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Abstract

The aim of the thesis is to find relations between the endomorphism algebra, the p-
rank and the factorization of the rational prime p into prime ideals in the number field
generated by the Frobenius endomorphism for abelian threefolds over finite fields of
characteristic p. For elliptic curves and abelian surfaces, these relations are discussed in
Chapter 1 and Chapter 2. The main theorem follows in Chapter 3 and gives a complete
classification of the p-rank in terms of the splitting behaviour of the rational prime p in
the maximal order of the number field generated by the Frobenius endomorphism of an
absolutely simple abelian threefold over a finite field of characteristic p. In Chapter 4, the
reduction of absolutely simple CM abelian threefolds is studied. Only abelian threefolds
with CM by a CM field of which the Galois group of the normal closure is cyclic or
isomorphic to the dihedral groupD6 are considered. For both options, the endomorphism
algebra and the p-rank of the reduced CM abelian threefold is determined from the prime
factorization of a rational prime p in the ring of integers of the CM field.
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πA a root of the characteristic polynomial of the Frobenius endomorphism of A
or the Frobenius endomorphism of A

πA the complex conjugate of πA
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Introduction

An elliptic curve is a nonsingular projective curve (variety of dimension g = 1) together
with a group structure defined by regular maps. A rational map φ : E1 → E2 between
two elliptic curves E1 and E2 that is regular at every point is called a morphism. If φ
satisfies φ(O) = O, where O denotes the point at infinity, then φ is an isogeny. Isogenies
from an elliptic curve to itself are called endomorphisms. If E is an elliptic curve over
a field k, then the set Endk(E) of all endomorphisms of E defined over k forms a ring
called the endomorphism ring of E. The set of all endomorphisms of E defined over
the algebraic closure k is also a ring and is denoted by End(E). The endomorphism
algebra of an elliptic curve E over k or k is defined as End0

k(E) := Endk(E) ⊗Z Q
or End0(E) := End(E)⊗Z Q respectively.

We are interested in elliptic curves over finite fields. An important endomorphism of an
elliptic curve E defined over a finite field Fq is the Frobenius endomorphism πE : E → E
given by (x, y, z) 7→ (xq, yq, zq). The Frobenius endomorphism satisfies

π2
E − tπE + q = 0

in End(E), see Silverman [19, Theorem V.2.3.1(b)], where t is the trace of the Frobenius
endomorphism πE . The polynomial

fE = X2 − tX + q ∈ Z[X]

is called the characteristic polynomial of the Frobenius endomorphism. By abuse of no-
tation, we let πE ∈ C also denote a root of fE . By Hasse’s theorem [19, Theorem V.1.1],
the number field Q(πE) satisfies Q(πE) = Q or Q(πE) is an imaginary quadratic field.
If Q(πrE) is an imaginary quadratic field for all integers r > 0, then we call E ordinary.
Otherwise, we say that E is supersingular. We will see in Chapter 1 that E/Fq is super-
singular if and only if the endomorphism algebra End0(E) is isomorphic to a quaternion
algebra, and ordinary if and only if End0(E) is isomorphic to the imaginary quadratic
field Q(πE), see [19, Theorem V.3.1].
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INTRODUCTION

The m-torsion subgroup E(Fq)[m] of an elliptic curve E/Fq is the set of points of E of
order m. The p-rank of E/Fq, with q = pn, is the integer r = r(E) such that E(Fq)[p]
has order pr. As E(Fq)[p] is isomorphic to {O} or Z/pZ by Silverman [19, Corol-
lary III.6.4(c)], the p-rank of E is 0 or 1 respectively. In Chapter 1 we will see that
r(E) = 0 if and only if E/Fq is supersingular and r(E) = 1 if and only if E/Fq is ordi-
nary [19, Theorem V.3.1]. If E/Fq, where q = pn, is ordinary, then Q(πE) is an imaginary
quadratic field. If in addition End(E) is isomorphic to the ring of integers of the field
Q(πE), then the ideal (p) splits in OQ(πE). This will be the subject of Section 1.3.

Similar to what we did for elliptic curves, the aim of the thesis is to find relations
between the endomorphism algebra, the p-rank and the factorization of the rational
prime p into prime ideals in the number field generated by the Frobenius endomorphism
for abelian threefolds A/Fq. An abelian threefold is an abelian variety, a nonsingular
connected projective variety with a group structure defined by regular maps, of dimen-
sion g = 3. Many notions we know for elliptic curves transfer to abelian varieties. A
rational map φ : A1 → A2 between two abelian varieties of dimension g that is reg-
ular at every point is called a morphism. A surjective homomorphism with a finite
kernel between two abelian varieties with the same dimension is called an isogeny. If A
is an abelian variety over a field k, then the set Endk(A) of all endomorphisms of A
defined over k forms a ring called the endomorphism ring of A. The set of all endomor-
phisms of A defined over the algebraic closure k is also a ring and is denoted by End(A).
The endomorphism algebra of A over k or k is defined as End0

k(A) := Endk(E) ⊗Z Q
or End0(A) := End(E)⊗Z Q respectively.

Again, we are interested in abelian varieties over finite fields. An important endomor-
phism of an abelian variety A defined over a finite field Fq is the Frobenius endomor-
phism πA : A → A induced by the q-th power Frobenius automorphism of the field Fq.
By Milne [14, Theorem 10.9], there is a unique polynomial fA ∈ Z[X] of degree 2g,
where g is the dimension of A, such that fA(t) = deg(πA − t) for all t ∈ Z. This
polynomial fA is called the characteristic polynomial of the Frobenius endomorphism.
In dimension g = 1, this definition coincides with the definition of the characteristic
polynomial of the Frobenius endomorphism of an elliptic curve. If fA is a power of an
irreducible polynomial, we let πA ∈ C also denote a root of fA. We can therefore talk
about the number field Q(πA) generated by the Frobenius endomorphism. The p-rank
of an abelian variety A/Fpn is the integer r = r(A) such that the group A(Fpn)[p] has
order pr. The p-rank satisfies 0 ≤ r(A) ≤ g.

An abelian variety A/Fq can be isogenous (either over Fq or Fq) to a product of lower
dimensional abelian varieties. If A is not Fq-isogenous to a product of lower dimensional
abelian varieties, we call A simple. If A is simple over the algebraic closure Fq, then A
is called absolutely simple. If an abelian variety is not absolutely simple, then the
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INTRODUCTION

endomorphism algebra and the p-rank can be deduced from the endomorphism algebras
and p-ranks of the lower dimensional abelian varieties, see Milne [14, p.43]. Therefore,
we are mostly interested in absolutely simple abelian varieties.

In Section 2.1, we discuss abelian surfaces over finite fields, which are abelian varieties
of dimension g = 2. We summarize the relations between the endomorphism algebra,
the p-rank and the factorization of the rational prime p into prime ideals in Q(πS) for an
abelian surface S/Fpn , see Gonzalez [7, Theorem 3.7(ii)] and Bradford [2, Example 3.9].
After this short intermezzo we move on to abelian threefolds in Chapter 3.

Chapter 3 starts by describing the possible characteristic polynomials of the Frobenius
endomorphism and endomorphism algebras of abelian threefolds. Then we discuss the
relation between Newton polygons and the p-rank of an abelian threefold in Section 3.2.
The main result follows in Section 3.3.1 and gives a complete classification of the p-rank
in terms of the splitting behaviour of the rational prime p in the maximal order of the
number field Q(πA) of an absolutely simple abelian threefold A/Fpn .

The final chapter is about reductions of CM abelian threefolds over a number field k
modulo prime ideals in k. An abelian threefold A has complex multiplication (CM)
by a CM field K if K has degree six and there is an embedding θ : K ↪→ End0(A).
Furthermore, if θ−1(End(A)) = O for an order O ⊂ K, then we say that A has CM
by the order O. A CM field is a totally imaginary quadratic extension of a totally real
number field. Up to isomorphisms, there are four different options for the Galois group
of the normal closure of a sextic CM field, see Dodson [5]. We restrict to sextic CM fields
of which the Galois group of the normal closure is cyclic or isomorphic to the dihedral
group D6. For any CM abelian variety A over a number field k, there exists a cyclic
extension of k over which A acquires good reduction everywhere by Serre-Tate [16,
Theorem 7]. We can therefore assume without loss of generality, that a CM abelian
threefold A/k has good reduction everywhere. By reducing a CM abelian threefold A
over a number field k modulo a prime ℘ in the ring of integers of k, we obtain the
reduction A = A mod ℘ defined over the finite field Fq, where q = |Ok/℘|. Assuming
that A has good reduction at ℘, the reduction A defines an abelian threefold over a finite
field. If an absolutely simple abelian threefold A over a number field k has CM by OK
for a sextic cyclic CM field K and ℘ ∈ Ok is a prime lying over a rational prime p, then
the splitting behaviour of p in OK completely determines the endomorphism algebra
and p-rank of A = A mod ℘, see Kılıçer, Labrande, Lercier, Ritzenthaler, Sijsling and
Streng [12, Proposition 4.1]. Chapter 4 ends with an example of an abelian threefold A
over a number field k with CM by a sextic CM field of which the Galois group of
the normal closure is isomorphic to D6. We look at the reduction A = A mod ℘ for
primes ℘ ⊂ Ok lying over small rational primes p, and compute the endomorphism
algebra End0(A) and the p-rank r(A) using the factorization of pOK into prime ideals.
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Chapter 1

Elliptic curves

In this chapter, we describe the relations between the endomorphism algebra, the p-rank
and the factorization of the rational prime p into prime ideals in Q(πE) for an elliptic
curve E/Fpn . These relations are well-known and can be found in Silverman [19]. We
start in the next section by providing the necessary background of elliptic curves.

1.1 Background

An elliptic curve E is a nonsingular projective curve together with a group structure
defined by regular maps. We consider elliptic curves over a field k. Such an elliptic curve
is denoted by E/k. The maps between elliptic curves that we are interested in are called
isogenies. Isogenies are a special type of morphisms. A morphism φ : E1 → E2 between
two elliptic curves E1 and E2 is a rational map that is regular at every point. The set of
morphisms between two elliptic curves coincides with the rational maps between those
curves.

Definition 1.1. Let E1 and E2 be elliptic curves. An isogeny from E1 to E2 is a
surjective morphism

φ : E1 → E2 satisfying φ(O) = O,

where O denotes the identity element under the elliptic curve group law (the point at
infinity). We call E1 and E2 isogenous if there exists an isogeny between E1 and E2.

Definition 1.2. Let φ : E1 → E2 be an isogeny between two elliptic curves E1 and E2

of degree m. Then the dual isogeny of φ is the unique isogeny φ̂ : E2 → E1 satisfy-
ing φ̂ ◦ φ = [m].
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CHAPTER 1. ELLIPTIC CURVES

It follows from Silverman [19, Theorem II.2.3] that a morphism φ from E1 to E2 satisfies
either φ(E1) = {O} or φ(E1) = E2. In the first case, the morphism φ sends every point
on E1 to the identity element O of E2. This morphism is called the zero morphism and
is denoted by [0]. In the second case, the morphism φ is surjective and hence an isogeny
from E1 to E2. Thus, every morphism between two elliptic curves is an isogeny, except
the zero morphism.

Let E1/k and E2/k be two elliptic curves. We can distinguish between isogenies defined
over k and isogenies defined over the algebraic closure k. If there exists an isogeny
defined over k from E1 to E2, then the elliptic curves E1 and E2 are called k-isogenous.
If the isogeny from E1 to E2 is defined over the algebraic closure k, then E1 and E2 are
called k-isogenous.

The points on an elliptic curve form an abelian group. Isogenies are group homomor-
phisms acting on this abelian group, see Silverman [19, Theorem III.4.8]. We will be
mostly interested in morphisms from an elliptic curve E/k to itself. These maps are
called endomorphisms. The set of all endomorphisms of E defined over k is an abelian
group with the zero morphism as the unit element. The sum of two endomorphisms is
defined pointwise

(φ+ ψ)(P ) = φ(P ) + ψ(P ).

The multiplication law is given by composition

(φψ)(P ) = φ(ψ(P )).

The zero morphism is also the multiplicative unit element. As endomorphisms are group
homomorphisms acting on the points of an elliptic curve, distributivity follows

φ ◦ (ψ + ϕ)(P ) = φ(ψ(P ) + ϕ(P ))

= φ(ψ(P )) + φ(ϕ(P ))

= (φ ◦ ψ)(P ) + (φ ◦ ϕ)(P )

= (φ ◦ ψ + φ ◦ ϕ)(P ).

In a similar way, right distributivity can be proven.

Definition 1.3. Let E/k be an elliptic curve. The set of all endomorphisms of E defined
over k is called the endomorphism ring of E and is denoted by Endk(E).

The endomorphisms of E defined over the algebraic closure k form a ring as well, which
we denote by End(E). This ring will also be called the endomorphism ring of E.

A particular subring of Endk(E) is given by the multiplication-by-n maps [n], for any
integer n. Such an endomorphism [n] : E → E is given by

[n](P ) = P + · · ·+ P︸ ︷︷ ︸
n terms

.
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CHAPTER 1. ELLIPTIC CURVES

Note that the zero morphism [0], sending everything to the identity element, is an
endomorphism of this form. The set {[n] : n ∈ Z} forms a subring of Endk(E) isomorphic
to Z. We identify {[n] : n ∈ Z} with Z and say that Z ⊆ Endk(E).

Definition 1.4. The endomorphism algebra of E/k over the base field k is Endk(E)⊗ZQ
and is denoted by End0

k(E). Over the algebraic closure k, the endomorphism algebra
is End(E)⊗Z Q and is denoted by End0(E).

We will see that up to isomorphism there are only three options for the endomorphism
algebra End0(E) of an elliptic curve E over an arbitrary field k. One of the options is
that End0(E) is isomorphic to a quaternion algebra.

Definition 1.5. A quaternion algebra B over Q is a Q-algebra that has a basis of the
form {1, α, β, αβ}, with

α2, β2 ∈ Q, α2 < 0, β2 < 0, βα = −αβ.

A quaternion algebra B is ramified at p if B ⊗Q Qp is a division algebra. If B ⊗Q R is a
division algebra, we say B is ramified at ∞.

We define Bp,∞ to be the quaternion algebra over Q ramifying only at p and ∞.

The complete set of options for the endomorphism algebra of an elliptic curve is described
in the following theorem by Silverman.

Theorem 1.6 ([19, Corollary III.9.4]). Let E be an elliptic curve over an arbitrary
field k. Then End0(E) is isomorphic to one of

(i) the field of rational numbers Q,

(ii) an imaginary quadratic field Q(
√
d) where d ∈ Z<0,

(iii) the quaternion algebra Bp,∞.

The endomorphism ring End(E) of an elliptic curve E/k is a full rank Z-module con-
tained in the endomorphism algebra End0(E). Explicitly, if End0(E) ∼= Q, then we have
End(E) ∼= Z, if End0(E) ∼= Q(

√
−d), then End(E) is isomorphic to an order in Q(

√
−d),

and if End0(E) ∼= Bp,∞, then End(E) is a Z-module of rank 4 in Bp,∞.

Definition 1.7. An elliptic curve E has complex multiplication (CM) if End(E) is
isomorphic to an order in an imaginary quadratic field.
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CHAPTER 1. ELLIPTIC CURVES

An important endomorphism of an elliptic curve E defined over a finite field Fq is the
Frobenius endomorphism.

Definition 1.8. Let E/Fq be an elliptic curve. The endomorphism given by

πE : E → E,

(x, y, z) 7→ (xq, yq, zq),

is called the Frobenius endomorphism of E.

Definition 1.9. The trace of an endomorphism φ ∈ End(E) is Tr(φ) = φ+ φ̂.

The Frobenius endomorphism πE satisfies

π2
E − Tr(πE)πE + q = 0,

see Silverman [19, Theorem V.2.3.1(b)], where Tr(πE) (see Definition 1.9), and q and 0
are seen as elements in Z ⊂ End(E). This leads to the following definition.

Definition 1.10. The polynomial fE = X2 − tX + q is called the characteristic poly-
nomial of Frobenius. Here t is the trace of the Frobenius endomorphism πE .

By abuse of notation, we let πE ∈ C also denote a root of fE , so

πE =
t±
√
t2 − 4q

2
.

Let m ∈ Z>0. The m-torsion subgroup of an elliptic curve E/Fq is the set of points of E
of order m and is denoted by E(Fq)[m]. The m-torsion subgroup is equal to the kernel
of the multiplication-by-m map [m]. The structure of the m-torsion group is given in
the following theorem by Silverman.

Theorem 1.11. ([19, Corollary III.6.4(b),(c)]) Let E/Fq, with q = pn, be an elliptic
curve and let m ∈ Z, m 6= 0.

(i) If m and p are coprime, then E(Fq)[m] ∼= Z/mZ× Z/mZ.

(ii) Otherwise E(Fq)[pe] ∼=

{
{O} for all e = 1, 2, 3, . . . or

Z/peZ for all e = 1, 2, 3, . . .

Definition 1.12. The p-rank of an elliptic curve E over a finite field Fq, with q = pn,
is the integer r = r(E) such that the group E(Fq)[p] has order pr.
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Remark 1.13. If E is an elliptic curve over the field Fq with q = pn, then

E(Fq)[p] =

{
{O} or

Z/pZ,

by Theorem 1.11. Hence, E(Fq)[p] has order 1 = p0 or order p = p1. Thus, the p-rank
of E is either 0 or 1.

Proposition 1.14. Let E1/Fq and E2/Fq be elliptic curves and let φ : E1 → E2 be an
isogeny defined over Fq. Then r(E1) = r(E2).

Proof. Let Q ∈ E1(Fq)[p] be arbitrary. Then we have pQ = O1, where O1 denotes the
identity element of E1. Since φ is an isogeny, and thus a homomorphism, it holds that

O2 = φ(O1) = φ(pQ) = pφ(Q),

where O2 is the identity element of E2. This implies that φ(Q) ∈ E2(Fq)[p]. Hence, we
have

pr(E1) = |E1(Fq)[p]| ≥ |E2(Fq)[p]| = pr(E2),

because φ is surjective. It follows that r(E1) ≥ r(E2).

Let φ̂ : E2 → E1 be the dual isogeny of φ. Let Q ∈ E2(Fq)[p] be arbitrary. Then we

have pQ = O2. Since φ̂ is an isogeny, and thus a homomorphism, it holds that

O1 = φ̂(O2) = φ̂(pQ) = pφ̂(Q).

This implies that φ̂(Q) ∈ E1(Fq)[p]. Hence, we have

pr(E2) = |E2(Fq)[p]| ≥ |E1(Fq)[p]| = pr(E1),

because φ̂ is surjective. It follows that r(E2) ≥ r(E1). This proves r(E1) = r(E2). �

In the remaining of this chapter, elliptic curves over finite fields of characteristic p are
studied. We will specify and prove under which conditions the endomorphism algebra
of an elliptic curve over a finite field is isomorphic to an imaginary quadratic field or a
quaternion algebra. Furthermore, the endomorphism algebra will be related to the p-
rank and the splitting of the prime p in the field Q(πE), where πE is a root of fE .
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1.2 Relation between p-rank and endomorphism algebras

In this section based on Silverman [19], we will study the relation between the endomor-
phism algebra and the p-rank of an elliptic curve E/Fq.

Lemma 1.15. ([19, Exercise 5.10(a)]) The p-rank of E/Fq, with q = pn, satisfies
r(E) = 0 if and only if t = Tr πE ≡ 0 mod p.

Proof. Assume r(E) = 0. For i ∈ {1, . . . , n}, define the isogenies

φi : E(pi−1) → E(pi),

Q 7→ Qp,

where Qp is obtained from the point Q ∈ E by raising all coordinates to the power p,
and E(pi) = {Qp : Q ∈ E(pi−1)}. Let i ∈ {1, . . . , n} be arbitrary. The degree of φi is p
and therefore φi ◦ φ̂i = [p], where [p] is the multiplication-by-p map on E(pi). As E(pi)

is isogenous to E, the p-rank of E(pi) is 1 for all i ∈ {1, . . . , n} by Proposition 1.14.
Therefore, we have #E(pi)(Fq)[p] = 1, so there is only one point Q ∈ E(pi)(Fq) such

that pQ = O. Since clearly pO = O, it follows that E(pi)(Fq)[p] = {O}. Hence, the

kernel of the map [p] on E(pi) is trivial. Since φi ◦ φ̂i = [p], the kernel of φ̂i is also trivial.
Suppose that φ̂i is separable. Then by Silverman [19, Theorem III.4.10(c)] and [19,
Theorem III.6.2(e)], we have

# ker φ̂i = deg φ̂i = deg φi = p.

However, it holds that # ker φ̂i = 1, so φ̂i must be inseparable for all i ∈ {1, . . . , n}.

Let πE : E → E be the Frobenius endomorphism of E. Note that

πE(Q) = Qq = Qp
n

= φn ◦ · · · ◦ φ1(Q)

for all Q ∈ E and hence πE = φn ◦ · · · ◦φ1. Then by Silverman [19, Theorem III.6.2(b)],

it holds that π̂E = ̂φn ◦ · · · ◦ φ1 = φ̂1 ◦ · · · ◦ φ̂n. We know that ker φ̂i = {O} for
all i ∈ {1, . . . , n}. Therefore, the kernel of π̂E satisfies

ker π̂E = ker φ̂1 ◦ · · · ◦ φ̂n = {O},

which implies that degs π̂E = # ker π̂E = 1 (Silverman [19, Theorem III.4.10(a)]). This
shows that π̂E is inseparable. Moreover, the map πE is the Frobenius endomorphism
and therefore purely inseparable by Silverman [19, Proposition II.2.11(b)]. Let ω be an
invariant differential on E. Silverman [19, Proposition II.4.2(c)] states that [t] = πE+π̂E

9
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is inseparable if and only if (πE + π̂E)∗ω = 0. By Silverman [19, Theorem III.5.2], we
have

(πE + π̂E)∗ω = π∗Eω + π̂E
∗ω.

The isogenies πE and π̂E are inseparable, so by Silverman [19, Proposition II.4.2(c)], we
have π∗Eω = 0 and π̂E

∗ω = 0. Hence,

(πE + π̂E)∗ω = π∗Eω + π̂E
∗ω = 0,

which shows that [t] = πE + π̂E is inseparable. It is implied by Silverman [19, Corol-
lary III.5.5] that the isogeny [t] is inseparable if and only if p|t. Hence, we have p|t.

Next, assume that p|t. Then [19, Corollary III.5.5] implies that π̂E = [t] − πE is insep-

arable. We have π̂E = φ̂1 ◦ · · · ◦ φ̂n. Suppose that φ̂i is separable for all i ∈ {1, . . . , n}.
Then Silverman [19, Proposition II.4.2(c)] implies that φ̂i

∗
is injective. By Silverman

[19, Proposition II.3.6(f)], we have

π̂E
∗ = (φ̂1 ◦ · · · ◦ φ̂n)∗ = φ̂n

∗
◦ · · · ◦ φ̂1

∗
.

It follows that π̂E
∗ is also injective and hence π̂E is separable by Silverman [19, Propo-

sition II.4.2(c)]. But this is a contradiction. Hence, there exists j ∈ {1, . . . , n} such
that φ̂j is inseparable.

Note that deg φ̂j = degi φ̂j · degs φ̂j = p. It holds that φ̂j is inseparable, so degs φ̂j 6= p.

Hence, we have degs φ̂j = 1 and degi φ̂j = p. By Silverman [19, Theorem III.4.10(a)],

it follows that # ker φ̂j = degs φ̂j = 1 and hence φ̂j has a trivial kernel. Moreover,
the isogeny φj is the pth-power Frobenius morphism and therefore purely inseparable
by Silverman [19, Proposition II.2.11(c)]. Therefore, also φj has a trivial kernel. This
implies that

kerφj ◦ φ̂j = ker[p] = {O}.

Hence, we have #E(pj)(Fq)[p] = # ker[p] = 1. This shows that the p-rank of E(pi) is 1.

Since all E(pi) are isogenous, it follows that r(E) = 1 by Proposition 1.14. �

Lemma 1.16. [19, Theorem V.3.1(a)] The endomorphism algebra End0(E) of E/Fq is
isomorphic to the quaternion algebra Bp,∞ if and only if r(E) = 0.

Lemma 1.15 and Lemma 1.16 lead to the following theorem.

Theorem 1.17. Let E/Fq, with q = pn, be an elliptic curve. Then the following
statements are equivalent

(i) Tr πE ≡ 0 mod p,

10



CHAPTER 1. ELLIPTIC CURVES

(ii) r(E) = 0

(iii) End0(E) is isomorphic to the quaternion algebra Bp,∞.

Definition 1.18. We call an elliptic curve E/Fq supersingular if E satisfies one of the
equivalent statements in Theorem 1.17. Otherwise E/Fq is called ordinary.

The next lemma plays a role in the proof of the fact that an elliptic curve E/Fq is
ordinary if and only if End0(E) is isomorphic to an imaginary quadratic field.

Lemma 1.19. If α, β ∈ End0(E) commute and α /∈ Q, then β ∈ Q(α).

Proof. We can extend the trace Tr on End(E) to End0(E) by defining r̂α = rα̂ for r ∈ Q
and α ∈ End(E).

Replace α by α′ = α− 1
2 Trα. Then

Trα′ = Tr

(
α− 1

2
Trα

)
= Trα− 1

2
Tr(Trα) = Trα− 1

2
Tr(α+ α̂)

= Trα− 1

2
(Trα+ Tr α̂) =

1

2
Trα− 1

2
(α̂+ ̂̂α)

=
1

2
Trα− 1

2
(α̂+ α) =

1

2
(Trα− Trα) = 0.

Replace β by β′ = β − 1
2 Trβ − Tr(α′β)

Trα′2 · α
′. Then

Trβ′ = Tr

(
β − 1

2
Trβ

)
− Tr(α′β)

Trα′2
Trα′ = 0,

and

Tr
(
α′β′

)
= Tr

(
α′
(
β − 1

2
Trβ − Tr(α′β)

Trα′2
· α′
))

= Tr

(
α′β − 1

2
Tr(β)α′ − Tr(α′β)

Trα′2
· α′2

)
= Tr

(
α′β
)
− 1

2
Tr(β) Tr

(
α′
)
− Tr(α′β)

Trα′2
· Trα′2

= Tr
(
α′β
)
− Tr

(
α′β
)

= 0.

Moreover, it holds that

Trα′ = α′ + α̂′ = 0,

Trβ′ = β′ + β̂′ = 0,

Tr
(
α′β′

)
= α′β′ + α̂′β′ = α′β′ + β̂′α̂′ = 0,

11
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so α′β′ = −β̂′α̂′ = −(−β′)(−α′) = −β′α′. By assumption α and β commute. Since α′

and β′ are Q-linear combinations of α and β, also α′ and β′ commute. Hence,

α′β′ = −β′α′ = −α′β′,

so 2α′β′ = 0. The endomorphism algebra End0(E) has no zero divisors, so α′ = 0
or β′ = 0. As α /∈ Q by assumption, it holds that α′ 6= 0 and hence β′ = 0. This implies
that

β =
1

2
Trβ +

Tr(α′β)

Trα′2
· α′ = 1

2
Trβ +

Tr(α′β)

Trα′2
·
(
α− 1

2
Trα

)
=

(
1

2
Trβ − Tr(α′β) Trα

2 Trα′2

)
+

Tr(α′β)

Trα′2
· α.

