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Abstract

Cold (T ∼ 104 K) gas residing in the multiphase circumgalactic medium of galaxies plays an
important role in sustaining star formation. For a long time, it was believed that passive galaxies
were devoid of any cold gas, which would account for their lack of star formation activity.
Relatively recent observations have, however, shown that ionized cold gas in the form of clouds
do, in fact, also inhabit the halo regions of quiescent early-type galaxies (ETGs). Where this
cold gas comes from and why it does not feed star formation is not fully understood. Recently,
Afruni et al. 2019 have shown, with the help of a semi-analytical model, that this cold medium
might be part of the accretion from the intergalactic medium (IGM) and have suggested that the
clouds evaporate in the hot (T ∼ 106−7K) corona before reaching the inner regions of the galaxy.
Yet, this evaporation occurs mainly via hydrodynamical instabilities that this analytical model
cannot fully describe. To that end, we carry out 2D hydrodynamical simulations that include
radiative cooling and thermal conduction to investigate the evolution of cold clouds travelling
through a hot medium, which we then compare with the analytical model. Key parameters that
we vary in our simulations are the suppression factor (f) for isotropic thermal conduction, the
cloud metallicity, the cloud mass, and the radius at which the cloud starts its infall.

In accordance with the analytical model, we find that the clouds in all our simulations
evaporate in the hot medium long before they could potentially feed star formation, with, on
average, a survival time of t̄ = 643 Myr and a travelled distance of d̄ = 63 kpc. We furthermore
show that the cold gas mass is not lost at a constant exponential rate as assumed by the analytical
model, but, rather, at an exponential rate that steepens over time until the mass loss becomes
seemingly instantaneous. This final, catastrophic mass loss phase occurs close to the end of the
cloud’s lifetime, i.e. once ∼ 80% of the initial cold mass has already been lost. We also find that
the cloud becomes highly elongated in the transverse direction as it falls inwards to the galaxy.
This is in disagreement with the analytical model, which assumes that the cloud will contract
while retaining its spherical shape. Finally, we find a good agreement between the numerical and
analytical velocity profiles suggesting that, despite all the approximations, the kinematics of the
clouds is well described by the analytical model.
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Chapter 1

Introduction

Galaxies can be categorized into two main types — early-type galaxies (ETGs) and late-type
galaxies (LTGs; Hubble 1936). ETGs are spheroidal, almost featureless galaxies that predomi-
nately contain old stars and tend to reside in dense clusters of galaxies. They are characterized
by a lack of ongoing star formation and are therefore often labeled as passive or quiescent galax-
ies. The formation history of these galaxies is believed to consist of two phases: an initial phase
of rapid in-situ star formation followed by an assembly of stars that formed ex-situ. During the
in-situ star formation phase, ETGs were actively accreting gas which presumably also powered
the active galactic nucleus (AGN) that some ETGs host in their galactic center (Cimatti et al.
2019). LTGs, on the other hand, are quite different: they inhabit regions that are less densely
packed with galaxies and have a more distinctive shape in the form of spiral arms and a central
bulge. These galaxies are still actively forming stars (mainly in the spiral arms) and are therefore
known as star-forming galaxies (Binney and Merrifield 1998; Sparke and Gallagher 2007). Their
formation history is characterized by a slower rate of in-situ star formation than ETGs, which
is produced by a dissipative infall of gas. Due to the conservation of angular momentum, a
rotationally supported disk forms, which may eventually evolve into an LTG (Mo et al. 2010;
Pillepich et al. 2015).

Even though LTGs and ETGs follow different evolutionary paths, they both initially formed
in a dark matter (DM) halo which had started to attract baryonic matter (i.e. gas) after the
epoch of Recombination (Ryden 2016). The amount of baryonic matter relative to the total
(baryonic + dark) matter in the Universe is known as the cosmic baryon fraction, fb ' 0.16, and
is one of the most well-constrained parameters in Cosmology (Planck Collaboration et al. 2020).
Based on this parameter and on the assumption that galaxies accrete all the gas within their
DM halos, one would expect the total baryonic mass in galaxies to be simply Mb = fbMhalo.
However, observations have indicated that over a wide range of galaxy masses, the baryonic mass
is well below fbMhalo. A considerable portion of the expected baryons are therefore missing (e.g.
McGaugh et al. 2010). Where exactly these missing baryons are is an open question, but it is
generally believed that they must reside in two media: the intergalactic medium (IGM; Danforth
and Shull 2005) and the circumgalactic medium (CGM; Cimatti et al. 2019). The IGM resides
in between the galaxies, while the CGM is a multiphase medium that surrounds every galaxy
out to roughly its halo virial radius. The CGM is intimately linked with the IGM from which
it can accrete low-metallicity gas. If this gas is able to remain cool (or to cool down) and reach
the inner regions of the galaxy, star formation will ensue (as is the case for LTGs). The CGM is
therefore believed to play a key role in the evolution of galaxies as it regulates the galaxy’s gas
supply and fuels star formation with cold gas (Tumlinson et al. 2017).

This chapter is organized as follows. In section 1.1, we introduce the various gas phases
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1.1. The circumgalactic medium

that constitute the CGM; in section 1.2, we explain the perceived dynamics of the CGM; in
section 1.3, we describe the interactions that can arise between the hot and cold phase of the
CGM in ETGs; in section 1.4, we introduce an analytical model which invokes these interactions
to account for the lack of star formation in ETGs; and in section 1.5, we explain the aim of this
research.

1.1 The circumgalactic medium

The existence of the CGM residing in the halo regions of both ETGs and LTGs has been shown
by observations in emission and absorption ranging from X-ray (Anderson et al. 2013; Li et al.
2017; Li et al. 2018) to UV-optical bands (Bordoloi et al. 2011; Keeney et al. 2013; Kacprzak
et al. 2014; Borthakur et al. 2015). The CGM comprises three phases based on its temperature:
the cold/cool (T < 105 K), hot (T ∼ 106−7K), and intermediate warm (T ∼ 105−6K) phase.

1.1.1 Cold phase

The cold phase of the CGM comes in two forms: neutral and ionized. The neutral gas manifests
itself as extra-planar cold gas which has been extensively observed, through 21-cm emission
lines, around both the Milky Way and other nearby spiral galaxies (e.g. Marasco et al. 2019).
This extra-planar cold gas has been observed as a gaseous halo that surrounds the galactic
plane (see the left panel of Figure 1.1) and which exhibits a regular, differential rotation that
lags with respect to that of the disk (Oosterloo et al. 2007). In the Milky Way, this neutral
(H I) cold gas has also been detected in the form of clouds that reside within ∼ 10 kpc of the
Galactic plane (Sancisi et al. 2008; Wakker et al. 2008; Fraternali et al. 2015). These clouds
move at velocities that deviate from the galactic rotation (Wakker and van Woerden 1997) of
which we distinguish two types: Intermediate-Velocity-Clouds (IVCs), which move at velocities
30 km/s < |VLSR| < 90 km/s relative to the Local Standard of Rest (LSR), and High-Velocity-
Clouds (HVCs; Muller et al. 1963), which move at higher velocities of |VLSR| > 90 km/s (Wakker
1990). The accretion of this extra-planar H I gas is considered a contributor to the fuelling of
star formation in our Milky Way and other star-forming galaxies.

Observations from Hα emissions have shown that also ionized cold gas can reside close to the
galactic plane of disk galaxies. This gas, known as diffuse ionized gas (DIG), is seen in both the
Milky Way and other nearby spiral galaxies and is believed to be the ionized part of the neutral
extra-planar gas (e.g. Fraternali et al. 2004; Putman et al. 2012; Li et al. 2021). However,
ionized cold gas with a significantly lower density has also been observed to reside at much larger
distances (∼ 100 kpc) from the galactic plane (Tumlinson et al. 2017). This low-density, ionized
gas was first discovered by Boksenberg and Sargent 1978 and Bergeron 1986 via detections of
absorption lines in the UV and in the optical from spectra of background quasars. More recent
absorption-line studies have furthermore shown that this ionized cold gas is not one homogeneous
medium, but an ensemble of various absorbing clouds that move at different velocities and are
bound to their host galaxies (e.g. Werk et al. 2013; Tumlinson et al. 2013; Werk et al. 2014).
What is even more surprising is that these cold ionized clouds not only inhabit the halo regions
of LTGs but also of ETGs (see the right panel of Figure 1.1), as evidenced by observations of H I
(Thom et al. 2012; Chen et al. 2018), Mg II and other low-ionization absorption lines (Gauthier
et al. 2009; Huang et al. 2016; Huang et al. 2021). In fact, Thom et al. 2012 studied 16 (low-
redshift) ETGs in the COS-Halos Survey (Tumlinson et al. 2013) and found that the Lyman-α
absorption lines around ETGs are about as strong and frequent as around star-forming galaxies.
These lines trace the neutral fraction of a largely photo-ionized medium. Using the CLOUDY
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1.1. The circumgalactic medium

Figure 1.1: Left: Total H I map (blue) around the edge-on galaxy NGC 891 (orange) indicating the
presence of (extra-planar) neutral cold CGM gas (Oosterloo et al. 2007; Sancisi et al. 2008). Right: QSO
absorption line detections of ionized cold gas located at large distances from the galaxy (up to 150 kpc).
The blue and red dots represent LTGs and ETGs, respectively (Tumlinson et al. 2013).

photo-ionization model (Ferland et al. 1998), they estimated the ionization fraction of the cold
gas from which they inferred that the ETGs should have a total (neutral + ionized) cold gas
mass of roughly 109−11M�. These large uncertainties in the total mass of the cold gas is due to
the fact that photo-ionization models are very sensitive to model assumptions.

In a more recent paper, Zahedy et al. 2019 investigated (using data from a COS-LRG sample;
Chen et al. 2018) the cool CGM around 16 luminous red galaxies (LRGs) at z = 0.21−0.55 with
stellar masses of Mstar > 1011 M�. They found an average temperature of T ∼ 104 K and a cool
gas mass of Mcool = (1− 2) × 1010 M� within a projected distance of d < 160 kpc. They also
reported large uncertainties for the (column) density and metallicity of the cold gas obtained
with the CLOUDY model.

1.1.2 Hot phase

The existence of the hot CGM (T ∼ 106−7 K), also known as the galaxy corona, was predicted
by L. Spitzer based on the observations of cold (T < 105 K), dense pockets of H I gas residing
within ∼ 1 kpc above the disk of our Milky Way (Spitzer 1956). Spitzer argued that these cold
clouds could only survive if they were in pressure equilibrium with a surrounding hot, ionized
and diffuse medium (see Figure 1.2). This hot surrounding medium is believed to form naturally
around growing galaxies as inflowing IGM gas gets shock-heated to the virial temperature (White
and Rees 1978; White and Frenk 1991; Birnboim and Dekel 2003). Unfortunately, the hot
CGM is notoriously difficult to detect as its extremely low density (n ∼ 10−4 cm−3 for spiral
galaxies; Pezzulli et al. 2017) leads to a very low X-ray surface brightness (e.g. Bregman 2007).
Nevertheless, its existence has been established via the detection of soft X-ray emission (e.g.
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1.2. Dynamics of the CGM

Figure 1.2: X-ray detection of a hot, diffuse medium (in purple) surrounding NGC 1961. The green
contour lines represent the K-band intensity levels which have been overplotted to illustrate the extent
and distribution of the stellar light (Bogdán et al. 2013).

Anderson and Bregman 2010; Anderson et al. 2013) and absorption-lines along QSO sightlines
(e.g. Williams et al. 2005; Gupta et al. 2012). These detections are also supported by ΛCDM
cosmological simulations, which have shown that hot coronal media are consistently formed
within DM halos (e.g. Fumagalli et al. 2014; Fielding et al. 2017).

When a cold cloud, like an HVC, moves through and interacts with the surrounding hot
medium, it may also lead to the creation of a mixed, intermediate warm phase (T ∼ 105−6 K).
The occurrence of this mixed gas has been testified by hydrodynamical simulations (e.g. Suresh
et al. 2017) as well as by observations of UV absorption lines via ions such as OVI, C IV, and
NV in both the Milky Way and external galaxies (e.g. Tumlinson et al. 2011; Werk et al. 2016).

An important difference between the cold and hot component is that only cold gas can flow
to the inner regions of a galaxy and feed star formation. The hot corona, on the other hand,
remains (approximately) in hydrostatic equilibrium with the galactic potential and will therefore,
provided that it has a long cooling time, not accrete onto the galaxy (Spitzer 1956; Fang et al.
2013).

1.2 Dynamics of the CGM

Galaxies evolve by accreting gas from its surroundings which is slowly converted into stars. How
exactly galaxies accrete their gas is still under debate, but, in general, we distinguish between two
main ways: hot mode and cold mode accretion (Birnboim and Dekel 2003; Kereš et al. 2005; Dekel
and Birnboim 2006; Stern et al. 2020). During hot mode accretion, inflowing IGM gas gets shock-
heated to the virial temperature and forms an atmosphere in nearly hydrostatic equilibrium that
can eventually slowly cool down in the central regions, if the cooling time is short enough. During
cold mode accretion, cold gas is directly fed to the galaxy via filaments (from the IGM) without
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1.2. Dynamics of the CGM

Figure 1.3: Schematic of in- and outflows of CGM gas around a star-forming galaxy. Cold gas (shown
in blue) is attracted by the galaxy’s gravitational pull and flows into its central regions while, at the same
time, feedback effects eject gas outwards (orange). Part of this outflowing gas cannot escape the galaxy’s
potential well and falls back into the central regions (pink; Tumlinson et al. 2017).

being heated to the virial temperature. Which of these accretion modes dominates depends on
the ratio between the cooling time tcool and the free-fall time tff . Hot mode accretion tends
to dominate when tcool > tff , leading to the formation of a gaseous pressure supported corona
which makes gas accretion more gradual and regulated by radiative energy losses. Conversely,
cold mode accretion tends to dominate when tcool < tff , at which point the short cooling time
prevents the hot corona from forming and allows the gas to accrete onto the galaxy in a free-fall
timescale. The transition between these two regimes depends on the stability of a virial shock
which, in turn, depends on the DM halo mass. It is estimated that when Mhalo . 1011.5M�,
the rapid cooling generates an unstable shock which ensures that the inflowing gas remains cool
(T ∼ 104 K). But when Mhalo & 1011.5M�, a stable shock forms that expands into the corona
and heats the accreting gas to the virial temperature (Birnboim and Dekel 2003; Dekel and
Birnboim 2006). The division between the two accretion modes is therefore roughly determined
by the threshold mass Mthres ∼ 1011.5M�, where hot mode dominates for higher mass halos
(&Mthres) and cold mode dominates for lower mass halos (.Mthres). This also implies that cold
mode accretion dominated in the Early Universe, as the halo masses of nascent galaxies were still
well below Mthres. This was the case for ETGs when they were still forming stars, but currently
they are surrounded by hot coronae that are somehow prevented from cooling, as testified by the
absence of active star formation in these galaxies.

For star-forming galaxies, the dynamics of the CGM is complex as they experience both
in- and outflows due to an interplay between gravity and feedback effects: gravity pulls cool,
metal-poor gas in from the IGM, causing inflows, while stellar (and AGN) feedback propels
cold gas outwards, causing outflows. However, not all of the ejected gas will leave the galaxy’s
halo; some of it cannot overcome the galaxy’s gravitational attraction and will fall back in (see
Figure 1.3). This recycling scenario allows the galaxy to “re-use” its enriched gas and form
new stars (Tumlinson et al. 2017). A variation of the recycling scenario is the so-called galactic
fountain accretion, where an ejected parcel of cold gas interacts and mixes with the hot corona
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1.2. Dynamics of the CGM

and cools a fraction of the hot gas. This gas eventually accretes onto the galactic disk, leading
to further feeding of the star formation (Fraternali 2017).

1.2.1 Cold CGM around low-redshift ETGs

According to the current theory of galaxy formation, ETGs form the bulk of their stars at z & 2,
possibly via cold mode accretion, but at z ≈ 2, star formation comes to a halt. This cessation
of star formation in galaxies is a phenomenon known as quenching. It is expected that the cold
mode accretion is succeeded by hot mode accretion once the galaxy has reached a halo mass
of Mhalo & 1011.5M� (Birnboim and Dekel 2003; Kereš et al. 2005; Dekel and Birnboim 2006).
But in ETGs, the further cooling of the hot gas gets inhibited by AGN feedback effects that
can ultimately lead to star formation quenching (Cimatti et al. 2019). One might therefore
naively expect that ETGs should harbour no cold gas at all. But numerous observational studies
have shown that a large fraction of massive quiescent galaxies at z . 0.5 still have a significant
reservoir of cold ionized gas (e.g. Gauthier et al. 2009; Lundgren et al. 2009; Gauthier et al.
2010; Bowen and Chelouche 2011; Gauthier and Chen 2011; Thom et al. 2012; Zhu et al. 2014;
Huang et al. 2016; Chen et al. 2018). This raises questions of where this cold gas actually comes
from and why it does not feed star formation.

Possible origin and fate of the cold gas

The origin of the cool ionized gas around ETGs is still unclear. Due to the quiescence of these
ETGs, the origin of the cold gas is probably related to gas accretion from the IGM or from tidal
stripping of gas-rich satellite galaxies (e.g. Afruni et al. 2019). Both scenarios agree with the
observation that cool CGM gas can even extend to distances comparable to the virial radius (e.g.
Zhu et al. 2014; Huang et al. 2016). The accretion of gas from the IGM furthermore explains why
this cold gas is seen in the form of clouds, as the cold filaments from the IGM will most likely
fragment into clouds when they reach the virial radius (Afruni et al. 2019). Another possibility
is that the cold gas is a leftover from feedback-driven outflows that occurred in the past, but
this is generally deemed as unlikely given the quiescent state of these galaxies (Zahedy et al.
2019). Alternatively, the cold clouds could have also condensed out of the hot CGM due thermal
instabilities (e.g. McCourt et al. 2012; Sharma et al. 2012; Voit 2018), but this scenario is not
likely to occur at around the virial radius where the density of the corona is presumed to be
very low. In addition, the conditions under which these instabilities can occur are still debated
(Binney et al. 2009; Nipoti and Posti 2014).

