
Binarizing Word Embeddings using

Straight-through estimators

Bachelor’s Project Thesis

Robin Entjes, s2526883, r.entjes@student.rug.nl,

Supervisors: W. Mostard & M. Wiering

Abstract: Word embeddings are usually represented as real-valued vectors that contain seman-
tic and syntactic information of a word. Words that are semantically similar have similar word
embeddings. However, there are some downsides to using real-valued word embeddings. The
calculations that are needed are computationally expensive and they require a large amount of
memory. Therefore, we investigate the possibility of transforming real-valued word embeddings
into binary-valued word embeddings. In this research we compare two different methods: an
autoencoder that makes use of the Heaviside function and one autoencoder that was further ex-
tended with straight-through estimators. The two methods are compared using several standard
word similarity tasks. Similar results are obtained for both binarization methods. However, the
autoencoder using the straight-through estimators performed significantly better in the case of
the SimLex dataset. It seems that it is possible to binarize real-valued embeddings without a
great loss of semantic information.

1 Introduction

For a number of years now, word embeddings are
getting more and more popular. They are useful
in multiple downstream natural language process-
ing tasks, such as word similarity tasks (Mikolov,
Chen, Corrado, & Dean, 2013) and for classifying
documents (Ahmad & Amin, 2016).
A word embedding is a numerical vector represen-
tation of a word. The vector contains semantic and
syntactic information about a given word. Thus, if
two words have word embeddings that are close to
each other in the vector space, that would suggest
that the words are similar in meaning. For exam-
ple, if we consider the word embeddings for car and
automobile, we can expect the cosine similarity be-
tween them to be higher than the cosine similar-
ity between car and fish. Traditionally, these word
embeddings are represented as real-valued vectors.
However, there are a number of problems that come
with representing these vectors with floating point
numbers. The first problem is that it takes a signif-
icant amount of memory. If you for example would
like to use it on phones, having a large vocabu-
lary of words, it would require a significant chunk

of memory. The second problem is that performing
calculations on these word embeddings are compu-
tationally expensive, because it makes use of the co-
sine similarity metric, which involves the dot prod-
uct. Since these computations are quite computa-
tionally expensive, we consider a different represen-
tation, namely binary valued vectors. The advan-
tage of this approach is that we require a signifi-
cantly smaller amount of memory. Also, if we wish
to measure the similarity between two binary word
embeddings, we can make use of the Hamming dis-
tance, which involves the bitwise XOR operator.
This is a simple CPU instruction that is signifi-
cantly faster than the dot product. So we can con-
clude from this that using binary word embeddings
is something that can be quite useful.
Therefore, we try to transform the real-valued vec-
tors into binary-valued vectors. We call this process
binarization. By binarizing these word embeddings
the memory needed and the computation time for
calculating the similarity between two word embed-
dings are both greatly reduced. For the binariza-
tion of the embeddings we will make use of autoen-
coders. In this thesis two different methods will be
compared.

1

In previous research there has been a method
proposed for generating binary word embeddings
which makes use of an autoencoder (Tissier,
Gravier, & Habrard, 2019). An autoencoder is
a type of neural network, where the goal is to
compress the input into a smaller representation
without a great loss of information (Goodfellow,
Bengio, & Courville, 2016). The standard autoen-
coder is extended with the Heaviside step func-
tion to binarize the word embeddings. This comes
with the problem that proper back-propagation
is not possible, since the step function is non-
differentiable. To overcome this problem, we will
make use of a straight-through estimator (STE)
(Bengio, Léonard, & Courville, 2013). This is a
method to bypass the Heaviside step function and
allows proper back-propagation. We will generate
two sets of word embeddings. One set will be gen-
erated using the autoencoder without STE, and
one set will be generated using the autoencoder
with STE. Both autoencoders will be compared
by testing the performance of both sets in a word-
similarity task.
In this thesis we will hope to answer: Do binary
word embeddings generated by an autoencoder us-
ing straight-through estimators have a higher per-
formance in a word similarity task in comparison to
binary word embeddings that are generated by an
autoencoder without straight-through estimators?
In section 2 we will describe the workings of the
autoencoder and the straight-through estimators.
Furthermore, we will take a look at how GloVe is
trained. GloVe is a model for training real-valued
word embeddings. In section 3 we describe the hy-
perparameters for the autoencoders and also how
both models will be evaluated. In section 4 we will
describe the results, in section 5 we discuss the re-
sults and in section 6 we will have the conclusions.

