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Abstract: This paper evaluates the performance of the Generative Residual Convolutional Neu-
ral Network (GR-ConvNet), proposed by Kumra et al. (2020), as a grasp inference method. The
performance is evaluated by testing the network’s predictive accuracy on a subset of the Cor-
nell grasping dataset, and by conducting several rounds of the isolated, pack, and pile grasping
experiments, as proposed by Kasaei et al. (2021), using a UR5e robotic arm. For this purpose,
a simulation was developed in PyBullet (Coumans et al., 2020). The GR-ConvNet achieved an
accuracy of 97.7% on the Cornell grasping dataset. A grasping success rate of 91.9%, 73.2%, and
55.2% was achieved, and a target success rate of 91.9%, 73.2%, and 55.2% was achieved for the
isolated, pack, and pile experiments respectively.

1 Introduction

Humans have to ability to quickly grasp and ma-
nipulate a wide variety of objects, regardless of
whether they are complexly shaped, are only partly
visible, or are situated in various clutter and oc-
clusion environments. In recent years, there has
been an increasing interest in the deployment of
robots in human-centric environments. Whereas in-
dustrial settings mostly require repetitive grasping
tasks, human-centric environments demand a more
human-style grasping strategy that can adapt to
various grasping scenarios, as previously described.
Much research in this field has been done, and nu-
merous methodologies have proven to be success-
ful in a variety of grasping tasks, as demonstrated
by Kasaei and Kasaei (2021); Morrison, Corke,
and Leitner (2018); Lenz, Lee, and Saxena (2015),
among others.

One of the state-of-the-art methods has been
developed by Kumra, Joshi, and Sahin (2020).
Their object agnostic approach proposes a Genera-
tive Residual Convolutional Neural Network (GR-
ConvNet) that can predict the grasping quality, an-
gle, and opening width of the gripper for every pixel
in an n-channel input image. From the resulting
three output images, multiple antipodal grasps can

be inferred.

This paper aims to evaluate the performance of
the GR-ConvNet as a grasp inference method by
testing its predictive accuracy on the publicly avail-
able Cornell grasping dataset, as well as subjecting
a UR5e robotic arm to three different grasping ex-
periments, using the GR-ConvNet as a grasp in-
ference method. For this purpose, a robotic simula-
tion has been developed in PyBullet (Coumans and
Bai, 2016–2020). The three grasping experiments,
as proposed by Kasaei and Kasaei (2021), consists
of one isolated object scenario, and two clutter sce-
narios. In the latter two scenarios, multiple objects
are closely packed together and situated in a pile.

Figure 1.1 gives an overview of the full grasp-
ing system. The inference module acquires RGB
and depth images obtained from an RGB-D cam-
era with a top-down view of the object scene. Af-
ter pre-processing, the images are passed onto the
GR-ConvNet, which generates the grasping qual-
ity, angle, and width for every input pixel. The
three output images are concurrently used to infer
one or multiple antipodal grasps. The robotic arm
can thereafter be instructed to execute the inferred
grasps.

The remainder of this paper is organized as fol-
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Figure 1.1: Grasping system overview - Left di-
agram illustrates the full grasping pipeline. Right dia-
gram illustrates the grasp inference module.

lows: first, a brief overview will be given of the rele-
vant research in the field of robotic grasping. Next,
a formal problem formulation will be outlined, and
the corresponding grasping methodology will be
presented. In the following section, the evaluation
of the methodology will be described in detail, and
the results will be presented. The discussion will
provide further interpretation of the results, which
is followed by the conclusion.

2 Related work

Up until the beginning of the millennium, the field
of robotic grasping has been mostly dominated by
analytic grasp inference methods (Bohg, Morales,
Asfour, and Kragic, 2014). Analytical approaches
rely on kinematics and dynamics formulations in
order to synthesize a grasp. For instance, Ding, Liu,
and Wang (2000) designed an algorithm that can
compute the desired pose for an n-finger gripper
from an initial random grasp using a mathematical
model of the target object. However, possible tar-
get objects for which this method works are limited
to polyhedral shapes. This limitation highlights a
weakness of analytic approaches. Namely, they of-
ten fail to find a mathematical formulation that
generalizes to a variety of grasping tasks due to
the mathematical complexity that arises from the

many challenging constraints that need to be sat-
isfied (Sahbani, El-Khoury, and Bidaud, 2012).

