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Abstract
There are two different methods to estimate the parameters of a linear regression model: the frequen-
tist and the Bayesian approach. This paper aims to present a more comprehensive examination of
these two methods. The paper first considers the theoretical foundation of the linear regression model
and the frequentist technique. Thereafter the fundamentals of Bayesian statics and the Bayesian ap-
proach are discussed. Furthermore two ways to do variable selection for the frequentist approach
and the principle of cross-validation will be reviewed. Using the Boston housing data set a simula-
tion study will be performed in which two the following estimators will be compared: ordinary least
squares, Lasso, ordinary least squares in combination with backward stepwise model selection using
AIC, Gibbs sampling with an uninformative prior and Gibbs sampling with an informative prior. The
methods are compared using ten different sample sizes with the mean absolute deviation, the root
mean square error and the mean squared error as the measures of fit.
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1 Introduction

Linear regression modelling is a highly effective data analysis technique and a very important statis-
tical tool. Forcasting, parameter estimation, and data explanation are only a few examples of appli-
cations of this technique. The concept of regression was introduced in 1886 by Sir Francis Galton
in his paper Regression Towards Mediocrity in Hereditary Stature [7]. In this study Galton tried to
discover the relation between the height of fathers and their sons. Another pivotal moment in the
development of linear regression models was the discovery of the method of least squares by Adrien
Marie Legendre and Carl Friedrich Gauss [14, 25]. In combination with the concept of regression this
would eventually form the basis for the first linear regression model.

Linear regression models are used in a great variety of fields ranging from environmental sciences to
economics to epidemiology [22, 4, 26]. The goal of these models is to figure out how the variable
in question, referred to as the dependent variable, and several other variables, referred to as the ex-
planatory variables, are related. How do variables such as crime rate and average number of rooms,
for example, affect the full-value property-tax rates? To answer questions like these one can use two
different methods to estimate the coefficients: the frequentist and the Bayesian approach.

The frequentist approach for linear regression assumes the coefficients to be fixed constants that max-
imize the likelihood. The likelihood is defined as the probability of the observed data given the
model’s coefficients. In the Bayesian approach the coefficients are considered to be random variables.
These random variables are assumed to follow a certain prior distribution in advance. The goal of the
Bayesian approach is to update this prior distribution using the observed data.

This thesis aims to present a broad analysis of the two methods and their relation based on more than
one estimator for different sample sizes. The central question in this thesis is: ”What is the theoretical
foundation for Bayesian and frequentist estimation methods in linear regression and how do these
approaches relate in a simulation study?”

Chapter 2 gives an overview of the literature about the two estimation approaches and some com-
parison studies. Chapter 3 will focus on the theory behind the frequentist technique for the multiple
linear regression model. The chapter will begin with an overview of the multiple linear regression
model and the underlying assumptions. Thereafter the ordinary least squares (OLS) estimator will
be discussed. In chapter 4 the Bayesian approach will be studied. The concept of Bayesian statics
will be introduced using Bayes’ theorem together with some information on the prior distribution.
In this section two different prior distributions will be proposed for performing Bayesian regression
analysis. To approximate the posterior distribution a Markov chain Monte Carlo method called Gibbs
sampling will be considered. Before performing the simulation study we will shortly review some
model selection and comparison methods in chapter 5. Chapter 5 will first focus on the method of
cross-validation to split the data in a training and a testing set. Then two frequentist variable selection
methods called the Lasso and the backward stepwise model selection using AIC will be discussed.
At the end of this section we will introduce the mean absolute deviation and the root mean square
error to measure the model fit. Chapter 6 gives an overview of the data that was used and provides
an exploratory data analysis. In chapter 7 the results of the simulation will be presented. The chapter
consists of a model analysis and a model comparison part. In the first part of the chapter we will con-
sider five parameter estimation techniques: OLS, Lasso, OLS in combination with backward stepwise
model selection using AIC, a gibbs sampler in combination with an uninformative prior and a gibbs
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sampler in combination with an informative prior. For these estimators we will check the parameter
estimates, credible/confidence intervals and p-values (if available). Furthermore we will study the
fitted regression values. In the second part we will compare the model fit of the five models for ten
different sample sizes using the mean absolute deviation, the root mean square error and the mean
squared error as measure of fit statistics. The conclusion of the paper will be given in chapter 8 after
which a discussion with critical aspects and future improvements follows in chapter 9.
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2 Literature Review
A lot of books and articles have been written about the frequentist and the Bayesian approach to lin-
ear regression. The frequentist method to regression analysis is addressed in the book by Dobson and
Barnett as well as the book by Hayashi [5, 11]. The book by Dobson and Barnett covers the theoretical
background of generalized linear models and techniques to analyse certain types of data. The book
by Hayashi reviews the classical linear regression model with the corresponding assumptions. In both
books an estimator called the ordinary least squares estimator is proposed to estimate the regression
coefficients. Multiple properties of the estimator such as its expectation and variance and ways to
test hypothesis about the coefficients are discussed. A disadvantage of the OLS estimator is that is
likely to overfit the data. As a possible solution one can use an estimator called the Lasso which is
explained in [27] and is closely related to the OLS. The Lasso sets some of the regression coefficients
to zero. In [10] a backward covariate selection for the OLS is introduced which can remove some of
the variables from the regression model.

In the book by Hoff [12] the basics of Bayesian statistics and the Bayesian approach to linear re-
gression are reviewed. For the multiple linear regression model two different prior distributions are
presented: a so-called flat prior distribution and a conjugate prior distribution. Furthermore the deriva-
tions of the posterior distributions are provided. The book describes a frequently used algorithm to
approximate the joint posterior distribution called Gibbs sampling which is a special case of the
Metropolis-Hastings algorithm. The goal of the algorithm is to generate a sequence of samples that
eventually converges to a sample of the posterior distribution. The book by Dobson and Barnett also
contains a few sections on the Bayesian approach. In one of these sections a backwards elimination
procedure using the deviance information criterion (DIC) is illustrated to obtain a sparse regression
model.

Two papers that compare the frequentist OLS estimator with the Bayesian Gibbs sampler with a con-
jugate prior distribution are [2] and [21]. In the paper by Hussein and Kadhim the frequentist and
Bayesian estimation method for linear regression were used to forecast future observations for the
unemployment rates in Iraq. To compare the model fit of the two models the root mean square er-
ror (RMSE) and median absolute deviation (MAD) were used. These criteria showed that the linear
regression model with the Bayesian technique performed better than the model with the frequentist
technique. The paper by Permai and Tanty’s considers a linear regression model for the energy per-
formance of residential buildings. In addition to the RMSE and MAD, the mean absolute percentage
error (MAPE) was utilized to compare the models. The outcome of this study was again that the
Bayesian method outperformed the frequentist method.
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3 The Frequentist Approach to Linear Regression

3.1 Multiple Linear Regression
In many researches, regression models with more than one explanatory variable are used. This type
of regression model is called the multiple regression model. The multiple linear regression model is
usually expressed as follows:

yi = β0 +β1xi1 +β2xi2 + · · ·+βkxik + εi, (i = 1,2, . . . ,n; n > k), (3.1)

where the xi’s are the explanatory variables, yi the dependent variable, εi the random error and
β1,β2, . . . ,βk the unknown parameters. The random error term represents the component of the de-
pendent variable y that cannot be explained by the explanatory variable x. The model can also be
written in matrix notation which turns out to be convenient for deriving the least squares estimator. A
general form of the matrix notation of the multiple linear regression model is given by

y = Xβββ+εεε, (3.2)

where

y
(n×1)

=

y1
...

yn

 , X
(n×k)

=

x′1
...

x′n

=

x11 . . . x1k
... . . . ...

xn1 . . . xnk

 , βββ

(k×1)
=


β0

β1
...

βk

 , εεε
(n×1)

=

ε1
...

εn

 .
The vector y and the matrix X are referred to as the data vector and the data matrix since the rows
correspond to the observations [20, 30, 5, 11].

3.1.1 Model assumptions

The linear regression model is based on a set of assumptions that have to be satisfied in order for
the model to produce reliable/unbiased results. This section will only provide a brief overview of the
assumptions. A more in-depth explanation of the assumptions can be found in the book by Hayashi
[11] and the article by Águila and Benı́tez-Parejo [24].

Linearity
The first assumption underlying the simple linear regression model is linearity. The dependent vari-
able can be written as a linear combination of the explanatory variables as presented in equation (3.9).
The dependent and explanatory variables may also be transformations of the original variables. You
could for example define the variable logy = log(y) or x1squared = x2

1 and include the transformed
variable in the linear regression.

Strict Exogeneity
Another assumption that needs to be satisfied is strict exogeneity. This restriction states that the
expectation of the error term conditioned on the explanatory variables for all observations should be
equal to 0 for every observation or written down mathematically:

E(εi | X) = 0, (i = 1,2, . . . ,n). (3.3)
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If the strict exogeneity assumption is violated the coefficient estimates might be biased and inconsis-
tent.

No Multicollinearity
The third assumption that must be met is the absence of multicollinearity. Multicollinearity occurs
when multiple explanatory variables are correlated with each other. Formally stated the rank of the
n× k data matrix, X, should be k with probability 1.

Spherical Error Variance
Spherical error variance is the assumption that there is no correlation between the different error terms
and that the conditional second moment of the error term is constant which is called homoskedasticity.
Homoskedasticity is denoted as follows:

E(εi
2 | X) = σ

2 > 0, (i = 1,2, . . . ,n) (3.4)

and the no correlation between observations assumption as:

E(εi ε j | X) = 0, (i, j = 1,2, . . . ,n; i 6= j). (3.5)

In combination with strict exogeneity, the spherical error variance assumption is equivalent to:

Var(εi | X) = E(εi
2 | X)−E(εi | X)2 =

(3.3)
E(εi

2 | X) =
(3.4)

σ
2 > 0

and
Cov(εi,ε j | X) = E(εi εj | X)−E(εi | X)E(εj | X) =

(3.3)
E(εi εj | X) =

(3.5)
0

Normality of Error Term
The final assumption that needs to be satisfied is that the error ε conditional on X is jointly normal
distributed. Recall from probability theory that the normal distribution depends just on the mean and
the variance. From the strict exogeneity and spherical error variance assumptions we already know
that E(εi | X) = 0 and Var(εi | X) = σ2 for i = 1,2, . . . ,n which implies that:

ε | X∼ N(0, σ
2 In), (3.6)

where ε is the random error vector.

3.1.2 The Least Squares Estimator

If we want to model a situation using linear regression we need an estimate for the regression coef-
ficients. To estimate the regression coefficients the least squares principle will be applied. The goal
of the least squares principle is to find an estimator β̂̂β̂β for the coefficient vector βββ that minimizes the
sum of squared residuals (SSR). Here the residual is the difference between the actual response yi and
their predicted response ŷi (= x′iβββ). The ordinary least squares estimator is defined as follows

β̂̂β̂β = argmin
βββ

SSR(βββ) = argmin
βββ

n

∑
i=1

(yi−x′iβββ)
2 = argmin

βββ

(y−Xβββ)′(y−Xβββ). (3.7)
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Observe that the final term can be rewritten as

(y−Xβββ)′(y−Xβββ) = y′y−βββ
′X′y−y′Xβββ+βββ

′X′Xβββ = y′y−2 y′Xβββ+βββ
′X′Xβββ = y′y−2 a′βββ+βββ

′Aβββ,

where a = X′y and A = X′X. The estimator that minimizes SSR is obtained by differentiating SSR
with respect to βββ and solving the system

∂SSR (βββ)

∂ βββ
= 0.

Recall from linear algebra [16] that for a vector a and a symmetric matrix A

∂ a′βββ
βββ

= A and
∂ βββ′Aβββ

βββ
= 2Aβββ.

From this follows that

∂SSR (βββ)

∂ βββ
=

∂

∂ βββ
(y′y−2 a′βββ+βββ

′Aβββ) =−2 a+2Aβββ = 2(Aβββ−a) = 2(X′Xβββ−X′y) = 0.

Hence we conclude

X′Xβββ = X′y. (3.8)

(3.8) are called the normal equations. To solve these equations and obtain the least squares estimate
of βββ both sides need to be multiplied by the inverse of X′X. This inverse only exists if the matrix is
non-singular. By the no multicollinearity assumption the matrix A = X′X is positive definite which
implies that the matrix is non-singular. Therefore the ordinary least squares estimator of βββ is given by

β̂̂β̂β = (X′X)−1X′y (3.9)

By checking the second derivative of SSR with respect to βββ it can be easily verified that β̂̂β̂β indeed
minimizes SSR.

The vector of fitted values for the multiple linear regression is ŷ = Xβ̂̂β̂β = X(X′X)−1X′y = Hy, where
H is the so-called hat matrix. Thus, the vector of regression residuals is

e = y− ŷ = y−Xβ̂̂β̂β = y−Hy = (In−H)y = My

with M = In−H the annihilator matrix.

3.1.3 Properties of the Least Squares Estimator

The least squares estimators β̂̂β̂β also has a number of important properties. The unbiasedness of the
estimators will be addressed first.

Theorem 3.1. The least squares estimator β̂̂β̂β is an unbiased estimator of the coefficient vector βββ.
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Proof.

E(β̂̂β̂β | X) = E((X′X)−1X′y | X)

= E((X′X)−1X′(Xβββ+ ε) | X)

= E((X′X)−1X′Xβββ+(X′X)−1X′ε | X)

= E(βββ | X)+((X′X)−1X′)E(ε | X)

=
(3.3)

E(βββ | X)+0 = βββ

Hence ,E(β̂̂β̂β | X) = βββ.

Another important property of the least squares estimator β̂̂β̂β is the variance which can be calculated
using the model assumptions.

Theorem 3.2. The variance of β̂̂β̂β equals σ2 · (X′X)−1.

Proof.

Var(β̂̂β̂β | X) =Var((X′X)−1X′y | X)

= ((X′X)−1X′)Var(y | X)((X′X)−1X′)′

= ((X′X)−1X′)Var(Xβββ+ ε | X)((X′X)−1X′)′

= ((X′X)−1X′)Var(ε | X)((X′X)−1X′)′

=
(3.6)

((X′X)−1X′)(σ2 In)((X′X)−1X′)′

= σ
2 ((X′X)−1X′X(X′X)−1)

= σ
2 · (X′X)−1

Hence, Var(β̂̂β̂β) = σ
2 · (X′X)−1.

3.1.4 Estimation of σ2

Theorem 3.2 shows that the variance of the error term in the simple linear regression model σ2 is
included in the variances of β̂̂β̂β. Moreover σ2 is needed to build interval estimates for the regression
model and perform hypothesis testing. Unfortunately the variance of the error term is unknown which
means that this also requires an estimate. The most common estimator of σ2 is the residual mean
square s2

s2 =
SSR
n− k

=
e′e

n− k
, (3.10)

where n− k are the degrees of freedom with n the number of observations and k the number of
estimated parameters. To prove that s2 is an unbiased estimator of σ2 it will be shown that E(e′e|X) =
(n−k)σ2.
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Theorem 3.3. The residual mean square estimator s2 is an unbiased estimator of the error variance
σ2

Proof. First notice that the term e′e can be rewritten as

e′e = ((In−H)y)′(In−H)y
= y′(In−H)′(In−H)y
= y′(In−H)y
= (Xβββ+εεε)′(In−H)(Xβββ+εεε)

= (βββ′X′+εεε
′)(In−H)(Xβββ+εεε)

= εεε
′(In−H)εεε+βββ

′X′(In−H)Xβββ

= εεε
′(In−H)εεε+βββ

′X′In−βββ
′X′X(X′X)−1X′+ InXβββ−X(X′X)−1X′Xβββ

= εεε
′(In−H)εεε+βββ

′X′−βββ
′X′+Xβββ−Xβββ

= εεε
′(In−H)εεε = εεε

′Mεεε.

Before we can calculate the expectation of e′e we first need to show that

trace(M) = trace(In−H)

= trace(In)− trace(H)

= n− trace(H)

= n− trace(X(X′X)−1X′)
= n− trace(X′X(X′X)−1) (since trace(AB) = trace(BA))

= n− trace(Ik) = n− k.
So trace(M) = n− k.

This property will be used to evaluate the expectation

E(e′e | X) = E(εεε′Mεεε | X)

=
n

∑
i=1

n

∑
j=1

mi j E(εiε j | X)

=
(3.4), (3.5)

n

∑
i=1

mii σ
2

= σ
2

n

∑
i=1

mii

= σ
2 · trace(M) = (n− k)σ2.

Hence we conclude that E(s2) = E
(

e′e
n− k

)
=

1
n− k

E (e′e) =
1

n− k
(n− k)σ2 = σ2.

