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Abstract: A moment of insight is the experience of sudden comprehension when, for example,
solving a puzzle. Insight in the brain is often studied using functional magnetic resonance
imaging (fMRI), which has the disadvantage of not recording a continuous data stream.
Electroencephalography (EEG), which is recorded continuously, could be a useful alternative to
fMRI when looking at insight in the brain. EEG data from twenty-five participants was used
to analyse whether there are patterns in electrical activity in the brain when one experiences
insight. Possibly, this can be useful to investigate the use of EEG data for studying insight
in the brain. Participants were experienced chess players who were asked to solve 100 chess
puzzles. On EEG data, an Event-Related Potential (ERP) analysis was applied, in which data
was averaged over all trials and all participants. Results confirmed an N200 component and
a P300 component found in previous studies investigating ERPs and insight. However, no
response-locked ERP components were found preceding preparedness to answer, and no pre-
viously reported stimulus-locked ERP components could be attributed to insight prior to a response.
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1 Introduction

When solving a puzzle, listening to a joke, or trying
to remember something, one can experience sudden
comprehension. You see the solution to the puzzle;
you get the punch line; you remembered! This is
often referred to as an ”Aha!”-moment, but can
also be called the moment of insight (Kounios &
Beeman, 2009). Insight can result in a new inter-
pretation of a situation, which in turn can point
to the solution to a problem (Sternberg & David-
son, 1995). The cognitive process behind insight is
different from processes such as memory retrieval
or search (Novick & Sherman, 2003), because it
unlocks the way around a problem instead of ’only’
solving the problem.

When studying what happens in the brain during
a moment of insight, data from functional magnetic
resonance imaging (fMRI) experiments is often
used (Heeger & Ress, 2002). fMRI is a non-invasive
method used to look for changes in neural activity
that correlate with particular cognitive processes
(Heeger & Ress, 2002). However, a clear under-
standing of how neuronal activity influences the
fMRI signal is needed to correctly interpret the
data.

When using fMRI to study insight, one needs
to have a clear idea of when insight happens be-
fore setting up an experiment. That is because
fMRI machines are relatively slow: it takes approx-
imately 2 seconds per scan to collect data (Heeger
& Ress, 2002). This means that time between two
scans is not measured, and there is no continuous
recording of the brain. It might be difficult to
draw a definitive conclusion on when the moment
of insight happens in fMRI data, because scans
are taken at distinct time points. However, the
occurrence of insight means rethinking some ba-
sic assumptions about the problem content, which
happens in a relatively sudden and unpredictable
manner (Köhler, 1925; Scheerer, 1963).

Another functional imaging method is electroen-
cephalography (EEG), where synchronized electri-
cal activity of thousands of active neurons is de-
tected by means of electrodes that are attached to
the scalp. In contrast to fMRI, EEG does provide a
continuous recording and has a high temporal pre-
cision (Crosson et al., 2010). Results from previous
studies about insight using EEG show that neuro-
electric studies of insight are more consistent than
neuroimaging studies (Dietrich & Kanso, 2010),
and that insight can be broken down into multiple
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sub-processes when using EEG to study problem
solving (Sandkühler & Bhattacharya, 2008).

1.1 Event-Related Potential

Event-related potentials (ERPs) are electrical po-
tentials generated by the brain that are related to
specific internal or external events (Luck, 2012; Sur
& Sinha, 2009). An ERP can be characterised as a
change in electric potential. ERPs can occur when,
for example, a stimulus is presented, a decision is
made, or a response is expressed (Coles & Rugg,
1995).

Experiencing insight is an internal event, which
poses the question: ”Are there patterns in an
electroencephalography during a moment of
insight?”. If an ERP occurs when someone expe-
riences a moment of insight, this means that there
are patterns in the EEG data. From this it can
be concluded that excellent temporal resolution of
ERPs can allow for observing insight.

In an earlier study by Qiu et al. (2008), it was
demonstrated that solving a problem correctly
elicited a positive ERP deflection (P300), indicating
strong activity in the midline parieto-occipital scalp
region. As there will be problem solving to stimu-
late insight during this experiment (more on this in
section 2), it is expected to find a likewise compo-
nent. Another study by Mai et al. (2004) showed
peak latency in central midline components (Cz) at
N380 which most likely reflects insight. However,
all previous research is related to short problems,
where ERP components were found as a result of
a stimulus. In the present experiment, longer time
periods of problem-solving were measured (opposed
to other mentioned research). Before turning to
the methods, let us first introduce the connection
between chess and insight, which was used to oper-
ationalize insight in this experiment.

