
A Twitter Bot Based on A Tableau Solver for

GL Logic

Bachelor’s Project Thesis

Jeroen van Gelder, s3813053, j.h.van.gelder.1@student.rug.nl,

Supervisor: Prof. Dr. L.C. Verbrugge

Abstract: In 2017 a tableau solver for provability logic (GL) was built, which faced a number of
memory issues. In an attempt to improve memory efficiency, a new tableau solver is built for GL
using an object-oriented approach in Python, as well as implementing both depth-first search
and culling of closed branches. Alongside, a procedural generator for formulas of GL is built,
and a Twitter bot is made that tweets all found theorems of GL at an interval of three hours.
Depth-first search is implemented in order to find the easy answer the quickest, as a complete
tableau is not required. The culling of closed branches is implemented in an attempt to keep
memory usage to a minimum. After testing the system with more than one million formulas, no
out-of-memory issues are found, indicating that memory efficiency has improved.

1 Literature Review

The provability logic ‘GL’ is a propositional modal
logic that is an extension to the modal logic K
(Kripke). The logic’s name ‘GL’ is an abbreviation
of ‘Gödel-Löb’. This logic is a result of the combi-
nation of the works of two logicians: K. Gödel and
M.H. Löb.

1.1 Background

Gödel is well known for both his notions about
provability and his incompleteness theorems on
provability limitations of formal axiomatic systems.
In Gödel’s famous set of letters, he described the
logic behind complex, or seemingly incorrect, self-
referencing statements. An example of such a state-
ment is ‘I am lying’, which mentions its own incor-
rectness. Such a sentence can, at face value, be nei-
ther true nor false, as it contradicts itself in both
cases. Gödel observed that a sufficiently strong lan-
guage or arithmetic, that has the ability of express-
ing its own provability, can make this puzzling sen-
tence into a proper, logically correct statement. The
sentence ‘I am lying’ can then be reformulated into
‘I am unprovable,’ referring to its own concept of
provability (Smorynski, 2004).

The other influential factor in the shaping of the
logic GL was Löb’s theorem. In 1955, M.H. Löb

wrote a paper titled ‘Solution to a Problem of Leon
Henkin’ in which he answered a question asked by
L. Henkin. Henkin posed the question whether any-
thing could be said about self-referencing sentences
that say something about their own provability,
rather than just their own unprovability, as investi-
gated by Gödel. Löb’s answer to this question was:
if PA ` Prov(pAq) −→ A, then PA ` A, which is
now known as Löb’s theorem. Löb formalized this
theorem as: PA ` Prov(pProv(pAq) −→ Aq) −→
Prov(pAq) (Löb, 1955). These expressions are in
regards to the formal arithmetic Peano Arithmetic
(PA), which will be briefly discussed later.

Combining these two influential points in pro-
viding a logical basis for provability, resulted in the
manifestation of GL. In GL, the concepts of prov-
ability are expressed using the modal box � and
diamond ♦ operators. The interpretation of the box
operator of modal logic is adapted from ‘it is neces-
sary in T that...’ to ‘it is provable in T that...’. Like-
wise, the diamond operator would be interpreted as
‘it is consistent in T that...’, or ‘it is not provable
in T that not...,’ as opposed to ‘it is possible in T
that...,’ where T is a sufficiently strong formal sys-
tem. The distinguishing element, making GL an ex-
tension of the normal modal logic K, is the addition
of the formalization of Löb’s theorem, expressed us-
ing the modal operators: �(�A −→ A) −→ �A. This

1



formula does not hold in K (Boolos, 1993).
Gödel and Löb focused their research on prov-

ability in formal arithmetical systems. For GL,
soundness and completeness are defined with re-
spect to Peano Arithmetic (PA). PA is a formal
mathematical system for which a provability predi-
cate Prov(x) can be defined. The function takes the
Gödel number of a formula, a numerical represen-
tation of a formula denoted as ‘pAq’. The function
Prov(x) can be read as ∃pProof(p, x), meaning the
Gödel number p codes a correct proof in PA of the
formula with Gödel number x. This is similar to
how one would interpret �A in GL; meaning that
A is provable in a sufficiently strong formal system,
in this case PA (Artemov, 2001; Verbrugge, 2017).

The satisfiability problem for the logic GL is,
similar to e.g. S4, which is known to be complete
in P-SPACE. This entails that there is a polyno-
mial p such that the set of theorems of GL is com-
putable in space p with respect to the length of the
formula (Ladner, 1977). Note that the polynomial
space is the upper bound. P-SPACE complete log-
ics can therefore be quite memory intensive, which
is part of the drive behind this research.

1.2 Research Question

In 2017, another student, Tim van Loo, designed
a tableau solver in GL (van Loo, 2017). In their
paper, it is mentioned that they faced numerous
memory issues. Part of the reason for this was that
the complete tableau had to persist during solving
in order for the solver to display the final tableau
to the user. Therefore, we will investigate whether
we can build a solver that will avoid these memory
limitations by applying both depth-first search, and
culling of closed branches. The research question is
as follows:

Can memory efficiency be improved of a tableau
solver for GL logic when compared to the bache-
lor’s thesis of Van Loo (2017) by applying depth-
first search and culling of closed branches?

Our hypothesis is that the combination of depth-
first search and branch culling will allow quick ter-
mination upon finding one open branch, and reduce
memory usage by removing all closed branches from
memory.

Alongside the solver, a procedural generator will
be designed to provide continuously growing formu-
las to the solver. In addition, to display the process

to the public, a Twitter bot is made which Tweets
every found tautology of GL. The Twitter bot can
be found at https://twitter.com/GL_LogicBot.

2 GL characteristics

This section will delve deeper into the specifics of
GL. We will cover the semantics and prove that
GL is both transitive and converse well-founded.
Aside from that, proofs for the modal soundness
and completeness of GL will be provided as well.

2.1 Semantics

As previously stated, GL is a propositional modal
logic. It is similar to the modal logic K in the
sense that all regular propositional operators are
also present in GL, as well as the contradiction
operator ⊥. Although the modal operators are in-
terpreted differently, the distinguishing factor that
extends GL from K is the addition of the axiom
�(�A −→ A) −→ �A.