3.1.5 Hypothesis Testing

Incorporating unimportant regressors may make the model less reliable. Therefore one might want
to check the significance of the regressors. For the multiple linear regression model it is possible to
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test hypotheses about individual regressors as well as hypotheses about multiple regressors. In this
section the t test will be discussed to evaluate hypotheses about individual regressors.

t Tests
The hypothesis for testing the significance of the jth regression coefficient is

H0 : βj = βj0, H1 : βj 6= βj0, (3.11)

where βj0 is a constant. In appendix A it is proven that under the null hypothesis H0 : βj = βj0 the
statistic Z j that is given by

Z j =
β̂ j−β j0√

σ2((X′X)−1)jj

,

is standard normal distributed by the assumptions. Here ((X′X)−1)jj is the diagonal element of the
matrix (X′X)−1 corresponding to β̂j. Since σ2 is often unknown, we define a new statistic t j that uses
the estimate s2

tj =
β̂j−βj0

se(β̂j)
,

where se(β̂j) is the standard error of β̂j. The standard error of β̂j is defined as

se(β̂j) =
√

s2 · ((X′X)−1)jj (3.12)

The new statistic t j can be rewritten as

t j =
β̂ j−β j0√

s2σ2(n− k)/σ2(n− k)((X′X)−1)jj

=

β̂ j−β j0√
σ2/((X′X)−1)jj√
s2(n−k)

σ2 /(n− k)
=

Z j√
s2(n−k)

σ2 /(n− k)
.

In appendix A it is proven that under the null hypothesis tj follows a Student’s t-distribution with n−k
degrees of freedom. The statistic t j is used to test hypothesis of the form (3.11). H0 is rejected if

|t j|> tα/2, n−k,

where tα/2, n−k is the upper tail of the α/2 percentage point of the tn−k distribution. The p-value can
also be used to express the decision rule of the t-test. One can calculate the p-value using the expres-
sion p = P(|t j|> tα/2, n−k)×2. The null hypothesis is rejected if p≤ α and failed to reject otherwise.

3.1.6 Confidence Intervals

It is often useful to not only consider the point estimates of the coefficients but also their confidence
intervals. The frequentist interpretation of the 100(1−α) percent confidence interval is that repeating
the experiment will lead to 100(1−α)% of the confidence intervals containing the parameter’s true
value. The 100(1−α) percent confidence interval of β j can be constructed using the previously
defined t-statistic. Recall that for hypothesis of the form (3.11) we fail to reject H0 if

−tα/2, n−k ≤
β̂ j−β j0

se(β̂ j)
≤ tα/2, n−k.
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Hence the 100(1−α) confidence interval of β j is given by

β̂ j− tα/2, n−k · se(β̂ j)≤ β j0 ≤ β̂ j + tα/2, n−k · se(β̂ j)

or in interval notation [
β̂ j− tα/2, n−k · se(β̂ j), β̂ j + tα/2, n−k · se(β̂ j)

]
. (3.13)
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4 The Bayesian Approach to Linear Regression
So far, we have focused on the Frequentist approach to linear regression, which assumes the pa-
rameters to be fixed unknown constants. A different method is to view these parameters as random
variables. This procedure is known as the Bayesian approach to linear regression. As a result of
this change of perspective it is possible to include prior knowledge into the model. The distinction
between Bayesian and Frequentist regression becomes clear using Bayes’ theorem.

4.1 Bayes’ Theorem
Bayesian inference is based on the distribution of the parameter vector θθθ conditioning on the observed
data y. This conditional distribution is also known as the posterior distribution of θθθ. The fundamental
law of Bayesian regression that establishes a method to calculate this posterior distribution is Bayes’
theorem [8, 12]

P(θθθ|y) = P(y|θθθ) P(θθθ)
P(y)

. (4.1)

P(θθθ) is the prior distribution and represents the prior beliefs about θθθ. P(y|θθθ) and P(y) are the likeli-
hood function and the marginal density of y, respectively. By the law of total probability the marginal
density of y is equivalent to

P(y) = ∑P(y|θθθ)P(θθθ) in the discrete case

or
P(y) =

∫
P(y|θθθ)P(θθθ) dθθθ in the continuous case.

Since P(y) does not dependent on θθθ, it may be regarded as a normalizing constant (c = P(y)). Hence
we can simplify equation (4.1) to

P(θθθ|y)∝ P(y|θθθ)×P(θθθ) (4.2)

which is equivalent to stating
Posterior ∝ Likelihood×Prior.

The ∝ symbol indicates that the posterior distribution is proportional to the right hand side of the
equation. Before we use equation (4.2) to perform Bayesian regression analysis we will first take a
closer look at the prior distribution.

4.2 The Prior Distribution
In order to perform Bayesian analysis a prior distribution for the unknown parameter needs to be
specified. Even if one does not want to incorporate prior knowledge into the model the prior distribu-
tion still needs to be specified. The various types of priors can roughly be divided into two categories:
informative and uninformative priors.

For most studies there is some prior information accessible. An informative prior tries to express
this prior knowledge. One could for example base the prior distribution for a new study on similar
Bayesian studies from the past or expert knowledge. Furthermore one might already rule out certain
parameter values based on prior beliefs.
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An uninformative prior or reference prior is used when there is insufficient prior knowledge available
or when one wants to keep the analysis as objective as possible. Critics of the Bayesian approach
argue that the latter is impossible because the inclusion of the prior causes the analysis to always be
subjective. An uninformative prior assumes all the possible parameter values to have the same prob-
ability. A frequently used uninformative prior is the uniform distribution which is also referred to as
the flat prior.

The parameter space is frequently very large, especially for problems with many parameters. As a
consequence of this evaluating equation (4.1) can become computationally heavy and rather complex.
A factor that affects this complexity is the prior specification. Therefore one can sometimes choose
a prior that facilitate the computations. An example of this is a class of priors called conjugate
priors. Conjugate priors are priors that given a certain likelihood function lead to posteriors of the
same family. Those priors can be informative as well as uninformative. In the next subsection we
will consider an example of a conjugate prior. Unfortunately it is often not possible to simplify
the computations using conjugate priors so in those cases other methods are needed to compute the
posterior distribution.

4.3 Multiple Linear Regression

In this section we will focus on the multiple linear regression model as described in section 3.1 and
the corresponding Bayesian approach to estimate the unknown parameters. Most of the results in this
section will be based on the books by Rachev et al and Hoff [23, 12]. Recall that the assumptions of
the multiple linear regression model imply that the conditional probability of y follows a multivariate
normal distribution

{y|X} ∼ N(Xβββ, σ
2In). (4.3)

This is the same as saying that the likelihood function is given by

p(y|X,βββ,σ2) = (2πσ
2)−

n
2 exp

{
− 1

2σ2 (y−Xβββ)′(y−Xβββ)

}
∝ (σ2)−

n
2 exp

{
− 1

2σ2 RSS(βββ)
}
. (4.4)

To obtain the posterior distribution and do Bayesian regression analysis we still have to specify a prior
distribution. For the prior distribution two different options will be proposed: an uninformative and
an informative prior.
Montgomery

4.3.1 Uninformative Prior Distribution

A frequently used uninformative joint prior for the parameters βββ and σ2 follows from Jeffreys mul-
tiparameter rule [17]. It is the product of a flat prior on βββ and log(σ2). Hence it is proportional
to

p(βββ,σ2)∝ σ
−2. (4.5)

Observe that this prior does not integrate to one and therefore is not a probability density function.
Such a prior is called an improper prior. Improper priors might cause issues in the estimation process
or at another point of the analysis. This prior is often chosen because it results in a relatively simple
posterior distribution. The posterior distributions of βββ and σ2 can be calculated using Bayes theorem
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p(βββ,σ2|y,X) ∝
(4.2)

p(y|X,βββ,σ2)×p(βββ,σ2)

∝

[
(σ2)−

n
2 exp

{
− 1

2σ2 (y−Xβββ)′(y−Xβββ)

}]
× 1

σ2

= (σ2)−
n+2

2 exp
{
− 1

2σ2 (y−Xβββ)′(y−Xβββ)

}
= (σ2)−

n+2
2 exp

{
− 1

2σ2 ((βββ− β̂̂β̂β)′X′X(βββ− β̂̂β̂β)+SSE)
}

=

[
(σ2)−(

n−k
2 +1)exp

{
− 1

2σ2 SSE
}]
×
[
(σ2)−

k
2 exp

{
− 1

2σ2 (βββ− β̂̂β̂β)′X′X(βββ− β̂̂β̂β)

}]
=

[
(σ2)−(

n−k
2 +1)exp

{
− 1

2σ2 (n− k)s2
}]
×
[
(σ2)−

k
2 exp

{
− 1

2σ2 (βββ− β̂̂β̂β)′X′X(βββ− β̂̂β̂β)

}]
.

Recall that by the definition of conditional probability

p(βββ,σ2|y,X) = p(βββ|y,X,σ2)p(σ2|y,X).

Hence we can conclude that

{βββ|y,X,σ2} ∼ N(β̂̂β̂β,σ2(X′X)−1) (4.6)

and

{σ2|y,X} ∼ Inv-χ2(n− k, s2), (4.7)

where s2 is the mean squared error, β̂̂β̂β the least squares estimator of βββ and σ2(X′X)−1 the variance
of β̂̂β̂β. As a result, we may expect a similar outcome as with the Frequentist method, but then with
a Bayesian interpretation. The posterior distribution of βββ depends on the variance σ2. To get the
marginal posterior distribution of βββ that is independent of σ2 we must integrate σ2 out of the joint
posterior distribution.

p(βββ|y,X) =
∫

∞

0
p(βββ,σ2|y,X) dσ

2

∝
∫

∞

0
(σ2)−

n+2
2 exp

{
− 1

2σ2 ((βββ− β̂̂β̂β)′X′X(βββ− β̂̂β̂β)+SSE)
}

dσ
2.

To proceed we do a change of variables γ = 1/σ2

p(βββ|y,X)∝
∫

∞

0
γ

n−2
2 exp

{
− γ

2
((βββ− β̂̂β̂β)′X′X(βββ− β̂̂β̂β)+SSE)

}
dγ.

We then do another change of variables u =− γ

2
((βββ− β̂̂β̂β)′X′X(βββ− β̂̂β̂β)+SSE)
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p(βββ|y,X)∝ ((βββ− β̂̂β̂β)′X′X(βββ− β̂̂β̂β)+SSE)−
n
2
∫

∞

0
u

n−2
2 e−u du

= ((βββ− β̂̂β̂β)′X′X(βββ− β̂̂β̂β)+SSE)−
n
2 Γ(n

2 )

∝ ((βββ− β̂̂β̂β)′X′X(βββ− β̂̂β̂β)+SSE)−
n
2

∝

[
1+

1
n− k

(βββ− β̂̂β̂β)′X′X(βββ− β̂̂β̂β)

SSE/n− k

]−n
2

=

[
1+

(βββ− β̂̂β̂β)′X′X(βββ− β̂̂β̂β)

(n− k)s2

]−n
2
.

Hence we can conclude that
{βββ|y,X} ∼ Tn−k(β̂̂β̂β,s2(X′X)−1). (4.8)

4.3.2 Informative Prior Distribution

In a situation where there is prior knowledge available we can use a conjugate prior distribution for
the parameters. Since we assumed the likelihood function to be a multivariate normal distribution we
can show that the conjugate priors are

βββ∼ N(βββ0,Σ0) (4.9)

and
γ∼ Γ(ν0

2 ,
ν0σ2

0
2 ), (4.10)

with γ = 1/σ2. The hyperparameters βββ0,Σ0 ,ν0 and σ2
0 need to be chosen in advance. Here Σ0 is the

covariance matrix that contains the covariance between each pair of βi’s. Under the conjugate prior
the posterior distribution of βββ is

p(βββ | y,X,σ2)∝ p(y|X,βββ,σ2)×p(βββ)

∝

[
exp
{
−1

2
(−2βββ

′X′y/σ
2 +βββ

′X′Xβββ/σ
2)

}]
×
[

exp
{
−1

2
(−2βββ

′Σ−1
0 β0β0β0 +βββ

′Σ−1
0 βββ)

}]
= exp

{
βββ
′(Σ−1

0 β0β0β0 +X′y/σ
2)− 1

2
βββ
′(Σ−1

0 +X′X/σ
2)βββ)

}
,

which is proportional to multivariate normal distribution. Therefore the posterior distribution of βββ is
given by

{βββ | y,X,σ2} ∼ N((Σ−1
0 +X′X/σ

2)−1(Σ−1
0 β0β0β0 +X′y/σ

2), (Σ−1
0 +X′X/σ

2)−1). (4.11)

Using a similar approach, the posterior distribution of γ may be derived as follows

p(γ | y,X,βββ)∝ p(y|X,βββ,γ)×p(γ)

∝

[
γ
−n

2 exp
{
− 1

2σ2 SSE(βββ)
}]
×
[

γ
ν0
2 −1exp

(
−γ× ν0γ0

2

)]
= γ

ν0+n
2 −1exp

(
−γ× ν0γ0 + SSE(βββ)

2

)
.
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Observe that this expression is proportional to a gamma density so the posterior distribution of σ2 is

{σ2 | y,X,βββ} ∼ Γ−1((ν0 +n)/2, (ν0σ
2
0 + SSE(βββ))/2). (4.12)

Therefore the proposed prior distributions are indeed conjugate priors.

4.4 Markov Chain Monte Carlo Methods
Calculating the joint posterior distribution analytically may be challenging or even impossible. In this
scenario simulation algorithms known as Markov Chain Monte Carlo (MCMC) methods can be used
to get a posterior approximation. This section will briefly go over the basic notions behind MCMC
methods before focusing on an MCMC procedure known as Gibbs sampling. In addition, we will
investigate the convergence of the Markov chain Monte Carlo method.

4.4.1 Monte Carlo Simulation

Monte Carlo simulation [12] is a random sampling-based integration approach. Let θ be the parameter
of interest and y1, . . . ,yn a sample from the likelihood function p(y1, . . . ,yn | θ). Assume that we can
directly draw from the posterior distribution to obtain the following sample

θ
(1), . . . ,θ(M) ∼

i.i.d
p(θ | y1, . . . ,yn).

This sample’s empirical distribution is called the Monte Carlo approximation to the target distribution
p(θ | y1, . . . ,yn) which improves as M becomes larger. Sufficiently large independent Monte Carlo
samples can be used to estimate interesting properties of the posterior distribution. One could for
example calculate The expectation of any function of θ with the law of large numbers

1
M

M

∑
m=1

g(θ(m))→ E[g(θ) | y1, . . . ,yn] as M→ ∞. (4.13)

Besides the expectation it is also possible to estimate other aspects of the posterior distribution such
as the variance.

4.4.2 Markov Chain

As described in [29] a Markov chain is a sequence of discrete or continuous random variables
θ(0),θ(1), . . . that satisfies the Markovian property

p(θ(n+1) ∈ A | θ(n) = x,θ(n−1) = xn−1, . . . ,θ
(0) = x0) = p(θ(n+1) ∈ A | θ(n) = x)

for any subset A of the state space S and all n≥ 0.

So the future state is solely determined by the current state and not by the past. The Markov chain is
said to be homogeneous if

p(θ(n+1) ∈ A | θ(n) = x) = p(θ(1) ∈ A | θ(0) = x) ∀ n≥ 0.

The likelihood of generating a value in A while beginning in x is described by the transition kernel
density p(x,y)

p(θ(1) ∈ A | x) =
∫

A
p(x,y) dy.
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A probability density function π on S that satisfies

π(y) =
∫

S
π(x)p(x,y) dx

is called the stationary distribution of the Markov chain on S . Once you are sampling from the station-
ary distribution the next steps of the Markov chain are also sampled from the stationary distribution.
The limiting distribution of the Markov chain can be linked to stationary distribution π using the
Ergodic theorem. For this theorem to hold the Markov chain needs to be irreducible, aperiodic and
recurrent. A Markov chain is irreducible if there is a positive probability to go from any state to any
other state in the state space in a finite number of steps. A state is periodic if it can only be visited
after a regular number of steps. The Markov chain is called periodic if it contains at least one periodic
state. Otherwise the Markov Chain is said to be aperiodic. Finally a Markov chain is recurrent if it
visits every state an infinite number of times. If all three criteria are satisfied we can use the Ergodic
theorem [12]

Theorem 4.1. (Ergodic Theorem) If {θ(0),θ(1), . . .} is an irreducible, aperiodic and recurrent Markov
chain, then there is a unique probability distribution π such that as n→ ∞,

1. p(θ(n) ∈ A)→ π(A) for any set A;

2. 1
n ∑g(θ(n))→

∫
g(θ)π(θ) dx = E(g(θ)).