What is clear, however, is that these cold clouds are somehow unable to fuel star formation.
Perhaps the cold gas is shock-heated before reaching the galaxy’s inner regions (e.g. Dekel and
Birnboim 2006) or maybe the clouds will get disrupted as they propagate through the hot corona
(e.g. Bland-Hawthorn et al. 2007; Putman et al. 2011). In a recent paper, Afruni et al. 2019
argued, based on a semi-analytical model, that passive ETGs still accrete cold gas from the IGM
but are unable to feed star formation as the cold gas clouds will disrupt and evaporate in the hot
corona (similar to the scenario in Putman et al. 2011) long before reaching the galactic center.
This evaporation is the result of the interactions that can occur between the hot and cold phase
of the CGM. However, Afruni et al. 2019 did not perform any hydrodynamical simulations to
support their claim; these simulations are the subject of the present work.
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1.3. Survival of cold gas clouds in the CGM

1.3 Survival of cold gas clouds in the CGM

The propagation of a cold, high-density gas cloud through a hot, low-density medium leads to
the onset of two hydrodynamical (HD) instabilities: the Kelvin-Helmholtz and Rayleigh-Taylor
instabilities (Armillotta et al. 2017).

The Kelvin-Helmholtz (KH) instability occurs when there is a velocity difference across the
interface between two continuous fluids or a velocity shear in one continuous fluid (Helmholtz
1868; F.R.S. 1871). In our case, the high-density infalling cold cloud moves with a higher velocity
relative to the hydrostatic low-density corona. This shear flow induces turbulent activity at the
interface between the two fluids, resulting in the formation of wave-like eddies at the cloud-corona
interface that strip the cloud of its mass and mix it with the coronal medium. The mixed material
has a lower velocity than the cloud and will therefore form a tail or wake downstream of the
cloud’s core (Cooper et al. 2009). KH instabilities grow quite quickly due to their relatively small
wavelengths but are ultimately not that destructive (Chandrasekhar 1961). Nevertheless, it may
still lead to a significant amount of gas stripping due to its short growth time (Cooper et al.
2009). The second instability, the Rayleigh-Taylor (RT) instability, emerges when a less dense
fluid is accelerated into a more dense fluid (Rayleigh 1882; Taylor 1950; Drazin 2002). In other
words, the cloud becomes subject to the RT instability as it moves through and experiences drag
(i.e. deceleration) from the lower density hot medium. This instability has a significantly larger
wavelength than the KH instability and therefore takes more time to develop (Chandrasekhar
1961). But once the wavelength is comparable to the size of the cloud, RT becomes extremely
destructive and is capable of disrupting the entire cloud (Murray et al. 1993; Vieser and Hensler
2007; Armillotta et al. 2017).

These HD instabilities are thus responsible for the disruption of the cloud by stripping it of its
cold gas and mixing it with the hot medium, leading to the formation of mixed gas. A rough way
to quantify the time scale within which a spherical cloud will be destroyed by these instabilities
is with the cloud crushing time scale (Jones et al. 1996): tcc = 2rc

√
χ/vwind, where rc is the

cloud radius, χ = nc
ncor

the ratio between the cloud (nc) and the coronal density (ncor), and vwind

the “wind” velocity that the cloud experiences as it propagates through the hot medium. This
equation shows that a larger cloud (i.e. higher mass) and/or higher density cloud will lead to a
longer survival time.

In addition to these instabilities, there are two other effects that also play an important role
in the survival of the cloud: radiative cooling and thermal conduction.

1.3.1 Radiative cooling

Cold gas can cool via line transitions because the emitted photons will carry away a part of the
(kinetic) energy of the gas particles (Cimatti et al. 2019). If the cooling is sufficiently strong
and the coronal medium is not too hot, then the cold gas can gain mass by condensing mixed
gas into cold gas (e.g. Marinacci et al. 2010; Fraternali 2017). However, in massive ETGs, the
corona is so hot that the cooling cannot dominate and the mixed gas will most likely evaporate
(though cooling will slow this process down). Another effect of cooling is that it will lead to
fragmentation when the mixed gas cools below ∼ 106 K (McCourt et al. 2018). This causes the
cloud material to spread out over a significantly larger surface area.

1.3.2 Thermal conduction

Thermal conduction occurs in hot ionized media characterized by a steep temperature gradient
where heat is transferred from the hot to the cold medium via collisions with free electrons
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1.4. Analytical model for cold cloud evaporation in ETGs

(Spitzer 1962). Thermal conduction tends to form an evaporative layer between the interface
of the hot and cold medium which, in turn, smooths out the density gradient between the two
media. This suppresses the KH and RT instabilities that may, consequently, extend the lifetime
of the cloud (Marcolini et al. 2005; Orlando et al. 2005; Vieser and Hensler 2007). However, once
the cloud starts to break apart, it will rapidly evaporate as the smaller bits of cloud material
(cloudlets) will get smoothed out as well. This dual nature of thermal conduction is described by
the Field length (Field 1965), which serves as a threshold scale; as long as the size of the cloud
exceeds the Field length, radiative cooling will dominate and protect it against evaporation. But
if the cloud size is smaller than the Field length, then thermal conduction will dominate and
rapidly destroy it.

1.4 Analytical model for cold cloud evaporation in ETGs

Figure 1.4: Comparison between a numerical (top) and analytical model (bottom). Top: Numerical
simulation (temperature snapshot) of the disruption of a cold cloud propagating through a hot medium
(Armillotta et al. 2017). In the left panel, there is only cooling which allows the KH and RT instabilities
to take over and actively mix the cold with the hot gas. The cooling also leads to fragmentation as can
be seen from the cloud material’s large surface area. In the right panel, there is also thermal conduction
which suppresses the KH and RT instabilities, keeps the cloud more compact, and creates a smooth wake
at intermediate temperatures. Bottom: Sketch of the concept behind the analytical model (Afruni et al.
2019). The clouds start at the virial radius as perfect spheres and will contract — while still retaining
their spherical shape — as they move closer to the galactic center.
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1.5. Goal of this research

Afruni et al. 2019 built a semi-analytical model that describes the cold CGM gas as clouds
flowing in from the IGM. The model aims to reproduce the observations from the COS-LRG
survey (Chen et al. 2018; Zahedy et al. 2019; see also section 1.1.1) from which the spread in
cloud velocities and the total number of observed clouds is used as observational constraints.
The infalling clouds are assumed to start with zero velocity at the virial radius, from which
they will fall inwards towards the galactic center. Initially, the clouds will only experience the
gravitational pull from the galaxy, but hydrodynamical effects will start to take over as they
continue to move through the hot coronal medium, eventually leading to the destruction of the
clouds.

By fitting the kinematic data of the observations using an Markov Chain Monte Carlo
(MCMC) approach, Afruni et al. 2019 found that the clouds should have a mass of about
105 M� and that the total accretion rate of the cold gas is consistent with the accretion rate
predicted by cosmological models (Fakhouri et al. 2010). They furthermore concluded that in
order to reproduce the observations, the clouds need to evaporate in the hot corona. The effects
that are responsible for cold cloud evaporation were computed with a specific mass loss equation
which assumes that mass is exponentially lost. This is, however, a very rough approximation of
how the stripping of cold gas proceeds in reality. For a more accurate description of cold cloud
evaporation, one will have to resort to numerical models where the mass is directly stripped via
HD instabilities (see section 1.3) that eventually tear the cloud apart. The accretion of cold gas
by galaxies has already been extensively investigated by cosmological zoom-in simulations (e.g.
Nelson et al. 2020), but these simulations do not have a high enough resolution to properly trace
the infalling clouds and describe their interaction with the corona. To that end, we aim to build
high resolution hydrodynamical simulations that can incorporate and resolve all the effects that
arise during cloud-corona interactions.

A comparison between the analytical model of Afruni et al. 2019 and a high resolution
numerical model (from Armillotta et al. 2017) is shown in Figure 1.4. Here we also clearly see
the effects of radiative cooling (section 1.3.1) and thermal conduction (section 1.3.2), which can
only be incorporated numerically.

1.5 Goal of this research

In this work, we aim to investigate the survival of cold, ionized gas clouds in the hot coronae of
passive ETGs using 2D high resolution hydrodynamical simulations that incorporate the effects
of radiative cooling and thermal conduction. In particular, we explore the scenario where ETGs
gain their cold gas via the cosmic filaments from the IGM which reach the virial radius, fragment,
and form infalling cold gas clouds. This has already been studied by Afruni et al. 2019, but their
model is semi-analytical and, as such, is a rather simplified representation of what should happen
in reality. Nevertheless, our simulations will use the same initial setup as described in Afruni
et al. 2019 and will, therefore, allow us to also evaluate the validity of their analytical model.

The remaining part of this thesis adheres to the following structure: in Chapter 2, we explain
the physics behind the simulations and present the setup of our hydrodynamical model; in
Chapter 3, we show the main results of our simulations; in Chapter 4, we interpret our results
and draw comparisons with the analytical model of Afruni et al. 2019; and in Chapter 5, we
summarize our findings and explore the possibilities of future work.
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Chapter 2

Methodology

Detections of cold absorbing clouds in the hot coronae of quiescent ETGs (e.g. Thom et al.
2012; Chen et al. 2018; Zahedy et al. 2019) has served as proof that quenched galaxies do,
in fact, still harbour significant amounts of cold gas in their halo regions. Where these cold
clouds come from is not completely known, but it is likely that they originate from the IGM.
What is even more puzzling, however, is that these galaxies are quenched, meaning that none
of these cold clouds are able to reach the central galaxy and feed star formation. Afruni et al.
2019 suggested with an analytical model that cold clouds around massive low-redshift ETGs are
indeed incapable of reaching the central galaxies since they will evaporate in the coronal medium
due to hydrodynamical interactions. However, due to the analytical nature of their model, the
hydrodynamical effects responsible for the cloud evaporation can only be approximated by a
specific mass loss equation. To that end, we aim to investigate the survival of cold clouds in the
hot coronae of passive ETGs using high resolution hydrodynamical simulations, which will, in
addition, also serve as a validity check for the analytical model. We carry out these simulations
using PLUTO version 4.3 (Mignone et al. 2007; Mignone et al. 2012) which numerically solves
the hydrodynamical (HD) equations that describe the dynamics of an astrophysical fluid.

This chapter presents our numerical methods and is organized as follows. In the first section,
we explore the physics of numerical hydrodynamics; in the second section, we explain the setup
of our hydrodynamical model; and, in the final section, we describe the various simulations and
the associated diagnostics.

2.1 Numerical Hydrodynamics

In order to resolve the complex hydrodynamics of a cold, dense cloud propagating through a hot,
tenuous medium, one needs to (simultaneously) solve the three conservation laws that govern
the kinematics of a gas: the conservation of mass, momentum, and energy (Mignone et al. 2007;
Grønnow 2018):

∂ρ

∂t
= −∇ · (ρv),

ρ
∂v

∂t
= −ρ(v · ∇)v −∇P − ρ∇Φ,

∂E

∂t
= −∇ · (E + P + ρΦ)v − ∂(ρΦ)

∂t
− n2Λ̃ +∇ · κ∇T,

(2.1)

where ρ is the mass density, v the velocity, P the thermal pressure, Φ the gravitational potential,
Λ̃ the cooling function, n the number density of the gas, κ the thermal conductivity, T the
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2.1. Numerical Hydrodynamics

temperature, and the total energy density: the internal plus kinetic energy, with e the specific
internal energy is:

E = ρe+
ρ|v|2

2
. (2.2)

The Euler equations shown in eq. (2.1) can be written in a flux conserving form, i.e. the general
conservation equation (LeVeque 2002; Mignone et al. 2007):

∂U

∂t
+∇ · T (U) = S(U), (2.3)

where U is the state vector containing the conserved quantities (e.g. mass), T (U) the hyperbolic
flux tensor, and S(U) the source tensor which contains terms (e.g. cooling) that break the
conservation of the quantities contained in U . The conservation equation is solved using an
Eulerian finite-volume scheme which discretizes the HD equations on a mesh of grid cells. The
description of the fluid is Eulerian since the fluid elements are evaluated within fixed grid cells.
If, instead, the grid cells would be moving along with the fluid elements, then the description
would be Lagrangian (Bennett 2006). Note that a finite-volume method uses grid cells instead of
grid points. Each grid cell consists of a grid point located at the cell center xi which is contained
within the cell walls:

xi+1/2 =
1

2
(xi + xi+1), (2.4)

where xi+1/2 is the interface between the two cell centers xi and xi+1. Each cell has a volume
V that contains a conserved quantity uni , so the total content of each cell is Uni = uni V (where n
stands for the time step). To conserve the overall quantity, Uni should only change via in- and
out-flows through the surrounding cell walls (i.e. there is no external source). We can therefore
define a flux fi+1/2 at each cell wall. Bearing this in mind, the time evolution of quantity uni can
be written in a flux-conserving form:

un+1
i = uni +

∆t

∆x

(
f
n+1/2
i−1/2 − f

n+1/2
i+1/2

)
, (2.5)

where ∆t is the time step, ∆x the grid cell size, and fn+1/2
i±1/2 is the half-time flux (i.e. n + 1/2)

at both interfaces (which, in general, allows for more accuracy). By writing the conservation
equation in this form, we ensure that conserved quantities remain constant over time (LeVeque
2002; Toro 2009). In reality, however, we have source terms as well as pressure work which break
the conservation of uni .

In this thesis, we utilize the higher-order Godunov scheme (which is commonly used in
astrophysics) to solve eq. (2.3). This requires: (i) a time integration scheme, (ii) a reconstruction
and slope limiter scheme, and (iii) a Riemann solver.

2.1.1 The time integration scheme

Equation (2.5) is an example of an explicit time integration scheme, where the current time step
(n) is used to find the next time step (n+ 1). To maximize the efficiency of the code, one wants
to use the largest possible time step. The problem with large time steps, however, is that they
are prone to cause instabilities in the code. In other words, the size of the time step is bound by a
stability constraint. A widely-used numerical stability constraint is the Courant-Friedrichs-Lewy
(CFL) condition (Courant et al. 1928), which for N dimensions is defined as:

CFL = ∆t

(
N∑
i=1

vxi
∆xi

)
≤ Cmax, (2.6)
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2.1. Numerical Hydrodynamics

where ∆t is the time step, vxi the velocity of a propagating wave (i.e. the solution of the Riemann
problem as described in section 2.1.3), and ∆xi the grid cell size. For an explicit time integrator,
Cmax is generally of the order of unity and must not be exceeded in order to reach a converging
solution. In essence, the CFL condition tells us that information must propagate at the correct
physical speeds in order to maintain numerical stability (LeVeque 2002). We see this back in
eq. (2.6), where a higher wave velocity vxi needs to be balanced by a smaller time step (assuming
constant ∆xi). Note, however, that the CFL condition is a necessary, but not always sufficient
criterion; numerical instability can still arise even when the CFL condition is satisfied (Toro
2009; Grønnow 2018).

One can also use an implicit time integration scheme where un+1 is found by using un+1

itself. These schemes are often harder to implement than explicit schemes, but tolerate a larger
value for Cmax and are thus less restricted by the time step size (Ferziger and Peric 2002).

There are a variety of integration methods, of which the Euler method is the most simple
and straightforward at the cost of being only accurate to first order. To overcome this, one
has to resort to higher-order integrators such as Runge-Kutta. In this thesis, we adopt the
characteristic tracing integrator which is second-order accurate in space and time (see PLUTO
manual in Mignone et al. 2007).

2.1.2 Reconstruction and slope limiting

Figure 2.1: Left: Piecewise constant reconstruction (donor-cell) where the state in each cell is a constant
based on the value at the cell center. Right: Piecewise linear reconstruction where the state in each cell
is a linear function of position. This technique is more accurate, but is prone to “overshoot” at the
discontinuities (Springel and Dullemond 2011).

In a finite-volume scheme, each cell has in its center a grid point with a certain value for U , but
one also needs to know what the value of U is in the remaining part of the cell. More specifically,
we need the value of U at the cell interfaces since that is where we define the flux (see eq. (2.5)).
The most simple assumption is that the state in the cell is identical to that of the grid center, the
so-called donor-cell or piecewise constant reconstruction method (see left panel of Figure 2.1).
This method was pioneered by Godunov 1959, but is only accurate to first order. To extend
the accuracy to second order, one can assume that the state in each cell varies linearly as a
function of position with a non-zero slope σni , where i and n stand for the cell location and time
step, respectively. We call this piecewise linear reconstruction (see right panel of Figure 2.1).
The drawback is that the slope can “overshoot” which leads to spurious oscillations near the
cell discontinuities (LeVeque 2002). Schemes that do not produce these oscillations, such as
the donor-cell method, are known as “monotone”. The reason why these oscillations occur is
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2.1. Numerical Hydrodynamics

explained by Godunov’s theorem, which states that any linear monotone algorithm that is used
to solve a PDE can at most be accurate to first order (Godunov 1959). Extending the accuracy
to second order by adding a non-zero slope will thus break the monotonicity and lead to this
unphysical behaviour.

These spurious oscillations manifest themselves as local minima and maxima whose develop-
ment can be measured with the Total Variation (TV):

TV(u) =
N∑

i=1

|ui − ui−1|. (2.7)

An increase in TV indicates that ui is developing oscillations. When TV(un+1) ≤ TV(un) no
oscillations will form and the scheme is said to be total variation diminishing (TVD; Ferziger
and Peric 2002). For our simulations, we use a piecewise linear reconstruction that adheres to
TVD.

A way to prevent these overshoots and attain TVD is by using slope limiters. A slope
limiter retains the second order accuracy of the linear reconstruction, but reverts back to first
order around strong discontinuities (see right panel of Figure 2.1). This will prevent the onset of
oscillations and will thus keep the scheme monotone. This method, which circumvents Godunov’s
theorem, was developed by van Leer 1979 and is known as MUSCL (Monotone Upwind Scheme
for Conservation Laws), which is still commonly used today (e.g. Krause 2019). In our thesis, we
keep the scheme monotone by adopting the slope limiter that PLUTO uses by default (Mignone
et al. 2007).

2.1.3 The Riemann solver

A Riemann solver is a numerical algorithm that solves the Riemann problem. The Riemann
problem is an initial-value problem where the initial state of the system is dictated by a conser-
vation equation which contains a single discontinuity. This discontinuity separates two constant
but different quantities uL and uR (Toro 2009):

u(x, t = 0) = u0(x) =

{
uL for x < 0

uR for x > 0.
(2.8)

A schematic of this is shown in Figure 2.2. The discontinuity at x = 0 can be seen as an
infinitesimally thin slab that separates two fluids of, for instance, different temperatures or
densities. The Riemann problem naturally occurs in a finite-volume scheme due to the discrete
nature of the grid; the quantities within the cells, u, are separated by cell-boundaries which act
as discontinuities. The merit of a Riemann solver is that it retains the pressure terms on the
left-hand side (advection part) of eq. (2.3), meaning that there are no pressure source terms.
In this way, we preserve all three characteristics1 of the Euler equations. If the pressure terms
would not be advected, then the solution of the system will not include the propagation of sound
waves (Ferziger and Peric 2002; Toro 2009).