1.2 Chess as a research vehicle

To investigate the relationship between moment of
insight and ERPs, chess can be used as a research
vehicle. Since the rules of chess are universally
specified and the environment of the game is well-
defined, chess has often been used to research basic
cognitive processes, such as perception, memory,
and problem solving (Vaci & Bilalić, 2017). An-
other benefit is that chess has a precise rating
system for measuring skill level - the ELO rating
system (Elo, 1978) - and thus it is easier to de-
fine an objective skill level for a chess player for
participation in an experiment (Charness, 1992).

To practice chess without an opponent, chess
players often make use of chess puzzles. A chess
puzzle is a situation in a chess game, where the
player is only a certain amount of moves away
from checkmate. For example, a checkmate-in-2

puzzle means that the chess player has to make
two more moves to checkmate and be victorious.
Since no opponent is required and the situation
has a clear correct or incorrect outcome, chess
puzzles can be used in research to study a chess
player’s reaction to chess events. Moreover, ERPs
were used before to study chess. In Wright, Gobet,
Chassy, and Ramchandani (2013), ERPs were used
to determine the difference between the cognitive
processes of experts versus novice chess players,
and showed consistency with an N200 component
reflecting matching of current perceptual input to
memory in experts, relative to novices.

2 Methods

2.1 Participants

Twenty-seven volunteers participated in the ex-
periment. They were recruited through various
channels for chess enthusiasts (e.g. local chess as-
sociations or online chess communities). For the
experiment, participants were invited to the Univer-
sity of Groningen, and received a compensation of
d12. Data from two participants was excluded due
to technical errors (the recordings were not saved).
Thus, the data from twenty-five participants was
used for the final analysis.

The mean age of the twenty-five participants
(2 female, 23 male) was 29.96 years (SD = 9.04).
Before their participation, participants signed in-
formed consent and were informed about the exper-
iment procedure. Participants were right-handed,
had no neurological disorders, and had normal or
corrected-to-normal vision.

The participants were experienced chess players,
with an average KNSB (Royal Dutch Chess Asso-
ciation) ELO-rating of 1815.12 (SD = 290.53) and
an average FIDE (International Chess Association)
ELO-rating of 1806.76 (SD = 301.94). On average,
participants had been actively playing chess for
13.96 years (SD = 8.48).

2.2 EEG procedure

The experiment required the participants to com-
plete a set of 103 chess puzzles (see figure 2.1).
The first three puzzles were used for practice, while
the remaining 100 puzzles were presented in the
main trials. The puzzles were compiled from real
games using www.chesspuzzle.net as a source.
For consistency, participants needed to play as the
player using the white pieces throughout the ex-
periment. All the puzzles were checkmate-in-two.
Participants were required to specify only the first
move.

Each trial began with a fixation cross, presented
for 150 ms. Afterwards, a chessboard appeared
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with the chess pieces arranged as per the puzzle.
Participants had no time limit to find the solution.
First, they needed to indicate that they knew the
answer with a mouse click using their right hand.
Next, they responded with two clicks; first on the
piece, and second on its desired location. After
a completed trial, 50 ms would pass before the
next trial began. The procedure repeated until
all puzzles were completed, with breaks (for as
long as the participants felt necessary) every 25
puzzles. In total, the experiment took 1.5 hours
on average, with 1 hour for the execution of the
experiment and 30 minutes for the equipment setup
and breakdown. There was no feedback presented
about individual puzzles during the experiment.
Afterwards, participants were provided with the
option to receive a document containing all puzzles
and solutions.

Figure 2.1: One of the chess puzzles that was
used as a stimulus during the experiment. This
puzzle is part of the condition group of non-
sacrificial puzzles (more about this in section
2.6)

2.3 Equipment

EEG was recorded from 32 scalp sites using a
Biosemi ActiveTwo system. For the recording, the
electrodes were filled with conductive electrode gel.
The electrodes were placed using the international
10-20 system layout. Two channels – Common
Mode Sense (CMS) and Driven Right Leg (DRL)
– were used as “ground”. Vertical and horizontal
eye-movements were recorded, as well as an average
mastoid reference. The EEG data was amplified
using an ActiveTwo AD-box and recorded using
ActiView software from BioSemi instrumentation.
The total input impedance was <30kΩ.

