. We restrict ourselves to these functions in the rest of this text.

Definition 3.4 (Piecewise smooth functions). Let Γ be a metrized graph and let f : Γ → R be
continuous. We say that f is piecewise smooth if there exists a model Gf for Γ such that all of
the following conditions are satisfied:

i) For each p ∈ V (Gf) and each e ∈ E(Gf) such that p ∈ e, we have that Def(p) exists;

ii) For each e ∈ E(Gf), f is twice differentiable at every x ∈ e \ V (Gf);

iii) For each e ∈ E(Gf), f
′′ is bounded on e \ V (Gf).

Remark 3.5. Some readers may object that Definition 3.4 only requires twice-differentiability,
while smooth functions from calculus are infinitely differentiable. The name “piecewise twice-
differentiable” would thus be more appropriate, but that term is awkwardly long, and for our
purposes, twice-differentiable functions are smooth enough.

3.2 The Laplacian operator

Being piecewise smooth on a metrized graph is similar to being twice-differentiable on Rn. As such,
it makes sense to define an analogy for the real Laplacian operator on metrized graphs. Unlike its
Euclidean counterpart however, the Laplacian of a piecewise smooth function on a metrized graph
is not a function, but a measure of the form in 2.21.1.

Definition 3.6 (Laplacian operator). Let Γ be a metrized graph and let f : Γ → R be piecewise
smooth, with Gf a model as described in Definition 3.4. The Laplacian of f is defined as the
following signed Borel measure on Γ:

∆f :=
∑

e∈E(Gf)

[
−f ′′(x)dx|e +Def(ϕe(λe))δϕe(λe) −Def(ϕe(0))δϕe(0)

]
.

Remark 3.7. Definition 3.6 differs from [1, Definition 5], but in the same text, the two definitions
were shown to be equivalent. We opted to define the Laplacian operator this way because it allows
for easier computations and because it coincides better with the notation we have used thus far. For
instance, we can immediately tell that the Laplacian of a function is a Borel measure because it is
of the form in 2.21.1.

Remark 3.8. We need to choose a model Gf and an orientation for each edge for Definition 3.6
to make sense, but the resulting measure is independent of our choice. This can be proven using
the fact that if a model Gf satisfies the properties in Definition 3.4, then a refinement G′f ≤ Gf is
satisfactory too. Because

f(x)dx|e =
∑

e′∈ςG′
f

(e)

f(x)dx|e

for each e ∈ V (Gf), and via the same reasoning we used in the proof of Lemma 2.18, we find that
the Laplacian is independent of our choice of model. Independence of orientation follows from our
earlier discovery that D(p,q)f(p) = −D(q,p)f(p).

Example 3.9. Consider the complex unit circle Γ, that is, the metrized graph from Example 2.13.
Define f : Γ→ R by

f(z) :=

Re(z) if 0 ≤ Arg(z) ≤ 1

2
π,

Im(z)− 1 if 1
2
π ≤ Arg(z) ≤ 3

2
π,

Re(z2) + Im(z) if 3
2
π ≤ Arg(z) ≤ 2π.

A suitable Gf is as pictured in Figure 6, with edges enumerated and oriented as indicated. The
corresponding parametrizations are

ϕe1(t) = eit, t ∈ [0, 1
2
π];

ϕe2(t) = ieit, t ∈ [0, π];

Computing Arakelov–Green Functions on Metrized Graphs 17

1

i

−i

e1

e2

e3

Figure 6: Parametrized graph Gf for the function in example 3.9.

ϕe3(t) = −ieit, t ∈ [0, 1
2
π].

We will compute the Laplacian using

∆f =
3∑

k=1

[
−f ′′(z)dz|ek +Dekf(ϕek(λek))δϕek (λek) −Dekf(ϕek(0))δϕek (0)

]
. (3.9.1)

We start with k = 1. On e1, we have

d2

dt2
f(ϕe1(t)) =

d2

dt2
Re(eit) =

d

dt2
cos(t) = − cos(t).

Combining ϕe1(t) = z with the fact that Re(eit) = cos(t) gives us

f ′′(z) = −Re(z)

on the interior of e1. As for the vertices,

De1f(ϕe1(0)) = lim
ε→0+

f(ϕe1(ε))− f(ϕe1(0))

ε
= lim

ε→0+

cos(ε)− cos(0)

ε
=

d

dt
cos(t)

∣∣∣∣
t=0

= − sin(0) = 0

and similarly
De1f(ϕe1(

1
2
π)) = sin(1

2
π) = 1.

Thus the first summand of 3.9.1 is
Re(z)dz|e1 + δi. (3.9.2)

The other terms can be computed in a similar fashion:

Im(z)dz|e2 , (3.9.3)

and
(4 Re(z2) + Im(z))dz|e3 − δ1. (3.9.4)

Summing equations 3.9.2, 3.9.3 and 3.9.4 yields

∆f = Re(z)dz|e1 + Im(z)dz|e2 +
(
4 Re(z2) + Im(z)

)
dz|e3 − δ1 + δi.

The Laplacian can be generalized for multivariate functions, e.g. f : Γ2 → R with variables x and y:

∆xf(y) :=
∑

e∈E(Gf)

[
−f ′′(x, y)dx|e +Def(ϕe(λe), y)δϕe(λe) −Def(ϕe(0), y)δϕe(0)

]
,

where we consider y as a constant and the derivatives are taken with respect to x. The object ∆xf
is thus a map from Γ to the set of Borel measures on Γ.

Further discussion of the Laplacian, as well as more computational examples, can be found in [1]
and [2].

Computing Arakelov–Green Functions on Metrized Graphs 18

4 Voltage and resistance functions

4.1 Metrized graphs as electrical networks

In this section, we discuss the correspondence between metrized graphs and electrical circuits. The
basis of this interpretation is the voltage function j, whose values can be interpreted as follows.
If a model G of Γ with x, y, z ∈ V (G) is viewed as an electrical network, with the resistance of each
connection (edge) given by its length, then jz(x, y) is the voltage difference between x and z when
unit current enters at y and exits at z, with reference voltage 0 at z; see [8, Section 3].

More rigorously, the voltage function is defined using the Laplacian.

Theorem 4.1 (Voltage function [1, Corollary 3 and Exercise 8]). Let Γ be a metrized graph. There
exists a unique function j : Γ3 → R such that

∆xjz(x, y) = δy − δz and jz(z, y) = 0.

This function j is called the voltage function on Γ.

We also define the resistance function, which corresponds to the physical concept of effective
resistance between two points on an electrical circuit.

Definition 4.2 (Resistance function). Let Γ be a metrized graph. The resistance function r is
defined as r(x, y) := jy(x, x).

With the physical interpretation in mind, the following results should not be surprising:

Proposition 4.3 (Properties of the voltage and resistance function [8, Section 3]). Let Γ be a
metrized graph, let w, x, y, z ∈ Γ and let j and r be the voltage and resistance function on Γ, respec-
tively. Then jz(x, y) ≥ 0 and jx(x, y) = 0, so r(x, y) ≥ 0 and r(x, x) = 0. Furthermore, we have
that

jz(x, y)− jz(w, y) = jw(y, x)− jw(z, x),

jz(x, y) = jz(y, x) and jz(x, x) = jx(z, z). Therefore, r(x, y) = r(y, x).

Lemma 4.4 (Expression of j in terms of r [8, Remark 3.5]). Let Γ be a metrized graph and x, y, z ∈ Γ.
Then

jz(x, y) = 1
2

(r(x, z) + r(y, z)− r(x, y)) .

Remark 4.5. Although the physical interpretation of j and r require us to choose a vertex set (and
thus the edges, i.e. wires), their formal definition ensures us that they are independent of our choice.
Furthermore, the function values only depend on the lengths of edges, not on their parametrizations.
Physically, this means that voltage differences and effective resistances depend on the resistances of
the wires, not on the shapes in which they are laid out.

4.2 Explicit formulas for the resistance function

Although Proposition 4.3 confirms the physical interpretation of the voltage and resistance functions,
we have yet to find a method to easily compute their values; from Example 3.9 we know that directly
working with the Laplacian can be rather cumbersome.

It turns out that, if we fix a vertex set for our metrized graph, we can compute the function values
at the vertices using the discrete Laplacian matrix:

Theorem 4.6 (Resistance and voltage function at vertices [6, Lemmas 3.4 and 3.5]). Let Γ be a
metrized graph with V (Γ) = {p1, p2, . . . , pn}. Denote the corresponding discrete Laplacian matrix by
L = (lij) and its pseudo-inverse by L+ = (l+ij). Then,

r(pi, pj) = l+ii − 2l+ij + l+jj and jpk(pi, pj) = l+kk − l
+
ik − l

+
jk + l+ij .

Proof. This can be proven by interpreting Γ as an electrical circuit and r(pi, pj) as the effective
resistance between the nodes pi and pj. The result then follows from Ohm’s law and Kirchhoff’s
voltage law [3, Chapter 10].

Computing Arakelov–Green Functions on Metrized Graphs 19

Lemma 4.7 gives formulas for the resistance function if one of the points is not a vertex; this is a
special case of Theorem 4.8 and will be used later. Note that, because of Lemma 4.4, this theorem
also gives us an easy method to compute values of the voltage function.

Recall the following conventions. If we equip a metrized graph Γ with the vertex set V (Γ), and fix
the orientation of an edge e in the corresponding edge set E(Γ), then we can refer to the edge by
that orientation. As discussed in Remark 2.12, for a point x ∈ e, we also denote the coordinate tx,
for which x = ϕe(tx), by x.

When e = (p, q) is a bridge, the connected metrized graphs that arise when e is deleted from the
model are denoted by Γp, which contains p, and Γq, which contains q. If e′ ∈ E(G) is a different
bridge, then 〈e, e′〉 denotes the pair of closest neighbours of e and e′ respectively.

Lemma 4.7 (Formulas for the resistance function at one vertex [8, Lemma 3.2 and Remark 3.4.2]).
Let Γ be a metrized graph with vertex set V (Γ) and edges with fixed orientations. Let (p, q) ∈ E(Γ),
x ∈ (p, q), and s ∈ V (Γ). If (p, q) is not a bridge, then

r(s, x) = −x2λ(p,q) − r(p, q)
λ2

(p,q)

+ x
λ(p,q) − r(p, q) + r(s, q)− r(s, p)

λ(p,q)

+ r(s, p). (4.7.1)

If (p, q) is a bridge, then

r(s, x) =

{
x+ r(s, p) if s ∈ Γp,

λ(p,q) − x+ r(s, q) if s ∈ Γq.
(4.7.2)

Proof. A proof of this result can be found in [8], which again exploits the correspondence between r
and the effective resistance on an electric circuit: relations between serial and parallel resistors allow
for “circuit reductions” that yield a graph that is simpler but equivalent in terms of resistance. More
details on this technique can be found in [16].

Theorem 4.8 (Formulas for the resistance function [8, Lemma 3.1, Theorem 3.3 and Remark 3.4]).
Let Γ be a metrized graph with vertex set V (Γ) and edges with fixed orientations. Let (p, q) ∈ E(Γ)
and x, y ∈ (p, q). If (p, q) is not a bridge, then

r(x, y) = |x− y| − (x− y)2 λ(p,q) − r(p, q)
λ2

(p,q)

. (4.8.1)

If (p, q) is a bridge, then
r(x, y) = |x− y| . (4.8.2)

Now let (p1, q1), (p2, q2) ∈ E(Γ) such that {p1, q1} 6= {p2, q2}, so that the edges are distinct but may
share an end point, and let x ∈ (p1, q1) and y ∈ (p2, q2). If neither edge is a bridge, then

r(x, y) =− x2λ(p1,q1) − r(p1, q1)

λ2
(p1,q1)

− y2λ(p2,q2) − r(p2, q2)

λ2
(p2,q2)

+
2xy

λ(p1,q1)λ(p2,q2)

(jp2(p1, q2)− jp2(q1, q2))

+
x

λ(p1,q1)

(
λ(p1,q1) − 2jp1(q1, p2)

)
+

y

λ(p2,q2)

(
λ(p2,q2) − 2jp2(p1, q2)

)
+ r(p1, p2).