Since 1
2 Trβ− Tr(α′β) Trα

2 Trα′2 and Tr(α′β)
Trα′2 are rational numbers, this shows that β ∈ Q(α). �

The following theorem by Silverman gives the endomorphism algebra of an ordinary
elliptic curve.

Theorem 1.20 ([19, Theorem V.3.1]). Let E/Fq, with q = pn, be an elliptic curve.

Then r(E) = 1 if and only if End0(E) is isomorphic to Q(πE) = Q(
√
t2 − 4q), which is

an imaginary quadratic field.

Proof. Assume r(E) = 1. Suppose πE ∈ Z ⊂ End(E), say πE = r ∈ Z. Then

pn = q = deg(πE) = deg([r]) = r2,

so n is even and r = p
n
2 . Since πE = r is a root of X2 − tX + q = X2 − tX + r2,

where t = Tr(πE) = Tr([r]), we find Tr([r]) = 2r. Hence,

Tr([r]) = 2r = 2p
n
2 ≡ 0 mod p,

which implies that r(E) = 0 by Theorem 1.17. However, r(E) = 1 by assumption,
so πE /∈ Z. Since πE is a root of a monic quadratic polynomial with integer coefficients,
the number πE is an algebraic integer. It follows that πE /∈ Q. The following claim will
imply that also πmE /∈ Q for any integer m ≥ 1.

Claim. For all integers m ≥ 1, we have πmE = aπE + b for some integers a and b
satisfying a 6≡ 0 mod p and b ≡ 0 mod p.

Proof of the claim. We will prove the claim by induction. For m = 1, we have
πE = 1 · πE + 0 with 1 6≡ 0 mod p and 0 ≡ 0 mod p.

12
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Let m > 1 be an integer and assume the claim holds for all integers n with 1 ≤ n < m.
Then

πmE = πE · πm−1
E = πE(aπE + b) = aπ2

E + bπE

= a(Tr(πE)πE − q) + bπE = (aTr(πE) + b)πE − aq,

where we used the induction hypothesis in the second equality (with a 6≡ 0 mod p
and b ≡ 0 mod p) and the fact that π2

E − tπE + q = 0 in the fourth equality. We have

aTr(πE) + b mod p = aTr(πE) mod p.

Note that a 6≡ 0 mod p and also Tr(πE) 6≡ 0 mod p, since r(E) = 1 (Theorem 1.17).
Therefore aTr(πE) 6≡ 0 mod p. Moreover, −aq = −apn ≡ 0 mod p. This proves the
claim. �

Let r be any positive integer and consider E over the field extension Fqr of Fq. The Frobe-
nius endomorphism of E/Fqr is πrE , see Section 2.2. By the claim we have πrE = aπE + b
with a 6= 0. It follows that πrE /∈ Q. This implies that the endomorphism ring EndFqr (E),

containing the Frobenius endomorphism πrE , is not isomorphic to Z and hence End0
Fqr (E)

is not isomorphic to Q. Since this holds for all integers r > 1, it follows that End0(E) is
not isomorphic to Q. Moreover, the endomorphism algebra End0(E) is not isomorphic
to Bp,∞ by Theorem 1.17, because r(E) = 1. Hence, it holds that End0(E) is isomorphic
to an imaginary quadratic field by Theorem 1.6, so End0(E) is commutative.

Consider any α ∈ End0(E). Since End0(E) is commutative, it follows that α com-
mutes with πE ∈ End0(E). Then Lemma 1.19 implies that α ∈ Q(πE). Therefore, we
have End0(E) ⊂ Q(πE). Since clearly Q(πE) ⊂ End0(E), we conclude that

End0(E) = Q(πE) = Q(
√
t2 − 4q).

On the other hand, if End0(E) is isomorphic to the imaginary quadratic field Q(πE),
then r(E) 6= 0 by Theorem 1.17. Hence, r(E) = 1. �

Remark 1.21. Let t be the trace of the Frobenius endomorphism πE of E/Fq. By
Hasse’s theorem (Silverman [19, Theorem V.1.1]), we have |t| ≤ 2

√
q. This implies

that t2 − 4q ≤ 0. Hence, Q(πE) = Q(
√
t2 − 4q) is an imaginary quadratic field, un-

less t2 − 4q = 0.

Remark 1.22. Theorem 1.20 also holds if End0(E) is replaced with End0
Fq(E). Hence,

for an ordinary elliptic curve we have End0
Fq(E) = End0(E).

13
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1.3 Relation between p-rank and decomposition of p

In the previous section we have seen that the endomorphism algebra End0(E) deter-
mines the p-rank r(E) of an elliptic curve E/Fq and vice versa. Let E/Fq, with q = pn,
be an ordinary elliptic curve, fE be the characteristic polynomial of the Frobenius en-
domorphism of E, πE a root of fE and K the field Q(πE). In this section, we will
give the prime factorization of pOK in the field K = Q(πE) ∼= End0(E). We assume
that End(E) ∼= OK .

Lemma 1.23. (Cox, [4, Exercise 5.9(b)]) Let K be an imaginary quadratic field. Then

O×K =


{±1,±i} if K = Q(i),

{±1,±ω,±ω2} if K = Q(ω) with ω = −1+
√
−3

2 ,

{±1} otherwise.

Theorem 1.24. Let E/Fq, with q = pn, be an ordinary elliptic curve. Then End0(E) is
isomorphic to the imaginary quadratic field K = Q(πE) and p splits in K, so pOK = pp
with p 6= p.

Proof. If E is ordinary, then Theorem 1.20 states that End0(E) is isomorphic to the
imaginary quadratic field K = Q(πE). Thus pOK factors as one of

1. pOK (p is inert),

2. p2,

3. pp with p 6= p.

The norm of πE in K can be computed as NK/Q(πE) = πEπE = pn, so (πE)(πE) = (p)n.
Hence, each prime ideal in the prime factorization of (πE) lies above p. In other words,
the prime factorization of (πE) in K is built from the same primes that appear in the
prime factorization of pOK .

Suppose we are in case one or two, so there is only one prime ideal p lying above p. If p
is inert, then p has norm p2 and if p ramifies, then p has norm p. Since NK/Q(πE) = pn,
it follows that (πE) = ps, where s = n

2 if p is inert and s = n if pOK = p2. Furthermore,
the only prime ideal lying above p is p, so p = p. Hence, we have

(πE) = ps = ps = ps = (πE).

Thus, there is a unit ε ∈ O×K such that πE = επE .

14
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As fE = X2 − tX + q and πE is a root of fE , without loss of generality it holds that

πE =
t+
√
t2 − 4q

2
and πE =

t−
√
t2 − 4q

2
,

where t 6= 0 by Theorem 1.17 and t2 − 4q < 0. By Lemma 1.23, we have O×K = {±1}
unless K = Q(i) or Q

(
−1+

√
−3

2

)
. If πE = πE , then πE is real and hence K is a real

field. If πE = −πE , then t = πE + πE = 0, implying that r(E) = 0 by Lemma 1.9.
So both ε = 1 and ε = −1 lead to a contradiction. It remains to check the equa-

tion πE = επE when K = Q(i) or K = Q(ω) with ω = −1+
√
−3

2 .

If K = Q(i), then O×K = {±1,±i} by Lemma 1.23. By the same reasoning as above, the
equation πE = επE does not hold for ε ∈ {±1}. The equation πE = επE translates to

ε =
πE
πE

=
t2 − 2q − t

√
t2 − 4q

2q
. (1.1)

If ε = ±i, then comparing the real parts of both sides of (1.1) gives

0 =
t2 − 2q

2q

and hence t2 = 2q = 2pn. This is possible only if p = 2 and n is odd. But then
t ≡ 0 mod 2 and r(E) = 0 by Lemma 1.9. Hence, πE 6= επE for all ε ∈ O×K .

If K = Q(ω) with ω = −1+
√
−3

2 , then O×K = {±1,±ω,±ω2} by Lemma 1.23. Again, by
the same reasoning as above, the equation πE = επE does not hold for ε ∈ {±1}. We
have

ω =
−1 +

√
−3

2
, −ω =

1−
√
−3

2
, ω2 =

−1−
√
−3

2
, −ω2 =

1 +
√
−3

2
,

so Re(ω) = Re(ω2) = −1
2 and Re(−ω) = Re(−ω2) = 1

2 . If ε ∈ {ω, ω2}, then comparing
the real parts of both sides of (1.1) gives

−1

2
=
t2 − 2q

2q
,

which can be solved to t2 = q = pn, so n is even. But then t ≡ 0 mod p and r(E) = 0
by Lemma 1.9. If ε ∈ {−ω,−ω2}, then comparing the real parts of both sides of (1.1)
gives

1

2
=
t2 − 2q

2q
,

15
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which can be solved to t2 = 3q = 3pn. This is possible only if p = 3 and n is odd. But
then t ≡ 0 mod 3 and r(E) = 0 by Lemma 1.9. Hence, πE 6= επE for all ε ∈ O×K .

This shows that for all imaginary quadratic fields K, there is no ε ∈ O×K such that
πE = επE . Therefore, the only remaining possibility for the factorization of pOK is
pOK = pp. �

Remark 1.25. Theorem 1.24 can also be achieved using Theorem 3.13.
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Chapter 2

Abelian varieties over finite fields

The main goal of this chapter is to provide the necessary background on abelian varieties.
This will be done in Section 2.1, which is mainly based on Milne [14] and Tate [20], [21],
and Section 2.2, which is based on Howe and Zhu [9]. Besides, we summarize the
relations between the endomorphism algebra, the p-rank and the prime factorization of
the rational prime p in Q(πS) for an abelian surface S/Fpn . These relations are known
and can be found in Gonzalez [7] and Bradford [2]. This chapter forms the preparation
for Chapter 3.

2.1 Background

An elliptic curve is a nonsingular projective curve together with a group structure de-
fined by regular maps. This definition of an elliptic curve can be generalized to higher
dimensional varieties.

Definition 2.1. An abelian variety is a nonsingular (geometrically irreducible) projec-
tive variety with a group structure defined by regular maps.

In general, an abelian variety over a field k of dimension g is denoted by A/k. Later
we will slightly change notation, but for now we keep the notation A for an arbitrary
abelian variety of dimension g.

Let A1 and A2 be two abelian varieties of dimension g. A rational map φ : A1 → A2 that
is regular at every point is called a morphism. The maps between abelian varieties that

17
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will be studied, form a subset of the set of morphisms and are again called isogenies. The
definition is similar to the definition of an isogeny between elliptic curves (Definition 1.1).

Definition 2.2. Let A1 and A2 be abelian varieties of dimension g. An isogeny from A1

to A2 is a surjective morphism φ : A1 → A2 which defines a homomorphism of the
underlying groups, with a finite kernel. We call A1 and A2 isogenous if there exists an
isogeny between A1 and A2.

Definition 2.3. Let φ : A1 → A2 be an isogeny between two abelian varieties A1

and A2 of degree m. Then the dual isogeny of φ is the unique isogeny φ̂ : A2 → A1

satisfying φ̂ ◦ φ = [m].

Remark 2.4. If there exists an isogeny between two abelian varieties A1 and A2, then
the dimension of A1 is equal to the dimension of A2, see Milne [14, Proposition I.7.1].

In addition to the isogenies defined above, there is one more important map between
abelian varieties. This is the zero morphism [0] : A1 → A2, where A1 and A2 are two
abelian varieties of dimension g, and is given by sending all points on A1 to the identity
element on A2.

Let A1/k and A2/k be two abelian varieties of dimension g. We can distinguish between
isogenies defined over k and isogenies defined over the algebraic closure k. If there exists
an isogeny defined over k from A1 to A2, then the abelian varieties A1 and A2 are called
k-isogenous. If the isogeny from A1 to A2 is defined over the algebraic closure k, then A1

and A2 are called k-isogenous.

Definition 2.5. Let A/k be an abelian variety. An endomorphism of A is a morphism
from A to itself that is a homomorphism of the underlying group. The set of all endo-
morphisms defined over k from A to itself is called the endomorphism ring of A and is
denoted by Endk(A).

Under pointwise addition and composition, Endk(A) becomes a ring. The additive and
multiplicative unit element of the endomorphism ring is given by the zero morphism. The
set of all endomorphisms of A defined over the algebraic closure k is denoted by End(A)
and is also a ring under pointwise addition and composition.

Example 2.6. Let A/k be an abelian variety. The multiplication-by-n map [n] : A→ A,
where n is any integer, given by

[n](P ) = P + · · ·+ P︸ ︷︷ ︸
n terms

is an endomorphism (and even an isogeny) of A defined over k. Therefore, {[n] : n ∈ Z}
forms a subring of Endk(A) isomorphic to Z and we say that Z ⊆ Endk(A) ⊆ End(A).

18
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From the endomorphism ring, the endomorphism algebra can be constructed.

Definition 2.7. The endomorphism algebra of A/k over the base field k is Endk(A)⊗ZQ
and is denoted by End0

k(A). Over the algebraic closure k, the endomorphism algebra
is End(A)⊗Z Q and is denoted by End0(A).

From now on, we restrict to abelian varieties defined over finite fields. A special endo-
morphism of an abelian variety A/Fq is the Frobenius endomorphism.

Definition 2.8. The endomorphism πA : A→ A induced by the embedding of function
fields Fq(A)q ⊂ Fq(A), is called the Frobenius endomorphism of A.

The next theorem by Milne is used to define the characteristic polynomial of the Frobe-
nius endomorphism.

Theorem 2.9. ([14, Theorem 10.9]) Let A/Fq be an abelian variety of dimension g.
For every α ∈ EndFq(A), there is a unique polynomial Pα ∈ Z[x] of degree 2g such
that Pα(t) = deg(α− t) for almost all t ∈ Z.

We define fA := PπA to be the characteristic polynomial of the Frobenius endomorphism
of A. If fA is irreducible, we identify a root of fA with the Frobenius endomorphism πA.
By abuse of language, we use the notation πA to refer to both the Frobenius endomor-
phism and a root of fA.

The Frobenius endomorphism of an abelian variety A/Fq determines the center of the
endomorphism algebra End0

Fq(A) as is stated in the following theorem by Tate.

Theorem 2.10. ([20, Theorem 2(a)]) Let A/Fq be an abelian variety and let πA be the
Frobenius endomorphism of A. Then the center of the endomorphism algebra End0

Fq(A)
is isomorphic to Q(πA).

An abelian variety A/k of dimension g > 1 can be isogenous, either over k or k, to a
product A1×· · ·×An of lower dimensional abelian varieties. As explained in Remark 2.4,
the dimensions of A1, . . . , An should add up to the dimension g of A in order for A
and A1 × · · · ×An to be isogenous.

Definition 2.11. An abelian variety over a field k is called simple if it is not k-isogenous
to a product of lower dimensional abelian varieties. An abelian variety is called absolutely
simple if it is simple over the algebraic closure of k.

An alternative definition of a simple abelian variety A/k is an abelian variety of which
the endomorphism ring Endk(A) contains no zero divisors.
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Definition 2.12. An abelian variety A/k is called isotypic over k if it is k-isogenous
to Bd, where B is a simple abelian variety and d a positive integer. An abelian vari-
ety A/k is called isotypic over k if it is k-isogenous to Bd, where B is an absolutely
simple abelian variety and d a positive integer.

In particular, every simple abelian variety A/k is isotypic over k and every absolutely
simple abelian variety A/k is isotypic over k.

If an abelian variety A/Fq is not (absolutely) simple, then there is a relation between
the endomorphism algebra End0(A) and the endomorphism algebras of the abelian sub-
varieties of A.

Proposition 2.13. ([14, p.43]) Let A/Fq be an abelian variety.

(i) If A is Fq-isogenous to a product
∏
Anii of simple abelian varieties Ai/Fq that are

not Fq-isogenous to each other, then

End0
Fq(A) ∼= ⊕Mni(End0

Fq(Ai)),

where Mni denotes the ring of (ni × ni)-matrices.

(ii) If A is Fq-isogenous to a product
∏
Anii of absolutely simple abelian varieties Ai/Fq

that are not Fq-isogenous to each other, then

End0(A) ∼= ⊕Mni(End0(Ai)).

The following two theorems by Tate explain the relation between the characteristic
polynomial of Frobenius of an abelian variety A/Fq and its abelian subvarieties over Fq.

Theorem 2.14. ([20, Theorem 1(b),(c)]) Let A/Fq and B/Fq be abelian varieties. Then

(i) A and B are Fq-isogenous if and only if fA = fB,

(ii) B is Fq-isogenous to an abelian subvariety of A defined over Fq if and only if fB
divides fA.

Theorem 2.15. ([20, Theorem 2(d)]) Let A/Fq be an abelian variety of dimension g.
Then the following statements are equivalent.

(i) fA is a power of a linear polynomial,

(ii) Q(πA) = Q,
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(iii) A is Fq-isogenous to the g-th power of a supersingular elliptic curve, all of whose
endomorphisms are defined over Fq.

Definition 2.16. A complex number π ∈ C is called a Weil q-number if |φ(π)| = q
1
2 for

all embeddings φ : Q(π)→ C.

The above definition implies that Weil q-numbers are algebraic over Q.

Definition 2.17. A polynomial in Z[x] is called a Weil polynomial if all its roots are
Weil q-numbers.

Two Weil q-numbers π1 and π2 are called equivalent if they have the same minimal
polynomial. In other words, if there is an isomorphism φ : Q(π1) → Q(π2) such
that φ(π1) = π2. The relation between Weil q-numbers and abelian varieties over Fq
is due to Honda and Tate and is given by the next two theorems.

Theorem 2.18. ([14, Theorem II.1.1]) Let A/Fq be an abelian variety of dimension g

with fA the characteristic polynomial of Frobenius. Write fA(X) =
∏2g
i=1(X − ai)

for ai ∈ C. Then the Riemann hypothesis implies |ai| = q
1
2 .

Corollary 2.19. The characteristic polynomial of the Frobenius endomorphism of an
abelian variety over a finite field is a Weil polynomial.

Theorem 2.20. ([21, Theorem 1]) There is a bijection between the set of isogeny classes
of simple abelian varieties over Fq and the equivalence classes of Weil q-numbers. The
bijection is given by associating to a simple abelian variety A/Fq a root of the charac-
teristic polynomial of Frobenius.

Corollary 2.21. Let A/Fq be a simple abelian variety of dimension g. Then fA = he,
where h is an irreducible Weil polynomial and e a positive integer dividing 2g.

Proof. Let A/Fq be a simple abelian variety of dimension g. Consider the set of abelian
varieties

S = {A′/Fq : A′ is simple and Fq-isogenous to A}.

By Theorem 2.14(i), every abelian variety in the set S has the same characteristic poly-
nomial of Frobenius fA. Any root of fA is a representative of the equivalence class of
Weil q-numbers corresponding to the set S by Theorem 2.20. Therefore, all roots of fA
are equivalent Weil q-numbers. Since these equivalent Weil q-numbers have the same
minimal polynomial h, it follows that fA = he. Here e is a positive integer dividing 2g,
because the degree of fA is 2g. �
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If A/Fq is a simple abelian variety, then the characteristic polynomial of Frobenius
determines the endomorphism algebra EndFq(A), as is stated in the following theorem
by Tate.

Theorem 2.22. ([20, Theorem 2(c),(e)]) Let A/Fq, with q = pn, be an abelian variety.
Then

(i) End0
Fq(A) ∼= Q(πA) if and only if fA is irreducible;

(ii) End0
Fq(A) ∼= DA, where DA is a central simple algebra over Q(πA) which splits at

all finite primes p of Q(πA) not dividing p, but does not split at any real prime
of Q(πA), if fA = he, with h an irreducible polynomial and e > 1.

Remark 2.23. If for an abelian variety A/Fq of dimension g it holds that fA is a
power of a linear polynomial, then part (ii) of Theorem 2.22 applies. Moreover, it
follows from Theorem 2.15 that in this case A is Fq-isogenous to the g-th power of a
supersingular elliptic curve E/Fq, all of whose endomorphisms are defined over Fq. Thus
by Proposition 2.13, we have

End0
Fq(A) ∼= Mg(End0

Fq(E)) = Mg(End0(E)) ∼= Mg(Bp,∞),

where Bp,∞ is a quaternion algebra over Q ramified only at p and ∞, and Mg(Bp,∞)
is a central simple algebra over Q(πA) = Q which does not split at any prime of Q by
part (ii) of Theorem 2.22.

Let A/Fq, with q = pn, be a simple abelian variety. Let πA be a root of fA and let p be
a prime ideal in Q(πA). Then the invariant ip of End0

Fq(A) at p is defined as

ip =


1
2 if p is real,

0 if p lies over a prime l 6= p in Q,
f(p) · ordp(πA)

n if p lies over p,

where f(p) denotes the residual degree at p with respect to p. More information about
the invariants can be found in Waterhouse and Milne [22, Theorem 8].

If A/Fq is a simple abelian variety of dimension g, then the characteristic polynomial
of Frobenius fA is of the form he, where h is an irreducible Weil polynomial and e is a
positive integer dividing 2g by Corollary 2.21. There is a relation between the integer e
and the invariants of End0

Fq(A). This relation will become apparent after the next two
theorems by Tate and Milne respectively.

Theorem 2.24. ([21, Theorem 1]) Let A/Fq be a simple abelian variety of dimension g.
Then

2g = [End0
Fq(A) : Q(πA)]

1
2 [Q(πA) : Q].
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Let A be a simple abelian variety of dimension g with fA = he and let πA be a root
of fA. Then [Q(πA) : Q] is equal to the degree of the minimal polynomial h of πA. Since
the degree of fA is 2g, by Theorem 2.24 it holds that

edeg(h) = deg(fA) = 2g

= [End0
Fq(A) : Q(πA)]

1
2 [Q(πA) : Q]

= [End0
Fq(A) : Q(πA)]

1
2 deg(h),

so e = [End0
Fq(A) : Q(πA)]

1
2 .

Theorem 2.25. ([14, Theorem II.2.8]) If A/Fq is a simple abelian variety, then the least
common denominator of the invariants ip, where p is a prime ideal in Q(πA), is equal

to [End0
Fq(A) : Q(πA)]

1
2 .

By Theorem 2.25, the integer e = [End0
Fq(A) : Q(πA)]

1
2 is equal to the least common

denominator of the invariants ip, where p is a prime ideal in Q(πA). In particular, we
have the following corollary.

Corollary 2.26. If an abelian threefold A/Fq is such that fA is irreducible, then its
invariants are integers.

Proof. If fA is irreducible, then Theorem 2.14(ii) implies that A is simple. Thus fA = he,
where h is an irreducible Weil polynomial and e a positive integer dividing 2g by
Corollary 2.21. But fA is irreducible, so e = 1. Now by Theorem 2.25, it holds
that e = [End0

Fq(A) : Q(πA)]
1
2 equals the least common denominator of the invari-

ants ip, where p is a prime ideal in Q(πA). It follows that the least common denominator
of the invariants ip is 1 and hence the invariants are integers. �

Let A/Fq, with q = pn, be an abelian variety of dimension g. Let m ∈ Z>0. The m-
torsion subgroup of A is the set of points of A of order m and is denoted by A(Fq)[m].
The m-torsion subgroup is equal to the kernel of the multiplication-by-m map [m]. If m
and p are coprime, then A(Fq)[m] ∼= (Z/mZ)2g by Milne [14, p.4]. However, this does
not always hold when m = p.

Definition 2.27. The p-rank of an abelian variety A/Fq, with q = pn, is the inte-
ger r = r(A) such that the group A(Fq)[p] has order pr.

The p-rank of an abelian variety A/Fq of dimension g is nonnegative and bounded by g

0 ≤ r(A) ≤ g.
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In the next proposition, we will show that abelian varieties that are Fq-isogenous to
each other have the same p-rank. Moreover, if an abelian variety A/Fq is not absolutely
simple, the p-rank of A can be deduced from the p-rank of the abelian subvarieties of A.

Proposition 2.28. Let A/Fq, with q = pn, be an abelian variety Fq-isogenous to a
product A1 × · · · ×Am of absolutely simple abelian varieties defined over Fq. Then

r(A) = r(A1) + · · ·+ r(Am).

Proof. Let φ : A → A1 × · · · × Am be an isogeny defined over Fq. Let Q ∈ A(Fq)[p] be
arbitrary. Then we have pQ = OA, where OA denotes the identity element of A. Since φ
is an isogeny, and thus a homomorphism, it holds that

(OA1 , . . . ,OAm) = φ(OA) = φ(pQ) = pφ(Q),

where OAi is the identity element of Ai for i ∈ {1, . . . ,m}. This implies
that φ(Q) ∈ A1 × · · · ×Am(Fq)[p]. Hence, we have

pr(A) = |A(Fq)[p]| ≥ |A1 × · · · ×Am(Fq)[p]| = |A1(Fq)[p]× · · · ×Am(Fq)[p]|
= |A1(Fq)[p]| · . . . · |Am(Fq)[p]| = pr(A1) · . . . · pr(Am) = pr(A1)+···+r(Am),

because φ is surjective. It follows that r(A) ≥ r(A1) + · · ·+ r(Am).

Let φ̂ : A1 × · · · × Am → A be the dual isogeny of φ. Let Q ∈ |A1 × · · · × Am(Fq)[p]|
be arbitrary. Then we have pQ = (OA1 , . . . ,OAm). Since φ̂ is an isogeny, and thus a
homomorphism, it holds that

OA = φ̂((OA1 , . . . ,OAm)) = φ̂(pQ) = pφ̂(Q).

This implies that φ̂(Q) ∈ A(Fq)[p]. Hence, we have

pr(A1)+···+r(Am) = |A1 × · · · ×Am(Fq)[p]| ≥ |A(Fq)[p]| = pr(A),

because φ̂ is surjective. It follows that r(A1) + · · · + r(Am) ≥ r(A). This shows
that r(A) = r(A1) + · · ·+ r(Am). �

If r(A) = g, then A is called ordinary. If A is Fq-isogenous to the product of g supersin-
gular elliptic curves, then A is called supersingular. It follows from Proposition 2.28 that
a supersingular abelian variety A/Fq satisfies r(A) = 0. In Chapter 1, we have seen that
the converse holds for elliptic curves. If an elliptic curve E satisfies r(E) = 0, then E is
supersingular. We will see in Section 2.3 that the same holds for an abelian variety of
dimension g = 2.
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2.2 Base extensions

In this section, we discuss what happens with the Frobenius endomorphism, the endo-
morphism algebra and the p-rank if we define an abelian variety A/Fq over a finite field
extension Fqr . Extending the base of abelian varieties over finite fields proves to be a
helpful tool that will turn up in Chapter 3.

Let A/Fq be an abelian variety of dimension g with Frobenius endomorphism πA. Let r
be a positive integer and consider A/Fqr . The field Fqr is a finite field extension of Fq of
degree r. The endomorphisms of A defined over Fq are also defined over the field exten-
sion Fqr , so End0

Fq(A) ⊆ End0
Fqr (A). The Frobenius πA of A/Fq is induced by the q-th

power Frobenius automorphism of Fq and the Frobenius of A/Fqr is induced by the qr-th
power Frobenius automorphism of Fqr . Composing r times the q-th power Frobenius au-
tomorphism of Fq gives the qr-th power Frobenius automorphism of Fq. Since Fqr = Fq,
the composition of r times the q-th power Frobenius automorphism of Fq coincides with
the qr-th power Frobenius automorphism of Fqr . Hence, the Frobenius endomorphism
of A/Fqr is πrA. It follows that if the characteristic polynomial of Frobenius of A/Fq is

fA = (x− πA,1) · · · (x− πA,2g),

then the characteristic polynomial of Frobenius of A/Fqr is

f ′A = (x− (πA,1)r) · · · (x− (πA,2g)
r).