2 Background

2.1 Autoencoder

To binarize the word embeddings we make use of
an autoencoder, which is a form of a neural network
(Kramer, 1991). It consists of one hidden layer h, an
input layer x and an output layer x′. The autoen-
coder consists of two stages; the encoder and the
decoder. The encoder transforms x into h, and the

decoder transforms h into x′.The use of an autoen-
coder comes from the fact that the hidden layer
typically has a smaller dimension than the input
layer. Since the hidden layer has a smaller dimen-
sion than the input layer, it is forced to capture
the most informative factors in the latent space
(Goodfellow et al., 2016). In the case of an autoen-
coder we are not interested in the output of the
model, but rather the vector from the hidden layer,
since it is a more compact representation of the
input. Therefore, such models can help finding a
more compact representation of the input, without
a great loss of information.
To enable this method to binarize word embed-
dings, we make use of the Heaviside step function
within the autoencoder:

Heaviside(x) =

{
0 if x < θ

1 if x ≥ θ
(2.1)

Where θ is the threshold, which will be set to
0 in this thesis. Using the step function leads
to a different problem, since the function is non-
differentiable. This makes it impossible to perform
proper back-propagation. A workaround for this is
to set the output weight matrix equal to the trans-
pose of the input weight matrix (Tissier et al.,
2019). This way, during training, the output weight
matrix can be trained using back-propagation and
the input weight matrix will be set to the transpose
of the output weight matrix. This way it can still be
implicitly trained. Now that we have a workaround
we can look at how the binary word embeddings
are generated. For that we will make use of the fol-
lowing formula:

bi = h(W · xTi) (2.2)

In which bi is the binary word embedding, xi is
a real-valued word embedding from the input, W
is the weight matrix, and h is the Heaviside step
function. This part is what would be called the en-
coder, since it transforms the original real-valued
embedding into the binary word embedding. For
the decoder, the following formula is used:

x′i = tanh(WT · bi + c) (2.3)

Here x′i represents the reconstructed vector, c rep-
resents the bias. And tanh is the hyperbolic tangent
function, which is used to make sure that the values
in the reconstructed vector are within the range of
-1 and 1.

2

2.1.1 Objective Function

The objective function that is used to optimize the
model contains two parts: a reconstruction loss and
a regularization loss. These are defined as following:

lrec(xi) =
1

m

m∑
k=1

(xik − ŷik)2 (2.4)

Here xik represents attribute number k of vector
xi. The reconstruction loss is the mean squared er-
ror of the difference between the input vector and
the reconstructed vector. Using solely the recon-
struction loss will lead to good reconstructed vec-
tors, but the generated binary word embeddings
are not very well. This is because W was favoring
the reconstruction, and therefore much similarity
information was discarded. To deal with this, the
regularization loss is introduced:

lreg =
1

2
||WTW − I||2 (2.5)

I represents the identity matrix. This term is used
to minimize the correlations between the different
features of the latent binary representations. The
total objective function becomes:∑

xi∈X
lrec(xi) + λreglreg (2.6)

Here λreg is a hyperparameter which can be
tweaked if necessary. It is used to give more or less
importance to the regularization loss. The default
is 1.