The goal of Markov chain Monte Carlo methods is to build an irreducible, aperiodic Markov chain
with a stationary distribution that equals the target distribution. An MCMC method starts with an
initial guess after which the other elements of the Markov chain are generated using Monte Carlo
techniques. There are two phases in the procedure of proposing a new sample:

1. A proposal for the new sample is obtained by adding a small perturbation to the old sample

2. A decision rule is applied to either accept or reject the new sample. If accepted, the old sample
will be replaced with the new sample. Otherwise, the old sample will be kept [28].

4.4.3 Gibbs Sampling

Gibbs sampling is a well-known MCMC technique that can be applied when one is able to sample
directly from all the full conditional posterior distributions of the parameters. If the parameter vector
is θθθ = (θ1,θ2, . . . ,θq) then the full conditional posterior distribution of θi (i = 1, . . . ,q) is given by

p(θi | θ1, . . . ,θi−1,θi+1, . . .θq,y) = p(θi | θ−iθ−iθ−i,y).

The Gibbs sampling algorithm is as follows:

1. Choose an initial value for all the parameters θ
(0)
i (i = 1, . . . ,q) to initialise the Markov chain;

2. At iteration t, obtain θ(t)θ(t)θ(t) = (θ
(t)
1 ,θ

(t)
2 , . . . ,θ

(t)
q ) as follows:

• Draw an observation, θ
(t)
1 from p(θ(t)1 | θ

(t−1)
2 ,θ

(t−1)
3 , . . . ,θ

(t−1)
q ,y)

• Draw an observation, θ
(t)
2 from p(θ(t)2 | θ

(t)
1 ,θ

(t−1)
3 , . . . ,θ

(t−1)
q ,y)

• Cycle through the rest of the components, θ
(t)
3 , . . . ,θ

(t)
q , in a similar way
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3. Repeat step (2) B times until convergence is achieved;

4. Run step (2) M more times to generate {θθθ(B+1), . . . ,θθθ(B+S)};

5. discard {θθθ(1), . . . ,θθθ(B)} and use the empirical distribution of {θθθ(B+1), . . . ,θθθ(B+M)}
to approximate p(θθθ | y).

The first B iterations are known as the “burn-in” period which can be shortened by choosing an initial
value closer to the true value. For Gibbs sampling the decision rule is to always accept the new sample
[12, 23].

To approximate the joint posterior distribution of the coefficients we can use our knowledge about the
Gibbs sampler. Note that under the uninformative prior we can sample from both p(βββ|y,X,σ2) and
p(σ2|y,X). A sample {βββ,σ2} from p(βββ,σ2|y,X) can be created as follows:

1. Sample σ2 ∼ Inv-χ2(n− k, s2);

2. Sample βββ∼ N(β̂̂β̂β,σ2(X′X)−1), where σ2 is the sample from step 1 [12].

The empirical distribution of the samples can be used to approximate the joint posterior distribution
of the coefficients.

When it comes to the informative prior distribution we can sample from both the full conditional
posterior distributions. Hence we are able to design a Gibbs sampler to approximate the joint posterior
distribution p(βββ,σ2|y,X). Given the old sample {βββ(s),σ2(s)}, the new sample {βββ(s+1),σ2(s+1)} can be
generated by:

1. Updating βββ

(a) Compute m = E[βββ | y,X,σ2(s)] and V = Var[βββ | y,X,σ2(s)]

(b) Sample βββ(s+1) ∼ N(m,V)

2. Updating σ2

(a) Compute SSE(βββ(s+1))

(b) Sample σ2(s+1) ∼ Γ−1((ν0 +n)/2, (ν0σ2
0 + SSE(βββ(s+1)))/2) [12]

After a “burn-in” period the empirical distribution of the samples can again be used to approximate
the joint posterior distribution of the coefficients.

4.4.4 Convergence Diagnostics

Before we can study the results of a Markov Chain Monte Carlo method we should first check if
the Markov chain has reached its stationary distribution. If the Markov chain has not reached its
stationary distribution the results of an MCMC method are not reliable. This section we will cover
two frequently used graphical MCMC diagnostics that were discussed in [12, 17]: trace plots and
autocorrelation plots.

Trace plots are the easiest way to check convergence of the Markov chain. A trace plot is a plot of
the sample value against the iteration number. In general a trace plot is made for every parameter.
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Some features indicating stationarity that can be found in the plot are an approximately constant mean
and variance. It is frequently stated that a good trace plot should resemble a hairy caterpillar. If you
observe a different pattern this demonstrates dependence of the chain on the initial state or another
convergence problem.

The dependence between the different states is also an interesting factor that we can study. If the
future states of the Markov Chain are highly correlated with the current state then the chain is said
to have a low mixing rate. This mixing rate is determined by the autocorrelations of the lags. The
autocorrelation of lag k is characterized as the correlation between state θt and state θt+k. The au-
tocorrelation of the different lags can be plotted in an autocorrelation plot. If the autocorrelation
decreases fast with increasing lag this indicates a high mixing rate. There exist converging Markov
Chains with a low mixing rate and vice versa. Therefore an autocorrelation plot does not guarantee
convergence of the Markov Chain. The only thing that a low mixing rate suggests is that there are
more samples needed for a proper inference.

4.5 Credible Intervals and Bayesian P-values
For the frequentist approach we considered the confidence intervals and the p-values of the estimates.
These concepts are defined differently for Bayesian parameter estimation methods. The Bayesian
equivalent of confidence intervals are called credible intervals. The 100(1−α) percent Credible
interval can be interpreted as the interval that contains the true parameter value with 100(1− α)
percent certainty

P(l(y)< β < u(y) | Y = y) = 0.95, (4.14)

where
P(β≤ l(y) | Y = y) = P(β≥ u(y) | Y = y) = 0.025 [12].

This view differs from the frequentist interpretation of confidence intervals. Instead of calculating the
confidence intervals analytically we will in this thesis focus on the empirical credible intervals. If the
number of samples is large enough the empirical credible intervals approach the analytical result.

A Bayesian alternative for the frequentist p-value is the probability of direction. The probability of
direction is characterized as the probability that a parameter is strictly positive or negative. If the
posterior distribution indicates that negative values are more probable the strictly negative interpreta-
tion is used. Otherwise we use the strictly positive interpretation. The probability of direction ranges
between 0.5 and 1. To obtain the Bayesian equivalent of the frequentist p-value we can perform the
following calculation

p-value = 2× (1−probability of direction)

The probability of direction is highly correlated with the frequentist p-value. However the interpreta-
tion of the two concepts is completely different. Hence the probability of direction cannot directly be
used to say something about the significance [18].
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5 Model Selection and Comparison

5.1 Cross-validation
In present-day statistics resampling methods play an essential role. One of the most utilized resam-
pling methods is cross-validation [13]. The idea behind cross-validation is to split the data into two
parts: a training and a validation set. The training set is used to fit a model, which is then used to
predict the validation set’s response. The measure of the model fit can then be used as an estima-
tion of the model’s prediction error. Cross-validation is frequently applied to identify possible model
overfitting.

K-fold cross-validation is a popular technique to evaluate and compare models. This method ran-
domly divides the data into k groups or folds of a roughly similar size. One of the folds is chosen
as the validation set while the other folds form the training set. The training set is used to create a
model that predicts the response of the validation set. After model fitting the mean squared error will
be computed as an estimate of the prediction error. This process will be repeated k times until each
fold has been used as the validation set. To obtain a better estimate of the prediction error we will use
the mean of the mean squared errors

CVk =
1
k

k

∑
i=1

MSEi. (5.1)

Two common choices for k are k = 5 and k = 10. These values are chosen because of their computa-
tional advantage (larger values of k are not optimal) and relatively low variability in the CV estimate.

5.2 Lasso
In general the least squares estimator has a small bias and a large variance. In some cases, raising the
bias in exchange for a smaller variance might improve the model’s prediction accuracy. One way of
doing this is by fitting a sparse regression model. In a sparse regression model some of the regression
coefficients are removed from the model. A possible technique that one could apply to achieve this
is the least absolute shrinkage and selection operator also known as the lasso. The lasso, as the name
implies, sets a few of the coefficients to zero while shrinking some of the others. This method was
proposed by Tibshirani [27] and is defined as the vector β̂lassoβ̂lassoβ̂lasso that minimizes the function

SSR(βββ; λ) =
n

∑
i=1

(yi−xi
′
βββ)2 +λ

k

∑
j=1
|βj|, (5.2)

where λ is a tuning parameter [12]. This function may be thought of as the sum of squared residuals
with an additional penalty term penalizing big |β j| values. The tuning parameter can be selected using
k-fold cross-validation. First of all one needs to define a grid of possible λ values. The second step
is to calculate the cross-validation error CVk for every value of λ. Eventually one chooses the tuning
parameter value λ with the smallest cross-validation error CVk. The final model will be fitted using all
the data and the optimal λ value [13]. In general β̂lassoβ̂lassoβ̂lasso does not have a closed form solution because
the function that needs to be minimized is not differentiable. To solve equation (5.2) and obtain a
solution for β̂lassoβ̂lassoβ̂lasso one could for example use a modification of the Least Angle Regression (LARS)
algorithm [6]. A complete explanation of the LARS algorithm and how it works can be found in the
paper by Efron et al.
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To apply the lasso the data needs to be standardized. If this is not already the case the data can be
standardized as follows

zi j =
xi j− x̄ j

s j
, i = 1,2, . . . ,n, j = 1,2, . . . ,k (5.3)

and
y∗i =

yi− ȳ
sy

, i = 1,2, . . . ,n, (5.4)

where

s2
j =

∑
n
i=1(xi j− x̄ j)

2

n−1
is the sample variance of the regressor x j and

s2
y =

∑
n
i=1(yi− ȳ)2

n−1
is the sample variance of the response [20].

5.3 Backward Stepwise Model Selection Using AIC
Instead of using the Lasso to obtain a sparse regression model one can also perform a model selection
using the ordinary least squares estimator. The Akaike Information Criterion (AIC) is an estimator of
the prediction error and therefore a popular criterion for comparing models. The AIC is defined by

AIC = 2k−2ln(Lmax), (5.5)

where k is the number of estimated parameters and Lmax the maximum value of the likelihood of the
model [1]. Because the AIC is an estimator of the prediction error (which we want to minimize),
selecting the best model using AIC will result in the model with the lowest AIC. In this paper we
will use the AIC to do backward stepwise model selection. This procedure starts with the full model
obtained by the OLS estimator. Thereafter we will calculate the AIC of the k different models where
only one variable is deleted. If at least one of these models has a lower AIC value than the full model,
the model with the lowest AIC value will be selected as the new model. Otherwise we will keep the
old model with all the variables and stop the selection procedure. This process will be repeated until
deleting variables does not result in a lower AIC value or until there is no variable left in the model
[10].

5.4 Measure of Model Fit
We will utilize two different measures to asses the model fit: the Root Mean Square Error (RMSE)
and the Mean Absolute Deviation (MAD) [2]. The RMSE is the root of the mean squared error and
is given by

RMSE =

√
1

n− k

n

∑
i=1

(yi− ŷi)2. (5.6)

The MAD is defined as the average absolute difference between fitted values and the observations

MAD =
∑

n
i=1 |yi− ŷi|

n
. (5.7)

Note that the unit of both measures equals the unit of the observed values. The MAD will always be
less then or equal to the RMSE. A lower RMSE or MAD indicates a better model fit. Because the
RMSE and the MAD non-negative, their optimal value would be 0.
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6 Data
This section contains a description of the data that was utilized in our research. An explanation of the
data as well as an exploratory data analysis will be provided.

6.1 Data and Variables
This paper will make use of data for census tracts in the Boston Standard Metropolitan Statistical
Area (SMSA) in 1970. The data can be found in the mlbench package [15] from R. This package
also contains data from the FBI, the Transportation and Air Shed Simulation Model (TASSIM) and
the Massachusetts Tax-payers Foundation , among others. The data set consists of 506 rows, each
representing a Boston suburb or city. For every suburb or city the following data is available:

• medv: the Median value of owner-occupied homes in $1000

• rm: average number of rooms per home

• age: proportion of owner-occupied homes built prior to 1940

• b: the quadratic transformation of B where B is the Proportion of black people in the population

• lstat: proportion of the population that is lower status (i.e. proportion of adults without some
high school education and proportion of male workers classified as laborers)

• crim: the number of reported crimes per 1000 total population per year by town

• zn: The proportion of residential land in a community designated for lots larger than 25,000
square feet

• indus: proportion of non-retail business acres per town

• tax: full-value property-tax rate per $ 10000

• ptratio: pupil-teacher ratio by town

• chas: Charles River dummy variable (= 1 if tract bounds the Carles River; 0 otherwise)

• dis: weighted distances to five employment centers in the Boston region

• rad: index of accessibility to radial highways

• nox: Nitrogen oxide concentrations in parts per 10 million
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6.2 Exploratory Data Analysis
Before we fit a linear regression model it might be useful to critically pre-analyse the data using
descriptive statistics and graphical representations. We will start the exploratory data analysis by
plotting histograms for the numerical variables and a barplot for the Charles River dummy. These
plots show how the observations are distributed.

Figure 1: A histogram of each numerical variable (left) and a barplot of the chas variable (right) for
the data from the Boston Housing data set

Some noteworthy observations are:

1. Most observations of the variables zn and crim are rather small (0 or close to 0).

2. For the dummy variable chas the value 0 (tract does not bound the Charles River) dominates.
More than 90 per cent of the observations equal 0.

3. The majority of the observations of the variable b are around 400.

Even though linear regression does not make any assumptions about the distribution of the indepen-
dent variables these findings suggests a possible nonlinear relationship between some of the variables
and the dependent variable. As a result, one might consider to transform the variables that appear to
be skewed. One could for example transform the variable zn to log(zn). We decide to not transform
the variables because the linear regression model does not require them to be non-skewed.
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For the exploratory data analysis we will also utilize a correlation matrix to examine the relation-
ship between the variables. Each cell in the correlation matrix represents the correlation coefficient
between two variables. The correlation matrix for our data is:
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Figure 2: The correlation matrix for the variables of the Boston Housing data set. The (pairwise)
correlation between every two variables is shown in each cell of the table.

The following are some important observations:

1. We will use the variable tax as the dependent variable in our model. The correlation between
tax and rm appears to be negible (corr(rm,tax) = −0.2920478).

2. The variables zn (corr(zn,tax) = −0.3145633), ptratio (corr(ptratio,tax) = 0.4608530), b
(corr(b,tax) = −0.4418080) and medv (corr(medv,tax) = −0.4685359) are weakly correlated
with tax.

3. The correlation matrix shows that some of the regressors are strongly correlated. One could for
example observe that the variables medv and lstat have a correlation coefficient of−0.7376627.
Hence there might be some multicollinearity [19].

Despite the fact that certain variables are stronger correlated with tax than others, it is a positive
sign that all the variables are correlated with tax. This correlation does not necessarily imply a
causal relation and hence further analysis is required to determine the causal relationship between the
variables. When it comes to the multicollinearity, we have made the decision to neglect it.
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We finish the exploratory data analysis with taking a closer look at the variable medv. If we plot the
variable medv against rm we namely observe that there appears to be a maximum for the variable
medv, as seen in the plot below. Gilley and Pace [9] discovered that the Census Bureau censored
tracts whose median value was over $50,000 which explains the observation.
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Figure 3: A plot of the data for the median value of owner-occupied homes in $1000 (medv) against
the average number of rooms per home to illustrate the maximum value of $50,000 for the variable
medv.
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7 Results

In this section we will study the linear regression model for the full-value property tax-rate per $1000
based on the Boston housing data set. The section consists of two parts, a model analysis and a model
comparison of the linear regression model. In the first subsection we will consider five models based
on five parameter estimation techniques, three frequentist and two Bayesian methods. To analyse the
models we will check the parameter estimates, credible/confidence intervals and p-values
(if available). Furthermore we will study the fitted regression values. In the second subsection we will
investigate the model fit of the five models using different sample sizes and the MAD, RMSE and the
MSE as the measure of fit statistics.

7.1 Analysis of the Models

7.1.1 Linear Regression Model with the Ordinary Least Squares Estimator

The first frequentist parameter estimation method that we are going to study is the ordinary least
squares (OLS) estimator. The results of the OLS estimate of the linear regression coefficients are
shown in Table 1.