SupposeA is Fq-isogenous to a product
∏
Ani1 of absolutely simple abelian varietiesAi/Fq

that are not Fq-isogenous to each other. As

End0
Fq(A) ⊆ End0

Fq2
(A) ⊆ · · · ⊆ End0

Fqr ⊆ · · · ⊆ End0A,

there exists a positive integer s such that over the field extension Fqs , the abelian vari-
ety A is Fqs-isogenous to

∏
Anii . On the other hand, if there exists a positive integer s

such that A/Fqs is Fqs-isogenous to a product
∏
Anii of absolutely simple abelian vari-

eties Ai, then A/Fq is Fq-isogenous to
∏
Anii . Furthermore, there always exists a positive

integer t such that End0(A) = End0
Fqt

(A).

Recall that the p-rank of an abelian variety A/Fq, with q = pn, is the integer r(A) such
that the group A(Fq)[p] has order pr(A). Since Fq = Fq2 = · · · = Fqr = . . . , it holds that∣∣A(Fq)[p]

∣∣ =
∣∣A(Fq2)[p]

∣∣ = · · · =
∣∣A(Fqr)[p]

∣∣ = . . .

and hence
r(A/Fq) = r(A/Fq2) = · · · = r(A/Fqr) = . . . . (2.1)

25



CHAPTER 2. ABELIAN VARIETIES OVER FINITE FIELDS

The following proposition by Howe and Zhu gives a sufficient condition for a simple
abelian variety A/Fq to be absolutely simple.

Proposition 2.29. ([9, Proposition 3]) Let A/Fq be a simple abelian variety with Frobe-
nius πA. If Q(πrA) = Q(πA) for all integers r > 0, then A is absolutely simple.

Proof. Let fA be the characteristic polynomial of the Frobenius endomorphism πA. The
abelian variety A is simple, so fA = he, where h = (x − πA,1) · · · (x − πA, 2g

e
) is an irre-

ducible Weil polynomial and e a positive integer dividing 2g by Corollary 2.21. Let r be
an arbitrary positive integer and consider A/Fqr . Let f ′A be the characteristic polynomial
of the Frobenius endomorhism πrA of A/Fqr . Then

f ′A = ((x− (πA,1)r) · · · (x− (πA, 2g
e

)r))e = (h′)e.

Since Q(πA) = Q(πrA), the polynomial h′ is irreducible.

If e = 1, then fA and f ′A are both irreducible. It follows that End0
Fq(A) ∼= Q(πA)

and End0
Fqr (A) ∼= Q(πrA) by Theorem 2.22. Hence, we have End0

Fq(A) = End0
Fqr (A),

because Q(πA) = Q(πrA).

If e > 1, then End0
Fq is isomorphic to a central simple algebra over Q(πA) which splits at

all finite primes p of Q(πA) not dividing p, but does not split at any real prime of Q(πA),
and End0

Fqr (A) is isomorphic to a central simple algebra over Q(πrA) which splits at all

finite primes p of Q(πrA) not dividing p, but does not split at any real prime of Q(πrA).
Since Q(πA) = Q(πrA), it follows that End0

Fq(A) = End0
Fqr (A).

Suppose that the abelian variety A/Fqr is not simple. Then at least one zero divisor
is contained in the endomorphism ring EndFqr (A). The abelian variety A/Fq is simple
by assumption, so the endomorphism ring EndFq(A) contains no zero divisors. Hence,
there exists an element in End0

Fqr (A) that does not come from End0
Fq(A). But we proved

that End0
Fq(A) = End0

Fqr (A). This shows that A/Fqr must be simple. Hence, the abelian

variety A/Fq is absolutely simple. �

Corollary 2.30. Let A/Fq be a simple abelian variety. If End0(A) = End0
Fqr (A) for all

integers r > 0, then A is absolutely simple.

Proof. If End0(A) = End0
Fqr (A) for all integers r > 0, then in particular it holds

that End0
Fq(A) = End0

Fqr (A) for all integers r > 0. Let r be any positive integer and

consider A/Fqr . The Frobenius endomorphism of A/Fqr is πrA. By Theorem 2.10, the
center of End0

Fq(A) is isomorphic to Q(πA) and the center of End0
Fqr (A) is isomorphic

to Q(πrA). Since End0
Fq(A) = End0

Fqr (A), their centers are also equal. Therefore, it holds
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that Q(πrA) = Q(πA). Since r is taken arbitrary, Q(πrA) = Q(πA) for all integers r > 0.
Then Proposition 2.29 implies that A is absolutely simple. �

2.3 Classifying abelian surfaces over finite fields

In this section, we summarize the relations between the endomorphism algebra, the
p-rank and the prime factorization of the rational prime p in Q(πS) for an abelian
surface S/Fpn with Frobenius πS . These relations are known and can be found in Gon-
zalez [7] and Bradford [2].

An abelian variety of dimension g = 2 is called an abelian surface. The notation S
is used for an abelian surface. Let S/Fq be an abelian surface defined over the finite
field Fq. If S/Fq is not simple, then S is Fq-isogenous to the product of two elliptic
curves E1 and E2. Theorem 2.14(ii) implies that in this case the characteristic polyno-
mial of Frobenius of S is given by fS = fE1fE2 . The p-rank of S can be deduced from the
p-rank of E1 and E2 via the formula r(S) = r(E1)+r(E2), see Proposition 2.28. Further-
more, the endomorphism algebra End0

Fq(A) is isomorphic to the direct sum of End0
Fq(E1)

and End0
Fq(E2) by Proposition 2.13(i).

Now assume that S/Fq, with q = pn, is simple. Then fS = he, where h is an irreducible
Weil polynomial and e|4 by Corollary 2.14. Also e 6= 4 by Theorem 2.15. Therefore,
the polynomial fS is either irreducible, or equal to the second power of an irreducible
Weil polynomial. Theorem 2.22 implies that if fS is irreducible, then End0

Fq(S) ∼= Q(πS)

with [Q(πS) : Q] = 4. And if fS = h2, where h is an irreducible second degree Weil
polynomial, then End0

Fq(S) ∼= DS . Here DS is a central simple algebra over Q(πS) which
splits at all finite primes of Q(πS) not dividing p, but does not split at any real prime
of Q(πS).

Suppose S/Fq is supersingular. Then S is Fq-isogenous to the product of two supersin-
gular elliptic curves and Proposition 2.28 implies that r(S) = 0. To prove the converse,
assume that S is not supersingular. Then S is either Fq-isogenous to a product E1×E2

such that at least one elliptic curve is not supersingular, or S is absolutely simple. In
the first case, at least one of E1 and E2 has p-rank 1 and it follows from Proposition 2.28
that r(S) > 0.

For the second case, let S/Fq, with q = pn, be absolutely simple and let fS be the
characteristic polynomial of Frobenius. Let πS be a root of fS and let K = Q(πS).
Gonzalez proved in [7, Theorem 3.7(ii)] that in this case [K : Q] = 4 and End0(S) ∼= K.
Moreover, the factorization of pOK into prime ideals, which only depends on End0(S),
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completely determines the p-rank r(S). The possible factorizations of the ideal pOK and
the corresponding p-rank are summarized in Table 2.1. See [2, Example 3.9] by Bradford
for a complete explanation.

Factorization of pOK r(S)

p2p2 2
pp 2

p1p1p2 1

p1p1p
2
2 1

p1p1p2p2 2

Table 2.1: Factorizations of pOK and corresponding p-ranks

For all possible factorizations of pOK into prime ideals, it holds that r(S) > 0. Hence,
if S is absolutely simple, then r(S) > 0. This shows that if S is not supersingular, then
its p-rank is not zero. In other words, if r(S) = 0, then S is supersingular.

In the next chapter, we will study abelian varieties of dimension g = 3. If an abelian
variety of dimension g = 3 is supersingular, then its p-rank is zero. But unlike as for
elliptic curves and abelian surfaces, the converse does not hold. We will see in Table 3.2
that an abelian variety A of dimension g = 3 can satisfy r(A) = 0 without being
supersingular. Moreover, for absolutely simple abelian varieties A of dimension g = 3,
knowing the factorization of (p) in the maximal order of Q(πA) is no longer sufficient
to determine the p-rank r(A). In addition, the factorization of the ideal (πA) must be
known. In Section 3.3.1 it will be shown that certain factorizations of the ideal (p) allow
for multiple factorizations of the ideal (πA), which correspond to different p-ranks.
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Chapter 3

Abelian threefolds over finite
fields

An abelian variety of dimension g = 3 is called an abelian threefold. The notation A
is used for an abelian threefold. In this chapter, we will study abelian threefolds A/Fq
defined over the finite field Fq of characteristic p. In Section 3.1, we first discuss the
possible characteristic polynomials of the Frobenius endomorphism for a simple abelian
threefold and the possible endomorphism algebras of an abelian threefold. Section 3.2
explains the relation between Newton polygons and the p-rank of an abelian threefold.
Section 3.3 prepares for Theorem 3.17 which follows in Section 3.3.1. Theorem 3.17 is
the main theorem of the thesis and gives a complete classification of the p-rank in terms
of the splitting behaviour of the rational prime p in the maximal order of the number
field Q(πA) of an absolutely simple abelian threefold A/Fpn .

3.1 Characteristic polynomial and endomorphism algebras

Let A/Fq denote an arbitrary abelian threefold, let S/Fq denote an arbitrary simple
abelian surface and let E/Fq, E1/Fq, E2/Fq and E3/Fq denote arbitrary elliptic curves.
Then we have the following possibilities:

• A is Fq-isogenous to E × S;

• A is Fq-isogenous to E1 × E2 × E3;

• A is simple, but not absolutely simple;
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• A is absolutely simple.

If A is Fq-isogenous to E × S, then Theorem 2.14(ii) implies that the characteristic
polynomial of Frobenius of A is given by fA = fEfS . Furthermore, the p-rank of A can
be deduced from the p-rank of E and S via the formula r(A) = r(E) + r(S), see Propo-
sition 2.28. In the same way, if A is Fq-isogenous to E1×E2×E3, then fA = fE1fE2fE3

and the p-rank of A is given by r(A) = r(E1) + r(E2) + r(E3).

Proposition 3.1. Let A/Fq, with q = pn, be a simple abelian threefold and let fA be
the characteristic polynomial of Frobenius. Then fA satisfies one of the following

(i) fA is an irreducible Weil polynomial,

(ii) fA is the third power of a second degree irreducible Weil polynomial.

Proof. Corollary 2.19 implies that fA = he, where h is an irreducible Weil polynomial
and e a positive integer dividing 2g = 6. So a priori we have the following options for fA:

(i) fA is an irreducible Weil polynomial,

(ii) fA is the second power of a third degree irreducible Weil polynomial,

(iii) fA is the third power of a second degree irreducible Weil polynomial,

(iv) fA is the sixth power of a linear Weil polynomial.

Theorem 2.15 states that in the last case, A is Fq-isogenous to the third power of a
supersingular elliptic curve. This contradicts with the assumption that A is simple.
Therefore, the last option is not possible.

Suppose fA is the second power of a third degree irreducible Weil polynomial. So
fA = h2, where deg(h) = 3 and h is an irreducible Weil polynomial. The polynomial h
has three roots: a pair of complex conjugate roots and one real root. For all roots πA of h
it holds that [Q(πA) : Q] = 3. Moreover, h is a Weil polynomial, so all the roots of h are
Weil q-numbers. Let πA be the real root of h. Then for all embeddings φ : Q(πA)→ C,

it holds that |φ(πA)| = q
1
2 . Let φ be the embedding given by φ(πA) = πA. Then

|φ(πA)| = |πA| = ±πA = q
1
2 .

If q = pn with n even, then q
1
2 ∈ Q and hence πA ∈ Q. If q = pn with n odd,

then q
1
2 ∈ Q(

√
p) and hence πA ∈ Q(

√
p). Thus, if n is even, then [Q(πA) : Q] = 1
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and if n is odd, then [Q(πA) : Q] = 2. This shows that the real root πA of h does
not satisfy [Q(πA) : Q] = 3. Hence, fA cannot be the second power of a third degree
irreducible Weil polynomial.

The options for fA that remain are

(i) fA is irreducible,

(ii) fA is the third power of a second degree irreducible polynomial. �

Next, we discuss the possible endomorphism algebras of an abelian threefold. We will
first consider the possible endomorphism algebras over the finite field Fq of characteris-
tic p of an abelian threefold A/Fq. If A is Fq-isogenous to a product of lower dimensional
simple abelian varieties, then End0

Fq(A) is isomorphic to the direct sum of the endomor-
phism algebras of these lower dimensional simple abelian varieties by Proposition 2.13(i).
Therefore, knowing the endomorphism algebras of elliptic curves, simple abelian surfaces
and simple abelian threefolds is enough to determine the endomorphism algebra over Fq
of any abelian threefold.

The endomorphism algebra EndFq(E) of an ordinary elliptic curve is isomorphic to the
imaginary quadratic field Q(πE) by Remark 1.22. For a supersingular elliptic curve,
only the endomorphism algebra End0(E) is known. In Section 2.3, we found that the
endomorphism algebra of a simple abelian surface S/Fq depends on the characteristic
polynomial of its Frobenius endomorphism. If fS is irreducible, then End0

Fq(S) is iso-

morphic to Q(πS) with [Q(πS) : Q] = 4. If fS = h2, where h is an irreducible second
degree Weil polynomial, then End0

Fq(S) ∼= DS .

The possible endomorphism algebras for a simple abelian threefold are very similar to
those of a simple abelian surface. By Proposition 3.1, the characteristic polynomial of
the Frobenius endomorphism of a simple abelian threefold A/Fq is either irreducible or
the third power of a second degree irreducible Weil polynomial. Theorem 2.22 implies
that if fA is irreducible, then End0

Fq(A) ∼= Q(πA) with [Q(πA) : Q] = 6. And if fA = h3,

where h is an irreducible second degree Weil polynomial, then End0
Fq(A) ∼= DA. Here DA

is a central simple algebra over Q(πA) which splits at all finite primes of Q(πA) not
dividing p, but does not split at any real prime of Q(πA). The following example shows
how the endomorphism algebra End0

Fq(A) of an abelian variety A/Fq depends on the
endomorphism algebras of the lower dimensional simple abelian varieties whose product
is Fq-isogenous to A.
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Example 3.2. Let A/Fq, with q = pn, be an abelian threefold.

• If A is Fq-isogenous to E3, where E/Fq is an ordinary elliptic curve, then

End0
Fq(A) ∼= M3(End0

Fq(E)) ∼= M3(Q(πE)),

by Proposition 2.13(i).

• Assume A is Fq-isogenous to E × S, where E/Fq is an ordinary elliptic curve
and S/Fq is a simple abelian surface with fS = h2, where h is a second degree
irreducible Weil polynomial. Then End0

Fq(S) ∼= DS , where DS is a central simple
algebra over Q(πS) which splits at all finite primes of Q(πS) not dividing p, but
does not split at any real prime of Q(πS). Proposition 2.13(i) implies that

End0
Fq(A) ∼= End0

Fq(E)⊕ End0
Fq(S) ∼= Q(πE)⊕DS .

We also determine the possible endomorphism algebras over the algebraic closure Fq
of A/Fq with q = pn. If A is Fq-isogenous to a product of lower dimensional absolutely
simple abelian varieties, then End0(A) is isomorphic to the direct sum of the endo-
morphism algebras of these lower dimensional absolutely simple abelian varieties by
Proposition 2.13(ii). Therefore, knowing the endomorphism algebras of elliptic curves,
absolutely simple abelian surfaces and absolutely simple abelian threefolds is enough to
determine the endomorphism algebra over Fq of any abelian threefold.

The endomorphism algebra End0(E) of a supersingular elliptic curve E is isomorphic to
the quaternion algebra Bp,∞ by Theorem 1.16. The endomorphism algebra End0(E) of
an ordinary elliptic curve E is isomorphic to the imaginary quadratic field Q(πE) by The-
orem 1.20. For an absolutely simple abelian surface S/Fq, it holds that End0(S) ∼= Q(πS).
The endomorphism algebra End0(A) of an absolutely simple abelian threefold A/Fq can
be isomorphic to Q(πA) or to DA. If A/Fq is absolutely simple and ordinary, Gonzalez
proved in [7, Theorem 3.6(i)] that End0(A) ∼= Q(πA) with [Q(πA) : Q] = 6. This result
will be proven in Section 3.2.

3.2 Newton polygons

In this section, we relate Newton polygons to the p-rank of an abelian threefold. The
section is mainly based on Koblitz [10], Bradford [2] and Nart-Maisner [15].

We will be interested in the Newton polygon of a characteristic polynomial of the Frobe-
nius of an abelian variety. Therefore, we start the construction of a Newton polygon
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with a monic polynomial f(x) = xn + an−1x
n + · · ·+ a1x+ a0 ∈ Z[x] and a prime p. We

consider the set of points

Sf = {(0, ordpa0), (1, ordpa1), . . . , (n− 1, ordpan−1), (n, 0)}.

The construction of the Newton polygon of f , denoted by Npp(f), starts with drawing
a vertical line l through the point (0, ordpa0). Then we rotate l counterclockwise until
we hit another point in Sf for the first time. It can happen that at this point l touches
multiple points in Sf at the same time. We then draw the line segment from (0, ordpa0)
to the last point (i1, ordpai1) in Sf that l currently touches. This is the first line segment
of Npp(f). We continue rotating the line l counterclockwise until we hit another point
in Sf for the first time. Again, it can happen that at this point l touches multiple points
in Sf . We draw the line segment from (i1, ordpai1) to the last point (i2, ordpai2) in Sf
that l currently touches. This is the second line segment of Npp(f). This process is
repeated until we have hit the point (n, 0) and drawn the final line segment of Npp(f).

Example 3.3. Let f(x) = x6+2x5+50x4+75x3+1250x2+1250x+15625, an irreducible
Weil polynomial for q = 25, and take the prime 5. Then

Sf = {(0, 6), (1, 4), (2, 4), (3, 2), (4, 2), (5, 0), (6, 0)}

and the Newton polygon Np5(f) is

0 1 2 3 4 5 6
0

2

4

6

The points where the slopes of a Newton polygon change are the vertices. If the
points (i, ordpai) and (j, ordpaj) are two vertices of a Newton polygon connected by
a single line segment, then the slope of this segment is (ordpaj − ordpai)/(j − i). By
the horizontal length, we mean the length of the projection of the segment onto the
horizontal axis, so in this case j − i.

The following lemma by Koblitz is the first step in obtaining the relation between Newton
polygons and the p-rank of an abelian threefold.

Lemma 3.4. ([10, IV Lemma 4]) Let A/Fq, with q = pn, be an abelian threefold
with fA(x) the characteristic polynomial of Frobenius. Let K ′ be the splitting field
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of fA in C and let fA(x) = (x− α1)(x− α2) · · · (x− α6) be the factorization of fA in K ′.
Assume that αi 6= 0 for i = 1, . . . , 6. Let P be a prime ideal in K ′ lying above p. Let v
be the extension of ordp to K ′ induced by the prime P and let λi = −v(αi). If λ is the
slope of a segment of Npp(fA) having horizontal length m, then precisely m of the λi
are equal to λ.

Proof. We can write

fA(x) = α1α2 · · ·α6

(
1− x

α1

)(
1− x

α2

)
. . .

(
1− x

α6

)
= α1α2 · · ·α6f̃A(x).

Then f̃A(x) = 1 +
∑6

i=1 aix
i where the ai’s are expressed in terms of 1

α1
, 1
α2
, . . . , 1

α6

as (−1)i times the i-th symmetric polynomial

ai = (−1)i
6∑

k1=1

6∑
k2=1
k2>k1

· · ·
6∑

ki=1
ki>ki−1

1

αk1αk2 · · ·αki
.

Since f̃A is obtained by dividing fA by the constant α1α2 · · ·α6 = q3, the Newton
polygon Npp(f̃A) differs from Npp(fA) by a horizontal shift. This does not change the
slopes or lengths of the segments of the Newton polygon. Hence, it is sufficient to prove
the lemma for Npp(f̃A).

Without loss of generality, the αi can be arranged such that λ1 ≤ λ2 ≤ . . . ≤ λ6. Suppose
λ1 = λ2 = . . . = λr and λr < λr+1 for some r ∈ {1, 2, . . . , 6}. The Newton polygon
Npp(f̃A) is constructed from the set of points

Sf̃A = {(0, 0), (1, ordpa1), (2, ordpa2), (3, ordpa3), (4, ordpa4), (5, ordpa5), (6, ordpa6)}.

Claim. The first segment of Npp(f̃A) is the segment joining (0, 0) and (r, rλ1).

Proof of the claim. Let i ∈ {1, 2, . . . , 6} and let 1
αk1αk2 ···αki

be any product appearing in

the sum that forms ai. Then

v

(
1

αk1αk2 · · ·αki

)
= −v(αk1αk2 · · ·αki)

= −v(αk1)− v(αk2)− . . .− v(αki)

= λk1 + λk2 + . . .+ λki
≥ iλ1.

It follows that ordpai ≥ iλ1. This shows that every point (i, ordpai) is on or above the
point (i, iλ1) and hence lies either on or above the line joining (0, 0) and (r, rλ1).
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Next, we will show that ordpar = rλ1. This implies that the point (r, ordpar) lies on
the line joining (0, 0) and (r, rλ1). The term 1

α1···αr appears in ar and

v

(
1

α1 · · ·αr

)
= −v(α1 · · ·αr)

= −v(α1)− . . .− v(αr)

= λ1 + . . .+ λr = rλ1.

Every other term appearing in the sum that forms ar has at least one αj in the denom-
inator with j > r and the valuation of this term is therefore strictly larger than rλ1.
Since ordpai is equal to the minimum of the valuations of each term in the sum, it follows
that ordpai = rλ1.

Consider ai with i > r. Then every term in ai is of the form 1
αk1 ···αki

and hence contains

at least one αj in the denominator with j > r. Since v
(

1
αj

)
= λj > λ1, the valuation of

each term in ai is strictly larger than iλ1. Hence, ordpai > iλ1 and the point (i, ordpai)
lies above the line joining (0, 0) and (r, rλ1). �

The claim states that the first segment of Npp(f̃A) is the line segment joining (0, 0)
and (r, rλ1), which has horizontal length r. The slope of this segment is λ1 and precisely r
of the λi are equal to λ1.

If λs < λs+1 = λs+2 = . . . = λs+r < λs+r+1 for some integers 1 ≤ s ≤ 5 and 1 ≤ r ≤ 6−s,
then the line segment joining (s, λ1 +λ2 + . . .+λs) and (s+r, λ1 +λ2 + . . .+λs+rλs+1) is
a line segment of Npp(f̃A). The proof of this is completely analogous to the proof of the
claim. The segment joining (s, λ1 + λ2 + . . .+ λs) and (s+ r, λ1 + λ2 + . . .+ λs + rλs+1)
has horizontal length r. Moreover, this segment has slope λs+1 and precisely r of the λi
are equal to λs+1. �

Let A/Fq, with q = pn, be an abelian threefold and let fA be the characteristic polyno-
mial of the Frobenius of A. Let {α1, α2, . . . , α6} be the complete set of roots of fA and
let K ′ be the splitting field of fA in C. Let P be a prime ideal in K ′ lying above p.
Let v be the extension of ordp to K ′ induced by the prime P and let λi = −v(αi)
for i = 1, . . . , 6. By Gonzalez [7, Proposition 3.1(ii)], it holds that

r(A) = #{αi /∈P : 1 ≤ i ≤ 6}. (3.1)

For a root αi of fA, we have αi /∈P if and only if ordP αi = 0. So αi /∈P if and only
if v(αi) = 0 by definition of v. Hence, equation (3.1) is equivalent to

r(A) = #{v(αi) = 0 : 1 ≤ i ≤ 6}.
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Now consider the segment of Npp(fA) with slope equal to zero and let m be the horizontal
length of this segment. Then we obtain

m = #{v(αi) = 0 : 1 ≤ i ≤ 6}

by Lemma 3.4. This proves the following proposition.

Proposition 3.5. Let A/Fq, with q = pn, be an abelian threefold and let fA be the
characteristic polynomial of Frobenius. The horizontal length of the zero-slope segment
of Npp(fA) is equal to the p-rank r(A).

Let A/Fq be a simple abelian threefold with fA = h3, where h is a second degree irre-
ducible Weil polynomial. Using the Newton polygon of fA, we will prove that r(A) = 0.
For this we need the following proposition by Maisner and Nart.

Proposition 3.6. ([15, Proposition 2.5]) Let β ∈ Z with |β| < 2
√
q, and let b = vp(β).

Let h(x) = x2 − βx + q and let D = β2 − 4q be the discriminant of h(x). Let A/Fq,
with q = pn, be a simple abelian variety with fA = he. Then

dim(A) =


n

gcd(n,b) if b < n
2 ,

2 if b ≥ n
2 , D ∈ Q∗p2,

1 if b ≥ n
2 , D /∈ Q∗p2.

Proof. The degree of fA is 2e. Since the characteristic polynomial of Frobenius of an
abelian variety of dimension g has degree 2g, the dimension of A is equal to e. More-
over, the integer e is the least common denominator of the invariants of End0

Fq(A) by
Theorem 2.24 and Theorem 2.25. The invariants at the finite places lying above p

are
vp(hν(0))

n , where ν runs among the finite places of Q(πA) lying above p and hν(x)
denotes the corresponding factor of h(x) in Qp[x].

Assume D /∈ Q∗p2, so D is not a square in Qp. Then the roots of h(x) are not in Qp and
hence h(x) is irreducible in Qp[x]. It holds that vp(h(0)) = vp(q) = vp(p

n) = n. Hence,
the integer e is equal to the denominator of n

n = 1, so e = 1.

Next, assume D ∈ Q∗p2, so D is a nonzero square in Qp. Then the roots of h(x) are in Qp

and hence h(x) factors in Qp[x] as h1(x)h2(x). Let b1 = vp(h1(0)) and b2 = vp(h2(0)).
It holds that

h(x) = (x+ h1(0))(x+ h2(0)) = x2 + (h1(0) + h2(0))x+ h1(0)h2(0),

so −β = h1(0) + h2(0) and q = h1(0)h2(0). Thus

n = vp(q) = vp(h1(0)h2(0)) = vp(h1(0)) + vp(h2(0)) = b1 + b2,

b = vp(β) = vp(−β) = vp(h1(0) + h2(0)) = min{vp(h1(0)), vp(h2(0))} = min{b1, b2}.
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Suppose b ≥ n
2 . Then min{b1, b2} ≥ n

2 while b1 + b2 = n. It follows that b1 = b2 = n
2 .

Hence, e is equal to the denominator of b1
n = b2

n = 1
2 , so e = 2.

Suppose b < n
2 . Then b = min{b1, b2} and b1 + b2 = n. Without loss of generality it

holds that b1 = b and b2 = n− b. Hence, e is the least common denominator of b1
n = b

n

and b2
n = n−b

n , so e = n
gcd(n,b) . �

Theorem 3.7. Let A/Fq, with q = pn, be a simple abelian threefold with fA = h3,
where h is a second degree irreducible Weil polynomial. Then r(A) = 0.