Empirical approaches aim to avoid the mathe-
matical complexity analytical approaches face by
using classification and learning methods. Some
of these approaches include learning from human
demonstration. A human teacher shows how a spe-
cific grasping task should be performed, after which
the robot is able to perform the grasp by itself
(Kasaei, Shafii, Lopes, and Tomé, 2019; Shafii,
Kasaei, and Lopes, 2016; Fischer, van der Smagt,
and Hirzinger, 1998; Ekvall and Kragic, 2004).
However, these approaches are highly task-specific,
and often fail to generalize to unseen objects, in a
similar fashion to analytical approaches (Sahbani
et al., 2012).

Ideally, grasp affordances should be predicted
based on object agnostic features such that any
given object can be grasped, regardless of its shape.
This approach has become somewhat realizable
with the rise of deep learning. Deep learning has
demonstrated that it can learn useful features from
large-scale datasets through its hidden layer archi-
tecture and has proven to be successful in numer-
ous fields ranging from advanced text generation
(Brown et al., 2020) to gene-based protein structure
prediction (Senior, Evans, Jumper, et al., 2020).

Likewise, deep learning approaches have proven
to be successful for grasp inference, as demon-
strated by Lenz et al. (2015); Morrison et al. (2018);
Kasaei and Kasaei (2021) among others. Research
in this field can be categorized according to numer-
ous characteristics, some of which will be discussed
in more detail.

Uni- vs. Multi-modal data: Some approaches
rely on a single input stream for grasp predic-
tion. For instance, Johns, Leutenegger, and Davi-
son (2016) trained a Convolutional Neural Network
that can predict the quality score of every grasp
pose across the image using a single depth image as
input. The best grasp is then selected by smoothing
the predicted pose using a grasp uncertainty func-
tion. Others take a multi-modal approach and rely
on multiple input streams for grasp prediction. Yan,
Khansari, Hsu, Gong, Bai, Pirk, and Lee (2019) use
an object detection network to obtain the RGB,
depth, and segmentation image of a given target
object. With the use of a Point Cloud Prediction
network, the three images are converted to a 3D
point cloud, which is then fed to a critic network
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to predict a grasp. Kumra and Kanan (2017) rely
on RGB-D images to infer grasp poses. Their deep
CNN architecture makes use of residual blocks, as
proposed by He, Zhang, Ren, and Sun (2016). Their
research demonstrates the advantages of using a
deeper architecture along with residual blocks for
better and faster feature learning. Likewise, Chu,
Xu, and Vela (2018) use RGB-D images as input
for grasp inference. Their research focuses on pre-
dicting multiple grasp poses for multiple objects in
a single image.

Open- vs. Closed-loop control: A robot that
is able to adapt to a dynamic environment has to
continually observe its surroundings. In a grasping
scenario, this would imply that a given target ob-
ject is continuously assessed such that the predicted
grasp can be adapted to changes in the object’s
pose. This is referred to as closed-loop control. Sys-
tems that predict grasp poses from a single im-
age are referred to as open-loop control. The latter
control method often results from computationally
expensive grasp synthesis methods. If computation
times take too long, objects cannot be continually
assessed (Kasaei, Luo, Sasso, and Kasaei, 2021).
For instance, Lenz et al. (2015) developed a two-
step cascaded system with two deep networks. In
this system, the most promising grasp predictions
from the first network are re-evaluated by the sec-
ond. Although they obtained good results, the com-
putation time took 13.5s per generated grasp. Mor-
rison et al. (2018) developed a Generative Grasping
Convolutional Neural Network suitable for closed-
loop grasping. The network predicts the grasping
quality, angle, and width for every pixel from an in-
put depth image. This one-to-one mapping allows
for computation times of 19ms per generated grasp.