The modal logic K is valid in all models I =
〈W,R, V 〉. However, due to the added Löb axiom,
GL is not. For GL to be sound and complete, the
relations R of GL are both transitive and converse
well-founded.

Transitivity entails that for all worlds w1, w2 and
w3 in W , if w1Rw2 and w2Rw3, then w1Rw3. As
with the logic K4, transitivity causes the formula
�A −→ ��A to hold (Rautenberg, 1983).

A converse well-founded relation is a relation in
which there are no infinite, ascending sequences.
An infinite sequence such as w1Rw2Rw3Rw4... is
thus not allowed. An added consequence of a rela-
tion being converse well-founded is that the relation
is irreflexive. A reflexive relation wRw can be in-
terpreted as a never-ending loop, or an infinitely
ascending sequence. As stated, this is not allowed,
thus the relation is inherently irreflexive (Solovay,
1976; Boolos, 1993; Verbrugge, 2017).

2.2 Semantic proofs

In this section, we provide the proofs of charac-
terizing transitivity for the formula �A −→ ��A
and of both the characterizing transitivity and
converse well-founded constraints for the formula
�(�A −→ A) −→ �A. These proofs are inspired

2

https://twitter.com/GL_LogicBot


by the paper by Solovay (1976) and the book by
Boolos (1993).

Transitivity Lemma: For all frames F ,
F = 〈W,R〉 satisfies �A −→ ��A iff R is
transitive. Proof: Assume that R is transitive. Let
w ∈ W where �A holds at w. We will now show
that ��A holds at w.

Suppose ��A does not hold at w. Then for some
x, wRx, �A does not hold at x. Then for some y,
xRy, A does not hold at y. However, due to tran-
sitivity and given wRx and xRy, wRy. Since �A
holds at w, it cannot be that A does not hold at y.
Therefore, R must be transitive. Thus, if �A holds
at w, ��A also holds at w. Therefore, for transitive
R, F ` �A −→ ��A.

Suppose now that the formula �A −→ ��A holds
in the frame F and that wRx and xRy where
w, x, y ∈W . We will show that wRy.

Let v be the valuation on W such that for
z ∈ W , v(A, z) = 1 iff wRz. Then v(�A,w) = 1
and v(��A,w) = 1 due to the assumption that
�A −→ ��A holds in F . Therefore, v(�A, x) = 1
since wRx and v(A, y) = 1 since xRy. The
latter confirms wRy as v(�A,w) = 1. Thus if
�A −→ ��A holds in all frames F = 〈W,R〉, iff R
is transitive.

Converse Well-Founded Lemma: The frame
F = 〈W,R〉 satisfies �(�A −→ A) −→ �A iff R is
both transitive and converse well-founded.

Proof: We start by showing that for a non-
empty set X with no R-greatest element, meaning
it is infinitely ascending. Let w ∈ X, and let
v be the valuation on W such that for every
a ∈ W , v(A, a) = 1 iff a /∈ X. We show that
�(�A −→ A) holds in w, thus F does not satisfy
�(�A −→ A) −→ �A.

Suppose wRx, where x ∈ W . Assume that A
does not hold in x, then x ∈ X. For some y ∈ X
and y ∈W where A does not hold in y, xRy. This
means that �A does not hold in x, thus we can
safely conclude that �A −→ A holds in x and since
wRx, �(�A −→ A) holds in w.

Since w ∈ X, for some x ∈ X, wRx and x ∈ W .
This means A does not hold in x, thus �A does not
hold in w. The combination of this and the fact that
�(�A −→ A) holds in w, contradicts that F satisfies
�(�A −→ A) −→ �A.

Suppose now that R is both transitive and con-
verse well-founded. Suppose also that for a given
valuation �A does not hold at w. Then let X be
the set of worlds where x ∈ X iff x ∈W , wRx and
A does not hold in x. Since �A does not hold at w,
for some y, wRy, A does not hold at y. This means
that y ∈ X by the characteristics of X, thus X is
non-empty and by the converse well-founded con-
straint, for some x ∈ X, xRz for no z ∈ X, else the
set has an infinitely ascending relation. Suppose for
world z, xRz. Since �A holds at w and wRx, by
transitivity also wRz, thus A holds at z, confirm-
ing z /∈ X. This also means that �A holds at x,
thus �A −→ A does not hold at x, thus by wRx,
�(�A −→ A) does not hold at w, thus it is safe to
conclude �(�A −→ A) −→ �A holds at w. There-
fore, for transitive and converse well-founded R, F
satisfies �(�A −→ A) −→ �A.

2.3 Tableau Rules

We will now provide the tableau rules, specific to
GL. From the chapter written by Goré (1998) and
the article by Rautenberg (1983), we find and de-
rive the tableau rules of GL for the modal opera-
tors.

For the box rule and the derived negated dia-
mond rule, the interpretation is similar to the in-
terpretation in K. It is important to note that from
�P we get �P in the reachable world as well. This
is an abbreviation of the transitivity constraint.
Additionally, note that from ♦P , ¬♦P is intro-
duced in the reachable world. This is an abbrevi-
ation of the converse well-founded constraint, pro-
hibiting infinitely ascending relations. The tableaux
are as follows:

1.
2.
3.
4.
5.

�P, i
irj

�P, j
P, j

1.
2.
3.
4.
5.

¬♦P, i
irj

¬♦P, j
¬P, j

Note that these rule are applied to each world
j on the branch, including worlds introduced after
the initial application of the box rule.

The negation of the box rule and diamond
rule are quite different from K due to the
Löb axiom that defines GL. It still holds that

3



�P ⇐⇒ ¬♦¬P . However, if we rewrite the Löb
axiom, we get the following (Goré, 1998):

�(�A −→ A) −→ �A

¬�A −→ �(�A −→ A)

♦¬A −→ ♦(�A ∧ ¬A)

Therefore, the tableau rules are as follows:

1.
2.
3.
4.
5.

¬�P, i

irj
�P, j
¬P, j

1.
2.
3.
4.
5.

♦P, i

irj
¬♦P, j
P, j

Note that the world j is introduced as a new
world to the branch.