Variable Estimate 2.5 %-quantile 97.5 %-quantile p-value

(Intercept) 208.508 84.945 332.070 0.001∗

crim -0.289 -1.062 0.485 0.464
zn 0.878 0.564 1.192 6.4e−08∗

indus 7.044 5.754 8.334 < 2e−16∗

chas1 -22.512 -42.687 -2.336 0.029∗

nox 43.327 -47.535 134.188 0.349
rm -1.469 -11.997 9.059 0.784
age 0.104 -0.204 0.412 0.506
dis -1.549 -6.447 3.348 0.534
rad 14.135 13.173 15.097 < 2e−16∗

ptratio 0.916 -2.291 4.124 0.575
b -0.002 -0.066 0.061 0.939

lstat -1.113 -2.413 0.188 0.093
medv -1.735 -2.774 -0.696 0.001∗

Table 1: The parameter estimates, 95% confidence intervals and p-values for the coefficients of the
Boston housing linear regression model with dependent variable tax based on the OLS estimator. The
asterisk in the final column indicates the significant variables with a significance level of α = 0.05.

From the table it can be seen that 7 of the factors are expected to have a negative effect on the full-
value property-tax rate, while 5 factors are expected to have a positive effect. Based on the p-values
in combination with a significance level of α = 0.05 the variables zn, indus, chas1, rad and medv
are predicted to have a significant effect on tax. Observe that most of the confidence intervals are
relatively wide. This indicates that there is quite some uncertainty about the true parameter values.

Besides the coefficient estimates we are also interested in the fitted values ŷ. In figure 4 we have
plotted all the 506 predicted responses ŷ against the actual response y.
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Figure 4: A plot of the predicted response ŷ of the variable tax based on a linear regression model
with the OLS estimator against the actual response y from the Boston housing data set. The red line
in the plot refers to a perfect fit. Note that a small amount of random noise is added to the results to
better visualize overlapping values.

As one can see in the plot most values are between 200 and 400 dollar with a few outliers around 700
dollar. Even after adding a small amount of random noise to the results it is difficult to distinguish all
the different points because of the large density. As one can observe most points are near the red line
which indicates that the predicted and actual response are relatively close. At the end of this section
we will measure and compare the model fit more formal using the root mean square error (RMSE)
and the median absolute deviation (MAD).
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7.1.2 Linear Regression Model with the Lasso

Following our analysis of the OLS estimator, we would like to focus on a more sparse model with
fewer parameters. In section 5 we discussed how to achieve this with the lasso. As previously stated,
this strategy is similar to the OLS technique but then with an extra penalty term. Therefore one might
consider this as an improvement of the OLS estimator rather than a completely different frequentist
estimator. Before we can establish the lasso estimate for the coefficients we first need to standardize
the data and choose an optimal λ value from a grid of possible λ values. We will standardize the
data as illustrated in section 5 to eventually transform the coefficients back to the original scale.
The grid of possible λ values is obtained by generating a sequence of 100 values between −2 and 5
which are used as exponents in combination with base 10. Ultimately we end up with a grid of 100
values ranging from 100000 to 0.01. For every λ we calculate the cross-validation estimate using
10-fold cross-validation. If the value of λ with the lowest cross-validation estimate lies close to the
boundaries of the grid this suggests that we might need to increase the range of the grid. In figure 5
the cross-validation error is plotted against the log of the λ values.
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Figure 5: A plot of the cross-validation error against the log of the possible λ values. The left dashed
line indicates the λmin value with the minimum cross-validation estimate, while the right dashed line
indicates the largest λ value within one standard error of λmin. The numbers at the top demonstrate
the amount of non-zero parameter estimates.

λ = 1.123324 turns out to be the optimal λ value with a cross-validation error of 3263. This value
does not lie close to the boundaries of the grid from which we conclude that this is indeed the optimal
λ value. In figure 5 one can see that this value corresponds to 8 non-zero coefficient values. To really
demonstrate that the minimum value of λ equals 1.123324 a figure that focuses on a smaller region of
log(λ) is provided.
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Figure 6: A figure that displays a smaller area of the log(λ) values in figure 5 to better demonstrate
the λmin value. The dashed line indicates the λmin value with the minimum cross-validation estimate.
The numbers at the top demonstrate the amount of non-zero parameter estimates.

In figure 6 one can see that λ = 1.123324 really is the minimum λ value. Figure 5 might raise the
impression that the smaller the λ value the lower the MSE but figure 6 shows that for the λ values
smaller than 1.123324 the MSE increases again. The results of the lasso estimator with all the data
and λmin can be found in table 2.

Variable Estimate

(Intercept) 187.635
crim 0
zn 0.670

indus 6.957
chas1 −18.499
nox 39.803
rm 0
age 0
dis 0
rad 13.941

ptratio 0.497
b 0

lstat −0.052
medv −1.195

Table 2: The parameter estimates of the Boston housing linear regression model with dependent
variable tax based on the Lasso.

As one can observe from table 2 all the coefficients are shrunken with respect to the OLS estimator.
The variables crim, rm, age, dis and b are even set to zero. It is not a surprise that especially these
parameters were shrunken to zero. Recall that those coefficients correspond to variables that did not
have a significant effect according to the OLS estimator. The only insignificant variables that remain
in this model are nox, ptratio and lstat. Because the lasso estimator is biased it is unfortunately im-
possible to calculate reliable 95% confidence intervals and p-values as we did for the OLS estimator.
We would like to investigate the fitted values ŷ for the lasso estimator as well. Hence we decide to
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make a plot that is similar to figure 4 but then for the lasso.
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Figure 7: A plot of the predicted response ŷ of the variable tax based on a linear regression model
with the Lasso against the actual response y from the Boston housing data set. The red line in the
plot refers to a perfect fit. Note that a small amount of random noise is added to the results to better
visualize overlapping values.

If we compare this figure to figure 4 we observe a similar outcome. This is not entirely surprising,
given that the benefit of employing the Lasso is only apparent after separating the data into a testing
and a training set. This is something that we will do in the next section.
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7.1.3 Linear Regression Model based on Backward Stepwise Model Selection Using AIC

We are currently using OLS in a suboptimal way, which makes it difficult to appropriately compare
the OLS and the Lasso. If we want to reasonably compare the model fit of the model with the OLS
estimator to the model with the Lasso we should also look at a model with the OLS estimator in
combination with model selection. The selection procedure that we will use is the backward stepwise
model selection using AIC that was described in section 5. The results of performing backward
stepwise model selection for OLS using AIC are shown in Table 3.

Variable Estimate 2.5 %-quantile 97.5 %-quantile

(Intercept) 204.193 162.905 245.481
zn 0.767 0.510 1.023

indus 7.274 6.053 8.495
chas1 -22.425 -42.451 -2.400
nox 56.803 -15.353 128.959
rad 14.070 13.324 14.816
lstat -0.930 -2.089 0.229

medv -1.697 -2.511 -0.882

Table 3: The parameter estimates and 95% confidence intervals of the Boston housing linear regres-
sion model with dependent variable tax based on backward stepwise model selection using AIC.

In table 3 one can see that the model selection procedure removed the variables crim, rm, age, dis,
ptratio and d from the model. Those are almost exactly the variables that were set to zero by the
Lasso except for the variable ptratio which was nonzero. The only variables that were predicted to
have an insignificant effect on tax that remain in this model are nox and lstat. Removing these 6
variables from the model caused the parameter estimates to slightly differ from the OLS estimator.
When we look at the 95% confidence intervals for the variables, we can see that the 95% confidence
interval for the intercept has substantially shrunken compared to the interval obtained by the OLS.
This model selection was based on the AIC. The AIC values of the original model and the model after
model selection can be found in the table below.

Model AIC

OLS 5530.425
backward step AIC 5520.483

Table 4: A table containing the AIC values for the model with the OLS estimator and the model based
on backward stepwise model selection for OLS using AIC.

The difference in AIC value for the models is slightly less than 10, as seen in the table. This difference
in AIC, according to Burnham and Anderson [3], is strong evidence for picking the model that was
obtained by model selection. Hence the AIC values imply that model selection improves the model in
this situation. We will now examine if this improvement also becomes clear when plotting the fitted
values ŷ.
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Figure 8: A plot of the predicted response ŷ of the variable tax based on a linear regression model
with backward stepwise model selection using AIC against the actual response y from the Boston
housing data set. The red line in the plot refers to a perfect fit. Note that a small amount of random
noise is added to the results to better visualize overlapping values.

The plot appears to be similar to the plot of fitted values for the OLS and Lasso. Judging from the plot
there does not seem to be a substantial improvement in the predicting power of the model. However,
drawing conclusions only on the basis of the plot would be a poor choice. Therefore we will come
back to this point in the next section.
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7.1.4 Linear Regression Model based on Gibbs Sampler 1

Gibbs sampling in combination with an uninformative prior distribution is the first Bayesian parameter
estimation method that we will look at. We will use the uninformative prior distribution with the
corresponding Gibbs sampler that was introduced in section 4. We generate 10000 Gibbs samples
to analyse the linear regression model. We will start the analysis with the sample-based posterior
densities before moving on to the coefficient estimates and fitted values.
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Figure 9: The posterior densities of the coefficients and the error variance (final plot) of the Boston
housing linear regression model based on 10000 Gibbs samples.
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Figure 9 (cont.): The posterior densities of the coefficients and the error variance (final plot) of the
Boston housing linear regression model based on 10000 Gibbs samples.

In the density plots we see that the coefficients indeed follow a distribution that looks like a normal
distribution and that the error variance indeed follows a distribution that looks like an inverse chi
square distribution. Hence we decide to look at the parameter estimates, credible intervals and p-
values which are provided in table 5.

Variable Estimate 2.5 %-quantile 97.5 %-quantile p-value

(Intercept) 209.364 86.634 330.869 0
crim −0.290 −1.075 0.483 0.453
zn 0.876 0.559 1.187 0

indus 7.040 5.743 8.308 0
chas1 −22.738 −43.389 −2.505 0.026
nox 43.180 −46.946 132.014 0.344
rm −1.536 -12.112 8.999 0.783
age 0.107 −0.208 0.415 0.494
dis −1.499 −6.389 3.372 0.545
rad 14.140 13.157 15.109 0

ptratio 0.883 −2.349 4.101 0.593
b −0.003 −0.066 0.062 0.938

lstat −1.112 −2.421 0.203 0.100
medv −1.732 −2.764 −0.704 0.001

Table 5: The coefficient means, 95% empirical credible intervals and probability of direction based
p-values of the Boston housing linear regression model with dependent variable tax based on Gibbs
sampler 1.

The parameter estimates based on the mean of the Gibbs samples in table 5 look really similar to
the parameter estimates in table 1. This result does not come as a surprise since the mean of the
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conditional distribution of βββ is given by the OLS estimate of the coefficients. The 95% empirical
credible intervals are also comparable to the 95% confidence intervals of the OLS estimator which
follows from the conditional distribution too. The empirical confidence intervals of the variables zn,
indus and rad do not contain the value 0 which indicates that the value of the parameter is significantly
different from 0. This can also be seen in the plots of the posterior densities. For this estimator we
would also like to plot the predicted response ŷ against the actual response y. This figure looks almost
identical to figure 4. Since the other findings looked a lot like the results of the OLS estimator we
could have already expected to see a big similarity between this plot and figure 4.
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Figure 10: A plot of the predicted response ŷ of the variable tax based on a linear regression model
with the Gibbs sampler 1 against the actual response y from the Boston housing data set. The red line
in the plot refers to a perfect fit. Note that a small amount of random noise is added to the results to
better visualize overlapping values.
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7.1.5 Linear Regression Model based on Gibbs Sampler 2

The second Bayesian parameter estimation method that we will study is Gibbs sampling in combina-
tion with the informative prior distribution from section 4. As explained in section 4 an informative
prior distribution is used if there is some prior knowledge available. Unfortunately there is limited
prior information available for the Boston housing data. Hence we decide to take the standard mul-
tivariate normal distribution for βββ with the zero vector as the mean and the identity matrix times a
factor c where c = 1 as the variance. Note that if we increase the value of c the informative prior for βββ

would eventually converge to the flat prior that we used for the Monte Carlo approximation. For the
error variance σ2 we decide to choose the default value of the MCMCregress function for the scale
and shape parameter of the inverse gamma distribution which equals 0.001 for both parameters. The
MCMCregress function in R produces a Gibbs sample using our informative priors. To improve the
efficiency of the Gibbs sampler we first standardize the data as described in section 5. After standard-
izing the data we generate 20000 Monte Carlo sample. The first 10000 samples are used as burn-in
period while the other samples are used to analyse the linear regression model. We will start the anal-
ysis with the sample-based posterior densities and trace plots to check if the stationary distribution
has been reached. In appendix C one can also find the autocorrelation plots.
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Figure 11: The trace (left) and density (right) plots for the scaled coefficients and error variance of the
Boston housing linear regression model obtained by 10000 Gibbs samples with a burn-in of 10000.
The y-axis in the trace plot represents the value of the variable while the x-axis represents the iteration
number. The y-axis in the density plot represents the density while the x-axis represents the value of
the variable.
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Figure 11 (cont.): The trace (left) and density (right) plots for the scaled coefficients and error variance
of the Boston housing linear regression model obtained by 10000 Gibbs samples with a burn-in of
10000. The y-axis in the trace plot represents the value of the variable while the x-axis represents the
iteration number. The y-axis in the density plot represents the density while the x-axis represents the
value of the variable.

If we study the trace plots of the variables we do not observe any remarkable behaviour. The density
plots also suggest that the stationary distribution has been reached. All the variables seem to follow
the expected distribution. All in all we conclude that there is no indication against convergence of
the Markov Chain. Before we analyse the mean of the samples, the 95% credible intervals and the
p-values we will first convert everything back to the original scale. The outcome of the transformed
variables can be found in table 6.
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Variable Estimate 2.5 %-quantile 97.5 %-quantile p-value

(Intercept) 207.246 81.552 330.127 0.001
crim -0.287 -1.0554 0.485 0.472
zn 0.878 0.559 1.184 0

indus 7.047 5.774 8.357 0
chas1 -22.516 -42.601 -1.970 0.032
nox 44.548 -48.369 135.003 0.337
rm -1.446 -11.967 8.949 0.791
age 0.104 -0.208 0.416 0.498
dis -1.494 -6.386 3.431 0.551
rad 14.128 13.1399 15.101 0

ptratio 0.928 -2.212 4.118 0.570
b -0.003 -0.068 0.061 0.927

lstat -1.111 -2.411 0.187 0.095
medv -1.727 -2.749 -0.672 0.001

Table 6: The coefficient means, 95% empirical credible intervals and probability of direction based
p-values of the Boston housing linear regression model with dependent variable tax based on Gibbs
sampler 2.

Just like the outcome of Gibbs sampler 1 the results of the coefficient estimates and 95% empirical
credible intervals are really similar to the OLS estimate. The biggest difference between the outcome
of Gibbs sampler 1 and the results of the Gibbs sampler 2 is that the confidence intervals obtained
by Gibbs sampler 2 suggest the variables chas1 and medv are significantly different from 0 too. To
compare the p-values a table with the p-values of the OLS estimator, Gibbs sampler 1 and Gibbs
sampler 2 will be provided.

Variable p-value OLS p-value Gibbs 1 p-value Gibbs 2

(Intercept) 0.001 0 0.001
crim 0.464 0.453 0.472
zn 6.4e−08 0 0

indus < 2e−16 0 0
chas1 0.029 0.026 0.032
nox 0.349 0.344 0.337
rm 0.784 0.783 0.791
age 0.506 0.494 0.498
dis 0.534 0.545 0.551
rad < 2e−16 0 0

ptratio 0.575 0.593 0.570
b 0.939 0.938 0.927

lstat 0.093 0.100 0.095
medv 0.001 0.001 0.001

Table 7: The (probability of direction based) p-values for the variables of the Boston housing data set
based on the OLS estimator, Gibbs sampler 1 and Gibbs sampler 2.

The p-values of the three approaches are of comparable size, as seen in the table. The only difference
is that the probability of direction based p-values are 0 for some of the variables that appear to have
a small p-value for the OLS estimator. However, Gibbs sampler 2 assigns a nonzero p-value to the
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intercept, whereas Gibbs sampler 1 assigns a 0 p-value to the intercept. If we order the variables by
the size of their p-values we obtain a similar order for all three methods. The similarity in the results
can also be seen in the plot below of the predicted response ŷ against the actual response y. This plot
is really comparable to the plot of the OLS and Monte Carlo method.
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Figure 12: A plot of the predicted response ŷ of the variable tax based on a linear regression model
with the Gibbs sampler 1 against the actual response y from the Boston housing data set. The red line
in the plot refers to a perfect fit. Note that a small amount of random noise is added to the results to
better visualize overlapping values.
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7.2 Model Comparison
7.2.1 Model Comparison Based On All the Data

In the previous subsection we have only examined the predicting power of the various models graph-
ically. Looking at the different plots there does not seem to be a major difference between the five
estimators. We would also like to compare the models more formally using the Root mean squared
error (RMSE) and the mean absolute deviation (MAD). In table 8 one can find the MAD and the
RMSE for the five different models.