2.2 Autoencoder with Straight-
through Estimators

The previous method was able to achieve near-
lossless performance in comparison to the original
real-valued embeddings (Tissier et al., 2019). How-
ever, it seems to have its limitations. Adding extra
layers into the model would not be possible since
the decoder step has to be the exact transpose of
the encoder step. This is because the transpose of
W is used in the decoder. Also the quantization er-
ror could be quite high, which can lead to a loss of
quality of the obtained embeddings for search appli-
cations (Mena & Nanculef, 2019). The autoencoder
proposed in this thesis makes use of an adjust-
ment, such that we can apply back-propagation in

our model. This is done by making use of straight-
through estimators (Bengio et al., 2013). The work-
ing can be found in Figure 2.1. During the for-
ward pass, we still make use of the step function.
However, during back-propagation, we will use the
straight-through estimator. A straight-through es-
timator is a gradient, that will bypass the original
gradient. During the backward pass the incoming
gradient from the right is defined as following:

gY =
∂L

∂Y
(2.7)

The derivative that we need is:

gZ =
∂L

∂Z
(2.8)

To bypass the Heaviside step function, we define
the gradient as:

gZ = gY . ∗ 1|Z|≤1 (2.9)

Here .∗ is element wise multiplication
(Courbariaux, Hubara, Soudry, El-Yaniv, &
Bengio, 2016). In this function we make use of the
indicator function:

1A(x) :=

{
1 if x ∈ A,
0 if x /∈ A.

(2.10)

The use of the indicator function, means that when
the absolute value of Z is greater than 1, it will
be set to 0, otherwise the indicator function will
be equal to 1. So basically the gradient bypasses
the step function and uses a different function in-
stead. The gradient gZ is what we call the straight-
through estimator. This function is basically the
same as the hardtanh function:

hardtanh(x) =

−1 if x < −1

1 if x > 1

x otherwise

(2.11)

This is the function that will be used in the
code. The complete autoencoder with the straight-
through estimator implemented can be found in
Figure 2.2. We see that during the backward pass,
the hardtanh function is used.

2.3 GloVe

For the input of both autoencoders GloVe is used
(Pennington, Socher, & Manning, 2014). GloVe

3

Figure 2.1: An image showing the workings of
the straight-through estimator. h is the Heavi-
side step function. Z and Y are the vectors that
are passed during the forward pass. During the
backward pass, ∂L

∂Z
and ∂L

∂Y
are the gradients.

is a model which is used for producing word
vectors. There are a number of pre-trained sets
available. One of these sets, which is trained on
Wikipedia2014 and Gigaword 5, will be used as the
input for the autoencoders.
The word vectors in GloVe are trained based on
co-occurrence of words within a text. It scans over
a text using a context window. For every word
in the text, the ten words to the left and ten
words to the right are determined. In a matrix of
co-occurrence all co-occurrences will be registered.
Each co-occurrence will be weighted based on dis-
tance between two words using 1/d, where d is the
distance. So if a word is five places removed within
a text, 1/5 will be added in the co-occurrence ma-
trix.
To determine the word vectors, a function is wanted
that can encapsulate the notion of co-occurrence.
So a function of the following form is needed:

F (wi, wj , w̃k) =
Pik

Pjk
(2.12)

Here Pik and Pjk are the probabilities of words i
and k, and words j and k, respectively, co-occurring.
wi, wj and w̃k are word vectors. A model which
holds this property is as follows:

J =

V∑
i,j=1

f(Xij)(w
T
i w̃j + bi + b̃j − logXij)

2 (2.13)

Here V is the size of the vocabulary, which in this
case is 400,000. Xij is matrix of word-word co-
occurrence, whose entries denote the number of
times word j occurs in the context of word i. bi and

b̃j are a bias, that is added for each word. f(Xij)
is a weighting function, which is used to make sure
that rare and frequent co-occurrences are not over-
weighted.

3 Methods

The two models both use the same setup. The
model uses the entire GloVe database of 400,000
words as the input for training. These embeddings
are pre-trained and have a dimension of 300. Three
different sizes of binary embeddings are produced:
128, 256 and 512. These sizes are used, because
the memory size needed for these embeddings are
smaller than the original embeddings. The number
of epochs that are used is set to 25. The learning
rate for the model is 0.001 and the batch size that
is used is 75. The hyperparameter λreg is held on
1.

