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Abstract 
 
The human microbiome plays an important role in human health. Ecological theory is 
thought to be important for predicting its functioning. In light of this, recently Coyte et al. 
have investigated the effects of different compositions of cooperative and competitive 
interactions between species on the stability of the community. Here I take their model as a 
reference point. A factor that has not been considered much in this field is the effects of 
adaptive plasticity of species on the stability of communities. In this report I try to answer 
the question, how does adaptive plasticity affect the community diversity? Here the 
generalized Lotka-Volterra model that is used, is analysed using an analytical approach, 
namely local stability analysis, and a numerical method is used to determine some stable 
equilibria of different systems. 
With the local stability analysis, I will look into multiple randomly generated communities 
and try to find all biologically relevant equilibria, their stability and the speed at which 
communities return to them after a small perturbation. Results show that a low connectivity 
and high fraction of cooperative interactions within a community result in more stable 
communities, which is measured through different criteria.  
Numerical simulations will look at a single stable equilibrium that arises when a random 
community is initialised at low densities and allowed to run its course and species diversity 
of resulting communities is looked at. Results from the numerical simulations show that 
effects of connectivity and interaction strength are in line with past research, namely the 
higher they are the less diversity remains in resulting communities. The effect of 
competition seems predominantly preventing species loss. However, communities solely 
comprised of species that have cooperative interactions with each other do not lose too 
much diversity. The effects of adaptive plasticity on diversity were found to prevent 
extinction of species from communities. When looking at the effective interactions that 
species have while capable of plasticity, it shows that it does not move in a specific 
direction, i.e., it does not move more toward cooperative interactions. The effects may be 
due to added variation that moves interactions more towards neutral values, which is 
known to have a stabilizing effect. In conclusion, adaptive plasticity may be a mechanism 
that enables communities to grow larger and more stable.  
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Introduction 
 
The human microbiome plays an important role in human health. Changes in microbiome 
composition in the human gut have for example been linked to development of gastro 
intestinal disease (Frank, Daniel N et al., 2007), obesity (Turnbaugh et al., 2009), and even 
anxiety and depression (Foster & McVey Neufeld, 2013). Ecological theory describing what 
affects community composition can lead to increased understanding of microbial 
community dynamics, for example in microbial development in infants, during recovery 
after large perturbations and during invasion of pathogenic species (Costello et al., 2012). 
Additionally, ecological insight would help to build a framework to work towards 
personalized medicine in cases where the human microbiome leads to pathogenesis 
(Gonzalez et al., 2011; Lozupone et al., 2012).  
 
The stability of bacterial communities in human microbiomes is thought to be important to 
human functioning and health. Overall observations have been that natural ecosystems can 
grow very large and complex, and that this complexity adds to their stability. However, 
Robert May questioned whether large systems such as microbial communities could even 
be stable (May, 1972). Results from his model suggests that stability of communities would 
decrease when species diversity increases. Since then, people have been investigating into 
reasons why large complex systems as we see them in nature are so stable and complex. A 
factor that May did not include for example in his model are spatial dynamics, which can 
have a stabilizing effect (Gravel et al., 2016). 
 
One factor that has also not been considered in the complexity-stability debate is the effects 
of plasticity of species on stability of communities. Previous models have assumed an 
unchanging set of interactions for each species. However, it is known that bacteria can 
adapt their phenotypes to changing environments (Kümmerli et al., 2009). This plasticity is 
usually assumed to exist in order for species to maximize their own growth. The question is 
whether species maximizing their own growth would be good for the diversity of a complex 
community.  
 
Recently Coyte et al., (2015) have investigated the effects of cooperative and competitive 
interactions between species on the stability of a community. They used analytical and 
numerical methods to explore what influences the stability of species-rich community 
equilibria. Here stability is defined as the ability of a community to return to its equilibrium 
after a small perturbation, how long it takes to do so and whether oscillations occur after 
the perturbation. They predict that cooperative interactions as well as high species diversity 
destabilizes communities. They also found that competitive interactions and low 
connectivity have a stabilizing effect. 
Another measure of stability that is used by Coyte is community permanence. Permanence 
reflects whether a species in a community is able to return to equilibrium after being 
brought to a low density.  
 