Uni- vs. Multi-directional grasping: Much
of the aforementioned research is limited to 4 De-
grees of Freedom (DoF) grasping which forces ob-
jects to be grasped from above. However, some ob-
jects can better be approached from a different an-
gle due to their shape (e.g. bottles, mugs, cans).
Additionally, many of these grasping methods use
a single top-down view of the object scene, thus re-
lying on a favorable camera position. Kasaei and
Kasaei (2021) developed a multi-view deep learn-
ing approach that can predict grasp poses in highly
cluttered environments. They use a partial point
cloud to generate multiple depth views of the ob-
ject scene. The best view is chosen by a view se-

lection function and fed to a neural network that
predicts the grasping quality, angle, and width on
a pixel-wise basis. By considering multiple views
of the object scene their method allows for multi-
directional grasping.

The grasping methodology in this paper will be
limited to 4-DoF, top-down, open-loop grasping, re-
lying on multi-modal RGB-D input data obtained
from a single top-down view.

3 Problem formulation

The grasping problem that needs to be solved can
be defined as (i) predicting an antipodal grasp from
an n-channel input image of the object scene (ii)
converting the predicted grasp expressed in image
space to robot space (iii) instructing the robot to
execute the predicted grasp.

A grasp will be formally defined according to the
representation proposed by Morrison et al. (2018).
A grasp Gr in the robot’s frame of reference is de-
fined by equation 3.1:

Gr = (P,Θr,Wr, Q) (3.1)

P denotes the (x, y, z) position of the end effec-
tor’s tip, Θr denotes the rotation of the gripper
around the z-axis, Wr denotes the required open-
ing width of the gripper, and Q denotes the grasp
quality score.

The n-channel input image I can be defined as
the set of real numbers R with height h and width
h, as formally defined by equation 3.2:

I = Rn×h×w (3.2)

The predicted grasp will first be expressed in
terms of the input image space. This grasp, denoted
as Gi, is formally defined by equation 3.3:

Gi = (x, y,Θi,Wi, Q) (3.3)

The pair (x, y) specifies the center point of the
grasp in image coordinates, Θi denotes the rotation
of the grasp in the camera’s frame of reference, Wi

the width of the grasp in image coordinates, and Q
denotes the same grasp quality score as referred to
by equation 3.1.

The grasp quality score Q, the angular rotation
Θi, and the grasping width Wi are generated for all
pixels in the input image. The sets of these values
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will be denoted as Q, Θi, and Wi respectively. The
grasp quality score is expressed as a value in the
range [0, 1]. A score approaching 1 indicates higher
confidence in the success of the predicted grasp.
The angular rotation is expressed as a value in the
range [−π2 ,

π
2 ]. The grasping width is expressed as

a measure of uniform depth and takes a value in
the range [0,Wmax], where Wmax denotes the max-
imum opening width of the gripper expressed as the
number of pixels.

A grasp Gi can then be inferred from the sets Q,
Θi, and Wi. A predicted grasp expressed in image
space will first have to be converted to robot space
in order for the robot to execute it. This can be
done using a cascaded transformation as described
by equation 3.4:

Gr = Trc(Tci(Gi)) (3.4)

Tci refers to the transformation that converts the
grasp Gi from image space into three-dimensional
camera space using the intrinsic parameters of the
camera. Trc transforms the cameras space into
robot space using the position of the camera and
the robot’s base position. The obtained grasp Gr
can then be executed by the robot.

4 Method

The grasp prediction process consists of three steps.
First, the n-channel input data is normalized,
cropped and resized to dimensions n×224×224.
The input data can consist of an RGB image, a
depth image, or both. Grasp prediction is therefore
not limited to one type of input modality. If a depth
image is provided as input it will be inpainted ac-
cording to the method proposed by Xue, Zhang,
and Cai (2017) to obtain a better depth represen-
tation.

Next, the processed input is fed to the GR-
ConvNet. The network generates four images that
predict the grasp quality score, the grasping width,
and the grasping angle in the form cos 2Θ and
sin 2Θ for each of the input pixels.

In the final step, the GR-ConvNet’s output is
used to infer a grasp. The two images for the grasp-
ing angle are combined to obtain a single grasping
angle image. This is due to the rotation of a grasp
being uniform around ±π2 . After smoothing the im-

ages using a Gaussian function, the three images
are combined to infer one or multiple grasps.