(4.8.3)
If (p1, q1) is a bridge but (p2, q2) is not, then

r(x, y) =

x− y2λ(p2,q2) − r(p2, q2)

λ2
(p2,q2)

+ y
λ(p2,q2) − r(p2, q2) + r(p1, q2)− r(p1, p2)

λ(p2,q2)

+ r(p1, p2)

if (p2, q2) ⊂ Γp1 ,

λ(p1,q1) − x− y2λ(p2,q2) − r(p2, q2)

λ2
(p2,q2)

+ y
λ(p2,q2) − r(p2, q2) + r(q1, q2)− r(q1, p2)

λ(p2,q2)

+ r(q1, p2)

if (p2, q2) ⊂ Γq1 .

(4.8.4)

Computing Arakelov–Green Functions on Metrized Graphs 20

Lastly, if both (p1, q1) and (p2, q2) are bridges, then

r(x, y) =

x+ y + r(p1, p2) if 〈(p1, q1), (p2, q2)〉 = (p1, q1),

x+ λ(p2,q2) − y + r(p1, q2) if 〈(p1, q1), (p2, q2)〉 = (p1, q2),

λ(p1,q1) − x+ y + r(q1, p2) if 〈(p1, q1), (p2, q2)〉 = (q1, p2),

λ(p1,q1) − x+ λ(p2,q2) − y + r(q1, q2) if 〈(p1, q1), (p2, q2)〉 = (q1, q2).

(4.8.5)

Proof. Each of these formulas can be proven similarly to Lemma 4.7.

Computing Arakelov–Green Functions on Metrized Graphs 21

5 Arakelov–Green functions

5.1 Arakelov–Green functions

Originally introduced by Ted Chinburg, Robert Rumely and Shouwu Zhang, and inspired by the
Green’s functions that Suren Arakelov used on Riemann surfaces, Arakelov–Green functions are
a class of real-valued functions on metrized graphs that have important applications in number theory
[4]. Furthermore, several important invariants on metrized graphs are defined using Arakelov–Green
functions [9]. We discuss one of these invariants in Section 7.4.

The details of this motivation are beyond the scope of this thesis. Instead, this section defines
Arakelov–Green functions and considers specific cases with respect to the canonical measure and
other admissible metrics.

Definition 5.1 (Arakelov–Green function). Let Γ be a metrized graph and let µ be a signed Borel
measure on Γ such that µ(Γ) = 1 and |µ|(Γ) < ∞. The Arakelov–Green function gµ is defined
as

gµ(x, y) :=

∫
Γ

jz(x, y)dµ(z)−
∫

Γ3

jz(x, y)dµ(z)dµ(x)dµ(y),

where j is the voltage function on Γ. Note that the second term is a triple integral, and therefore a
constant dependent on Γ and µ.

Remark 5.2. As we saw in Remark 4.5, the voltage function is independent of choices of models
and the corresponding parametrizations. Hence, Arakelov–Green functions are also independent of
models and parametrizations.

Example 5.3. Integrals with respect to abstract measures can be quite complicated to work with.
Let us consider an ostensibly easy example: let Γ be the complex unit circle from Example 2.13, and
let

µn :=
n−1∑
k=0

akδe2kπi/n

for some n ∈ N and ak ∈ R for all k, satisfying
∑n−1

k=0 ak = 1. Then∫
Γ

jz(x, y)dµn(z) =
n−1∑
k=0

ak

∫
Γ

jz(x, y)dδe2kπi/n(z) =
n−1∑
k=0

akje2kπi/n(x, y)

and ∫
Γ3

jz(x, y)dµn(z)dµn(x)µn(y) =
n−1∑

k,l,m=0

akalamje2kπi/n
(
e2lπi/n, e2mπi/n

)
,

so

gµn(x, y) =
n−1∑
k=0

akje2kπi/n(x, y)−
n−1∑

k,l,m=0

akalamje2kπi/n
(
e2lπi/n, e2mπi/n

)
.

Expressions for the voltage function can then be substituted using Theorem 4.8 and Lemma 4.4.

Indeed, even with respect to a simple measure, computing the Arakelov–Green function can be aw-
fully cumbersome. In the next sections, we consider measures that permit relatively nice expressions
for the Arakelov–Green function, and describe methods to compute them.

Before we do so, however, we note a few important properties of general Arakelov–Green functions:

Proposition 5.4 (Properties of the Arakelov–Green function [2, Section 1.5]). For any measure
µ that satisfies the properties in Definition 5.1, the Arakelov–Green function gµ is symmetric and
piecewise smooth in both variables. Furthermore,∫

Γ

gµ(x, y)dµ(x) = 0 and ∆xgµ(y) = δy(x)− µ(x).

Computing Arakelov–Green Functions on Metrized Graphs 22

5.2 The canonical measure

We now look at one specific measure, the canonical measure µcan. This measure, discovered by
Chinburg and Rumely in [4, Theorem 2.11], is not only important in various applications involving
metrized graphs, but the corresponding Arakelov–Green function gµcan also has a relatively simple
expression.

Theorem 5.5 (The canonical measure [2, Theorem 14.1 and Lemma 14.4]). Let Γ be a metrized
graph, with resistance function r. The canonical measure

µcan := ∆x

(
1
2
r(x, y)

)
+ δy

is a non-negative measure independent of y, and it is the unique measure on Γ satisfying µ(Γ) = 1
for which gµ(x, x) is a constant. In fact,

gµcan(x, y) = −1
2
r(x, y) + τ(Γ),

where τ(Γ) is the tau constant of Γ, given by

τ(Γ) =
1

4

∫
Γ

(
∂

∂x
r(x, y)

)2

dx,

so that gµcan(x, x) = τ(Γ).

Remark 5.6. Since the Laplacian of a function is of the form in 2.21.1, the canonical measure is of
the form in 2.21.1, so the canonical measure is a Borel measure.

Remark 5.7. The tau constant can be written more explicitly as

τ(Γ) = 1
4

∫
Γ

(
∂

∂x
r(x, y)

)2

dx

= 1
4

∑
e∈E(Γ)

∫
e

(
∂

∂x
r(x, y)

)2

dx|e

= 1
4

∑
e∈E(Γ)

∫
e

(
d

dt
r(ϕe(t), y)

∣∣∣∣
ϕe(t)=x

)2

dx|e

= 1
4

∑
e∈E(Γ)

∫ λe

0

(
d

dt
r(ϕe(t), y)

)2

dt.

In Section 3.1 we saw that the quantity between parentheses is well-defined up to a sign, and thus
its square is not dependent on our choice of orientations.

In [7], Cinkir gives a formula for the tau constant that only requires the discrete Laplacian matrix
and its pseudo-inverse:

Theorem 5.8 (Formula for τ(Γ) [7, Theorem 1.1]). Let Γ be a metrized graph with vertex set
V (Γ) = {p1, p2, . . . , pn}. Denote the corresponding discrete Laplacian matrix by L = (lij) and its
pseudo-inverse by L+ = (l+ij). Then,

τ(Γ) = − 1
12

∑
{pi,pj}∈E(Γ)

lij

(
1

lij
+ l+ii − 2l+ij + l+jj

)2

+ 1
4

n∑
i,j=1

lijl
+
ii l

+
jj + 1

n
trace

(
L+
)
.

Using the fact that gµcan(x, y) = −1
2
r(x, y)+τ(Γ) and the formulas from Theorem 4.8, we can express

gµcan in terms of the resistance function’s values at vertices.

Computing Arakelov–Green Functions on Metrized Graphs 23

Theorem 5.9 (Formulas for the Arakelov–Green function gµcan [8, Theorems 4.3 and 4.4]). Let Γ
be a metrized graph with vertex set V (Γ) and edges with fixed orientations. Let (p, q) ∈ E(Γ) and
x, y ∈ (p, q). If (p, q) is not a bridge, then

gµcan(x, y) = τ(Γ)− 1
2
|x− y|+ (x− y)2 λ(p,q) − r(p, q)

2λ2
(p,q)

. (5.9.1)

If (p, q) is a bridge, then
gµcan(x, y) = τ(Γ)− 1

2
|x− y| . (5.9.2)

Now let (p1, q1), (p2, q2) ∈ E(Γ) such that {p1, q1} 6= {p2, q2}, so that the edges are distinct but may
share an end point, and let x ∈ (p1, q1) and y ∈ (p2, q2). If neither edge is a bridge, then

gµcan(x, y) =τ(Γ) + x2λ(p1,q1) − r(p1, q1)

2λ2
(p1,q1)

+ y2λ(p2,q2) − r(p2, q2)

2λ2
(p2,q2)

− xy

λ(p1,q1)λ(p2,q2)

(jp2(p1, q2)− jp2(q1, q2))− x

2λ(p1,q1)

(
λ(p1,q1) − 2jp1(q1, p2)

)
− y

2λ(p2,q2)

(
λ(p2,q2) − 2jp2(p1, q2)

)
− 1

2
r(p1, p2).

(5.9.3)

If (p1, q1) is a bridge but (p2, q2) is not, then

gµcan(x, y) =

τ(Γ) + y2λ(p2,q2) − r(p2, q2)

2λ2
(p2,q2)

− y
λ(p2,q2) − r(p2, q2) + r(p1, q2)− r(p1, p2)

2λ(p2,q2)

− 1
2

(x+ r(p1, p2))

if (p2, q2) ⊂ Γp1 ,

τ(Γ) + y2λ(p2,q2) − r(p2, q2)

2λ2
(p2,q2)

− y
λ(p2,q2) − r(p2, q2) + r(q1, q2)− r(q1, p2)

2λ(p2,q2)

− 1
2

(
λ(p1,q1) − x+ r(q1, p2)

)
if (p2, q2) ⊂ Γq1 .

(5.9.4)

Lastly, if both (p1, q1) and (p2, q2) are bridges, then

gµcan(x, y) =

τ(Γ)− 1
2

(x+ y + r(p1, p2)) if 〈(p1, q1), (p2, q2)〉 = (p1, p2),

τ(Γ)− 1
2

(
x+ λ(p2,q2) − y + r(p1, q2)

)
if 〈(p1, q1), (p2, q2)〉 = (p1, q2),

τ(Γ)− 1
2

(
λ(p1,q1) − x+ y + r(q1, p2)

)
if 〈(p1, q1), (p2, q2)〉 = (q1, p2),

τ(Γ)− 1
2

(
λ(p1,q1) − x+ λ(p2,q2) − y + r(q1, q2)

)
if 〈(p1, q1), (p2, q2)〉 = (q1, q2).

(5.9.5)

From Theorem 5.9, we see that gµcan(x, y) can be described with a single formula when x and y are
on fixed edges. Thus, for edges ei and ej of our metrized graph, there is a relatively simple expression
for the function zij : ei × ej → R such that zij(x, y) = gµcan(x, y). This brings us to the following
definition.

Definition 5.10 (Arakelov–Green matrix of gµcan). Let Γ be a metrized graph equipped with edge
set

E(Γ) = {(p1, q1), (p2, q2), . . . , (pn, qn)}.
The Arakelov–Green matrix of gµcan on Γ is given by the n× n matrix Z := (zij), where zij is a
function such that zij(x, y) = gµcan(x, y) for x ∈ (pi, qi) and y ∈ (pj, qj).

Computing Arakelov–Green Functions on Metrized Graphs 24

Since the Arakelov–Green matrix has an entry zij for each pair of edges (ei, ej) ∈ E(Γ)2, the matrix
effectively encodes the entirety of gµcan on Γ. In fact, since each zij can be computed relatively easily
by using Theorem 5.9, the Arakelov–Green matrix on Γ provides a method to efficiently compute
gµcan on Γ. Note that this does require us to choose a vertex set for Γ, and to fix the orientations of
the corresponding edges.

Since any Arakelov–Green function is symmetric, the Arakelov–Green matrix Z is symmetric too,
in the sense that Z(x, y) = ZT (y, x).

5.3 Divisors and admissible metrics

The canonical measure discussed in the previous section is actually a specific case in a class of
measures called admissible metrics. Before we discuss these measures though, we first look at
divisors on metrized graphs.