2.4 Behavioural analysis

Practice trials were excluded for both accuracy
and reaction times (RT) analyses. Additionally, all
incorrect and incomplete trials were not taken into

consideration in RT analysis. Lastly, trials that
deviated more than 3 standard deviations from the
mean per participant and conditions were removed.

A linear mixed-effects (LME; Bates and DebRoy
(2004)) model was constructed in R to evaluate the
accuracy rates and reaction times. A backward
stepwise fitting procedure was used for construc-
tion. The first model contained all variables with
interaction effects included. Each variable was then
removed and evaluated to determine its significance.
This procedure was done until all variables were
tested. The lme4 package was used to construct
the models and their consecutive fits were com-
pared. This was done for both the fixed-effects and
random-effects structure.

2.5 EEG preprocessing

For the EEG data preprocessing, the open-source
toolbox EEGLAB (Delorme & Makeig, 2004) was
used. The average EEG signals of two external
electrodes on mastoid bones were used as refer-
ences. Bipolar channels of vertical and horizon-
tal eye movement were calculated by subtracting
EEG signals from two vertical external electrodes
and two horizontal external electrodes, respectively.
The referenced EEG data were then passed through
a 1 Hz high-pass filter and a 40Hz low-pass filter.
Next, the data was downsampled to 256 Hz . Man-
ual detection of artifacts was performed on the
data subsequently. From 25 participants, 20 had at
least one noisy channel removed. On average, 1.68
channels per participant were removed. After man-
ual artifact rejection, data was further decomposed
using independent component analysis (ICA). In-
dependent components of eye blinks and muscle
movement were detected and removed. One or two
independent components were substracted from
the data for 20 out of 25 participants. For three
participants, three, four and five components were
removed.

2.6 ERP analysis

As described in section 1.1, ERPs can occur be-
cause of e.g. a stimulus, decision, or response.
However, electric potential can also change because
of several other sensory, cognitive or motor events,
such as eye blinks or muscle movement. When
measuring electrical potential using EEG, it is not
only isolated ERPs related to the intended stim-
uli/decision/response that are recorded. This can
make it hard to draw a definitive conclusion.

Classic ERP analysis was used to average out
an ERP over multiple trials (Nidal & Malik, 2014).
All incomplete trials were eliminated, and only
correctly answered trials were used in the analysis.
Baseline normalization (400 ms preceding the
stimulus presentation) was applied to remove slow
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drifts in the signal. Data from 400 ms before and
800 ms after the stimulus was selected, as well as
data from 800 ms before and 400 ms after the
response. This was done for stimulus-locked and
response-locked ERPs, respectively. Ultimately,
average stimulus-locked and response-locked ERPs
for each condition and each subject were generated,
and their averages were plotted. Grand average
event-related potential waveforms elicited were
computed for all channels and visually inspected.

During the experiment, several participants
noted that there was a pattern in the chess puzzles.
They all identified some trials to be ’sacrificial’
puzzles, where the key to solving the puzzle is to
sacrifice a higher-order piece (a queen, knight, rook
or bisshop), which results in a quick and immediate
checkmate. Some participants said that, once they
noticed this pattern, their focus in trials shifted:
they would first check if sacrificing a higher-order
piece yielded them a win, before looking at other
options. When multiple participants reported the
same observation, it became apparent that there
was another interesting factor to analyse: the
difference between sacrificial and non-sacrificial
puzzles. From the 100 chess puzzles in the
experiment, 40 could be solved by deploying
the ’sacrifice’ technique. In the end, this was
marked as two separate conditions (sacrificial vs.
non-sacrificial), and ERP analysis was performed
in the two condition groups independently.

3 Results

3.1 Behavioural results

The participants’ experience was reflected in their
accuracy: on average, they solved 91.68% (SD =
7.89%) of the given puzzles correctly.

The average accuracy rates and reaction times,
as well as the standard errors per participant, were
computed across ELO rating (using KNSB rating)
for both conditions. The relationship between ELO
and the two dependent variables are shown in fig-
ures A.1 and A.2 in the Appendix. The influence
of the conditions on the two dependent variables
are shown in figures A.3 and A.4.