This study provides clear predictions for what is expected to affect stability of communities 
that have been investigated through multiple modelling methods. The model used is a 
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generalized Lotka-Volterra model, which is commonly used to investigate population 
dynamics. Their results into the effects of different kinds of interaction on community 
dynamics also provides a nice starting point to confirm some results and extend and 
investigate on new ones with plasticity considered. For these reasons, this paper will be 
taken as a reference point as a way to extend on previous a previous known model. The 
question posed now is what are the effects of adaptive plasticity on the stability of microbial 
communities? To answer this, I present an extended model to investigate the effects of 
enabling adaptive plasticity within microbial communities. 
 
In this report I will first give an overview of the model for microbial communities and their 
interactions. There are two methods used for the analysis of the model, and I will go over 
the analysis method and results one by one. First, results obtained will be compared to 
previous conclusions made by Coyte and May. Finally, I will look at the extended model with 
adaptive plasticity and its effects on stability.  
 

Model 
 
The model that is used and analysed is a generalized Lotka-Volterra model. I will first 
describe the general model assumptions that apply to both the analytical and numerical 
methods used to examine the different systems. In the results section the different methods 
of analysing this model will be discussed before showing the results. The Lotka-Volterra 
equations are coupled ordinary differential equations used to describe species densities  
 

𝑑𝑥!
𝑑𝑡 = 𝑥!(𝑟 − 𝑠!𝑥! + * 𝑎!"𝑥"

#

"$%,"'!

) 

     (1) 
 
In this equation, 𝑥!  stands for the specific density of species 𝑖. The number of species within 
the community is equal to 𝑆, and therefore the index 𝑖, runs from 1 to 𝑆. The parameter 𝑟 is 
the intrinsic per capita rate of growth, which is assumed to be equal for all species and set in 
all cases at 𝑟 = 2.0. The growth rate of each species depends as well on the intraspecific 
competition coefficient, the strength at which a species competes with itself, given by 𝑠!. 
This is set in all systems to 0.2. Finally, the species growth depends on the interactions, 𝑎!"  , 
it has with all other species present. The effects of these interactions on the per capita 
growth depends as well on the species densities of species 𝑗, with which species 𝑖 has an 
interaction with. All the interactions of the species within a community may be represented 
in a so-called interaction matrix which would have the dimension 𝑆 × 𝑆.  The interactions of 
species 𝑗 on species 𝑖 can then be found in the 𝑖th row and the 𝑗th column. On the diagonal 
of this matrix is 𝑠!, the competitive effect of the species on itself. 
 
Communities and their interactions are created randomly. In all following results the 
assumption is made that species either have cooperative, competitive or no interactions. 
This is done to start with a very simple model that has easy to interpret results and 
extensions will also become easier to interpret. When generating random interaction 
matrices, the connectivity, C is the chance of an element in the interaction matrix to equate 
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to 0. For example, C=0.3 means that 70% of randomly drawn interactions equal 0. An 
interaction coefficient of 0 means that the two species do not influence each other’s 
growth. When it is determined that two species do interact, their interactions are drawn in a 
pair-wise manner. Interactions are drawn from a half-normal distribution, a normal 
distribution with a mean of 0.0 where the absolute of all values is taken. The standard 
deviation of the underlying normal distribution is 𝜎 = 0.05 for all simulations unless stated 
otherwise. The coefficients 𝑎!"  and 𝑎"!  are drawn together so that the species 𝑖 and 𝑗 will 
either cooperate (+/+) or compete (-/-) with each other and the sign of the interaction is 
decided by the ratio for cooperative and competitive interactions. Because there are only 
competitive and cooperative interactions possible the chance of cooperative interaction can 
be obtained by  𝑝())* = 1 − 𝑝()+*. 
 
To measure community diversity, the Shannon Index is used according to equation 2, where 
𝑝!  is the proportion of species 𝑖 in the population. For each number of species, a maximum 
Shannon index is reached when the species are present in the exact same abundance in the 
population, as is illustrated in figure A1.  
 