3.1 Evaluation

For the evaluation of the trained embeddings we
make use of a number of word similarity tasks. For
this task we present the model with a number of
word-pairs. These word-pairs have a score for how
similar they are, according to human evaluation.
With our trained binary embeddings we make use
of the Hamming similarity to determine how similar
the word pairs are according to our trained embed-
dings. The closer the Hamming similarity is to 1,
the more similar the words should be. This measure
can be used, since we make use of binary valued vec-
tors. And since they are binary we can count the
number of bits which are not the same. This is the
same as using the XOR operator. Keeping this in
mind, we get the following formula:

HammingSim(X,Y) = 1− 1

N

N∑
k=1

|Xk−Yk| (3.1)

Here X and Y represent the two word embeddings
to be compared, Xk and Yk are the values of the
vector in position k, and N is the length of the
vectors. The value of the similarity lies between 0
and 1. The higher the value is, the more similar the
two words are. To determine the similarity of real-
valued vectors, the cosine similarity is used, which

4

Figure 2.2: A visual representation of the workings of the autoencoder when a straight-through
estimator is used. Win and Wout are weight matrices and c1 and c2 are bias vectors. H(x) is the
Heaviside step function. The binary word embedding that we want to retrieve is in bold.

is defined as:

cosine(X,Y) =
X · Y
||X|| ||Y ||

(3.2)

Here X and Y are the two vectors to be compared.
We make use of four different datasets that contain
a number of word-pairs with a score that deter-
mines how similar these words are. These scores
are given by humans. The four datasets that are
used are the Stanford Rare Word Similarity dataset
(RW) (Luong, Socher, & Manning, 2013), the MEN
dataset (Bruni, Tran, & Baroni, 2014), the SimLex-
999 dataset (Hill, Reichart, & Korhonen, 2015)
and the Wordsim353 dataset (Agirre et al., 2009).
The Stanford Rare Word is a collection of word-
pairs, with words that are not very common. The
MEN dataset consists of 3000 word-pairs and dur-
ing the scoring, the focus lied on relatedness. The
SimLex-999 dataset contains 999 wordpairs, where
focus lies more on similarity rather than relat-
edness. And finally the last dataset is the word-
sim353 dataset, which contains 353 word-pairs. The
Spearman’s rank correlation is determined of both
sets of embeddings against the scores given in the
datasets. The Spearman’s rank correlation is a non-
parametric measure to determine the direction and
strength of the correlation between two variables.
This way we can measure how well both sets of
embeddings perform in the word similarity tasks.
To compare it to the original real-valued embed-

dings we measure the Spearman’s rank correlation
for those as well.

3.1.1 Binomial Test

To determine whether the word embeddings that
are trained using STE are significantly better in
comparison to the embeddings that are trained
without STE (nSTE), we make use of a binomial
test (Salzberg, 1997). For this we look at how many
times the scores for the word pairs using STE em-
beddings, were more similar to the actual scores, in
comparison to the nSTE scores. We will count the
number of successes, which is the number of times
where:

|Sh − SSTE | < |Sh − SnSTE | (3.3)

Here Sh is the human score for the word pair, SSTE

is the similarity score for the word-pair based on the
STE word embeddings, and SnSTE is the similar-
ity score based on the embeddings trained without
STE. So this means that when SSTE is closer to Sh,
it is considered a success. It is considered a failure
if SnSTE is closer to Sh. If the scores SSTE and
SnSTE are the same the word pair will not be con-
sidered.
The binomial distribution will be used to determine
the probability of the STE word embeddings per-
forming better in the word similarity task in com-

5

parison to the nSTE embeddings:

P = 2×
n∑
s

n!

s!(n− s)!
(0.5)n (3.4)

Here n is the number of trials, and s is the number
of successes. It will be multiplied by 2 since a 2-
sided test is used, since we assume that both models
would have a better score equally much. We will
make use of an α of 0.05.
The different models and the evaluations that are
made are publicly available on GitHub ∗.

4 Results

The results of the Spearman’s rank correlations are
found in Table 4.1. For every generated set of word
embeddings, we tested how well each set would per-
form in multiple word similarity tasks. What we see
is that the real-valued embeddings from GloVe, per-
form best in all cases, which is as expected. When
we look at the binary embeddings, we see that in
most cases, each pairing of nSTE and STE embed-
dings have a very similar score, and thus have no
significant results. However, if we look at the re-
sults in the word similarity task with the word-
pairs from SimLex, we see that the results from
the autoencoder with straight-through estimators,
are significantly better, even though these are the
lowest scores in general. The scores from the Rare
Word set are also the lowest. In general the word
embeddings perform the best when the word-pairs
from the MEN dataset are presented.
When we take a look at the quantization error be-
tween the continuous and binary latent representa-
tion we see that the value lies around 0.50. There
is an increase in the STE 128 set to 0.57.