Estimation Method RMSE MAD

OLS 56.277 34.439
Stepwise AIC backward OLS 56.051 34.804

Lasso 56.567 35.177
Gibbs sampler 1 56.278 34.459
Gibbs sampler 2 56.277 34.443

Table 8: The root mean squared error and the mean absolute deviation for the models with the OLS,
OLS in combination with backward stepwise model selection using AIC, Lasso, Gibbs sampler 1 and
Gibbs sampler 2 based on all the data from the Boston housing data set as training and testing set.

Recall that a lower MAD and RMSE value imply a better model fit. As one can observe in the table
the linear regression model with OLS in combination with backward stepwise model selection using
AIC has the lowest RMSE while the linear regression model with the Lasso has the highest value. If
we look at the MAD we observe that the OLS has the lowest value and the Lasso again the highest.
This outcome is not unexpected since the OLS was defined to minimize the sum of squared residuals
while Lasso penalizes the sizes of the regression coefficients. However these criteria do not indicate
a significant difference between the model fit of the the five models.

7.2.2 Model Comparison Based on Cross-Validation

So far we have used the same data for training and testing the model. A possible risk of doing
this is that the analysis of the fitted values only tells you something about the predicting power for
this specific data set and not for new observations. OLS for example is likely to overfit the data
which means that it might perform worse for new observations. Therefore it might be a good idea
to evaluate the model fit of the five models for data that it has not seen before. We will use 10-fold
cross-validation to split the data in a training and a testing set. In this situation 90% of the data is used
to train the model and 10% is used to evaluate the model fit. As described in section 5 we will repeat
this procedure 10 times to eventually obtain the CV estimate. Because of the reasons stated above the
CV estimate can be regarded as a better measure of the model’s predicting power. The outcome of
the 10-fold cross-validation can be found in table 9.
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Estimation Method CV(10)

OLS 3,233.074
Stepwise AIC backward OLS 3,229.758

Lasso 3,230.064
Gibbs sampler 1 3,233.285
Gibbs sampler 2 3,232.976

Table 9: The 10-fold cross-validation estimate for the models with the OLS, OLS in combination with
backward stepwise model selection using AIC, Lasso, Gibbs sampler 1 and Gibbs sampler 2. 90% of
the data is used to train the model and 10% of the data is used to test the model

Notice that the cross-validation error is the lowest for the linear regression model with the OLS in
combination with backward stepwise model selection and the highest for the linear regression model
with Gibbs sampler 1. Hence 10-fold cross-validation suggests that the linear regression model with
the OLS in combination with backward stepwise model selection is the best model for predicting
the full-value property-tax rate per $1000. Furthermore observe that the Lasso has a lower cross-
validation error than the OLS, Gibbs sampler 1 and Gibbs sampler 2. This differs from the previous
result where the Lasso was the estimator that performed the worst. This outcome indicates that the
Lasso is effective to prevent overfitting. Nevertheless the difference between the different models is
again rather small so we need to do further analysis to strengthen the conclusion.

7.2.3 Model comparison for a small number observations

A possible explanation for the similarity in the results is the reasonably large size of the data set. As a
result, we might wish to see how the models perform when the size of the data set to train the model
is reduced. Instead of only looking at the case where 90% of the data is used to train the model and
10% to evaluate the model we will consider many different sample sizes. In total we will repeat the
experiment 10 times for a percentage of the data set used as the training set ranging from 10% to
100% with steps of 10%. For every percentage we will calculate the mean squared error of the five
estimators. The results of the MSE values for every percentage and every estimator can be found in
figure 13.
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Figure 13: A plot of mean squared error against the percentage of the Boston housing data set that
was used to train the model. Every line represents another method to estimate the coefficients. In the
plot the following methods are considered: OLS, OLS in combination with backward stepwise model
selection using AIC, Lasso, Gibbs sampler 1 and Gibbs sampler 2. The line of Gibbs sampler 1 is
dotted to make the line of the OLS better visible.

In appendix C a table with the exact values of the MSE for every method and every percentage can
be found. We start the analysis of the plot with some general remarks on the effect of the sample size
on the MSE value. To all the methods applies the smaller the training set, the higher the MSE value.
In general the decrease in the MSE values becomes smaller if the size of the data set increases. One
could have expected this result since the common principle is that increasing the amount training data
will lead to a better model fit (this is not always true). Moreover it is not surprising that the MSE
decreases faster if the size of the data set is smaller because adding 10% of the data to the training
data has a relatively bigger impact on the smaller data sets.

When comparing the results for the different estimators one can observe that there does not seem
to be a substantial difference in the model fit if the training set is bigger than 50% of the total data set.
Only for the full data set there is a noticeable difference between the Lasso, the OLS in combination
with model selection and the other three estimators. If the training set is smaller than 50% of the
total data set one can observe that the smaller the training set, the bigger the advantage of choosing
an estimator that will result in a sparse regression model. Hence we conclude that if the amount of
data is limited, variable selection substantially enhances the model’s predicting power (in this case).
Comparing the Lasso and the OLS in combination with model selection we can see that the model
with the Lasso has the lower MSE values if the percentage of data used for training is lower than or
equal to 50%. For the smallest sample size the Lasso even performs substantially better. For training
sets with more than 50% of the data the model with the OLS estimator in combination with model
selection leads to the lowest MSE values of all estimators. In this situation, we conclude that for small
data sets the Lasso would be the best method for estimating the regression coefficients. Moreover the
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results suggests that the Lasso indeed helps to prevent/reduce overfitting. For a bigger data set (bigger
than 50% of the Boston housing data set) the OLS in combination with model selection would be the
preferred method based on the MSE.

Another important aspect to focus on is the relationship between the findings of the frequentist and
the Bayesian estimators. Since we did not perform any kind of model selection for the Bayesian
approach we will only consider the OLS, Gibbs sampler 1 and Gibbs sampler 2. The curves of these
estimators in figure 13 look really comparable which makes it difficult to distinguish the different
curves. Especially the curves of Gibbs sampler 1 and the OLS appear to be almost identical. Hence
the difference in predicting power between these two models appears to be limited (based on the
MSE). For the smaller sample sizes one can observe that the curve of Gibbs sampler 2 lies slightly
below the other two curves. As a result, we carefully infer that if the amount of data available is
restricted, a Bayesian estimating technique with an informative prior performs slightly better. A
disadvantage of this Bayesian estimation technique is that it is computationally much more expensive
than the frequentist approach. Therefore one could question if choosing the Bayesian estimator to
obtain a slightly better fit is worth the computational costs.
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8 Conclusion
The purpose of this thesis was to provide a more comprehensive examination of the two fundamentally
different approaches to estimate the parameters of a linear regression model. In this thesis we have
compared three frequentist and two Bayesian estimators based on a simulation study with the Boston
housing data set. When using the entire data set as the training set we obtain similar variable estimates,
confidence/credible intervals and p-values for the OLS, Gibbs sampler with an uninformative prior
and the Gibbs sampler with an informative prior. With the Lasso and the OLS in combination with
model selection we obtain a sparse model with different parameter estimates. Jugding from a model
where all the data is used to train the model the RMSE and the MAD do not suggest a substantial
difference in model fit of the five estimators. Using 90% of the data to train the model again results
in a minimal difference between the models. However this way to split the data already gives a small
indication of the advantage of doing model selection. If we look at the MSE of the five models for
ten different sample sizes we come to the conclusion that the smaller the training set, the higher the
MSE value. This decrease in the MSE values becomes smaller if the size of the data set increases.
If we compare the models using the MSE for the different sample sizes we can conclude that for
small sample sizes the Lasso would be the best method for estimating the regression coefficients.
Moreover the results suggests that the Lasso indeed helps to prevent/reduce overfitting. The OLS in
combination with model selection would be the preferable technique for larger sample sizes based
on the MSE. If we would only consider the estimators that do not perform any variable selection a
Bayesian estimator with an informative prior distribution would achieve a slightly better model fit
than the frequentist approach.
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9 Discussion
Of course the analysis in this paper was not perfect. Therefore we should address some of the limita-
tions and possible suggestions for future research. I would like to start the discussion with a remark
about the model assumptions. In our research we assumed the model assumptions to hold and did not
extensively check them. If one of the model assumptions turns out to be violated this might affect
the reliability of our results. The correlation matrix for example suggested that there might be some
multicollinearity. In our research we have made the decision to neglect it, because multicollinearity
often does not cause any problems if the model is used for predicting. However multicollinearity
might affect our results if we want to use it for causal inference. For this reason we might want to
check the Variance Inflation Factor (VIF) [5] which measures the multicollinearity. If there appears
to be multicollinearity we could for example use Ridge regression to correct for this.

Another questionable decision in our analysis is that we used an informative prior distribution for
the Boston housing data set without any prior knowledge. Since it was difficult to find studies that
we could use to determine the hyperparameters we have chosen to just guess some values for the
hyperparameters. Hence one could argue that the title informative prior distribution that we used for
the prior of Gibbs sampler 2 is not completely correct. The whole idea behind using an informative
prior distribution disappears if there is no prior information used to specify the prior. It would be
interesting to see how the Gibbs sampler with a real informative prior would compare to the other
estimation methods so this is something that we can study in future research.

In our simulation study we have considered two different frequentist estimators that perform some
sort of variable selection. We did not consider a Bayesian estimator in combination with variable
selection. One could for example use a backwards elimination procedure using the deviance infor-
mation criterion (DIC) [5] for the two Bayesian estimators that were studied in this paper. Due to
computational constraints, this estimator was unfortunately left out of the analysis. Since we apply
the Bayesian estimators in a suboptimal way it is difficult to draw a strong conclusion from the simu-
lation study about which method (Bayesian or frequentist) results in the best model fit. A suggestion
for future research would therefore be to also include a Bayesian estimator in combination with a
backwards elimination procedure using DIC or another selection procedure to make the simulation
study more complete.

In the model analysis section we have seen that there was a big similarity in the results for the different
estimators. This similarity in the results made it more difficult to graphically compare the different
methods. If we would for example plot the predicted observations for multiple estimators in one plot
it would be extremely hard to distinguish the different estimators. It might have been a good idea
to also plot the results for the smallest sample size that we analysed. Because the findings were so
diverse for this sample size, it would have been much easier to graphically compare the different
techniques.

Other recommendations for future research are also using different data sets and estimators. This
study focuses on the estimation methods and not necessarily on the specific data set. For this reason
we could also use different data sets to check if we end up with similar results and conclusions. For
the priors that we studied in this paper it was relatively easy to obtain the posterior distribution. We
can use different or more complex priors to produce different estimators.
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Appendices

A Proof

Theorem .1. Under the null hypothesis H0 : βj = βj0 , tj follows a Student’s t-distribution with n− k
degrees of freedom.

Proof. Following the definition by Dobson [5] proving that tj follows a Student’s t-distribution with

n− k degrees of freedom is equivalent to proving that Z j ∼ N(0,1), s2(n−k)
σ2 ∼ χ2(n− k) and that Z j

and s2(n−k)
σ2 are independent.

To prove that Z j ∼ N(0,1), first note that we can rewrite the OLS estimator as

β̂̂β̂β = (X′X)−1X′y
= (X′X)−1X′(Xβββ+εεε)

= (X′X)−1X′Xβββ+(X′X)−1X′εεε
= βββ+(X′X)−1X′εεε.

Using this and the model assumptions we can conclude that

β̂̂β̂β−βββ∼ N(0,σ2(X′X)−1).

From which directly follows that

β̂ j−β j0 ∼ N(0,σ2((X′X)−1)jj).

Hence

Z j =
β̂ j−β j0√

σ2((X′X)−1)jj

∼ N(0,1).

Before we prove s2(n−k)
σ2 ∼ χ2(n− k), note that we can rewrite s2(n−k)

σ2 as

s2(n− k)
σ2 =

e′e
σ2 =

εεε

σ

′
M

εεε

σ
.

To prove that s2(n−k)
σ2 ∼ χ2(n−k) we will use a theorem from Dobson [5] that states that if

εεε

σ
∼N(0, I)

and M is a symmetric and idempotent matrix then

εεε

σ

′
M

εεε

σ
∼ χ

2(n),
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where n is rank(M). The fact that
εεε

σ
∼ N(0, I) directly follows from the model assumptions. It is

straightforward to prove that M is symmetric and idempotent. For idempotent matrices the rank of ma-
trix equals the trace. Recall that we calculated trace(M) = n−k which implies that rank(M) = n−k.
Therefore s2(n−k)

σ2 ∼ χ2(n− k)

To finalise the proof we need to show that Z j and s2(n−k)
σ2 are independent. β̂̂β̂β and e are independent

because we assumed εεε to be normally distributed. The independence of β̂̂β̂β and s2 follows from the fact
that s2 is a function of e. From this we conclude that Z j and s2(n−k)

σ2 are independent.

B R code

l i b r a r y ( ISLR )
l i b r a r y ( c a r e t )
l i b r a r y ( arm )
# l i b r a r y ( Ecdat )
l i b r a r y ( g r i d E x t r a )
l i b r a r y ( c o r r p l o t )
l i b r a r y ( p u r r r )
l i b r a r y ( t i d y r )
l i b r a r y ( g g p l o t 2 )
l i b r a r y ( g lmne t )
l i b r a r y ( invgamma )
l i b r a r y ( b a y e s t e s t R )
l i b r a r y ( s e e )
l i b r a r y ( R1magic )
l i b r a r y ( mlbench )
l i b r a r y ( s t a r g a z e r )

data ( Bos tonHous ing )

d a t <− BostonHous ing
# d a t <− Hedonic
# a n a l y s e t h e s t r u c t u r e
s t r ( d a t )
# summarize da ta
summary ( d a t )

# c r e a t e c o r r e l a t i o n p l o t
M <−cor ( d a t [ sapply ( da t , i s . numeric ) ] )
c o r r p l o t (M, method=” c i r c l e ” )

# P l o t max v a l u e medv
p l o t ( d a t $rm , d a t $medv , x l a b =” Average number o f rooms p e r home” ,
y l a b =” The median v a l u e o f owner − o c c u p i e d homes i n $ 1000 ” )

# B a r p l o t o f chas :
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g g p l o t ( da t , a e s ( x = chas ) ) +
geom b a r ( ) +
l a b s ( x = ” i s t h e t r a c t bounds t h e C h a r l e s R i v e r ? ” , t i t l e = ” ” )

# His togram o f a l l t h e n u m e r i c a l v a l u e s .
d a t %>%

keep ( i s . numeric ) %>%
g a t h e r ( ) %>%
g g p l o t ( a e s ( v a l u e ) ) +
f a c e t wrap ( ˜ key , s c a l e s = ” f r e e ” ) +
geom h i s t o g r a m ( )

# Per form f r e q u e n t i s t r e g r e s s i o n

X <− model . matrix ( t a x ˜ . , d a t ) [ , − 1 ]
y <− d a t $ t a x

f r e q . r e g<−lm ( y ˜ . , data= d a t [ , − 1 0 ] )
sumfreq <− summary ( f r e q . r e g )

# Find c o n f i d e n c e i n t e r v a l s
c i <− c o n f i n t ( f r e q . reg , l e v e l = 0 . 9 5 )

# Make a t a b l e w i t h t h e c o e f f i c i e n t e s t i m a t e s ,
t h e c o n f i d e n c e i n t e r v a l s and t h e p− v a l u e s
s t a r g a z e r ( cbind ( sumfreq $ c o e f f i c i e n t s [ , 1 ] , c i , sumfreq $ c o e f f i c i e n t s [ , 4 ] ) )

# F i t t h e l i n e a r r e g r e s s i o n
f r e q . r e g f i t <− p r e d i c t . lm ( f r e q . reg , da t , i n t e r v a l = ’ p r e d i c t i o n ’ , se . f i t = T )