From these three preserved characteristics, one finds that the 1- and 3- characteristics rep-
resent sound waves (i.e. entropy is conserved), while the 2- characteristic represents an entropy
wave or contact wave (i.e. entropy varies). When there is an abrupt change in the value of a
quantity (e.g. pressure, density), the sound waves of the 1- and 3- characteristics can become
shock waves at which point the entropy is no longer conserved on the shock front. This discrete

1A characteristic is any line on a (x,t) diagram that follows the possible trajectory of a signal.
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2.1. Numerical Hydrodynamics

Figure 2.2: A sketch of the Riemann problem. The quantities uL and uR are both constant, but differ
in value. They are separated by a discontinuity at x = 0 (Toro 2009).

“jump” also occurs in entropy waves, but the difference is that the pressure is constant across an
entropy wave while the pressure varies across a shock wave. The 1- and 3- characteristics can
also form a rarefaction wave which is characterized by continuous change rather than a discrete
jump (Toro 2009; Grønnow 2018). Rarefaction waves are often seen in the wake of a shock wave
where there is an area of lowered pressure relative to the unshocked medium (Zhang 2016).

The Riemann problem can be either solved exactly or approximately. The Godunov scheme
or donor-cell method (Godunov 1959; see left panel of Figure 2.1) provides an exact solution
leading to the emergence of the characteristic entropy, shock, and rarefaction waves. However,
for longer simulations it is computationally too expensive to solve it exactly, so one has to re-
sort to approximate solutions. Approximate Riemann solvers, such as the Harten, Lax, van
Leer (HLL)-based solvers, linearize the general conservation equation (eq. (2.3)). An HLL-based
solver assumes that only the discontinuities (i.e. the jumps) in the solution of the Riemann
problem are waves, thereby completely ignoring the rarefaction waves (which is not a jump).
The original HLL-solver (Harten et al. 1983) only uses the two backward and forward sound
waves while dropping the middle contact wave. Forgoing the middle wave, however, leads to a
gradual smoothing of the contact discontinuities. To resolve this issue, the HLLC-solver (where
C stands for “Contact”; Toro et al. 1994) was developed which retains middle wave and keeps
the contact discontinuities sharp. We therefore use this solver for our simulations.
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2.2. Model setup

2.2 Model setup

We carry out the hydrodynamical simulations in 2D using the PLUTO (version 4.3) code which
numerically solves partial differential equations (PDE) via the finite volume or finite difference
method based on the Godunov’s scheme (Mignone et al. 2007). The relevant equations are
discretized and solved on a grid. PLUTO can use a variety of numerical algorithms such as time
integration schemes, slope limiters, and Riemann solvers (see section 2.1). For our simulations,
we use (i) the characteristic tracing integrator for time stepping, (ii) the default PLUTO slope
limiter to prevent spurious oscillations, and (iii) the HLLC solver to solve the Riemann problem.
In order to make the simulations more feasible, we employ Adaptive Mesh Refinement (AMR),
which splits the grid up in a hierarchy of continuously more refined sub-grids (Mignone et al.
2012). This allows us to save computation time by only fully refining the regions of interest while
relegating the rougher grids to the less important regions of the simulation box. The level of
refinement depends on the refinement criterion which we base on the density gradient, i.e. the
steeper the density gradient the higher the resolution. An example of this is shown in Figure 2.3.
The base grid (Level 0) has a resolution of 2 grid cells per kpc and is employed for the low density
corona. For each level of refinement, we increase the resolution in every dimension by a factor
of 2 until the highest resolution of 128 grid cells per kpc (Level 6) is reached.

Level 0
Level 1
Level 2
Level 3
Level 4
Level 5
Level 6

10-5

10-4

10-3

ρ
( m p cm

3

)

Figure 2.3: Snapshot of the infalling cloud in terms of density overlaid with the AMR refinement grid.
The various colours of the grid signify the level of refinement, where Level 0 is the lowest resolution (base)
grid and Level 6 is the highest resolution grid. AMR refines the cloud material based on the steepness of
the density gradient. Only the regions with significant amounts of cold cloud material are fully refined,
as shown by the black grids (Level 6). The other, lower density regions have a less steep density gradient
and will therefore be resolved with a continuously lower resolution.

In this work, we study the infall of cold gas clouds through the hot corona of a typical low-
redshift massive ETG. In setting up our simulations, we must first consider the gravitational and
hydrodynamical effects that this infalling cloud is subject to. These effects, and how we define
them, constitute the initial conditions of our simulations. Once that foundation has been laid,
processes such as cooling and thermal conduction can be added.
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2.2. Model setup

2.2.1 Initial conditions

zgal

FG

Tcor

Zcor

ncor(zgal)

Tc

Zc        
nc(zgal)           

Rc

Wind velocity

Figure 2.4: Sketch of the model setup: a cold, spherical cloud of uniform density (blue sphere) is radially
falling inward to the galactic center due to gravity while being surrounded by a hot, low density medium
(red). The simulation is carried out in the reference frame of the cloud, so it experiences a wind from
the hot corona as it falls down (more of this is explained in section 2.2.4). The cloud has a radius Rc

and a higher density but lower temperature than the corona. Depending on the assumed origin of the
cold cloud, it can have a metallicity equal to or less than the coronal medium. The hot corona itself is
assumed to be plane parallel such that the galactocentric radius corresponds to the height zgal. As a
result, the density gradient of the corona — indicating an increase in coronal density as the distance to
the galactic center decreases — is also plane parallel.

For our model we consider a spherical cold cloud of uniform density surrounded by a low density,
hot medium that is in hydrostatic equilibrium with the galactic potential (see Figure 2.4). The
model is contained within a certain box where we keep a zero gradient at three of the four
boundaries via ghost cells (i.e. we assume that the values of the cells outside the simulation box
is the same as at the boundaries). At the bottom boundary, we have an injection zone where we
inject a wind with a varying velocity. This wind-tunnel setup is chosen so as to mimic the effects
of a gas cloud interacting with the hot corona as it falls into the potential well of a galaxy. In such
a setup, the simulations are carried out in the reference frame of the cloud (see section 2.2.4).

The cold cloud starts moving at the virial radius with a velocity of vi = 0 km/s and falls
radially inward as it is being attracted by gravity. The dynamics of such an infalling cloud is
then determined by gravitational and hydrodynamical effects.

Gravitational effects

The main force that drives the infall of cold clouds is the gravitational force of the galactic halo.
In our model we assume that the potential is dominated by dark matter (DM) and that the mass
distribution of the DM halo is described by the NFW profile (Navarro et al. 1995):

17



2.2. Model setup

M(rgal) = 4πρ0r
3
s

[
ln (1 + rvir/rs)−

rgal/rs

1 + rgal/rs

]
, (2.9)

where rgal is the radius centered around the galactic center and ρ0 is the central density defined
as:

ρ0 =
Mvir

4πr3
s

[
ln (1 + rvir/rs)− rvir/rs

1+rvir/rs

] , (2.10)

where Mvir and rvir are the virial mass and radius, respectively, and rs is the scale radius defined
as rs = rvir/c where c is the concentration. We adopt the averaged values of Mvir = 1013.3M�
and rvir = 526 kpc of the 16 massive ETGs used in Afruni et al. 2019. The concentration was
calculated following Dutton and Macciò 2014, resulting in a value of c = 6.9. The gravitational
potential of the NFW halo is given by:

Φ(rgal) = −4πGρ0r
3
s

rgal
ln (1 + rgal/rs), (2.11)

where G is the gravitational constant.

Hydrodynamical effects

For simplicity, we assume the hot corona to be isothermal with a temperature equal to the
virial temperature, Tvir, and in hydrostatic equilibrium with the DM halo. We also make the
simplifying assumption that the potential and coronal number density are plane parallel, i.e. they
are a function of height only: rgal −→ zgal. From these assumptions one can derive the following
electron density profile:

ne,cor(zgal) = ne,0 exp

[
−µcormp

kBTcor
(Φ(zgal)− Φ0)

]
, (2.12)

where µcor = 0.6 is the mean molecular weight of the completely ionized coronal gas (Sutherland
and Dopita 1993),mp is the proton mass, kB is the Boltzmann constant, Tcor = Tvir = 6.5× 106 K
is the coronal temperature equal to the average virial temperature of the 16 ETGs, and Φ0 and
ne,0 = 6× 10−3 cm−3 are the NFW-potential and the normalized gas density at the lowest point
with a height of r0 = 10 kpc above the midplane, respectively. The value for ne,0 was obtained by
assuming that the total coronal mass is equal to 20% of the total baryonic mass (Mbar = fbMvir,
where fb = 0.158 is the cosmic baryon fraction (Planck Collaboration et al. 2020)) inside the
galaxy halo (Afruni et al. 2019). This percentage is based on observational estimates (e.g.
Anderson and Bregman 2011; Bogdán et al. 2013), but its exact value is still under debate.

By assuming that the cloud and the corona are in pressure equilibrium, one can easily compute
the density of the cloud nc:

ncTc = ncorTcor, (2.13)

where Tc = 2× 104 K is the cloud temperature, for which we assume the mean temperature of
the cool absorbers in the COS-LRG sample (Zahedy et al. 2019), and ncor = 2.1ne,cor is the total
particle number density of the corona (Afruni et al. 2019). Notice that the density of the hot
corona as well as the density of the cold cloud (due to the pressure equilibrium) increase when
they get closer to the galactic center (see Figure 2.5). This means that the clouds become smaller
as they get closer to the galactic center (if they are not torn apart by HD instabilities first).
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Figure 2.5: Density fall-off as a function of distance from the galactic center. Both the coronal and
cold gas attain higher densities as they get closer to the galaxy center. Also notice that the cool gas has
a significantly higher density than the coronal medium (Afruni et al. 2019).

In order to have numerical stability at the interface between the cold and hot gas, we define a
smooth mass density profile that comprises both the coronal and cloud density (Grønnow et al.
2018):

ρ(rc) = µcor

{
ncor +

1

2
(nc − ncor)

(
1− tanh

[
s

(
rc

Rc
− 1

)])}
, (2.14)

where rc is the radius centered on the cloud, Rc the cloud radius, and s the steepness of the
profile for which we adopt a value of s = 10 (note that this value of s is very steep, so the density
profile is approximately a top-hat profile). The cloud radius, Rc, is defined as the radius where
the density is halfway between the density of the corona, ncor, and the density of the cloud nc.
For rc >> Rc, the 2nd term becomes zero and the mass density is equal to the mass density of
the corona. For rc < Rc, the 2nd term will be non-zero and will therefore lead to a top-hat profile
that ensures a smooth transition between the cloud and the corona. It should furthermore be
mentioned that we assume that the cloud has the same mean molecular weight as the corona2,
i.e. µc = µcor = 0.6.

The precise value of Rc depends on the mass of the cloud which for 2D simulations is defined
2Note that the cloud should actually have a mean molecular weight of µc = 0.67 instead of µc = 0.6 when it is

in collisional ionization equilibrium, which we assume for our cooling functions (see Figure 2.6). This difference
is, however, so small that it would have a negligible impact on the results.
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as:

Mc(rc) =

∫ Rc

0
2πρ(rc)

4Rc

3
rcdrc, (2.15)

where the factor 4Rc
3 is used to rescale the 2D disk to a 3D sphere (Marinacci et al. 2010).

By adopting a certain cloud mass, we can derive the value of Rc via numerical integration and
root-finding. In most cases, we assume that the cloud starts at the virial radius with a cloud
mass of Mc = 105 M� based on the findings of Afruni et al. 2019. This leads to a cloud radius
of Rc ≈ 0.71 kpc.

Finally, we assume that the corona obeys the ideal gas law such that the (coronal) pressure
is given by:

P = ncorkBTcor. (2.16)

The above mentioned equations contain some parameters that we keep fixed at all times. An
overview of all our fixed parameters is shown in Table 2.1.

Table 2.1: Fixed simulation parameters where ne,0 is the normalized gas density at r0 = 10 kpc, Tc
the cloud temperature, Tcor the coronal temperature, Mvir the virial mass, rvir the virial radius, r0 the
smallest considered radius above the midplane for which the coronal electron density profile is equal
to ne,0, µcor the mean molecular weight of the hot corona, c the concentration parameter, and s the
steepness of the density profile (these parameters are used in eqs. (2.9) to (2.14) and eq. (2.16)). Note
that Tcor, Mvir, and rvir are the averaged quantities from the 16 low-redshift ETGs in Afruni et al. 2019.
In addition, we also keep the metallicity of the corona (Zcor) fixed at all times.

ne,0 Tc Tcor Mvir rvir r0 µcor c s Zcor

(cm−3) (K) (K) (M�) (kpc) (kpc) (Z�)

6× 10−3 2× 104 6.5× 106 1013.3 526 10 0.6 6.9 10 0.3

2.2.2 Cooling and thermal conduction

The energy loss due to radiative cooling (Λ) depends on the cooling function (Λ̃) and number
density of the gas (n; Mignone et al. 2007):

Λ = −n2Λ̃(T,Z) (2.17)

where Λ̃ is in units of erg cm3 s−1 and is a function of both metallicity and temperature3. In
Figure 2.6, we see that the cooling is most effective at an intermediate temperature of around
∼ 105.4 K. This is a temperature that the gas can attain when the cold and hot gas mix together.
Depending both on the metallicity as well as the coronal temperature, the mixed gas can either
condensate into cold gas or evaporate into hot coronal gas. Since the temperature of the corona
increases as a function of the virial mass, cold cloud evaporation becomes more and more likely
in massive galaxies as the intermediate temperature of the mixed gas will also become higher (for
which the cooling is less effective). In fact, Armillotta et al. 2016 found that gas condensation is
completely ineffective for Mvir > 1013 M�, implying that the mixed gas should always evaporate

3We compute Λ̃ using the data from the cooling tables of Sutherland and Dopita 1993 and the equation
Λ̃ = Λnet/(ρ24/µ̄)2, where Λnet is the net cooling function in erg cm−3 s−1, ρ24 is the density in g cm−3 times
1024, and µ̄ is the mean molecular weight in g times 1024.
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2.2. Model setup

in our model (for which we assume Mvir = 1013.3M�). The opposite is true in Milky Way-like
galaxies whose virial mass — and therefore coronal temperature — is low enough to allow for gas
condensation. Nonetheless, radiative cooling does play an important role in the survival time
of the cloud as it slows down the destruction of the cold gas when it mixes with the coronal
medium.
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Figure 2.6: Normalized cooling function (Λ̃) as a function of temperature for Z = 0.03 Z� (green),
Z = 0.1 Z� (orange), and Z = 0.3 Z� (blue) adopted from the Collisional Ionization Equilibrium (CIE)
cooling tables of Sutherland and Dopita 1993. A higher metallicity leads to more efficient cooling, but
does not impact the overall shape of the cooling curve; for all three metallicities we see that the cooling
rate is at its peak efficiency at a temperature of ∼ 105.4 K.

Because of the high temperature difference between the corona and the cloud, thermal con-
duction cannot be neglected. In an ionized plasma, thermal conduction occurs via free electrons
as described by the classical Spitzer conductivity (Spitzer 1962; Draine and Giuliani 1984):

κSp = f · 5.6× 10−7T 5/2 (2.18)

where f is a suppression factor which approximates the suppression of thermal conduction due to
magnetic fields by assuming it is an isotropic process. In reality, however, thermal conduction is
only suppressed in the direction perpendicular to the magnetic field and is therefore an anisotropic
process (Kooij et al. 2021). But since barely anything is known about the magnetic field strength
in hot coronae around ETGs, the simplifying assumption of an isotropic suppression is justified.
Without this suppression, the thermal conduction would be unrealistically efficient, which would
hinder the acceleration of the infalling cloud (Brüggen and Scannapieco 2016).

2.2.3 Tracer

When investigating the evolution of the infalling cloud, one needs to be able to keep track of the
cloud material. We carry this out with the help of a tracer. A tracer acts as a passive scalar,
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2.2. Model setup

meaning that it moves along with the fluid without influencing the HD equations (like adding
a colour to a liquid). We define the tracer C in the initial conditions where it has a value of 1
when it is located at a cloud-centric distance, rc, that lies within the cloud radius and 0 when it
exceeds the cloud radius:

C =

{
1 if rc < Rc

0 if rc ≥ Rc.
(2.19)

In this way, we can not only keep track of the cloud material as it moves along with the evolving
fluid, but it also allows us to restrict certain effects to only the cloud material. The latter case
is important when we include radiative cooling since any cooling of the hot corona — albeit
inefficient cooling due to its high temperature and low density (see eq. (2.17) and Figure 2.6) —
would disrupt its (approximate) hydrostatic equilibrium4. In reality, the cooling of the coronal
medium is counteracted (and therefore kept in hydrostatic equilibrium) by the heating effect of
the metagalactic UV field (Haardt and Madau 1996; Haardt and Madau 2001; Haardt and Madau
2012). In our model, we roughly mimic this effect by setting a cooling floor at 2× 104 K (which
ensures that no gas can cool below the cloud temperature Tc) and by prohibiting the cooling
of any unmixed coronal gas with a second tracer. The second tracer is defined in the initial
conditions where we only allow cooling to occur within a cloud-centric distance of rc < 1.3Rc

5.
The reason why we use 1.3Rc is because for rc = Rc the density is half the cloud density which
still classifies as mixed gas while for rc = 1.3Rc the density is practically equal to the coronal
density (see eq. (2.14)). In this way, the second tracer will keep track of all the cold and mixed
gas (but not of the hot gas) as it evolves along with the simulation. This allows us to subject
only the cold and mixed gas to radiative cooling, while the hot gas will experience no cooling at
all.

2.2.4 Comoving grid

Following an infalling cloud as it travels through the hydrostatic hot corona is unfeasible with
a static grid; the sheer distance the cloud would need to travel to survive its journey would
require us to make an exceptionally large grid which would lead to memory issues. Instead, we
utilize a comoving grid which allows us to keep the center of mass of the cloud material at rest
with respect to the grid by travelling along with it. In the reference frame of the cloud, the hot
corona ceases to be static and becomes a “wind” that we inject from the bottom of the grid (see
Figure 2.4 for a schematic). In this way, we can confine the grid to only the size we need to fully
capture a “seemingly static” evaporating cloud.