Proof. The polynomial fA = h3 is the characteristic polynomial of Frobenius of the
abelian threefold A/Fq. Therefore, the constant term of fA is equal to q3. It follows
that the constant term of h is q. Hence, we have h(x) = x2 − βx+ q for some integer β.

Suppose |β| ≥ 2
√
q. If β = ±2

√
q ∈ Z, then

h(x) = x2 ± 2
√
qx+ q = (x±√q)2,

so h(x) is not irreducible. This is a contradiction. The roots of h are
β±
√
β2−4q
2 .

If |β| > 2
√
q, then the roots of h are real and one of the roots of h has absolute value

equal to
|β|+
√
β2−4q

2 . Since h is a Weil polynomial, the roots of h are Weil q-numbers.
Therefore, it holds that

|β|+
√
β2 − 4q

2
=
√
q.

Since 1
2

√
β2 − 4q > 0, it follows that |β|2 <

√
q. Thus, we find |β| < 2

√
q, which is a

contradiction. Hence, we have |β| < 2
√
q.

By Proposition 3.6, the simple abelian variety corresponding to h has dimension g = 3
only if vp(β) < n

2 and n
gcd(n,vp(β)) = 3. Thus, we have 3|n and gcd(n, vp(β)) = n

3 ,

so vp(β) ≥ n
3 ≥ 1. Expanding the equation fA(x) = (x2 − βx+ q)3 gives

fA(x) = x6 − 3βx5 + (3β2 + 3q)x4 − (β3 + 6βq)x3 + (3β2q+ 3q2)x2 − 3βq2x+ q3. (3.2)

Since vp(β) ≥ 1, each coefficient ai of fA satisfies ordpai > 0. Hence, the Newton
polygon Npp(fA) has no zero-slope segment and therefore the p-rank of A is zero by
Proposition 3.5. �

Remark 3.8. Xing [23] proved that a simple abelian threefold A/Fq satisfies fA = h3

if and only if 3|n and β = aq
1
3 , where a is an integer coprime with p. The statement of

this result can also be found in Haloui [8, Proposition 1.2]. Hence, if A/Fq is a simple
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abelian threefold with fA = h3, where h is an irreducible second degree Weil polynomial,
then the Newton polygon of fA (given in (3.2)) is

0 1 2 3 4 5 6
0

n

2n

3n

In the next section, we will study the p-rank of simple abelian threefolds A/Fq for which
the characteristic polynomial of Frobenius fA is irreducible. We will relate the p-rank to
the factorization of the ideals (p) and (πA) into prime ideals in the maximal order of the
field K = Q(πA), where πA is a root of fA. Recall that in Section 3.1, we stated that
if an abelian threefold A/Fq is ordinary and absolutely simple, then End0(A) ∼= Q(πA)
with [Q(πA) : Q] = 6. At this point, all the results needed to prove this statement are
obtained. The statement is a direct consequence of the following theorem by Gonzalez.

Theorem 3.9. ([7, Theorem 3.6(i)]) Let A/Fq be an ordinary simple abelian threefold.
Then End0

Fq(A) is commutative and End0
Fq
∼= Q(πA). In particular, if A is ordinary and

absolutely simple, then End0(A) is commutative.

Proof. Since A/Fq is simple, the polynomial fA is irreducible or fA = h3, where h
is a second degree irreducible Weil polynomial by Proposition 3.1. If fA = h3, then
Theorem 3.7 implies that the p-rank of A/Fq is zero, which is a contradiction. Therefore,
the polynomial fA is irreducible and End0

Fq(A) ∼= Q(πA) by Theorem 2.22(i).

Let r be any positive integer and consider A/Fqr . Since A/Fq is absolutely simple and
ordinary, the abelian threefold A/Fqr is simple and ordinary. Let πA be the Frobenius
of A/Fq. Then πrA is the Frobenius of A/Fqr . Let f ′A be the characteristic polynomial
of πrA. Since A/Fqr is simple, the polynomial f ′A is irreducible or f ′A = h′3, where h′

is a second degree irreducible Weil polynomial by Proposition 3.1. If f ′A = h′3, then
Theorem 3.7 implies that r(A/Fqr) = r(A/Fq) = 0, which is a contradiction. Therefore,
the polynomial f ′A is irreducible and End0

Fqr (A) ∼= Q(πrA) by Theorem 2.22(i). It follows

that End0
Fqr (A) is commutative for every integer r > 0. Hence, the endomorphism

algebra End0(A) is commutative. �
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Remark 3.10. Let A/Fq be a simple abelian threefold. Theorem 3.9 implies that
if A/Fq is ordinary, then the converse of Proposition 2.29 and Corollary 2.30 holds
for abelian varieties of dimension g = 3. Namely, if A/Fq is absolutely simple and
ordinary, then End0

Fq(A) and End0(A) are commutative by Theorem 3.9. Therefore, we

have End0(A) ∼= Q(πA) ∼= End0
Fq(A). Since End0

Fq(A) ⊆ End0
Fqr (A) ⊆ End0(A) for all

integers r > 0 and End0
Fq(A) = End0(A), it follows that End0(A) = End0

Fqr (A) for all

integers r > 0. Moreover, we have End0
Fqr (A) = End0

Fq(A) for all integers r > 0, so their

centers are also equal for all integers r > 0. Since Q(πrA) is the center of End0
Fqr (A)

and Q(πA) is the center of End0
Fq(A) by Theorem 2.10, it holds that Q(πrA) = Q(πA) for

all integers r > 0.

3.3 Relation between p-rank and decomposition of p

Let A/Fq be a simple abelian variety with fA the characteristic polynomial of Frobenius.
Throughout this section, we assume fA is irreducible. Let πA be a root of fA and
let K = Q(πA). In this section, we relate the p-rank of A to the factorization of the
ideal pOK into prime ideals and show that for an absolutely simple abelian threefold,
there exists at least one prime ideal p in K above p such that p 6= p. The section is
based on Bradford [2] and Gonzalez [7]. We first prove two lemmas by Bradford.

Lemma 3.11. ([2, Proposition 3.1]) Let f ∈ Z[x] be a monic irreducible polynomial of
degree d with roots α1, α2, . . . , αd and let K ′ = Q(α1, . . . , αd). Let p ∈ Z be a prime,
let α be a fixed root of f , let P0 be a fixed prime over p in K ′, let a := ordP0(α) and
let N be the number of roots of f with P0-adic valuation equal to a. Then

N = d

(
#{P : P|p, ordP(α) = a}

#{P : P|p}

)
,

where P runs through the primes of K ′.

Proof. The field K ′ = Q(α1, . . . , αd) is the splitting field of f , so K ′ is a Galois extension.
Let G = Gal(K ′/Q). Let H ≤ G denote the stabilizer of α and D ≤ G the stabilizer
of P0. The group G acts transitively on the roots of f . Therefore, there exists an
element τ ∈ G such that τ(αi) = αj for every two roots αi and αj of f . Hence, we can
pick elements τi ∈ G satisfying τi(αi) = α for all i ∈ {1, 2, . . . , d}.

Suppose we take an element τ ∈ Hτi∩Hτj . Then τ ∈ Hτi and hence there exists h ∈ H
such that τ = hτi. We have

τ(αi) = h(τi(αi)) = h(α) = α,
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since h is in the stabilizer group of α. Similarly, τ(αj) = α. Since τ is an isomorphism
and f has distinct roots (f is irreducible), it must hold that i = j. This shows that the
sets Hτi with i ∈ {1, . . . , d} are pairwise distinct. Moreover, the union of these sets is G.
Hence, the sets Hτi, with 1 ≤ i ≤ d, are the right cosets of H.

By relabeling the roots of f if necessary, we can assume without loss of generality that

• ordP0(α1) = ordP0(α2) = · · · = ordP0(αN ) = a,

• ordP0(αi) 6= a if i > N ,

for some integer N with 1 ≤ N ≤ d.

For an element τ ∈ G and a prime P lying above p in K ′, it holds that τ(P) is also a
prime lying above p in K ′. Moreover, G acts transitively on the primes P lying above p
in K ′. It follows that {P : P|p} ⊂ {τ(P0) : τ ∈ G}. The set {τ(P0) : τ ∈ G} has |G|
elements, which are not necessarily distinct. Let {P : P|p} = {P1, . . . ,Pm}. There
exist τ1, . . . , τm ∈ G such that τi(P0) = Pi for i ∈ {1, . . . ,m}. For every τ ∈ D, it holds
that τ(P0) = P0. Thus, we have τi(τ(P0)) = τi(P0) = Pi. This shows that

{P : P|p} =
{τ(P0) : τ ∈ G}

|D|
=
|G|
|D|

= [G : D]. (3.3)

Moreover,

{P : P|p, ordP(α) = a} =
{τ(P0) : ordτ(P0)(α) = a, τ ∈ G}

|D|

=
{τ : ordτ(P0)(α) = a}

|D|
.

(3.4)

Claim. It holds that ordτ(P0)(α) = ordP0

(
τ−1(α)

)
.

Proof. Suppose ordτ(P0)(α) = k. Then the prime ideal τ(P0) appears precisely k times
in the factorization of the ideal (α) into prime ideals in K ′. As τ is an isomorphism,
applying τ−1 to the ideal (α) gives τ−1((α)) =

(
τ−1(α)

)
. To find the factorization

of
(
τ−1(α)

)
into prime ideals, we have to apply τ−1 to the prime factorization of (α). It

follows that τ−1(τ(P0)) = P0 appears precisely k times in the factorization of (τ−1(α))
into prime ideals. Hence, ordP0(τ−1(α)) = k.

Suppose ordP0

(
τ−1(α)

)
= k. Then applying τ to the ideal

(
τ−1(α)

)
and to the factor-

ization of this ideal into prime ideals in K ′ shows that ordτ(P0)(α) = k. �
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Using equations (3.3), (3.4) and the claim, we find

#{P : P|p, ordP(α) = a}
#{P : P|p}

=
#{τ : ordτ(P0)(α) = a}/|D|

[G : D]

=
#{τ : ordP0

(
τ−1(α)

)
= a}

|G|

=
#{τ : τ(αi) = α for some 1 ≤ i ≤ N}

|G|

=
#
(
∪Ni=1Hτi

)
|G|

= N · |H|
|G|

= N · 1

[G : H]

=
N

d
,

where we used that Hτi, with 1 ≤ i ≤ d, are the right cosets of H in the last line. �

Lemma 3.12. ([2, Proposition 3.4]) Let f , K ′ and α be as in Lemma 3.11. LetK = Q(α)
and p1, . . . , ps the primes of K lying above p. For each pi, denote the ramification index
of pi over p by ei, and the degree of the extension of residue fields for pi over p by fi.
Let e be the ramification index of p in K ′ and a

e be a slope of a segment of Npp(f) with
length N . Let Sa = {i : ordpi(α) = aei

e , 1 ≤ i ≤ s}. Then

N =
∑
i∈Sa

eifi.

Proof. Since K ′ is the Galois closure of K in C, the field K ′ is also Galois over K. We
denote the number of primes in K ′ that lie above pi by gi. Since K ′ is Galois over K, it
follows that every prime in K ′ lying above pi has the same ramification index and the
same degree of the extension of residue fields with respect to pi. Thus, if we let ai be the
ramification index and bi the degree of the extension of residue fields of a prime in K ′

lying above pi, then we get

[K ′ : K] = a1b1g1 = a2b2g2 = · · · = asbsgs. (3.5)

Since K ′ is Galois over Q, it also holds that every prime in K ′ lying above p has the
same ramification index and degree of the extension of residue fields with respect to p.
Define m to be the degree of the extension of residue fields with respect to p in K ′.
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Then aiei = e and bifi = m for all 1 ≤ i ≤ s. Dividing equation (3.5) through by em
gives

g1

e1f1
=

g2

e2f2
= · · · = gs

esfs
.

We will now use Lemma 3.11. We have #{P : P|p} =
∑s

i=1 gi. Suppose P is a
prime in K ′ that lies above pi. Then ordP(α) = a if and only if ordpi(α) = a

ai
= aei

e .
Define Si := {P : P|pi} for 1 ≤ i ≤ s. Then |Si| = gi. By Lemma 3.11, we have

N = d

(
#{P : P|p, ordP(α) = a}

#{P : P|p}

)
= d

(
#{P : P|pi for some i ∈ Sa}

#{P : P|p}

)
= d

(∑
i∈Sa |Si|∑s
j=1 gj

)

= d
∑
i∈Sa

(
|Si|∑s
j=1 gj

)

= d
∑
i∈Sa

(
gi∑s

j=1
ejfj
eifi

gi

)

= d
∑
i∈Sa

(
eifi∑s
j=1 ejfj

)

= d
∑
i∈Sa

(
eifi
d

)
=
∑
i∈Sa

eifi. �

Now we have proved the two lemmas above, we are ready for the theorem that relates
the p-rank of a simple abelian variety A/Fq, with fA irreducible, to the factorization of
the ideal (p) in the maximal order of Q(πA) into prime ideals.

Theorem 3.13. ([2, Theorem 3.6]) Let A be a simple abelian variety of dimension g
over the finite field Fq with q = pn. Let fA be the characteristic polynomial of πA and
suppose fA is irreducible. Let πA be a root of fA, let K = Q(πA) and let K+ = Q(β),
where β = πA +πA. For each prime p in K lying above p and each prime P in K+ lying
above p, let e(p) and e(P) be the ramification index of p and P with respect to p, and
let f(p) and f(P) be the degree of the extension of Z/pZ corresponding to p and P.
Then

r(A) =
∑

πA /∈p, p|p

e(p)f(p), (3.6)
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and
r(A) =

∑
β/∈P, P|p

e(P)f(P). (3.7)

Proof. Let p1, . . . , ps be the primes of K lying above p and let

S0 = {i : ordpi(πA) = 0, 1 ≤ i ≤ s}.

For each pi, denote the ramification index over p by ei, and the degree of the extension
of residue fields over p by fi. The p-rank r(A) is the length of the zero-slope segment
of Npp(fA) by Proposition 3.5. Thus, if we take a = 0 and α = πA in Lemma 3.12, we
obtain

r(A) =
∑
i∈S0

eifi. (3.8)

For the primes p in S0, we have ordp(πA) = 0, which holds if and only if p does not
contain πA. Thus the primes in S0 are precisely the primes in K over p that do not
contain πA. Hence, equation (3.8) is equivalent to

r(A) =
∑

πA /∈p, p|p

e(p)f(p).

The next step is to show the equivalence of (3.6) and (3.7). Let P be a prime in K+

lying above p that does not contain β. As [K : K+] = 2, the prime P can be inert, it
can split as pp or it can ramify as p2 in K. Suppose there is only one prime in K lying
above P, so P is inert or ramifies in K. The prime p is contained in all primes in K
lying above p, so in particular in all primes in K lying above P, and πAπA = q = pn.
Hence, πAπA is contained in all primes lying above P in K. It follows that πA and πA
are both contained in the unique prime in K lying above P. Therefore β = πA + πA
is also contained in the unique prime in K lying above P and hence in P, which is a
contradiction. Therefore, P splits in K as pp.

Since P splits in K as pp and K is a quadratic extension of K+, it follows that

e(P) = e(p) = e(p) and f(P) = f(p) = f(p).

Moreover, as πAπA = q = pn is contained in p and in p and πA cannot be contained in
both (otherwise β ∈ P), exactly one of p and p contains πA. In other words, exactly one
of p and p does not contain πA and hence appears in the sum of (3.6). This shows that
every summand of (3.7) appears in (3.6).

Let p be a prime in K that does not contain πA. Since πAπA = pn ∈ p, it holds
that πA ∈ p. It follows that p 6= p. Let P = p ∩ OK+ . Then P splits in K as pp and
hence e(P) = e(p) and f(P) = f(p). Moreover, β /∈ P as πA ∈ p, but πA /∈ p. This
shows that every summand of (3.6) appears in (3.7). �
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Besides Theorem 3.13, the next proposition by Gonzalez will also be of great use in
Section 3.3.1. We first prove a lemma.

Lemma 3.14. Let K = Q(π) be a number field of degree r. If u ∈ O∗K and |φ(u)| = 1
for all embeddings φ : K → C, then u is a root of unity.

Proof. Since u ∈ K, there is a polynomial g(x) ∈ Q[x] such that u = g(π). Let φ1, . . . , φr
be the embeddings of K. Let fn(x) =

∏r
i=1(x − φi(u)n), where n is any positive inte-

ger. The coefficients of fn are, up to sign, symmetric polynomials in φ1(u), . . . , φr(u).
For each embedding φi : K → C, it holds that φi(u) = φi(g(π)) = g(φi(π)). It fol-
lows that every symmetric polynomial in φ1(u), . . . , φr(u) is a symmetric polynomial
in φ1(π), . . . , φr(π), which are precisely the roots of the minimal polynomial f of π. The
fundamental theorem of symmetric polynomials states that any symmetric polynomial
in the roots of a monic polynomial h can be expressed as a polynomial in the coefficients
of h. This implies that any symmetric polynomial in φ1(u), . . . , φr(u) can be expressed
as a polynomial in the coefficients of f . Hence, fn has integer coefficients for all positive
integers n.

Let k be an integer satisfying 0 ≤ k ≤ r. The coefficient of xk in fn is equal to (−1)r−k

times the (r − k)-th symmetric polynomial in φ1(u)n, . . . , φr(u)n. Thus, the coefficient
of xk is a sum of

(
r
k

)
terms. Since by assumption |φi(u)| = 1 for i = 1, . . . , r, the

absolute value of the coefficient of xk is
(
r
k

)
. Hence, all the coefficients of fn are bounded

by a value independent of n. Moreover, the coefficients of fn are integers. Therefore,
there are only finitely many possibilities for the coefficients of fn, so only finitely many
polynomials occur in the infinite sequence {fn}n∈N. In particular, only finitely many
polynomials occur in the infinite subsequence {f2n}n∈N. Thus, there exist integers k, l
with k ≥ 0 and l > 0 such that f2k = f2k+l . Then the set of roots of f2k is equal to the set
of roots of f2k+l . This means that raising the roots of f2k to the power 2l permutes the
roots of f2k . There exists a positive integer m such that performing this permutation m

times, results in the identity permutation. Hence, we have φi(u)2k = φi(u)2k+lm for
all i ∈ {1, . . . , r}. It follows that every φi(u), specifically u itself, is a root of unity. �

Proposition 3.15. ([7, Proposition 3.2(iii)]) Let A/Fq be a simple abelian threefold
with Frobenius πA and let K = Q(πA). Then A is Fq-isogenous to the third power of a
supersingular elliptic curve if and only if (πA) = (πA) in K.

Proof. Assume (πA) = (πA). Then

(π2
A) = (πA)2 = (πA)(πA) = (πA)(πA) = (πAπA) = (q),

so there exists a unit u ∈ OK such that π2
A = qu. Since πA is a Weil q-number, see

Theorem 2.18, it holds that |φ(πA)| = q
1
2 and therefore |φ(π2

A)| = |φ(πA)|2 = q for all
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embeddings φ : K → C. It follows that |φ(u)| = 1 for all embeddings φ : K → C. Hence,
the element u is a root of unity by Lemma 3.14. Let s be the order of u. Then π2s

A = qs.
Consider A/Fq2s which has Frobenius π2s

A = qs ∈ Q. By Theorem 2.15, the abelian
variety A/Fq2s is Fq2s-isogenous to the third power of a supersingular elliptic curve.

Hence, the abelian threefold A/Fq is Fq-isogenous to the third power of a supersingular
elliptic curve.

Assume A/Fq is Fq-isogenous to the third power of a supersingular elliptic curve. Then
there exists an integer s > 0 such that A/Fqs is Fqs-isogenous to the third power of a
supersingular elliptic curve. Thus, the Frobenius πsA of A/Fqs is a rational number by
Theorem 2.15. Since π2s

A = πsAπ
s
A = qs, it holds that π2

A = uq, where us = 1. It follows
that (π2

A) = (q) = (πA)(πA) and hence (πA) = (πA). �

Corollary 3.16. Let A be an abelian threefold over Fq, with q = pn. Let πA be the
Frobenius of A and K = Q(πA). If A is absolutely simple, then there exists at least one
prime ideal p above p in K such that p 6= p. In particular, if fA is irreducible, then pOK
cannot factor as in Table 3.1.

m pOK
1 p1 p2

1 p3
1 p6

1

2 p1p2 p1p
2
2 p2

1p
2
2 p1p

4
2 p2

1p
4
2

3 p1p2p3 p1p2p
2
3 p1p

2
2p

2
3 p2

1p
2
2p

3
3

Table 3.1: The prime factorizations of pOK satisfying pi = pi for all primes pi above p
in K. The number m in the left column denotes the number of prime ideals lying above p
in K.

Proof. Suppose all prime ideals p above p in K satisfy p = p. If p|p, then p ∈ p
and hence πAπA = pn ∈ p. Therefore, we have πA ∈ p or πA ∈ p for all prime ideals p|p.
Since p = p by assumption, it holds that πA, πA ∈ p for all prime ideals p in K dividing p.
It follows that (πA) = (πA). So A is Fq-isogenous to the third power of a supersingular
elliptic curve by Proposition 3.15, which contradicts with the assumption that A is
absolutely simple. Hence, there exists at least one prime ideal p in K dividing p such
that p 6= p. If fA is irreducible, then [K : Q] = 6 and Table 3.1 contains all prime
factorizations of pOK satisfying p = p for all primes p above p inK. So if the factorization
of pOK occurs in Table 3.1, then (πA) = (πA) and A is Fq-isogenous to the third power
of a supersingular elliptic curve. This contradicts with the fact that A is absolutely
simple. �
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3.3.1 The table

This section is based on the PhD thesis of Jeremy Bradford, [2, Example 3.10, Ap-
pendix A]. In his thesis, Bradford considers an absolutely simple abelian threefold A/Fp
with commutative endomorphism ring. Let fA be the characteristic polynomial of
the Frobenius endomorphism and let πA be a root of fA. Bradford then defines the
fields K = Q(πA) and K+ = Q(πA + πA). In [2, Appendix A], all possible cases for the
splitting behaviour of p in the maximal order of the tower of fields Q ⊂ K+ ⊂ K are
worked out. In this section, we consider an absolutely simple abelian threefold defined
over the finite field Fpn , for any positive integer n, such that End0(A) is commutative.
We assume that End(A) ∼= OK . We will follow a similar strategy as Bradford to work
out all possible cases for the splitting behaviour of p in the maximal order of the tower
of fields Q ⊂ K+ ⊂ K.

Let A/Fq, with q = pn, be an absolutely simple abelian threefold such that End0(A) is
commutative. Let πA be a root of fA and let K = Q(πA), which is a CM-field of degree 6.
The field K is a second degree extension of the totally real subfield K+ = Q(πA + πA).
Thus, we have

[K : Q] = [K : K+][K+ : Q] = 2 · 3 = 6.

The goal is to find all possible splitting behaviours of pOK and the corresponding factor-
izations of the ideal (πA) into prime ideals in K. From the prime factorization of (πA) and
the splitting behaviour of pOK , we can determine the p-rank r(A) using Theorem 3.13.

We first look at the possible prime factorizations of pOK+ . Since [K+ : Q] = 3, we
have

∑
P|p e(P)f(P) = 3. This allows for the following possibilities of the prime factor-

ization of pOK+ :

• P1

• P3
1

• P1P2

• P1P
2
2

• P1P2P3

Moreover, we have [K : K+] = 2. Thus, for every prime ideal P in K+, it holds
that

∑
p|P e(p/P)f(p/P) = 2, where e(p/P) and f(p/P) denote the ramification index

and residual degree of p with respect to P. It follows that a prime P in K+ can have
the following splitting types in K:
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• p

• p2

• pp

By combining the possible splitting behaviours of pOK+ and the possible splitting be-
haviours of POK , where P is a prime ideal in K, we can construct splitting diagrams. A
splitting diagram, is a figure showing the splitting behaviour of p in the fields K+ and K,
like in the first column of Table 3.2. The middle row of a splitting diagram shows the
prime factorization of p in the field K+ and the top row shows the prime factorization
of p in the field K. Two primes lying in different fields are connected by a line if the
upper prime ideal lies above the lower prime ideal. Every prime ideal appearing in the
diagram is connected via one or two lines with p, implying that every prime ideal in
the diagram lies above p. If a prime divides a prime in the row below it and the corre-
sponding residual degree is strictly greater than one, we put the residual degree in the
splitting diagram next to the line connecting the two ideals.

Since A is absolutely simple, Corollary 3.16 states that at least one prime ideal p above p
in K satisfies p 6= p. This implies that at least one prime ideal P above p in K+ splits
in K as pp. In particular, the prime factorizations of pOK in Table 3.1 cannot occur.
Any splitting diagram that satisfies

∑
p|p e(p)f(p) = 6, where e(p) and f(p) denote the

ramification index and residual degree of p with respect to p respectively, and has at least
one prime ideal P|p in K+ that splits as pp in K, shows a possible splitting behaviour
of p in the maximal order of K+ and K and is listed in the first column of Table 3.2.

The prime factorization of the ideal (πA) can be deduced from the prime factorization
of pOK . It holds that

(πA)(πA) = (πAπA) = (pn) = (p)n,

and hence all prime ideals dividing (πA), and also (πA), are lying above p. Furthermore,
the norm of πA in K is

NK/Q(πA) = NK+/Q(NK/K+
(πA)) = NK+/Q(πAπA) = NK+/Q(pn) = p3n.

So if (πA) = pc11 · · · pcss , then

p3n = NK/Q(πA) = NK/Q(pc11 · · · p
cs
s ) = NK/Q(p1)c1 · · ·NK/Q(ps)

cs .

Let p be a prime ideal in K lying above p. Since πAπA = pn and p ∈ p, it holds
that πAπA ∈ p. Thus, we have πA ∈ p or πA ∈ p, as p is a prime ideal. In particular,
if p = p, then πA ∈ p and ordp(πA) > 0. Furthermore, the abelian threefold A is
absolutely simple, so Proposition 3.15 implies that (πA) 6= (πA). Also, fA is irreducible,
so Corollary 2.26 implies that the invariants of A are integers. Hence, if pOK = pr11 · · · prss ,
then there exist integers c1, . . . , cs such that (πA) = pc11 · · · pcss satisfies
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• NK/Q(πA) = NK/Q(p1)c1 · · ·NK/Q(ps)
cs = p3n,

• ordpi(πA) + ordpi(πA) > 0, in particular ordpi(πA) > 0 if pi = pi,

• pc11 · · · pcss = (πA) 6= (πA) = p1
c1 · · · pscs ,

• ipi = f(pi) ·
ordpi (πA)

n = f(pi) · cin ∈ Z for all i = 1, . . . , s.

The prime factorizations of (πA) in K that satisfy the above conditions depend on the
prime factorization of pOK and appear in the second column of Table 3.2. The last
column of the table contains the p-rank of A, which can be deduced from the splitting
diagram and the prime factorization of (πA) using Theorem 3.13.

Theorem 3.17. Let A/Fq, with q = pn, be an absolutely simple abelian threefold such
that End0(A) is commutative and let πA be a root of fA. Then Table 3.2 gives the
complete classification of p-rank in terms of the splitting behaviour of p in the maximal
order of Q(πA).