Definition 5.11 (The divisor group on a metrized graph). Let Γ be a metrized graph. The divisor
group Div(Γ) is the set of formal sums ∑

p∈Γ

app,

where each ap ∈ Z and only finitely many ap’s are nonzero, equipped with the group operation∑
p∈Γ

app+
∑
p∈Γ

bpp :=
∑
p∈Γ

(ap + bp)p.

An element D =
∑
app ∈ Div(Γ) is called a divisor on Γ; its support is defined as

supp(D) := {p ∈ Γ : ap 6= 0}

and its degree is the integer

deg(D) :=
∑
p∈Γ

ap.

In this thesis, we do not look into the group structure of Div(Γ). Instead, we focus on individual
divisors. An especially important divisor is the canonical divisor, whose application is discussed by
Zhang in [17].

Definition 5.12 (Canonical divisor). Let (Γ, ρ) be a polarized metrized graph as defined in Definition
2.25. The canonical divisor Dρ of (Γ, ρ) is defined as

Dρ :=
∑
p∈Γ

(v(p)− 2 + 2ρ(p)) p.

Example 5.13. Consider the metrized graph Γ in Figure 7, and define ρ to be 1 on p2 and p3, and
0 otherwise. Then the canonical divisor of (Γ, ρ) is

Dρ =
∑
i∈{2,3}

(v(pi)− 2 + 2ρ(pi)) pi

= (3− 2 + 2)p2 + (1− 2 + 2)p3

= 3p2 + p3.

p1 p2 p3
c

a

b

Figure 7: A metrized graph consisting of a circle and a line segment.

Computing Arakelov–Green Functions on Metrized Graphs 25

Definition 5.14 (Admissible metrics). Let Γ be a metrized graph and let D =
∑
app ∈ Div(Γ)

such that deg(D) 6= −2. The admissible metric on Γ with respect to D is the measure given by

µD :=
1

deg(D) + 2

(∑
p∈Γ

apδp + 2µcan

)
.

Proposition 5.15 (Properties of admissible metrics). Let Γ be a metrized graph and let D =
∑
app ∈

Div(Γ) such that deg(D) 6= −2. Then µD(Γ) = 1, |µD|(Γ) <∞, and if D = 0, then µD = µcan.

Proof. The first result follows from

µD(Γ) =
1

deg(D) + 2

(∑
p∈Γ

apδp(Γ) + 2µcan(Γ)

)

=
1

deg(D) + 2

(∑
p∈Γ

ap + 2

)

=
1

deg(D) + 2
(deg(D) + 2) = 1.

As for the variation, let S+, S− ∈ B(Γ) be such that S+ t S− = Γ, and such that µD(S) ≥ 0 for all
measurable S ⊂ S+, and µD(S) ≤ 0 for all measurable S ⊂ S−. Then

|µD|(Γ) = µD(S+)− µD(S−).

Note that

µD(S+) =
1

deg(D) + 2

(∑
p∈Γ

apδp(S
+) + 2µcan(S+)

)
is finite, since both the sum and µcan(S+) are finite. Similarly, µD(S−) is finite, so |µD|(Γ) is finite.

Lastly, let D = 0. That is, D =
∑
app with ap = 0 for all p ∈ V (Γ). Then

µD =
1

deg(D) + 2

(∑
p∈Γ

apδp + 2µcan

)

=
1

0 + 2
(0 + 2µcan)

= µcan.

Thus, Proposition 5.15 tell us that for D ∈ Div(Γ), we have an Arakelov–Green function gµD . Since
µD is a generalization of µcan, it may not come as a surprise that gµD , too, has an explicit expression.

Theorem 5.16 (Expression for gµD [5, Section 4.4]). Let Γ be a metrized graph and let D =
∑
app ∈

Div(Γ) such that deg(D) 6= −2. Then the Arakelov–Green function gµD is given by

gµD(x, y) =
1

deg(D) + 2

(∑
p∈Γ

apjp(x, y) + 4τ(Γ)− r(x, y)

)
− cµD , (5.16.1)

where cµD is the constant

cµD =
1

2(deg(D) + 2)2

(
8τ(Γ)(deg(D) + 1) +

∑
p,q∈Γ

apaqr(p, q)

)
. (5.16.2)

Computing Arakelov–Green Functions on Metrized Graphs 26

Remark 5.17. From Proposition 5.15, we know that µD = µcan for D = 0. Therefore, we have
gµD = gµcan for D = 0. Let us check if the formula in Theorem 5.16 indeed coincides with the one
from Theorem 5.5 in this special case. We start with the constant cµD :

cµD =
1

2(deg(D) + 2)2

(
8τ(Γ)(deg(D) + 1) +

∑
p,q∈Γ

apaqr(p, q)

)

=
1

2(0 + 2)2
(8τ(Γ)(0 + 1) + 0)

=
1

8
(8τ(Γ)) = τ(Γ).

Therefore,

gµD(x, y) =
1

deg(D) + 2

(∑
p∈Γ

apjp(x, y) + 4τ(Γ)− r(x, y)

)
− cµD

=
1

0 + 2
(0 + 4τ(Γ)− r(x, y))− τ(Γ)

= −1
2
r(x, y) + τ(Γ) = gµcan(x, y)

as expected.

Note that, for any metrized graph Γ and a finite number of points on Γ, we can always choose a
vertex set that contains all of those points. Hence, for any divisor D ∈ Div(Γ), we can equip Γ with
a vertex set V (Γ) such that supp(D) ⊂ V (Γ). This fact is vital in the next two theorems, which
generalize the formulas from Theorem 5.9. Before we prove these results though, we first rewrite the
expression from Theorem 5.16 into something more convenient.

Lemma 5.18 (Expression for gµD without j). Let Γ be a metrized graph, D =
∑
app ∈ Div(Γ) such

that deg(D) 6= −2. Then

gµD(x, y) =
1

deg(D) + 2

(
4τ(Γ) + 1

2
(κD(x) + κD(y))

)
− 1

2
r(x, y)− cµD , (5.18.1)

where
κD(x) =

∑
p∈Γ

apr(p, x) (5.18.2)

and cµD is as in 5.16.2.

Proof. Combining Theorem 5.16 with Lemma 4.4, we obtain

gµD(x, y) =
1

deg(D) + 2

(∑
p∈Γ

apjp(x, y) + 4τ(Γ)− r(x, y)

)
− cµD

=
1

deg(D) + 2

(
1
2

∑
p∈Γ

ap

(
r(p, x) + r(p, y)− r(x, y)

)
+ 4τ(Γ)− r(x, y)

)
− cµD

=
1

deg(D) + 2

(
4τ(Γ) + 1

2

∑
p∈Γ

apr(p, x) + 1
2

∑
p∈Γ

apr(p, y)− 1
2

∑
p∈Γ

apr(x, y)− r(x, y)

)
− cµD

=
1

deg(D) + 2

(
4τ(Γ) + 1

2
(κD(x) + κD(y))−

(
1 + 1

2

∑
p∈Γ

ap

)
r(x, y)

)
− cµD

=
1

deg(D) + 2

(
4τ(Γ) + 1

2
(κD(x) + κD(y))−

(
1 + 1

2
deg(D)

)
r(x, y)

)
− cµD

=
1

deg(D) + 2

(
4τ(Γ) + 1

2
(κD(x) + κD(y))

)
− 1

2
r(x, y)− cµD .

Computing Arakelov–Green Functions on Metrized Graphs 27

Theorem 5.19 (Formulas for κD). Let Γ be a metrized graph and D =
∑
ass ∈ Div(Γ). Equip

Γ with a vertex set V (Γ) such that supp(D) ⊂ V (Γ), and fix the orientations of the corresponding
edges. Let (p, q) ∈ E(Γ) and x ∈ (p, q). If (p, q) is not a bridge, then

κD(x) =
∑
s∈V (Γ)

as

(
−x2λ(p,q) − r(p, q)

λ2
(p,q)

+ x
λ(p,q) − r(p, q) + r(s, q)− r(s, p)

λ(p,q)

+ r(s, p)

)
. (5.19.1)

If (p, q) is a bridge, then

κD(x) =
∑

s∈V (Γ)∩Γp

as (x+ r(s, p)) +
∑

s∈V (Γ)∩Γq

as
(
λ(p,q) − x+ r(s, q)

)
. (5.19.2)

Proof. This follows directly from applying Lemma 4.7 to 5.18.2.

Theorem 5.20 (Formulas for the Arakelov–Green function gµD). Let Γ be a metrized graph and
D ∈ Div(Γ) such that deg(D) 6= −2. Equip Γ with a vertex set V (Γ) such that supp(D) ⊂ V (Γ), fix
the orientations of the corresponding edges, and put

χD(x, y) =
1

deg(D) + 2

(
4τ(Γ) + 1

2
(κD(x) + κD(y))

)
− cµD ,

where for cµD is as in 5.16.2 and κD as in 5.18.2. Let (p, q) ∈ E(Γ) and x, y ∈ (p, q). If (p, q) is not
a bridge, then

gµD(x, y) = χD(x, y)− 1
2
|x− y|+ (x− y)2 λ(p,q) − r(p, q)

2λ2
(p,q)

. (5.20.1)

If (p, q) is a bridge, then
gµD(x, y) = χD(x)− 1

2
|x− y| . (5.20.2)

Now let (p1, q1), (p2, q2) ∈ E(Γ) such that {p1, q1} 6= {p2, q2}, so that the edges are distinct but may
share an end point, and let x ∈ (p1, q1) and y ∈ (p2, q2). If neither edge is a bridge, then

gµD(x, y) =χD(x, y) + x2λ(p1,q1) − r(p1, q1)

2λ2
(p1,q1)

+ y2λ(p2,q2) − r(p2, q2)

2λ2
(p2,q2)

− xy

λ(p1,q1)λ(p2,q2)

(jp2(p1, q2)− jp2(q1, q2))− x

2λ(p1,q1)

(
λ(p1,q1) − 2jp1(q1, p2)

)
− y

2λ(p2,q2)

(
λ(p2,q2) − 2jp2(p1, q2)

)
− 1

2
r(p1, p2).

(5.20.3)

If (p1, q1) is a bridge but (p2, q2) is not, then

gµD(x, y) =

χD(x, y) + y2λ(p2,q2) − r(p2, q2)

2λ2
(p2,q2)

− y
λ(p2,q2) − r(p2, q2) + r(p1, q2)− r(p1, p2)

2λ(p2,q2)

− 1
2

(x+ r(p1, p2))

if (p2, q2) ⊂ Γp1 ,

χD(x, y) + y2λ(p2,q2) − r(p2, q2)

2λ2
(p2,q2)

− y
λ(p2,q2) − r(p2, q2) + r(q1, q2)− r(q1, p2)

2λ(p2,q2)

− 1
2

(
λ(p1,q1) − x+ r(q1, p2)

)
if (p2, q2) ⊂ Γq1 .

(5.20.4)

Computing Arakelov–Green Functions on Metrized Graphs 28

Lastly, if both (p1, q1) and (p2, q2) are bridges, then

gµD(x, y) =

χD(x, y)− 1
2

(x+ y + r(p1, p2)) if 〈(p1, q1), (p2, q2)〉 = (p1, p2),

χD(x, y)− 1
2

(
x+ λ(p2,q2) − y + r(p1, q2)

)
if 〈(p1, q1), (p2, q2)〉 = (p1, q2),

χD(x, y)− 1
2

(
λ(p1,q1) − x+ y + r(q1, p2)

)
if 〈(p1, q1), (p2, q2)〉 = (q1, p2),

χD(x, y)− 1
2

(
λ(p1,q1) − x+ λ(p2,q2) − y + r(q1, q2)

)
if 〈(p1, q1), (p2, q2)〉 = (q1, q2).

(5.20.5)

Proof. This follows from substituting the formulas for r(x, y) in Theorem 4.8 into 5.18.1.