Additionally, the transitivity rule (τ) is defined
as follows:

1.
2.
3.
4.

irj
jrk

irk

2.4 Soundness and Completeness

In this section, proofs are provided for the modal
soundness and completeness of GL, using methods
described in the book by Priest (Priest, 2001). GL
has also been proven to be arithmetically complete
with PA, which means that GL ` A if and only if
for all interpretations f , PA ` f(A). This means
that every formula that is valid in PA is a theorem
of GL (Solovay, 1976).

2.4.1 Modal Soundness

The proof for modal soundness is an adaptation of
the proof of soundness of basic modal logic (Priest,
2001).

Definition: Let I = 〈W,R, v〉 be any GL inter-
pretation and let b be any branch of the tableau.
Then I is faithful to b iff there is a map, f , from
the natural numbers to W such that:

For every node A, i on b, A is true at f(i) in I.
If irj is on b, f(i)Rf(j) in I.

We say that f shows I to be faithful to b.

Soundness Lemma: Let b be any branch of
a tableau, and I = 〈W,R, v〉 be any transitive,
converse well-founded interpretation. If I is faithful
to b, and a tableau rule is applied to it, then it
produces at least one extension b′, such that I is
faithful to b′.
Proof: Let f be a function which shows I to be
faithful to b. The proof will be constructed in a
case-by-case manner for both the box � and di-
amond ♦ rules, including their negations, as well
as the transitivity rule. We will show that the the
branches b′ resulting from the GL tableau rules are
faithful to I. The regular propositional operators
are excluded in the proof due to them being simi-
lar to K, which is both sound and complete.

Suppose �A, i occurs on b and we apply the GL
rule as defined in Section 2.3. Since b is faithful
to I, we know that �A, i is true at f(i). Then for
any irj on b, where f(i)Rf(j) holds, we have both
�A, j and A, j on an extension b′. Since �A is true
at f(i), we can conclude from transitivity of I that
�A is also true at f(j) and by definition of the �-
rule, we can conclude that A is also true at f(j).
Therefore, I is faithful to the extension b′ of the
branch.

Suppose ¬♦A, i occurs on b. We can then rewrite
this through the normal modal rule for ¬♦ and ex-
tend the branch with �¬A, i. Since I is faithful to
b, ¬♦A is true at f(i). Hence, �¬A is true at f(i).
Thus I is faithful to the extension of b.

Suppose ♦A, i occurs on b and we apply the GL
rule for ♦ as defined in Section 2.3. The rule yields
the nodes irj, ¬♦A, j and A, j. Since b is faithful
to I, ♦A is true at f(i). Therefore, for some w ∈
W , f(i)Rw and A is true at w. By converse well-
foundedness of I, this is the last such w. Let f ′ be
the same as f , except that f ′(j) = w. Note that
f ′ also shows that I is faithful to b, since f and
f ′ differ only at j, which does not occur on b. By
definition, f ′(i)Rf ′(j) and A is true at f ′(j). Also
the sentence ¬♦A is true at f ′(j). Therefore, f ′

shows I to be faithful to the extended branch.
Similar to the negation of the ♦-rule, suppose

¬�A, i occurs on b. We can the apply the normal
modal rule for ¬� and extend the branch with the
sentence ♦¬A, i. I is faithful to b, thus ¬�A is true
at f(i). Therefore, ♦¬A is true at f(i) and I is
faithful to the extension of b.

4



Now suppose that both irj and jrk occur on b.
Since I is faithful to b, f(i)Rf(j) and f(j)Rf(k).
Due to R being transitive as is required by GL,
f(i)Rf(k). Thus I is faithful to the extension of b.

Soundness Theorem: If GL ` A then GL � A.

Proof: Suppose GL 2 A. Then there is an in-
terpretation I = 〈W,R, v〉, which is transitive and
converse well-founded, that makes every premise
true, but A false in some world w. Let f be any
function such that f(0) = w, which shows I to be
faithful to the initial list. By repeated application
of the Soundness Lemma, we continuously find at
least one extension to which I is faithful, resulting
in a whole branch b such that I is faithful to every
initial section of it. Thus I is faithful to b itself.
If b were to be a closed branch, there must be
some contradiction within the branch, which is
not possible since I is faithful to b. Therefore, the
tableau is open, or GL 0 A.

2.4.2 Modal Completeness

The proof for modal completeness is also an
adaptation of the proof of completeness of basic
modal logic (Priest, 2001).

Definition: Let b be an open branch of a tableau
and I = 〈W,R, v〉 be the interpretation induced by
b as follows: W = {wi : i occurs on b}. wiRwj iff
irj occurs on b. If p, i occurs on b, then vwi(p) = 1;
if ¬p, i occurs on b, then vwi(p) = 0. Otherwise
vwi

(p) is arbitrary.

Completeness Lemma: Let b be any open
complete branch of a tableau. Let I = 〈W,R, v〉
be the interpretation induced by b. Then for all
formulas A:

if A, i is on b then A is true at wi

if ¬A, i is on b then A is false at wi

Moreover, R is both transitive and converse
well-founded.

Proof: We will prove the completeness lemma
by induction on the complexity of A.

Base step: If sentence A is atomic, the result is
true.

Inductive Hypothesis: Suppose we have two

arbitrary formulas B and C where:

if B, i is on b then B is true at wi

if ¬B, i is on b then ¬B is true at wi

if C, i is on b then C is true at wi

if ¬C, i is on b then ¬C is true at wi

Inductive Step: We will only discuss the modal
operators as these differentiate GL from the normal
modal logic K. The logic K is proven to be both
sound and complete (Priest, 2001).

Suppose that A is of the form �B. If �B, i is on
b, then for all j such that irj is on b, �B, j and
B, j are on b. Thus for all wj such that wiRwj ,
�B and B are true at wj by inductive hypoth-
esis. Therefore, �B is true at wi, as is required.
There is, however, a situation where the applica-
tion of the �-rule could also cause a new world to
be introduced. If B = ♦C, then we rewrite �B, i
as �♦C, i. This means that for all wj such that
wiRwj , �♦C, j and ♦C, j are on b, and with the ♦-
rule introducing a new world, this could end in an
infinite branch. From Section 2.3 we observe that
applying the rule for ♦C, j results in a new world
wk such that wjRwk, as well as a formula ¬♦C, k
and C, k. The formula �♦C, j results in �♦C, k
and ♦C, k. The latter contradicts with its negation
resulting from the diamond rule, hence the branch
will close and there will be no infinite branch.