A binomial LME model was fitted to examine
accuracy rates. A full model was fitted with both
ELO and sacrifice condition variables and their
interaction as the fixed-effects structure, and each
individual puzzle and subject as random-effects
structure. When the interaction effect was removed,
there was no significant difference in fit between
the full model and the no-interaction model (χ2(1)
= 1.0198, p >0.05, MAIC = 0.9). The interac-
tion effect was removed for simplicity. The full
model also had no significant difference in fit when

compared to a model without the sacrifice condi-
tion (χ2(1) = 0.3479, p >0.05, MAIC = 1.7). This
finding corresponds to figure A.3, which shows no
discernible difference between the mean accuracy
of each condition. As such, the sacrifice condition
was not included in the final accuracy model. A
model with the ELO variable did, however, have a
better fit compared to a model without ELO (χ2(1)
= 25.724, p <0.001, MAIC = 23.7). This finding
corresponds to the relationship seen in figure A.1.
From these tests, the resulting fixed-effects struc-
ture only contains the ELO variable.

The same backwards selection procedure was
done for the random-effects structure of the accu-
racy model. A model with the individual puzzles
random-effect had a significantly better fit than a
model without (χ2(1) = 210.63, p <0.001, MAIC
= 208.6). Similarly, a model with the subjects
as a random-effect had a significantly better fit
than a model without the random-effect (χ2(1)
= 25.368, p <0.001, MAIC = 23.4). Thus, the
random-effects structure for the accuracy model
includes the random-effects from each individual
puzzle and subject.

For the reaction times, a Gaussian LME model
was fitted. Before the model could be fitted, a
logarithmic transformation had to be applied to the
reaction times because a histogram revealed that
they were right-skewed. As such, the LME model
used the log reaction times as a dependent variable.
A full model was first fitted as in the accuracy
model; ELO, conditions, and their interactions as
the fixed-effects structure, and individual puzzles
and subjects as random-effects. The full model with
the interaction effect between ELO and sacrifice
condition had a significantly better fit than a model
without the interaction (χ2(1) = 14.708, p <0.001,
MAIC = 12.7). Similarly, the full model had a
significantly better fit than a model without ELO
(χ2(2) = 43.72, p <0.001, MAIC = 39.7) as well
as a model without the sacrifice condition (χ2(2)
= 28.033, p <0.001, MAIC = 24). This means the
fixed-effects structure of the reaction times model
includes ELO, sacrifice conditions, and interaction
between these two variables.

For the random-effect structure, the random-
effects from each individual puzzle and subject
were checked. A model with the individual puzzle
random-effect had a significantly better fit than a
model without the random effect (χ2(1) = 906.32, p
<0.001, MAIC = 904.3). Similarly, a model without
the subject random-effect also had a significantly
better fit than a model without subjects (χ2(1) =
681.2, p <0.001, MAIC = 679.2). Thus, as with
accuracy model, the random-effects structure for
the reaction time model includes the random-effects
from each individual puzzle and subject.

With the models fitted, they can now be ex-
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amined for further analysis. The accuracy model
found that the logit estimate significantly increased
as ELO increased (βELO = 1.0673, SE = 0.1680,
z-value = 6.351). The model suggests that subjects
with higher ELO are more likely to respond accu-
rately. Similarly, the reaction time model found
that the time estimate significantly decreased when
ELO increased (βELO = -0.502, SE = 0.077, t-value
= -6.502). This would suggest that subjects with
higher ELO solved the puzzles faster. The reaction
time model also found that the time estimate sig-
nificantly decreased when subjects were presented
with sacrifice puzzles (βsacrificePuzzle = -0.377, SE
= 0.100, t-value = -3.749). This finding implies
that subjects solved sacrifice puzzles faster than
non-sacrifice puzzles.

These results imply that the better chess players
solved the puzzles quicker and more accurately.
Higher ELO leads to more accuracy and quicker
reaction times. Also, sacrifice puzzles lead to faster
reaction times compared to non-sacrifice puzzles.
Further investigation is required before suggesting
a possible reason for this relationship.