In order to set up a comoving grid, we need to compute the velocity of the center of mass of
the cloud material, vCoM, and subtract that for each time iteration such that vCoM is zero at all
times (note that vCoM will be equal to the velocity of the injected “wind”). This ensures that the
cloud material remains static. We carry this out with the tracer C (see eq. (2.19)) which keeps
track of the cloud material. The center of mass velocity is defined as the total linear momentum
of the cloud material, p =

∑n
i=1miCvi, divided by the total mass of the cloud material Mtot:

vCoM =
1

Mtot

n∑
i=1

miCvi, (2.20)

4Another reason why we disallow the cooling of the hot gas is because the cooling time of the corona is much
higher than 1 Gyr, which is the timescale that we consider in our simulations.

5Note that the tracer, and therefore the cooling, will evolve along with the simulation after it has been defined
in the initial conditions.
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2.2. Model setup

where mi and vi are the cell mass and velocity of the cloud material in the ith cell, respectively.
Because this comoving grid only keeps vCoM at zero for the material that was initially in the
cloud, the cold gas will eventually tend to move downward (as the hotter cloud material slows
down due to mixing). This will make it seem that the cloud is moving downwards even though
it is just the cold gas whose center of mass velocity is not kept at zero.

2.2.5 Refinement threshold
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Figure 2.7: Cell length (in units of kpc) plot of a cloud being stripped by HD instabilities with a
refinement threshold from left to right of χr = 0.3, χr = 0.5, χr = 0.7, and χr = 0.9. The darker
patches represent the fully refined regions (smaller cell length), while the yellow patches represent the
least refined regions (larger cell length). The overplotted white contours show where the gas has a density
of ρ = 1.2× 10−5 mp/cm3. For χr = 0.9, part of the cloud wake is not being resolved as the density
contours leave the fully refined regions.

The refinement criterion that we use for AMR is based on the density gradient, but we also need
to define how sensitive AMR should be for grid cell refinement. This is defined by the refinement
threshold, χr, where everything will be refined if χr = 0 and nothing will be refined if χr = 1.
A comparison of various values for χr is displayed in Figure 2.7, in which a fragmenting cloud
is shown in terms of cell length. The lowest value χr = 0.3 refines most of the substructure
including the wake of the cloud, but will be more computationally expensive. The highest value
χr = 0.9, on the other hand, refines only the highest density regions, causing large parts of the
wake to be not refined at all (see density contour in the fourth panel of Figure 2.7). This results
in artificially extending the cloud’s lifetime as the HD instabilities are not being fully resolved.
We therefore opted for a value of χr = 0.7 which refines enough of the cold cloud material such
that cloud’s lifetime will not differ from the lower values χr = 0.5 and χr = 0.3 (see section 4.2.1
for a convergence test). Using χr = 0.7 will, however, lead to a slightly less refined wake, but
that has no impact on our results of the cold gas as the wake only contains low density, hot gas.
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2.3. The simulations

2.3 The simulations

Table 2.2: Varied simulation parameters. We vary the efficiency of thermal
conduction with the suppression factor such that we consider only cooling when
f = 0, while we consider both cooling and thermal conduction when f > 0.

Simulation namea Max resolution rstart Rc Mc Zc f
(cells/kpc) (kpc) (kpc) (M�) (Z�)

f0L, f0H 64,128 rvir 0.71 105 0.3 0
f0L-Z 64 rvir 0.71 105 0.05 0
f0L-r 64 rvir/2 0.45 105 0.3 0
f0L-Z-r 64 rvir/2 0.45 105 0.05 0

f1L, f1H, f1VH 64,128,256 rvir 0.71 105 0.3 0.01
f1H-Z 128 rvir 0.71 105 0.05 0.01
f1H-r 128 rvir/2 0.45 105 0.3 0.01
f1H-Z-r 128 rvir/2 0.45 105 0.05 0.01
f1H-M 128 rvir 1.53 106 0.3 0.01
f1H-Z-M 128 rvir 1.53 106 0.05 0.01

f2L, f2H, f2VH 64,128,256 rvir 0.71 105 0.3 0.02
f5L, f5H, f5VH 64,128,256 rvir 0.71 105 0.3 0.05

f10L 64 rvir 0.71 105 0.3 0.1

a The naming process works as follows: the number after f signifies the used percentage
of the suppression factor f (e.g. f1 is f=0.01); the resolution is set to be either Low
(L; 64 cells/kpc), High (H; 128 cells/kpc), or Very High (VH; 256 cells/kpc); the
reduced cloud metallicity of Zc = 0.05 Z� is indicated with the letter Z; a starting
radius of rstart = rvir/2 is labeled with the letter r; and a starting cloud mass of
Mc = 106 M� is indicated with the letter M.

In order to find out which parameters influence the survival of the cold cloud and in what way, it is
necessary to run multiple simulations with varying initial conditions and setups. The parameters
that we vary are the suppression factor f , the cloud metallicity Zc, the initial cloud mass Mc,
the starting radius of the infalling cloud rstart, and the resolution of the grid (see Table 2.2).
Note that a change in the cloud mass and/or in the starting radius will also lead to a change in
the cloud radius Rc (see eq. (2.15)). All simulations shown in Table 2.2 have furthermore been
solely carried out in 2D and always include radiative cooling.

When varying the cloud metallicity, we either keep the metallicity for both the cloud (Zc) and
corona (Zcor) fixed at a value of 0.3 Z�, or we give the cloud a lower metallicity of Zc = 0.05 Z�
while keeping the corona at the same value of Zcor = 0.3 Z�

6. For the latter case, we require a
third tracer to define to the metallicity of the cloud and the corona in the initial conditions7.
The border between these two metallicities ought to be placed at a radius where the density is
significantly different from the corona. We therefore define it at the radius centered around the
cloud where the density is twice the coronal density, i.e. n(rc) = 2ncor. All the cloud material
within that radius is (in the initial conditions) set at 0.05 Z�, while the cloud material beyond
that radius is set at 0.3 Z�. The computation of the intermediate metallicities (as well as the

6Note that the metallicity of the corona is a fixed parameter in our setup (see Table 2.1).
7In other words, the tracer is the metallicity itself. This is possible because both the metallicity and the tracer

are fractional numbers.
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2.3. The simulations

calculation of the cooling curve for Zc = 0.05 Z�) is then carried out with bilinear interpolation
using the three cooling functions (Z ∈ {0.03, 0.1, 0.3} Z�) as shown in Figure 2.6 (Sutherland
and Dopita 1993).

2.3.1 Diagnostics

Computing the cold gas mass Mcold at a given time requires us to find all the cells that contain
cold gas and sum up their masses. We carry this out by only considering the gas that has a
temperature below Tcold = 4× 104 K. This temperature threshold is twice as high as the cooling
floor (as well as the initial cloud temperature Tc), which is set at 2× 104 K. The reason for this
is to ensure that we capture all the cold gas, considering that the temperature tends to fluctuate
close to the cooling floor. This also means that the mass of the original cloud material (Mc) —
which is set by the tracer (eq. (2.19)) — is not the same as the mass of the cold gas (Mcold).
The reason for this is because the mass of the cloud material does not change with time as long
as the tracer does not leave the simulation box. The mass of the cold gas, on the other hand,
will change once evaporation (or condensation) sets in. Note that since we are dealing with 2D
simulations, we also need to multiply Mcold with the conversion factor 4Rc

3 to rescale the 2D disk
to a 3D sphere to obtain the true mass (Marinacci et al. 2010).

Using this cold gas, we can define a couple of diagnostics. The first one pertains to the cold
gas mass loss of our hydrodynamical model relative to the analytical model. Afruni et al. 2019
assumed that the cold gas in their analytical model loses mass exponentially according to the
following equation:

Mcold(t) = Mcold(0)e−αt, (2.21)

where Mcold(0) is the initial cold cloud mass, α is the evaporation rate used to analytically
describe the evaporation of the cold gas (see Fraternali and Binney 2008; Marinacci et al. 2010),
and t is the time.

The second diagnostic is related to the cloud morphology: the shape of the infalling cloud
changes as a function of time due to HD instabilities which strip the cloud of its cold gas and
eventually tear it apart. A way to quantify the change in cloud shape is by investigating the
spread of the cold gas along x and y at a given moment in time. We call this the effective size,
which is defined as (Klein et al. 1994; Mac Low et al. 1994; Banda-Barragán et al. 2016):

Reff =
[
5
(
〈X2

j 〉 − 〈Xj〉2
)]1/2

, (2.22)

where Xj is the coordinate along axis j which can either be j = x or j = y, 〈Xj〉 is the averaged
cloud extension, and 〈X2

j 〉 is its root mean square. The angle brackets <> indicate that we are
considering a cold gas mass weighted volume average defined as:

〈Qcold〉 =

∫
QcoldρcolddV∫
ρcolddV

, (2.23)

where Qcold is a certain quantity (in this case the coordinate Xj) of the cold gas and ρcold is the
density of the cold gas. From the effective size, one can also derive the cross-sectional area of
the cold gas known as the effective area:

Aeff = πR2
eff . (2.24)
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Chapter 3

Results

In this chapter, we show the main results that we obtained from our 2D hydrodynamical simu-
lations to investigate the survival of cold CGM clouds in the hot coronae of massive ETGs. We
first focus our attention on one main simulation (the fiducial simulation) and then we discuss
how varying the parameters influences those results.

This chapter is organized as follows. In section 3.1, we present the main results of our fiducial
simulation; in section 3.2, we investigate how the results of the fiducial simulation change when we
vary the suppression factor (section 3.2.1), the cloud metallicity (section 3.2.2), the initial cloud
mass (section 3.2.3), and the starting radius (section 3.2.4); and in section 3.3, we summarize
our results.

3.1 The fiducial simulation

Our fiducial setup is the f1H (hydro) simulation, where the cloud starts at the virial radius,
has a mass of 105 M�, undergoes radiative cooling via line transitions, contains gas at the same
metallicity as the corona (0.3 Z�)1, experiences thermal conduction with an efficiency of 1%
(f = 0.01), and has a maximum resolution of 128 cells/kpc (see Table 2.2).

The evolution of the cloud for the f1H simulation is shown in terms of density (Figure 3.1)
and in terms of temperature (Figure 3.2). When comparing these plots, it becomes clear that
the density and temperature have the same shape and that a high (low) density corresponds to
a low (high) temperature. The three panels display three instances in time: approximately 250,
500, and 750 Myr after the cloud has started falling in from the virial radius. After ≈ 250 Myr,
the cloud has lost its initial spherical shape and has slightly deformed, but seemingly no cold gas
has been lost. At t ≈ 500 Myr, the cloud has further deformed as it has become elongated along
the x-axis and flattened along the y-axis. Small bits of cloud material have started to detach,
but the cloud has not yet been disrupted as the thermal conduction (f=0.01) tends to suppress
the onset of HD instabilities and protects the cloud as long as the cloud size is larger than the
Field length (Field 1965; see section 4.1.1 for more information). However, after ≈ 750 Myr, the
HD instabilities have become strong enough to tear the cloud apart into small clumps of cold gas.
Because these clumps are all smaller than the Field length, the remaining cold gas undergoes
rapid evaporation as the thermal conduction becomes dominant and smooths out the remaining
cold gas.

1Note that the metallicity of the hot corona is in general quite uncertain, especially in the outer regions and
even more so in ETGs. 0.3 Z� is based on the estimated coronal metallicity of the Milky Way (Miller and Bregman
2015), which is also still ill-constrained.
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Figure 3.1: Density map of the f1H simulation with logarithmic colour scales at three time instances: a
high density, cold cloud (yellow) of mass 105 M� and metallicity Zc = 0.3 Z� moves through a tenuous,
hot coronal medium (in dark blue) wherein it ultimately evaporates. The y-axis displays the current
height of the cloud above the midplane and updates for the distance that the infalling cloud has already
travelled. The timer in the left-hand corner indicates the amount of time that has elapsed since the cloud
has started falling down from a height of y = rvir = 526 kpc. The density is in units of proton mass per
cm3.
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Figure 3.2: Temperature snapshots of the f1H simulation with logarithmic colour scales at the same
three time instances of Figure 3.1.

3.1.1 Cold gas mass evolution

In the left panel of Figure 3.3, one can see the cold gas mass Mcold (i.e. the mass of all the
gas that has a temperature below Tcold = 4× 104 K) of our fiducial simulation (coloured circles)
as a function of time on a semi-logarithmic plot. The first thing that we see is that Mcold is
declining with time, meaning that cold gas is being evaporated into hot gas. The mass loss
initially occurs at quite a slow rate for around ≈ 500 Myr, but after that it comes to a turning
point where the mass loss becomes very substantial as the HD instabilities break the cloud into
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Figure 3.3: Left: Semi-logarithmic plot of the cold gas mass as a function of time for the f1H fiducial
simulation. The coloured circles represent the simulation data split up into segments of 30 Myr. The four,
dashed vertical lines show the time at which 20% (red), 40% (green), 60% (skyblue), and 80% (orange)
of the original cold gas mass of the fiducial simulation has evaporated. The black lines represent the
exponential decay fits of each data segment. And the blue, dashed line is the cold gas mass loss according
to the analytical model of Afruni et al. 2019, where the blue band represents the ±1σ error. Right: The
evaporation rate α plotted as a function of time. Each black dot represents the value of α corresponding
to the fits of the 30 Myr segments in the left panel with the associated error bar (obtained from the
covariance matrix of each fit). The analytical value of α = 1.8+0.25

−0.26Gyr−1 is overplotted as a blue, dashed
horizontal line, where the blue band represents the ±1σ error.

smaller cloudlets which are easily evaporated. The various times at which a specific amount
of cold gas has evaporated is displayed with four dashed, vertical lines that indicate the time
at which the cloud has lost 20% (red), 40% (green), 60% (skyblue), and 80% (orange) of its
original cold gas mass. We consider the cold gas to have been evaporated or crushed once 80%
of its original mass has been stripped. Nevertheless, we show all the simulation data up to the
point where it has lost 99% of its initial mass (i.e. when Mcold = 103 M�) so as to display the
complete cold gas mass evolution, even though a small fraction of this gas survives till later
times. In addition, we also overplotted the cold gas mass loss according to the analytical model
of Afruni et al. 2019 including its uncertainties as a blue, dashed line. The analytical model
approximates the stripping of cold gas by assuming that mass is lost at a constant exponential
rate with evaporation rate α.

In order to draw a comparison between the simulation and the analytical model, we split the
simulation data of the cold gas mass up into separate data sets, each spanning a time of 30 Myr
as can be seen from the wide range of colours used for the data points. This allowed us to
separately fit each one of the subsets of data with an exponential decay function (eq. (2.21)), as
shown by the black line segments. From each of these fits we obtained an estimate of α at every
30 Myr time interval for our hydro simulation. The evolution with time of the evaporation rate α
obtained from our fits, together with the constant value of the analytical model, is shown in the
right panel of Figure 3.3. When we compare the hydro simulation with the analytical model in
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3.1. The fiducial simulation

both panels, we see a distinct difference: in the simulation, the slope — and therefore the value
of α — changes as a function of time, while the analytical model has a constant slope with a
value of α = 1.8 Gyr−1. The evaporation rate of our hydro simulation is, however, approximately
constant for around ≈ 500 Myr, with an average value of ᾱsim = 1 Gyr−1. But after that, the
value of α strongly increases as the mass loss rate accelerates. The analytical model does not
have this transition to the accelerated mass loss and therefore predicts that the cloud will survive
for a longer time. This behaviour is illustrated in Figure 3.4, where the percentage of cold gas
mass loss of the analytical model is compared with that of the hydro simulation. Initially, the
analytical model predicts a faster mass loss than the hydro simulation, but is eventually overtaken
by the hydro simulation. As a result, the cold cloud in the simulation takes ≈ 700 Myr to lose
80% of its original mass, while the analytical model takes about ≈ 900 Myr, which is nonetheless
still quite similar to the result of the simulation. This relatively short survival time in both
models implies that the cloud most likely evaporates before reaching the central galaxy (as we
see more clearly in section 3.1.3).

Note that we have included error bars for the analytical model here since the value of α =
1.8 Gyr−1 is only the median value (50th percentile) obtained from the MCMC analysis carried
out by Afruni et al. 2019. If we also consider the 32nd and the 68th percentile, then we find that
α = 1.8+0.25

−0.26Gyr−1.
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Figure 3.4: Percentage of cold gas mass loss as a function of time for the fiducial (f1H) simulation
(orange diamonds) and analytical model (blue circles). The dots represent the timestamps at which the
cloud has lost 20%, 40%, 60%, and 80% of its initial cold gas mass for increasing time. The error bars
around the analytical model arise from considering the uncertainty in α.
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3.1. The fiducial simulation

3.1.2 Cloud morphology

In the analytical model, the cold cloud becomes an increasingly smaller sphere during its motion
towards the galactic center. In other words, the radius of the cloud decreases as a function of
time. This is a consequence of the assumed pressure equilibrium and the increase in coronal
density as the height above the galactic plane decreases (see Figure 2.5). In our simulations, on
the other hand, the cold gas tends to lose its spherical shape and flattens in the direction parallel
to the cloud’s motion (see center panel of Figure 3.1). This is an important difference because
the evolution of the cloud’s size affects the drag and therefore the infall velocity of the cloud. To
quantify this behaviour, we computed the effective size, Reff , of the cold gas in the simulation
box with eq. (2.22) (see section 2.3.1 for the computational details).

0 200 400 600 800
Time [Myr]

0

1

2

3

4

5

6

7

8

R e
ff

/R
ef

f,
0

Effective size
Along x
Along y

Figure 3.5: The effective size of the cold gas (normalized with respect to its initial value) as a function
of time for the f1H fiducial simulation. The blue and orange curve represents the spread of cold gas along
x and y, respectively. The dotted line indicates the point in time at which 80% of the initial cold gas
mass has evaporated.

In Figure 3.5, the effective size of the cold gas along x and y (where y is the direction of
motion) is plotted as a function of time. The spread along x and y is identical for the first
≈ 100 Myr as the cold gas cloud is still almost a perfect sphere. But at around t ≈ 200 Myr, the
effective size along both directions start to decouple as the cold gas begins to stretch out along
x and flatten along y. At this point, the cold gas velocity has become high enough that the
front of the cold gas cloud begins to experience a “headwind” from the coronal medium, which
accounts for the elongation along x and the flattening along y. Reff does not increase along y
also because thermal conduction prevents the formation of a wake by smoothing out the stripped
cloud material (e.g. Armillotta et al. 2016). However, at t ≈ 500 Myr, the effective size along
y does actually manage to increase (along with Reff(x)) as chunks of cold gas (i.e. cloudlets)
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3.1. The fiducial simulation

start to detach from the main cold gas cloud (the beginning of this can been seen in the center
panel of Figure 3.1). These detached cloudlets experience a stronger deceleration because their
smaller sizes (i.e. smaller than the Field length) leads to a faster evaporation in the static hot
corona. As a result, the cloudlets start to lag behind the main cold gas cloud along the direction
of motion (y), which results in an increase in Reff along y. This increase is, however, quite subtle
since the detached cloudlets quickly evaporate due to thermal conduction.

