
THEIA: A labeling based backtracking solver

for Abstract Argumentation

Bachelor’s Project Thesis

Lukas Kinder, s3686566, l.m.kinder@student.rug.nl,

Supervisor: Prof Dr Verheij

Abstract: THEIA is a labeling based algorithm to find complete sets of a Dung argumentation
framework. State of the art backtracking solvers do this by repeatedly choosing an argument and
label it until either a contradiction with respect to the labels is reached or a solution is found.
The main idea of THEIA is to reduce the number of backtracking steps by using propagation
techniques that keep track of arguments that cannot be defeated or undefeated. To assess the
performance, the program was tested on the data-set of the ICCMA 2019 and was in general faster
than the backtracking solvers HEUREKA and DREDD. This result shows that backtracking
solvers can be improved by using a bigger set of labels which enable more powerful propagation
techniques.

1 Introduction

Computational argumentation is a multidisci-
plinary area used in Artificial Intelligence, Philoso-
phy, Law and Linguistics [16]. In recent years argu-
mentation has been extensively studied as a subject
of Artificial Intelligence [4]. A general introduction
to computational argumentation can be found in
[3].

The argumentation framework introduced by
Dung [6] is a simple but powerful method used to
abstract argumentation. It represents arguments as
nodes in a graph which can have attack relations to
other arguments. Interpreting these graphs by find-
ing meaningful sets of arguments is a non-trivial
task that may require great computational time
and effort.

State of the art programs for this purpose are
for example backtracking algorithms. These algo-
rithms gradually label arguments to analyse the
graph and backtrack whenever contradicting labels
are found. In this paper, the backtracking solvers
HEUREKA [8] and DREDD [15] are discussed and
compared to THEIA, the algorithm posed here.
Other backtracking solvers working similarly are for
example discussed in [13], [12] or [11].

The program THEIA is different from
HEUREKA or DREDD because it uses more

selective techniques to propagate labels. The basic
idea is to keep track of arguments that cannot be
defeated or undefeated at some state during the
search. This can reduce the number of backtracking
steps during the search as conflicting labels can be
discovered earlier.

To asses the performance of THEIA the program
was compared to HEUREKA and DREDD. To do
this, the data-set of the ICCMA 2019 [7] was used
which contains 326 argumentation frameworks with
a variety of characteristics. The different programs
were compared in terms of processing time to find
complete sets and correct results given.

The result of THEIA is relevant as it suggests
that combining a powerful heuristic like the one of
HEUREKA with more efficient propagation tech-
niques may give a further improvement to existing
backtracking solvers.

This paper will explain how existing backtrack-
ing solvers can work to interpret Dung’s argumen-
tation frameworks and how THEIA is able to ex-
tend them. Afterwards, the performance of THEIA
is assessed compared to other solvers, and strengths
and weaknesses of THEIA are analysed. A section
about future work describes label propagation tech-
niques that were not used by THEIA but may be
implemented by future backtracking solvers.

1

2 Background

2.1 Dungs Argumentation frame-
works

The argumentation framework introduced by Dung
[6] consists of a tuple AF = 〈A,R〉. Here A is the
set of arguments and R ⊆ A × A is the set of at-
tacks. An attack relation (a, b) ∈ R can be inter-
preted as argument a attacks argument b. An ex-
ample for such an argumentation framework can be
seen in Figure 2.1.

For an argument a ∈ A let’s define a+ as the set
of arguments which are attacked by a and a− as
the set of arguments attacking a. Likewise, given a
set of arguments Args ⊆ A let’s define Args+ =
{b | ∃a ∈ Args : b ∈ a+} and Args− = {b | ∃a ∈
Args : b ∈ a−}.