4.1 Qualitative Results

In Table 4.2 we can find the ten most similar words
to the word car according to each of the generated
sets of word embeddings. Some of the interesting
finds is, that if we look at the nSTE 128 results,
we see that there are a number of words that does
not seem to be directly related to the word car,
such as bomb, 15 and killed. The same is true, for
the STE embeddings with a dimension of 128, with

∗https://github.com/robinentjes/bachelorproject

words like behind, into and victim. The embeddings
with higher dimensions, does not seem to have this
problem.

5 Discussion

Overall, the auto-encoder did not seem to improve
that much in comparison to the autoencoder with-
out straight-through estimators. This can be caused
by a number of things. Something that could be
considered is that the word-pairs in the different
datasets are scored based on different premises. The
scores in the MEN dataset are mainly based on re-
latedness, whereas the other datasets focus more
on similarity. The high correlation with the MEN
set shows that the word embeddings give a better
representation of relatedness, rather than similar-
ity. This can be caused by the input of the autoen-
coders being the GloVe dataset. If a different set of
real-valued embeddings was used for the input, it
may lead to better results. Another option would
be is to use a different set for the input in combi-
nation with the GloVe dataset. This could lead to
word embeddings that both represent relatedness
and similarity. This could lead to an increase in
the correlation scores in the word similarity tasks.
What also could be considered is that all parame-
ters were held the same in the model. This is useful
in comparing both models. However, it may be the
case that these parameters were not optimal in the
model with straight-through estimators.
When we take a look at the quantization errors of
both methods, we see that they both stay the same.
To increase this we could make use of a variational
autoencoder.

6 Conclusion

In this thesis we looked at a different method to
train binary word embeddings, which involved an
autoencoder with straight-through estimators. This
allows us to perform full end-to-end training, while
still making use of the non-differentiable Heaviside
step function. It was expected that this would per-
form better, since the input weight matrix could
be properly trained. When the trained word em-
beddings were presented in a word-similarity task,
the embeddings that were trained with STE were

6

https://github.com/robinentjes/bachelorproject

RW MEN SimLex WordSim
nSTE STE GloVe nSTE STE GloVe nSTE STE GloVe nSTE STE GloVe

128 0.280 0.305 0.566 0.580 0.239 0.240 0.401 0.444
256 0.342 0.342 0.664 0.673 0.299 0.340 0.510 0.511
512 0.368 0.369 0.691 0.699 0.324 0.341 0.554 0.555

0.412 0.749 0.371 0.601

Table 4.1: The results of the the Spearman’s rank correlation tests from the different methods
against the human evaluations. Significant results, according to the Bernoulli trials, are shown in
bold. The p-value that is used is 0.05

nSTE 128 256 512 STE 128 256 512
car car car car car car
truck vehicle vehicle cars cars cars
cars cars cars vehicle driver vehicle
vehicle truck driver truck truck truck
bomb vehicles truck driver vehicle motorcycle
driver driver driving behind driving driver
vehicles driving vehicles driving automobile vehicles
15 garage bus engines suv driving
killed door automobile into time jeep
train drive drivers victim drivers parked

Table 4.2: A table containing the top ten most similar words to the word car according to the
generated binary word embeddings.

only significantly better with one dataset (the Sim-
Lex dataset). This can be caused by the fact that
the SimLex dataset was mainly focused on scores
based on relatedness and not as much focused on
actual word similarity. This probably comes from
the fact that the GloVe embeddings represent re-
latedness. Furthermore, we see that in all cases the
performance increases, when the vector size of the
binary embeddings is increased. This makes sense,
since vectors with higher dimensions can hold more
information.
Only adjusting the quantization layer does not
seem to give a significant difference. However, the
model could be further extended. Using a non-
linear model could increase the performance. This
is an advantage of making use of straight-through
estimators, since we are not limited by this ar-
chitecture. This is something that could be stud-
ied in future work. Furthermore, the model could
be extended to a variational autoencoder, which
could lead to a decrease in the quantization error.
Overall, the autoencoder with straight-throught es-
timators shows potential, since it could be further
extended to different architectures. Without these

variations it already gives similar scores to the pre-
vious method.