4.1 Model architecture

Figure 4.1 shows the proposed GR-ConvNet ar-
chitecture. The n-channel input is first passed
through three convolutional blocks. Each convolu-
tional block consists of a two-dimensional convolu-
tional layer with batch normalization and a Rec-
tified Linear Unit (ReLu) activation function. The
convolutional layer is used for feature extraction.
The batch normalization deals with the internal co-
variate shift by standardizing the input data from
every mini-batch. This allows for higher learning
rates and in some cases acts as a regularizer that
helps prevent overfitting (Ioffe and Szegedy, 2015).

The convolutional blocks are followed by five
residual blocks. Each residual block consists of
a two-dimensional convolutional layer with batch
normalization and ReLU activation function, fol-
lowed by another two-dimensional convolutional
layer with batch normalization. Additionally, each
residual block has a skipping connection that adds
the incoming data to the output of the block. This
architecture allows for the training of deeper net-
works, and consequently, more complex functions
can be learned (He et al., 2016).

Next are three transposed convolutional blocks.
Each of these blocks consists of a transposed two-
dimensional convolutional layer with batch normal-
ization and ReLU activation function. The convo-
lutional blocks have reduced the original input to
dimensions 56× 56. This size can be difficult to in-
terpret. The transposed convolutional layers allow
for upsampling such that each of the output images
has dimensions 224× 224.

The network has a total of 1,900,900 parameters.
Due to its relatively lightweight nature, the network
could be used for closed-loop control at a rate of up
to 50 Hz (Kumra et al., 2020).

4.2 Training methodology

The training data consists of a set I = {I1 . . . In}
that contains n input images of various object
scenes, and a set Gi = {g11 . . . g1m1

. . . gn1 . . . g
n
mn
}

that contains a number of successful grasps in im-
ages space for each of the n input images. The net-
work aims to learn the function γ(I) −→ Gi that
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T2D Conv 3 Q

4x 224 x 224

Θ W

Figure 4.1: GR-ConvNet architecture - Yellow indicates the convolutional layers, orange the batch normal-
ization, red the ReLU activation function, blue the transposed convolutional layers, and gray the input/output
images.

maps the input images onto the successful grasps.
This can be done by minimizing the negative log-
likelihood that the function produces the success-
ful grasp given the input image, as described by
equation 4.1. The negative log function ensures that
small input values result in large output values, and
large input values result in small output values. The
likelihood is averaged over the m grasps for each of
the n input images.

− 1

n

n∑
i=1

1

mi

mi∑
j=1

log γ(gij |Ii) (4.1)

Kumra et al. (2020) report using different op-
timizer for training which include standard back-
propagation, Adam (Kingma and Ba, 2017), and
mini-batch Stochastic Gradient Descent (Nitanda,
2014). The learning rate was set to 10−3, and a
mini-batch size of 8 was used.

The loss function of choice is the smooth L1 loss,
and is formally defined by equation 4.2.

L (Gy, Ĝy) =

4∑
k=1

zk (4.2)

Gy refers to the unprocessed output of the network,

Ĝy to the ground truth output, and z to the loss
value of the k-th output image, which is computed
according to equation 4.3.

zk =

{
0.5(Gyk − Ĝyk)2, if |Gyk − Ĝyk | < 1

|Gyk − Ĝyk | − 0.5 otherwise

(4.3)

The loss function uses a squared term if the ab-
solute error falls below 1 and an absolute term oth-
erwise. This can help against exploding gradients
as errors greater than 1 are not squared.

4.3 Grasp inference

The two angle output images can be combined to
form a single grasping angle set Θi using equation
4.4.

Θi =
1

2
arctan

sin 2Θ

cos 2Θ
(4.4)

A grasp Gi can then be inferred using the sets Q,
Θi, and Wi. The best grasp, denoted as G∗i , can be
inferred by finding the argument for which the set
Q has a maximum grasp quality score as formally
described by equation 4.5.