𝐻′ = −∑ 𝑝! ln 𝑝!#
!$%       (2) 

 
The relationship between stability and species diversity is a complicated one. There is an 
important debate going on about the relationship of complexity and stability within 
communities, and how there could exist large complex communities that are stable.  
Investigations into this relationship can be done from different angles. The approach taken 
by Coyte et al., (2015), and May, (1972) is one where they look at random communities with 
different characteristics, like species diversity, connectivity and interaction composition, and 
they determine all equilibria and the stability of those equilibria. This more classical 
approach assumes that there is an equilibrium with all species present, and then 
investigates whether that equilibrium is stable and how stable it is.  
Here however, the approach is taken from another angle. Communities with different 
characteristics are generated and only a stable equilibrium is looked for. One of the 
important measures of the resulting equilibria is the species diversity. This is opposed to the 
approach taken by May and Coyte where they look at all equilibria and see what 
characteristics lead to unstable equilibria. These unstable equilibria, where communities 
move away from the equilibrium point after a small perturbation, never actually occur in 
real life systems.  
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Results 
 
Local stability  
 
For the local stability analysis, I look at stable and unstable communities that result from 
communities with randomly drawn interaction matrices and examine the composition of the 
resulting community in terms of proportion of cooperation, competition, connectivity and 
diversity. Communities are initialized with 10 species, and their equilibria are calculated 
through a numerical solving method. In all instances biologically irrelevant equilibria and 
results are filtered from the analysis, meaning equilibria with negative species densities are 
filtered out. The stability of these equilibria is then determined by examining the 
eigenvalues of the Jacobian matrices. The real parts of the eigenvalues say something about 
the local stability of the system around the equilibrium. If all the real parts of the 
eigenvalues of an equilibrium are negative it is stable and will return to the equilibrium after 
a small perturbation. The lower this number is the quicker the community will return to 
equilibrium after a perturbation. The imaginary part of the eigenvalue determines whether 
or not oscillations occur when the equilibrium is being approached by the system.  
 
As mentioned before, communities are initiated by generating an interaction matrix. The 
interactions in this matrix are zero with a chance determined by the connectivity. If they are 
non-zero, they have a chance of being negative dependent on the fraction of competitive 
interactions and positive dependent on the fraction of cooperative interactions. In this case 
the chances for connectivity and competitive interactions are also drawn randomly, creating 
large variation between communities. After stable equilibria have been determined some 
species may have gone extinct and the resulting community composition may have 
changed. The connectivity and the proportion of competitive interactions is therefore 
calculated and plotted here in the results. 
 
In contrast to the approach of Coyte et al., I do not look at the shift in all possible 
eigenvalues as a consequence of changing the proportion of cooperative, competitive and 
connectivity in large systems, but at single systems and their equilibria and eigenvalues. All 
communities that are analysed are assumed to have a species pool of 10 species. This is 
opposed to the research of Coyte et al., where the results are only applicable for very large 
communities. 
 
  



 8 

A       B 

 
C       D 

 
 
Figure 1. the largest real part of the eigenvalues underlying the community equilibrium and the Shannon index 
against the proportions of interactions and connectivity. The lower the largest real part of the eigenvalue is, the 
quicker the system returns to the equilibrium after perturbation. In 1A and 1B we see a larger proportion of 
cooperative interactions and no connections in the community is associated with a lower stability. When the 
proportion of competitive interactions is higher, the largest real part of the eigenvalues is larger. Figure 1C and 
1D shows the Shannon index against the proportion of different interactions. 1C shows that the more 
unconnected the community, the higher the diversity is. In figure 1D, we see no clear relation between the 
fraction of competitive interactions and species diversity. The blue lines are linear models fitted to the points. 
 