Once the cold gas has lost 80% of its initial mass at t ≈ 700 Myr, Reff(x) experiences a steep
increase as the mass loss transitions to the accelerated phase (see Figure 3.3), at which point the
(partially suppressed) HD instabilities set in and completely tear the cloud apart (mostly along
x). Shortly after, the spread of cold cloud material along both axes plummets as more and more
cold gas evaporates in the hot corona until they both reach a value of 0 at t ≈ 800 Myr.

3.1.3 Velocity evolution
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Figure 3.6: Velocity in the negative y-direction of the f1H fiducial simulation (pointing towards the
galactic center) as a function of time (left panel) and distance (right panel). The velocity of all the initial
cloud material and the velocity of only the cold gas are depicted as orange and blue curves, respectively.

The velocity of the cold gas is calculated by summing the center of mass (CoM) velocity of all
the cloud material (i.e. the tracer) together with the average velocity of the cold (< 4× 104 K)
gas. We follow the evolution of the velocity up to the point where we consider the cloud to have
been crushed, i.e. the point where 80% of its initial cold gas mass has evaporated. Notice that
since we are dealing with a cloud that falls radially downward, we only need to consider the
velocity component along y.

In Figure 3.6, the CoM velocity (vy,CoM) and the cold gas velocity (vy,cold) are plotted as a
function of time (left) and distance (right). In the left panel, we see that vy,CoM and vy,cold are
identical for the first ≈ 100 Myr, but soon after they slowly start to decouple as the first bit of cold
cloud material evaporates into hot gas. The reason why vy,CoM decreases with respect to vy,cold is
because the moving cold gas mixes with the static coronal gas resulting in a lower velocity, while
the cold gas that has not evaporated yet continues falling down. During the first ≈ 600 Myr, the
velocities seem to increase linearly with time as the gravitational force accelerates the cold gas.
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But for t & 600 Myr, drag forces start to decelerate the cold gas as the cloud is eventually torn
apart by HD instabilities which increases the effective area (see eq. (2.24)) and thus the strength
of the drag forces. In the right panel, one can see that the cold gas has only travelled a distance
of about 64 kpc before having lost 80% of its initial mass after ≈ 700 Myr. Clearly, the cold gas
in this simulation is not able to reach the inner regions and feed star formation as it would have
needed to travel a distance of around rvir = 526 kpc.

3.2 Varying simulation parameters

To obtain the results shown in section 3.1 we have made use of different model assumptions that
may have influenced our findings. In particular, there are very high uncertainties on the values
of (i) the suppression factor of thermal conduction (e.g. Kooij et al. 2021), (ii) the metallicity
of the cool circumgalactic clouds (e.g. Prochaska et al. 2017; Wotta et al. 2019; Zahedy et al.
2019), and (iii) the mass of these cold gas clouds (e.g. Werk et al. 2014; Keeney et al. 2017).
In this section, we investigate how much our results change if we modify these parameters. In
addition, we also examine how reducing the starting radius of the cloud to half the virial radius
affects our results.

3.2.1 The suppression factor of thermal conduction

0 100 200 300 400 500 600 700 800
Time [Myr]

3.0

3.5

4.0

4.5

5.0

lo
g(

M
co

ld
[M

])

f=0
f=0.01 (fiducial)
f=0.02
f=0.05
f=0.1

Figure 3.7: Cold gas mass evolution as a function of time for f ∈ {0, 0.01, 0.02, 0.05, 0.1}. A dashed line
indicates that the simulation has not reached convergence, while a solid line indicates that is has reached
convergence. If the solution has not converged, then we use the highest available resolution.

In the literature, a suppression factor of f = 0.1 is often assumed (e.g. Armillotta et al. 2017;
Tang and Churazov 2018) which has been found to well approximate the actual anisotropic
suppression by the magnetic fields in Milky Way-like galactic fountain clouds (Kooij et al. 2021).
Yet, for our fiducial simulation we adopted a lower suppression factor of f = 0.01, since using
f = 0.1 led to an extremely quick dispersion of the cold gas cloud — too quick to agree with
the observations of cold gas around ETGs. This very high thermal conduction efficiency is due

32



3.2. Varying simulation parameters

4 2 0 2 4

464

466

468

470

472
y 

(k
pc

)
f=0

4 2 0 2 4

462

464

466

468

470 f=0.01

4 2 0 2 4
x (kpc)

460

462

464

466

468

y 
(k

pc
)

f=0.02

4 2 0 2 4
x (kpc)

476

478

480

482

484
f=0.05

104

105

106

T
(K

)

Figure 3.8: Temperature snapshot of the cold cloud at t = 650 Myr for suppression factors of f = 0
(upper-left), f = 0.01 (upper-right), f = 0.02 (lower-left), and f = 0.05 (lower-right). The cloud has a
starting radius of rstart = rvir, a metallicity of Zc = 0.3 Z�, and a starting mass of Mc = 105 M� in all
four cases.

to the higher temperature contrast between the cold gas and the hot corona in massive ETGs
relative to Milky Way-like galaxies. It furthermore implies that whatever the value of f is in
massive ETGs, it will likely be below f = 0.1 (at least in setups similar to ours).

The general trend of the suppression factor is that a higher value for f leads to a quicker
cloud dissolution as the Field length increases as a function of f (see section 4.1.1 for a more
detailed analysis on the Field length). Yet, at the same time, thermal conduction can also lead
to a longer survival time by protecting the cloud from being torn apart by HD instabilities. The
effect of various values for f on the cold mass evolution is shown in Figure 3.7, where one can
see the cold gas mass as a function of time for suppression factors ranging from f = 0 to f = 0.1.
At first glance, this plot implies that for f = 0, f = 0.01 and f = 0.02 the cold gas survives for
a comparably long time, while for the higher values of f the cloud seems to quickly evaporate
(especially for f = 0.1). Note, however, that the simulations with f = 0, f = 0.02, and f = 0.1
have not reached convergence (indicated by dashed lines). With having reached convergence we
mean that the results of the simulations are not expected to change appreciably for higher grid
resolutions. Achieving convergence is typically very challenging in any simulation. However,
there are indications that these types of simulations can indeed reach convergence at parsec
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3.2. Varying simulation parameters

scales when f & 0.01 and when the Field length is well resolved (Armillotta et al. 2017; Kooij
et al. 2021). This is not the case for f = 0 where thermal conduction is absent. In fact, McCourt
et al. 2018 have shown that with cooling and no thermal conduction, the cold cloud will tend to
shatter into tiny fragments with sizes much smaller than the resolution of our simulations. As a
result, the HD instabilities that arise in f = 0 are not fully resolved and the cloud’s lifetime is
artificially prolonged (see section 4.2.1 for a convergence test). Nevertheless, it is important to
understand how the various suppression factors (converged or not) will influence the evolution of
the infalling cloud. To this end, we focus on how the results of our fiducial simulation (f = 0.01)
differ if we change the suppression factor to f = 0, f = 0.02, and f = 0.05.

Temperature subplots of the cold cloud at t = 650 Myr for suppression factors of 0, 0.01,
0.02, and 0.05 are shown in Figure 3.8. When f = 0 (no thermal conduction), HD instabilities
can form freely and strip the cold cloud of its cold gas. The cloud consequently fragments and
spreads out over a significantly larger surface area than when f > 0. Cooling is still present,
but far too weak to prevent the cold gas from evaporating. We deem, however, this scenario
unlikely since the coronal media of ETGs are ionized and have high temperatures of T ∼ 106−7K,
meaning that thermal conduction must undoubtedly play a role. For f = 0.01, we notice that
the cold cloud spreads out over a smaller surface area as the HD instabilities get suppressed, but
it is nevertheless still capable of stripping the cloud of its cold gas, producing, however, a much
smoother wake than when f = 0. For f = 0.02 and f = 0.05, on the other hand, the cold cloud
remains compact because the higher thermal conduction efficiency suppresses the HD instabilities
enough to prevent any significant mass stripping. However, for f = 0.05 the thermal conduction
has become so efficient that it has practically evaporated the entire cloud after around 650 Myr.

Cold gas mass

The fitted cold gas mass loss for f = 0, f = 0.02, and f = 0.05 are shown in Figure 3.9,
Figure 3.10, and Figure 3.11, respectively. Interestingly, for f = 0 there seems to be almost no
mass loss for the first ≈ 400 Myr, while for f = 0.02 and f = 0.05 mass starts to evaporate from
the start (albeit at a low rate). For both f = 0 and f = 0.02, the cloud has lost 80% of its initial
mass after roughly 700 Myr (analogous to the f = 0.01 case), while it only takes about 500 Myr
for f = 0.05. The corresponding velocity profiles of f = 0 and f = 0.02 indicate that they both
travel about the same distance as the fiducial simulation (≈ 64 kpc) before losing 80% of its
initial mass. For f = 0.05, the travelled distance is half of that (≈ 28 kpc) as the overly efficient
thermal conduction leads to more momentum transfer between the cloud and the corona, which
impedes the acceleration of the infalling cloud (Brüggen and Scannapieco 2016). Nevertheless,
these results all yield the same qualitative result of the cold gas evaporating before reaching the
central galaxy, which is in agreement with our findings of the fiducial simulation.

When looking at the mass loss and evaporation rate predicted by the analytical model, it
becomes clear that especially f = 0.02 agrees very well for the first ≈ 400 Myr, with an average
evaporation rate of ᾱsim = 1.5 Gyr−1. Yet, we note that this is purely coincidental since the
analytical model does not explicitly incorporate the effects of thermal conduction and cooling.
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Figure 3.9: Cold gas mass loss as a function of time for the f0L simulation (f = 0). We plot the data in
segments of 40 Myr which are separately fitted by an exponential decay function (see caption of Figure 3.3
for more details). Note that here the accelerated mass loss is only due to HD instabilities (since there
is no thermal conduction) which speed up the evaporation process by fragmenting the cold cloud into
smaller cloudlets.
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Figure 3.10: Cold gas mass loss as a function of time for the f2VH simulation (f = 0.02). We plot the
data in segments of 40 Myr which are separately fitted by an exponential decay function (see caption of
Figure 3.3 for more details).
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Figure 3.11: Cold gas mass loss as a function of time for the f5H simulation (f = 0.05). We plot the
data in segments of 40 Myr which are separately fitted by an exponential decay function (see caption of
Figure 3.3 for more details).

3.2.2 The cloud metallicity

So far we have assumed that the cloud has the same metallicity as the coronal medium (Zc =
Zcor = 0.3 Z�). Yet, this assumption implies that the cloud must have condensed out of the hot
corona, even though we assume that the cold gas originates from the metal-poor IGM. It would
therefore be more consistent to let the cloud have a metallicity comparable with that of the IGM.
To this end, we reduce the cloud’s metallicity to 0.05 Z� (e.g. Cooper et al. 2015; Glidden et al.
2016)2 while keeping the metallicity of the corona at a value of 0.3 Z� and the suppression factor
at f = 0.01.

In Figure 3.12, one can see the density evolution at roughly t = 250 Myr, t = 500 Myr,
and t = 750 Myr. Comparing this with Figure 3.1, we notice a stronger elongation along x at
t = 500 Myr for the metal-poor cloud (0.05 Z�) relative to the more metal-rich cloud (0.3 Z�). It
furthermore seems that the lifetime of the metal-poor cloud is shorter as it has almost completely
evaporated at t = 750 Myr. This becomes more evident when looking at the cold gas mass loss as
a function of time in Figure 3.13; it takes the low metallicity cloud ≈ 650 Myr to lose 80% of its
initial mass, while the high metallicity cloud takes around ≈ 700 Myr. Clearly, a lower metallicity
cloud will survive for a shorter amount of time as its weaker cooling is less capable of slowing down
the evaporation of the cold gas. This also causes the cold gas to travel a slightly shorter distance
(≈ 54 kpc) than the fiducial simulation (≈ 64 kpc). Because these differences are marginal, we
justify the simplifying assumption of using a constant metallicity (i.e. Zc = Zcor = 0.3 Z�) in the
other simulations.

2Note that the metallicity of the IGM is very uncertain since the estimates are based on photo-ionization
models.
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Figure 3.12: Density map at three time instances for the f1H-Z simulation (f = 0.01 with a cloud
metallicity of Zc = 0.05 Z�).
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Figure 3.13: Cold gas mass loss as a function of time for the f1H-Z simulation (f = 0.01 with a cloud
metallicity of Zc = 0.05 Z�). We plot the data in segments of 40 Myr which are separately fitted by an
exponential decay function (see caption of Figure 3.3 for more details).
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3.2.3 The initial cloud mass

From the results described in the previous sections it has become clear that cold gas clouds with
a mass of 105 M� are not able to reach the inner regions of the galaxy, irrespective of whether
the cloud metallicity is equal to 0.05 Z� or 0.3 Z�. Afruni et al. 2019 found that a cloud mass of
105 M� most closely matches the kinematics of the cool CGM clouds as observed by the COS-
LRG survey. But there are, however, uncertainties on this value, given the assumptions made
for the analytical analysis as well as the large uncertainty on the total cool CGM mass in ETGs
(e.g. Werk et al. 2014; Keeney et al. 2017). Therefore, these cold clouds around ETGs might
have a higher or lower mass than the assumed 105 M�. In particular, it is interesting to see how
much longer the cloud survives if we increase its mass to 106 M�, as a higher mass leads to a
longer cloud crushing time scale (see section 1.3). Note that increasing the cloud’s mass does
not lead to a higher density since that is determined by the height above the galactic center, but
it does increase the cloud radius from Rc = 0.71 kpc to Rc = 1.53 kpc. The other simulation
parameters remain the same as in the fiducial simulation.

In Figure 3.14, the density of the higher mass cloud is shown at approximately 300, 600,
and 900 Myr after its initial infall from the virial radius. The first thing we notice is that the
cloud takes more time to deform from a nearly spherical shape than when its mass was 105 M�
(see Figure 3.1). This is to be expected since higher mass clouds are less susceptible to drag
forces (Afruni et al. 2019), which are responsible for deforming the cloud. The combination of a
longer cloud crushing time and a higher resistance against drag forces, leads to a slower growth
of instabilities as well as a longer cloud deformation time. Moreover, it takes more time for
the HD instabilities to disrupt the cloud and fragment it into cloudlets smaller than the Field
length, resulting in a longer lifetime. This can be seen in Figure 3.15, where we see that it
takes around ≈ 1000 Myr for the cold cloud to lose 80% of its initial cold gas mass. Note that
the evaporation rate of this simulation remains approximately constant (as the analytical model
would assume) up to t ≈ 750 Myr. We find that the mean of those constant values for α is equal
to ᾱsim = 0.3 Gyr−1, which is significantly lower than ᾱsim = 1 Gyr−1 as was found in our fiducial
simulation. At t & 750 Myr, the cloud transitions to its accelerated mass loss rate and rapidly
loses its remaining mass in about ≈ 350 Myr.

5 0 5
x (kpc)

506

508

510

512

514

516

518

520

522

y 
(k

pc
)

t = 303 Myr

5 0 5
x (kpc)

466

468

470

472

474

476

478

480 t = 601 Myr

Cooling + TC (f=0.01); Mc = 106 M

5 0 5
x (kpc)

398

400

402

404

406

408

410

412

414
t = 904 Myr

10 5 10 4 10 3

( mp

cm3 )

Figure 3.14: Density map at three time instances for the f1H-M simulation (f = 0.01 with an initial
cloud mass of Mc = 106 M�).
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Figure 3.15: Cold gas mass loss as a function of time for the f1H-M simulation (f = 0.01 with an initial
cloud mass of Mc = 106 M�). We plot the data in segments of 50 Myr which are separately fitted by an
exponential decay function (see caption of Figure 3.3 for more details). Here we also show the simulation
data up to the point where it has lost 99% of its initial mass, which is in this case Mc = 104 M�.

Also notice how the vertical lines indicating the percental mass loss are quite clustered at
a relatively late time, whereas they are more spread out in the fiducial simulation with Mc =
105 M� (see Figure 3.3). This implies that the dual effect of the thermal conduction is amplified
for a cloud with a mass of 106 M�; the cloud is protected against HD instabilities for a longer
time, but it evaporates even more rapidly once the size of the cloudlets has become smaller than
the Field length. Most notably, increasing the mass to 106 M� allows the cold gas to travel
a distance of about 135 kpc — roughly twice the distance of the fiducial simulation — before
evaporating. Nevertheless, it would still have needed to travel an additional ≈ 400 kpc in order
to reach the central galaxy.

Unfortunately, we cannot draw a comparison between the analytical model here since α =
1.8 Gyr−1 is only appropriate for a cloud mass of 105 M� (Afruni et al. 2019).

3.2.4 The starting radius

Our assumption of letting the cloud fall in from the virial radius is predicated on the expectation
that they originate from the IGM. However, these cold clouds might also originate from the hot
coronal gas due to thermal instabilities (e.g. McCourt et al. 2012; Sharma et al. 2012; Voit 2018)
and may therefore be located at distance that is different from the virial radius. In particular,
thermal instabilities are more likely to occur closer to the galactic center where the density of the
corona is higher (see Figure 2.5). To that end, we place the cloud at a distance equal to half the
virial radius from the galactic center. We choose this particular value so that we can compare our
results with the analytical prediction of Afruni et al. 2019 who also investigated the survival of
the cold cloud at rstart = rvir/2. Like with the preceding sections, we only change one parameter
of the fiducial simulation. Nevertheless, it is worth noting that the assumed cloud metallicity of
Zc = Zcor = 0.3 Z� of the fiducial simulation is actually more appropriate here (even though the
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exact value is still uncertain), since a cloud that forms due to thermal instabilities should have
the same metallicity as the corona.