Remark 5.21. Notice that, if we compare the formulas in Theorem 5.20 with those in Theorem 5.9,
we have for each case that

gµD(x, y) = χD(x, y)− τ(Γ) + gµcan(x, y)

=
1

deg(D) + 2

(
4τ(Γ) + 1

2
(κD(x) + κD(y))

)
− τ(Γ) + gµcan(x, y)− cµD .

If we put D = 0, then this reduces to

gµD(x, y) =
1

0 + 2

(
4τ(Γ) + 1

2
(0 + 0)

)
− τ(Γ) + gµcan(x, y)− τ(Γ)

= gµcan(x, y),

as expected.

From Theorems 5.19 and 5.20, we see that, just like gµcan , we can describe gµD with one explicit
formula for each pair of edges. Thus, we can generalize Definition 5.10:

Definition 5.22 (Arakelov–Green matrix of gµD). Let Γ be a metrized graph and let D ∈ Div(Γ)
such that deg(D) 6= −2. Equip Γ with a vertex set V (Γ) such that supp(D) ⊂ V (Γ), and enumerate

E(Γ) = {(p1, q1), (p2, q2), . . . , (pn, qn)}.

The Arakelov–Green matrix of gµD on Γ is given by the n × n matrix ZD := (zij), where
zij(x, y) = gµD(x, y) for x ∈ (pi, qi) and y ∈ (pj, qj).

As with the Arakelov–Green matrix for gµcan , we have ZD(x, y) = ZT
D(y, x).

Computing Arakelov–Green Functions on Metrized Graphs 29

6 An algorithm to compute Arakelov–Green functions

6.1 Initialization

Let Γ be a metrized graph and equip it with a vertex set V (Γ) = {p0, p1, . . . , pn−1} and enumerate the
corresponding edge set E(Γ) = {e0, e1, . . . , em−1}†. Each edge ei has length λi and a fixed orientation
(pei , qei).

With this construction, we can compute the discrete Laplacian matrix L using Definition 2.22, and
its pseudo-inverse L+ using Proposition 2.24

These matrices allow us to compute the resistance and voltage functions at vertices using Theorem
4.6, and the tau constant τ(Γ) using Theorem 5.8.

6.2 The connectivity matrix

An essential part of our algorithm is the connectivity matrix, which encodes all information about
the structure of Γ that we need in order to apply Theorems 5.19 and 5.20.

Let ei, ej ∈ E(Γ) and suppose that ei is a bridge. Then the function α encodes whether ej ⊂ Γpei or
ej ⊂ Γqei with a single bit:

α(ei, ej) :=

{
0 if ej ⊂ Γpei ,

1 if ej ⊂ Γqei ;

If ej is also a bridge, then β encodes the closest neighbours of ei and ej with two bits:

β(ei, ej) :=

0 if 〈ei, ej〉 = (pei , pej),

1 if 〈ei, ej〉 = (pei , qej),

10 if 〈ei, ej〉 = (qei , pej),

11 if 〈ei, ej〉 = (qei , qej).

Now, the connectivity matrix C = (cij) is an m×m matrix with binary entries defined as follows:

cij :=

0 if neither ei nor ej is a bridge;

1 if i = j and ei is a bridge;

α(ei, ej) if ei is a bridge but ej is not;

α(ej, ei) if ej is a bridge but ei is not;

100α(ei, ej) + β(ei, ej) if i 6= j, and both ei and ej are bridges.

Given two edges ei, ej ∈ E(Γ), the entries cii and cjj tell us which of them are bridges. If one of the
edges (say, ei) is a bridge and the other (ej) is not, the single bit in cij encodes whether ej is part of
the subgraph Γpei or Γqei .

If both edges are bridges (so if cii = cjj = 1), cij consists of three bits: the first bit tells us if ej ⊂ Γpei
or ej ⊂ Γqei , while the second and third bits encode the closest neighbours of the two edges.

Example 6.1. Consider the metrized graph with the model depicted in Figure 8; notice that this
is the same metrized graph we saw in Example 2.20. As we have six edges, our connectivity matrix
C will be a 6× 6 matrix.

The edges e0 and e5 are bridges, so c00 = c55 = 1, while the other diagonal entries are 0. Now, we
need to determine α(0, i) for each i ∈ {1, 2, . . . , 5} and α(5, i) for each i ∈ {0, 1, . . . , 4}.

We have e1 ⊂ Γp1 , and since qe0 = p1, we have α(0, 1) = 1, so c01 = c10 = 1. Similarly, e1 ⊂ Γp4 , so
α(5, 1) = 0, and thus c51 = c15 = 0. We can exploit this symmetry for any pair of edges with one
bridge.

†In this and the next section we start our indices at 0, as is typical for programming languages.

Computing Arakelov–Green Functions on Metrized Graphs 30

p0
p1

p2

p3

p4

p5
e0

e1

e2

e3

e4

e5

Figure 8: A model for a metrized graph with two bridges.

The entries c05 and c50 are more complicated. We have that e5 ⊂ Γp1 , so α(0, 5) = 1. The closest
neighbours of the bridges are given by 〈e0, e5〉 = (p1, p4), so β(0, 5) = 10. This yields

c05 = 100α(0, 5) + β(0, 5) = 110.

Computing all cij’s gives us the connectivity matrix

C =

1 1 1 1 1 110
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 1

 .

We can now quickly look up aspects of the metrized graph’s structure: since c00 = 1 and c33 = 0, we
know that e0 is a bridge but e3 is not. Since c03 = 1, we can also tell that e3 ⊂ Γqe0 .

The pseudocode in Algorithm 6.1 describes how to generate the connectivity matrix.

Algorithm 6.1: Generating the connectivity matrix

Input: Metrized graph Γ with V (Γ) = {p0, p1, . . . , pn−1} and E(Γ) = {e0, e1, . . . , em−1}
Output: Connectivity matrix C = (cij)

C := 0m×m; /* Initialize C as an m×m matrix with zero entries */

for i ∈ {0, 1, . . . ,m− 1} do /* Set diagonal entries */

if ei is a bridge then
cii ← 1;

for i ∈ {0, 1, . . . ,m− 1} do /* Set non-diagonal entries */

if cii = 1 then /* If ei is a bridge */

for j ∈ {i+ 1, i+ 2, . . . ,m− 1} do /* Loop over the next edges ej */

cij ← α(ei, ej); /* Assume that ej is not a bridge */

if cjj = 1 then /* If ej is a bridge, adjust the entries */

cij ← 100cij + β(ei, ej);
cji ← 100α(ej, ei) + β(ej, ei);

else /* If ej is not a bridge, set cji = α(ei, ej) */
cji ← cij

else /* If ei is not a bridge */

for j ∈ {i+ 1, i+ 2, . . . ,m− 1} do /* Loop over the next edges ej */

if cjj = 1 then /* If ej is a bridge, put the appropriate entries */

cij ← α(ej, ei);
cji ← cij;

Computing Arakelov–Green Functions on Metrized Graphs 31

6.3 Computing κD on each edge

Since our vertices are enumerated, we can express any divisor D ∈ Div(Γ) with supp(D) ⊂ V (Γ) as
D =

∑n−1
k=0 akpk. In fact, we can treat such divisors as vectors of n entries:

D = (a0, a1, . . . , an−1).

This allows us to compute the constant cµD with the formula

cµD =
1

2(deg(D) + 2)2

(
8τ(Γ)(deg(D) + 1) +

n−1∑
i,j=0

aiajr(pi, pj)

)
.

Using Theorem 5.19, Algorithm 6.2 determines a formula for κD on a given edge ei: a function
Ki : ei → R such that Ki(x) = κD(x) for x ∈ ei. Repeating this algorithm for each edge yields an
m-vector K = (Ki), which completely describes κD on Γ.

Algorithm 6.2: Computing κD
Input: Metrized graph Γ with V (Γ) = {p0, p1, . . . , pn−1} and E(Γ) = {e0, e1, . . . , em−1}

Integer i ∈ {0, 1, . . . ,m− 1}
Connectivity matrix C = (cij)
Divisor D = (a0, a1, . . . , an−1) on Γ

Output: Function Ki, which satisfies Ki(x) = κD(x) for x ∈ ei
Ki := 0; /* Initialize Ki */

if cii = 0 then /* If ei is not a bridge, use 5.19.1 */

for k ∈ {0, 1, . . . , n− 1} do
Ki(x)←Ki(x) + akr(pk, pei)

+ ak

(
− x2λi − r(pei , qei)

λ2
i

+ x
λi − r(pei , qei) + r(pk, qei)− r(pk, pei)

λi

)
;

else /* If ei is a bridge, use 5.19.2 */

for k ∈ {0, 1, . . . , n− 1} do /* Iterate over all vertices */

if pk = pei then
Ki(x)← Ki(x) + akx;

else if pk = qei then
Ki(x)← Ki(x) + ak (λi − x);

else /* If pk is not an end point of ei */

for j ∈ {0, 1, . . . ,m− 1} \ {i} do /* Iterate over all other edges */

if pk is an end point of ej then /* Until we find an edge with end point

pk */

if (cjj = 0 and cij = 0) or (cjj = 1 and cij < 100) then
Ki(x)← Ki(x) + ak (x+ r(pk, pei)); /* Case pk ∈ Γpei */

else
Ki(x)← Ki(x) + ak (λi − x+ r(pk, qei)); /* Case pk ∈ Γqei */

break;

6.4 Computing the Arakelov–Green matrix

With κD encoded in K, we can now compute the Arakelov–Green matrix Z = (zij) defined in 5.22,
using the formulas in Theorem 5.20. The process to compute zij is described in Algorithm 6.3;
repeating this algorithm for each i and j yields the matrix Z. We use the shorthand

χDij (x, y) :=
1

deg(D) + 2

(
4τ(Γ) + 1

2
(Ki(x) +Kj(y))

)
− cµD .

In Section A.1, the full algorithm to compute Z is implemented as the method ag matrix() of the
class MetrizedGraph.

Computing Arakelov–Green Functions on Metrized Graphs 32

Algorithm 6.3: Computing the Arakelov–Green matrix

Input: Metrized graph Γ with V (Γ) = {p0, p1, . . . , pn−1} and E(Γ) = {e0, e1, . . . , em−1}
Integers i, j ∈ {0, 1, . . . ,m− 1}
Connectivity matrix C = (cij)
Divisor D on Γ
Vector K = (Ki) as computed in Algorithm 6.2

Output: Function zij, which satisfies zij(x, y) = gµD(x, y) for x ∈ ei and y ∈ ej
if i = j then /* Same edge */

if cii = 0 then /* Same edge, not a bridge: 5.20.1 */

zii(x, y)← χDij (x, y)− 1
2
|x− y|+ (x− y)2 λi − r(pei , qei)

2λ2
i

;

else /* Same edge, bridge: 5.20.2 */

zii(x, y)← χDij (x, y)− 1
2
|x− y|;

else /* Different edges */

if cii = 0 and cjj = 0 then /* If neither is a bridge: 5.20.3 */

zij(x, y)←χDij (x, y) + x2λi − r(pei , qei)
2λ2

i

+ y2λj − r(pej , qej)
2λ2

j

− xy

λiλj

(
jpej (pei , qej)− jpej (qei , qej)

)
− x

2λi

(
λi − 2jpei (qei , pej)

)
− y

2λj

(
λj − 2jpej (pei , qej)

)
− 1

2
r(pei , pej);

else if cii = 1 and cjj = 0 then /* If ei is and ej is not a bridge: 5.20.4 */

if cij = 0 then /* If ej ⊂ Γpei */

zij(x, y)←χDij (x, y) + y2λj − r(pej , qej)
2λ2

j

− y
λj − r(pej , qej) + r(pei , qej)− r(pei , pej)

2λj

− 1
2

(
x+ r(pei , pej)

)
;

else /* If ej ⊂ Γqei */

zij(x, y)←χDij (x, y) + y2λj − r(pej , qej)
2λ2

j

− y
λj − r(pej , qej) + r(qei , qej)− r(qei , pej)

2λj

− 1
2

(
λei − x+ r(qei , pej)