# P l o t t h e r e g r e s s i o n f i t
p . f r e q . r e g <− g g p l o t ( data = as . data . frame ( cbind ( y , f r e q . r e g f i t $ f i t ) ) ,
a e s ( x = y , y = f r e q . r e g f i t $ f i t [ , 1 ] ) ) + geom p o i n t ( ) + g g t i t l e ( ”OLS r e g e s s i o n ” )
+ l a b s ( x = ” A c t u a l f u l l − v a l u e p r o p e r t y − t a x r a t e p e r $ 10000 ” ,
y = ” P r e d i c t e d f u l l − v a l u e p r o p e r t y − t a x r a t e p e r $ 10000 ” )
p . f r e q . r e g + geom a b l i n e ( s l o p e =1 , i n t e r c e p t = 0 , c o l =” r e d ” )
+ expand l i m i t s ( y = c ( 0 , 8 0 0 ) ) + geom j i t t e r ( wid th =20)

#+ geom e r r o r b a r ( ymin = f r e q . r e g f i t $ f i t [ , 2 ] , ymax = f r e q . r e g f i t $ f i t [ , 3 ] )

# C a l c u l a t e t h e f i t t e d v a l u e
y hat <− cbind ( 1 ,X)%*%c o e f ( f r e q . r e g )

# C a l c u l a t e t h e MAD and t h e RMSE
MAD lm <− sum ( abs ( y − y hat ) ) / l e n g t h ( y )
RMSE lm <− s q r t ( t ( y − y hat )%*%( y − y hat ) / f r e q . r e g $ df . r e s i d u a l )

# Do a backward AIC s e l e c t i o n
f r e q s e l e c t . r e g <− s tepAIC ( f r e q . reg , d i r e c t i o n = ” backward ” )
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# Find c o n f i d e n c e i n t e r v a l s
c i <− c o n f i n t ( f r e q s e l e c t . reg , l e v e l = 0 . 9 5 )

# Make a t a b l e w i t h t h e c o e f f i c i e n t e s t i m a t e s ,
t h e c o n f i d e n c e i n t e r v a l s and t h e p− v a l u e s
s t a r g a z e r ( cbind ( f r e q s e l e c t . r e g $ c o e f f i c i e n t s , c i ) )

# F i t t h e l i n e a r r e g r e s s i o n
f r e q . r e g s e l e c t f i t <− p r e d i c t . lm ( f r e q s e l e c t . reg , da t , i n t e r v a l = ’ p r e d i c t i o n ’ ,
se . f i t = T )

# P l o t t h e r e g r e s s i o n f i t
p . f r e q . r e g <− g g p l o t ( data = as . data . frame ( cbind ( y , f r e q . r e g s e l e c t f i t $ f i t ) ) ,
a e s ( x = y , y = f r e q . r e g s e l e c t f i t $ f i t [ , 1 ] ) ) + geom p o i n t ( )
+ g g t i t l e ( ” S t e p w i s e AIC backward OLS” )
+ l a b s ( x = ” A c t u a l f u l l − v a l u e p r o p e r t y − t a x r a t e p e r $ 10000 ” ,
y = ” P r e d i c t e d f u l l − v a l u e p r o p e r t y − t a x r a t e p e r $ 10000 ” )
p . f r e q . r e g + geom a b l i n e ( s l o p e =1 , i n t e r c e p t = 0 , c o l =” r e d ” )
+ expand l i m i t s ( y = c ( 0 , 8 0 0 ) ) + geom j i t t e r ( wid th =20)

#+ geom e r r o r b a r ( ymin = f r e q . r e g f i t $ f i t [ , 2 ] , ymax = f r e q . r e g f i t $ f i t [ , 3 ] )

# C a l c u l a t e t h e f i t t e d v a l u e
y hat <− f r e q s e l e c t . r e g $ f i t t e d . v a l u e s

# C a l c u l a t e t h e MAD and t h e RMSE
MAD l m s e l e c t <− sum ( abs ( y − y hat ) ) / l e n g t h ( y )
RMSE l m s e l e c t <− s q r t ( t ( y − y hat )%*%( y − y hat ) / f r e q s e l e c t . r e g $ df . r e s i d u a l )

# Lasso r e g r e s s i o n
# C re a t e a g r i d w i t h p o s s i b l e lamdba v a l u e s
gr id =10ˆ seq (5 , −2 , l e n g t h =100)

s e t . s e ed ( 1 )
# cv . g lm ne t a l s o s t a n d a r d i z e s t h e da ta
cv o u t p u t <− cv . g lmne t (X, y , a l p h a = 1 , lambda=grid , f a mi ly =” g a u s s i a n ” )

# p l o t t h e mean−squared e r r o r a g a i n s t t h e l o g o f lambda
p l o t ( cv o u t p u t )

# Choose b e s t lambda
b e s t lambda <− cv o u t p u t $ lambda . min

# R e b u i l d i n g t h e model w i t h b e s t lamda v a l u e i d e n t i f i e d
l a s s o . r e g <− g lmne t (X, y , a l p h a = 1 , lambda = b e s t lambda )

# E x t r a c t t h e c o e f f i c i e n t s
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c o e f l a s s o . r e g <− c o e f ( l a s s o . r e g )

# Make a t a b l e w i t h t h e c o e f f i c i e n t e s t i m a t e s
s t a r g a z e r ( t ( c o e f ( l a s s o . r e g ) [ , 1 ] ) )

# F i t t h e l a s s o r e g r e s s i o n
l a s s o . r e g f i t <− p r e d i c t ( l a s s o . reg , s = b e s t lambda , newx = X)

# C a l c u l a t e t h e f i t t e d v a l u e
y hat <− l a s s o . r e g f i t

# C a l c u l a t e t h e MAD and t h e RMSE
MAD l a s s o <− sum ( abs ( y − y hat ) ) / l e n g t h ( y )
RMSE l a s s o <− s q r t ( t ( y − y hat )%*%( y − y hat ) / f r e q . r e g $ df . r e s i d u a l )

# P l o t t h e r e g r e s s i o n f i t
p . l a s s o . r e g <− g g p l o t ( data = as . data . frame ( cbind ( y , l a s s o . r e g f i t ) ) ,
a e s ( x = y , y = l a s s o . r e g f i t ) ) + geom p o i n t ( )
+ g g t i t l e ( ” Lasso R e g r e s s i o n ” )
+ l a b s ( x = ” A c t u a l f u l l − v a l u e p r o p e r t y − t a x r a t e p e r $ 10000 ” ,
y = ” P r e d i c t e d f u l l − v a l u e p r o p e r t y − t a x r a t e p e r $ 10000 ” )
p . l a s s o . r e g + geom a b l i n e ( s l o p e =1 , i n t e r c e p t = 0 , c o l =” r e d ” )
+ expand l i m i t s ( y = c ( 0 , 8 0 0 ) ) + geom j i t t e r ( wid th =20)

# B a y e s i a n r e g r e s s i o n
#Monte Car lo
# d e f i n e some c o n s t a n t s and v e c t o r s
X = cbind ( 1 , model . matrix ( t a x ˜ . , d a t ) [ , − 1 ] )
beta . hat = s o l v e ( t (X)%*%X)%*%t (X)%*%y
s2 = t ( y−X%*%beta . hat ) %*% ( y−X%*%beta . hat ) / f r e q . r e g $ df . r e s i d u a l
M = 10000
s e t . s e ed ( 1 )
s igma2 sample= beta sample=NULL
# Genera te M Monte Car lo samples
f o r ( i i n 1 :M) {

s igma2 sample = c ( s igma2 sample , rinvgamma ( 1 , shape =
f r e q . r e g $ df . r e s i d u a l / 2 , r a t e = f r e q . r e g $ df . r e s i d u a l * s2 / 2 ) )
beta sample = rbind ( beta sample , mvrnorm ( 1 , beta . hat ,
s igma2 sample [ i ] * s o l v e ( t (X)%*%X ) ) )

}

# F u n c t i o n t o summarize Monte Car lo
Bayes . sum<−f u n c t i o n ( x )
{

c ( ”mean”=mean ( x ) ,
” se ”=sd ( x ) ,
” t ”=mean ( x ) / sd ( x ) ,
” median ”=median ( x ) ,
” Cr I ”= q u a n t i l e ( x , p rob = 0 . 0 2 5 ) ,
” Cr I ”= q u a n t i l e ( x , p rob = 0 . 9 7 5 )
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)
}

# Combine t h e samples i n a m a t r i x
mcsample = cbind ( i n t e r c e p t = c ( beta sample [ , 1 ] ) , beta sample [ , 2 : 1 4 ] ,
s igma2 sample )

# Summarize Monte Car lo
mc e s t i m a t e <− NULL
f o r ( i i n 1 : 1 5 ) {

mc e s t i m a t e <− rbind ( mc e s t i m a t e , Bayes . sum ( mcsample [ , i ] ) )
}

# F i t t h e l i n e a r r e g r e s s i o n
montecar lomean . r e g f i t <− X%*%mc e s t i m a t e [ 1 : 1 4 , 1 ]

# C a l c u l a t e t h e f i t t e d v a l u e
y hat <− montecar lomean . r e g f i t

# C a l c u l a t e t h e MAD and t h e RMSE
MAD m o n t e c a r l o <− sum ( abs ( y − y hat ) ) / l e n g t h ( y )
RMSE m o n t e c a r l o <− s q r t ( t ( y − y hat )%*%( y − y hat ) / f r e q . r e g $ df . r e s i d u a l )
# m o n t e c a r l o . r e g f i t <− X%*%t ( b e t a sample )

#mc lwr <− NULL
# f o r ( i i n 1 : nrow ( m o n t e c a r l o . r e g f i t ) ) {
#mc lwr <− r b i n d ( mc lwr , q u a n t i l e ( m o n t e c a r l o . r e g f i t [ i , ] , prob = 0 . 0 2 5 ) )
#}
#mc upr <− NULL
# f o r ( i i n 1 : nrow ( m o n t e c a r l o . r e g f i t ) ) {
# mc upr <− r b i n d ( mc upr , q u a n t i l e ( m o n t e c a r l o . r e g f i t [ i , ] , prob = 0 . 9 7 5 ) )
#}

# P l o t t h e r e g r e s s i o n f i t
p . m o n t e c a r l o . r e g <− g g p l o t ( data = as . data . frame ( cbind ( y , monteca r lomean . r e g f i t ) ) ,
a e s ( x = y , y = monteca r lomean . r e g f i t ) ) + geom p o i n t ( )
+ g g t i t l e ( ” Gibbs s a m p l e r 1 ” )
+ l a b s ( x = ” A c t u a l f u l l − v a l u e p r o p e r t y − t a x r a t e p e r $ 10000 ” ,
y = ” P r e d i c t e d f u l l − v a l u e p r o p e r t y − t a x r a t e p e r $ 10000 ” )
p . m o n t e c a r l o . r e g + geom a b l i n e ( s l o p e =1 , i n t e r c e p t = 0 , c o l =” r e d ” )
+ expand l i m i t s ( y = c ( 0 , 8 0 0 ) ) + geom j i t t e r ( wid th =20)

#+ geom e r r o r b a r ( ymin = mc lwr [ , 1 ] , ymax = mc upr [ , 1 ] )

# Compute t h e p r o b a b i l i t y o f d i r e c t i o n
pd <− NULL
f o r ( i i n 1 : nco l ( beta sample ) ) {
pd <− cbind ( pd , p d i r e c t i o n ( beta sample [ , i ] ) )

}
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p v a l <− pd t o p ( pd )

# Make a t a b l e w i t h t h e c o e f f i c i e n t e s t i m a t e s , t h e c o n f i d e n c e i n t e r v a l s and
t h e p− v a l u e s
s t a r g a z e r ( t ( rbind ( t ( mc e s t i m a t e [ 1 : 1 4 , 1 ] ) , t ( mc e s t i m a t e [ 1 : 1 4 , 5 ] ) ,
t ( mc e s t i m a t e [ 1 : 1 4 , 6 ] ) , p v a l ) ) )

p l o t 1 <− p l o t ( p d i r e c t i o n ( beta sample [ , 1 ] ) )

## Margina l p o s t e r i o r d i s t r i b u t i o n o f t h e f i r s t few p a r a m e t e r s
s 2 p l o t = p l o t ( d e n s i t y ( mcsample [ , 1 5 ] ) , main=” ” , x l a b = ” sigma2 ” )
b 0 p l o t = p l o t ( d e n s i t y ( mcsample [ , 1 ] ) , main=” ” , x l a b = ” i n t e r c e p t ” )
b 1 p l o t = p l o t ( d e n s i t y ( mcsample [ , 2 ] ) , main=” ” , x l a b = ” cr im ” )
b 2 p l o t = p l o t ( d e n s i t y ( mcsample [ , 3 ] ) , main=” ” , x l a b = ” zn ” )
b 3 p l o t = p l o t ( d e n s i t y ( mcsample [ , 4 ] ) , main=” ” , x l a b = ” i n d u s ” )
b 4 p l o t = p l o t ( d e n s i t y ( mcsample [ , 5 ] ) , main=” ” , x l a b = ” chas1 ” )
b 5 p l o t = p l o t ( d e n s i t y ( mcsample [ , 6 ] ) , main=” ” , x l a b = ” nox ” )
b 6 p l o t = p l o t ( d e n s i t y ( mcsample [ , 7 ] ) , main=” ” , x l a b = ”rm” )
b 7 p l o t = p l o t ( d e n s i t y ( mcsample [ , 8 ] ) , main=” ” , x l a b = ” age ” )
b 8 p l o t = p l o t ( d e n s i t y ( mcsample [ , 9 ] ) , main=” ” , x l a b = ” d i s ” )
b 9 p l o t = p l o t ( d e n s i t y ( mcsample [ , 1 0 ] ) , main=” ” , x l a b = ” r a d ” )
b 1 0 p l o t = p l o t ( d e n s i t y ( mcsample [ , 1 1 ] ) , main=” ” , x l a b = ” p t r a t i o ” )
b 1 1 p l o t = p l o t ( d e n s i t y ( mcsample [ , 1 2 ] ) , main=” ” , x l a b = ” b ” )
b 1 2 p l o t = p l o t ( d e n s i t y ( mcsample [ , 1 3 ] ) , main=” ” , x l a b = ” l s t a t ” )
b 1 3 p l o t = p l o t ( d e n s i t y ( mcsample [ , 1 4 ] ) , main=” ” , x l a b = ”medv” )

l i b r a r y (MCMCpack)

X sc a l e <− s c a l e ( model . matrix ( t a x ˜ . , d a t ) [ , − 1 ] )
y s c a l e <− s c a l e ( d a t $ t a x )

X <− model . matrix ( t a x ˜ . , d a t ) [ , − 1 ]
y <− d a t $ t a x

# Gibbs sampler w i t h MCMCregress

# Genera te m u l t i p l e c h a i n s
C h a i n 1 s c a l e <− MCMCregress (

y s c a l e ˜ Xscale ,
data = da t ,
b u r n i n = 10000 ,
mcmc = 10000 ,
t h i n = 1 ,
v e r b o s e = 0 ,
s eed = 1 ,
beta . s t a r t = 0 ,
b0 = 0 ,
B0 = 1 ,
c0 = 0 . 0 0 1 ,
d0 = 0 . 0 0 1 )
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# Summarize t h e c h a i n s
summary ( C h a i n 1 s c a l e )

# I f t r a c e p l o t does n o t work
par ( ” mar ” )
par ( mar=c ( 1 , 1 , 1 , 1 ) )
par ( mar = c ( 2 , 2 , 2 , 1 . 5 ) )
# Make a t r a c e p l o t and d e n s i t y p l o t o f t h e p a r a m e t e r s
p l o t ( C h a i n 1 s c a l e )

l i b r a r y ( plotMCMC )

# Make an a u t o c o r r e l a t i o n p l o t
p l o t A u t o ( C h a i n 1 s c a l e , t h i n =1 , l o g =FALSE , base =10 , main=NULL, x l a b =” Lag ” ,

y l a b =” A u t o c o r r e l a t i o n ” , l t y =1 , lwd =1 , c o l =” b l a c k ” )

# R e s c a l e c h a i n 1 t o o r i g i n a l s c a l e and o b t a i n t h e e s t i m a t e s
Chain1 <− NULL
f o r ( i i n 1 : 1 3 ) {

Chain1new <− ( C h a i n 1 s c a l e [ , i +1] * sd ( y ) ) / sd (X[ , i ] )
Chain1 <− cbind ( Chain1 , Chain1new )

}

c o e f f <− NULL
f o r ( i i n 1 : 1 3 ) {

coe f fnew <− mean ( Chain1 [ , i ] )
c o e f f <− cbind ( c o e f f , coe f fnew )

}

sum <− 0
f o r ( i i n 1 : 1 3 ) {

sum <− sum + ( C h a i n 1 s c a l e [ , i +1] *mean (X[ , i ] ) / sd (X[ , i ] ) )
}
i n t e r c e p t <− −sum* sd ( y ) + mean ( y )