An argumentation framework can be interpreted
by finding meaningful sets of arguments. A set E ⊆
A is conflict-free if there is no a, b ∈ E such that a
attacks b. A set E is admissible if E is conflict-free
and E− ⊆ E+. Further, a set E is complete if E
is admissible and there is no argument a such that
a /∈ E and a− ⊆ E+. A set E is grounded if E is
complete and there is no complete set E′ such that
E′ ⊆ E. Finally, a set E is stable if E is conflict-
free and E ∪ E+ = A. More about relations and
properties of these sets can be found in [6].

The grounded set EGR can be found by repe-
titious addition of all arguments in the set which
are not attacked by other arguments or are only at-
tacked by arguments which are themselves attacked
by arguments which are already in the set [9]. A
straight forward pseudo-code that uses this idea to
find the grounded set EGR is shown in Algorithm
1.

Figure 2.1: An argumentation framework as pic-
tured in the design and result paper of the IC-
CMA 2019 [7]. Arguments are written down as
nodes in the graph and the attack relations are
shown as arrows. Note that arguments f and g
attack themselves.

Algorithm 1 The pseudo-code to find the
grounded set EGR of an argumentation framework.

1: procedure findGroundedSet(AF)
2: input: An argumentation framework AF =
〈A,R〉 with A being the set of arguments and
R ⊆ A×A being the set of attacks.

3: output: The grounded set EGR of the ar-
gumentation framework.

4: E ←− { a | a− = ∅ }
5: E′ ←− ∅
6: while E′ =/ E: do
7: E′ ←− E
8: for all a ∈ A do
9: if a− ⊆ E+ then

10: add a to E
11: return E

2.2 Basic backtracking solvers for
complete sets

In this paper, we focus on algorithms which inter-
nally represent sets with a labeling function L that
maps arguments to labels. These label can be for
instance IN , OUT , UNDEC or BLANK [5].

L : A 7−→ {IN,OUT,UNDEC,BLANK} (2.1)

Let’s define in(L) = {x|L(x) = IN}; out(L) =
{x|L(x) = OUT}; undec(L) = {x|L(x) =
UNDEC}; blank(L) = {x|L(x) = BLANK}.

This paper is focusing on algorithms to find a
complete labeling function Lcomplete as discussed
in [2]:

Definition 2.1. For a complete labeling func-
tion Lcomplete it holds that:

• in(Lcomplete) ∪ out(Lcomplete) ∪
undec(Lcomplete) = A

• For all arguments a ∈ in(Lcomplete) it holds
that there does not exist an argument b such
that (b, a) ∈ R and b ∈ in(Lcomplete) or b ∈
undec(Lcomplete)

• For all arguments a ∈ out(Lcomplete) it holds
that there exists an argument b such that
(b, a) ∈ R and b ∈ in(Lcomplete)

• For all arguments a ∈ undec(Lcomplete) it
holds that there exists an argument b such

2

that (b, a) ∈ R and b ∈ undec(Lcomplete) and
there does not exist an argument c such that
(c, a) ∈ R and c ∈ in(Lcomplete)

The intuition behind this definition is that ar-
guments labeled IN are only attacked by argu-
ments which are attacked by arguments labeled IN .
Therefore, in(Lcomplete) is a complete set. The label
BLANK is used during the search process for ar-
guments which do not have another label yet. Note
that for a given argumentation framework AF there
may be multiple complete labeling functions.

A backtracking algorithm can use the grounded
labeling Lgrounded as a starting point. The
grounded labeling can be derived from the
grounded set EGR.

Definition 2.2. A grounded labeling Lgrounded
is a function mapping arguments to labels
such that:

Lgrounded(a) =

IN if a ∈ EGR
OUT if a ∈ E+

GR

BLANK otherwise

(2.2)

A basic backtracking algorithm to find all com-
plete labeling functions L of an argumentation
framework may start with the grounded label-
ing before starting the search. This uses the fact
that for a given argumentation framework ev-
ery complete labeling function Lcomplete has the
property that in(Lgrounded) ⊆ in(Lcomplete) and
out(Lgrounded) ⊆ out(Lcomplete). The task of the
backtracking solver is then to label all arguments
in blank(Lgrounded) either IN , OUT or UNDEC.