(x, y) = argmax
a∈N2

Q(a) (4.5)

Argument a consists of two natural numbers which
serve as the center point of grasp G∗i . These two
numbers can be used to obtain the angular rotation
and the grasping width from the sets Θi, and Wi

respectively to obtain a full grasp G∗i .
A predicted grasp expressed in image space will

first have to be converted into three-dimensional
camera space. The depth of grasp Gi can be in-
ferred using the depth input image. This value is
determined by taking the minimum depth value of
the surrounding neighbors at the image coordinates
(x, y) ∈ Gi that are within a radius of ∆. Both the
center point of Gi and its depth value will have to
be converted to a metric unit. The center point can

5



be converted using a conversion rate, and the depth
value with the use of equation 4.6.

f(pd) =
mf ×mn

mf − (mf −mn)× pd
(4.6)

pd denotes the depth value, mn the near plane dis-
tance, andmf the far plane distance of the camera’s
projection matrix. Grasp Gi and its depth value
can then be rotated into the camera space using
transformation matrix 4.7. The Cartesian coordi-
nates (x, y, z) refer to the camera’s position, and θ
refers to the necessary rotation around the z-axis.

M(x, y, z, θ) =


cos(θ) − sin(θ) 0 x
sin(θ) cos(θ) 0 y

0 0 1 z
0 0 0 1

 (4.7)

To transform the camera space into the robot
space the same transformation matrix can be used.
However, this time the coordinates (x, y, z) refers
to the robot’s base position.

This process can be up-scaled to obtain multi-
ple grasps from the sets Q, Θi, and Wi. Instead
of only finding the argument for which Q has an
absolute maximum, other arguments can be found
where Q has local maxima. These grasps can then
all be converted to robot space to obtain a set of
grasps Gr, as described by equation 4.8.

Gr ←− (Q,Θi,Wi) ∈ R3×h×w (4.8)

Figure 4.2 shows examples of the grasp quality,
angle, and width output images. Additionally, the
figure shows one or multiple inferred grasps, repre-
sented as rectangles, for object scenes containing a
single or multiple objects.

5 Experimental results

To evaluate the proposed method by Kumra et al.
(2020) the accuracy of the network is tested on
a portion of the Cornell grasping dataset. Addi-
tionally, several rounds of three different grasping
experiments are performed in a simulated robotic
environment. Due to time and resource restric-
tions, a pre-trained GR-ConvNet model was used
that comes from Kumra’s open-source project1. A
demonstrative video of the grasping experiments
can be found online at https://www.youtube.com/

watch?v=fXpZMnZUZoA

1Open source project from Kumra et al. (2020) available
at: https://github.com/skumra/robotic-grasping

Figure 4.2: Network output - Figure shows the
grasp quality, angle, and width output images with
their corresponding inferred grasps represented as rect-
angles.

5.1 Network evaluation

The performance of the network is measured accord-
ing to the rectangle metric as proposed by Jiang et al.
(2011). According to this metric a grasp is considered
to be valid if it satisfies the following two requirements:

i) The intersection over union (IoU) between the pre-
dicted grasp rectangle and the ground truth grasp
rectangle is more than 25%.

ii) The orientation difference between the predicted
grasp rectangle and the ground truth grasp rect-
angle is less than 30◦.

Accuracy is then calculated by dividing the valid pre-
dictions by the total number of predictions made.

The network has been trained on the extended ver-
sion of the publicly available Cornell grasping dataset.
This dataset contains 1035 RGB-D images of 240 dif-
ferent objects. The images have been annotated with a
total of 5110 valid grasps and 2909 invalid grasps. These
ground truth annotations consist of several grasp rect-
angles per image. To increase the training data, Kumra
et al. (2020) augmented the data by randomly cropping,
rotating, and zooming in on the images. This yielded a
total of 51,000 grasp examples. For training, only valid
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grasps were considered.
Due to the Cornell grasping dataset being offline, a

different version of the dataset was used2. This version
contains 885 RGB-D images, yet still has 5110 valid
annotated grasps. The RGB-D images are labeled with
serial numbers and are sorted in increasing order. The
evaluation set is generated by taking the last 10% of the
RGB-D images and their corresponding annotations.