First, I looked at the stable communities with different proportions of cooperation and 
competition and looked at the species diversities and stability of them. One measure of 
stability we can look at is the largest real part of the eigenvalue which, as mentioned before, 
describes the speed at which the community returns to the equilibrium after a small 
perturbation. Looking at figure 1A and 1B, the stable communities show lower values of the 
largest real part of the eigenvalues of the system for larger proportions of cooperation and 
low connectivity.  As mentioned before, the lower the largest real part of the eigenvalue is, 
the quicker the community will return to equilibrium after a perturbation. A quicker return 
of the system could mean that the system has less chance to be thrown off of their 
equilibrium even more after the perturbation and thus increases its stability.  
In figure 1D we can see the proportion of competitive interactions or the proportion of 
cooperative interactions of the communities does not predict what the Shannon index of 
the stable community is. However, in figure 1C a relation between the diversity and the 
connectivity of the community can be seen.  
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So far, we have characterized properties of stable equilibria. However, now we will look at 
how common stable equilibria are relative to unstable ones and how community 
characteristics change these proportions. Here unstable equilibria mean that the system will 
move away from this point after a small perturbation. In figure 2A there is again a clear 
relationship between the connectivity and the stability of a given equilibrium within the 
community. In figure 2B there seems to be more unstable communities when there is a 
slightly higher proportion of competitive interactions.  
 
Comparing these results to the results produced by Coyte et al., the results that show 
relationship between connectivity and stability are the results that seem to be robust to the 
method of analysis. However, there is an unexpected difference for the relationship of the 
proportion of competitive interactions and stability. It seems that a higher fraction of 
competition has a destabilizing effect in communities in the results presented here. Possible 
reasons will be considered further in the discussion section of this report.   
A       B 

 
Figure 2. the fraction of stable equilibria with different proportions of competition and cooperation that are 
present within the identified stable and unstable equilibria. In this figure, 0 stability means an unstable 
equilibrium and 1 stability means a stable one. In 2A there is an association between the stability of an 
equilibrium and the proportion interactions that are zero. In 2B there is a somewhat less clear association 
between the stability of a given equilibrium and the proportion of competitive interactions in the community, 
but it is slightly negative. The blue lines indicate a fitted logistic curve with the grey area representing the 
standard error.  
 
 
Numerical simulations and expanding model with plasticity 
 
In the next part of this research numerical simulations will be used to let randomly 
generated communities grow from low species density initial conditions to a stable 
equilibrium. From this equilibrium we look at the remaining species present and calculate 
the Shannon index as a measure of diversity. This method differs from local stability analysis 
because for every community only a single stable equilibrium is found. The community 
grows from the initial conditions towards one stable equilibrium, and dependent on the 
initial conditions and the basin of attraction of equilibria present in the system it might find 
another equilibrium. This method allows to analyse larger communities than local stability 
analysis due to computational reasons.  
 
An additional reason to use this method is the fact that it can be extended with plasticity.  
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Plasticity is implemented by expanding the Lotka-Volterra equations by allowing every 
species to exhibit two variant strategies. The variants of the same species can have different 
interactions with other species. Each species has a default state, and the assumption is that 
new grown cells always start off in this state. Dependent on the per capita growth rate of 
the two species they can switch to and from the variant. At each step the per capita growth 
is calculated, the difference in this growth between the variants is used to determine the 
switch rate of variant two to one, as described by the equation 3, shown here below 
 

𝑣,% =
1

(1 + 𝑒-.∗(1!-1"))
 

      (3) 
 
The switch rate from one to two is described by equation 4, shown below.  
 

𝑣%, = 1 − 𝑣,%      (4) 
 
 

Here 𝛿% and 𝛿, are the per capita change in densities for variant 1, the default state, and 
variant 2, the alternative strategy. These switch rates determine what proportion of the 
species switch to the other strategy. It is multiplied by 𝑣345, a parameter that determines 
the speed at which the switching can take place. figure 3 illustrates what the switch rate 
might look like. It shows the graph of the switch rate function and an example of values 
given by a difference in per capita growth rate. The switch rate is multiplied by the densities 
of the variants and added to the growth equations of both variants in the following way 
 

𝑑𝑥!
𝑑𝑡 = 𝑥!(𝑟 − 𝑠!(𝑥! + 𝑥6!) + * 𝑎!"𝑥"

#

"$%,"'!

+ 𝑎!"#𝑥6") + 𝑥6!𝑟 + 𝑣345(−𝑣%,𝑥! + 𝑣,%𝑥′!) 