Chain1 <− cbind ( i n t e r c e p t , Chain1 )

coe f fnew <− mean ( i n t e r c e p t )
c o e f f <− cbind ( coeffnew , c o e f f )

# F i t t h e l i n e a r r e g r e s s i o n
X = cbind ( 1 , model . matrix ( t a x ˜ . , d a t ) [ , − 1 ] )

g ibbsmean . r e g f i t <− X%*%t ( c o e f f )

# C a l c u l a t e t h e f i t t e d v a l u e
y hat <− gibbsmean . r e g f i t
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# C a l c u l a t e t h e MAD and t h e RMSE
MAD g i b b s <− sum ( abs ( y − y hat ) ) / l e n g t h ( y )
RMSE g i b b s <− s q r t ( t ( y − y hat )%*%( y − y hat ) / f r e q . r e g $ df . r e s i d u a l )

# g i b b s . r e g f i t <− X%*%t ( Chain1 )

# g i b b s lwr <− NULL
# f o r ( i i n 1 : nrow ( g i b b s . r e g f i t ) ) {
# g i b b s lwr <− r b i n d ( g i b b s lwr , q u a n t i l e ( g i b b s . r e g f i t [ i , ] , prob = 0 . 0 2 5 ) )
#}
# g i b b s upr <− NULL
# f o r ( i i n 1 : nrow ( g i b b s . r e g f i t ) ) {
# g i b b s upr <− r b i n d ( g i b b s upr , q u a n t i l e ( g i b b s . r e g f i t [ i , ] , prob = 0 . 9 7 5 ) )
#}

# P l o t t h e r e g r e s s i o n f i t
p . g i b b s . r e g <− g g p l o t ( data = as . data . frame ( cbind ( y , g ibbsmean . r e g f i t ) ) ,
a e s ( x = y , y = gibbsmean . r e g f i t ) ) + geom p o i n t ( )
+ g g t i t l e ( ” Gibbs s a m p l e r 2 ” )
+ l a b s ( x = ” A c t u a l f u l l − v a l u e p r o p e r t y − t a x r a t e p e r $ 10000 ” ,
y = ” P r e d i c t e d f u l l − v a l u e p r o p e r t y − t a x r a t e p e r $ 10000 ” )
p . g i b b s . r e g + geom a b l i n e ( s l o p e =1 , i n t e r c e p t = 0 , c o l =” r e d ” )
+ expand l i m i t s ( y = c ( 0 , 8 0 0 ) ) + geom j i t t e r ( wid th =20)

#+ geom e r r o r b a r ( ymin = g i b b s lwr [ , 1 ] , ymax = g i b b s upr [ , 1 ] )
# Compute t h e p r o b a b i l i t y o f d i r e c t i o n
pd g i b b s <− NULL
f o r ( i i n 1 : nco l ( Chain1 ) ) {

pd g i b b s <− cbind ( pd g ibbs , p d i r e c t i o n ( Chain1 [ , i ] ) )

}
p v a l g i b b s <− pd t o p ( pd g i b b s )

# Determine t h e e m p e r i c a l c r e d i b l e i n t e r v a l
lwr <− Nul l
upr <− Nul l
f o r ( i i n 1 : nco l ( Chain1 ) ) {

lwr <− cbind ( lwr , q u a n t i l e ( Chain1 [ , i ] , p rob = 0 . 0 2 5 ) )
upr <− cbind ( upr , q u a n t i l e ( Chain1 [ , i ] , p rob = 0 . 9 7 5 ) )

}

# Make a t a b l e w i t h t h e c o e f f i c i e n t e s t i m a t e s , t h e c o n f i d e n c e i n t e r v a l s and
t h e p− v a l u e s
s t a r g a z e r ( cbind ( t ( c o e f f ) , lwr [ , 2 : 1 5 ] , upr [ , 2 : 1 5 ] , t ( p v a l g i b b s ) ) )

# Make a t a b l e w i t h t h e MAD and t h e RMSE
s t a r g a z e r ( cbind ( rbind (RMSE lm , MAD lm ) , rbind (RMSE l a s s o , MAD l a s s o ) ,
rbind (RMSE mon tec a r l o , MAD m o n t e c a r l o ) , rbind (RMSE gibbs , MAD g i b b s ) ) )

# Randomly s h u f f l e t h e da ta
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d a t<−d a t [ sample ( nrow ( d a t ) ) , ]

# C re a t e e q u a l l y s i z e f o l d s
f o l d s <− cut ( seq ( 1 , nrow ( d a t ) ) , b r e a k s =10 , l a b e l s =FALSE)
# f o l d s <− c u t ( seq ( 1 , nrow ( d a t ) ) , b r e a k s =5 , l a b e l s =FALSE )
# f o l d s <− c u t ( seq ( 1 , nrow ( d a t ) ) , b r e a k s =2 , l a b e l s =FALSE )

# Per form n f o l d c r o s s v a l i d a t i o n f o r l i n e a r r e g r e s s i o n
MSE lm vec <− NULL
MSE l m s e l e c t vec <− NULL

# f o r ( i i n 1 : 5 ){
# f o r ( i i n 1 : 2 ){
f o r ( i i n 1 : 1 0 ){

# Segement your da ta by f o l d u s i n g t h e which ( ) f u n c t i o n
t e s t I n d e x e s <− which ( f o l d s == i , a r r . i n d =TRUE)
t e s t d a t <− d a t [ t e s t I n d e x e s , ]
t r a i n d a t <− d a t [ − t e s t I n d e x e s , ]

y t e s t <− t e s t d a t $ t a x

f r e q . r e g<−lm ( t r a i n d a t $ t a x ˜ . , data = t r a i n d a t )
y hat <− p r e d i c t ( f r e q . reg , newdata = t e s t d a t )

f r e q s e l e c t . r e g <− s tepAIC ( f r e q . reg , d i r e c t i o n = ” backward ” )

yAIC hat <− p r e d i c t ( f r e q s e l e c t . reg , newdata = t e s t d a t )

MSE lm <− t ( ( y t e s t − y hat ) )%*%( y t e s t − y hat ) / l e n g t h ( y t e s t )
MSE lm vec <− rbind (MSE lm vec , MSE lm )

MSE l m s e l e c t <− t ( ( y t e s t − yAIC hat ) )%*%( y t e s t − yAIC hat ) / l e n g t h ( y t e s t )
MSE l m s e l e c t vec <− rbind (MSE l m s e l e c t vec , MSE l m s e l e c t )

}

MSE lm <− sum (MSE lm vec ) / l e n g t h (MSE lm vec )
MSE l m s e l e c t <− sum (MSE l m s e l e c t vec ) / l e n g t h (MSE l m s e l e c t vec )

# Per form n− f o l d c r o s s v a l i d a t i o n f o r l a s s o r e g r e s s i o n

MSE l a s s o vec <− NULL
coefma t <− NULL
s e t . s e ed ( 1 )

# f o r ( i i n 1 : 5 ){
# f o r ( i i n 1 : 2 ){
f o r ( i i n 1 : 1 0 ){

# Segement your da ta by f o l d u s i n g t h e which ( ) f u n c t i o n
t e s t I n d e x e s <− which ( f o l d s == i , a r r . i n d =TRUE)
t e s t d a t <− d a t [ t e s t I n d e x e s , ]
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t r a i n d a t <− d a t [ − t e s t I n d e x e s , ]

X t r a i n <− model . matrix ( t a x ˜ . , t r a i n d a t ) [ , − 1 ]
y t r a i n <− t r a i n d a t $ t a x

X t e s t <− model . matrix ( t a x ˜ . , t e s t d a t ) [ , − 1 ]
y t e s t <− t e s t d a t $ t a x

gr id =10ˆ seq (5 , −2 , l e n g t h =100)

s e t . s e ed ( 1 )
# cv . g lm ne t a l s o s t a n d a r d i z e s t h e da ta
cv o u t p u t <− cv . g lmne t (X t r a i n , y t r a i n , a l p h a = 1 , lambda=grid ,
f a mi ly =” g a u s s i a n ” )

# Choose b e s t lambda
b e s t lambda <− cv o u t p u t $ lambda . min

# R e b u i l d i n g t h e model w i t h b e s t lamda v a l u e i d e n t i f i e d
l a s s o . r e g <− g lmne t (X t r a i n , y t r a i n , a l p h a = 1 , lambda = b e s t lambda )

# E x t r a c t t h e c o e f f i c i e n t s
c o e f ( l a s s o . r e g )

# p u t t h e c o e f f i c i e n t s f o r a l l t h e runs i n a m a t r i x
coe fma t <− rbind ( coefmat , c o e f ( l a s s o . r e g ) [ , 1 ] )

y hat <− cbind ( 1 ,X t e s t )%*%c o e f ( l a s s o . r e g )

MSE l a s s o <− t ( ( y t e s t − y hat ) )%*%( y t e s t − y hat ) / l e n g t h ( y t e s t )
MSE l a s s o vec <− rbind (MSE l a s s o vec , MSE l a s s o )

}

MSE l a s s o <− sum (MSE l a s s o vec ) / l e n g t h (MSE l a s s o vec )

# Per form n− f o l d c r o s s v a l i d a t i o n f o r Monte Car lo

MSE m o n t e c a r l o vec <− NULL

# f o r ( i i n 1 : 5 ){
# f o r ( i i n 1 : 2 ){
f o r ( i i n 1 : 1 0 ){

# Segement your da ta by f o l d u s i n g t h e which ( ) f u n c t i o n
t e s t I n d e x e s <− which ( f o l d s == i , a r r . i n d =TRUE)
t e s t d a t <− d a t [ t e s t I n d e x e s , ]
t r a i n d a t <− d a t [ − t e s t I n d e x e s , ]

X t r a i n <− model . matrix ( t a x ˜ . , t r a i n d a t ) [ , − 1 ]
y t r a i n <− t r a i n d a t $ t a x
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X t e s t <− model . matrix ( t a x ˜ . , t e s t d a t ) [ , − 1 ]
y t e s t <− t e s t d a t $ t a x

#Monte Car lo
# d e f i n e some c o n s t a n t s and v e c t o r s
X = cbind ( 1 ,X t r a i n )
beta . hat = s o l v e ( t (X)%*%X)%*%t (X)%*%y t r a i n
s2 = t ( y t r a i n −X%*%beta . hat ) %*% ( y t r a i n −X%*%beta . hat ) /
( l e n g t h ( y t r a i n ) − l e n g t h ( c o e f ( f r e q . r e g ) ) )

M = 10000
s e t . s e ed ( 1 )
s igma2 sample= beta sample=NULL
# Genera te M Monte Car lo samples
f o r ( i i n 1 :M) {

s igma2 sample = c ( s igma2 sample , rinvgamma ( 1 , shape =
( l e n g t h ( y t r a i n ) − l e n g t h ( c o e f ( f r e q . r e g ) ) ) / 2 , r a t e =
( l e n g t h ( y t r a i n ) − l e n g t h ( c o e f ( f r e q . r e g ) ) ) * s2 / 2 ) )
beta sample = rbind ( beta sample , mvrnorm ( 1 , beta . hat ,
s igma2 sample [ i ] * s o l v e ( t (X)%*%X ) ) )

}

# Combine t h e samples i n a m a t r i x
mcsample = cbind ( beta sample , s igma2 sample )

# Summarize Monte Car lo
mc e s t i m a t e <− NULL
f o r ( i i n 1 : 1 5 ) {

mc e s t i m a t e <− rbind ( mc e s t i m a t e , Bayes . sum ( mcsample [ , i ] ) )
}

# F i t t h e l i n e a r r e g r e s s i o n
y hat <− cbind ( 1 ,X t e s t )%*%mc e s t i m a t e [ 1 : 1 4 , 1 ]

MSE m o n t e c a r l o <− t ( ( y t e s t − y hat ) )%*%( y t e s t − y hat ) / l e n g t h ( y t e s t )
MSE m o n t e c a r l o vec <− rbind (MSE m o n t e c a r l o vec , MSE m o n t e c a r l o )

}

MSE m o n t e c a r l o <− sum (MSE m o n t e c a r l o vec ) / l e n g t h (MSE m o n t e c a r l o vec )

# Per form n− f o l d c r o s s v a l i d a t i o n f o r Gibbs s a m p l i ng
l i b r a r y (MCMCpack)
MSE g i b b s vec <− NULL

# f o r ( i i n 1 : 5 ){
# f o r ( i i n 1 : 2 ){
f o r ( i i n 1 : 1 0 ){

# Segement your da ta by f o l d u s i n g t h e which ( ) f u n c t i o n
t e s t I n d e x e s <− which ( f o l d s == i , a r r . i n d =TRUE)
t e s t d a t <− d a t [ t e s t I n d e x e s , ]
t r a i n d a t <− d a t [ − t e s t I n d e x e s , ]
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X t r a i n <− model . matrix ( t a x ˜ . , t r a i n d a t ) [ , − 1 ]
y t r a i n <− t r a i n d a t $ t a x

X t r a i n s c a l e <− s c a l e ( model . matrix ( t a x ˜ . , t r a i n d a t ) [ , − 1 ] )
y t r a i n s c a l e <− s c a l e ( t r a i n d a t $ t a x )

X t e s t <− model . matrix ( t a x ˜ . , t e s t d a t ) [ , − 1 ]
y t e s t <− t e s t d a t $ t a x

# Genera te c h a i n
C h a i n 1 s c a l e <− MCMCregress (

y t r a i n s c a l e ˜X t r a i n s c a l e ,
data = t r a i n d a t ,
b u r n i n = 10000 ,
mcmc = 10000 ,
t h i n = 1 ,
v e r b o s e = 0 ,
s eed = 1 ,
beta . s t a r t = 0 ,
b0 = 0 ,
B0 = 1 ,
c0 = 0 . 0 0 1 ,
d0 = 0 . 0 0 1 )

# R e s c a l e c h a i n 1 t o o r i g i n a l s c a l e and o b t a i n t h e e s t i m a t e s
Chain1 <− NULL
f o r ( i i n 1 : 1 3 ) {

Chain1new <− ( C h a i n 1 s c a l e [ , i +1] * sd ( y t r a i n ) ) / sd (X t r a i n [ , i ] )
Chain1 <− cbind ( Chain1 , Chain1new )

}

c o e f f <− NULL
f o r ( i i n 1 : 1 3 ) {

coe f fnew <− mean ( Chain1 [ , i ] )
c o e f f <− cbind ( c o e f f , coe f fnew )

}

sum <− 0
f o r ( i i n 1 : 1 3 ) {

sum <− sum + ( C h a i n 1 s c a l e [ , i +1] *mean (X t r a i n [ , i ] ) / sd (X t r a i n [ , i ] ) )
}
i n t e r c e p t <− −sum* sd ( y t r a i n ) + mean ( y t r a i n )

Chain1 <− cbind ( i n t e r c e p t , Chain1 )

coe f fnew <− mean ( i n t e r c e p t )
c o e f f <− cbind ( coeffnew , c o e f f )

# F i t t h e l i n e a r r e g r e s s i o n
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y hat <− cbind ( 1 ,X t e s t )%*%t ( c o e f f )

MSE g i b b s <− t ( ( y t e s t − y hat ) )%*%( y t e s t − y hat ) / l e n g t h ( y t e s t )
MSE g i b b s vec <− rbind (MSE g i b b s vec , MSE g i b b s )

}

MSE g i b b s <− sum (MSE g i b b s vec ) / l e n g t h (MSE g i b b s vec )

# Make a t a b l e w i t h t h e MSE f o r t h e n− f o l d c r o s s − v a l i d a t i o n
s t a r g a z e r ( cbind (MSE lm , MSE l m s e l e c t , MSE l a s s o , MSE mon tec a r l o , MSE g i b b s ) )

# i n v e r s e n− f o l d Cross −V a l i d a t i o n

# C re a t e e q u a l l y s i z e f o l d s
f o l d s <− cut ( seq ( 1 , nrow ( d a t ) ) , b r e a k s =10 , l a b e l s =FALSE)
# f o l d s <− c u t ( seq ( 1 , nrow ( d a t ) ) , b r e a k s =5 , l a b e l s =FALSE )
# f o l d s <− c u t ( seq ( 1 , nrow ( d a t ) ) , b r e a k s =2 , l a b e l s =FALSE )

# Per form n f o l d c r o s s v a l i d a t i o n f o r l i n e a r r e g r e s s i o n
MSE lm vec <− NULL
MSE l m s e l e c t vec <− NULL