The same holds for the situation where A is in
the form ¬♦B, since ¬♦B ⇔ �¬B.

Suppose that A is of the form ♦B. If ♦B, i is on
b, then for some j, irj, ¬♦B, j and B, j are on b. By
inductive hypothesis, wiRwj , ¬♦B and B are true
at wj . Therefore, ♦B is true at wj as is required.
However, as with the �-rule, we must also inves-
tigate whether a formula that introduces another
new world could cause an infinite branch. For the
formula ♦B, i to possibly introduce infinitely many
new worlds, B must be infinitely long itself, i.e.:
B = ♦♦♦...♦C. This is not possible, hence there
will be no infinite branch.

The same holds for the situation where A is in
the form ¬�B, since ¬�B ⇔ ♦¬B.

Although the absence of infinite branches proves
converse well-foundedness, we must still prove
transitivity. This is done with the τ -rule. Given
wi, wj , wk ∈ W , suppose that wiRwj and wjRwk

Then both irj and jrk occur on branch b. By the
τ -rule of Section 2.3, irk then also occurs on b.

5



Therefore, wiRwk as required for transitivity.

Completeness Theorem: If GL � A then
GL ` A.

Proof: Suppose that GL 0 A. Given an open com-
plete branch b of the tableau, take I = 〈W,R, I〉 to
be the induced interpretation. Then by the com-
pleteness lemma, not only GL 2 A, but also the
countermodel I is of the right kind: transitive and
converse well-founded, both by the completeness
lemma.

3 Design Choices

There are two major components to this project:
an algorithm that procedurally generates formulas
in GL and a tableau solver that checks the validity
of said formulas. In addition, an algorithm respon-
sible for tweeting theorems of GL is implemented.
For the design choices we will discuss each compo-
nent separately. (Source code available at https:

//github.com/JHvanG/GL-tableaux-solver)

3.1 Generator

For the generator, there are a few important ele-
ments that must be considered. Firstly, the gener-
ator must know the syntax of GL and its represen-
tation within the system. Secondly, we want each
generated formula to be unique. The reasoning be-
hind this is that the aim of this system is to produce
unique tautologies in GL, which are then supplied
to the Twitter bot. The process of validity checking
will be rather resource intensive, as was encoun-
tered in the bachelor’s thesis by van Loo (2017),
hence duplication of formulas should be avoided.
To obtain unique formulas, we will adhere to a spe-
cific structure of building the formulas.

The chosen structure for building formulas re-
lies on the reusability of older formulas. The gen-
eration of the formulas is based on a complexity
constraint, which limits the number of connectives
in the formulas. The complexity constraint is in-
cremented by one as soon as all formulas within a
complexity level are completed and all these for-
mulas are stored. For the complexity of 0, only the
atoms ‘A’, ‘B’ and ‘⊥’ are generated and stored. We
have opted to include two atoms and the contradic-

tion due to the fact that we aim to compare with
the bachelor thesis by van Loo (2017), in which the
most complex formulas consist of combinations of
all connectives and these three atoms. For complex-
ity 1 each connective will be included once. For the
binary connectives all valid, unique combinations
of the atoms from complexity 0 are used.

Any complexity higher than 1 will apply all
unary connectives to the complexity below it. In ad-
dition, the generator iteratively covers all possible
combinations of the complexities below it. For ex-
ample, a complexity of 2 will cover the combination
of the formulas with complexity 0 and 1, as well as
the combination of the formulas with complexity 1
with themselves. In other words, for complexity N ,
the combinations are [0, N−1] up to [N−1, N−1].
In this manner, the syntax of GL will automatically
be adhered to through the structure of the code. It
is important to remember the equivalence between
e.g. A∧B and B ∧A, and the non-equivalence be-
tween A→ B and B → A. Note that our algorithm
does include all combinations with its own complex-
ity, thus both A ∧ B and B ∧ A in complexity 1.
This decision is made to keep the structure of the
generation algorithm clean and simple. However,
for combinations with a different complexity, only
the implications are generated both ways. This is
done in an attempt to keep the number of logically
equivalent formulas down.

We have opted for an object-oriented approach
to the problem. This allows each connective to be
its own instance of its respective subclass from the
main formula class. The main formula class will
contain all parameters and methods that are re-
quired for every type of connective. The construc-
tor of the individual connectives controls the proper
setting of the parameters, and any connective-
specific methods will be included in the subclasses.
All connectives are set to be the size of one char-
acter so that the length of the formulas can be cor-
rectly monitored:

• ¬ as ~

• ∧ as &

• ∨ as |

• → as >

• ↔ as =

• � as +

• ♦ as -

• ⊥ as #

Naturally we cannot run the generator infinitely.

6

https://github.com/JHvanG/GL-tableaux-solver
https://github.com/JHvanG/GL-tableaux-solver


For one, because a point will be reached where the
formulas are simply be too long for the solver to
handle them. But more importantly, since part of
this thesis is to build a Twitter bot to post all tau-
tologies to, the length will eventually be limited by
the maximum character count for a Tweet. This
limit is 280 characters, hence this limit will be ad-
hered to for the maximum formula length, including
all brackets.

As mentioned above, the program will be object-
oriented. For this reason, the decision was made
to design the program in Python 3. Aside from
the simple implementation of object-oriented prin-
ciples, Python offers a rather simplistic develop-
ment environment and has a wide range of libraries
and tools available. This allows for a quick process,
simple code and, at the end, straightforward imple-
mentation of a Twitter bot.

3.2 Solver

The solver is the main algorithm around which this
project revolves. It is designed to determine the va-
lidity of a provided formula in GL, which is pro-
duced by the generator. As a reminder, each for-
mula is solved by inputting the negated formula
and attempting to close all branches. To achieve
this, all tableau rules for GL must be known to
the algorithm. As stated above, each connective is
represented as its own subclass of the formula class.
Within these classes, two methods are implemented
which apply the tableau rule for the connective, and
the tableau rule for its negation. The rules for the
negations are called by the rule-application method
of the negation class.