  (5) 

𝑑𝑥′!
𝑑𝑡 = 𝑥6!(−𝑠!(𝑥!7𝑥6!) + * 𝑎!#"𝑥" + 𝑎!#"#𝑥6"

#

"$%,"'!

)+𝑣345(−𝑣,%𝑥′! + 𝑣%,𝑥!) 

   (6) 
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Figure 3, the function used to determine the switchrate from variant 2 to variant 1. The red dots are an 
example of the value of the switchrate when the per capita growth rate difference is:  𝛿𝑥$% − 𝛿𝑥$& = 2. The 
equation to determine the switchrate from variant 1 to variant 2 is equal to 𝑣%& = 1 − 𝑣&%, which in this 
example would be -2 and produces the value of the left red dot in the graph.  
 
A carrying capacity for the entire community is added as well. This is to prevent cases where 
species show unbounded growth. In biological systems this would not be realistic, as there 
will always be constraints imposed by the environment at some point, whether that is 
because of resources or spatial reasons. The carrying capacity is implemented after each 
update step. When the total species density of the community exceeds the carrying capacity 
the community is normalized to be equal to the carrying capacity, taking into account the 
different growth rates of each species. This is achieved by dividing every species by the total 
species density in the community at that point and multiplied by the maximum carrying 
capacity. The carrying capacity in all simulations is set at 500. All species are initiated at 0.5 
and the equilibrium of a single species without any interactions or than its own intrinsic 
growth rate and density dependence is 10. So, the carrying capacity only affects 
communities that have species that grow a lot beyond this isolated equilibrium.  
 
A       B

 
 
Figure 4. the Shannon index of resulting communities against different parameters used while generating 
random the communities. No plasticity is enabled for these simulations. The communities were initiated in each 
case with 30 species. In figure 3A we can see that high connectivity results in less diverse communities. Figure 
3B shows the relationship between competition, cooperation and diversity found. The connectivity used to 
create random matrices is set to C=0.3, and the chance of competition when there is an interaction is set to 0.6. 
All communities are initiated with 30 species. 
 
Figure 4 shows the effects of different parameters on the diversity of the resulting 
communities. As expected, as seen in figure 4A, the effect of connectivity decreases the 
diversity in resulting populations. This is in line with predictions made by Coyte and May 
(Coyte et al., 2015; May, 1972), in that high connectivity results in more instability in 
complex communities, so that the remaining stable equilibria tend to harbour low species 
diversity. 
 
Figure 4B shows that the highest species diversity is found in communities with either a 
large fraction of cooperative or competitive interactions. The lowest diversity is found in 
communities with a small but non-zero fraction of competitive interactions and increasing 
the fraction from that point onward increases stability. A result that is in line with previous 
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predictions is the effect of increasing the standard deviation of the half-normal distribution 
from which interactions are drawn, and thus increasing the chance of high interaction 
strengths. This decreases the Shannon index of resulting stable communities, as can be seen 
in figure A2.  
 
Finally, in figure 5 we can see the effects of the species ability for adaptive plasticity on the 
diversity of the stable equilibria that are attained in the numerical simulations. Here species 
with a 𝑣345 of 0.0 show no ability to adapt their interactions, whereas higher values of 𝑣345 
correspond to species that can switch increasingly rapidly between alternative variants. 
Simulations of species communities with higher values of vmax show higher diversity in 
stable equilibrium communities. This indicates that allowing for species to adapt their 
interactions with community members to maximize their own growth can increase the 
diversity of the entire community.  
 
 

 
Figure 5. The Shannon index is plotted against 𝑣'(), the parameter that determines adaptive plastic ability of 
species. A higher 𝑣'() shows a positive effect diversity. The connectivity used to create random matrices is set 
to C=0.3, and the chance of competition when there is an interaction is set to 0.6. All communities are initiated 
with 30 species. 
 