References

Agirre, E., Alfonseca, E., Hall, K., J., K., Pasca, M.,
& Soroa, A. (2009). A study on similarity and
relatedness using distributional and wordnet-
based approaches. In Proceedings of naacl-
hlt.

Ahmad, A., & Amin, M. (2016). Bengali word em-
beddings and it’s application in solving doc-
ument classification problem. In 2016 19th
international conference on computer and in-
formation technology (iccit) (p. 425-430). doi:
10.1109/ICCITECHN.2016.7860236

Bengio, Y., Léonard, N., & Courville, A. (2013).
Estimating or propagating gradients through
stochastic neurons for conditional computa-
tion. CoRR, abs/1308.3432 . Retrieved from
http://arxiv.org/abs/1308.3432

Bruni, E., Tran, N., & Baroni, M. (2014). Multi-
modal distributional semantics. In Journal of
artificial intelligence research 49 (p. 1-47).

7

http://arxiv.org/abs/1308.3432

Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv,
R., & Bengio, Y. (2016). Binarized neu-
ral networks: Training neural networks with
weights and activations constrained to +1 or
-1. CoRR, abs/1602.02830 . Retrieved from
http://arxiv.org/abs/1602.02830

Goodfellow, I., Bengio, Y., & Courville, A. (2016).
Deep learning. MIT Press. (http://www
.deeplearningbook.org)

Hill, F., Reichart, R., & Korhonen, A. (2015,
December). SimLex-999: Evaluating seman-
tic models with (genuine) similarity estima-
tion. Computational Linguistics, 41 (4), 665–
695. Retrieved from https://aclanthology

.org/J15-4004 doi: 10.1162/COLI a 00237
Kramer, M. (1991). Nonlinear principal com-

ponent analysis using autoassociative neural
networks. AIChE , 37, Issue 2 . doi: https://
doi.org/10.1002/aic.690370209

Luong, M., Socher, R., & Manning, C. (2013). Bet-
ter word representations with recursive neu-
ral networks for morphology. In Conll. Sofia,
Bulgaria.

Mena, F., & Nanculef, R. (2019, 10). A binary vari-
ational autoencoder for hashing. In (p. 131-
141). doi: 10.1007/978-3-030-33904-3 12

Mikolov, T., Chen, K., Corrado, G., & Dean, J.
(2013). Efficient estimation of word represen-
tations in vector space.
(arXiv:1301.3781)

Pennington, J., Socher, R., & Manning, C. (2014).
Glove: Global vectors for word representa-
tion.

Salzberg, S. (1997). On comparing classifiers:
Pitfalls to avoid and a recommended ap-
proach. Data Mining and Knowledge Discov-
ery 1 , 317-328. doi: https://doi.org/10.1023/
A:1009752403260

Tissier, J., Gravier, C., & Habrard, A. (2019, Jul).
Near-lossless binarization of word embed-
dings. Proceedings of the AAAI Conference
on Artificial Intelligence, 33 , 7104–7111. Re-
trieved from http://dx.doi.org/10.1609/

aaai.v33i01.33017104 doi: 10.1609/aaai
.v33i01.33017104

8

http://arxiv.org/abs/1602.02830
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://aclanthology.org/J15-4004
https://aclanthology.org/J15-4004
http://dx.doi.org/10.1609/aaai.v33i01.33017104
http://dx.doi.org/10.1609/aaai.v33i01.33017104

	Introduction
	Background
	Autoencoder
	Objective Function

	Autoencoder with Straight-through Estimators
	GloVe

	Methods
	Evaluation
	Binomial Test

	Results
	Qualitative Results

	Discussion
	Conclusion
	References