3.2 ERP results

Grand average stimulus-locked and response-locked
ERPs were calculated for both conditions. Figure
A.5 in Appendix A shows average stimulus-locked
ERPs, and Figure A.6 in Appendix A show average
response-locked ERPs. Since it is interesting to
look at ERP components across the scalp, in the
final analysis 10 representative channels from across
the scalp were selected. These were midline channel,
along with channels from the side of the scalp. For
a visual of where each channel is located on the
scalp, see figure A.7.

When looking at data from stimulus-locked
ERPs, an ERP component at N200 is detected,
most present in midline scalp regions. This seems
to be in line with the N200 component found in
the previously mentioned study by Wright et al.
(2013). Data from frontal, central and parietal
midline scalp regions (Fz, Cz and Pz) shows an
ERP component around P300, which corresponds
to earlier findings by Qiu et al. (2008) where a P300
component was mentioned.

Data from response-locked ERPs was expected
to show a N380 Cz component, as mentioned in
section 1.1 (Mai et al., 2004). This was not found.

Unlike what was intended to be found, there
were no ERP components observed in the 800 ms
response window before a response.

4 Discussion

In earlier research (Mai et al., 2004; Qiu et al.,
2008; Wright et al., 2013), there were no prolonged

periods of time between a stimulus and an insight-
ful response. Instead, ERP components after a
stimulus were attributed to the experience of in-
sight. With the current research, the intention was
to differentiate between stimulus- and response-
locked insight by using problems where insight was
necessary over a longer period of time. This could
yield both a confirmation of earlier found ERP
components as actually being the result of insight,
and a new look at ERP components preceding a
moment of insight.

There is an absence of ERP components in the
response window before the response. Although
earlier found ERP components N200 and P300
components can be confirmed with findings of N200
and P300 components in stimulus-locked ERPs,
there is a lack of an N380 component in central
midline component Cz as reported by Mai et al.
(2004). Furthermore, all identified components
were indeed found as components resulting from
the presentation of a stimulus, instead of preceding
a response.

With the lack of new ERP components and the
absence of familiar stimulus-locked ERP compo-
nents preceding a response, we can conclude that
there are no insightful ERP components that can
be used to detect a moment of insight in the brain.

Bilalić et al. (2019) found that chess experts were
better at problem solving in a chess context relative
to novices, which required retrieval of chess-related
information. However, it was also concluded that
the experts’ success came at a price, since they re-
ported a diminished ”Aha!”-experience compared
to the control group. This difference in dimin-
ished moment of insight was not reported when
participants were probed with a different problem,
unrelated to their skill level in chess. Although in
section 1.2 the benefits of chess as an operalization
for this study were justified, based on findings by
Bilalić et al. it might be interesting to repeat the
study in a context where participants are less fa-
miliar and trained with the materials presented to
them as stimuli.

Since the chess puzzles in this study were pre-
sented in the context of a realistic situation, namely
the endings of played chess games, there were pieces
on the board that did not play into the solution
of the puzzle. Because of this, chess players use
a heuristic tactic to evaluate their solution before
making the intended move (Simon & Simon, 1962).
In this study, data was analysed in a window 800
ms before a response. Perhaps this window was
too small, and the heuristic tactic used to verify
the solution takes longer than 800 ms (and as a
result of this, the moment of insight and possible
ERP components related to insight can be detected
outside the taken response window).

Moreover, other manipulations and analyses were

5



performed on the same data set, namely a Hidden
semi-Markov Model Multivariate Pattern analysis
(HsMM-MVPA)). In that study, a 2-second model
was used and eight bumps in a repeating pattern
were detected before response. Since HsMM-MVPA
takes different durations between bumps into ac-
counts whilst the ERP technique analyses a set
response window, perhaps the execution of a com-
bined use of ERPs and HsMM-MVPA yields a more
accurate result and makes findings more usable for
future application.
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A Appendix

Figure A.1: Behavioural analysis results of the accuracy vs. ELO rating (using KNSB rating)

Figure A.2: Behavioural analysis results of the reaction time vs. ELO rating (using KNSB rating)

Figure A.3: Behavioural analysis results of the influence of condition (sacrifice vs. non-sacrifice)
on mean accuracy
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Figure A.4: Behavioural analysis results of the influence of condition (sacrifice vs. non-sacrifice)
on mean reaction time

Figure A.5: Grand average stimulus-locked ERPs.
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Figure A.6: Grand average response-locked ERPs.

Figure A.7: Placement of EEG channels across the scalp. Image from Greco et al. (2006).
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