Splitting of p Factorization of (πA) r(A)

(I)
p1 p1

P1

p
3

pn1

p
n
3
1 p1

2n
3

3

0

(II) p3
1 p1

3

P3
1

p

p3n
1

pn1p1
2n

3

0

(III)
p1 p1 p2

P1 P2

p

2

2

pn1p
n
2
2

p2n
1 p

n
4
2

1

1
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(IV)
p1 p1 p2

P1 P2

p

2

2

pn1p
n
2
2

p
n
2
1 pn2

2

2

(V)
p1 p1 p2

2

P1 P2

p
2

pn1p
n
2

p2n
1 p

n
2
2

1

1

(VI)
p1 p1 p2

2

P1 P2

p
2

pn1p
n
2

p
n
2
1 p2n

2

2

2

(VII)
p1 p1 p2 p2

P1 P2

p
2

pn1p
n
2

p2n
1 p

n
2
2

pn1p1
np

n
2
2

pn1p
n
2
2 p2

n
2

3

3

2

1

(VIII)
p1 p1 p2

2

P1 P2
2

p

2

pn1p
n
2

p2n
1 p

n
2
2

1

1
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(IX)
p1 p1 p4

2

P1 P2
2

p

pn1p
2n
2

p2n
1 pn2

1

1

(X)
p1 p2

2p2
2

P1 P2
2

p

2
pn1p

n
2

p
n
2
1 p2n

2

2

2

(XI) p2
1 p2

2p2
2

P1 P2
2

p

pn1p
2n
2

p2n
1 pn2

2

2

(XII)
p1 p1 p2

2 p2
2

P1 P2
2

p

pn1p
2n
2

p2n
1 pn2

pn1p1
npn2

pn1p
n
2p2

n

3

3

2

1

(XIII)
p1 p2 p3 p3

P1 P2 P3

p

2 2 p
n
2
1 p

n
2
2 pn3 1
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(XIV)
p1 p2

2
p3 p3

P1 P2 P3

p

2 p
n
2
1 pn2p

n
3

1

(XV) p2
1 p2

2
p3 p3

P1 P2 P3

p

pn1p
n
2p

n
3 1

(XVI)
p1 p2 p2 p3 p3

P1 P2 P3

p

2 p
n
2
1 pn2p

n
3

2

(XVII) p2
1

p2 p2 p3 p3

P1 P2 P3

p

pn1p
n
2p

n
3 2

(XVIII)
p1 p1 p2 p2 p3 p3

P1 P2 P3

p

pn1p
n
2p

n
3 3

Table 3.2: The splitting of p and the corresponding prime factorization of (πA) and
p-rank. In some prime factorizations of (πA) appear prime ideals with exponents of the
form n

2 , n
3 , 2n

3 or n
4 . These prime factorizations are only possible if n is even, if n is

divisible by 3 or if n is divisible by 4 respectively. If n does not satisfy these conditions,
then the corresponding prime factorization of (πA) cannot occur.
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Proof. We start the proof by explaining that the table contains all possible splitting
behaviours of pOK in the maximal order of K. Recall that Corollary 3.16 states that
at least one prime ideal p in K dividing p satisfies p 6= p. This implies that at least one
prime ideal P in K+ dividing p splits in K as pp. As explained in the beginning of this
section, the possible prime factorizations of pOK+ are

• P1

• P3
1

• P1P2

• P1P
2
2

• P1P2P3

and any prime P in K+ ramifies, splits or is inert in K. Starting from one of the prime
factorizations of pOK+ as listed above, all the possible splitting behaviours of pOK ,
under the restriction that at least one prime ideal P in K+ dividing p splits in K as pp,
are listed in Table 3.3. Table 3.3 contains all possible prime factorizations of pOK with
the exception of the prime factorizations occuring in Table 3.1.
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pOK+ pOK Case

P1 p1p1 (I)

P3
1 p3

1p1
3 (II)

p1p1p2, f(p1) = f(p1) = 1, f(p2) = 4 (III)
p1p1p2, f(p1) = f(p1) = 2, f(p2) = 2 (IV)

P1P2 p1p1p
2
2, f(p1) = f(p1) = 1, f(p2) = 2 (V)

p1p1p
2
2, f(p1) = f(p1) = 2, f(p2) = 1 (VI)

p1p1p2p2 (VII)

p1p1p
2
2 (VIII)

p1p1p
4
2 (IX)

P1P
2
2 p1p

2
2p2

2 (X)

p2
1p

2
2p2

2 (XI)

p1p1p
2
2p2

2 (XII)

p1p2p3p3 (XIII)
p1p

2
2p3p3 (XIV)

P1P2P3 p2
1p

2
2p3p3 (XV)

p1p2p2p3p3 (XVI)
p2

1p2p2p3p3 (XVII)
p1p1p2p2p3p3 (XVIII)

Table 3.3: The possible prime factorizations of pOK+ and pOK and the corresponding
case in Table 3.2.

Since every possible splitting behaviour of pOK corresponds to a case in Table 3.2, it
follows that Table 3.2 is complete.

The next step is to prove that for each splitting type of p in Table 3.2, the possi-
ble factorizations of (πA) and the corresponding p-rank are correct. Recall that if
pOK = pr11 · · · prss , then the possible factorizations of (πA) are those for which there exist
c1, . . . , cs ∈ Z such that (πA) = pc11 · · · pcss satisfies

• NK/Q(πA) = NK/Q(p1)c1 · · ·NK/Q(ps)
cs = p3n,

• ordpi(πA) + ordpi(πA) > 0, in particular ordpi(πA) > 0 if pi = pi,

• pc11 · · · pcss = (πA) 6= (πA) = p1
c1 · · · pscs ,

• ipi = f(pi) ·
ordpi (πA)

n = f(pi) · cin ∈ Z for all i = 1, . . . , s.

Case (I). We have pOK = p1p1 with f(p1) = f(p1) = 3. There exist c1, c2 ∈ Z such
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that (πA) = pc11 p1
c2 . Then

p3n = NK/Q(πA) = NK/Q(p1)c1 NK/Q(p1)c2 = p3c1p3c2 = p3c1+3c2 ,

so 3n = 3c1 + 3c2. The invariants are

ip1 = f(p1) · ordp1(πA)

n
=

3c1

n
,

ip1 = f(p1) ·
ordp1(πA)

n
=

3c2

n
.

Thus, it holds that c1, c2 ∈ {0, n3 ,
2n
3 , n}. Moreover, we have c1 6= c2, otherwise we get

(πA) = (πA). Hence, the possibilities for the factorization of (πA) are

(πA) = pn1 ,

(πA) = p1
n,

(πA) = p
n
3
1 p1

2n
3 ,

(πA) = p
2n
3

1 p1
n
3 .

Note that p1
n = pn1 and p

2n
3

1 p1
n
3 = p

n
3
1 p1

2n
3 . Without loss of generality, we can set

πA = πA. Therefore, Table 3.2 only lists pn1 and p
n
3
1 p1

2n
3 . The latter is only possible if

3|n. Applying Theorem 3.13 gives r(A) = 3 if (πA) = pn1 and r(A) = 0 if (πA) = p
n
3
1 p1

2n
3 .

Case (II). We have pOK = p3
1p1

3 with f(p1) = f(p1) = 1. There exist c1, c2 ∈ Z such
that (πA) = pc11 p1

c2 . Then

p3n = NK/Q(πA) = NK/Q(p1)c1 NK/Q(p1) = pc1pc2 = pc1+c2 ,

so 3n = c1 + c2. The invariants are

ip1 = f(p1) · ordp1(πA)

n
=
c1

n
,

ip1 = f(p1) ·
ordp1(πA)

n
=
c2

n
.

Thus, it holds that c1, c2 ∈ {0, n, 2n, 3n}. Moreover, we have c1 6= c2, otherwise we get
(πA) = (πA). Hence, up to conjugation, the possibilities for the factorization of (πA) are

(πA) = p3n
1 ,

(πA) = pn1p1
2n.

Applying Theorem 3.13 gives r(A) = 3 if (πA) = p3n
1 and r(A) = 0 if (πA) = pn1p1

2n.
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Case (III). We have pOK = p1p1p2 with f(p1) = f(p1) = 1 and f(p2) = 4. There
exist c1, c2, c3 ∈ Z such that (πA) = pc11 p1

c2pc32 . Then

p3n = NK/Q(πA) = NK/Q(p1)c1 NK/Q(p1)c2 NK/Q(p2)c3 = pc1pc2p4c3 = pc1+c2+4c3 ,

so 3n = c1 + c2 + 4c3. The invariants are

ip1 = f(p1) · ordp1(πA)

n
=
c1

n
,

ip1 = f(p1) ·
ordp1(πA)

n
=
c2

n
,

ip2 = f(p2) · ordp2(πA)

n
=

4c3

n
.

Thus, it holds that c1, c2 ∈ {0, n, 2n, 3n} and c3 ∈ {0, n4 ,
n
2 ,

3n
4 }. Moreover, we have

c1 6= c2, otherwise (πA) = (πA), and c3 6= 0, because p2 = p2. Hence, up to conjugation,
the possibilities for the factorization of (πA) are

(πA) = pn1p
n
2
2 ,

(πA) = p2n
1 p

n
4
2 .

The first is only possible if n is even and the second only if 4|n. Applying Theorem 3.13
gives r(A) = 1 in both cases.

Case (IV). We have pOK = p1p1p2 with f(p1) = f(p1) = f(p2) = 2. There ex-
ist c1, c2, c3 ∈ Z such that (πA) = pc11 p1

c2pc32 . Then

p3n = NK/Q(πA) = NK/Q(p1)c1 NK/Q(p1)c2 NK/Q(p2)c3 = p2c1p2c2p2c3 = p2c1+2c2+2c3 ,

so 3n = 2c1 + 2c2 + 2c3. The invariants are

ip1 = f(p1) · ordp1(πA)

n
=

2c1

n
,

ip1 = f(p1) ·
ordp1(πA)

n
=

2c2

n
,

ip2 = f(p2) · ordp2(πA)

n
=

2c3

n
.

Thus, it holds that c1, c2, c3 ∈ {0, n2 , n,
3n
2 , 2n,

5n
2 , 3n}. Moreover, we have c1 6= c2,

otherwise (πA) = (πA), and c3 6= 0, because p2 = p2. Hence, up to conjugation, the
possibilities for the factorization of (πA) are

(πA) = pn1p
n
2
2 ,

(πA) = p
n
2
1 pn2 .
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Both are only possible if n is even. Applying Theorem 3.13 gives r(A) = 2 in both cases.

Case (V). We have pOK = p1p1p
2
2 with f(p1) = f(p1) = 1 and f(p2) = 2. There

exist c1, c2, c3 ∈ Z such that (πA) = pc11 p1
c2pc32 . Then

p3n = NK/Q(πA) = NK/Q(p1)c1 NK/Q(p1)c2 NK/Q(p2)c3 = pc1pc2p2c3 = pc1+c2+2c3 ,

so 3n = c1 + c2 + 2c3. The invariants are

ip1 = f(p1) · ordp1(πA)

n
=
c1

n
,

ip1 = f(p1) ·
ordp1(πA)

n
=
c2

n
,

ip2 = f(p2) · ordp2(πA)

n
=

2c3

n
.

Thus, it holds that c1, c2 ∈ {0, n, 2n, 3n} and c3 ∈ {0, n2 , n,
3n
2 , 2n,

5n
2 , 3n}. Moreover,

we have c1 6= c2, otherwise (πA) = (πA), and c3 6= 0, because p2 = p2. Hence, up to
conjugation, the possibilities for the factorization of (πA) are

(πA) = pn1p
n
2 ,

(πA) = p2n
1 p

n
2
2 .

The second is only possible if n is even. Applying Theorem 3.13 gives r(A) = 1 in both
cases.

Case (VI). We have pOK = p1p1p
2
2 with f(p1) = f(p1) = 2 and f(p2) = 1. There

exist c1, c2, c3 ∈ Z such that (πA) = pc11 p1
c2pc32 . Then

p3n = NK/Q(πA) = NK/Q(p1)c1 NK/Q(p1)c2 NK/Q(p2)c3 = p2c1p2c2pc3 = p2c1+2c2+c3 ,

so 3n = 2c1 + 2c2 + c3. The invariants are

ip1 = f(p1) · ordp1(πA)

n
=

2c1

n
,

ip1 = f(p1) ·
ordp1(πA)

n
=

2c2

n
,

ip2 = f(p2) · ordp2(πA)

n
=
c3

n
.

Thus, it holds that c1, c2 ∈ {0, n2 , n,
3n
2 , 2n,

5n
2 , 3n} and c3 ∈ {0, n, 2n, 3n}. Moreover,

we have c1 6= c2, otherwise (πA) = (πA), and c3 6= 0, because p2 = p2. Hence, up to
conjugation, the possibilities for the factorization of (πA) are

(πA) = pn1p
n
2 ,

(πA) = p
n
2
1 p2n

2 .
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The second is only possible if n is even. Applying Theorem 3.13 gives r(A) = 2 in both
cases.

Case (VII). We have pOK = p1p1p2p2 with f(p1) = f(p1) = 1 and f(p2) = f(p2) = 2.
There exist c1, c2, c3, c4 ∈ Z such that (πA) = pc11 p1

c2pc32 p2
c4 . Then

p3n = NK/Q(πA) = NK/Q(p1)c1 NK/Q(p1)c2 NK/Q(p2)c3 NK/Q(p2)c4

= pc1pc2p2c3p2c4 = pc1+c2+2c3+2c4 ,

so 3n = c1 + c2 + 2c3 + 2c4. The invariants are

ip1 = f(p1) · ordp1(πA)

n
=
c1

n
,

ip1 = f(p1) ·
ordp1(πA)

n
=
c2

n
,

ip2 = f(p2) · ordp2(πA)

n
=

2c3

n
,

ip2 = f(p2) ·
ordp2(πA)

n
=

2c4

n
.

Thus, it holds that c1, c2 ∈ {0, n, 2n, 3n} and c3, c4 ∈ {0, n2 , n,
3n
2 , 2n,

5n
2 , 3n}. Further-

more, we have c1 6= c2 or c3 6= c4, otherwise (πA) = (πA). Moreover, at least one of c1

and c2 and at least one of c3 and c4 is nonzero, because πA is contained in at least one
of p1 and p1 and in at least one of p2 and p2. Hence, up to conjugation, the possibilities
for the factorization of (πA) are

(πA) = pn1p
n
2 ,

(πA) = p2n
1 p

n
2
2 ,

(πA) = pn1p1
np

n
2
2 ,

(πA) = pn1p
n
2
2 p2

n
2 .

The second, third and last case are only possible if n is even. Applying Theorem 3.13

gives r(A) = 3 if (πA) = pn1p
n
2 or (πA) = p2n

1 p
n
2
2 , p-rank r(A) = 2 if (πA) = pn1p1

np
n
2
2

and r(A) = 1 if (πA) = pn1p
n
2
2 p2

n
2 .

Case (VIII). We have pOK = p1p1p
2
2 with f(p1) = f(p1) = 1 and f(p2) = 2. There

exist c1, c2, c3 ∈ Z such that (πA) = pc11 p1
c2pc32 . Then

p3n = NK/Q(πA) = NK/Q(p1)c1 NK/Q(p1)c2 NK/Q(p2)c3 = pc1pc2p2c3 = pc1+c2+2c3 ,
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so 3n = c1 + c2 + 2c3. The invariants are

ip1 = f(p1) · ordp1(πA)

n
=
c1

n
,

ip1 = f(p1) ·
ordp1(πA)

n
=
c2

n
,

ip2 = f(p2) · ordp2(πA)

n
=

2c3

n
.

Thus, it holds that c1, c2 ∈ {0, n, 2n, 3n} and c3 ∈ {0, n2 , n,
3n
2 , 2n,

5n
2 , 3n}. Moreover,

we have c1 6= c2, otherwise (πA) = (πA), and c3 6= 0, because p2 = p2. Hence, up to
conjugation, the possibilities for the factorization of (πA) are

(πA) = pn1p
n
2 ,

(πA) = p2n
1 p

n
2
2 .

The second is only possible if n is even. Applying Theorem 3.13 gives r(A) = 1 in both
cases.

Case (IX). We have pOK = p1p1p
4
2 with f(p1) = f(p1) = f(p2) = 1. There ex-

ist c1, c2, c3 ∈ Z such that (πA) = pc11 p1
c2pc32 . Then

p3n = NK/Q(πA) = NK/Q(p1)c1 NK/Q(p1)c2 NK/Q(p2)c3 = pc1pc2pc3 = pc1+c2+c3 ,

so 3n = c1 + c2 + c3. The invariants are

ip1 = f(p1) · ordp1(πA)

n
=
c1

n
,

ip1 = f(p1) ·
ordp1(πA)

n
=
c2

n
,

ip2 = f(p2) · ordp2(πA)

n
=
c3

n
.

Thus, it holds that c1, c2, c3 ∈ {0, n, 2n, 3n}. Moreover, we have c1 6= c2, other-
wise (πA) = (πA), and c3 6= 0, because p2 = p2. Hence, up to conjugation, the pos-
sibilities for the factorization of (πA) are

(πA) = pn1p
2n
2 ,

(πA) = p2n
1 pn2 .

Applying Theorem 3.13 gives r(A) = 1 in both cases.

Case (X). We have pOK = p1p
2
2p2

2 with f(p1) = 2 and f(p2) = f(p2) = 1. There
exist c1, c2, c3 ∈ Z such that (πA) = pc11 pc22 p2

c3 . Then

p3n = NK/Q(πA) = NK/Q(p1)c1 NK/Q(p2)c2 NK/Q(p2)c3 = p2c1pc2pc3 = p2c1+c2+c3 ,
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so 3n = 2c1 + c2 + c3. The invariants are

ip1 = f(p1) · ordp1(πA)

n
=

2c1

n
,

ip2 = f(p2) · ordp2(πA)

n
=
c2

n

ip2 = f(p2) ·
ordp2(πA)

n
=
c3

n
.

Thus, it holds that c1 ∈ {0, n2 , n,
3n
2 , 2n,

5n
2 , 3n} and c2, c3 ∈ {0, n, 2n, 3n}. Moreover,

we have c2 6= c3, otherwise (πA) = (πA), and c1 6= 0, because p1 = p1. Hence, up to
conjugation, the possibilities for the factorization of (πA) are

(πA) = pn1p
n
2 ,

(πA) = p
n
2
1 p2n

2 .

The second is only possible if n is even. Applying Theorem 3.13 gives r(A) = 2 in both
cases.

Case (XI). We have pOK = p2
1p

2
2p2

2 with f(p1) = f(p2) = f(p2) = 1. There ex-
ist c1, c2, c3 ∈ Z such that (πA) = pc11 pc22 p2

c3 . Then

p3n = NK/Q(πA) = NK/Q(p1)c1 NK/Q(p2)c2 NK/Q(p2)c3 = pc1pc2pc3 = pc1+c2+c3 ,

so 3n = c1 + c2 + c3. The invariants are

ip1 = f(p1) · ordp1(πA)

n
=
c1

n
,

ip2 = f(p2) · ordp2(πA)

n
=
c2

n

ip2 = f(p2) ·
ordp2(πA)

n
=
c3

n
.

Thus, it holds that c1, c2, c3 ∈ {0, n, 2n, 3n}. Moreover, we have c2 6= c3, other-
wise (πA) = (πA), and c1 6= 0, because p1 = p1. Hence, up to conjugation, the pos-
sibilities for the factorization of (πA) are

(πA) = pn1p
2n
2 ,

(πA) = p2n
1 pn2 .

Applying Theorem 3.13 gives r(A) = 2 in both cases.

Case (XII). We have pOK = p1p1p
2
2p2

2 with f(p1) = f(p1) = f(p2) = f(p2) = 1. There
exist c1, c2, c3, c4 ∈ Z such that (πA) = pc11 p1

c2pc32 p2
c4 . Then

p3n = NK/Q(πA) = NK/Q(p1)c1 NK/Q(p1)c2 NK/Q(p2)c3 NK/Q(p2)c4

= pc1pc2pc3pc4 = pc1+c2+c3+c4 ,
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so 3n = c1 + c2 + c3 + c4. The invariants are

ip1 = f(p1) · ordp1(πA)

n
=
c1

n
,

ip1 = f(p1) ·
ordp1(πA)

n
=
c2

n
,

ip2 = f(p2) · ordp2(πA)

n
=
c3

n
,

ip2 = f(p2) ·
ordp2(πA)

n
=
c4

n
.

Thus, it holds that c1, c2, c3, c4 ∈ {0, n, 2n, 3n}. Furthermore, we have c1 6= c2 or c3 6= c4,
otherwise (πA) = (πA). Moreover, at least one of c1 and c2 and at least one of c3 and c4

is nonzero, because πA is contained in at least one of p1 and p1 and in at least one of p2

and p2. Hence, up to conjugation, the possibilities for the factorization of (πA) are

(πA) = pn1p
2n
2 ,

(πA) = p2n
1 pn2 ,

(πA) = pn1p1
npn2 ,

(πA) = pn1p
n
2p2

n.

Applying Theorem 3.13 gives r(A) = 3 if (πA) = pn1p
2n
2 or (πA) = p2n

1 pn2 , p-rank r(A) = 2
if (πA) = pn1p1

npn2 and r(A) = 1 if (πA) = pn1p
n
2p2

n.

Case (XIII). We have pOK = p1p2p3p3 with f(p1) = f(p2) = 2 and f(p3) = f(p3) = 1.
There exist c1, c2, c3, c4 ∈ Z such that (πA) = pc11 pc22 pc33 p3

c4 . Then

p3n = NK/Q(πA) = NK/Q(p1)c1 NK/Q(p2)c2 NK/Q(p3)c3 NK/Q(p3)c4

= p2c1p2c2pc3pc4 = p2c1+2c2+c3+c4 ,

so 3n = 2c1 + 2c2 + c3 + c4. The invariants are

ip1 = f(p1) · ordp1(πA)

n
=

2c1

n
,

ip2 = f(p2) · ordp2(πA)

n
=

2c2

n
,

ip3 = f(p3) · ordp3(πA)

n
=
c3

n
,

ip3 = f(p3) ·
ordp3(πA)

n
=
c4

n
.

Thus, it holds that c1, c2 ∈ {0, n2 , n,
3n
2 , 2n,

5n
2 , 3n} and c3, c4 ∈ {0, n, 2n, 3n}. More-

over, we have c3 6= c4, otherwise (πA) = (πA), and c1, c2 6= 0, because p1 = p1
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and p2 = p2. Hence, up to conjugation, the only possibility for the factorization of (πA)

is (πA) = p
n
2
1 p

n
2
2 pn3 , which happens only if n is even. Applying Theorem 3.13 gives

r(A) = 1.

Case (XIV). We have pOK = p1p
2
2p3p3 with f(p1) = 2 and f(p2) = f(p3) = f(p3) = 1.

There exist c1, c2, c3, c4 ∈ Z such that (πA) = pc11 pc22 pc33 p3
c4 . Then

p3n = NK/Q(πA) = NK/Q(p1)c1 NK/Q(p2)c2 NK/Q(p3)c3 NK/Q(p3)c4

= p2c1pc2pc3pc4 = p2c1+c2+c3+c4 ,

so 3n = 2c1 + c2 + c3 + c4. The invariants are

ip1 = f(p1) · ordp1(πA)

n
=

2c1

n
,

ip2 = f(p2) · ordp2(πA)

n
=
c2

n
,

ip3 = f(p3) · ordp3(πA)

n
=
c3

n
,

ip3 = f(p3) ·
ordp3(πA)

n
=
c4

n
.

Thus, it holds that c1 ∈ {0, n2 , n,
3n
2 , 2n,

5n
2 , 3n} and c2, c3, c4 ∈ {0, n, 2n, 3n}. More-

over, we have c3 6= c4, otherwise (πA) = (πA), and c1, c2 6= 0, because p1 = p1

and p2 = p2. Hence, up to conjugation, the only possibility for the factorization

of (πA) is (πA) = p
n
2
1 pn2p

n
3 , which happens only if n is even. Applying Theorem 3.13

gives r(A) = 1.

Case (XV). We have pOK = p2
1p

2
2p3p3 with f(p1) = f(p2) = f(p3) = f(p3) = 1. There

exist c1, c2, c3, c4 ∈ Z such that (πA) = pc11 pc22 pc33 p3
c4 . Then

p3n = NK/Q(πA) = NK/Q(p1)c1 NK/Q(p2)c2 NK/Q(p3)c3 NK/Q(p3)c4

= pc1pc2pc3pc4 = pc1+c2+c3+c4 ,

so 3n = c1 + c2 + c3 + c4. The invariants are

ip1 = f(p1) · ordp1(πA)

n
=
c1

n
,

ip2 = f(p2) · ordp2(πA)

n
=
c2

n
,

ip3 = f(p3) · ordp3(πA)

n
=
c3

n
,

ip3 = f(p3) ·
ordp3(πA)

n
=
c4

n
.
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Thus, it holds that c1, c2, c3, c4 ∈ {0, n, 2n, 3n}. Moreover, we have c3 6= c4, other-
wise (πA) = (πA), and c1, c2 6= 0, because p1 = p1 and p2 = p2. Hence, up to conju-
gation, the only possibility for the factorization of (πA) is (πA) = pn1p

n
2p

n
3 . Applying

Theorem 3.13 gives r(A) = 1.

Case (XVI). We have pOK = p1p2p2p3p3 with f(p1) = 2 and f(p) = 1 for prime
p ∈ {p2, p2, p3, p3}. There exist c1, c2, c3, c4, c5 ∈ Z such that (πA) = pc11 pc22 p2

c3pc43 p3
c5 .

Then

p3n = NK/Q(πA) = NK/Q(p1)c1 NK/Q(p2)c2 NK/Q(p2)c3 NK/Q(p3)c4 NK/Q(p3)c5

= p2c1pc2pc3pc4pc5 = p2c1+c2+c3+c4+c5 ,

so 3n = 2c1 + c2 + c3 + c4 + c5. The invariants are

ip1 = f(p1) · ordp1(πA)

n
=

2c1

n
,

ip2 = f(p2) · ordp2(πA)

n
=
c2

n
,

ip2 = f(p2) ·
ordp2(πA)

n
=
c3

n

ip3 = f(p3) · ordp3(πA)

n
=
c4

n
,

ip3 = f(p3) ·
ordp3(πA)

n
=
c5

n
.

Thus, it holds that c1 ∈ {0, n2 , n,
3n
2 , 2n,

5n
2 , 3n} and c2, c3, c4, c5 ∈ {0, n, 2n, 3n}. Further-

more, we have c2 6= c3 or c4 6= c5, otherwise (πA) = (πA), and c1 6= 0, because p1 = p1.
Moreover, at least one of c2 and c3 and at least one of c4 and c5 is nonzero, because πA
is contained in at least one of p2 and p2 and in at least one of p3 and p3. Hence, up to

conjugation, the only possibility for the factorization of (πA) is (πA) = p
n
2
1 pn2p

n
3 , which

happens only if n is even. Applying Theorem 3.13 gives r(A) = 2.

Case (XVII). We have pOK = p2
1p2p2p3p3 with f(p) = 1 for all primes p lying above p.

There exist c1, c2, c3, c4, c5 ∈ Z such that (πA) = pc11 pc22 p2
c3pc43 p3

c5 . Then

p3n = NK/Q(πA) = NK/Q(p1)c1 NK/Q(p2)c2 NK/Q(p2)c3 NK/Q(p3)c4 NK/Q(p3)c5

= pc1pc2pc3pc4pc5 = pc1+c2+c3+c4+c5 ,
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so 3n = c1 + c2 + c3 + c4 + c5. The invariants are

ip1 = f(p1) · ordp1(πA)

n
=
c1

n
,

ip2 = f(p2) · ordp2(πA)

n
=
c2

n
,

ip2 = f(p2) ·
ordp2(πA)

n
=
c3

n

ip3 = f(p3) · ordp3(πA)

n
=
c4

n
,

ip3 = f(p3) ·
ordp3(πA)

n
=
c5

n
.