The network is then evaluated by generating a grasp
rectangle for each image in the validation set. The pre-
dicted grasp rectangle is then compared to each of the
ground truth annotations of the corresponding image.
If at least one of the comparisons satisfies the two afore-
mentioned requirements, the predicted grasp is consid-
ered valid. The overall accuracy is then calculated. This
evaluation process yielded an accuracy of 97.7%.

5.2 Grasp evaluation

A robotic simulation in PyBullet (Coumans and Bai,
2016–2020) has been developed to test the grasp-
ing performance. PyBullet is a Python module for
robotics simulation and machine learning. It wraps the
C++ based Bullet physics engine, therewith combining
Pythons ease of programming and the computational
efficiency of C++. The code for the simulation is avail-
able online at https://github.com/JeroenOudeVriel

ink/ur5-robotic-grasping

The experimental setup consists of a UR5e robotic
arm equipped with a two-fingered Robitq 2F-140 grip-
per placed on top of a desk. Various objects can be
placed on the desk for the robot to grasp. The camera
that obtains the RGB-D image is situated above the
object scene. It’s line of sight is perpendicular to the
table in order to create a top-down view of the scene.
Figure 5.1 displays the experimental setup.

The experiments, as proposed by Kasaei and Kasaei
(2021), consist of three different grasping scenarios.
These scenarios include objects in isolation, objects
closely packed together, and objects in a pile. The goal
of all three experiments is to grasp the target objects,
lift them off the desk, and place them in the target tray.
The robot knows the pose of the target tray in advance,
whilst it has to detect the poses of the target objects.

The grasping performance is evaluated by measuring
the success rate of objects grasped and placed inside
the target tray. The success rate is defined as the num-
ber of successes divided by the number of attempts (see
equation 5.1). A grasp is considered successful if both
gripper fingers make contact with the object after it has
been lifted off the table. An object has been successfully

2The dataset was taken from Kaggle, a platform for open-
source datasets, and is available at: https://www.kaggle.com
/oneoneliu/cornell-grasp

placed inside the target tray if the object’s base position
is within the target tray’s bounding box. Additionally,
for the packed and pile scenario, the percentage of ob-
jects that have been successfully cleared from the table
is recorded.

success rate =
number of successes

number of attempts
(5.1)

The set of target objects3 contains 15 different ob-
jects with varying shape, size, and weight, and is a sub-
set of the YCB object dataset (Calli, Walsman, Singh,
Srinivasa, Abbeel, and Dollar, 2015). A full list of the
objects can be found in appendix A.

The grasping procedure is identical for all three ex-
periments. The robot is moved out of the camera’s
sight and an RGD-D image of the object scene is ob-
tained. Three grasps are inferred and are sorted ac-
cording to their quality score. If a grasp has a quality
score that falls below the threshold of 0.6, it is dis-
carded. The grasps are then executed in decreasing or-
der by bringing the robot to the desired pose, and clos-
ing the gripper until both fingers squeeze the object
with enough force. The objects are then lifted off the
desk and brought to the know target location. If the
robot has failed to place the object inside the target
tray, all objects are restored to their pre-attempt poses
such that the next grasp can be executed.

5.2.1 Isolated scenario

In the isolated object scenario, a single object is placed
on the table with a random position and orientation
(see Figure 5.1). The position is generated by selecting
a random x- and y-coordinate that are both within ±10
cm of the camera’s (x, y) position. The orientation is
generated by randomly rotating the object around its
z-axis. A set of grasps is inferred and the best one, in
terms of grasp quality, is finally executed. Only if the
robot has failed to place the object in the target tray
the next grasp is executed.

The experiment was run 100 times for each object
in the target set. Figure 5.2 shows the grasping and
target success rate for each individual object. An overall
grasping of 94.8% was achieved, and a target success
rate of 91.9% (see table 5.1).

5.2.2 Pack and pile scenarios

Figure 5.3 shows an example of a pack and pile scenario.
For both scenarios, five objects are randomly selected
from the target set. The pack scenario is created by
first placing one object in the center of the desk. The

3Object models are available at: https://github.com/ele

ramp/pybullet-object-models
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Figure 5.1: Experimental setup - The left image shows the UR5e robotic arm and a target object placed on
the desk. The target tray is highlighted red. The green line denotes the camera’s line of sight. The right image
shows the corresponding view of the camera.