The choice is made to include each rule, instead
of running a simplification algorithm to rewrite
a formula to be, for example, in negated normal
form (NNF). This decision is made because both
from the bachelor’s thesis by van Loo (2017) and
research by Goré and Kelly (2007) into tableaux
solvers for GL, it was concluded that there was no
consistent advantage to rewriting each formula to
either be in NNF, to have only ¬, � or ∨, or other
manners of rewriting.

Recall the research question for this thesis: Can
memory efficiency be improved of a tableau solver
for GL logic when compared to the bachelor’s the-
sis of Tim van Loo (2017) by applying depth-first
search and culling of closed branches?

When investigating the research by van Loo
(2017), it becomes clear that the memory issues
originated from the fact that the aim was to dis-
play the entire search tree of a valid formula in GL,
solved as a human would. This could, in some cases,
result in excess to 9 million nodes and 400 thousand
worlds, or even in RAM issues. Therefore, the con-
cept to be tested is whether a solver without the
need for an output proof tree can avoid the mem-
ory issues. An example of such a GL tableau solver
where there were no memory issues reported can be
found in a report by Goré and Kelly (2007), where
different approaches to rewriting rules and reduc-
ing the number of rules could improve processing
speed. The aim for this research, however, is to sim-
ply keep all original rules and apply heuristics to
improve memory efficiency: depth-first search and
culling of closed branches.

Depth-first search is chosen due to its memory ef-
ficiency when compared to breadth-first search, in
the situation where an early open branch is found.
Since we are interested in solving the formula as fast
possible, we do not need to fully expand out other
branches when we find an open, complete branch.
A single open branch already indicates that the for-
mula is not valid in GL, hence no further branches
are required.

When a branch closes, depth-first search does not
yield a real advantage due to the need of investigat-
ing the remaining branches in an attempt to find an
open branch. In such situations, we can trim away
each closed branch to conserve valuable memory.
Again, because we have no interest in conserving
the entire tableau.

To keep track of the branch of interest, a Python
list will be used in which the formulas on the branch
are stored. It is crucial that each sub-branch is
aware of all rules that are left to be applied from
the branches above it. The reason for this is that
with depth-first search, not all rules will be applied
to all branches concurrently. To mitigate this, the
branches are added as lists within the list repre-
senting the current branch. Once the solver reaches
the branch and prepares to enter it, all unapplied
formulas are copied over to the new branch. This
copy must be a deep copy to avoid the possibility
of having a reference to the same object in mul-
tiple sub-branches, instead of the actual object,
and having an edit on one branch be transferred
to all other branches. To conserve some memory

7



with the deep copies, we remove the data from the
current branch when it is copied over to a single
remaining sub-branch. Due to the converse well-
founded constraint of GL, infinite branches do not
exist, although there might be extreme cases where
a tableau will exceed Python’s memory limit.

The aim of the solver is to close branches as
quickly as possible. Therefore, checking for contra-
dictions, as well as the ordering of the branch is
crucial. Each time a new rule is applied, a check
is made whether the resulting formulas are already
present on the branch, and whether there is a con-
tradiction. The check for duplicates is done to con-
serve memory. If a contradiction is found, either
within the rules to be applied, or within the set
of already applied rules, the branch immediately
closes.

For the ordering, the goal was to avoid splitting
the branch for as long as possible. To achieve this,
the different formula classes are sorted into ranks,
where the lower ranks occur earlier on the branch.
The following ranking system was chosen:

Rank 0: ⊥
Rank 1: ∧,¬∨,¬ −→,¬¬,¬�,¬♦
Rank 2: �
Rank 3: ♦
Rank 4: Branch
Rank 5: ∨,¬∧,−→,↔,¬ ↔
Rank 6: Atoms, ¬ Atoms
Rank 7: �, applied to all relations

This ranking system means that a contradiction
(⊥), if present, will immediately close the branch.
Next all rules not involving branching or worlds are
applied, as they are considered to be more easy for
the system. Note that for each rule, the shortcut
for its negation is directly applied, except for the
�- and ♦-rules. Next, the �-rule is applied to all
available relations. This is done before the ♦-rule is
applied, since this will introduce new worlds and re-
lations. Once a �-rule is applied, it is marked as ap-
plied to all relations, meaning it will not be applied
again, until a new relation is added to the branch.
The next rules are the branches, if present. These
are situated ahead of all other branching functions
to prevent a possible situation where the system
could add more than two branches, violating the
structure of a tableau. Last in the order are the
atoms, negated atoms and applied �-rules. If rules

from this rank are encountered, the system knows
all possible rules have been applied and the branch
is open and complete.

As mentioned above, for all rules, except the �-
and ♦-rules, the methods applying the negations
of the rules are applied immediately. For example,
the negation of the disjunction will introduce both
formulas in the disjunction as negations directly to
the branch. The reasoning behind not applying the
shortcuts to ¬� and ¬♦ is that the negation of
the �-rule would immediately introduce a new rela-
tion to the tableau, which we are actively trying to
avoid by the aforementioned ordering. It is there-
fore much simpler to merely introduce the ♦ and
reorder the branch.

3.3 Twitter bot

The Twitter bot is designed using the Tweepy li-
brary for Python. Every time the solver finds a tau-
tology, it passes the formula over to the Twitter
bot. The Twitter bot is set to tweet new tautolo-
gies at an interval of three hours. If a new tautology
is received before the three hours have passed, the
system sleeps. As soon as the system tweets a new
tautology, the bot resets its timer and the system
goes on to find a new tautology. This leaves the
system with three hours to find a new tautology,
which should be plenty. If the system were to sur-
pass the three hour mark, the new tautology will
be tweeted immediately. In this case, the next tweet
will be made three hours from the last tweet. The
tweeter runs indefinitely as a background process
on a Raspberry Pi 4.

4 Experiments

As mentioned before, the main aim of this research
is to investigate the memory efficiency of our GL
tableau solver. To achieve this, the tracemalloc li-
brary for Python is used. This library traces all
memory allocations (in bytes) for a specified sec-
tion of code and returns the peak memory usage.
The peak memory usage is measured to determine
the maximum strain of the solver on the system.
We start the tracing of memory allocation from the
moment a new formula is presented to the solver,
until the moment the solver is done.