)
;

else if cii = 0 and cjj = 1 then /* If ei is not and ej is an bridge: 5.20.4 */

if cij = 0 then /* If ej ⊂ Γpei */

zij(x, y)←χDij (x, y) + x2λi − r(pei , qei)
2λ2

i

− x
λi − r(pei , qei) + r(pej , qei)− r(pej , pei)

2λi

− 1
2

(
y + r(pej , pei)

)
;

else /* If ej ⊂ Γqei */

zij(x, y)←χDij (x, y) + x2λi − r(pei , qei)
2λ2

i

− x
λi − r(pei , qei) + r(qej , qei)− r(qej , pei)

2λi

− 1
2

(
λej − y + r(qej , pei)

)
;

else /* If both edges are bridges: 5.20.5 */

case cij mod 100 ≡ 0 do /* If 〈ei, ej〉 = (pei , pej) */

zij(x, y)← χDij (x, y)− 1
2

(
x+ y + r(pei , pej)

)
;

case cij mod 100 ≡ 1 do /* If 〈ei, ej〉 = (pei , qej) */

zij(x, y)← χDij (x, y)− 1
2

(
x+ λj − y + r(pei , qej)

)
;

case cij mod 100 ≡ 10 do /* If 〈ei, ej〉 = (qei , pej) */

zij(x, y)← χDij (x, y)− 1
2

(
λi − x+ y + r(qei , pej)

)
;

case cij mod 100 ≡ 11 do /* If 〈ei, ej〉 = (qei , qej) */

zij(x, y)← χDij (x, y)− 1
2

(
λi − x+ λj − y + r(qei , qej)

)
;

Computing Arakelov–Green Functions on Metrized Graphs 33

6.5 Consistency checks

Although there is no easy way the verify the correctness of our algorithm without scrutinizing the
proof of Theorem 5.20 and the formulas used in Algorithms 6.1, 6.2 and 6.3, we can do two quick tests
to check if particular results from this algorithm coincide with other information that we discussed
previously. Neither gives us complete certainty that our algorithm is correct, but they do allow us
to identify errors.

Firstly, a function is well-defined if its value is the same on the same point, regardless of how that
point is represented. Using the notation introduced at the end of Section 2.1, a vertex p with v(p) > 1
can be represented in at least two ways: if, for instance, we have edges e1 = (p, q) and e2 = (s, p),
both (e1, 0) and (e2, λ2) represent the same point p. Let p′ be another vertex, represented as (e3, 0).
Then, since Arakelov–Green functions are well-defined functions, we must have

z13(0, 0) = gµD(p, p′) = z23(λ2, 0).

This test can be generalized to check any pair of vertices where at least one vertex has a valence
above 1. An algorithm for this test is implemented in Section A.2.

As for another consistency check, recall the formula from Theorem 5.16. Using Theorem 4.6, we can
immediately compute the function values of gµD on vertices; of course, these values ought to match
the values computed with the Arakelov–Green matrix generated by our algorithm. A script that
runs this test on all vertices of a given metrized graph is provided in Section A.3.

Computing Arakelov–Green Functions on Metrized Graphs 34

7 Computational examples
In this section, we discuss several computational examples and use the Sage code from Section A.1
to compute the Arakelov–Green matrix. In these examples, I denotes the identity matrix and J
denotes the matrix or vector whose entries are all 1; the sizes of these matrices can be determined
from the context.

7.1 The circle graph

Consider once again the metrized graph from Example 2.13. We wish to compute the Arakelov–
Green matrix of gµcan , which from Proposition 5.15 we know is gµD for D = 0. Hence, we can use
the model from Example 2.2.

Enumerate the vertices as (1, i,−1) and the edges as

(e0, e1, e2) =

(
(1, i), (i,−1), (−1, 1)

)
.

Then λ0 = λ1 = 1
2
π and λ2 = π. The corresponding discrete Laplacian matrix and its pseudo-inverse

are

L =
1

π

 3 −2 −1
−2 4 −2
−1 −2 3

 and L+ =
π

72

11 −4 −7
−4 8 −4
−7 −4 11

 .
The tau constant is τ(Γ) = 1

6
π, and the connectivity matrix is the 3 × 3 zero matrix, since this

metrized graph has no bridges. The Arakelov–Green matrix, then, is given by

Z(x, y) =
π

48

 8 −1 −4
−1 8 −1
−4 −1 8

− 1

4

2|x− y| −x+ y 0
x− y 2|x− y| −x+ y

0 x− y 2|x− y|

+ 12(x− y)2J.

This matches [8, Section 6, Example I].

7.2 Joint circles

Let C1 and C2 denote two circles, with arc length `1 and `2 respectively, which touch one another at
the point p0; see Figure 9. Define the metrized graph Γ to be the circles’ union, and let a divisor on
Γ be given by D = 2p0.

Of course, a suitable vertex set for Γ must contain more than just p0, lest the model has self-loops and
multiple edges. The model that we use is depicted in Figure 9, with edges enumerated and oriented
as shown. As for the lengths of the edges, we have λ0 = λ1 = λ2 = `1/3 and λ3 = λ4 = λ5 = `2/3.

The discrete Laplacian matrix for this vertex set is

L =
3

`1`2

2`1 + 2`2 −`2 −`2 −`1 −`1

−`2 2`2 −`2 0 0
−`2 −`2 2`2 0 0
−`1 0 0 2`1 −`1

−`1 0 0 −`1 2`1

 ,
and its pseudo-inverse is

L+ =
`1

225

6 −9 −9 6 6
−9 26 1 −9 −9
−9 1 26 −9 −9
6 −9 −9 6 6
6 −9 −9 6 6

+
`2

225

6 6 6 −9 −9
6 6 6 −9 −9
6 6 6 −9 −9
−9 −9 −9 26 1
−9 −9 −9 1 26

 .

The tau constant of this metrized graph is τ(Γ) = 1
12

(`1 + `3). The formulas for κD, for D =
(2, 0, 0, 0, 0) are listed in K:

Computing Arakelov–Green Functions on Metrized Graphs 35

p0C1 C2
p0

p1

p2

p3

p4

e0

e1

e2

e3

e4

e5

Figure 9: A metrized graph consisting of two circles joint at p0 (left), and one of its models (right).

K(x) =
1

9`1`2

18`1`2x− 18`2x

2

4`2
1`2 + 6`1`2x− 2`2x

2

4`2
1`2 − 6`1`2x− 2`2x

2

18`1`2x− 18`1x
2

4`1`
2
2 + 6`1`2x− 2`1x

2

4`1`
2
2 − 6`1`2x− 2`1x

2

 .

The Arakelov–Green matrix of gµD , then is

ZD(x, y) =

[
M1(x, y) W (x, y)
W T (y, x) M2(x, y)

]
.

where

Mi(x, y) =
`j
48
J +

`i
144

 3 −5 −5
−5 19 3
−5 3 19

+
1

12

3x+ 3y 5x− y x+ y
−x+ 5y x+ y 3x− 3y
x+ y −3x+ 3y −x− y

− 1

2
|x− y|I +

1

4`i

(
x2 + y2 − 4xy

)
J

with j ∈ {1, 2} \ {i}, and

W (x, y) =
`1

144

 3 3 3
−5 −5 −5
−5 −5 −5

+
`2

144

3 −5 −5
3 −5 −5
3 −5 −5

− 1

12

3x+ 3y 3x+ y 3x− y
x+ 3y x+ y x− y
−x+ 3y −x+ y −x− y

+

1

4`1`2

(
`2x

2 + `1y
2
)
J.

The 36 entries of ZD coincide with the formulas that Moriwaki found in [13, Section 3].

7.3 A canonical divisor

Recall the polarized metrized graph from Example 5.13, pictured in Figure 7. We found that the
corresponding canonical divisor is Dρ = 3p2 + p3. By strategically choosing one more vertex p0, we
obtain the suitable model in Figure 10. The lengths of the edges are given by λ0 = λ1 = a/2, λ2 = b
and λ3 = c.

The discrete Laplacian matrix is

L =
1

abc

4bc −2bc −2bc 0
−2bc (a+ 2b)c −ac 0
−2bc −ac ab+ ac+ 2bc −ac

0 0 −ab ab

with pseudo-inverse

L+ =
a

64(a+ b)

9a+ 10b −3a+ 2b −3a− 6b −3a− 6b
−3a+ 2b a+ 26b a− 14b a− 14b
−3a− 6b a− 14b a+ 10b a+ 10b
−3a− 6b a− 14b a+ 10b a+ 10b

+
c

16

1 1 1 −3
1 1 1 −3
1 1 1 −3
−3 −3 −3 9

 .

Computing Arakelov–Green Functions on Metrized Graphs 36

p0

p1
p2

p3

e0 e1

e2 e3

Figure 10: A model for the metrized graph in Figure 7.

And thus our tau constant is τ(Γ) = 1
12

(a + b + 3c). For our divisor Dρ = (0, 0, 3, 1), we have the
following Arakelov–Green matrix:

ZDρ(x, y) =
c

9
J +

1

216(a+ b)

[
M(x, y) V (x, y)
V T (y, x) W (x, y)

]
,

where M is the 3× 3 matrix

M(x, y) =

38a2 + 76ab+ 2b2 38a2 + 76ab+ 2b2 −7a2 + 58ab+ 2b2

38a2 + 76ab+ 2b2 38a2 + 76ab+ 2b2 −7a2 + 58ab+ 2b2

−7a2 + 58ab+ 2b2 −7a2 + 58ab+ 2b2 2a2 + 148ab+ 2b2

+ 36

 2bx+ 2by −(3a+ b)x− (3a+ 5b)y 5by − (2a+ b)y
−(3a+ 5b)x− (3a+ b)y −2bx− 2by −5bx− (2a+ b)y
−(2a+ b)x+ 5by (2a+ b)x− 5by −2(a− b)x− 2(a− b)y

− 108(a+ b)|x− y|I + 36(x2 + y2)J + 216xy

−1 1 −1
1 −1 1
−1 1 −1

 ,
V is the 3-vector

V (x, y) =

−7a2 − 14ab+ 2b2

−7a2 − 14ab+ 2b2

2a2 − 32ab+ 2b2

+ 36x

 −bb
a− b

+ 36
(
x2 − 2(a+ b)y

)
J,

and
W (x, y) = 2a2 + 4ab+ 2b2 + 36(a+ b) (x+ y − 3|x− y|) .

Now, let x = (e1, a/9) and y = (e3, c/2). Then the function value at (x, y) is encoded in the (1, 3)-th
entry of ZDρ :

gµDρ (x, y) =
c

9
+

1

216(a+ b)
V1(x, y)

=
c

9
+

1

216(a+ b)

(
− 7a2 − 14ab+ 2b2 + 36bx+ 36

(
x2 − 2(a+ b)y

))
=
c

9
+

1

216(a+ b)

(
− 7a2 − 14ab+ 2b2 + 36b · a/9 + 36

(
(a/9)2 − 2(a+ b) · c/2

))
=
c

9
+

1

216(a+ b)

(
− 7a2 − 14ab+ 2b2 + 4ab+ 36

(
1
81
a2 − (a+ b)c

))
=
c

9
+

1

216(a+ b)

(
−59

9
a2 − 10ab+ 2b2 − 36(a+ b)c

)
= − 1

1944

(
59a2 + 90ab− 18b2

)
− c

18
.

Computing Arakelov–Green Functions on Metrized Graphs 37

7.4 The epsilon invariant on a tesseract

We now discuss a more involved application of the Arakelov–Green matrix: computing invariants εD
of a metrized graph. This invariant is thoroughly discussed in [5, Section 4], and for our purposes is
defined as follows:

Definition 7.1 (Epsilon invariants). Let Γ be a metrized graph and let D =
∑
app ∈ Div(Γ) such

that deg(D) 6= −2. Then

εD := (deg(D) + 2)
∑
p∈Γ

apgµD(p, x) +
∑
p∈Γ

apr(p, x), (7.1.1)

which is independent of x ∈ Γ.

A method to compute εD is given in Algorithm 7.1, which exploits the fact that 7.1.1 is independent
of our choice of x. In this case, we choose x = pe0 .