# f o r ( i i n 1 : 5 ){
# f o r ( i i n 1 : 2 ){
f o r ( i i n 1 : 1 0 ){

# Segement your da ta by f o l d u s i n g t h e which ( ) f u n c t i o n
t e s t I n d e x e s <− which ( f o l d s == i : i +2 , a r r . i n d =TRUE)
t e s t d a t <− d a t [ − t e s t I n d e x e s , ]
t r a i n d a t <− d a t [ t e s t I n d e x e s , ]

y t e s t <− t e s t d a t $ t a x

f r e q . r e g<−lm ( t r a i n d a t $ t a x ˜ . , data = t r a i n d a t )
y hat <− p r e d i c t ( f r e q . reg , newdata = t e s t d a t )

f r e q s e l e c t . r e g <− s tepAIC ( f r e q . reg , d i r e c t i o n = ” backward ” )

yAIC hat <− p r e d i c t ( f r e q s e l e c t . reg , newdata = t e s t d a t )

MSE lm <− t ( ( y t e s t − y hat ) )%*%( y t e s t − y hat ) / l e n g t h ( y t e s t )
MSE lm vec <− rbind (MSE lm vec , MSE lm )

MSE l m s e l e c t <− t ( ( y t e s t − yAIC hat ) )%*%( y t e s t − yAIC hat ) / l e n g t h ( y t e s t )
MSE l m s e l e c t vec <− rbind (MSE l m s e l e c t vec , MSE l m s e l e c t )

}

MSE lm <− sum (MSE lm vec ) / l e n g t h (MSE lm vec )
MSE l m s e l e c t <− sum (MSE l m s e l e c t vec ) / l e n g t h (MSE l m s e l e c t vec )
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# Per form n− f o l d c r o s s v a l i d a t i o n f o r l a s s o r e g r e s s i o n

MSE l a s s o vec <− NULL
coefma t <− NULL
s e t . s e ed ( 1 )

# f o r ( i i n 1 : 5 ){
# f o r ( i i n 1 : 2 ){
f o r ( i i n 1 : 1 0 ){

# Segement your da ta by f o l d u s i n g t h e which ( ) f u n c t i o n
t e s t I n d e x e s <− which ( f o l d s == i , a r r . i n d =TRUE)
t e s t d a t <− d a t [ − t e s t I n d e x e s , ]
t r a i n d a t <− d a t [ t e s t I n d e x e s , ]

X t r a i n <− model . matrix ( t a x ˜ . , t r a i n d a t ) [ , − 1 ]
y t r a i n <− t r a i n d a t $ t a x

X t e s t <− model . matrix ( t a x ˜ . , t e s t d a t ) [ , − 1 ]
y t e s t <− t e s t d a t $ t a x

gr id =10ˆ seq (5 , −2 , l e n g t h =100)

s e t . s e ed ( 1 )
# cv . g lm ne t a l s o s t a n d a r d i z e s t h e da ta
cv o u t p u t <− cv . g lmne t (X t r a i n , y t r a i n , a l p h a = 1 , lambda=grid ,
f a mi ly =” g a u s s i a n ” )

# Choose b e s t lambda
b e s t lambda <− cv o u t p u t $ lambda . min

# R e b u i l d i n g t h e model w i t h b e s t lamda v a l u e i d e n t i f i e d
l a s s o . r e g <− g lmne t (X t r a i n , y t r a i n , a l p h a = 1 , lambda = b e s t lambda )

# E x t r a c t t h e c o e f f i c i e n t s
c o e f ( l a s s o . r e g )

# p u t t h e c o e f f i c i e n t s f o r a l l t h e runs i n a m a t r i x
coe fma t <− rbind ( coefmat , c o e f ( l a s s o . r e g ) [ , 1 ] )

y hat <− cbind ( 1 ,X t e s t )%*%c o e f ( l a s s o . r e g )

MSE l a s s o <− t ( ( y t e s t − y hat ) )%*%( y t e s t − y hat ) / l e n g t h ( y t e s t )
MSE l a s s o vec <− rbind (MSE l a s s o vec , MSE l a s s o )

}

MSE l a s s o <− sum (MSE l a s s o vec ) / l e n g t h (MSE l a s s o vec )

# Per form n− f o l d c r o s s v a l i d a t i o n f o r Monte Car lo

MSE m o n t e c a r l o vec <− NULL



68 APPENDICES

# f o r ( i i n 1 : 5 ){
# f o r ( i i n 1 : 2 ){
f o r ( i i n 1 : 1 0 ){

# Segement your da ta by f o l d u s i n g t h e which ( ) f u n c t i o n
t e s t I n d e x e s <− which ( f o l d s == i , a r r . i n d =TRUE)
t e s t d a t <− d a t [ − t e s t I n d e x e s , ]
t r a i n d a t <− d a t [ t e s t I n d e x e s , ]

X t r a i n <− model . matrix ( t a x ˜ . , t r a i n d a t ) [ , − 1 ]
y t r a i n <− t r a i n d a t $ t a x

X t e s t <− model . matrix ( t a x ˜ . , t e s t d a t ) [ , − 1 ]
y t e s t <− t e s t d a t $ t a x

#Monte Car lo
# d e f i n e some c o n s t a n t s and v e c t o r s
X = cbind ( 1 ,X t r a i n )
beta . hat = s o l v e ( t (X)%*%X)%*%t (X)%*%y t r a i n
s2 = t ( y t r a i n −X%*%beta . hat ) %*% ( y t r a i n −X%*%beta . hat ) /
( l e n g t h ( y t r a i n ) − l e n g t h ( c o e f ( f r e q . r e g ) ) )

M = 10000
s e t . s e ed ( 1 )
s igma2 sample= beta sample=NULL
# Genera te M Monte Car lo samples
f o r ( i i n 1 :M) {

s igma2 sample = c ( s igma2 sample , rinvgamma ( 1 , shape =
( l e n g t h ( y t r a i n ) − l e n g t h ( c o e f ( f r e q . r e g ) ) ) / 2 , r a t e =
( l e n g t h ( y t r a i n ) − l e n g t h ( c o e f ( f r e q . r e g ) ) ) * s2 / 2 ) )
beta sample = rbind ( beta sample , mvrnorm ( 1 , beta . hat ,
s igma2 sample [ i ] * s o l v e ( t (X)%*%X ) ) )

}

# Combine t h e samples i n a m a t r i x
mcsample = cbind ( beta sample , s igma2 sample )

# Summarize Monte Car lo
mc e s t i m a t e <− NULL
f o r ( i i n 1 : 1 5 ) {

mc e s t i m a t e <− rbind ( mc e s t i m a t e , Bayes . sum ( mcsample [ , i ] ) )
}

# F i t t h e l i n e a r r e g r e s s i o n
y hat <− cbind ( 1 ,X t e s t )%*%mc e s t i m a t e [ 1 : 1 4 , 1 ]

MSE m o n t e c a r l o <− t ( ( y t e s t − y hat ) )%*%( y t e s t − y hat ) / l e n g t h ( y t e s t )
MSE m o n t e c a r l o vec <− rbind (MSE m o n t e c a r l o vec , MSE m o n t e c a r l o )

}

MSE m o n t e c a r l o <− sum (MSE m o n t e c a r l o vec ) / l e n g t h (MSE m o n t e c a r l o vec )
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# Per form n− f o l d c r o s s v a l i d a t i o n f o r Gibbs s a m p l i ng
l i b r a r y (MCMCpack)
MSE g i b b s vec <− NULL

# f o r ( i i n 1 : 5 ){
# f o r ( i i n 1 : 2 ){
f o r ( i i n 1 : 1 0 ){

# Segement your da ta by f o l d u s i n g t h e which ( ) f u n c t i o n
t e s t I n d e x e s <− which ( f o l d s == i , a r r . i n d =TRUE)
t e s t d a t <− d a t [ − t e s t I n d e x e s , ]
t r a i n d a t <− d a t [ t e s t I n d e x e s , ]

X t r a i n <− model . matrix ( t a x ˜ . , t r a i n d a t ) [ , − 1 ]
y t r a i n <− t r a i n d a t $ t a x

X t r a i n s c a l e <− s c a l e ( model . matrix ( t a x ˜ . , t r a i n d a t ) [ , − 1 ] )
y t r a i n s c a l e <− s c a l e ( t r a i n d a t $ t a x )

X t e s t <− model . matrix ( t a x ˜ . , t e s t d a t ) [ , − 1 ]
y t e s t <− t e s t d a t $ t a x

# Genera te c h a i n
C h a i n 1 s c a l e <− MCMCregress (

y t r a i n s c a l e ˜X t r a i n s c a l e ,
data = t r a i n d a t ,
b u r n i n = 10000 ,
mcmc = 10000 ,
t h i n = 1 ,
v e r b o s e = 0 ,
s eed = 1 ,
beta . s t a r t = 0 ,
b0 = 0 ,
B0 = 1 ,
c0 = 0 . 0 0 1 ,
d0 = 0 . 0 0 1 )

# R e s c a l e c h a i n 1 t o o r i g i n a l s c a l e and o b t a i n t h e e s t i m a t e s
Chain1 <− NULL
f o r ( i i n 1 : 1 3 ) {

Chain1new <− ( C h a i n 1 s c a l e [ , i +1] * sd ( y t r a i n ) ) / sd (X t r a i n [ , i ] )
Chain1 <− cbind ( Chain1 , Chain1new )

}

c o e f f <− NULL
f o r ( i i n 1 : 1 3 ) {

coe f fnew <− mean ( Chain1 [ , i ] )
c o e f f <− cbind ( c o e f f , coe f fnew )

}
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sum <− 0
f o r ( i i n 1 : 1 3 ) {

sum <− sum + ( C h a i n 1 s c a l e [ , i +1] *mean (X t r a i n [ , i ] ) / sd (X t r a i n [ , i ] ) )
}
i n t e r c e p t <− −sum* sd ( y t r a i n ) + mean ( y t r a i n )

Chain1 <− cbind ( i n t e r c e p t , Chain1 )

coe f fnew <− mean ( i n t e r c e p t )
c o e f f <− cbind ( coeffnew , c o e f f )

# F i t t h e l i n e a r r e g r e s s i o n

y hat <− cbind ( 1 ,X t e s t )%*%t ( c o e f f )

MSE g i b b s <− t ( ( y t e s t − y hat ) )%*%( y t e s t − y hat ) / l e n g t h ( y t e s t )
MSE g i b b s vec <− rbind (MSE g i b b s vec , MSE g i b b s )

}

MSE g i b b s <− sum (MSE g i b b s vec ) / l e n g t h (MSE g i b b s vec )

# Make a t a b l e w i t h t h e MSE f o r t h e 10− f o l d c r o s s − v a l i d a t i o n
s t a r g a z e r ( cbind (MSE lm , MSE l m s e l e c t , MSE l a s s o , MSE mon tec a r l o , MSE g i b b s ) )

# Per form n f o l d c r o s s v a l i d a t i o n f o r l i n e a r r e g r e s s i o n
MSE lm vec <− NULL
MSE l m s e l e c t vec <− NULL

# Segement your da ta by f o l d u s i n g t h e which ( ) f u n c t i o n
n <− nrow ( d a t )

# t r a i n i <− 1: round ( 0 . 7 *n )
# t e s t i <− round ( 0 . 7 *n +1): n

# t r a i n i <− 1: round ( 0 . 6 *n )
# t e s t i <− round ( 0 . 6 *n +1): n

# t r a i n i <− 1: round ( 0 . 4 *n )
# t e s t i <− round ( 0 . 4 *n +1): n

t r a i n i <− 1 : round ( 0 . 3 *n )
t e s t i <− round ( 0 . 3 *n + 1 ) : n

t r a i n d a t <− d a t [ t r a i n i , ]
t e s t d a t <− d a t [ t e s t i , ]

x <− seq ( 1 0 , 1 0 0 , 1 0 )
y lm <− c ( 4 3 1 1 . 9 8 4 , 3 6 1 7 . 2 3 6 , 3 5 3 6 . 2 7 1 , 3 5 2 6 . 0 3 3 , 3 4 5 3 . 7 9 3 ,
3 3 1 7 . 4 5 9 , 3 3 0 4 . 4 9 1 , 3 2 5 6 . 5 0 5 , 3 2 3 3 . 0 7 4 , 3 1 6 7 . 1 0 1 )
y lmAIC <− c ( 4 1 6 8 . 5 5 0 , 3 5 5 6 . 4 8 3 , 3 5 1 8 . 4 1 3 , 3 5 1 2 . 9 5 5 ,
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3 4 5 1 . 5 1 1 , 3 3 0 0 . 5 4 2 , 3 3 0 0 . 8 1 8 , 3 2 4 3 . 4 2 2 , 3 2 2 9 . 7 5 8 , 3 1 4 1 . 7 1 5 )
y l a s s o <− c ( 3 9 8 4 . 1 3 2 , 3 5 2 4 . 4 4 3 , 3 5 0 2 . 6 3 8 , 3 5 0 7 . 4 4 3 ,
3 4 4 7 . 3 4 5 , 3 3 1 2 . 4 0 0 , 3 3 0 2 . 2 0 2 , 3 2 5 3 . 2 6 9 , 3 2 3 0 . 0 6 4 , 3 1 9 9 . 8 2 5 )
y g i b b s 1 <− c ( 4 3 1 3 . 3 7 7 , 3 6 1 6 . 8 2 8 , 3 5 3 7 . 7 1 5 , 3 5 2 7 . 9 0 6 ,
3 4 5 3 . 7 8 8 , 3 3 2 0 . 4 0 5 , 3 3 0 4 . 0 0 0 , 3 2 5 6 . 8 9 3 , 3 2 3 3 . 2 8 5 , 3 1 6 7 . 2 1 3 )
y g i b b s 2 <− c ( 4 2 8 0 . 2 4 5 , 3 6 1 4 . 2 4 9 , 3 5 3 3 . 6 3 5 , 3 5 2 4 . 3 6 4 ,
3 4 5 3 . 6 1 9 , 3 3 1 6 . 3 0 9 , 3 3 0 3 . 7 5 9 , 3 2 5 6 . 3 4 7 , 3 2 3 2 . 9 7 6 , 3 1 6 7 . 1 0 1 )
t e s t data <−

data . frame ( x , y lm , y lmAIC , y l a s s o , y g ibbs1 , y g i b b s 2 )

g g p l o t ( t e s t data , a e s ( x ) ) +
geom l i n e ( a e s ( y = y lm , c o l o u r = ”OLS” ) ) +
geom l i n e ( a e s ( y = y lmAIC , c o l o u r = ” S t e p w i s e AIC backward OLS” ) ) +
geom l i n e ( a e s ( y = y l a s s o , c o l o u r = ” Lasso ” ) ) +
geom l i n e ( a e s ( y = y g ibbs1 , c o l o u r = ” Gibbs s a m p l e r 1 ” ) ) +
geom l i n e ( a e s ( y = y g ibbs2 , c o l o u r = ” Gibbs s a m p l e r 2 ” ) ) +
l a b s ( x = ” P e r c e n t a g e o f d a t a used f o r t r a i n i n g ” , y = ”Mean s q u a r e d e r r o r ” ) +
theme ( l egend . p o s i t i o n =” r i g h t ” ) +
s c a l e x c o n t i n u o u s ( n . b r e a k s = 10) +
s c a l e y c o n t i n u o u s ( n . b r e a k s = 10)
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Figure 14: The autocorrelation plots for the scaled coefficients and error variance obtained by 10000
Gibbs samples with a burn-in of 10000. The y-axis represents the autocorrelation while the x-axis
represents the lag. The plot suggests a high mixing rate.
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Percentage MSE OLS MSE Stepwise AIC backward OLS MSE Lasso MSE Gibbs sampler 1 MSE Gibbs sampler 2

10 4311.984 4168.550 3984.132 4313.377 4280.245
20 3617.236 3556.483 3524.443 3616.828 3614.249
30 3536.271 3518.413 3502.638 3537.715 3533.635
40 3526.033 3512.955 3507.443 3527.906 3524.364
50 3453.793 3451.511 3447.345 3453.788 3453.619
60 3317.459 3300.542 3312.400 3320.405 3316.309
70 3304.491 3300.818 3302.202 3304.000 3303.759
80 3256.505 3243.422 3253.269 3256.893 3256.347
90 3233.074 3229.758 3230.064 3233.285 3232.976

100 3167.101 3141.715 3199.825 3167.213 3167.101

Table 10: A table containing the mean squared error for the different percentages of the data that was
used to train the model for five different estimators. The estimators are: the OLS, OLS in combination
with backward stepwise model selection using AIC, Lasso, Gibbs sampler 1 and Gibbs sampler 2.