In addition to measuring memory usage, we keep

8



track of the processing time using the Python li-
brary timeit. Although computation time is rather
system dependent, it is useful for comparison
within the system. Since the generator always pro-
duces formulas in the same order, we measure time
and memory usage individually on separate trials
to avoid one measurement influencing the other.

The system on which the experiments are per-
formed runs on Windows 10, has 8GB of RAM
and has a quad-core 2.80 GHz processor. Although
the system tweets each found tautology to its own
Twitter page, this is not done during data gath-
ering. This is done to avoid delays caused by the
Twitter API.

To determine the correctness of the system, both
targeted tests on the solver, and a complete system
test were performed.

4.1 Solver test

For the isolated tests on the solver, a variety of for-
mulas was provided to the algorithm. First, both
a test of correct application of the transitivity and
converse well-founded constraints are tested. These
constraints are tested with the formulas �A −→
��A and �(�A −→ A) −→ �A.

Alongside the two characterising formulas for
GL, a number of small formulas are presented to
the solver. In these formulas, we use all connectives
to test whether they function correctly. These for-
mulas are handpicked such that they are solvable
by hand to verify the steps taken by the solver.
These formulas can be found in Table A1 of the
Appendix.

Alongside the handpicked formulas, the set of for-
mulas in the appendix of the thesis by van Loo
(2017) is used as well, cross-referencing the valid-
ity of the formulas. This is a set of eight formula’s.
Note that the eighth formula in this set contains
atoms that start out at different worlds. Our sys-
tem is unable to handle such atoms, hence this
formula is replaced by a larger, more complex for-
mula. This formula contains more than 146 charac-
ters, brackets included. Additionally, the formula
contains more conjunctions, which will cause the
tableau to branch when negated. Splitting a large
tableau more often means more memory consump-
tion, which will test the memory efficiency of the
system. The full set of test formulas can be found
in Table A2 of the Appendix.

4.2 System test

For the complete system test, the generator and
solver are run together. Each time the generator
finds a new formula, the formula is handed to the
solver which then determines the validity of the for-
mula. The system produces and evaluates formulas
at a rather high rate of speed: running the system
for 5 minutes yielded almost 40000 validated tau-
tologies. To keep the number of data points control-
lable, the decision is made to only store the memory
and time data for the tautologies. An added benefit
of this decision is that since there are less tautolo-
gies than invalid formulas in GL, the data covers
a larger range of formula lengths within the same
time. To gather the data, the system is run for half
an hour, both for the memory measurement and
the time measurement.

5 Results

With all tests completed, we can now analyze the
performance of the solver and the complete sys-
tem. As mentioned in the Experiments section, the
solver was tested on a handpicked set of formulas
(Table A1 in the Appendix) and a set of formulas
used to test the system of van Loo (2017) (Table
A2 of the Appendix).

First and foremost, the transitivity formula
�A −→ ��A and the GL formula �(�A −→ A) −→
�A are both evaluated correctly as tautologies.
This gives a first indication that the logic and its
constraints are modeled correctly. The solving time
for both formulas is almost identical, with the tran-
sitivity formula taking 43.5µs and the GL formula
taking 46.8µs. The solver uses 23.048kB for the
transitivity formula, and 36.336kB for the GL for-
mula.

Aside from these two formulas, the other formu-
las in the handpicked test set are also evaluated cor-
rectly. This was determined by checking the eval-
uation of the solver with the full tableau of each
formula. Within this first test set, the highest peak
memory usage was a total of 40.36kB for the for-
mula ��♦(A ↔ A) ∧ ��♦�♦(A ∧ ¬A). This for-
mula also had the highest solving time of 1.23ms
and was correctly evaluated as invalid.

The lowest peak memory usage was measured
for the formula ¬⊥, with the peak at 5.96kB. This

9



formula was not solved in the shortest time, as it
took the solver 0.205ms. The shortest solving time
was 41.2µs, for the formula A −→ A. This suggests
that the solver is almost five times slower in solv-
ing the least memory intensive formula, compared
to A −→ A.

However, as stated before, the time measure is
not entirely accurate, meaning the measurements
not only vary from system to system, but also be-
tween tests on the same formula. Therefore, small
differences should not be taken as being the full
truth. On the other hand, memory usage is inde-
pendent of variance within the system on which the
solver is tested. This means the memory measure-
ments are consistent across multiple tests with the
same formulas, making for a more accurate data
source for comparisons of formulas. The full results
of the tests are included in Table A1 of the Ap-
pendix.

For the set of formulas that were also included
in the thesis of van Loo (2017), all evaluations are
correct. The eighth formula in the test set is a theo-
rem of GL, and is a disjunction of the sixth and the
seventh formula, where a number of disjunctions
of the seventh formula are replaced with conjunc-
tions for added complexity. The formula was specif-
ically added to investigate what would happen to
the solver on a very memory-intensive formula. The
formula resulted in no answer within reasonable
time. However, the formula also did not produce
any out-of-memory errors. In fact it did not pro-
duce an error at all. Instead, the system was left
running for more than half an hour, continuously
traveling further down the tableau, but not at suf-
ficient speed to find the answer within reasonable
time.

The other seven formulas, which also produced
no memory issues in the thesis of van Loo (2017),
all produce their answer in less than a half a second.
The slowest evaluation time was 0.292s. This was
for the formula �(A ↔ (�(A ∨ �⊥) −→ �(A −→
�⊥))) −→ �(A ↔ (���⊥ −→ ��⊥)), which also
had the highest peak memory usage of 963.852kB.

The time and memory results of the complete
system test are shown in Figure 5.1 and 5.2, respec-
tively. Both time and memory are plotted against
the formula length in characters, including brack-
ets. As mentioned before, the data is gathered over
half an hour of running the system. Due to mem-
ory tracing slowing down the program, a total of

Figure 5.1: This scatter plot shows the com-
putation time of the solver in seconds, plotted
against the formula length in characters.

Figure 5.2: This scatter plot shows the peak
memory usage of the solver in Bytes, plotted
against the formula length in characters.