Algorithm 7.1: Computing the epsilon invariant

Input: Metrized graph Γ with V (Γ) = {p0, p1, . . . , pn−1} and E(Γ) = {e0, e1, . . . , em−1}
Divisor D = (a0, a1, . . . , an−1) on Γ
Arakelov–Green matrix Z = (zij)

Output: Invariant εD

εD := 0; /* Initialize εD */

/* Compute the term of 7.1.1 involving gµD */

for i ∈ {0, 1, . . . , n− 1} do /* For each vertex, */

for k ∈ {0, 1, . . . ,m− 1} do /* Find an edge of which it is an end point */

if pi = pek then /* If pi = pek, then gµD(pe0 , pi) = z0k(0, 0) */

g ← z0k(0, 0);
break;

else if pi = qek then /* If pi = qek, then gµD(pe0 , pi) = z0k(0, λk) */

g ← z0k(0, λk);
break

εD ← εD + aig;

εD ← (deg(D) + 2)εD;

/* Compute and add the other term */

εD ← εD +
∑n−1

i=0 air(pi, pe0);

In [5, Theorem 4.27], Cinkir found an alternative expression, which does not involve Arakelov–Green
functions and is easier to compute:

εD =
1

deg(D) + 2

(
4τ(Γ) deg(D) +

∑
p,q∈Γ

apaqr(p, q)

)
. (7.1.2)

A Sage implementation of Algorithm 7.1, as well as of Cinkir’s formula, can be found in Section A.1
as the epsilon() method.

We now compute εD on the metrized graph formed by a tesseract using both 7.1.1 and 7.1.2, and
check if the formulas indeed coincide. The vertices and edges of Γ are the usual vertices and edges
of a tesseract, see Figure 11. More concretely,

V (Γ) =
{

(b0, b1, b2, b3) : bi ∈ {0, 1}
}
⊂ R4,

where we enumerate the sixteen vertices as

(b0, b1, b2, b3) = pb0+2b1+4b2+8b3 .

Computing Arakelov–Green Functions on Metrized Graphs 38

Figure 11: A three-dimensional representation of a tesseract.

The corresponding edge set is then given by

E(Γ) =
{

(pi, pj) : i < j and |pi − pj| = 1
}
,

and each edge has length 1. For the divisor

D =
15∑
i=0

ipi,

we compute εD directly through Algorithm 7.1 and by using Cinkir’s formula. Unsurprisingly, the
two methods yield the same result: εD = 7875/122.

7.5 The epsilon invariant on a banana graph

Consider the metrized graph Γ pictured alongside one of its models in Figure 12. Lengths of edges
are given by λ0 = b, λ1 = λ2 = a/2 and λ3 = λ4 = c/2. We equip Γ with a polarization ρ defined as
ρ(p) = 0 for all p ∈ Γ, so the canonical divisor of (Γ, ρ) is

Dρ = p0 + p1.

The invariant εDρ was computed by Moriwaki in [12, Section 3, Type VII], but Cinkir found in [5,
Example 4.35 and Remark 4.36] that Moriwaki’s formula is wrong. The expression that Cinkir found
instead is

εDρ = 1
6

(
a+ b+ c+

abc

ab+ bc+ ac

)
.

When we compute εDρ via Algorithm 7.1 or Cinkir’s formula 7.1.2 (i.e. via epsilon()), we obtain
the same result.

If a = b = c, then

εDρ =
5

9
a,

which matches Moriwaki’s original formula.

p0 p1

a

b

c

p0 p1

p2

p3

e0

e1 e2

e3 e4

Figure 12: A metrized “banana” graph (left), and one of its models (right).

Computing Arakelov–Green Functions on Metrized Graphs 39

8 Conclusion
We began this thesis by defining metrized graphs, which we equipped with familiar structures such
as a metric and a σ-algebra. After studying piecewise functions in general, we focused on voltage and
resistance functions. Although these functions were defined in a rather contrived manner, Theorem
4.8 gave us a relatively straightforward method to compute their values.

We then looked at Arakelov–Green functions, quickly learned how cumbersome it is to compute them
for general measures, and resorted to the special case of the canonical measure. We summarized
Cinkir’s formulas for this case in Theorem 5.9 and then sought to generalize these expressions for any
admissible metric. Although the resulting formulas in Theorem 5.20 are longer, they, like Cinkir’s
original theorem, only require information about the metrized graph’s structure that can easily be
obtained.

Theorem 5.20 allowed us to construct the algorithm described in Section 6, which we implemented
in Sage in Section A.1 and applied to numerical and symbolic examples in Section 7.

Although applications of Arakelov–Green functions are beyond the scope of this thesis, the algorithm
we devised to compute Arakelov–Green matrices can be valuable for further research. For instance,
the MetrizedGraph class from Section A.1 and its ag matrix() method can be used in a more
complex program to derive polarized metrized graphs from algebraic curves, and then compute the
Arakelov–Green matrix for the canonical divisor.

We computed the epsilon invariant in Sections 7.4 and 7.5, but there are other important invariants
on metrized graphs that are defined using Arakelov–Green functions, such as the phi and lambda
invariants [9]. Our algorithm can assist in computing these invariants, too.

Furthermore, since metrized graphs have applications beyond abstract mathematics, MetrizedGraph
can be expanded upon to include methods relevant to their uses in physics and biology.

Computing Arakelov–Green Functions on Metrized Graphs 40

References
[1] Baker, M., and Faber, X. Metrized graphs, Laplacian operators, and electrical networks.

Contemporary Mathematics 415, 2 (2006), 15–33.

[2] Baker, M., and Rumely, R. Harmonic analysis on metrized graphs. Canadian Journal of
Mathematics 59, 2 (2007), 225–275.

[3] Bapat, R. Graphs and Matrices, 2nd ed. Springer, 2014.

[4] Chinburg, T., and Rumely, R. The capacity pairing. Journal für die reine und angewandte
Mathematik 434 (1993), 1–44.

[5] Cinkir, Z. The tau constant of metrized graphs. PhD thesis, University of Georgia, 2007.

[6] Cinkir, Z. Generalized Foster’s identities. International Journal of Quantum Chemistry 111,
10 (2011), 2228–2233.

[7] Cinkir, Z. The tau constant and the discrete Laplacian matrix of a metrized graph. European
Journal of Combinatorics 32, 4 (2011), 639–655.

[8] Cinkir, Z. Explicit computation of certain Arakelov–Green functions. Kyoto Journal of Math-
ematics 54, 4 (2013), 759–774.

[9] Cinkir, Z. Admissible invariants of genus 3 curves. Manuscripta Mathematica 148 (2015),
317–339.

[10] Cohn, D. Measure Theory. Birkhäuser, 1980.

[11] Harary, F. Graph Theory. Taylor & Francis Group, 1969.

[12] Moriwaki, A. Bogomolov conjecture for curves of genus 2 over function fields. Kyoto Journal
of Mathematics 36, 4 (1996), 687–695.

[13] Moriwaki, A. Bogomolov conjecture over function fields for stable curves with only irreducible
fibers. Compositio Mathematica 105, 2 (1997), 125–140.

[14] Rao, C., and Mitra, S. Generalized Inverse of Matrices and its Applications. John Wiley
& Sons, 1971.

[15] Sutherland, W. Introduction to Metric & Topological Spaces. Oxford University Press, 2009.

[16] Vos, V. S. S. Methods for determining the effective resistance. Master’s thesis, Universiteit
Leiden, 2016.

[17] Zhang, S. Admissible pairings on a curve. Inventiones Mathematicae 112, 1 (1993), 171–193.

Computing Arakelov–Green Functions on Metrized Graphs 41

A Sage code

A.1 The MetrizedGraph class
1 # file : arakelov_green.sage
2 # author: Ruben van Dijk
3 # date : Tue 25 May 2021
4

5 # Description:
6 # A collection of mathematical tools related to metrized graphs. Most
7 # importantly , this includes the MetrizedGraph class and a method to
8 # compute its Arakelov -Green function g_muD , given a divisor D.
9

10 var(’x’,’y’)
11

12 # METRIZED GRAPH CLASS
13 class MetrizedGraph(DiGraph):
14 """ Metrized Graph.
15

16 A metrized graph is an equivalence class of parametrized graphs , see
17 "Computing Arakelov -Green functions on Metrized Graphs ". This implementation
18 equips a metrized graph with a fixed (user -specified) vertex set , edge set
19 and orientations.
20

21 INPUT:
22

23 A metrized graph is initialized with MetrizedGraph(V,E), where:
24

25 V is an array of enumerated vertices;
26

27 E is an array of enumerated edges , which are encoded in the form
28 (p,q,l). Here , p is the first point of the edge , q the second ,
29 and l the length.
30

31 ATTRIBUTES:
32

33 Upon initialization , several attributes are computed:
34

35 L The discrete Laplacian matrix of the metrized graph
36

37 Lplus The Moore -Penrose pseudo -inverse of L
38

39 C The connectivity matrix of the metrized graph
40

41 METHODS:
42

43 The following methods are available:
44

45 vertex(i) Return the ith vertex
46

47 edge(i) Return the ith edge
48

49 p(i) Return the first vertex of the ith edge
50

51 q(i) Return the second vertex of the ith edge
52

53 length(i) Return the length of the ith edge
54

55 total_length () Compute the total length of the metrized graph
56

57 valence(p) Compute the valence of a vertex p
58

59 resistance(p,q) Compute the resistance between vertices p and q
60

61 voltage(p,q,s) Compute the voltage function j_s(p,q) on vertices
62

63 tau() Compute the tau constant of the metrized graph
64

65 can_divisor () Compute the canonical divisor of the metrized graph
66

67 kappa(D) Compute the kappa_D function on each edge
68

69 ag_matrix(D) Compute the Arakelov -Green matrix of g_muD
70

71 epsilon(D) Compute the epsilon invariant for the divisor D"""
72

73 def __init__(self , V, E):
74 # Store the vertices , edges , and the order they were given in.
75 self._order_vertices = V

Computing Arakelov–Green Functions on Metrized Graphs 42

76 self._order_edges = E
77

78 # Inherit everything from the DiGraph class
79 super ().__init__ ([V, E], weighted = True)
80

81 # Compute discrete Laplacian matrix and pseudo -inverse
82 self.L = discrete_laplacian_matrix(self)
83 self.Lplus = moore_penrose(self.L).simplify_rational ()
84

85 # Compute connectivity matrix
86 self.C = connectivity(self)
87

88 def __repr__(self):
89 v = self.order ()
90 e = self.size()
91 return "Metrized graph with %s vertices and %s edges" %(v, e)
92

93 # Basic attributes that use the order in which vertices and edges
94 # were given
95 def vertex(self , i):
96 return self._order_vertices[i]
97

98 def edge(self , i):
99 return self._order_edges[i]

100

101 def p(self ,i):
102 return self._order_edges[i][0]
103

104 def q(self ,i):
105 return self._order_edges[i][1]
106

107 def length(self , i):
108 return self._order_edges[i][2]
109

110 def total_length(self):
111 return sum(length(i) for i in range(self.size()))
112

113 # Valence of a vertex
114 def valence(self ,p):
115 val = 0
116

117 for n in range(self.size()):
118 if p in (self.p(n), self.q(n)):
119 val += 1
120

121 return val
122

123 # Resistance function on vertices
124 def resistance(self ,p,q):
125 i = self._order_vertices.index(p)
126 j = self._order_vertices.index(q)
127 resist = self.Lplus[i][i] - 2*self.Lplus[i][j] + self.Lplus[j][j]
128 return resist.full_simplify ()
129

130 # Voltage function on vertices
131 def voltage(self ,p,q,s):
132 i = self._order_vertices.index(p)
133 j = self._order_vertices.index(q)
134 k = self._order_vertices.index(s)
135 volt = self.Lplus[k][k]
136 volt += -self.Lplus[i][k] - self.Lplus[j][k] + self.Lplus[i][j]
137 return volt.full_simplify ()
138

139 # Tau constant
140 def tau(self):
141 L = self.L
142 Lplus = self.Lplus
143

144 tau = -1/12 * sum(L[i][j]*(1/L[i][j] + Lplus[i][i] - 2* Lplus[i][j] +
Lplus[j][j])^2 for i in range(self.order ()) for j in range(self.
order ()) if self.has_edge ((self.vertex(i),self.vertex(j))))