 
Effective interactions, comparing simulations with plasticity with without plasticity 
 
In the final section of the results, we will look into further details of individual simulations, 
comparing the runs that have plasticity enabled or disabled. In the runs where plasticity is 
possible, the 𝑣345 is set to 1.0, in the runs without it is set to 0.0. In figure 6 the species 
densities of communities with and without the capability for plasticity can be seen over 
time. It is clear from the graphs that communities without plasticity as seen in figure 6A, 
have more loss of species while reaching an equilibrium compared to the community where 
plasticity is possible as seen in figure 6B. What is interesting as well is the apparent 
difference in the variation of the species densities reached by the species. The highest 
densities between the simulation with and without plasticity are far apart from each other.  
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A       B 

 
Figure 6, single runs with 30 species. 6A shows a community without this capability with 𝑣'() = 0.0, and 5B 
shows a community with the capability for plasticity with 𝑣'() = 1.0. The two variants per species are added 
together into single lines.  
 
To investigate further into the community dynamics with and without plasticity as seen in 
figure 6, here I look into which interactions are effectively used by each species. This is 
achieved by taking the interactions of the default and alternative variant of each species and 
weighting them by the species densities of both the relevant species’ variants. The 
calculation of the effective interactions is shown in equation 7. 
 
 

𝑎89@@@@ =
(𝑥!𝑥"𝑎!" + 𝑥6!𝑥"𝑎!#" + 𝑥!𝑥6"𝑎!"# + 𝑥6!𝑥6"𝑎!#"#)

(𝑥! + 𝑥6!)A𝑥" + 𝑥6"B
 

   (7) 
 
The effective interactions in the case where plasticity is not enabled will be equal to the 
interaction 𝑎!", as all variant species will have a 0.0 density. By plotting the effective 
interactions of the same community after reaching equilibrium when plasticity is and is not 
possible, we can observe whether and in what direction change their interaction based on 
maximizing their own growth.  
 
To compare the results of the change in effective interactions to a case where no bias 
towards certain interaction kinds can occur, a linear prediction is made where interactions 
are randomly shuffled. There is expected to always be a shift from the baseline interactions 
towards 0.0, because the mean of a random interaction is almost equal to 0.0. Therefore, 
interactions of the variant species have been shuffled, creating points where no bias 
towards any interaction exists. These points have then been used to create a linear model, 
to compare to the points and line where the points have not been shuffled, and therefore a 
bias can exist towards for example more cooperative interactions.  
 
In figure 7 this has been done for the community with the same interaction matrix as the 
community seen in figure 5. The red line indicates the possible biased regression line and 
the blue one is the baseline expectation. The effective interactions of the species have not 
shifted too much, as can be seen by the closeness of the blue and the red line. It would be 
expected for species to avoid competitive interactions and move towards more cooperative 
interactions as this maximizes their own growth. However, it seems this has not happened 
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in a major way. The red line is slightly above the blue line for strong positive interactions, 
but it is very close. In that sense this result is somewhat surprising.  

 
  

 
Figure 7, Shown here are the effective interactions of the same community where plasticity is and is not 
enabled. On the x-axis the baseline coefficients are shown. These are the effective interactions where vmax = 
0.0 and therefore no plasticity is possible, they are equal to the interaction coefficients of the default variant. 
On the y-axis the effective interactions of the same system are shown where plasticity is possible and vmax = 
1.0. The red line indicates a linear model fitted to the points. The blue line is fitted to shuffled effective 
interactions and represents a controlled expectation where no bias due to adaptive plasticity is present. 
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Discussion 
 
Results from my analytical investigation into randomly generated communities show that 
lower connectivity and higher cooperation result in more stable equilibria for different 
measures of stability. This was true as well when looking at the largest real part of the 
eigenvalues of stable systems and for the diversity of the resulting communities in stable 
versus unstable equilibria.  
 
These results do not match results found in the paper by Coyte et al. and there may be 
several reasons why. The community sizes that are investigated in the paper by Coyte are 
assumed to be very large, such that definite conclusions are limited to the infinitely large 
communities from random matrix theory. In this investigation only communities of 10 
species were used due to the time it takes to solve larger systems and compute their 
corresponding eigenvalues. This difference in community size could be the reason different 
effects are found of the fraction of cooperative interactions on the stability. They mentioned 
that these effects become more prominent the higher the connectivity of the community is. 
It could very well be that a higher diversity has the same effect, since more interactions are 
possible.   
 