Thus, it holds that c1, c2, c3, c4, c5 ∈ {0, n, 2n, 3n}. Furthermore, we have c2 6= c3

or c4 6= c5, otherwise (πA) = (πA), and c1 6= 0, because p1 = p1. Moreover, at least
one of c2 and c3 and at least one of c4 and c5 is nonzero, because πA is contained in at
least one of p2 and p2 and in at least one of p3 and p3. Hence, up to conjugation, the
only possibility for the factorization of (πA) is (πA) = pn1p

n
2p

n
3 . Applying Theorem 3.13

gives r(A) = 2.

Case (XVIII). We have pOK = p1p1p2p2p3p3 with f(p) = 1 for all primes p lying
above p. There exist c1, c2, c3, c4, c5, c6 ∈ Z such that (πA) = pc11 p1

c2pc32 p2
c4pc53 p3

c6 .
Then

p3n = NK/Q(πA) = NK/Q(p1)c1 NK/Q(p1)c2 NK/Q(p2)c3 NK/Q(p2)c4 NK/Q(p3)c5 NK/Q(p3)c6

= pc1pc2pc3pc4pc5pc6 = pc1+c2+c3+c4+c5+c6 ,

so 3n = c1 + c2 + c3 + c4 + c5 + c6. The invariants are

ip1 = f(p1) · ordp1(πA)

n
=
c1

n
,

ip1 = f(p1) ·
ordp1(πA)

n
=
c2

n
,

ip2 = f(p2) · ordp2(πA)

n
=
c3

n
,

ip2 = f(p2) ·
ordp2(πA)

n
=
c4

n

ip3 = f(p3) · ordp3(πA)

n
=
c5

n
,

ip3 = f(p3) ·
ordp3(πA)

n
=
c6

n
.

Thus, it holds that c1, c2, c3, c4, c5, c6 ∈ {0, n, 2n, 3n}. Furthermore, we have c1 6= c2

or c3 6= c4 or c5 6= c6, otherwise (πA) = (πA). Moreover, at least one of c1 and c2, at

63



CHAPTER 3. ABELIAN THREEFOLDS OVER FINITE FIELDS

least one of c3 and c4 and at least one of c5 and c6 is nonzero, because πA is contained
in at least one of p1 and p1, in at least one of p2 and p2 and in at least one of p3

and p3. Hence, up to conjugation, the only possibility for the factorization of (πA)
is (πA) = pn1p

n
2p

n
3 . Applying Theorem 3.13 gives r(A) = 3. �

Remark 3.18. Bradford’s table in [2, Appendix A] is constructed in the same way as
Table 3.2, except that Bradford starts with an absolutely simple abelian threefold A
defined over the finite field Fp. Consequently, every factorization of (πA) in Table 3.2
that has n

2 or n
4 occurring as the exponent of one of the prime ideals dividing (πA), does

not appear in Bradford’s table. Specifically cases (III), (IV), (XIII), (XIV) and (XVI)
are absent from Bradford’s table. We would expect that if we set n = 1 and remove
all factorizations of (πA) with n

2 , n
3 , 2n

3 or n
4 as the exponent of one of the prime ideals

dividing (πA), we obtain Bradford’s table. However, there are differences. In cases (IX)
and (XI), Bradford only mentions one of the two factorizations of (πA). The same
happens in case (XII). Here Bradford only mentions the factorizations (πA) = p1p

2
2

and (πA) = p1p2p2, while the factorizations (πA) = p2
1p2 and (πA) = p1p1p2 are also

possible. The factorization (πA) = p1p1p2 even corresponds to a different p-rank than
the two factorizations mentioned by Bradford. Finally, case (X) is absent from Bradford’s
table, while we do have the factorization (πA) = p1p2 corresponding to r(A) = 2.

Remark 3.19. The relation between the factorization of p in a CM field K and the
p-rank of the reduction of an absolutely simple abelian threefold with CM by OK and
commutative endomorphism ring, see Chapter 4, is studied by Zaytsev [24]. The abso-
lutely simple abelian threefolds considered by Zaytsev form a subset of the absolutely
simple abelian threefolds considered in Theorem 3.17. There are a few differences be-
tween the table in Zaytsev [24, Theorem 1.2] and Table 3.2. First of all, Zaytsev does
not restrict to absolutely simple abelian threefolds. In his table he includes abelian
threefolds isogenous to the third power of an elliptic curve. This explains why Zaytsev
considers factorizations of pOK appearing in Table 3.1 and finds p-rank 0 in case (IV).
Furthermore, if pOK splits as in case (XIII) of Table 3.17, then we find that the p-rank
is 1. Zaytsev also finds p-rank 3 corresponding to an abelian threefold isogenous to the
third power of an ordinary elliptic curve. This abelian threefold is not absolutely simple
and hence does not occur in Table 3.2. In case (VII), we find p-ranks 1, 2 and 3, while
Zaytsev only finds p-ranks 1 and 3. This could be due to the fact that the absolutely
simple abelian threefolds considered by Zaytsev form a subset of the abelian threefolds
considered in Theorem 3.17, see also Remark 3.20.

Remark 3.20. The way we constructed Table 3.2 implies that it is complete, so every
possible factorization of (p) and (π) in the maximal order of Q(πA) for an absolutely
simple abelian threefold A/Fq with End0(A) ∼= Q(πA) is contained in Table 3.2. However,
it might be that not all factorizations of πOK actually occur. This could also explain
while we find p-ranks 1, 2 and 3 in case (VII), while Zaytsev only finds p-ranks 1 and 3.
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The following corollaries and remark contain results that are deduced from Table 3.2.

Corollary 3.21. Let A/Fq, with q = pn, be an absolutely simple abelian threefold
with fA irreducible. Then the p-rank of A is zero if and only if one of the following
occurs

(i) (πA) = p
n
3
1 p1

2n
3 (provided that 3|n),

(ii) (πA) = pn1p1
2n.

Corollary 3.22. Let A/Fq, with q = pn, be an absolutely simple abelian threefold
with fA irreducible. Then r(A) = 3 if and only if (πA) and (πA) are relatively prime.

Remark 3.23. In dimension g = 1, knowing the endomorphism algebra End0(E) of
an elliptic curve E/Fq is enough to determine the p-rank r(E). In dimension g = 2,
the factorization of (p) in the maximal order of Q(πS), which only depends on the
endomorphism algebra End0(S), completely determines the p-rank r(S) of an absolutely
simple abelian surface S/Fq. In dimension g = 3 however, knowing the endomorphism
algebra End0(A) and the splitting type of (p) in the maximal order of Q(πA) is no longer
sufficient to determine the p-rank r(A) of an absolutely simple abelian threefold A/Fq
with End0(A) ∼= Q(πA).

The following theorem describes when a simple abelian threefold A/Fq is supersingular
in terms of the prime factorization of p in the field Q(πA), where πA is the Frobenius
endomorphism of A.

Theorem 3.24. Let A/Fq, with q = pn, be a simple abelian threefold. Let πA be a root
of fA and let K = Q(πA).

(i) If fA is not irreducible, then A is Fq-isogenous to the third power of a supersingular
elliptic curve if and only if p is inert or ramified in K.

(ii) If fA is irreducible, then A is Fq-isogenous to the third power of a supersingular
elliptic curve if and only if pOK factors as in Table 3.1 or (πA) factors as in the
following table.
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pOK splits as in Factorization of (πA)

(III) pn1p1
np

n
4
2

(IV) p
n
2
1 p1

n
2 p

n
2
2

(V) pn1p1
np

n
2
2

(VI) p
n
2
1 p1

n
2 pn2

(VIII) pn1p1
np

n
2
2

(IX) pn1p1
npn2

(X) p
n
2
1 pn2p2

n

(XI) pn1p
n
2p2

n

Table 3.4: The factorizations of (πA) satisfying (πA) = (πA). The numbers in the left
column refer to the cases of Table 3.2.

Proof. Proposition 3.15 states that A is Fq-isogenous to the third power of a supersin-
gular elliptic curve if and only if (πA) = (πA) in K. By Proposition 3.1, the polyno-
mial fA is irreducible or fA = h3, where h is a second degree irreducible Weil polynomial.
If fA = h3, then [K : Q] = 2 and p splits, ramifies or is inert in K. If p ramifies or is
inert in K, then every prime ideal above p in K is its own conjugate and (πA) = (πA).
Suppose p splits, so pOK = pp. There exist c1, c2 ∈ Z such that (πA) = pc1p1

c2 . Then

pn = NK/Q(πA) = NK/Q(p)c1 NK/Q(p)c2 = pc1pc2 = pc1+c2 ,

so n = c1 + c2. By Theorem 2.24, we have e = [End0
Fq(A) : Q(πA)]

1
2 = 3. Thus, the least

common denominator of the invariants ip, where p is a prime ideal in Q(πA), is equal
to 3 by Theorem 2.25. We have

ip = f(p) · ordp(πA)

n
=
c1

n
and ip = f(p) ·

ordp(πA)

n
=
c2

n
.

Since the least common denominator of all invariants is 3, it holds that ip and ip are mul-
tiples of 1

3 . Therefore, c1, c2 ∈ {0, n3 ,
2n
3 , n}. There are no integers c1, c2 ∈ {0, n3 ,

2n
3 , n}

satisfying c1 = c2 and c1 + c2 = n. Hence, if p splits in K, then (πA) = (πA) is not
possible. This proves the first statement.

Next, assume fA is irreducible. If every prime ideal above p in K is its own conjugate,
then (πA) = (πA) and A is Fq-isogenous to the third power of a supersingular elliptic
curve. This happens precisely when pOK factors as in Table 3.1. Moreover, if (πA)
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splits as in Table 3.4, then (πA) = (πA) and A is Fq-isogenous to the third power of a
supersingular elliptic curve.

Table 3.2 contains all possible splitting behaviours of pOK in the maximal order of K
such that p 6= p for at least one prime ideal p ⊂ OK lying above p. We follow the same
strategy as in the proof of Theorem 3.17, but now we look for factorizations of (πA)
satisfying (πA) = (πA).

Case (I). We have pOK = p1p1 with f(p1) = f(p1) = 3. Then (πA) = pc11 p1
c2 ,

where 3c1 + 3c2 = 3n and 3c1
n ,

3c2
n ∈ Z. It follows that c1 6= c2, so (πA) = (πA) is not

possible.

Case (II). We have pOK = p3
1p1

3 with f(p1) = f(p1) = 1. Then (πA) = pc11 p1
c2 ,

where c1 + c2 = 3n and c1
n ,

c2
n ∈ Z. It follows that c1 6= c2, so (πA) = (πA) is not

possible.

Case (III). We have pOK = p1p1p2 with f(p1) = f(p1) = 1 and f(p2) = 4. Then it
holds that (πA) = pc11 p1

c2pc32 , where c1 + c2 + 4c3 = 3n and c1
n ,

c2
n ,

4c3
n ∈ Z. Moreover, at

least one of c1 and c2 is nonzero, and c3 is nonzero. It follows that (πA) = (πA) if and

only if (πA) = pn1p1
np

n
4
2 , which happens only if 4|n.

Case (IV). We have pOK = p1p1p2 with f(p1) = f(p2) = f(p2) = 2. Then it holds
that (πA) = pc11 p1

c2pc32 , where 2c1 + 2c2 + 2c3 = 3n and 2c1
n ,

2c2
n ,

2c3
n ∈ Z. Moreover, at

least one of c1 and c2 is nonzero, and c3 is nonzero. It follows that (πA) = (πA) if and

only if (πA) = p
n
2
1 p1

n
2 p

n
2
2 , which happens only if n is even.

Case (V). We have pOK = p1p1p
2
2 with f(p1) = f(p1) = 1 and f(p2) = 2. Then it

holds that (πA) = pc11 p1
c2pc32 , where c1 + c2 + 2c3 = 3n and c1

n ,
c2
n ,

2c3
n ∈ Z. Moreover, at

least one of c1 and c2 is nonzero, and c3 is nonzero. It follows that (πA) = (πA) if and

only if (πA) = pn1p1
np

n
2
2 , which happens only if n is even.

Case (VI). We have pOK = p1p1p
2
2 with f(p1) = f(p1) = 2 and f(p2) = 1. Then it

holds that (πA) = pc11 p1
c2pc32 , where 2c1 + 2c2 + c3 = 3n and 2c1

n ,
2c2
n ,

c3
n ∈ Z. Moreover,

at least one of c1 and c2 is nonzero, and c3 is nonzero. It follows that (πA) = (πA) if and

only if (πA) = p
n
2
1 p1

n
2 pn2 , which happens only if n is even.

Case (VII). We have pOK = p1p1p2p2 with f(p1) = f(p1) = 1 and f(p2) = f(p2) = 2.
Then (πA) = pc11 p1

c2pc32 p2
c4 , where c1 +c2 +2c3 +2c4 = 3n and c1

n ,
c2
n ,

2c3
n ,

2c4
n ∈ Z. It fol-

lows that (πA) = (πA) if and only if c1 = c2 and c3 = c4. Moreover, the integers c1, c2, c3

and c4 are all nonzero, because πA is contained in at least one of p1 and p1 and in at
least one of p2 and p2 and c1 = c2 and c3 = c4. But that implies c1 + c2 +2c3 +2c4 > 3n.
Hence, it is not possible that (πA) = (πA).
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Case (VIII). We have pOK = p1p1p
2
2 with f(p1) = f(p1) = 1 and f(p2) = 2. Then it

holds that (πA) = pc11 p1
c2pc32 , where c1 + c2 + 2c3 = 3n and c1

n ,
c2
n ,

2c3
n ∈ Z. Moreover, at

least one of c1 and c2 is nonzero, and c3 is nonzero. It follows that (πA) = (πA) if and

only if (πA) = pn1p1
np

n
2
2 , which happens only if n is even.

Case (IX). We have pOK = p1p1p
4
2 with f(p1) = f(p1) = f(p2) = 1. Then it holds

that (πA) = pc11 p1
c2pc32 , where c1 + c2 + c3 = 3n and c1

n ,
c2
n ,

c3
n ∈ Z. Moreover, at least

one of c1 and c2 is nonzero, and c3 is nonzero. It follows that (πA) = (πA) if and only
if (πA) = pn1p1

npn2 .

Case (X). We have pOK = p1p
2
2p2

2 with f(p1) = 2 and f(p2) = f(p2) = 1. Then it
holds that (πA) = pc11 pc22 p2

c3 , where 2c1 + c2 + c3 = 3n and 2c1
n ,

c2
n ,

c3
n ∈ Z. Moreover, the

integer c1 is nonzero, and at least one of c2 and c3 is nonzero. It follows that (πA) = (πA)

if and only if (πA) = p
n
2
1 pn2p2

n, which happens only if n is even.

Case (XI). We have pOK = p2
1p

2
2p2

2 with f(p1) = f(p2) = f(p2) = 1. Then it holds
that (πA) = pc11 pc22 p2

c3 , where c1+c2+c3 = 3n and c1
n ,

c2
n ,

c3
n ∈ Z. Moreover, the integer c1

is nonzero, and at least one of c2 and c3 is nonzero. It follows that (πA) = (πA) if and
only if (πA) = pn1p

n
2p2

n.

Case (XII). We have pOK = p1p1p2p2 with f(p1) = f(p1) = f(p2) = f(p2) = 1. Then it
holds that (πA) = pc11 p1

c2pc32 p2
c4 , where c1 +c2 +c3 +c4 = 3n and c1

n ,
c2
n ,

c3
n ,

c4
n ∈ Z. It fol-

lows that (πA) = (πA) if and only if c1 = c2 and c3 = c4. Moreover, the integers c1, c2, c3

and c4 are all nonzero, because πA is contained in at least one of p1 and p1 and in at
least one of p2 and p2, and c1 = c2 and c3 = c4. But that implies c1 + c2 + c3 + c4 > 3n.
Hence, it is not possible that (πA) = (πA).

Case (XIII). We have pOK = p1p2p3p3 with f(p1) = f(p2) = 2 and f(p3) = f(p3) = 1.
Then (πA) = pc11 pc22 pc33 p3

c4 , where 2c1 + 2c2 + c3 + c4 = 3n and 2c1
n ,

2c2
n ,

c3
n ,

c4
n ∈ Z. It

follows that (πA) = (πA) if and only if c3 = c4. Moreover, the integers c1, c2, c3 and c4 are
all nonzero, because p1 = p1 and p2 = p2, and πA is contained in at least one of p3 and p3.
But that implies 2c1 + 2c2 + c3 + c4 > 3n. Hence, it is not possible that (πA) = (πA).

Case (XIV). We have pOK = p1p
2
2p3p3 with f(p1) = 2 and f(p2) = f(p3) = f(p3) = 1.

Then (πA) = pc11 pc22 pc33 p3
c4 , where 2c1 +c2 +c3 +c4 = 3n and 2c1

n ,
c2
n ,

c3
n ,

c4
n ∈ Z. It follows

that (πA) = (πA) if and only if c3 = c4. Moreover, the integers c1, c2, c3 and c4 are all
nonzero, because p1 = p1 and p2 = p2, and πA is contained in at least one of p3 and p3.
But that implies 2c1 + c2 + c3 + c4 > 3n. Hence, it is not possible that (πA) = (πA).

Case (XV). We have pOK = p2
1p

2
2p3p3 with f(p1) = f(p2) = f(p3) = f(p3) = 1. Then

it holds that (πA) = pc11 pc22 pc33 p3
c4 , where c1 + c2 + c3 + c4 = 3n and c1

n ,
c2
n ,

c3
n ,

c4
n ∈ Z. It

follows that (πA) = (πA) if and only if c3 = c4. Moreover, the integers c1, c2, c3 and c4
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are all nonzero, because p1 = p1 and p2 = p2, and πA is contained in at least one of p3

and p3. But that implies c1+c2+c3+c4 > 3n. Hence, it is not possible that (πA) = (πA).

Case (XVI). We have pOK = p1p2p2p3p3 with f(p1) = 2 and f(p) = 1 for all
primes p lying above p satisfying p 6= p1. Then it holds that (πA) = pc11 pc22 p2

c3pc43 p3
c5 ,

where 2c1 + c2 + c3 + c4 + c5 = 3n and 2c1
n ,

c2
n ,

c3
n ,

c4
n ,

c5
n ∈ Z. It follows that (πA) = (πA)

if and only if c2 = c3 and c4 = c5. Moreover, the integers c2, c3, c4 and c5 are all nonzero,
because πA is contained in at least one of p2 and p2 and in at least one of p3 and p3. But
that implies 2c1 + c2 + c3 + c4 + c5 > 3n. Hence, it is not possible that (πA) = (πA).

Case (XVII). We have pOK = p2
1p2p2p3p3 with f(p) = 1 for all primes p lying above p.

Then (πA) = pc11 pc22 p2
c3pc43 p3

c5 , where c1 +c2 +c3 +c4 +c5 = 3n and c1
n ,

c2
n ,

c3
n ,

c4
n ,

c5
n ∈ Z.

It follows that (πA) = (πA) if and only if c2 = c3 and c4 = c5. Moreover, the inte-
gers c2, c3, c4 and c5 are all nonzero, because πA is contained in at least one of p2 and p2

and in at least one of p3 and p3. But that implies c1 + c2 + c3 + c4 + c5 > 3n. Hence, it
is not possible that (πA) = (πA).

Case (XVIII). We have pOK = p1p1p2p2p3p3 with f(p) = 1 for all primes p lying
above p. Then (πA) = pc11 p1

c2pc32 p2
c4pc53 p3

c6 , where c1 + c2 + c3 + c4 + c5 + c6 = 3n
and c1

n ,
c2
n ,

c3
n ,

c4
n ,

c5
n ,

c6
n ∈ Z. It follows that (πA) = (πA) if and only if c1 = c2 and c3 = c4

and c5 = c6. Moreover, the integers c1, c2, c3, c4, c5 and c6 are all nonzero, because πA is
contained in at least one of p1 and p1, in at least one of p2 and p2, and in at least one
of p3 and p3. But that implies c1 + c2 + c3 + c4 + c5 + c6 > 3n. Hence, it is not possible
that (πA) = (πA).

This shows that Table 3.4 contains all factorizations of (πA) satisfying (πA) = (πA).
Hence, the abelian threefold A is Fq-isogenous to the third power of a supersingular
elliptic curve if and only if pOK factors as in Table 3.1 or (πA) factors as in Table 3.4. �

Let A/Fq, with q = pn, be an absolutely simple abelian threefold. Let πA be a root of fA
and let K = Q(πA). If K/Q is an abelian extension, then p splits completely in K. To
prove this result, we need the following lemma.

Lemma 3.25. IfK/M is an abelian extension, then every intermediate field is an abelian
extension of M .

Proof. To prove this result, we will use the fundamental theorem of Galois extensions.
The fundamental theorem of Galois extensions states that KH , the set of those elements
of K fixed by every automorphism in a subgroup H of Gal(K/M), is a Galois extension
of M if and only if H is a normal subgroup of Gal(K/M).

Let L be a field such thatM ⊆ L ⊆ K. The group Aut(K/L) is a subgroup of Gal(K/M).
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The set of elements of K that is fixed by every automorphism of Aut(K/L) is pre-
cisely L. Moreover, the group Gal(K/M) is abelian, because K/M is an abelian exten-
sion. Therefore, the group Aut(K/L) is a normal subgroup of Gal(K/M). Hence, the
fundamental theorem of Galois extensions implies that L is a Galois extension of M ,
because Aut(K/L) is a normal subgroup of Gal(K/M). Moreover,

Gal(L/M) = Gal(K/M)/Aut(K/L).

Since the quotient of an abelian group by any subgroup is abelian, it follows that
Gal(L/M) is abelian. Hence, the extension L/M is an abelian extension. �

The following theorem by Gonzalez states that p splits completely in K if K/Q is an
abelian extension.

Theorem 3.26. ([7, Theorem 3.6(iii)]) Let A/Fq, with q = pn, be an absolutely simple
abelian threefold and assume that the center Z(End0(A)) of End0(A) is an abelian
extension of Q. Then p splits completely in Z(End0(A)).

Proof. There exists an integer N > 0 such that End0(A) = End0
F
qN

(A). Let q′ = qN and

consider A/Fq′ . If πA is the Frobenius of A/Fq, then π′A = πNA is the Frobenius of A/Fq′ .
By Theorem 2.10, the center of End0

Fq′ (A) is isomorphic to Q(π′A), so

Z(End0(A)) = Z(End0
Fq′ (A)) ∼= Q(π′A).

For all integers r > 0, it holds that End0
Fq′ (A) ⊆ End0

F(q′)r
(A) ⊆ End0(A). Since we

have End0(A) = End0
Fq′ (A), this implies that End0

F′q(A) = End0
F(q′)r

(A) for all inte-

gers r > 0. In particular, the centers Q(π′A) and Q((π′A)r) of End0
Fq′ (A) and End0

F(q′)r
(A)

are equal for all integers r > 0. Hence, it holds that Q((π′A)r) = Q(π′A) for all inte-
gers r > 0. We will use K to denote the field Q(π′A).

The endomorphism algebra End0(A) is either K or DA. Therefore, the degree of the
abelian extension K/Q is either 2 or 6. Suppose [K : Q] = 2. Corollary 3.16 states that
there exists at least one prime ideal p in K dividing p such that p 6= p, because A/Fq′ is
absolutely simple. This implies that pOK = pp and p splits completely.

Next, assume [K : Q] = 6. Then the characteristic polynomial f ′A of π′A is irreducible.
Since K/Q is an abelian extension, there exist e, f ∈ Z such that e(p) = e and f(p) = f
for all primes p lying above p in K. Also K+, the subfield of K fixed by complex conju-
gation, is an abelian extension by Lemma 3.25. Therefore, there exist e+, f+ ∈ Z such
that e(P) = e+ and f(P) = f+ for all primes P lying above p in K+. Moreover, it holds
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that [K : Q] = 6 and Corollary 3.16 implies that at least one prime ideal p above p in K
satisfies p 6= p. Therefore, we have pOK = pp or pOK = p3p3 or pOK = p1p1p2p2p3p3,
see cases (I), (II) and (XVIII) of Table 3.2 respectively.

Suppose pOK = pp or pOK = p3p3. Since

(π′A)(π′A) = (π′Aπ
′
A) = (pnN ) = (p)nN ,

it holds that all prime ideals appearing in the factorization of (π′A) are lying above p.
In both cases pOK = pp and pOK = p3p3, there are two prime ideals lying above p that
are each others conjugate. Hence, we can assume that (π′A) = papb for some positive
integers a and b, regardless of the factorization of p. Let

D := {σ ∈ Gal(K/Q) : σ(p) = p}

be the decomposition group of p. Then |D| = ef , where e is the ramification index
and f the residue class degree of p with respect to p. Recall that e(p) = e and f(p) = f
for all primes p above p in K, because K/Q is an abelian extension. Since pOK = pp
or pOK = p3p3, it holds that |D| = ef > 1. Hence there exists σ ∈ D such that σ
is not the identity map. Since complex conjugation commutes with all automorphisms
in Gal(K/Q), we have

σ(p) = σ(p) = p.

Since σ(p) = p and σ(p) = p, it holds that

(σ(π′A)) = σ((π′A)) = σ(papb) = σ(p)aσ(p)b = papb = (π′A).

Hence, the ideals (π′A) and (σ(π′A)) coincide. It follows that there exists a unit u ∈ OK
such that π′A = uσ(π′A). The characteristic polynomial f ′A of π′A is a Weil polynomial
by Corollary 2.19. Since f ′A has coefficients in Q and Q is invariant under σ, it holds
that σ(π′A) is a root of f ′A. Hence, both π′A and σ(π′A) are Weil q′-numbers. Thus, we
have |φ(π′A)| = |φ(σ(π′A))| for all embeddings φ : K → C. Since π′A = uσ(π′A), it follows
that |φ(u)| = 1 for all embeddings φ : K → C. Hence, the element u is a root of unity
by Lemma 3.14. Let s be the order of u. Then (π′A)s = usσ(π′A)s = σ((π′A)s), so (π′A)s

is invariant under σ. This implies that [Q((π′A)s) : Q] < [Q(π′A) : Q]. Recall that in
the beginning of this proof, we showed that Q((π′A)r) = Q(π′A) for all integers r > 0
and therefore [Q((π′A)s) : Q] = [Q(π′A) : Q]. Since we obtained a contradiction, we
can conclude that p does not split as pOK = pp or pOK = p3p3. Hence, it holds
that pOK = p1p1p2p2p3p3 and p splits completely in K. �

Corollary 3.27. Let A/Fq, with q = pn, be an absolutely simple abelian threefold and
assume that the center Z(End0(A)) of End0(A) is an abelian extension of Q. Let the
integer N > 0 be such that End0(A) = End0

F
qN

(A) and set q′ = qN . Let π′A be the

Frobenius endomorphism of A/Fq′ and f ′A the characteristic polynomial of π′A. If f ′A is
irreducible, then r(A) = 3; otherwise, r(A) = 0.
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Proof. Proposition 3.1 states that f ′A is irreducible or f ′A = h3, where h is a second degree
irreducible Weil polynomial, because A/Fq′ is simple. If f ′A = h3, then Theorem 3.7
implies that r(A) = 0.