Figure 5.2: Experimental results isolated sce-
nario: - The figure display the grasping and target
success rate for each individual object. The experiment
was conducted 100 times.

four remaining objects are then placed on the desk and
moved toward the center objects until almost colliding
with another object. All objects have been randomly
rotated around their z-axis.

The pile scenario is created by randomly placing the
target objects in a box. Once all objects are stable the
box is removed. It should be noted that the objects
hammer and cracker box have been excluded from the
pile scenario. To create a pile of objects the box had
to be small enough and the hammer did not fit. The
cracker box does not fit in the gripper when toppled
over.

Figure 5.3: Pack and pile scenarios - Left image
shows an example of a pack scenario. Right image shows
an example of a pile scenario.

After having created either one of the scenarios, a
set of grasps is generated and executed. If an object
has been successfully placed inside the tray, a new set
of grasps is generated. The experiment continues until
either all objects have been cleared from the desk, or
three failed target attempts occur consecutively.

Both experiments have been conducted 100 times.
An overview of the results can be found in table 5.1.
For the pack scenario a grasping success rate of 77.4%
was achieved, and a target success rate of 73.2%. Ad-
ditionally, 447 out of a total of 500 objects have been
successfully placed inside the target tray resulting in
89.4% of the objects cleared from the desk. In the pile
scenario a grasping success rate of 59.2%, and a target
success rate of 55.2% were obtained. In this scenario,
342 of the 500 objects were successfully placed inside
the target tray resulting in 66.4% of the objects cleared
from the desk.
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Scenario
Grasping

succ. rate (%)
Target

succ. rate (%)
Cleared

(%)

Isolated
94.8

(1513/1596)
91.9

(1466/1596)
-

Pack
77.4

(473/611)
73.2

(447/611)
89.4

(447/500)

Pile
59.2

(367/620)
55.2

(342/620)
68.4

(342/500)

Table 5.1: Experimental results - The table dis-
plays the grasping success rate, target success rate, and
the percentage of objects cleared for each of the three
scenarios.

6 Discussion

This section will provide further insight into the results
obtained in the network and grasping evaluations. Ad-
ditionally, the failure cases and the limitations of the
used approach will be discussed.

6.1 Network

With an accuracy of 97.7% the GR-ConvNet shows
good predictive performance on the validation set. How-
ever, there are two noteworthy points about the evalua-
tion procedure. First, the version of the Cornell dataset
used to evaluate the network contains fewer example
images than the version used to train the network. Sec-
ond, the network has been evaluated with a script that
comes from Kumra’s open source project, and it is as-
sumed that this script generates a validation set that
approximates the distribution of the train/test split
that was used to train the network. For a more thorough
network evaluation see therefore Kumra et al. (2020).

6.2 Grasping

With an overall grasping and target success rate of
94.8% and 91.9%, the grasping methodology has pro-
duced a reliable grasp in the isolated object scenario.
The results do indicate performance differences be-
tween the different target objects. Some objects can
be grasped flawlessly or with near perfection, whilst for
other objects, the grasping and target success rate falls
below 90%.

For the pack and pile scenarios, the methodology pro-
duced a less reliable grasp. The pack scenario shows al-
most a 20% decrease in both grasp and target success
rate in comparison to the isolated scenario. Still, almost
90% of the objects can be cleared from the desk. Relia-
bility decreases even further in the pile scenario, with a
grasping success rate of a little under 60%, and a target

success rate that approaches 50%. Additionally, a little
under 70% of the objects can be cleared from the desk.

6.2.1 Failure analysis

Only a very small percentage of the failures in the iso-
lated scenario can be attributed to invalid grasp pre-
dictions. Most of the failures are caused by predicted
grasps that have their center points at the edge of an
object, as can be seen in figure 6.1. This can cause
round objects to be squeezed out of the gripper as it
closes. Additionally, the transformation of the predicted
grasp to three-dimensional space relies on a look-up ta-
ble method without any form of camera calibration,
causing a slight translation error. This amplifies the
aforementioned problem and can cause objects that re-
quire a high level of precision to be missed or grasped
improperly. Moreover, the inference method relies on
local peaks in the grasp quality image, thus making it
not always possible to infer more than one grasp for
smaller objects.