145 tau += 1/4 * sum(L[i][j]* Lplus[i][i]* Lplus[j][j] for i in range(self.
order ()) for j in range(self.order ()))

146 tau += 1/self.order() * Lplus.trace()
147

148 return tau.full_simplify ()
149

150

151

Computing Arakelov–Green Functions on Metrized Graphs 43

152 # Canonical divisor
153 def can_divisor(self ,rho=None):
154 """ Computes the canonical divisor of the metrized graph given
155 a polarization on each vertex.
156

157 The canonical divisor of a metrized graph is the divisor whose coefficient
158 corresponding to vertex p is valence(p) - 2 + 2* polarization(p). The
159 polarization is encoded as an array where the ith entry corresponds to
160 the value on the ith vertex. If no polarization is specified , all values
161 are assumed to be 0."""
162

163 if rho == None:
164 rho = [0 for i in range(self.order())]
165 else:
166 assert len(rho) == self.order()
167

168 D = [self.valence(self.vertex(i)) - 2 + 2*rho[i] for i in range(self.
order ())]

169

170 return D
171

172 # Kappa -array per edge; uses parallelization
173 def kappa(self , D = None):
174 """ Computes formulas for kappa_D on each edge.
175

176 If the divisor D is not specified , D = 0 is used."""
177

178 if D is None:
179 D = [0 for i in range(self.order ())]
180 else:
181 assert len(D) == self.order()
182

183 K = [0 for i in range(self.size())]
184 generator = kappa ([(self , i, D) for i in range(self.size())])
185 for k in generator:
186 K[k[0][0][1]] = k[1]
187

188 return K
189

190 # Arakelov -Green matrix for g_muD; uses parallelization
191 def ag_matrix(self ,D=None):
192 """ Computes the Arakelov -Green matrix for g_muD.
193

194 The (i,j)th entry of the Arakelov -Green matrix is a formula for g_muD(x,y)
195 when x lies on the ith and y lies on the jth edge. If the divisor D is not
196 specified , D = 0 is used , yielding the Arakelov -Green matrix for the
197 Arakelov -Green function with respect to the canonical measure."""
198

199 if D is None:
200 D = [0 for i in range(self.order ())]
201 else:
202 assert len(D) == self.order()
203

204 # Determine Kappa -array
205 K = self.kappa(D)
206

207 # Compute tau constant and deg(D)
208 tau = self.tau()
209 deg = sum(D)
210

211 # Compute constant cD
212 cD = 8*tau*(deg +1)
213 cD += sum(D[i]*D[j]*self.resistance(self.vertex(i), self.vertex(j))

for i in range(self.order()) for j in range(self.order()))
214 cD *= 1 / (2 * (deg +2) ^2)
215

216 # Compute Arakelov -Green matrix
217 Z = matrix(SR, self.size())
218 generator = Arakelov_Green ([(self ,i,j,D,deg ,K,tau ,cD) for i in range(

self.size()) for j in range(i,self.size())])
219 for g in generator:
220 (i,j) = (g[0][0][1] , g[0][0][2])
221 Z[i,j] = g[1]
222

223 if i != j:
224 Z[j,i] = Z[i,j]. substitute(x=y,y=x)
225

226 return Z
227

Computing Arakelov–Green Functions on Metrized Graphs 44

228 # Epsilon invariant
229 def epsilon(self , D=None , method=’thm’):
230 """ Computes the epsilon invariant for a given divisor.
231

232 This function can use two different methods: def , which uses the definition
233 of the epsilon invariant using Arakelov -Green functions; or thm , which uses
234 the theorem by Cinkir. If no method is specified , thm is used."""
235

236 assert method == ’thm’ or method == ’def’
237 assert len(D) == self.order()
238

239 if method == ’thm’:
240 eps = sum(D[i]*D[j]*G.resistance(G.vertex(i),G.vertex(j)) for i

in range(G.order ()) for j in range(G.order()))
241 eps += 4 * G.tau() * sum(D)
242 eps /= sum(D) + 2
243 return eps.full_simplify ()
244

245 else:
246 Z = G.ag_matrix(D)
247 eps = 0
248

249 for i in range(G.order()):
250 v = G.vertex(i)
251

252 for k in range(G.size()):
253 if v is G.p(k):
254 g = Z[0,k](x=0,y=0)
255 break
256 elif v is G.q(k):
257 g = Z[0,k](x=0,y=G.length(k))
258 break
259

260 eps += D[i] * g
261

262 eps *= sum(D) + 2
263 eps += sum(D[i]*G.resistance(G.vertex(i),G.p(0)) for i in range(G

.order ()))
264

265 return eps.full_simplify ()
266

267

268 # DISCRETE LAPLACIAN MATRIX
269 # Function to compute the discrete Laplacian matrix of a metrized graph G,
270 # using the definition of the discrete Laplacian matrix.
271 def discrete_laplacian_matrix(G):
272 L = matrix(SR,G.order ())
273

274 for i in range(G.order()):
275 for j in range(i+1,G.order()):
276 if Graph(G).has_edge ((G.vertex(i),G.vertex(j))):
277 L[i,j] = -1/Graph(G).edge_label(G.vertex(i),G.vertex(j))
278 L[j,i] = L[i,j]
279

280 L[i,i] = -sum(L[i,k] for k in range(G.order ()) if k != i)
281

282 return L
283

284 # Function to compute the Moore -Penrose pseudo -inverse of a discrete
285 # Laplacian matrix.
286 def moore_penrose(M):
287 n = M.nrows ()
288 return (M - (1/n)*matrix.ones(n)).inverse () + (1/n)*matrix.ones(n)
289

290

291

292 # CONNECTIVITY MATRIX
293 # Helper function alpha. Given a bridge e_i and an edge e_j of metrized graph
294 # G, its output is 0 if e_j is in G_{p_{e_i}} and 1 if e_j is in G_{q_{e_i}}.
295 def alpha(G,i,j):
296 # Delete e_i to obtain G - e_i
297 G.delete_edge(G._order_edges[i])
298

299 # Determine which connected subgraph p_{e_j} belongs to; this is the
300 # subgraph that e_j belongs to.
301 if G.p(i) in G.connected_component_containing_vertex(G.p(j)):
302 alpha = 0
303 else:
304 alpha = 1

Computing Arakelov–Green Functions on Metrized Graphs 45

305

306 # Restore e_i and return result
307 G.add_edge(G._order_edges[i])
308 return alpha
309

310 # Helper function beta. Given two bridges e_i and e_j of metrized graph G,
311 # it outputs the bridges ’ closest neighbours: 0 if the first points of
312 # e_i and e_j are closest neighbours , 10 if the second point of e_i and
313 # the first point of e_j are closest neighbours , etcetera.
314 def beta(G,i,j):
315 # Temporarily set the lengths of e_i and e_j to 1, and the lengths of
316 # other edges to 0. The closest neighbours of e_i and e_j are then
317 # points on the respective edges that are distance 0 apart from
318 # each other.
319 for k in range(G.size()):
320 if k == i or k == j:
321 G.set_edge_label(G.p(k), G.q(k), 1)
322 else:
323 G.set_edge_label(G.p(k), G.q(k), 0)
324

325 # Determine the closest neighbours
326 for index in range (2):
327 for jndex in range (2):
328 dist = Graph(G).shortest_path_length(G.edge(i)[index], G.edge(j)[

jndex], by_weight = True)
329 if dist == 0:
330 # Restore the edge lengths and return result
331 for k in range(G.size()):
332 G.set_edge_label(G.p(k), G.q(k), G.length(k))
333 return 10* index + jndex
334

335 # Function to compute the connectivity matrix of metrized graph G
336 def connectivity(G):
337 # Initialize C
338 C = matrix(G.size())
339

340 # Set diagonal entries
341 for i in range(G.size()):
342 if G.is_cut_edge(G.edge(i)):
343 C[i,i] = 1
344

345 # Set non -diagonal entries
346 for i in range(G.size()):
347 if C[i,i] == 1: # If e_i is a bridge ,
348 for j in range(i+1,G.size()): # Loop over the next edges e_j
349 C[i,j] = alpha(G,i,j) # Assume that e_j is not a bridge
350 if C[j,j] == 1: # If e_j is a bridge , adjust
351 C[i,j] = 100*C[i,j] + beta(G,i,j)
352 C[j,i] = 100* alpha(G,j,i) + beta(G,j,i)
353 else:
354 C[j,i] = C[i,j] # If e_j is not a bridge ,
355 # set c_ji=c_ij
356

357 else: # If e_i is not a bridge ,
358 for j in range(i+1,G.size()): # Loop over the next edges e_j
359 if C[j,j] == 1: # If e_j is a bridge , set
360 C[i,j] = alpha(G,j,i) # nonzero entry
361 C[j,i] = C[i,j]
362

363 # Return result
364 return C
365

366

367 # KAPPA
368 # Given a divisor D, this function determines a formula for kappa on the
369 # edge e_i of the metrized graph G. With the @parallel decorator , this
370 # function can make use of multiple processors when it is applied to
371 # multiple edges.
372 @parallel
373 def kappa(G, i, D):
374 # Initialize kappa
375 kappa = 0
376

377 # If e_i is not a bridge , use eq 5.19.1
378 if G.C[i,i] == 0:
379 for k in range(G.order()):
380 tmp = -x^2 * (G.length(i) - G.resistance(G.p(i), G.q(i))) / (

G.length(i)^2)
381 tmp += x * (G.length(i) - G.resistance(G.p(i), G.q(i)) + G.

Computing Arakelov–Green Functions on Metrized Graphs 46

resistance(G.vertex(k), G.q(i)) - G.resistance(G.vertex(k)
, G.p(i))) / G.length(i)

382 tmp += G.resistance(G.vertex(k), G.p(i))
383 tmp *= D[k]
384 kappa += tmp
385

386 # If e_i is a bridge , use eq 5.19.2
387 else:
388 # Iterate over all vertices , add the right expression to kappa
389 # for each vertex
390 for k in range(G.order()):
391 if G.vertex(k) == G.p(i):
392 kappa += D[k]*x
393 elif G.vertex(k) == G.q(i):
394 kappa += D[k]*(G.length(i) - x)
395 else:
396 # If vertex k is not an end point of e_i , search for an edge
397 # that the vertex is an end point of. Then use the
398 # connectivity matrix to determine the suitable expression.
399 for j in range(G.size()):
400 if j != i and (G.vertex(k) == G.p(j) or G.vertex(k) == G.

q(j)):
401 if (G.C[j,j] == 0 and G.C[i,j] == 0) or (G.C[j,j] ==

1 and G.C[i,j] < 100):
402 kappa += D[k] * (x + G.resistance(G.vertex(k), G.

p(i)))
403 else:
404 kappa += D[k] * (G.length(i) - x + G.resistance(G

.vertex(k), G.q(i)))
405 break
406

407 # Return result
408 return kappa
409

410

411 # FORMULAS FOR A-G FUNCTION
412 # Given a divisor D, this function determines a formula for the
413 # Arakelov -Green function g_muD on the pair of edges (e_i ,e_j)
414 # of the metrized graph G. The input also requires several constants
415 # that should be computed beforehand. With the @parallel decorator ,
416 # this function can make use of multiple processors when it is applied
417 # to multiple pairs of edges.
418 @parallel
419 def Arakelov_Green(G, i, j, D, deg , K, tau , cD):
420 # Short -hand for clunky recurring expression
421 chi = lambda i,j: 1/(deg+2) * (4*tau + 1/2 * (K[i] + K[j]. substitute(x=y)

)) - cD
422

423 # Same edge
424 if i == j:
425 if G.C[i,i] == 0: # Not a bridge: eq 5.20.1
426 g = (G.length(i) - G.resistance(G.p(i), G.q(i))) / (2 * G.length(

i)^2)
427 g = chi(i,i) - 1/2* abs(x-y) + (x-y)^2 * g
428 else: # Bridge: eq 5.20.2
429 g = chi(i,i) - 1/2* abs(x-y)
430