As explained in the method section, the density of the corona increases as the distance to
the galactic center decreases. Because the cloud and the corona are assumed to be in pressure
equilibrium, the cold cloud will therefore also increase its density when it gets closer to the
galactic center. The cloud will thus attain a higher initial density when we place it at rvir/2 in
the initial conditions. For an initial mass of 105 M�, we find that reducing the infall radius to
rvir/2 = 263 kpc leads to a smaller cloud radius of Rc = 0.44 kpc (see eq. (2.15)).
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Figure 3.16: Density map at three time instances for the f1H-r simulation (f = 0.01 and a starting
radius of rstart = rvir/2). Note that the density values on the colourbar are now higher than if the cloud
would start at the virial radius.

The density evolution of the cloud starting at half the virial radius at approximately t =
200 Myr, t = 300 Myr, and t = 400 Myr is shown in Figure 3.16. Notice that, due to the higher
density of the cloud, we use a different colour scale than the one we used in the fiducial simulation
(see Figure 3.1). It is, furthermore, evident that the cloud evaporates way faster when it starts
at rvir/2 than when it starts at rvir since it has almost completely disintegrated at t = 400 Myr.
We see this also in Figure 3.17 where 80% of the initial cloud mass is lost after ≈ 400 Myr
(while it took the fiducial simulation ≈ 700 Myr to lose the same amount of cold gas). This
higher destruction rate was also predicted by Afruni et al. 2019, who found that the analytical
evaporation rate would increase from α = 1.8+0.25

−0.26 Gyr−1 for rstart = rvir to α = 2.4+0.52
−0.55 Gyr−1

for rstart = rvir/2. Even though this new value for α overpredicts the initial mass loss and
evaporation rate of our simulation (see Figure 3.17), the results of a faster cloud destruction are
qualitatively the same.

As for the velocity evolution, we find that the cloud experiences a stronger gravitational
acceleration since it is closer to the galactic center, but also a stronger deceleration due to drag
forces as the density of the coronal medium is higher. The cloud manages to traverse a distance
of ≈ 47 kpc, which is still largely insufficient to reach the inner regions of the galaxy.
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Figure 3.17: Cold gas mass loss as a function of time for the f1H-r simulation (f = 0.01 and a starting
radius of rstart = rvir/2). We plot the data in segments of 50 Myr which are separately fitted by an
exponential decay function (see caption of Figure 3.3 for more details). The evaporation rate according
to the analytical model is for rstart = rvir/2 estimated to be α = 2.4+0.52

−0.55 Gyr−1 (Afruni et al. 2019).
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3.3 Summary of the results

Qualitatively, all the results of the simulations that we compiled in Table 2.2 are the same: the
cold gas cloud evaporates in the hot corona before reaching the inner regions of the galaxy. But
how long the cloud survives and how far it travels depends strongly on our simulation parameters.
This is summarized in Figure 3.18, where one can see how the results of the fiducial simulation
changes when we vary the suppression factor for thermal conduction (f), the cloud metallicity,
the initial cloud mass, and the starting radius of the cloud. Comparing the results with respect
to the fiducial simulation (blue cross), we can make the following general observations:

• Increasing the suppression factor beyond f = 0.02 leads to an almost linear decrease in the
survival time for the cloud.

• Lowering the cloud metallicity from 0.3 Z� to 0.05 Z� slightly decreases the survival time
of the cloud.

• Increasing the cloud mass from 105 M� to 106 M� leads to a weaker drag force and results
in a roughly 50% longer survival time as well as a doubling in the travelled distance.

• Decreasing the starting radius to half the virial radius leads to a stronger drag force and
roughly reduces the survival time by 40% and the travelled distance by 30%.
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Figure 3.18: Summary plot showing the elapsed time (x-axis) and distance travelled (y-axis) for the
cold gas to lose 80% of its initial mass. The cross indicates the fiducial simulation, the dots represent
the simulations where one parameter has been changed with respect to the fiducial simulation, and the
diamonds are the simulations where two parameters have been changed (with respect to the fiducial
simulation).
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Chapter 4

Discussion

We have found, via 2D hydrodynamical simulations, that an infalling cold cloud will evaporate
in the hot coronal medium of an ETG long before it can reach the galactic center. This result
is also in line with the analytical predictions of Afruni et al. 2019. In this chapter, we analyze
our results further and draw some further comparisons with the analytical model. After that,
we also discuss the limitations as well as the validity of our simulations.

4.1 Analysis of the results

4.1.1 The Field length

In section 3.2.1, we have shown that a cloud with a mass of 105 M� and a starting radius of
rstart = rvir = 526 kpc evaporates increasingly faster for f > 0.05 (where f is the suppression
factor of thermal conduction), while for f = 0.01 and f = 0.02 the cloud survives approximately
as long as for f = 0 (no thermal conduction, see Figure 3.7). Note, however, that the f = 0 curve
in Figure 3.7 is our least converged simulation (see Figure 4.4), which may imply that the used
grid resolution is not enough to fully resolve the HD instabilities. This would, consequently, lead
to an artificial extension of the cloud’s lifetime (see section 4.2.1 for more detailed information).
It therefore seems likely that for f = 0.01 and f = 0.02 the cloud would survive longer than for
f = 0 (if it would have converged), indicating that for these low suppression factors, thermal
conduction is able to protect the cloud against disruption by HD instabilities.

Whether or not the thermal conduction will protect a cloud against destruction depends
(roughly) on how the size of the cloud (λc = 2Rc, where Rc is the cloud radius) and the Field
length (λF) relate to one another. The Field length1 is defined as (Field 1965; Begelman and
McKee 1990; McKee and Begelman 1990):

λF ≡
(
fκSpTcor

n2
cΛ̃(Tc)

)1/2

, (4.1)

where κSp = 5.6× 10−7T
5/2
cor is the Spitzer conductivity at the coronal temperature (Tcor), f ≤ 1

the suppression factor, nc the number density of the cold gas, and Λ̃(Tc) the cooling function of
the cold gas at a temperature of Tc = 2× 104 K. When λc < λF, conduction will be effective
and can smooth out the density/temperature gradient of the entire cloud, leading to rapid
evaporation. Conversely, when λc > λF, conduction will be less effective and can therefore

1In this case, we are looking at the efficacy of thermal conduction in terms of size. But one could also look at
it in terms of time by comparing the conduction timescale with the cooling timescale.
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4.1. Analysis of the results

only smooth out the cloud-corona interface, thereby potentially suppressing the onset of HD
instabilities. In addition, if the grid resolution is significantly smaller than the Field length,
then convergence may be reached at a lower resolution (see section 4.2.1 for an analysis on the
convergence for various values of f).

While we know that Tcor is a constant (since we assume an isothermal corona), we will also
assume Λ̃(Tc) to be a constant. In reality, this value will differ depending on the metallicity, but
at a temperature of 2× 104 K the cooling functions will only differ by about ∼ 15% between
metallicities of Z = 0.3 Z� and Z = 0.03 Z� (see Figure 2.6). We therefore adopt the value of
Λ̃(Tc) corresponding to a cloud metallicity of 0.3 Z� since that is also the metallicity we assumed
when we varied f . Equation (4.1) will thus only depend on f and — because nc decreases as
a function of distance from the galactic center (see Figure 2.5) — on the starting radius rstart.
The values of λF for f ∈ {0.01, 0.02, 0.05, 0.1} at starting radii of rvir and rvir/2 are shown in
Table 4.1. For a cloud mass of 105 M�, the cloud has an initial size of λc(rvir) = 1.42 kpc at the
virial radius and an initial size of λc(rvir/2) = 0.89 kpc at half the virial radius. We find that
λc(rvir) . λF for f > 0.05 which is in line with our findings that the cloud is rapidly destroyed
for suppression factors larger than 0.05, while being protected for f = 0.01 and f = 0.02 due
to the suppression of instabilities. Do note that the cloud will eventually also undergo rapid
evaporation for f ≤ 0.02 once structures smaller than the Field length are produced due to mass
stripping and/or cloud contraction.

For a starting radius at half the virial radius, we find that λF decreases by a factor of about
4, while λc(rvir/2) is only about ∼ 1.6 times smaller than λc(rvir). This implies that clouds that
form deeper in the galactic corona can withstand higher values of f due to their higher density.

Table 4.1: Field length for various suppression factors at a distance of rvir and rvir/2 from the galactic
center.

Field length f = 0.01 f = 0.02 f = 0.05 f = 0.1

λF(rvir) 0.80 kpc 1.13 kpc 1.78 kpc 2.52 kpc
λF(rvir/2) 0.20 kpc 0.28 kpc 0.44 kpc 0.62 kpc

4.1.2 The effect of cooling

In all simulations we have included the effects of cooling, but in none of them did we see an
increase in cold gas mass due to condensation. This is because the coronal temperature is so high
that any mixed gas will inevitably evaporate. Cooling can therefore only delay the evaporation
of the cold gas. When we reduced the cloud metallicity of our fiducial simulation from 0.3 Z�
to 0.05 Z�, we saw that the lower metallicity cloud only had a slightly shorter lifetime due to
its less efficient cooling. The difference in cooling efficiency was thus not that prominent. We
therefore ran some additional simulations under conditions for which we expected the differing
metallicities of 0.3 Z� and 0.05 Z� to have a strong effect on the efficiency of the cooling. These
simulations were f0L-Z-r and f0L-r (see Table 2.2), where we expect a more prominent effect of
cooling because (i) thermal conduction is ignored which allows for unhindered mixing and (ii)
the density of both the cloud and the corona is higher at half the virial radius which yields a
higher cooling rate.

The result is shown in Figure 4.1, where one can see how the low metallicity cloud (orange) has
lost 99% of its initial cold gas mass after around ∼ 500 Myr, while it takes around ∼ 1000 Myr
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Figure 4.1: Cold gas mass as a function of time for the f0L-Z-r (orange) and f0L-r (blue) simulation
(see Table 2.2).

for the high metallicity cloud (blue) to lose the same amount of cold gas. As expected, the
higher density allows for a significantly higher cooling rate, which in turn increases the difference
in cooling efficiency between the simulations at the two different metallicities (see eq. (2.17)).
As a result, the high metallicity cloud is capable of delaying its evaporation for a considerably
longer time than the low metallicity cloud. Do note, however, that this can only occur when the
thermal conduction is very strongly suppressed to the point that it is close to zero, otherwise the
mixed gas would evaporate before the cooling could become effective. Therefore, we conclude
that the cooling of the CGM clouds in the hot coronae of ETGs is most likely never strong
enough to lead to condensation. Instead, the clouds will tend to evaporate into the hot ambient
medium. In fact, the cooling in the coronae of ETGs is in reality probably even weaker than in
our simulations since we neglect any source of heating.

4.1.3 Comparison with the analytical model

So far we have seen that the analytical model overpredicts the survival time of the cloud be-
cause it assumes a constant exponential mass loss rate. We furthermore saw that the analytical
model assumes a monotonic decrease in cloud radius during its infall, while the effective size
(Reff) of the cloud in the simulations tends to increase as it gets torn apart by instabilities (see
Figure 3.5). This is an important difference since Reff determines the cross section of the cloud
which affects the drag force and, in turn, the velocity profile of the infalling cloud. It is therefore
interesting to investigate how the analytical velocity profile compares with the velocity profile of
the simulations. In order to draw this comparison, we first need to explain the main equations
that describe the analytical velocity profile of Afruni et al. 2019:

The motion of a cloud that falls inwards to the galactic center due to gravity can be described
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4.1. Analysis of the results

as follows:
dvfall

drgal
=

1

vfall(rgal)

GM(rgal)

r2
gal

, (4.2)

where rgal is the radius centered around the galactic center, vfall(rgal) the infall velocity of the
cloud, and M(rgal) the mass of the DM halo as described by the NFW profile (see eq. (2.9)). As
the cloud moves through the hot corona it also experiences a drag force which decelerates the
cloud (e.g. Marinacci et al. 2011):

v̇drag = −πR
2
cρcorv

2

Mc
, (4.3)

where Rc is the cloud radius, ρcor the coronal mass density, and Mc the mass of the cloud. Since
the clouds are assumed to be spherical in this model, their radius is defined by:

Rc =

(
3Mc

4πρc

)1/3

, (4.4)

where ρc is the density of the cloud, which increases as the cloud gets closer to the galactic center
(Figure 2.5). As a result, the spherical cloud will shrink as a function of rgal. From eqs. (4.3)
and (4.4) we also see that lower mass clouds experience a stronger drag force than higher mass
clouds. Note that here the drag should decrease as the cloud radius continues to shrink, while
the cloud in the simulations should experience a stronger drag force due to its growing effective
size.

Unfortunately, the analytical model cannot describe the second-order hydrodynamical effects
which eventually tends to destroy the clouds, as we have seen in our simulations (see Chapter 3).
Instead, these effects are parameterized with a mass loss equation where gas is stripped at an
exponential rate:

dMc

drgal
= −αMc

v
, (4.5)

where the parameter α takes the evaporation of the cloud in the hot corona into account.
With both the gravitational and hydrodynamical descriptions at hand, one can combine

eqs. (4.2), (4.3) and (4.5) into one main equation:

dv

drgal
=

1

v(rgal)

GM(rgal)

r2
gal

+
πR2

c(rgal)ρcor(rgal)v(rgal)

Mc(rgal)
. (4.6)

This equation tells us that the cloud is initially accelerated by gravity, but will eventually slow
down as it interacts with the hot corona. In order to find v(rgal), we need to solve eqs. (4.5)
and (4.6) at the same time since they are coupled. We carry this out with numerical ODE
integration (using the SciPy odeint package) where we set v(rstart) = 0 km/s and Mc(rstart) =
105 M� as the initial conditions. The value of the evaporation rate α depends on the starting
radius, where α = 1.8 Gyr−1 for rstart = rvir and α = 2.4 Gyr−1 for rstart = rvir/2. Afruni et al.
2019 obtained the values of these parameters from their MCMC fit of the observational data
from the COS-LRG sample (Chen et al. 2018; Zahedy et al. 2019).

Figure 4.2 depicts two subplots in which the velocities of the cold gas from various simulations
(dashed lines) are overplotted with the analytical velocity profile (black). We only consider the
velocity data of the simulations up to the point where 80% of the initial cold gas mass has been
lost (i.e. when we consider the cloud to have been crushed). In the left panel, one can see
that the velocity profiles for the suppression factors ranging from f = 0.01 to f = 0.1 agree
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Figure 4.2: Comparison of the cloud velocity according to the analytical model of Afruni et al. 2019
(black line) with the velocity of the cold gas in our simulations (dashed lines). Note that we have taken
the absolute value of vy since we define it to be negative when pointing towards the galactic center.

very well with the analytical model, though they all tend to diverge a bit at the end. f = 0.1
and f = 0.05 diverge earlier as their survival time is curtailed by the highly efficient thermal
conduction, while the lower suppression factors diverge a bit later due to their longer survival
time. This divergence at the end is due to the transition to the accelerated mass loss which
the analytical model ignores. Note that f = 0 has the weakest agreement with the analytical
model, but it is also the least converged simulation owing to its lack of thermal conduction. In
addition, we also added the velocity profile for f = 0.01 with a lower cloud metallicity similar
to that of the IGM (Zc = 0.05Z�; green). Comparing this with the fiducial simulation (orange),
for which the metallicity is equal to that of the corona (Zc = Zcor = 0.3 Z�), we see that the
higher metallicity cloud travels a bit farther since its more efficient cooling slightly prolongs the
cloud’s survival time. In the right panel, the velocity profile for a starting radius at half the
virial radius is shown. Here we see a weaker agreement as both the high and low metallicity
clouds diverge quite early on. This can be explained by the higher cloud and coronal density
at rvir/2, which strongly increases the efficiency of the cooling (which the analytical model does
not take into account). As a result, the stripped cold gas can survive as multiple small cloudlets
(see right panel of Figure 3.16), which makes the drag force significantly different from that of
the analytical model (which assumes the drag force of a single spherical cloud).

From this comparison and the results from the previous chapter, we find that all our simu-
lations are in agreement with the theoretical expectation that quiescent galaxies do not accrete
gas anymore. We also note that considering a metal-poor cloud — which is more faithful to
our assumption that the cloud originates from the IGM — results in a slightly shorter lifetime.
What is surprising, however, is that the velocity profiles of our simulations match so well with
the analytical model, which does not properly take the hydrodynamical effects into account. We
can therefore conclude that the analytic prediction, at least up to the point where the cloud is
not highly disrupted by HD instabilities, is a very good approximation of the motion of cool
CGM clouds in the hot coronae of ETGs.
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4.2. Limitations

4.2 Limitations

Despite that hydrodynamical simulations can incorporate more complexity than an analytical
model, they still have limitations. The two main factors that are responsible for these limitations
are (i) the finite grid resolution and (ii) the assumptions made by our model.

4.2.1 Convergence tests
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Figure 4.3: Convergence test for refinement threshold values of χr = 0.3 (blue), χr = 0.5 (orange),
χr = 0.7 (green), and χr = 0.9 (red). The constant simulation parameters that we used here were f = 0,
Mc = 105 M�, rstart = rvir, Zc = 0.3 Z�, and a grid resolution of 64 grid cells per kpc (R64). Radiative
cooling is included in all cases.

In order to capture the complete behaviour of a gas, one would preferably have a grid with a
resolution high enough to fully resolve the HD instabilities and the fragmentation effect of the
radiative cooling. Unfortunately, this requires such a high grid resolution that the simulations
would become computationally unfeasible. We therefore have to accept that all our results will
necessarily contain some inaccuracies. Nevertheless, one can try to reach a grid resolution that
is high enough such that the overall results do not appreciably change for increasing resolution.
Once that happens, our simulation is said to have reached convergence2. The first convergence
test that we carried out was for the simulations in which we varied the value of the refinement
threshold χr (see section 2.2.5), which is shown in Figure 4.3. Even though we used the lowest
resolution of 64 grid cells per kpc for these simulations, one can still clearly see that χr = 0.7
has converged since the result does not change anymore for lower values of χr.