Some of the failures in the packed and pile scenarios
can be attributed to the previously described problems,
but the bulk of the failures is caused by inaccurate pre-
dictions and the gripper colliding with nearby objects.
As the objects move closer together it becomes harder
to distinguish them from one another. This can cause a
predicted grasp to have its center point in between two
objects, or an imperfect orientation. The gripper col-
liding with nearby objects can prevent the robot from
reaching the target pose, or being unable to close the
gripper as the gripper fingers are blocked. It was ob-
served that the pile scenario is more prone to these
problems due to its highly cluttered nature. In addi-
tion, as objects are placed into the box to create the
pile scenario they can take complex poses, adding ex-
tra complexity to the grasping problem. This explains
the performance difference between the pack and pile
scenario. Figure 6.1 illustrates some of the discussed
issues.

6.2.2 Limitations and further work

It should be noted a number of changes have been made
to the experimental setup in order to improve grasping
performance. First, the objects chips can, mustard bot-
tle, and tomato soup can, proved to be difficult to grasp
when standing upright. It was therefore chosen to place
the objects on their sides in all three grasping scenar-
ios, as can be seen in Figure 6.2. Ideally, these objects
would be approached from the side rather than from
above. A grasping method that utilizes more than 4-
DoF is therefore needed such as the method proposed
by Kasaei and Kasaei (2021).
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Figure 6.1: Predictions of failed attempts - Left
image shows a predicted grasp placed at the edge of a
round object. The Center image shows a packed sce-
nario where all three predicted grasps caused a colli-
sion with surrounding objects. The right image shows a
highly cluttered pile scenario, illustrating the difficulty
of distinguishing objects from one another.

Figure 6.2: Challenging objects - The chips can,
mustard bottle, and tomato soup can were placed on
their sides.

Additionally, it was observed that objects are prone
to falling out of the gripper when moving them to the
target tray, even if grasped properly. To counter this
problem, both gripper fingers and all target objects
were modified to have increased friction.

Moreover, the original target set included a de-
formable object that behaved strangely when grasped
due to the limited physics of the simulation. It was
therefore chosen to exclude this object from the tar-
get set. The strawberry was also slightly deformable
but was modified to be rigid. To deal with deformable
objects more advanced grasping methods are required
(Seita, Florence, Tompson, Coumans, Sindhwani, Gold-
berg, and Zeng, 2021).

To further improve grasping performance the grasp
quality threshold and minimum distance between lo-
cal peaks in the quality image can be tuned. Increas-
ing the minimum distance can prevent the three pre-
dicted grasps from all be placed in a highly cluttered re-
gion. However, the minimum distance will be scenario-
specific as too large values will prevent multiple grasp
prediction for objects in isolation, which is not ideal for
an all-purpose grasping system.

To deal with translation inaccuracy of the predicted
grasp to robot space a camera calibration method
could be implemented that corrects for lens distortion.
Furthermore, some form of explicit collision checking

method could be implemented, such as proposed by Li,
Schomaker, and Kasaei (2020), to improve performance
in the pack and pile scenario.

7 Conclusions

In this paper, the performance of the GR-ConvNet as a
grasp inference method was evaluated by testing its pre-
dictive performance on a portion of the Cornell grasping
dataset, and several rounds of the isolated, pack, and
pile grasping experiments were conducted in a robotic
simulation. The GR-ConvNet showed good predictive
performance on the validation set, and a reliable grasp
was observed for the isolated scenario. Grasping reli-
ability decreased by a substantial portion in the pile
scenario. Nevertheless, a large percentage of the ob-
jects could be cleared from the table. The pile scenario
proved to be most difficult due to its highly cluttered
nature, and grasping performance was observed to be
the worst out of the three scenarios.
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A Appendix

The set of target objects includes the objects: banana,
chips can, cracker box, gelatin box, hammer, master
chef can, clamp (medium size), mustard bottle, pear,
potted meat can, power drill, scissors, strawberry, ten-
nis ball, and tomato soup can.
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