This can be done by repeatedly picking an ar-
gument a with L(a) = BLANK and label it IN ,
OUT or UNDEC. This step is called ”splitting the
search over an argument”. The respective new label
of the argument can then be used to find labels of
other arguments. This may cause a contradiction
if it is necessary to re-label an argument that is
already labeled IN , OUT or UNDEC. This pro-
cess is repeated until either a contradiction is found
when propagating the labels or L is complete. If
this is the case, the algorithm backtracks to the
last point in which a label was chosen and tries a
different one.

The base structure of the algorithm is similar to
a constrain satisfaction solver in which each argu-
ment is a variable with the domain {IN , OUT ,

UNDEC} and constrains are posed by the attack
relations between arguments. An overview of how
finding sets for an argumentation framework can be
rephrased as a constrain satisfaction problem can
be seen in [1].

The pseudo-code of a backtracking solver can
be seen in Algorithm 2. Many existing backtrack-
ing solvers, including THEIA, HEUREKA and
DREDD follow this pseudo-code. Differences be-
tween this class of algorithms come from the way
they choose arguments (line 8) and the propagation
techniques (line 11).

Algorithm 2 The pseudo-code of a basic back-
tracking algorithm to find complete labeling func-
tions.
1: procedure findCompleteRec(AF,L)
2: input: An argumentation framework AF =
〈A,R〉 with A being the set of arguments and
R ⊆ A×A being the set of attacks. A function
L mapping each argument in A to a label.

3: result: Prints all complete sets.
4:

5: if ∀a[L(a) ∈ {IN,OUT,UNDEC}] then
6: printSolution(L)
7: return
8: a ←− an argument from A such that L(a) /∈
{IN,OUT,UNDEC}

9: for all l ∈ {IN,OUT,UNDEC} do
10: Lnew ←− L with L(a) = l
11: if propagateLabels(AF,Lnew) = SUC-

CESSFUL then
12: findCompleteRec(AF,Lnew)

13:

14: L ←− Lgrounded
15: findCompleteRec(AF,L)

The following changes can be made to this algo-
rithm for variations of the task:

• If the task is to find all stable sets, then
the algorithm should not label the argument
UNDEC when splitting the search over an
argument. Otherwise, the procedure stays the
same.

• If the task is to check if an argument a is in at
least one complete set it can initially be labeled
IN and afterwards the algorithm runs until
one complete set is found.

3

Let’s call a labeling function L for an AF il-
legal if there does not exist a complete label-
ing function Lcomplete for this AF such that
in(L) ⊆ in(Lcomplete), out(L) ⊆ out(Lcomplete) and
undec(L) ⊆ undec(Lcomplete). Likewise, let’s call a
labeling function L legal if there exists a complete
labeling function Lcomplete for this AF such that
in(L) ⊆ in(Lcomplete), out(L) ⊆ out(Lcomplete) and
undec(L) ⊆ undec(Lcomplete).

The speed of the algorithm is largely dependent
on how often it is necessary to backtrack because
an illegal labeling function is detected. The two
key methods to reduce the number of backtrack-
ing steps are a heuristic to choose the argument
over which the search is split and the mechanism
to propagate labels.

2.3 Choosing an argument to split
the search

As shown in Algorithm 2 line 8, the solver’s ar-
chitecture requires that an argument is chosen re-
peatedly to split the search. From a computational
point of view an argument should be chosen such
that:

1. If the labeling function is legal, the program
should choose an argument a such that giving
it a label creates an illegal labeling functions
for which a contradiction is quickly found or
a legal labeling function for which many new
labels can be propagated.

2. If the labeling function is illegal, the program
should choose an argument a such that prop-
agating the new label of a quickly results in a
contradiction for each new label of a.