533, 239 tautologies are found for the memory data.
The time data has 735, 057 tautologies.

Figure 5.1 shows that the majority of tau-
tologies are evaluated within 0.025s. The mean
solving time is 0.0003172134s and the median is
0.0002249s. Two formulas of length 12 and 16 take
slightly longer than median, with 0.0296812s and
0.0321263s respectively. The formula of length 12
is ⊥ ∨ (�A ∨ (B ↔ B)) and the formula of length
16 is ((B ↔ B) ∨ ♦A) −→ (A ↔ A). The mean
is influenced heavily by the apparent outlier at a
length of 19 characters, where solving the formula
(B ∨ A) ∨ ((A ∧ B) ∨ (⊥ −→ ⊥)) takes 0.1967872s.
The peak memory usage for solving this formula
was 6.44kB. We can observe a slight upward trend
in computation time as length increases. The higher

10



lengths have less data points due to the data gath-
ering stopping after half an hour.

Figure 5.2 shows that the distribution of the peak
memory usage against the formula length is some-
what different from the computation time distri-
bution. It should be noted that, again, the data is
gathered over half an hour, which means that the
longer formulas that are generated later on are not
all in the data set. Moreover, the memory gather-
ing slows down the system, meaning that the longer
formulas that are present in the data set of the solv-
ing time are not present in the memory data set.

From the figure, we can observe that for the ma-
jority of tautologies, the solver has a peak mem-
ory usage of less than 20kB. The mean is 2.27kB
and the median is 1.256kB. This indicates that the
mean is influenced by the set of high peak mem-
ory values at length 11. The highest memory usage
is for the formula �((A ↔ A) ∨ �A), which uses
33.2kB of memory at its peak. Solving this formula
took 0.0042849s.

6 Conclusion

Recall the research question: Can memory effi-
ciency be improved of a tableau solver for GL logic
when compared to the bachelor’s thesis of Tim
van Loo (2017) by applying depth-first search and
culling of closed branches? The hypothesis was that
by applying depth-first search and culling of closed
branches, memory usage is reduced due to simple
solutions being found faster and closed branches
being removed from memory.

From the results, we can conclude that we did
indeed improve memory efficiency. Although a di-
rect memory usage comparison was not possible,
the fact that in both the solver test set (Appendix
Table A1 and A2) and the complete system test no
out-of-memory errors were encountered, suggests
that memory efficiency has improved compared to
the system of van Loo (2017).

As mentioned before, both the time and peak
memory usage plots show an upward trend as for-
mula length increases. The trend for the peak mem-
ory usage is much less clear, especially as formula
length increases. We must consider the fact that
there are approximately 200, 000 tautologies more
in the time data set when compared to the mem-
ory data set. Those formulas are of a larger length,

hence the larger formulas are somewhat underrep-
resented in the memory usage plot. Given this, we
can conclude that a larger memory consumption
indicates a longer processing time, although the re-
lation is not one-to-one.

The last formula in the Appendix in Table A2,
which the system was unable to solve in reason-
able time, consolidates the conclusion that mem-
ory issues have been resolved. The formula has
been made complex on purpose, adding additional
conjunctions which forces branching of the system
when negated. Branching increases the memory us-
age, as unapplied rules have to be copied over to
both branches, doubling the space required. The
fact that within half an hour, the system did not
produce any out-of-memory errors, suggests that
the memory issues have been resolved.

However, the very long solving time does indicate
that the memory issue is replaced by a slower pro-
gram. This trade-off will not be troublesome, as it
is plenty sufficient for the final goal of the system.
With the majority of the first 700, 000 tautologies
each being solved within 0.025s, thus more than
a million formulas in GL being evaluated within
half an hour of running the system, the slower solv-
ing time for large formulas will not be noticed. Es-
pecially considering that the theorems of GL are
tweeted at an interval of three hours, meaning the
set of tautologies after running the system for half
an hour provides us with enough tautologies for
more than 200 years to come.

7 Discussion

Before delving into the discussion, it should be
noted that in the current solver the τ -rule is (un-
necessarily) applied. This might have helped in im-
proving the speed of solving some formulas, and
it could make adaptation to a different transitive
modal logic slightly easier. However, it might have
also increased computation time by postponing the
finding of a contradiction due to investigating more
worlds. This is something that is worth investigat-
ing for future research.

Reflecting on the process of developing the
tableau solver, there are some points of delibera-
tion. Firstly, the method of storing branches can
be subject for discussion. Secondly, the question
can be asked whether an object-oriented approach

11



is necessary or suited.
The current method used for storing branches

utilises Python lists. This method has the advan-
tage of having access to the basic list operations,
as well as list comprehension methods in Python.
Alternatively, the branches could be represented as
instances of a branch object, or even as a node ob-
ject as done in the thesis of van Loo (2017). This im-
plementation would make the system more object-
oriented as a whole, but requires the basic list meth-
ods to be represented as functions in the object. It
does have the advantage of being able to move some
of the custom list operations, such as ordering, to
the respective object. This allows for a cleaner sep-
aration of functionality within the code. Represen-
tation of the tableau will also be simplified, as sub-
branches will no longer be present among other for-
mulas, and checking for them is easier.

Opposing this, one could beg the question
whether an object-oriented approach is necessary.
In light of memory efficiency, it might be more ef-
ficient to not have to instantiate every connective
as an object. This is very much possible, but would
mean that each tableau rule for every connective
has to be stored as a separate function, called based
on what character is encountered. One of the ma-
jor challenges with a non-object-oriented approach
is how to represent nested connectives. This means
that, although it would be an interesting compar-
ison, representational difficulties are likely higher
with non-object-oriented approaches.

A possible issue for the complete system is a sit-
uation in which it encounters a formula such as the
eighth formula in Table A1 of the Appendix. This
formula is not solvable within reasonable time. In
the current situation, the formula is encountered
during testing, rather than during running of the
final system. Given the large number of tautolo-
gies, the system will not encounter such a formula
realistically. However, in the event that it does, it
currently keeps running. To prevent this, the sys-
tem can be stopped prematurely, e.g. by a set time
limit. The disadvantage of such a predefined limit is
that with larger formulas, more complex tableaux
arise as well. These naturally have to be processed
for longer, as visible from the time data (Figure
5.1). Therefore, it could be interesting to investi-
gate whether one could base the time limit of com-
putation on either the formula length, or the for-
mula complexity.