Assume f ′A is irreducible and let K = Q(π′A). Then p splits completely in K by The-
orem 3.26. Thus, pOK = p1p1p2p2p3p3 and e(p) = f(p) = 1 for each prime p above p

in K. Since f ′A is irreducible, the invariants f(p) · ordp(π′A)
nN =

ordp(π′A)
nN ∈ Z for each

prime p above p in K by Corollary 2.26. Thus, it holds that ordp(π
′
A) is an integer

multiple of nN for all primes p above p in K. For each i ∈ {1, 2, 3}, the primes pi
and pi contain p and hence contain π′Aπ

′
A = pn. Therefore, π′A or π′A must be contained

in pi and the same holds for pi. This shows that π′A is contained in at least one of pi
and pi. As ordp(π

′
A) is an integer multiple of nN for all primes p above p in K, this im-

plies that ordpi(πA) + ordpi(πA) ≥ nN . Moreover, NK/Q(πA) = p3nN and every prime p
above p in K has norm p, because f(p) = 1 for all p above p in K. So by comparing the
norms of (π′A) and the prime ideals p|p, it holds that

ordpi(π
′
A) + ordpi(π

′
A) = nN

for all i ∈ {1, 2, 3}. Furthermore, ordpi(π
′
A), ordpi(π

′
A) ∈ {0, nN}, because the invariants

are integers. Hence, precisely one of pi and pi appears in the prime factorization of (π′A)

and it follows that (π′A) and (π′A) are relatively prime. Then

(π′A)(π′A) = (π′Aπ
′
A) = (p)nN = pnN1 p1

nNpnN2 p2
nNpnN3 p3

nN ,

and without loss of generality (π′A) = pnN1 pnN2 pnN3 and (π′A) = p1
nNp2

nNp3
nN . Thus,

the primes above p are p1, p2, p3, p1, p2 and p3 and π′A is not contained in p1, p2 and p3.
Hence, we have r(A) = 3 by Theorem 3.13. �
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Chapter 4

Reduction of CM abelian
threefolds

In this chapter, we will introduce CM abelian varieties. For this purpose, we will first
give a short background on CM fields and CM types. Our focus will be on CM abelian
threefolds, which have CM by a sextic CM field. We will restrict to sextic CM fields
of which the Galois group of the normal closure is cyclic or isomorphic to the dihe-
dral group D6. The goal is to determine the endomorphism algebra and p-rank of the
reduction of an absolutely simple CM abelian threefold.

4.1 CM fields and CM types

In this section, we explain the basics of CM fields and CM types. After that, we restrict
to sextic CM fields of which the Galois group of the normal closure is cyclic or isomorphic
to D6. In both cases we explore the CM types and the corresponding reflex CM pairs.
This section is mainly based on Shimura-Taniyama [18] and Lang [13].

Definition 4.1. A CM field is a totally imaginary quadratic extension of a totally real
number field K+. In other words, a CM field is a field K = K+(

√
−d) for a totally real

number field K+ and a totally positive element d ∈ K+.

By Lang [13, §2], we can also characterize a CM field as a field K with complex con-
jugation commuting with every complex embedding of K, and K is not real. Since
a CM field K is a quadratic extension of a totally real number field K+, it follows
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that [K : Q] = 2g, where g = [K+ : Q]. Hence, a CM field K has g pairs of complex
conjugate embeddings.

Definition 4.2. Let K be a CM field of degree 2g and let K ′ be the normal closure
of K. Then a CM type Φ of K with values in K ′ is a set of g embeddings of K such
that exactly one embedding of each of the g pairs of complex conjugate embeddings is
in Φ. We call (K,Φ) a CM type or CM pair.

Let (K,Φ) be a CM pair and let σ be an automorphism of K. Then define

Φσ := {φ ◦ σ : φ ∈ Φ}.

If K ′ is the normal closure of K and γ is an automorphism of K ′, then define

γΦ := {γ ◦ φ : φ ∈ Φ}.

Definition 4.3. The CM types Φ1 and Φ2 of a CM field K are called equivalent if there
is an automorphism σ of K such that Φ1 = Φ2σ.

Every CM type of a CM field K is equivalent to itself, because the identity map is an
automorphism of K. Let Φ1,Φ2 and Φ3 be CM types of K. If there exist automor-
phisms σ and γ of K such that Φ1 = Φ2σ and Φ2 = Φ3γ, then Φ1 = Φ3γσ. Since the
composition of two automorphisms is also an automorphism of K, it follows that Φ1

and Φ3 are equivalent. Moreover, if Φ1 = Φ2σ, then Φ2 = Φ1σ
−1. The map σ−1 exists

and is an automorphism of K, since σ is an automorphism of K. Hence, the equivalence
relation of Definition 4.3 is reflexive, transitive and symmetric, and that means it is an
equivalence relation.

Definition 4.4. Let K be a CM field with normal closure K ′. If K0 is a proper CM
subfield of K and Φ0 is a CM type of K0 with values in K ′, then the CM type of K
induced by Φ0 is {φ ∈ Hom(K,K ′) : φ|K0 ∈ Φ0}. A CM type Φ of K is called primitive
if Φ is not induced by the CM type of a proper CM subfield of K.

The following proposition by Shimura-Taniyama can be used to check if a CM type is
primitive.

Proposition 4.5. ([18, Proposition II.26]) Let (K,Φ) be a CM pair and let K ′ be the
normal closure of K. Let ΦK′ be the CM type of K ′ induced by Φ. Then (K,Φ) is
primitive if and only if

Gal(K ′/K) = {γ ∈ Gal(K ′/Q) : γΦK′ = ΦK′}.
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Corollary 4.6. Let K be a normal CM field and Φ a CM type of K. Then (K,Φ) is
primitive if and only if there is no nontrivial element γ ∈ Gal(K/Q) satisfying γΦ = Φ.

Let (K,Φ) be a CM type and let K ′ be the normal closure of K. Let ΦK′ be the CM
type of K ′ induced by Φ. The maps in ΦK′ are embeddings from K ′ to K ′ and therefore
isomorphisms. Hence, the inverse Φ−1

K′ := {φ−1 : φ ∈ ΦK′} is well-defined and will be
used in the following proposition by Shimura-Taniyama.

Proposition 4.7. ([18, Proposition II.28]) Let (K,Φ) be a CM pair, let K ′ be the
normal closure of K and let ΦK′ be the CM type of K ′ induced by Φ. Let Kr be the
fixed field of

{γ : γ ∈ Gal(K ′/Q), γφ−1
K′ = Φ−1

K′}

and Φr = Φ−1
K′ |Kr . Then (Kr,Φr) is a primitive CM type and

Kr = Q
({∑

φ∈Φ

φ(x) : x ∈ K
})
.

Definition 4.8. The primitive CM type (Kr,Φr) as given in Proposition 4.7 is called
the reflex pair or reflex type of the CM pair (K,Φ). The field Kr is the reflex field
of (K,Φ) and the CM type Φr is the reflex CM type of (K,Φ).

Proposition 4.9. ([11, Lemma 1.2.5]) Let (K,Φ) be a CM pair. Then the reflex
field Krr of (Kr,Φr) is a subfield of K with primitive CM type Φrr. If Φ is primi-
tive, then Krr = K and Φrr = Φ.

Definition 4.10. The type norm of a CM pair (K,Φ) is the multiplicative map

NΦ : K → Kr

x 7→
∏
φ∈Φ

φ(x).

Let (K,Φ) be a CM pair. The type norm of the reflex pair (Kr,Φr) of (K,Φ) is

NΦr : Kr → Krr

x 7→
∏
φ∈Φr

φ(x).

If Φ is primitive, then Krr = K by Proposition 4.9 and NΦr : Kr → K. The following
proposition by Shimura-Taniyama shows that NΦr : Kr → K regardless of Φ being
primitive and explains what happens if we apply NΦr to an ideal of Kr.
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Proposition 4.11. ([17, Proposition II.29]) Let (K,Φ) be a CM pair, let (Kr,Φr)
be its reflex CM pair and let K ′ be the normal closure of K. Let α be an ele-
ment of Kr and put NΦr(α) =

∏
φ∈Φr φ(α). Then NΦr(α) is an element of K satis-

fying NΦr(α)NΦr(α) = NKr/Q(α). Let further p be an ideal in Kr. Then there exists an
ideal NΦr(p) in K such that

NΦr(p)OK′ =
∏
φ∈Φr

φ(p)OK′ and NΦr(p)NΦr(p) = NKr/Q(p)OK .

Dodson classified the possible Galois groups of the normal closure of an arbitrary sextic
CM field.

Theorem 4.12. ([5], [1, Proposition 2.1]) Let K be a sextic CM field and let K ′ be the
normal closure of K. Then Gal(K ′/Q) is one of the following groups

(i) C6,

(ii) D6, the dihedral group with 12 elements,

(iii) (C2)3 o C3,

(iv) (C2)3 o S3,

where o denotes the semi-direct product of groups, so C3 and S3 are acting by permu-
tations on the three copies of C2.

We restrict to sextic CM fields K of which the Galois group of the normal closure is cyclic
or isomorphic to D6. In both cases, we list the possible CM types of K and determine
the equivalence classes, the primitive CM types and the reflex CM pairs.

4.1.1 Cyclic case.

Let K/Q be a cyclic CM field of degree 6 over Q. Then

Gal(K/Q) = {1, σ, σ2, σ3, σ4, σ5} = 〈σ〉,

where σ3 is complex conjugation. The eight different CM types of K are

Φ1 = {1, σ, σ2}, Φ5 = {σ3, σ4, σ5},
Φ2 = {1, σ, σ5}, Φ6 = {σ2, σ3, σ4},
Φ3 = {1, σ2, σ4}, Φ7 = {σ, σ3, σ5},
Φ4 = {1, σ4, σ5}, Φ8 = {σ, σ2, σ3}.
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For i ∈ {3, 7}, we find σ2Φi = Φi. Hence, the CM types Φ3 and Φ7 are not primitive
by Corollary 4.6. They are equivalent, because Φ3 = Φ7σ

3. For i ∈ {1, 2, 4, 5, 6, 8}, it
holds that γΦi 6= Φi for all γ ∈ Gal(K/Q)\{1}. Hence, the CM types Φ1,Φ2,Φ4,Φ5,Φ6

and Φ8 are primitive by Corollary 4.6. Table 4.1 shows that every primitive CM type
of K is equivalent to Φ1. It then follows from the fact that the equivalence is reflexive,
symmetric and transitive, that all primitive CM types of K are equivalent.

i γ ∈ Aut(K) : Φiγ = Φ1

1 1
2 σ
4 σ2

5 σ3

6 σ4

8 σ5

Table 4.1: The left column contains the numbers i corresponding to the primitive CM
types Φi of K. In the right column are the automorphisms γ of K such that Φiγ = Φ1.

Since K is normal, the reflex type of a CM type (K,Φ) is (K,Φ−1). The reflex CM types
of Φ1, . . . ,Φ8 are listed in Table 4.2.

i 1 2 3 4 5 6 7 8

Φr
i Φ4 Φ2 Φ3 Φ1 Φ8 Φ6 Φ7 Φ5

Table 4.2: The top row contains the number i corresponding to the CM types Φi of K.
The bottom row contains the reflex CM types Φr

i of (K,Φi).

4.1.2 D6 case.

Let K be a sextic CM field of which the Galois group of the normal closure K ′ is
isomorphic to D6. Then

Gal(K ′/Q) ∼= D6 = 〈x, y : x2 = y6 = xyxy = 1〉
= {1, x, y, y2, y3, y4, y5, xy, xy2, xy3, xy4, xy5},
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where complex conjugation is given by y3. The elements 1, x ∈ Gal(K ′/Q) fix K, so

1|K = x|K , y|K = xy|K ,
y2|K = xy2|K , y3|K = xy3|K ,
y4|K = xy4|K , y5|K = xy5|K .

It follows that {1|K , y|K , y2|K , y3|K , y4|K , y5|K} is the set of complex embeddings of K
with values in K ′. The eight different CM types of K are

Φ1 = {1|K , y|K , y2|K}, Φ5 = {y3|K , y4|K , y5|K},
Φ2 = {1|K , y|K , y5|K}, Φ6 = {y2|K , y3|K , y4|K},
Φ3 = {1|K , y2|K , y4|K}, Φ7 = {y|K , y3|K , y5|K},
Φ4 = {1|K , y4|K , y5|K}, Φ8 = {y|K , y2|K , y3|K}.

We use Proposition 4.5 to check which of the CM types above are primitive. Since
[K ′ : K] = 2 and K is fixed by 1, x ∈ Gal(K ′/Q), we have Gal(K ′/K) = {1, x}. Let Φi

K′

be the CM type of K ′ induced by Φi. The induced CM types of K ′ are listed in Table 4.3.

i Φi
K′

1 {1, x, y, y2, xy, xy2}
2 {1, x, y, y5, xy, xy5}
3 {1, x, y2, y4, xy2, xy4}
4 {1, x, y4, y5, xy4, xy5}
5 {y3, y4, y5, xy3, xy4, xy5}
6 {y2, y3, y4, xy2, xy3, xy4}
7 {y, y3, y5, xy, xy3, xy5}
8 {y, y2, y3, xy, xy2, xy3}

Table 4.3: The left column contains the numbers i corresponding to the CM types Φi

of K. In the right column are the CM types Φi
K′ induced by Φi.

We have γΦi
K′ = Φi

K′ for all i ∈ {1, . . . , 8} and for all γ ∈ Gal(K ′/K). For i ∈ {3, 7}, we
find y4Φi

K′ = Φi
K′ . Therefore, the CM types Φ3 and Φ7 are not primitive by Proposi-

tion 4.5. They are equivalent, because Φ3 = Φ7y
3|K and y3|K is an automorphism of K.

For i ∈ {1, 2, 4, 5, 6, 8}, it holds that γΦi
K′ 6= Φi

K′ for all γ ∈ Gal(L/Q)\Gal(K ′/K).
Hence, the CM types Φ1,Φ2,Φ4,Φ5,Φ6 and Φ8 are primitive by Proposition 4.5.

To find the equivalences in the set of primitive CM types {Φ1,Φ2,Φ4,Φ5,Φ6}, we first
determine the automorphisms of K. The degree [K : Q] = 6, so |Aut(K/Q)| ≤ 6.
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Moreover, the maps 1|K and y3|K are automorphisms of K and the order of y3|K
in Aut(K/Q) is 2. Therefore, it holds that |Aut(K/Q)| is divisible by 2. Further-
more, the extension K/Q is not Galois, so Aut(K/Q) 6= [K : Q] = 6. Hence, we
have |Aut(K/Q)| ∈ {2, 4}. Suppose |Aut(K/Q)| = 4 and let F := KAut(K/Q), the
subfield of K fixed by Aut(K/Q). Then we have [K : F ] = |Aut(K/Q)| = 4, see
Dummit-Foote [6, Theorem 14.9]. But [K : F ] has to divide [K : Q] = 6. There-
fore, it is not possible that |Aut(K/Q)| = 4. It follows that Aut(K/Q) = {1|K , y3|K}.
Since Φ1 = Φ5y

3|K , Φ2 = Φ6y
3|K and Φ4 = Φ8y

3|K , we find that the primitive CM types
of K are divided into three equivalence classes: {Φ1,Φ5}, {Φ2,Φ6} and {Φ4,Φ8}.

Let Φ be a CM type of K and let ΦK′ be the CM type of K ′ induced by Φ. The reflex
field Kr and the reflex CM type Φr

i of (K,Φi) for i ∈ {1, . . . , 8} are listed in Table 4.4.

i {γ : γ ∈ Gal(L/Q), γφ−1
K′ = Φ−1

K′} Φr
i

1 {1, xy2} {1|Kr , y4|Kr , y5|Kr}
2 {1, x} Φ2

3 {1, x} Φ3

4 {1, xy4} {1|Kr , y|Kr , y2|Kr}
5 {1, xy2} {y|Kr , y2|Kr , y3|Kr}
6 {1, x} Φ6

7 {1, x} Φ7

8 {1, xy4} {y3|Kr , y4|Kr , y5|Kr}

Table 4.4: The first column contains the numbers i corresponding to the CM types Φi

of K. In the second column are the subsets of Gal(K ′/Q) that fix the reflex field Kr

of (K,Φi). The last column contains the reflex CM types Φr
i of (K,Φi).

4.2 CM abelian varieties

In this brief section based on Shimura [17] and Shimura-Taniyama [18], we explain CM
abelian varieties and give two results.

Definition 4.13. An abelian variety A over a field k of dimension g has complex
multiplication (CM) by a CM field K if K has degree 2g and there is an embed-
ding θ : K ↪→ End0(A). If θ−1(End(A)) = O for an order O ⊂ K, then A has CM
by the order O.

Let A be an abelian variety with CM by a CM field K and let θ be the embed-
ding θ : K ↪→ End0(A). The pair (A, θ) uniquely determines a CM type Φ of K, see
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Shimura-Taniyama [18, §5.2]. In that case, (A, θ) is called an abelian variety of CM
type (K,Φ).

Proposition 4.14. ([17, Proposition II.30]) Let (A, θ) be an abelian variety over a
field k of CM type (K,Φ). Let Kr be the reflex CM field of (K,Φ). If every element
of θ(K) ∩ End(A) is defined over k, then Kr ⊂ k. Conversely, if Kr ⊂ k and Φ is
primitive, then every element of End(A) is defined over k.

The CM type of a CM abelian variety A can be used to determine whether or not A is
absolutely simple. This is the subject of the following theorem by Shimura.

Theorem 4.15. ([17, §8.2]) Let (K,Φ) be a CM type. A CM abelian variety of CM
type (K,Φ) is absolutely simple if and only if Φ is primitive.

4.3 Reduction of absolutely simple CM abelian threefolds

In this section we will study the endomorphism algebra of the reduction of an absolutely
simple abelian threefold with CM by OK , where K is a sextic CM field. The sextic CM
fields we consider are restricted to those of which the Galois group of the normal closure
is cyclic or isomorphic to D6. In the case that K is a cyclic sextic CM field, we will
show that the endomorphism algebra of the reduction of an abelian threefold with CM
by OK determines the rank. This does not hold when K is a sextic CM field of which the
Galois group of the normal closure is isomorphic to D6. We finish with an example in
which we determine the endomorphism algebra and rank of the reduction of an abelian
threefold with CM by OK , where K is a sextic CM field of which the Galois group of
the normal closure is isomorphic to D6. For this purpose, we first give some information
about reduced abelian varieties and state important related results.

An elliptic curve E over Q is given by a Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

The only coordinate changes fixing the point at infinity [0, 1, 0], and preserving the
Weierstrass form of the equation for E are of the form

(x, y) 7→ (u2x′ + r, u3y′ + u2sx′ + t),

where u, r, s, t ∈ Q and u 6= 0. The discriminant ∆′ of E after the coordinate change can
be computed as ∆′ = u−12∆. Let p be a rational prime and let vp(·) = ordp(·). A mini-
mal Weierstrass equation for E at vp is a Weierstrass equation for E such that vp(∆) is
minimized subject to the condition that a1, a2, a3, a4, a5, a6 ∈ Z. As coordinate changes
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affect the discriminant by ∆′ = u−12∆, it holds that vp(∆) can only be changed by mul-
tiples of 12. This implies that vp(∆) < 12 is a sufficient (but not necessary) condition for
the Weierstrass equation for an elliptic curve to be minimal. By reducing the coefficients
of the minimal Weierstrass equation modulo p, we obtain the reduction of E modulo p.
The reduction of E modulo p is possibly singular, meaning that the discriminant of E
modulo p is zero. In this case, we say that E has bad reduction at p. If the reduction
of E modulo p is nonsingular, then E has good reduction at p and the reduction of E
modulo p is an elliptic curve over Z/pZ.

Example 4.16. Consider the elliptic curve E over Q defined by

E : y2 = x3 + x2 − 114x− 127.

The discriminant of E is ∆ = 92236816 = 24 · 78. Thus, we have vp(∆) < 12 for
all primes p. Hence, the Weierstrass equation for E is minimal at vp for all primes p.
For p = 2 and p = 7, we find vp(∆) > 0. This implies that the reduction of E modulo p
is singular for p = 2 and p = 7, so E has bad reduction at p = 2 and p = 7. For all other
primes, it holds that vp(∆) = 0, so E has good reduction at all primes except p = 2
and p = 7.

Similar as for elliptic curves, abelian varieties over a number field k are defined by a (not
unique) set of equations with coefficients in k. By reducing the coefficients of the defining
equations for an abelian variety A modulo a prime ideal p in k, we obtain the reduction
of A modulo p. If for some set of equations defining A, the reduction of A modulo p
is again an abelian variety over Ok/p, then A has good reduction at p. Otherwise, A
has bad reduction at p. If A has good reduction at all primes p in k, then A has good
reduction everywhere.

Definition 4.17. If A is an abelian variety defined over a number field k and there exists
a finite extension M of k such that A/M has good reduction at a prime ideal p ⊂ OM ,
then we say that A/k has potential good reduction at p ∩Ok. If A/k has potential good
reduction at all prime ideals in k, then A/k has potential good reduction everywhere.

Example 4.18. Consider the elliptic curve E over Q of Example 4.16 given by the
minimal Weierstrass equation

E : y2 = x3 + x2 − 114x− 127.

We showed in Example 4.16 that E has bad reduction at p = 2 and p = 7 and good
reduction at all other primes. We make a base change to M = Q( 3

√
28). Applying the

coordinate change

(x, y) 7→
(

7
3
√

28x′ + 16, 98y′ + 49
3
√

28x′ + 49
)
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results in the Weierstrass equation

E : (y′)2 +
3
√

28x′y′ + y′ = (x′)3.

Let vp = ordp, where p is a prime ideal of M . The discriminant of E/M is ∆′ = 1,
so the Weierstrass equation is minimal at vp for all primes p of M . Moreover, it holds
that vp(∆) = 0 for every prime ideal p. Hence, E/M has good reduction everywhere.

The following theorem by Serre and Tate states that every CM abelian variety defined
over a number field has potential good reduction.

Theorem 4.19. ([16, Theorem 7], [14, Proposition 2.10]) Let A be a CM abelian variety
over a number field k. Then there exists a cyclic extension M of k over which A acquires
good reduction everywhere.

Once an abelian variety A over a number field k has good reduction everywhere over a
finite extension M of k, the abelian variety A will have good reduction everywhere over
every finite extension of M , see Milne [14, Theorem 17.3]

The next theorem, proven by Chai, Conrad and Oort, is about the abelian subvarieties
of the reduction of CM abelian threefolds.

Theorem 4.20. ([1, Theorem 4.5], [3, Theorem 1.3.1.1]) Let A be a CM abelian three-
fold over a number field k. Suppose A has good reduction at a prime ideal ℘ ⊂ Ok
and let A := A mod ℘. Then A is isotypic over both Ok/℘ and the algebraic closure
of Ok/℘.

We can deduce the possible endomorphism algebras of the reduction of a CM abelian
threefold from Theorem 4.20.

Corollary 4.21. Let A be a CM abelian threefold with CM by a CM field K defined
over a number field k. Suppose A has good reduction at a prime ideal ℘ ⊂ Ok and
let A := A mod ℘. Then

(i) End0(A) ∼= K if A is absolutely simple and fA is irreducible;

(ii) End0(A) ∼= DA, where DA is a central simple algebra over Q(πA) which splits at
all finite primes of Q(πA) not dividing p, but does not split at any real prime of
Q(πA), if A is absolutely simple and fA is of the form he with e > 1;

(iii) End0(A) ∼= M3(Q(πA)) if A is isogenous to E3 over the algebraic closure of Ok/℘,
where E is an ordinary elliptic curve;
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(iv) End0(A) ∼= M3(Bp,∞) if A is isogenous to E3 over the algebraic closure of Ok/℘,
where E is a supersingular elliptic curve.

Proof. Theorem 4.20 states that A is isotypic over the algebraic closure ofOk/℘, meaning
that A is either absolutely simple, or isogenous over the algebraic closure of Ok/℘ to E3,
where E is an elliptic curve. If A is absolutely simple, then the possibilities for End0(A)
are (i) or (ii) by Theorem 2.22. Options (iii) and (iv) follow from Proposition 2.13(ii).
If the elliptic curve E is supersingular, then End0(E) ∼= Bp,∞, see Theorem 1.17,
and End0(A) ∼= M3(Bp,∞). If the elliptic curve E is ordinary, then End0(E) ∼= Q(πE),
see Theorem 1.20, and End0(A) ∼= M3(Q(πE)). Since fA = f3

E by Theorem 2.14, it
follows that πE = πA. �

LetA be an absolutely simple abelian variety over a number field k of CM type (K,Φ) and
assume that A has CM by OK . Suppose A has good reduction at a prime ideal ℘ ⊂ Ok.
Then there is a relation between the Frobenius endomorphism of A := A mod ℘ and
the reflex CM type of (K,Φ). This is the subject of the following important theorem by
Shimura.

Theorem 4.22. ([17, Theorem III.1]) Let A be an absolutely simple abelian variety
of dimension g over a number field k of CM type (K,Φ). Suppose A has CM by the
ring of integers OK of the CM field K with [K : Q] = 2g. Let ℘ ⊂ Ok be a prime
ideal such that A has good reduction at ℘ and let A := A mod ℘. Then the Frobenius
endomorphism π ∈ OK ⊂ End(A) generates the ideal NΦr(Nk/Kr(℘)) = (π).

The following proposition by Kılıçer, Labrande, Lercier, Ritzenthaler, Sijsling and Streng
uses Theorem 4.20 and Theorem 4.22 to classify the endomorphism algebras of the
reduction of abelian threefolds with CM by OK , where K is a sextic cyclic CM field,
with respect to the factorization of pOK into prime ideals. The proposition is stated
in [12, Proposition 4.1]. There only a sketch of the proof is given. We give a full detailed
proof.

Proposition 4.23. ([12, Proposition 4.1]) Let A be an absolutely simple abelian three-
fold over a number field k such that A has good reduction at every prime of Ok. Sup-
pose A has CM by OK for a sextic cyclic CM field K. Let ℘ ⊂ Ok be a prime lying over
a rational prime p. Let m be the number of prime factors of pOK .

Then the reduction A := A mod ℘ satisfies A ∼ Bd, where B is absolutely simple and

(i) if m = 6, then d = 1, the reduced abelian threefold A = B is absolutely simple,
and End0(A) ∼= K.
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(ii) if m = 2, then d = 1, the reduced abelian threefold A = B is absolutely simple,
and End0(A) is a central simple division algebra of reduced degree 9 over the
imaginary quadratic subfield K1 of K.

(iii) in all other cases, we have d = 3, the reduction A is supersingular, the endomor-
phism algebra End0(B) is the quaternion algebra Bp,∞ over Q ramified only at p
and infinity, and End0(A) is the 3× 3 matrix algebra over Bp,∞.

Lemma 4.24. Let A1 and A2 be absolutely simple abelian varieties of dimension g
defined over the same number field k such that A1 and A2 have good reduction at every
prime of Ok. Suppose A1 is of CM type (K,Φ1) and A2 is of CM type (K,Φ2), where K
is an abelian CM field of degree 2g and Φ1 and Φ2 are equivalent primitive CM types
of K.