As for the simulations in Chapter 3, we noticed that some simulations reach convergence at
a lower resolution than others. In particular, a higher suppression factor f generally leads to
a faster convergence as the stronger smoothing effect of the thermal conduction produces less
small-scale structures. On the other hand, convergence is much harder to reach when we only

2Note that here we are dealing with the convergence of the cold gas mass specifically. Other quantities might
reach convergence at a different resolution.
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Figure 4.4: Convergence test for suppression factors of f = 0 (upper-left) f = 0.01 (upper-right), f =
0.02 (lower-left), and f = 0.05 (lower-right) at various resolutions. The constant simulation parameters
that we used here were Mc = 105 M�, rstart = rvir, and Zc = 0.3 Z�. Radiative cooling is included in all
cases.

consider cooling (f = 0) due to the increasingly smaller structures that emerge as the cloud
undergoes fragmentation (e.g. Armillotta et al. 2016; McCourt et al. 2018; Sparre et al. 2020).
This can be seen in Figure 4.4, where the cold gas mass (for clouds with an initial mass of
Mc = 105 M�) is plotted as a function of time for f = 0, f = 0.01, f = 0.02, and f = 0.05
at resolutions of 64 (R64; blue), 128 (R128; orange), and 256 (R256; green) grid cells per kpc.
For f = 0, one can see that convergence has not been attained as the incomplete R128 curve3

begins its catastrophic mass loss phase at an earlier time than R64. This indicates that the
3The reason why this R128 curve, as well as the χr = 0.5 and χr = 0.3 curves in Figure 4.3, are incomplete is

because the PLUTO code got “stuck” in such a way that the simulation would continue running but not progress
to the next time step. This problem does not arise when f > 0. We do not yet know the cause of these numerical
problems, but it may be related to memory usage issues.
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lowest resolution (R64) artificially extends the lifetime of the cold gas mass as it does not fully
resolve the HD instabilities, which strip the cloud of its cold gas, nor the fragmentation process
due to the cooling. For f = 0.01, on the other hand, we were able to reach convergence at
a resolution of R128 since the result barely changes for the higher resolution of R256. Notice
that the lowest resolution (R64) still artificially extends the lifetime of cold gas mass as the low
suppression factor does not suppress both the HD instabilities and the fragmentation process to
such an extent that they need not be resolved. For f = 0.02, we see that the mass curves for
all three resolutions are closer together, but, unfortunately, R128 and R256 are not close enough
together to declare f = 0.02 as a converged simulation. For f = 0.05, we can see that the curves
are even more tightly packed as the higher suppression factor (almost) fully suppresses the HD
instabilities as well as any small-scale structure. Here, convergence has possibly been reached
at a resolution of R64. Even though some of our simulations do not seem to be fully converged,
the main result of clouds evaporating in the hot corona seems robust, since it holds at all the
resolutions that we have investigated.

It should additionally be noted that not only the grid resolution but also the box size will
influence the accuracy of the results; when the box size is too small, the cold gas will leave the
simulation box before evaporating, leading to completely erroneous results. We have therefore
ensured that our simulation box was always large enough such that it retained the cold gas until
it evaporated.

4.2.2 Model assumptions

For our simulations, we have assumed that the infalling cloud begins its infall as a perfect sphere.
In reality, the cloud probably has a more amorphous shape, but we justify our assumption since
the cloud will quickly lose its spherical shape when it falls through and interacts with the hot
corona. We have furthermore assumed the hot corona to be isothermal since, in general, the
temperature does not strongly vary as a function of rgal (e.g. Kim et al. 2020). In addition, we
have assumed that the temperature of the hot gas is equal to the virial temperature, which is
justified by models and roughly in agreement with observations (Goulding et al. 2016). We also
assume the corona to be in hydrostatic equilibrium (as well as non-rotating) which is not entirely
correct since material tends to flow into the CGM from IGM. The corona furthermore loses a
small amount of energy due to radiative cooling, while it also gains a bit of energy from the
metagalactic UV field (Haardt and Madau 1996; Haardt and Madau 2001; Haardt and Madau
2012). We take this balance between the cooling and heating of the corona roughly into account
by utilizing a cooling floor that prevents any gas to cool below a temperature of 2× 104 K. We
also do not allow the corona to cool by using a tracer to restrict the cooling to only the cold and
mixed cloud material. We implement the radiative cooling by using the Collisional Ionization
Equilibrium (CIE) tables from Sutherland and Dopita 1993, which assumes that all ions are in the
ground state and that the medium is optically thin to its own radiation (Dopita and Sutherland
2003). These assumptions are, however, quite crude. Including a more sophisticated chemical
network which, for instance, computes the net radiative cooling by solving the equilibrium state
of the medium for a given radiation field (Salz et al. 2015) would therefore be more accurate.
Incorporating a more complex cooling function and an actual source of heating are thus possible
improvements for future work.

We have furthermore adopted a suppression factor f to approximate the suppression of
thermal conduction by magnetic fields. This means that we assume the suppression to be an
isotropic process even though, in reality, it is anisotropic as the thermal conduction is only
suppressed in the direction perpendicular to the magnetic field (Kooij et al. 2021). We again
justify this simplification because the magnetic fields in the hot coronae of ETGs are virtually
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unknown to date.
We have also neglected the effects of self-gravity even when we increased the cloud mass from

105 M� to 106 M� in section 3.2.3. If self-gravity played an important role, then our results could
be inaccurate as the gravitational field may slow down the mass stripping and the breakup of the
cloud. A way to quantify the importance of self-gravity, is via the Jeans mass which is defined
as (Jeans 1902):

MJ =
4π

3
ρcR

3
J =

1

6
ρ−1/2

c

(
15kBTc

4π1/3Gmpµc

)3/2

, (4.7)

where ρc is the density of the cold cloud, kB the Boltzmann constant, Tc = 2× 104 K the
temperature of the cold cloud, G the gravitational constant, mp the proton mass, and µc = 0.6
the mean molecular weight of the cloud. Once Mc ∼ MJ, self-gravity can no longer be ignored.
Note that since MJ ∝ ρ

−1/2
c , MJ will decrease for clouds that start closer to the galactic center

(see Figure 2.5). Because the cloud density for starting radii of rvir (ρc ∼ 10−27 g/cm3) and rvir/2
(ρc ∼ 10−26 g/cm3) are both so low, we find very high Jeans masses of MJ = 1.36× 109 M� and
MJ = 6.72× 108 M�, respectively. This shows that our clouds are all orders of magnitude below
MJ. We can therefore safely ignore the effects of self-gravity.

The most important limitation of our model is that we have run our simulations solely in 2D.
Our main justification for this is that 3D simulations are computationally too expensive (even
when using AMR), which would force us to adopt a lower resolution. Running in 3D would
therefore prevent most of our simulations from reaching convergence (see section 4.2.1). The
downside with using 2D, however, is that even though we can obtain an estimate of the mass by
rescaling the 2D disk to a 3D sphere, we cannot obtain the correct surface area. The reason for
this is because the cross section of the rescaled “sphere” corresponds to the cross section of an
infinitely long cylinder, whose surface area is equal to that of a one-dimensional “ring” (Grønnow
et al. 2018). As a result, less instabilities will form which leads to less mass stripping. 2D
simulations therefore underestimate the amount of mixing and, in case of evaporation, overpredict
the lifetime of the cloud. This actually works in our favour, since our 2D simulations — which
essentially constitutes the upper limit of the cloud’s lifetime — have already clearly shown that
the cold clouds cannot survive their journey to the galactic center.
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Chapter 5

Conclusions

We have built 2D hydrodynamical simulations to numerically investigate the survival of infalling
cold (Tc = 2× 104 K) clouds in the hot (Tcor = 6.5× 106 K) coronal medium of massive quiescent
ETGs. For our model, we have used the average values of the virial mass, virial radius, and
coronal temperature of 16 low-redshift ETGs, as well as the mean temperature of the cool
absorbers in the COS-LRG sample (Chen et al. 2018; Zahedy et al. 2019). Our setup and
simulation parameters are based on the findings of Afruni et al. 2019, who fitted with an analytical
model the observational data of the COS-LRG sample. They found that the cool CGM of ETGs
can be described by clouds with masses of 105 M� that fall in from the virial radius and eventually
evaporate in the hot corona. Here we analyze the behaviour of these clouds with our simulations,
for which we have varied the cloud metallicity, the starting/infall radius, the initial cloud mass,
and the suppression factor (f) for isotropic thermal conduction.

From our results we can draw the following conclusions:

1. In all our simulations, the clouds evaporate in the coronal medium long before reaching the
galactic center, thus accounting for the lack of star formation in these quenched galaxies.
On average, we find that the clouds have an evaporation time of t̄ = 643 Myr and travel
a distance of d̄ = 63 kpc (see Figure 3.18), which is significantly smaller than the average
virial radius, rvir = 526 kpc, of our reference sample of ETGs. These results are also in
qualitative agreement with the analytical model of Afruni et al. 2019.

2. The cloud initially loses its cold gas mass at an approximately constant exponential rate,
but eventually transitions to a catastrophic mass loss phase as it gets torn apart by HD
instabilities and smoothed out by thermal conduction. We find that for a suppression factor
larger than f = 0.05, the cloud survival time is shorter than ≈ 500 Myr. Therefore, this
value of f possibly represents a rough upper limit on the thermal conduction efficiency,
otherwise, these clouds would evaporate too quickly to be observable.

3. The analytical model finds an evaporation rate of α = 1.8+0.25
−0.26 Gyr−1 for a cloud of mass

105 M� that starts at the virial radius. This value is quite close to the average evaporation
rate in our simulations (e.g. ᾱsim = 1.5 Gyr−1 for f = 0.02) during the (approximately)
constant exponential mass loss phase. This agreement starts to break down, however, when
the cold gas in the simulations transitions to its accelerated (catastrophic) mass loss phase,
which the analytical model does not take into account.

4. In the analytical model it is assumed that the cold clouds will shrink but still remain
perfectly spherical as they fall in towards the galactic center. This means that the radius
of the cold cloud will decrease as a function of time. In our simulations, we have computed
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the effective size Reff (i.e. the spread of cold gas material along a certain direction) along
the x- and y-axis for all our simulations and found that Reff does not just decrease as a
function of time. Instead, it exhibits a significantly more complicated behaviour that tends
to increase rather than decrease with time. However, despite the significant differences in
the shape of the cold cloud, the analytical approximation of the drag force works very well;
we find that the velocity profiles of our simulations are in excellent agreement with the
analytical velocity profile, especially for a cloud that starts at the virial radius. When we
decrease the starting radius to half the virial radius, we find a weaker agreement between
the velocities of our simulations and the analytical velocity.

Based on our results, we can suggest a couple of improvements for the analytical model. The
first improvement pertains to the mass loss: in the analytical model the cloud loses its cold gas
mass at a constant exponential rate, but it never undergoes any catastrophic mass loss which
is ultimately responsible for the evaporation of the entire cloud. Instead, the cloud becomes
progressively smaller but never actually disappears. This could be improved by implementing a
new mass loss function in the analytical model which includes the catastrophic mass loss phase
at the end, i.e. at a certain evaporation time. In fact, the catastrophic mass loss is so quick
that simply setting the cloud mass to zero once the evaporation time has been reached is already
a good approximation. The second improvement entails the size of the cloud: the radius of
the cloud in the analytical model is determined by the pressure equilibrium which causes the
cloud to shrink when it gets closer to the galaxy. Yet, our simulations show that the size of the
cloud (measured as the spread in cold gas material) tends to increase as it gets torn apart by
HD instabilities. This increase in cloud size leads to an increase in cross section, which in turn
may imply that the cloud would be easier to observe via absorption lines (though its density
would also be lower). The analytical model is based on the observational data of these clouds
around massive ETGs, so incorporating this increase in the cloud size in the analytical model
may improve the overall agreement with the observations.

As pointed out in the discussion, we have made some simplifying assumptions while setting
up our simulations. It would, therefore, be interesting for future projects to introduce more
complexity to our current simulations. First, we have ignored the effects of magnetic fields since
they are currently unconstrained in ETGs. Yet, galactic magnetic fields are known to slow down
the mixing process by dampening the KH instabilities (e.g. Grønnow et al. 2017; Grønnow et
al. 2018) and can have a strong effect on the evaporation, cloud morphology, and momentum
transfer between the cloud and the corona (Kooij et al. 2021). In addition, magnetic fields are
also responsible for suppressing the thermal conduction. We have approximated this effect by
isotropically suppressing the thermal conduction with a global suppression factor f . But, in
reality, thermal conduction is anisotropically suppressed in the direction perpendicular to the
magnetic field lines (Kooij et al. 2021). It would, therefore, be interesting to include magnetic
fields (once more is known about them in ETGs) in future simulations. We have also adopted
the Collisional Ionization Equilibrium (CIE) cooling tables from Sutherland and Dopita 1993 to
implement radiative cooling for the mixed gas. Cooling plays an important role in slowing down
the evaporation of cold gas, yet our assumption of CIE is quite crude. This can be improved by
directly calculating the cooling during the simulation (which is required once CIE is not assumed
anymore) rather than using the CIE cooling tables. In addition, we have also neglected the effect
of heating, which could be implemented in future work. Finally, the simulations should be run
in 3D — since our 2D simulations consistently underestimate the amount of mixing — to get
more reliable estimates on the mass evolution of these cold gas clouds.
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Appendix A

Source code

Listing A.1: Setup of the initial- and boundary conditions (init.c).
#include "pluto.h"
/* ********************************************************************* */
void Init (double *us, double x1, double x2, double x3)
/*
*
*********************************************************************** */
{
double rc = g_inputParam[RCLOUD]; // cloud radius in kpc
double Mvir = pow(10, g_inputParam[M_VIR]); // 10^{13.3} virial mass in Msun
double rvir = g_inputParam[R_VIR]; // virial radius in kpc
double r0 = g_inputParam[R0]; // the smallest considered radius of halo in kpc
double c = g_inputParam[concentration]; // the concentration (unitless)
double s = g_inputParam[steepness]; // steepness of total dens. profile (unitless)
double T_H = g_inputParam[TEMP_H]; // temperature of hot corona, i.e. halo in K
double T_C = g_inputParam[TEMP_C]; // temperature of cold cloud
double ne_0 = g_inputParam[NE_0]; // normalized gas density in cm^-3 for lowest point at z=10kpc
double mu = g_inputParam[MU]; // mean molecular weight in amu
double G = g_inputParam[GRAV]; // grav. constant in cgs units

// Calculate distance from cloud center
double x = x1 - g_inputParam[CLOUD_CENTERX1];
double y = x2 - g_inputParam[CLOUD_CENTERX2];
double z = x3 - g_inputParam[CLOUD_CENTERX3];

double CurRad = sqrt(EXPAND(x*x , + y*y , + z*z)); //set radius with the cloud center as origin
double rs = rvir/c; // compute scale radius in kpc

/* Perform calculations */
double rho_0 = Mvir / (4 * CONST_PI*pow(rs, 3.0) * (log(1 + rvir/rs) - rvir/rs / (1 + rvir/rs))) *

4.04641863e-8; // in amu/cm^3
double phi_0 = -4 * CONST_PI * G * rho_0 * pow(rs, 3.0)/r0 * log(1+r0/rs) * 1.5925712e19 / (UNIT_VELOCITY

* UNIT_VELOCITY); // in code units (not in cm^2/s^2)
double ne_halo = ne_0 * exp(- mu * CONST_mp / (CONST_kB * T_H) * UNIT_VELOCITY * UNIT_VELOCITY * (

BodyForcePotential(x1, x2, x3) - phi_0)); // electron dens. profile halo (cm^-3)
double nhalo = 2.1 * ne_halo; // dens. profile of corona in cm^-3

us[PRS] = nhalo * T_H / KELVIN; // pressure according to ideal gas law in code units

double n_cl = nhalo * T_H / T_C; // dens. profile of cloud assuming pressure equilibrium (cm^-3)
double n_tot = nhalo + 0.5*(n_cl - nhalo) * (1 - tanh(s * (CurRad/rc - 1))); // density profile of halo +

cloud (cm^-3)

double ZRad = rc / s * atanh((n_cl - 3*nhalo)/(n_cl - nhalo)) + rc; // Radius at which metallicity
switches (radius at which the dens. is twice the halo dens.)

//Set cloud tracer
if (CurRad < rc)
{

us[TRC] = 1.0;
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}
else
{

us[TRC] = 0.0;
}
//Set second tracer where only within it cooling can occur

if (CurRad < 1.3*rc)
{

us[TRC+1] = 1.0;
}
else
{

us[TRC+1] = 0.0;
}
// Set third tracer for different metallicity for cloud and halo
if (CurRad < ZRad)
{

us[TRC+2] = 0.05;
}
else
{

us[TRC+2] = 0.3;
}

us[RHO] = mu * n_tot; // dens. in code units since rho=mp g/cm^3, i.e. mp/rho = 1 so we can leave it out

// No initial velocities
us[VX1] = 0.0;
us[VX2] = 0.0;
us[VX3] = 0.0;

g_smallDensity = 1.e-8; // set global floor for density
g_smallPressure = 1.e-8; // set global floor for pressure

}

void UserDefBoundary (const Data *d, RBox * box, int side, Grid *grid)
/*
* Sets inflow boundary condition at the top boundary (side == X2_END)
* and the stellar wind region when side == 0.
*
*********************************************************************** */
{
int i, j, k, nv;
double *x1, *x2, *x3;
// define constants
double rc = g_inputParam[RCLOUD]; // cloud radius in kpc (for y_core = 19 kpc)
double Mvir = pow(10, g_inputParam[M_VIR]); // 10^{13.3} virial mass in Msun
double rvir = g_inputParam[R_VIR]; // virial radius in kpc
double r0 = g_inputParam[R0]; // the smallest considered radius of halo in kpc
double c = g_inputParam[concentration]; // the concentration (unitless)
double s = g_inputParam[steepness]; // steepness of total dens. profile (unitless)
double T_H = g_inputParam[TEMP_H]; // temperature of hot corona, i.e. halo in K
double T_C = g_inputParam[TEMP_C]; // temperature of cold cloud
double ne_0 = g_inputParam[NE_0]; // normalized gas density in cm^-3 for lowest point at z=10kpc
double mu = g_inputParam[MU]; // mean molecular weight in amu
double G = g_inputParam[GRAV]; // grav. constant in cgs units

double rs = rvir/c; // compute scale radius in kpc
double rho_0 = Mvir / (4 * CONST_PI*pow(rs, 3.0) * (log(1 + rvir/rs) - rvir/rs / (1 + rvir/rs))) *

4.04641863e-8; // in amu/cm^3
double phi_0 = -4 * CONST_PI * G * rho_0 * pow(rs, 3.0)/r0 * log(1+r0/rs) * 1.5925712e19 / (UNIT_VELOCITY

* UNIT_VELOCITY); // in code units (not in cm^2/s^2)

x1 = grid->xgc[IDIR]; // call x1 coordinates from the grid along x1 direction
x2 = grid->xgc[JDIR]; // Height, use in loop as y=x2[j]
x3 = grid->xgc[KDIR];

BodyForcePotential(-2.e7, grid[JDIR].CoM, 0); // pretending its a global value
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/* Set floorlevel for density and pressure */
if (side == 0){ // control the solution inside the computational domain