Another interesting comparison could be with a
similar system in a different language. Python is
well-known as not being efficient, both with respect
to time and with respect to memory. The reason
for this is that Python is an interpreted language,
rather than a compiled language. Although slower,
this makes Python functions generally shorter and
this simplifies things for the programmer. These
points, combined with Python experience deter-
mined the choice of language for this thesis. How-
ever, implementing the system in a language such
as Java, C++, or even C, could make for a faster
system. A performance comparison could be inter-
esting, especially for formulas of higher complexity.

References

S.N. Artemov. Explicit provability and constructive
semantics. The Bulletin of Symbolic Logic, 7(1):
1–36, 2001.

G. Boolos. The Logic of Provability. Cambridge
University Press, 1993.

R. Goré. Tableau methods for modal and temporal
logics. In M.D. Agostino, D. Gabbay, R. Hähne,
and J. Posegga, editors, Handbook of Tableau
Methods. Kluwer, Dordrecht, 1998.

R. Goré and J. Kelly. Automated proofsearch in
Gödel-Löb provability logic. In British Logic Col-
loquium 2007, 2007.

R.E. Ladner. The computational complexity of
provability in systems of modal propositional
logic. SIAM Journal on Computing, 6(3):467–
480, 1977.

M.H. Löb. Solution of a problem of Leon Henkin.
The Journal of Symbolic Logic, 20(2):115–118,
1955.

G. Priest. An Introduction to Non-Classical Logic.
Cambridge University Press, 2001.

W. Rautenberg. Modal tableau calculi and inter-
polation. Journal of Philosophical Logic, 12:403–
423, 1983.

C. Smorynski. Modal logic and self-reference. In
D.M. Gabbay and F. Guenthner, editors, Hand-
book of Philosophical Logic, 2nd Edition, vol-

12



ume 11, pages 1–53. Springer Science + Business
Media, B.V., 2004.

R.M. Solovay. Provability interpretations of modal
logic. Israel Journal of Mathematics, 25:287–304,
1976.

Tim van Loo. A tableau prover for GL provability
logic. BSc thesis AI, University of Groningen,
2017.

Rineke (L.C.) Verbrugge. Provability Logic. In Ed-
ward N. Zalta, editor, The Stanford Encyclopedia
of Philosophy. Metaphysics Research Lab, Stan-
ford University, fall 2017 edition, 2017.

13



A Appendix

A.1 Test set 1

Formula Evaluation Memory (Bytes) Time (seconds)
�A −→ ��A valid 23048 0.0000435
�(�A −→ A) −→ �A valid 36336 0.0000468
¬A ∨A valid 6696 0.000415
A −→ A valid 6864 0.0000412
¬⊥ valid 5960 0.000205
(A ∧B) ∨ (¬A ∨ ¬B) valid 7648 0.00108
♦A −→ ¬⊥ valid 6640 0.0000787
�(♦⊥ −→ (A ∧A)) valid 25032 0.000435
(A ∨A)↔ (⊥ ∨A) valid 20240 0.000357
A ∧ ¬A invalid 7768 0.0000587
A ∨A invalid 7144 0.0000495
��A invalid 31032 0.000762
(A ∨ ¬A) ∧ ((¬⊥ ∧ ¬⊥) ∧A) invalid 12152 0.000249
(⊥ ∧⊥) ∨ ((A ∨A)↔ (B ∨B)) invalid 27864 0.000630
♦A −→ ¬B invalid 15736 0.000236
��♦(A↔ A) ∧��♦�♦(A ∧ ¬A) invalid 40360 0.00123

A.2 Test set 2

¬(A↔ B)
Evaluation: invalid Memory (Bytes): 12624 Time (seconds): 0.000168

¬(�A ∧ ♦¬A)
Evaluation: valid Memory (Bytes): 17456 Time (seconds): 0.000343

¬(�A↔ ♦¬A)
Evaluation: valid Memory (Bytes): 21936 Time (seconds): 0.00120

�A↔ ♦¬A
Evaluation: invalid Memory (Bytes): 17456 Time (seconds): 0.000320

�(A↔ (���⊥ −→ ��⊥))
Evaluation: invalid Memory (Bytes): 189589 Time (seconds): 0.0105

�(A↔ (�(A ∨�⊥) −→ �(A −→ �⊥))) −→ �(A↔ (���⊥ −→ ��⊥))
Evaluation: valid Memory (Bytes): 963852 Time (seconds): 0.292

(((((�(�A ∨�♦¬A) ∨ ♦�⊥) ∨ ♦(�A ∧ ♦♦¬A)) ∨ ♦(�♦A ∧ ♦♦�¬A)) ∨ ♦(�A ∧�¬A)) ∨ ♦(�(�¬A ∨A)
∧♦♦(♦A ∧ ¬A))) ∨ ♦(�(♦¬A ∨A) ∧ ♦♦(�A ∧ ¬A))
Evaluation: valid Memory (Bytes): 195541 Time (seconds): 0.0375

((((((�(�A ∨�♦¬A) ∨ ♦�⊥) ∨ ♦(�A ∧ ♦♦¬A)) ∧ ♦(�♦A ∧ ♦♦�¬A)) ∨ ♦(�A ∧�¬A)) ∧ ♦(�(�¬A ∨A)
∧♦♦(♦A ∧ ¬A))) ∨ ♦(�(♦¬A ∨A) ∧ ♦♦(�A ∧ ¬A))) ∨ ¬(�(A↔ (�(A ∨�⊥) −→ �(A −→ �⊥))) −→ �(A↔
(���⊥ −→ ��⊥)))
Evaluation: - Memory (Bytes): - Time (seconds): -

14


	Literature Review
	Background
	Research Question

	GL characteristics
	Semantics
	Semantic proofs
	Tableau Rules
	Soundness and Completeness
	Modal Soundness
	Modal Completeness


	Design Choices
	Generator
	Solver
	Twitter bot

	Experiments
	Solver test
	System test

	Results
	Conclusion
	Discussion
	Appendix
	Test set 1
	Test set 2