Let ℘ ⊂ Ok be a prime ideal and define A1 := A1 mod ℘ and A2 := A2 mod ℘. Let π1

and π2 be the Frobenius endomorphisms of A1 and A2 respectively. Then

(i) [Q(π1) : Q] = [Q(π2) : Q],

(ii) if g = 3 and K is a cyclic sextic CM field, then Q(π1) = Q(π2).

Proof. The CM types Φ1 and Φ2 of K are equivalent, so there is an automorphism τ of K
such that Φ1 = Φ2τ . For all CM types Φ of K, it holds that the reflex type of (K,Φ)
is (K,Φ−1), because K is abelian. Therefore, it holds that

Φr
1 = Φ−1

1 = (Φ2τ)−1 = τ−1Φ−1
2 = τ−1Φr

2.

Let Φ2 = {σ1, σ2, . . . , σg} and define p := ℘ ∩ OK . Using Theorem 4.22, it follows that

(π1) = NΦr1
(Nk/Kr(℘))

= Nτ−1Φr2
(Nk/K(℘))

= Nτ−1Φ−1
2

(p)f(℘/p)

=
(
pτ
−1σ−1

1 pτ
−1σ−1

2 · · · pτ−1σ−1
g
)f(℘/p)

=

((
pσ
−1
1 pσ

−1
2 pσ

−1
g
)f(℘/p)

)τ−1

= τ−1
(
NΦr2

(Nk/Kr(℘))
)

= (τ−1π2).
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This implies that π1OK = τ−1(π2)OK . Let γ ∈ Gal(K/Q). Then

(γπ1) = (π1) ⇐⇒ (γτ−1π2) = (τ−1π2)

⇐⇒ (τ−1γπ2) = (τ−1π2)

⇐⇒ (γπ2) = (π2),

so γ fixes (π1) if and only if γ fixes (π2). Therefore, we have [Q(π1) : Q] = [Q(π2) : Q].

Assume that g = 3 and that K is a cyclic sextic CM field. Then Gal(K/Q) = 〈σ〉 with
complex conjugation given by σ3. The degree of Q(π1) and Q(π2) over Q is 1, 2 or 6. If
the degree is 1, then Q(π1) = Q(π2) = Q. If the degree is 6, then

6 = [K : Q] = [K : Q(πi)][Q(πi) : Q] = [K : Q(πi)] · 6

for i ∈ {1, 2}, so Q(π1) = Q(π2) = K. If [Q(π1) : Q] = [Q(π2) : Q] = 2, then Q(π1)
and Q(π2) are both imaginary quadratic fields contained in K. The subfield K〈σ

2〉 of K
fixed by 1, σ2 and σ4 is the unique imaginary quadratic field subfield of K. Hence, we
have Q(π1) = Q(π2) = K〈σ

2〉. �

Proof of Proposition 4.23. Theorem 4.20 implies that A ∼ Bd, where B is absolutely
simple. Furthermore, the reduced abelian threefold A is isogenous to Bd over Ok/℘
by Theorem 4.20. Then fA = fdB by Theorem 2.14, where fA and fB are the char-
acteristic polynomials of the Frobenius endomorpisms πA and πB of A and B respec-
tively. Therefore, we can assume that πA = πB. The reduction A is defined over Fq,
where q = |Ok/℘| = pf(℘/p).

The abelian threefold A is absolutely simple, so A is of CM type (K,ΦA), where ΦA

is primitive by Theorem 4.15. Let Gal(K/Q) = 〈σ〉 and let Φ be the primitive CM
type {1, σ, σ5} satisfying Φ = Φr. Let A′/k be an absolutely simple abelian three-
fold of CM type (K,Φ) such that A′ has good reduction at every prime of Ok and
define A′ := A′ mod ℘. Let πA and π be the Frobenius endomorphisms of A and A′

respectively. Then Lemma 4.24 states that Q(πA) = Q(π).

By Theorem 4.22, the Frobenius endomorphism π ∈ OK ⊂ End(A′) generates the
ideal Nφr(Nk/Kr(℘)) = (π). Since Φ = {1, σ, σ5}, the reflex CM type of (K,Φ) is Φ
itself, see Table 4.2. This implies that Kr = K by Proposition 4.7. Therefore, it holds
that

(π) = NΦ(Nk/K(℘)) = NΦ(pf(℘/p)) =
(
ppσpσ

5)f(℘/p)
, (4.1)

where f(℘/p) = [Ok/℘ : OK/p], the residual degree of ℘ over p.

Since K is normal, the possible splitting behaviours of p in K are
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• p1,

• p2
1,

• p3
1,

• p6
1,

• p1p1,

• p3
1p1

3,

• p1p2p3,

• p2
1p

2
2p

2
3,

• p1p2p3p1p2p3.

Case (i). Assume m = 6. Then pOK = p1p2p3p1p2p3. The prime p = ℘∩OK is a prime
lying above p in K, so p ∈ {p1, p2, p3, p1, p2, p3}. Since Gal(K/Q) acts transitively on
the primes lying above p in K, it holds that pOK = ppσpσ

2
pσ

3
pσ

4
pσ

5
. By equation (4.1),

we have (π) =
(
ppσpσ

5)f(℘/p)
. For all τ ∈ Gal(K/Q)\{1}, it holds that

(π)τ =
(

(ppσpσ
5
)f(℘/p)

)τ
= (pτpστpσ

5τ )f(℘/p) 6= (ppσpσ
5
)f(℘/p) = (π).

Hence, the ideal (π) is fixed only by the identity element of Gal(K/Q). Therefore, we
have [Q(π) : Q] = 6. Since Q(π) is a subfield of K and

6 = [K : Q] = [K : Q(π)][Q(π) : Q] = [K : Q(π)] · 6,

it holds that K = Q(π). Hence, we have Q(πA) = Q(π) = K. By Theorem 2.24, we
have

6 = 2 dimA = 2ddimB

= d · [End0
Fq(B) : Q(πA)]

1
2 [Q(πA) : Q]

= d · [End0
Fq(B) : Q(πA)]

1
2 · 6,

so d = [End0
Fq(B) : Q(πA)] = 1. Hence, A is simple and End0

Fq(A) ∼= End0
Fq(B) ∼= K.

Let r be an arbitrary positive integer and consider A/Fqr . The Frobenius endomorphism
of A/Fqr is πr

A
. Since (πA) is fixed only by the identity element of Gal(K/Q), also (πr

A
)

is fixed only by the identity element of Gal(K/Q). Therefore, we have [Q(πr
A

) : Q] = 6

and Q(πr
A

) = Q(πA). Thus, it holds that Q(πr
A

) = Q(πA) for all integers r > 0 and A is
absolutely simple by Proposition 2.29. Hence, it holds that d = 1, the reduced abelian
threefold A = B is absolutely simple and End0(A) = End0

Fq(A) ∼= K.

Case (ii). Assume m = 2. Then pOK = pa1p1
a, where a ∈ {1, 3}. The prime p = ℘∩OK

is a prime lying above p in K, so p ∈ {p1, p1}. Therefore, we have pOK = papa =
(
ppσ

3)a
.

Since the rational prime p is invariant under σ, it holds that(
ppσ

3)a
= pOK = (pOK)σ =

((
ppσ

3)a)σ
=
(
pσpσ

4)a
.

Thus, we have pσ ∈ {p, pσ3}. If pσ = p, then

pσ
i

= (pσ)σ
i−1

= pσ
i−1

= · · · = p
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for every i ∈ {2, 3, 4, 5}. In particular, we would have pσ
3

= p. But this is not true,
since pOK = ppσ

3
and p 6= pσ

3
. Hence, it holds that pσ = pσ

3
. Then

pσ = pσ
3
,

pσ
2

= pσ
4
,

pσ
3

= pσ
5
,

pσ
4

= p,

so p = pσ
2

= pσ
4

and pσ = pσ
3

= pσ
5
. By equation (4.1), we have

(π) =
(
ppσpσ

5)f(℘/p)
=
(
p(p2)σ

3)f(℘/p)
.

The automorphisms in Gal(K/Q) satisfying

(π)τ =
(
(p(p2)σ

3
)f(℘/p)

)τ
=
(
pτ (p2)σ

3τ
)f(℘/p)

=
(
p(p2)σ

3)f(℘/p)
= (π)

are 1, σ2 and σ4. This follows from the fact that p = pσ
2

= pσ
4

and pσ = pσ
3

= pσ
5
.

Therefore, it holds that [Q(π) : Q] = 2. Hence, we have [Q(πA) : Q] = [Q(π) : Q] = 2.
By Theorem 2.24, we have

6 = 2 dimA = 2ddimB

= d · [End0
Fq(B) : Q(πA)]

1
2 [Q(πA) : Q]

= d · [End0
Fq(B) : Q(πA)]

1
2 · 2,

so d · [End0
Fq(B) : Q(πA)]

1
2 = 3. We thus have the following two options: either d = 3

and [End0
Fq(B) : Q(πA)] = 1, or d = 1 and [End0

Fq(B) : Q(πA)] = 9.

Since pOK = papa, where a ∈ {1, 3}, we have

(q) = (πAπA) = (πA)(πA) =
(
pp2
)f(℘/p)(

pp2
)f(℘/p)

= (pp)3f(℘/p) =

{
(p)3f(℘/p) if a = 1,

(p)f(℘/p) if a = 3,

so q = pn with n =

{
3f(℘/p) if a = 1,

f(℘/p) if a = 3.

Since pOK = papa and Q(πA) is an imaginary quadratic field, we have pOQ(πA) = PP

with f(P) = f(P) = 1. Thus, we have POK = pa and POK = pa. There exist
integers b, c > 0 such that πAOQ(πA) = PbP

c
. Then(

pp2
)f(℘/p)

= πAOK =
(
πAOQ(πA)

)
OK

=
(
PbP

c)OK =
(
POK

)b(
POK

)c
=
(
pa
)b(

pa
)c

= pabpac,

87



CHAPTER 4. REDUCTION OF CM ABELIAN THREEFOLDS

so ab = f(℘/p) and ac = 2f(℘/p). Hence, we have b = f(℘/p)
a and c = 2f(℘/p)

a

and πAOQ(πA) = P
f(℘/p)
a P

2f(℘/p)
a . Therefore, it holds that

iP = f(P) ·
ordP(πA)

n
=

{
f(℘/p)
3f(℘/p) if a = 1
f(℘/p)/3
f(℘/p) if a = 3

}
=

1

3
,

iP = f(P) ·
ordP(πA)

n
=

{
2f(℘/p)
3f(℘/p) if a = 1
2f(℘/p)/3
f(℘/p) if a = 3

}
=

2

3
.

The least common denominator of the invariants is three. Then Theorem 2.25 implies
that the characteristic polynomial of the Frobenius endomorphism of the simple abelian
variety corresponding to πA, see Theorem 2.20, is of the form h3, where h is the minimal
polynomial of πA. Note that h is a second degree polynomial, since [Q(πA) : Q] = 2. It
follows that A is a simple abelian threefold with fA = h3. Hence, it holds that d = 1
and [End0

Fq(B) : Q(πA)] = 9, so End0
Fq(A) ∼= End0

Fq(B) is a central simple division alge-
bra of reduced degree 9 over the imaginary quadratic subfield Q(πA) of K.

Let r be an arbitrary positive integer and consider A/Fqr . The Frobenius endomorphism
of A/Fqr is πr

A
. Since (πA) is fixed only by the automorphisms 1, σ2 and σ4 in Gal(K/Q),

also (πr
A

) is fixed only by 1, σ2 and σ4. Therefore, it holds that [Q(πr
A

) : Q] = 2

and Q(πr
A

) = Q(πA). Thus, we have Q(πr
A

) = Q(πA) for all integers r > 0 and A is
absolutely simple by Proposition 2.29. Hence, it holds that d = 1, the reduced abelian
threefold A = B is absolutely simple and End0(A) = End0

Fq(A) is a central simple
division algebra of reduced degree 9 over the imaginary quadratic field Q(πA).

Case (iii). If m is not 2 or 6, then m is either 1 or 3. First assume m = 1.
Then pOK = pa1, where a ∈ {1, 2, 3, 6}. The prime p = ℘ ∩ OK is a prime lying above p
in K, so p = p1. By equation (4.1), we have

(π) =
(
ppσpσ

5)f(℘/p)
=
(
p3
)f(℘/p)

.

Hence, the ideal (π) is fixed by all automorphisms in Gal(K/Q). Therefore, it holds
that [Q(π) : Q] = [Q(πA) : Q] = 1.

If m = 3, then pOK = pa1p
a
2p
a
3, where a ∈ {1, 2}. The prime p is one of p1, p2 or p3.

Since pi is its own conjugate for all i ∈ {1, 2, 3}, it holds that p = pσ
3
, pσ = pσ

4

and pσ
2

= pσ
5

and pOK =
(
ppσpσ

2)a
. By equation (4.1), we have

(π) =
(
ppσpσ

5)f(℘/p)
=
(
ppσpσ

2)f(℘/p)
.

Since p = pσ
3
, pσ = pσ

4
and pσ

2
= pσ

5
, it follows that (π) is fixed by all automorphisms

in Gal(K/Q). Therefore, we have [Q(π) : Q] = [Q(πA) : Q] = 1.
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Hence, if m is not 2 or 6, then the Frobenius endomorphism πA of A is rational. Then
Theorem 2.15 implies that A is Fq-isogenous to B3, where B is a supersingular elliptic
curve, so A is supersingular. It follows that End0

Fq(B) = End0(B) is the quaternion

algebra Bp,∞ over Q ramified only at p and ∞ and End0
Fq(A) = End0(A) is the 3 × 3

matrix algebra over Bp,∞. �

The next corollary is about the ranks of the reduced CM abelian threefolds as given
in (i), (ii) and (iii) of Proposition 4.23.

Corollary 4.25. Let A/k, K, ℘ and m be as in Proposition 4.23 and let A := A mod ℘.
If m = 6, then r(A) = 3. In all other cases, we have r(A) = 0.

Proof. Let p := ℘ ∩ OK and q = |Ok/℘|. For each case in Proposition 4.23, we will
determine the rank of A.

Case (i). Assume m = 6. Then p splits completely in K, so pOK = p1p2p3p1p2p3.
Moreover, the reduced abelian threefold A is an absolutely simple abelian threefold
over Fq with End0(A) ∼= K = Q(πA) by Proposition 4.23(i). Hence, we can apply the
results in Table 3.2. The splitting of pOK corresponds to case (XVIII) of Table 3.2 and
we see that r(A) = 3.

Case (ii). Assume m = 2. Then pOK =
(
ppσ

3)a
, where a ∈ {1, 3}. Since A is absolutely

simple, A is of CM type (K,Φ) with Φ primitive by Theorem 4.15. The CM field K is
cyclic, so Gal(K/Q) = 〈σ〉. Let Φ = {σk, σl, σm}, with k, l,m ∈ {0, 1, 2, 3, 4, 5}. The
CM type Φ is primitive, so Φ is not equal to {1, σ2, σ4} or {σ, σ3, σ5}. Moreover, the
reflex CM type of (K,Φ) is (K,Φ−1), see Section 4.1.1. By Theorem 4.22, we have

(πA) = NΦr(Nk/Kr(℘)) = NΦ−1(Nk/K(℘)) =
(
pσ
−k
pσ
−l
pσ
−m)f(℘/p)

. (4.2)

Following the proof of Proposition 4.23, we see that p = pσ
2

= pσ
4

and pσ = pσ
3

= pσ
5
.

This implies that (πA) = (pp2)f(℘/p) or (πA) = (p2p)f(℘/p). By the proof of Proposi-
tion 4.23, we have pOQ(πA) = PP and

πAOQ(πA) =

P
f(℘/p)
a P

2f(℘/p)
a if πAOK = (pp2)f(℘/p),

P
2f(℘/p)

a P
f(℘/p)
a if πAOK = (p2p)f(℘/p).

Thus, both primes P and P that lie above p in Q(πA) contain πA. Hence, it holds
that r(A) = 0 by Theorem 3.13.

Case (iii). Assume m is not 2 or 6. Then A is supersingular by Proposition 4.23,
so r(A) = 0. �
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We will now look at an example of the endomorphism algebra and p-rank of different
reductions of an absolutely simple CM abelian threefold A with CM by OK , where K is
a sextic CM field of which the Galois group of the normal closure is isomorphic to D6.

Example 4.26. LetK+ = Q[x]/(x3−6x−2) andK = K+(
√
−3). The fieldK+ is totally

real and K is a totally imaginary quadratic extension of K+, so K is a CM field. Let K ′

be the Galois closure of K. We have Gal(K ′/Q) ∼= D6 = 〈x, y : x2 = y6 = xyxy = 1〉, the
dihedral group with 12 elements. The automorphism y3 represents complex conjugation.
We have K = K ′〈x〉 and K+ = K ′〈x,y

3〉. This example of a sextic CM field of which the
Galois group of the normal closure is isomorphic to D6 is taken from the PhD thesis of
Kılıçer [11, Table 3.3].

Let A be an absolutely simple abelian threefold over a number field k such that A
has good reduction at every prime ideal of k. Assume that A has CM by OK and
is of type Φ = {1, y|K , y5|K}. The CM type Φ is primitive and satisfies Φ = Φr, so
also Kr = K, see Section 4.1.2. We will look at the reduction of A at prime ideals ℘
of Ok lying over small rational primes and compute the endomorphism algebra and p-
rank of A = A mod ℘. For this, we will use the factorization of (p) into prime ideals
in the fields K and K ′. Table 4.5 gives the factorization of pOK and pOK′ into prime
ideals for the rational primes p < 20.

p pOK pOK′
2 p3 P3P3

x

3 p6 P6

5 5OK PPx

7 p2
1p1

2p2p2 P2
1P2

1,xP
2
1P

2
1,xP

2
2P

2
2

11 p1p2p2 P1P1,xP2P2,xP2P2,x

13 p1p1p2p2 P1P1P2P2,xP2P2,x

17 17OK PPx

19 p1p1p2p2 P1P1P2P2,xP2P2,x

Table 4.5: The prime factorizations of pOK and pOK′ for the rational primes p < 20
computed in SAGE.

Let ℘ ⊂ Ok be a prime ideal lying above a rational prime p and let A := A mod ℘.
Define p := ℘∩OK . Denote by π the Frobenius endomorphism of A. For every rational
prime p < 20, we will determine the endomorphism algebra and p-rank of A.

For p ∈ {2, 3, 5, 17}, there is only one prime ideal p lying above p in K, so pOK = pa for
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some positive integer a. By Proposition 4.22, we have

πOK′ = NΦr(Nk/Kr(℘))OK′ = NΦ(Nk/K(℘))OK′ = NΦ(pf(℘/p))OK′ = (NΦ(p)OK′)f(℘/p)

=
(

(pOK′)(pOK′)y(pOK′)y
5
)f(℘/p)

= (p3OK′)f(℘/p),

so (π) = p3f(℘/p) in K. Since p ∈ Q is invariant under all automorphisms in Gal(K ′/Q),
we have

pa = pOK = (pOK)τ = (pa)τ = (pτ )a,

for all τ ∈ Gal(K ′/Q). Therefore, the prime ideal p is invariant under all automorphisms
in Gal(K ′/Q). It follows that also (π) is invariant under all automorphisms in Gal(K ′/Q)
and hence Q(π) = Q. Thus, the reduction A is supersingular and End0(A) is the 3× 3
matrix algebra over Bp,∞. The p-rank of A is 0.

For p = 7, we find 7OK = p2
1p1

2p2p2 and 7OK′ = P2
1P2

1,xP
2
1P

2
1,xP

2
2P

2
2. Let DP1 be

the decomposition group of P1. We have

|DP1 | = ef = 2.

The elements of order 2 in Gal(K ′/Q) are x, y3, xy, xy2, xy3, xy4 and xy5, so

DP1 ∈ {〈x〉, 〈y3〉, 〈xy〉, 〈xy2〉, 〈xy3〉, 〈xy4〉, 〈xy5〉}.

The ideal P1 = P1 ∩ OK+ is unramified in K and K ′, so DP1 ∩ Gal(K ′/K+) = {1}.
Since Gal(K ′/K+) = {1, x, y3, xy3}, it holds that DP1 /∈ {〈x〉, 〈y3〉, 〈xy3〉}. We can split
the remaining possible groups for DP1 into conjugates

C(〈xy〉) = {〈xy〉, 〈xy3〉, 〈xy5〉}
C(〈xy2〉) = {〈x〉, 〈xy2〉, 〈xy4〉}.

Suppose DP1 = 〈xy〉. In the group 〈x〉\Gal(L/Q)/〈xy〉, we have

〈x〉1〈xy〉 = 〈x〉y〈xy〉, 〈x〉y2〈xy〉 = 〈x〉y5〈xy〉, 〈x〉y3〈xy〉 = 〈x〉y4〈xy〉.

This implies that there are three prime ideals lying above p = 7 in K. This is a
contradiction. Hence, we have DP1 6= 〈xy〉. Similarly, it holds that DP1 /∈ C(〈xy〉).

Without loss of generality, we can assume that DP1 = 〈xy2〉. In 〈x〉\Gal(K ′/Q)/〈xy2〉,
we have

〈x〉1〈xy〉 = 〈x〉y2〈xy〉, 〈x〉y3〈xy〉 = 〈x〉y5〈xy〉, 〈x〉y〈xy〉, 〈x〉y4〈xy〉.

This leads to the following splitting diagram.
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Q

K+

K

K ′

7

P2
1 Py

p2
1

p2
y3

py py4

P2
1

P2
y2 P2

y3 P2
y5 P2

y P2
y4

We have p = ℘ ∩ OK ∈ {p1, py3 , py, py4}. Taking p = p1 or p = py3 leads to the same
results for the endomorphism algebra and the p-rank. The same holds for taking p = py
or p = py4 . We will therefore only consider p ∈ {p1, py}.

Let p = p1. By Proposition 4.22, we have

πOK′ = NΦr(Nk/Kr(℘))OK′ = NΦ(Nk/K(℘))OK′ = NΦ(p
f(℘/p)
1 )OK′

= (NΦ(p1)OK′)f(℘/p) =
(

(p1OK′)(p1OK′)y(p1OK′)y
5
)f(℘/p)

= (P1Py2PyPy3Py5Py)
f(℘/p) = (p1pypy3OK′)f(℘/p),

so (π) = (p1pypy3)f(℘/p) in K. Then the p-rank of A is 1 by Theorem 3.13. Moreover,
the ideal (π) is fixed only by the automorphisms 1, x ∈ Gal(K ′/Q), so [Q(π) : Q] = 6.
Hence, it holds that Q(π) = K and End0(A) ∼= K.

Next, assume p = py. By Proposition 4.22, we have

πOK′ = NΦr(Nk/Kr(℘))OK′ = NΦ(Nk/K(℘))OK′ = NΦ(pf(℘/p)
y )OK′

= (NΦ(py)OK′)f(℘/p) =
(

(pyOK′)(pyOK′)y(pyOK′)y
5
)f(℘/p)

= (P2
yP

2
y2P

2
1 )f(℘/p) = (p2

1pyOK′)f(℘/p),

so (π) = (p2
1py)

f(℘/p) in K. Then the p-rank of A is 3 by Theorem 3.13. Moreover, (π)
is fixed only by the automorphisms 1, x ∈ Gal(K ′/Q), so [Q(π) : Q] = 6. Hence, it holds
that Q(π) = K and End0(A) ∼= K.

For the remaining primes p < 20, we use SAGE to determine the endomorphism algebra
and p-rank. Using the RECIP-code of Streng, we compute NΦr(p) for the prime ideals p
lying above p. This results in the prime factorization of πOK . The p-rank of A can
be deduced from the factorizations of pOK and πOK by Theorem 3.13. Furthermore,
we compute in SAGE the degree of the minimal polynomial of π. This determines the
endomorphism algebra of A.
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For p = 11, we find the following splitting diagram, see Table 4.5.

Q

K+

K

K ′

11

P1 P2

p1 p2 p2

P1 P1,x P2 P2,x P2 P2,x

2

2

If p = p2 or p = p2, then (π) = (p1p
2
2)f(℘/p) and we find [Q(π) : Q] = 6, so End0(A) ∼= K.

This implies that A is absolutely simple. We can therefore apply the results in Table 3.2.
The splitting of pOK corresponds to case (IV) and we see that r(A) = 2. If p = p1,
then (π) = (11OK)f(℘/p) and we find [Q(π) : Q] = 1, so A is supersingular and End0(A)
is the 3× 3 matrix algebra over Bp,∞. Then the p-rank of A is 0.

For p = 13, we find the following splitting diagram, see Table 4.5.

Q

K+

K

K ′

13

P1 P2

p1 p1 p2 p2

P1 P1 P2 P2,x P2 P2,x

2

2 2

If p = p1 of p = p1, then (π) = (p1p2)f(℘/p) and we find [Q(π) : Q] = 6, so End0(A) ∼= K.
This implies that A is absolutely simple. We can therefore apply the results in Table 3.2.
The splitting of pOK corresponds to case (VII) and we see that r(A) = 3. If p = p2

or p = p2, then (π) = (p2
1p2p2)f(℘/p). In this case, it also holds that [Q(π) : Q] = 6,

so End0(A) ∼= K and A is absolutely simple. We can read off from Table 3.2 case (VII)
that r(A) = 1.

The results for p = 19 are the same as for p = 13.
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p pOK πOK r(A) End0(A)

2 p3 p3 0 M3(Bp,∞)
3 p6 p6 0 M3(Bp,∞)
5 p p 0 M3(Bp,∞)

7 p2
1p1

2p2p2 (p1p1p2)f(℘/p) if p = p1 or p = p1 1 K

(p2
1p2)f(℘/p) if p = p2 or p = p1 3 K

11 p1p2p2 (p1p2p2)f(℘/p) if p = p1 0 M3(Bp,∞)

(p1p
2
2)f(℘/p) if p = p2 or p = p2 2 K

13 p1p1p2p2 (p1p2)f(℘/p) if p = p1 or p = p1 3 K

(p2
1p2p2)f(℘/p) if p = p2 or p = p2 1 K

17 p p 0 M3(Bp,∞)

19 p1p1p2p2 (p1p2)f(℘/p) if p = p1 or p = p1 3 K

(p2
1p2p2)f(℘/p) if p = p2 or p = p2 1 K

Table 4.6: The factorizations of πOK deduced from the splitting behaviour of rational
primes p < 20 in K and the corresponding p-rank and endomorphism algebra of the
reduction A.

Remark 4.27. Let A be an absolutely simple CM abelian threefold over a number
field k such that A has good reduction at every prime of Ok. Suppose A is of CM
type (K,Φ) and has CM by OK , where K is a sextic CM field of which the Galois group
of the normal closure K ′ is isomorphic to D6. Let ℘ ⊂ Ok be a prime lying over a
rational prime p. In the above example, it is illustrated how the endomorphism algebra
and p-rank of the reduction A = A mod ℘ can be determined from the factorization
of pOK into prime ideals. By listing the possible factorizations of pOK and determining
the endomorphism algebra and p-rank of A, we obtain analogues of Proposition 4.23 and
Corollary 4.25 for an absolutely simple abelian threefold with CM by OK for a sextic
CM field K with Gal(L/Q) ∼= D6. Note that the primitive CM types of the sextic CM
field K with Gal(L/Q) ∼= D6 are not all equivalent, see Section 4.1.2. Therefore, in order
to obtain analogues of Theorem 4.23 and Corollary 4.25, it is important to state the CM
type Φ of K such that A is of CM type (K,Φ).
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