TOT_LOOP(k,j,i){
if (d->Vc[RHO][k][j][i] < g_smallDensity) {d->Vc[RHO][k][j][i] = g_smallDensity;} // set limit on

smallest allowed density
if (d->Vc[PRS][k][j][i] < g_smallPressure) {d->Vc[PRS][k][j][i] = g_smallPressure;} // set limit

on smallest allowed pressure
if (d->Vc[TRC][k][j][i] < 0.0) {d->Vc[TRC][k][j][i] = 0.0;} // set minimum value of tracer at 0
if (d->Vc[TRC][k][j][i] > 1.0) {d->Vc[TRC][k][j][i] = 1.0;} // cap tracer at a maximum value of 1
if (d->Vc[TRC+1][k][j][i] < 0.0) {d->Vc[TRC+1][k][j][i] = 0.0;} // set negative 2nd tracer at 0
if (d->Vc[TRC+1][k][j][i] > 1.0) {d->Vc[TRC+1][k][j][i] = 1.0;} // cap 2nd tracer at max val of 1
if ((d->Vc[TRC+2][k][j][i] < 0.03) && (d->Vc[TRC][k][j][i] < 0.1)){d->Vc[TRC+2][k][j][i] = 0.3;}

// only replace metallicity in corona.
}

}

if (side == X2_BEG){ /* -- X2_BEG boundary -- */
double vx1 = d->Vc[VX1][0][JBEG][0]; // copy velocities inside domain
double vx2 = d->Vc[VX2][0][JBEG][0];
X2_BEG_LOOP(k,j,i)
{

double ne_halo = ne_0 * exp(- mu * CONST_mp / (CONST_kB * T_H) * UNIT_VELOCITY * UNIT_VELOCITY * (
BodyForcePotential(0.0, x2[j], 0.0) - phi_0)); // electron dens. profile in cm^-3

double nhalo = 2.1 * ne_halo; // dens. profile of corona in cm^-3
d->Vc[RHO][k][j][i] = mu * nhalo;
d->Vc[VX1][k][j][i] = vx1;
d->Vc[VX2][k][j][i] = vx2;
d->Vc[PRS][k][j][i] = nhalo * T_H / KELVIN;
d->Vc[TRC][k][j][i] = 0.0;
d->Vc[TRC+1][k][j][i] = 0.0;
d->Vc[TRC+2][k][j][i] = 0.3; // change border of coronal metallicity to 0.3 solar metallicity
d->Vc[RHO][k][j][i], d->Vc[PRS][k][j][i], x1[i], x2[j]);

}
}
if (side == X2_END){ /* -- X2_END boundary -- */
double vx1 = d->Vc[VX1][0][JEND][0]; // copy velocities inside domain
double vx2 = d->Vc[VX2][0][JEND][0];
X2_END_LOOP(k,j,i)
{

double ne_halo = ne_0 * exp(- mu * CONST_mp / (CONST_kB * T_H) * UNIT_VELOCITY * UNIT_VELOCITY * (
BodyForcePotential(0.0, x2[j], 0.0) - phi_0)); // electron dens. profile in cm^-3

double nhalo = 2.1 * ne_halo; // dens. profile of corona in cm^-3
d->Vc[RHO][k][j][i] = mu * nhalo;
d->Vc[VX1][k][j][i] = vx1;
d->Vc[VX2][k][j][i] = vx2;
d->Vc[PRS][k][j][i] = nhalo * T_H / KELVIN;
d->Vc[TRC][k][j][i] = 0.0;
d->Vc[TRC+1][k][j][i] = 0.0;
d->Vc[TRC+2][k][j][i] = 0.3; // change border of coronal metallicity to 0.3 solar metallicity

}
}

}

double BodyForcePotential(double x1, double x2, double x3)
/*
Computes NFW potential as function of height x2
*/
{

static double dist = 0.0; // initial value of dist. remembers it using static even if you close the
function.

if (x1 < -2.e6)
{

dist = x2;
return 0.0;

}
else
{

x2 += dist; // subtract distance cloud has travelled to ensure you stay in the cloud frame
double Mvir = pow(10, g_inputParam[M_VIR]); // 10^{13.3} virial mass in Msun
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double rvir = g_inputParam[R_VIR]; // virial radius in kpc
double c = g_inputParam[concentration]; // the concentration (unitless)
double G = g_inputParam[GRAV]; // grav. constant in cgs units
double rs = rvir/c; // scale radius in kpc

/* Perform calculations */
double rho_0 = Mvir / (4 * CONST_PI*pow(rs, 3.0) * (log(1 + rvir/rs) - rvir/rs / (1 + rvir/rs))) *

4.04641863e-8; // in amu/cm^3
return - 4 * CONST_PI * G * rho_0 * pow(rs, 3.0) / x2 * log(1 + x2/rs) * 1.5925712e19 / (

UNIT_VELOCITY * UNIT_VELOCITY); //NFW pot. in code units (not cm^2 /s^2)
}

}

Listing A.2: Defining the parameters used in init.c for the calculations, the grid parameters, the type
of Riemann solver, and the duration and output frequency of the simulation (pluto.ini).
[Grid]
X1-grid 1 -10.0 40 u 10.0
X2-grid 1 506 80 u 546
X3-grid 1 0 1 u 1.0

[Chombo Refinement]
Levels 6
Ref_ratio 2 2 2 2 2 2 2
Regrid_interval 2 2 2 2 2 2
Refine_thresh 0.7
Tag_buffer_size 3
Block_factor 8
Max_grid_size 32
Fill_ratio 0.9

[Time]
CFL 0.4
CFL_max_var 1.1
tstop 1.2
first_dt 1.e-6

[Solver]
Solver hllc

[Boundary]
X1-beg outflow
X1-end outflow
X2-beg userdef
X2-end userdef
X3-beg outflow
X3-end outflow

[Chombo HDF5 output]
Checkpoint_interval 5.e-3 0
Plot_interval 5.e-3 0

[Parameters]
CLOUD_CENTERX1 0.0
CLOUD_CENTERX2 526
CLOUD_CENTERX3 0.0
RCLOUD 0.7112
M_VIR 13.3
R_VIR 526
R0 10
concentration 6.9
steepness 10
TEMP_H 6.5e6
TEMP_C 2e4
NE_0 6e-3
MU 0.6
GRAV 6.6743e-8
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Listing A.3: Specifying the geometry, number of dimensions, type of interpolation, whether it should
include effects like cooling or thermal conduction etc. (definitions.h).
#define PHYSICS HD
#define DIMENSIONS 2
#define COMPONENTS 2
#define GEOMETRY CARTESIAN
#define BODY_FORCE POTENTIAL
#define FORCED_TURB NO
#define COOLING TABULATED
#define RECONSTRUCTION LINEAR
#define TIME_STEPPING CHARACTERISTIC_TRACING
#define DIMENSIONAL_SPLITTING NO
#define NTRACER 2
#define USER_DEF_PARAMETERS 14

/* -- physics dependent declarations -- */
#define EOS IDEAL
#define ENTROPY_SWITCH SELECTIVE
#define THERMAL_CONDUCTION EXPLICIT
#define VISCOSITY NO
#define ROTATING_FRAME NO

/* -- user-defined parameters (labels) -- */
#define CLOUD_CENTERX1 0
#define CLOUD_CENTERX2 1
#define CLOUD_CENTERX3 2
#define RCLOUD 3
#define M_VIR 4
#define R_VIR 5
#define R0 6
#define concentration 7
#define steepness 8
#define TEMP_H 9
#define TEMP_C 10
#define NE_0 11
#define MU 12
#define GRAV 13

/* [Beg] user-defined constants (do not change this line) */
#define INITIAL_SMOOTHING NO
#define INTERNAL_BOUNDARY YES
#define CHAR_LIMITING YES
#define SHOCK_FLATTENING MULTID
#define UNIT_LENGTH (1.e3*CONST_pc)
#define CHOMBO_REF_VAR RHO
/* [End] user-defined constants (do not change this line) */

Listing A.4: Bilinear interpolation for the cloud metallicity used for the cooling (radiat.c).
int Z_status = 0 ;//0: Metallicity OK use bilinear interp, 1: Z lower than min Z, assume Z=Z_min and don’

t interpolate in Z, 2: Z greater than max Z, assume Z=Z_max and don’t interpolate in Z
double *L_tab_loZ, *L_tab_hiZ; // Declare them as double*
double Z_max = 0.3; // Max metallicity of 30% solar
double Z_min = 0.03; // Minimum metallicity of 3% solar
double Z_mid = 0.1; // Middle metallicity of 10% solar
double Z_hi, Z_lo;
//define other variables needed for metallicity here, e.g. Z_max, Z_min, etc.
//here v[TRACER_Z] is the tracer that holds the metallicity in solar units

if (v[TRACER_Z] > Z_max) Z_status = 2; //too high
else if (v[TRACER_Z] > Z_mid) //between Z_mid and Z_max
{

Z_hi = Z_max;
Z_lo = Z_mid;
L_tab_loZ = L_tab_10; //Whatever table corresponds to middle Z
L_tab_hiZ = L_tab_30; //Whatever table corresponds to max Z

}
else if (v[TRACER_Z] > Z_min) //between Z_min and Z_mid
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{
Z_hi = Z_mid;
Z_lo = Z_min;
L_tab_loZ = L_tab_3; //Whatever table corresponds to min Z
L_tab_hiZ = L_tab_10; //Whatever table corresponds to middle Z
//Same as above but max --> mid, mid --> min

}
else Z_status = 1; //too low
double dZ = Z_hi - Z_lo;

/* -----------------------------------------------
Compute r.h.s
----------------------------------------------- */
dT = T_tab[khi] - T_tab[klo];
if (Z_status == 1) scrh = L_tab_3[klo]*(T_tab[khi] - T)/dT + L_tab_3[khi]*(T - T_tab[klo])/dT; //linear

interpolation in T using Z_min table
else if (Z_status == 2) scrh = L_tab_30[klo]*(T_tab[khi] - T)/dT + L_tab_30[khi]*(T - T_tab[klo])/dT; //

linear interpolation in T using Z_max table
else
{

//Bilinear interpolation in T and Z, this is basically just doing two interpolations, first in T then
in Z

double L_loZ = L_tab_loZ[klo]*(T_tab[khi] - T)/dT + L_tab_loZ[khi]*(T - T_tab[klo])/dT; //
interpolation in T at low Z (similar formula to the one above for scrh)

double L_hiZ = L_tab_hiZ[klo]*(T_tab[khi] - T)/dT + L_tab_hiZ[khi]*(T - T_tab[klo])/dT; //
interpolation in T at high Z

scrh = L_loZ*(Z_hi - v[TRACER_Z])/dZ + L_hiZ*(v[TRACER_Z] - Z_lo)/dZ; //interpolation in Z
}

rhs[RHOE] = -scrh*v[RHO]*v[RHO];

scrh = UNIT_DENSITY/(CONST_amu*mu);
rhs[RHOE] *= E_cost*scrh*scrh;

}

Listing A.5: Calculating the center of mass velocity for the comoving grid (AMR.cpp).
#ifdef COMOVING_FRAME
if (a_level == 0) //If on the base level (so that all levels are synchronized)
{
double CenterOfMassVel = 0.0; // if not m_restartComoving or if timestep larger than first timestep,

proceed with calculation
if ((!m_RestartComoving) && (m_cur_step > 0)) // if statement to ensure that CoM is not calculated for

the first timestep (or first timestep of restart)
{
//Loop over levels to calculate center of mass velocity on this CPU
double RhovAllLevels = 0;
double MassAllLevels = 0;
for (int l = 0 ; l <= m_finest_level; l++)
{
//Get center of mass velocity numerator and denominator for the cells on this level
double Rhov = 0.0; // initialize value
double Mass = 0.0;
m_amrlevels[l]->GetCenterOfMassVel(Rhov, Mass); // Access void data via pointer
//Add to center of mass velocity numerator and denominator
RhovAllLevels += Rhov;
MassAllLevels += Mass;

}
//Add together the center of mass velocity numerator and denominator from all CPUs
double RhovAllLevels_global = 0.0;
double MassAllLevels_global = 0.0;

int red = MPI_Allreduce(&RhovAllLevels, &RhovAllLevels_global, 1, MPI_DOUBLE, MPI_SUM, Chombo_MPI::comm
); // add together mass velocity here

if (red != MPI_SUCCESS) MayDay::Error("sorry, but I had a communication error on calculating integral
rho*v");

red = MPI_Allreduce(&MassAllLevels,&MassAllLevels_global, 1, MPI_DOUBLE, MPI_SUM, Chombo_MPI::comm); //
add together total cloud mass here

if (red != MPI_SUCCESS) MayDay::Error("sorry, but I had a communication error on calculating total
cloud mass");
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CenterOfMassVel = RhovAllLevels_global / MassAllLevels_global; // num / denom
}

//If restarting set up comoving grid
if (m_RestartComoving)
{
for (int l = 0; l <= m_finest_level; l++)
{

m_amrlevels[l]->SetComovingFrame(m_cur_time, m_t_prev);
}
m_t_prev = 0.0;

}
else if (m_t_prev > 0.0) //Not restarting and not on first time step
{
//Request that the cloud’s center of mass velocity be subtracted from cells on each level when next

updated to change into the cloud’s rest frame
for (int l = 0 ; l <= m_finest_level; l++) // l means it loops over every grid level
{

m_amrlevels[l]->SubtractVelocity(CenterOfMassVel, m_t_prev);
}

}
m_RestartComoving = false;
m_t_prev = m_cur_time;

}
#endif //COMOVING_FRAME

Listing A.6: The three main functions used for the comoving frame (LevelPluto.cpp).
void LevelPluto::GetCenterOfMassVel(double& Rhov, double& Mass, LevelData<FArrayBox>& a_split_tags)
{
double TotRhov = 0.0; //numerator
double TotMass = 0.0; //denominator

//Loop over patches
for (DataIterator dit = m_grids.dataIterator(); dit.ok(); ++dit)
{
int k, j, i, nv;
double*** UU[NVAR];
FArrayBox& curU = m_U[dit];
Grid* grid = m_structs_grid[dit].getGrid();

IBEG = grid->lbeg[IDIR]; IEND = grid->lend[IDIR];
JBEG = grid->lbeg[JDIR]; JEND = grid->lend[JDIR];
KBEG = grid->lbeg[KDIR]; KEND = grid->lend[KDIR];

NX1 = grid->np_int[IDIR];
NX2 = grid->np_int[JDIR];
NX3 = grid->np_int[KDIR];

NX1_TOT = grid->np_tot[IDIR];
NX2_TOT = grid->np_tot[JDIR];
NX3_TOT = grid->np_tot[KDIR];

for (nv = 0; nv < NVAR; nv++){
UU[nv] = ArrayMap(NX3_TOT, NX2_TOT, NX1_TOT, curU.dataPtr(nv));

}

FArrayBox& split_tags = a_split_tags[dit];
double ***splitcells = ArrayBoxMap(KBEG, KEND, JBEG, JEND, IBEG, IEND, split_tags.dataPtr(0));
//Loop over cells in patch
DOM_LOOP(k,j,i)
{
if (splitcells[k][j][i] >= 0.5) //Cell is not split
{

double Tracer_mass = UU[TRC_cloud][k][j][i] * m_dx*m_dx; // make sure u multiply with m_dx*m_dx
when in 2D (and m_dx*m_dx*m_dx in 3D)

double vel = UU[MX2][k][j][i] / UU[RHO][k][j][i];
TotRhov += Tracer_mass * vel; // momentum in terms of tracer mass (so m_trac * v)
TotMass += Tracer_mass; // total mass using tracer mass
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}
}

//Deallocate memory from UU array
for (nv = 0; nv < NVAR; nv++) FreeArrayMap(UU[nv]);

}
Rhov = TotRhov;
Mass = TotMass;

}

void LevelPluto::SubtractVelocity(double vel, double t_prev)
{
m_VelUpdated = false; //Tell the step function that frame velocity should be changed
//Update distance that cloud center of mass has travelled, i.e. the distance that the frame has shifted

along y
m_vel = vel; // velocity variation in the frame
m_dist += m_RefFrameVelocity * (g_time - t_prev); // Distance the cloud has travelled in halo frame (use

reference frame velocity) Using S=v *Delta t
m_RefFrameVelocity += m_vel; // Add velocity variation to get total velocity

//Update log file if on the root process and base level
if ((prank == 0) && (m_level == 0)) // prank=0 mean it only does this on 1 single processor (root

processor); m_level=0 means it only does it for the base grid
{
FILE* f = fopen("framevel.dat", "a"); // outputs total change in velocity and distance travelled (

needed for analysis and when you want to restart sim) (a means append)
if (f == NULL) // quits if file is deleted (FILE* means its a pointer, if NULL its pointing to nothing)
{
pout() << "Could not open framevel.dat file for writing." << endl;
QUIT_PLUTO(1);

}
//Output current time, reference frame velocity and distance travelled
fprintf(f, "%.17g %.17g %.17g\n", g_time, m_RefFrameVelocity, m_dist);
fclose(f);

}
}

void LevelPluto::SetComovingFrame(double curtime, double& t_prev)
{
m_RefFrameVelocity = 0.0;
FILE *file;
bool DefaultInit = false;
if (curtime > 0.0) //Restarting from old run, read previous values
{
if (file = fopen("framevel.dat", "r")) // r means read
{
double time =0.0;
double vel =0.0;
double dist =0.0;
double p_time =0.0;
double p_vel =0.0;
double p_dist =0.0;

while (fscanf(file, "%lf %lf %lf\n", &time, &vel, &dist)!=EOF) {

if (time> curtime) { //
m_RefFrameVelocity = p_vel; // p_vel is what you read from the previous line of file
m_dist = p_dist; // m_ means youre using something outside the class (global val.)
t_prev = p_time; // not really needed, but it’s there for consistency
break; // stop reading lines (exists the while loop)

}

p_time = time;
p_vel = vel;
p_dist = dist;

}
fclose(file);
//Output values used for restart
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if (prank == 0) pout() << "time, t_prev, framevel, framedist" << curtime << ", " << t_prev << ", " <<
m_RefFrameVelocity << ", " << m_dist << endl;

}
else
{
pout() << "WARNING: File framevel.dat not found for restart." << endl;
DefaultInit = true;

}
}
else DefaultInit = true;
if (DefaultInit) //Not restarting, use default values
{
m_RefFrameVelocity = 0.0;
m_dist = 0.0;
t_prev = 0.0;

}
}
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