Another thing to note is that the equilibria looked at in this report were found through 
numerical methods which might not always find all equilibria. Perhaps there could be a bias 
in the equilibria it does find. It also does not find stable community compositions in the 
cases where species grow unbounded. However, this unbounded growth is more an artefact 
of the model used than a biologically relevant result. The environment would always at 
some point constrain the growth of bacteria (e.g., due to resource or space limitations) and 
lead them to a stable equilibrium.  
 
Although local stability analysis provides an interesting perspective on what affects stability 
of equilibria, the relevance of it on biological systems are not immediately clear. For 
example, the presence of multiple unstable equilibria in a system does not directly predict 
what the behaviour of the system will be. Only the stable equilibria will be reached. 
Especially since the interactions that affect the equilibrium in biological systems are not 
random but result from an evolutionary process which in turn is affected by stable equilibria 
of stable communities. This may cause unintuitive and creative ways in which systems avoid 
instability. 
 
Results from the numerical simulations show that effects of connectivity and interaction 
strength are in line with expectations. The effect of competition predominantly gives rise to 
communities with higher species diversity, however, communities solely comprised of 
species that have cooperative interactions with each other do not lose too much diversity. 
This is in line with the idea that the destabilizing effect of cooperation comes from species 
that are in a positive feedback together and become the dominant species in the 
community. Any species that are in competition with the dominant species would be 
competitively excluded. 
 
The effects of adaptive plasticity on diversity have been found to be positive here. If the 
exclusion of species arises from the fact that you would always be outcompeted when you 
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are in competition with a dominant species, it makes sense that when species are given an 
opportunity to escape from having that interaction, it will prevent competitive exclusion.  
As could be seen from looking at the effective interactions in the cases with and without 
plasticity enabled, it does not seem that competitive interactions in general are avoided.  
 
The stabilizing effect of plasticity observed in Figure 6, can, in principle, be due to two 
mechanisms. The first would be that plasticity moves species towards less competitive 
interactions, especially with strong species. From results in figure 7 this can be ruled out at 
least in this case. A second mechanism through which the stabilizing effect can take place is 
that the plasticity introduces variation, so that interactions become weaker on average. 
Weaker interactions have already been known to have a stabilizing effect. 
 
However, it may be that specific competitive interactions with strong species would be 
avoided under other circumstances. In this model it is assumed that species have a choice 
between two distinct variant and do not have the possibility to switch strategies between 
interactions with a subset of other species in the community. If this was enabled, there may 
have been a more visible bias of species towards particular types of interactions. To enable 
this may be a good extension on the model presented here.  
 
Another extension that would be interesting for future research is to allow for predator-
prey or parasitic like interactions (+/-). Allesina & Tang, (2012) predicted stabilizing effects 
from predator-prey like interaction and destabilizing effects from cooperative, +/+ and 
competitive -/- interactions. It would be interesting to see if the effects of plasticity on 
species diversity as seen in results in this report would be compounded in the case where 
these interactions were also allowed.  
 
Finally, this model of adaptive plasticity has taken the first steps in demonstrating the 
effects of plasticity in microbial communities. Here plasticity is however assumed to always 
be adaptive, and species are assumed to “know” what exactly will maximize their growth. A 
good continuation of investigating the effects of plasticity is to look more towards 
mechanistic models that explicitly model switching of metabolic strategies.  
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Appendix 

 

 
Figure A1. The number of species present in every stable equilibrium and their corresponding Shannon index 
shown on the y-axis. The equilibria calculated from 10 species with a random interaction coefficient matrix. The 
green dots indicate the maximum Shannon index value that can be reached per number of species. These  
equilibria were obtained using 𝜎 = 0.05, 𝐶 = 0.3, and the proportion of competition to cooperation 3/2. 
 
 

 
Figure A2 shows the effects of increasing the standard deviation of the half normal distribution from which the 
interaction strength between species is drawn on the diversity in the resultant community. Larger interaction 
strengths lower the diversity in communities markedly. 