431 # Different edges
432 else:
433 # Neither a bridge: eq 5.20.3
434 if G.C[i,i] == 0 and G.C[j,j] == 0:
435 g = chi(i,j)
436 g += x^2 * (G.length(i) - G.resistance(G.p(i),G.q(i))) / (2 *

G.length(i)^2)
437 g += y^2 * (G.length(j) - G.resistance(G.p(j),G.q(j))) / (2 *

G.length(j)^2)
438 g += -(x*y)/(G.length(i)*G.length(j)) * (G.voltage(G.p(i), G.

q(j), G.p(j)) - G.voltage(G.q(i), G.q(j), G.p(j)))
439 g += -x/(2*G.length(i)) * (G.length(i) - 2*G.voltage(G.q(i),

G.p(j), G.p(i)))
440 g += -y/(2*G.length(j)) * (G.length(j) - 2*G.voltage(G.p(i),

G.q(j), G.p(j)))
441 g += -1/2*G.resistance(G.p(i), G.p(j))
442

443 # Edge e_i a bridge , e_j not: eq 5.20.4
444 elif G.C[i,i] == 1 and G.C[j,j] == 0:
445 if G.C[i,j] == 0: # If e_j in G_{p_{e_i}}
446 g = chi(i,j) + y^2 * (G.length(j) - G.resistance(G.p(j),G.q(j

))) / (2*G.length(j)^2)

Computing Arakelov–Green Functions on Metrized Graphs 47

447 g += -y * (G.length(j) - G.resistance(G.p(j),G.q(j)) + G.
resistance(G.p(i),G.q(j)) - G.resistance(G.p(i),G.p(j))) /
(2*G.length(j))

448 g += -1/2*(x + G.resistance(G.p(i),G.p(j)))
449

450 else: # If e_j in G_{q_{e_i}}
451 g = chi(i,j) + y^2 * (G.length(j) - G.resistance(G.p(j),G.q(j

))) / (2*G.length(j)^2)
452 g += -y * (G.length(j) - G.resistance(G.p(j),G.q(j)) + G.

resistance(G.q(i),G.q(j)) - G.resistance(G.q(i),G.p(j))) /
(2*G.length(j))

453 g += -1/2*(G.length(i) - x + G.resistance(G.q(i),G.p(j)))
454

455 # Edge e_j a bridge , e_i not: adapted eq 5.20.4
456 elif G.C[i,i] == 0 and G.C[j,j] == 1:
457 if G.C[i,j] == 0: # If e_i in G_{p_{e_j}}
458 g = chi(i,j) + x^2 * (G.length(i) - G.resistance(G.p(i),G.q(i

)))/(2*G.length(i)^2)
459 g += -x * (G.length(i) - G.resistance(G.p(i),G.q(i)) + G.

resistance(G.p(j),G.q(i)) - G.resistance(G.p(j),G.p(i))) /
(2*G.length(i))

460 g += -1/2*(y + G.resistance(G.p(j),G.p(i)))
461

462 else: # If e_i in G_{q_{e_j}}
463 g = chi(i,j) + x^2 * (G.length(i) - G.resistance(G.p(i),G.q(i

)))/(2*G.length(i)^2)
464 g += -x * (G.length(i) - G.resistance(G.p(i),G.q(i)) + G.

resistance(G.q(j),G.q(i)) - G.resistance(G.q(j),G.p(i))) /
(2*G.length(i))

465 g += -1/2*(G.length(j) - y + G.resistance(G.q(j),G.p(i)))
466

467 # If both edges are bridges: eq 5.20.5 , using the closest -neighbour
468 # information encoded in the connectivity matrix
469 else:
470 if G.C[i,j] % 100 == 0:
471 g = chi(i,j) - 1/2*(x + y + G.resistance(G.p(i),G.p(j)))
472

473 elif G.C[i,j] % 100 == 1:
474 g = chi(i,j) - 1/2*(x + G.length(j) - y + G.resistance(G.p(i)

,G.q(j)))
475

476 elif G.C[i,j] % 100 == 10:
477 g = chi(i,j) - 1/2*(G.length(i) - x + y + G.resistance(G.q(i)

,G.p(j)))
478

479 else:
480 g = chi(i,j) - 1/2*(G.length(i) - x + G.length(j) - y + G.

resistance(G.q(i),G.q(j)))
481

482 # Simplify and return result
483 return g.full_simplify ()

Computing Arakelov–Green Functions on Metrized Graphs 48

A.2 Well-definedness test

1 # file : edge_point_test.sage
2 # author: Ruben van Dijk
3 # date : Thu 10 June 2021
4

5 # Description:
6 # Simple script that computes the Arakelov -Green matrix of a metrized graph
7 # and checks if the function values on vertices are the same regardless of
8 # the vertices ’ representations , verifying that the Arakelov -Green function
9 # is well -defined.

10

11 load(’arakelov_green.sage’)
12

13 # A big weird metrized graph with bridges , non -bridges , and different
14 # directions , for illustration.
15 var(’v1’,’v2’,’v3’,’v4’,’v5’,’v6’,’v7’,’v8’,’v9’,’v10’,’w1’,’w2’,’w3’,’w4’,’

w5’,’w6’,’w7’,’w8’)
16

17 V = [v1 , v2 , v3 , v4 , v5, v6, v7, v8, v9, v10 , w1, w2, w3, w4, w5, w6, w7, w8]
18 E = [(v1 ,v2 ,12), (v1 ,v6 ,312) , (v2,v7 ,123) , (v4,v3 ,1321) , (v4,v5 ,7777) , (v4,v6

,1), (v7 ,v6 ,11), (v7 ,v5 ,1321321) , (v7 ,v8 ,2), (v8 ,v2 ,19), (v2 ,v3 ,8), (v8 ,v3
,9), (v8 ,v4 ,1233) , (v1 ,v9 ,2123) , (v9 ,v10 ,321), (v10 ,w1 ,432), (w1 ,w2 ,1), (
w2 ,w3 ,1), (w2,w4 ,2), (w3,w4 ,1), (w4,w1 ,1), (w2,w5 ,2), (w5,w6 ,10), (w6,w7
,1), (w6 ,w8 ,4), (w7 ,w8 ,1)]

19

20 G = MetrizedGraph(V,E)
21

22 # Just some weird divisor , for the sake of illustration.
23 D = [(i^3+14) % 27 for i in range(len(V))]
24

25 Z = G.ag_matrix(D)
26

27 test = []
28

29 for i in range(G.order()):
30 for j in range(G.order()):
31 v = G.vertex(i)
32 w = G.vertex(j)
33

34 F = []
35

36 for nv in range(G.size()):
37 for nw in range(G.size()):
38 f = Z[nv ,nw]
39

40 if v is G.p(nv) and w is G.p(nw):
41 F.append(f(x=0, y=0))
42

43 elif v is G.p(nv) and w is G.q(nw):
44 F.append(f(x=0, y=G.length(nw)))
45

46 elif v is G.q(nv) and w is G.p(nw):
47 F.append(f(x=G.length(nv), y=0))
48

49 elif v is G.q(nv) and w is G.q(nw):
50 F.append(f(x=G.length(nv), y=G.length(nw)))
51

52 if F == [F[0] for i in range(len(F))]:
53 test.append (0)
54 else:
55 print(F)
56 print()
57 test.append (1)
58

59 if sum(test) == 0:
60 print(’Success!’)
61 else:
62 print(test)

Computing Arakelov–Green Functions on Metrized Graphs 49

A.3 Vertex value test

1 # file : vertex_value_test.sage
2 # author: Ruben van Dijk
3 # date : Thu 10 June 2021
4

5 # Description:
6 # Script that computes the Arakelov -Green matrix of a metrized graph and
7 # checks if the function values on vertices match the function values
8 # obtained through direct computation.
9

10 load(’arakelov_green.sage’)
11

12 # The Arakelov -Green function on vertices
13 def gmuD(G,D,x,y):
14 tau = G.tau()
15

16 g = sum(D[i]*G.voltage(x,y,G.vertex(i)) for i in range(G.order ()))
17 g += 4*tau - G.resistance(x,y)
18 g *= 1/(sum(D) + 2)
19

20 cD = 8*tau*(sum(D)+1)
21 cD += sum(D[i]*D[j]*G.resistance(G.vertex(i), G.vertex(j)) for i in range

(G.order()) for j in range(G.order ()))
22 cD *= 1 / (2 * (sum(D)+2) ^2)
23

24 return g - cD
25

26 # A big weird metrized graph with bridges , non -bridges , and different
27 # directions , for illustration.
28 var(’v1’,’v2’,’v3’,’v4’,’v5’,’v6’,’v7’,’v8’,’v9’,’v10’,’w1’,’w2’,’w3’,’w4’,’

w5’,’w6’,’w7’,’w8’)
29

30 V = [v1 , v2 , v3 , v4 , v5 , v6, v7, v8, v9, v10 , w1, w2, w3, w4, w5, w6, w7, w8]
31 E = [(v1 ,v2 ,12), (v1 ,v6 ,312) , (v2,v7 ,123) , (v4,v3 ,1321) , (v4,v5 ,7777) , (v4,v6

,1), (v7 ,v6 ,11), (v7 ,v5 ,1321321) , (v7 ,v8 ,2), (v8 ,v2 ,19), (v2 ,v3 ,8), (v8 ,v3
,9), (v8 ,v4 ,1233) , (v1 ,v9 ,2123) , (v9 ,v10 ,321), (v10 ,w1 ,432), (w1 ,w2 ,1), (
w2 ,w3 ,1), (w2,w4 ,2), (w3,w4 ,1), (w4,w1 ,1), (w2,w5 ,2), (w5,w6 ,10), (w6,w7
,1), (w6 ,w8 ,4), (w7 ,w8 ,1)]

32

33 G = MetrizedGraph(V,E)
34

35 # Just some weird divisor , for the sake of illustration.
36 D = [(i^3+14) % 27 for i in range(len(V))]
37

38 Z = G.ag_matrix(D)
39

40 test = []
41

42 for i in range(G.order()):
43 for j in range(G.order()):
44 v = G.vertex(i)
45 w = G.vertex(j)
46

47 true_value = gmuD(G,D,v,w)
48

49 F = []
50

51 for nv in range(G.size()):
52 for nw in range(G.size()):
53 f = Z[nv ,nw]
54

55 if v is G.p(nv) and w is G.p(nw):
56 F.append(f(x=0, y=0))
57

58 elif v is G.p(nv) and w is G.q(nw):
59 F.append(f(x=0, y=G.length(nw)))
60

61 elif v is G.q(nv) and w is G.p(nw):
62 F.append(f(x=G.length(nv), y=0))
63

64 elif v is G.q(nv) and w is G.q(nw):
65 F.append(f(x=G.length(nv), y=G.length(nw)))
66

67 if F == [true_value for i in range(len(F))]:
68 test.append (0)
69 else:
70 print(F)
71 test.append (1)

Computing Arakelov–Green Functions on Metrized Graphs 50

72

73 if sum(test) == 0:
74 print(’Success!’)
75 else:
76 print(test)

	Introduction
	Graph theory in brief
	Metrics and measures

	Metrized graphs
	Parametrized and metrized graphs
	The metric on metrized graphs
	Measures on metrized graphs
	The discrete Laplacian matrix
	Polarized metrized graphs

	Piecewise smooth functions on a metrized graph
	Derivatives on metrized graphs
	The Laplacian operator

	Voltage and resistance functions
	Metrized graphs as electrical networks
	Explicit formulas for the resistance function

	Arakelov–Green functions
	Arakelov–Green functions
	The canonical measure
	Divisors and admissible metrics

	An algorithm to compute Arakelov–Green functions
	Initialization
	The connectivity matrix
	Computing D on each edge
	Computing the Arakelov–Green matrix
	Consistency checks

	Computational examples
	The circle graph
	Joint circles
	A canonical divisor
	The epsilon invariant on a tesseract
	The epsilon invariant on a banana graph

	Conclusion
	Sage code
	The MetrizedGraph class
	Well-definedness test
	Vertex value test