In order to choose an argument it is possible to
assign heuristic values to arguments and the argu-
ment with the highest heuristic is chosen to split the
search. Such a heuristic can be static or dynamic.
A static heuristic initially assigns a heuristic value
to each argument which does not change during the
search. A dynamic heuristic, on the other hand, up-
dates the heuristic of the argument, based on the
labels that were assigned so far. An example for
a dynamic heuristic for an argument a would be
H(a) = |a+|+ |{b|b ∈ a− ∧ L(b) 6= OUT}| because
the heuristic value changes if an attacker of a gets
labeled OUT .

A static heuristic only needs to be computed once
in the beginning. Contrarily, a dynamic heuristic
requires time to reevaluate the heuristic values dur-
ing the search, but may compensate this by being
able to pick better arguments, based on the current
state of L.

The paper about HEUREKA [8] provides an in-
depth analysis of a dynamic heuristic that can re-
duce backtracking steps. The authors provide a
list of criteria which were beneficial to use for the
heuristic. For each argument a ∈ A this includes:

1. The number of arguments attacking a which
are not labeled OUT (This value should have
a negative weight for the heuristic).

2. The ratio between the number of arguments
attacked by a and the number of arguments

attacking a which is calculated by |a
+|+ε
|a−|+ε with

ε ∈ R.

3. The number of outgoing and ingoing paths
for a with a path being a chain of arguments
[a1, a2, ..., an] such that (ak, ak+1) ∈ R for all
k ∈ {1, 2, ..., n− 1}.

For the version of HEUREKA submitted in the IC-
CMA 2017, the parameters and weights for this
heuristic have been fitted, based on an experimen-
tal evaluation. Compared to other solvers partici-
pating in the ICCMA 2017, HEUREKA was able
to achieve medium good results.

2.4 Propagating the labels through
the graph

The architecture of the basic solver shown in Al-
gorithm 2 also repeatedly requires propagating la-
bels through the graph. This means that labels that
are newly assigned may recursively enforce labels
of other arguments. If a point is reached in which
an argument that is already labeled IN , OUT or
UNDEC gets re-labeled, a contradiction is found
and the algorithm can backtrack. Increasing the ef-
ficiency of the program can be achieved by propa-
gating the labels such that:

1. If there is an illegal L, then propagating the
label should ideally detect a contradiction.
This prevents the algorithm from splitting the
search over an argument of an illegal L which

4

would result in an increasing number of search
branches with illegal L which need to be back-
tracked later.

2. If the labeling function is legal, then propa-
gating the label should assign new labels to
as many arguments as possible. This allows to
reach a complete L as soon as possible with-
out having to split up the search into multiple
directions as often.

To find ways to propagate labels Table 2.1 can be
used. This table lists the requirements of an argu-
ment labeled IN , OUT or UNDEC for a complete
labeling function L. The rows of the table can be
proven as follows:

1. An argument labeled IN can only be attacked
by arguments labeled OUT . This is required,
based on the definition of a complete labeling
function.

2. An argument a labeled OUT should be at-
tacked by at least one argument labeled IN .
Otherwise, there are no restrictions for the la-
bels of other arguments attacking a.

3. An argument labeled UNDEC should not
be attacked by an argument labeled IN and
should be attacked by at least one argument la-
beled UNDEC. This is enforced by the previ-
ous two rows of the table. An argument should
be labeled OUT if it is attacked by an argu-
ment labeled IN and IN if it’s only attacked
by argument labeled OUT .

Argument Can be Can not be Is attacked
label attacked by attacked by by at least one
IN {OUT} {IN,UNDEC} ∅
OUT {IN,OUT,UNDEC} ∅ {IN}

UNDEC {OUT,UNDEC} {IN} {UNDEC}

Table 2.1: Restrictions for argument labels of a
complete L.

Finding rules to propagate labels can use forward
relations, backward relations and sideward rela-
tions. If an argument a was assigned a new label a
forward relation can give an argument in a+ a new
label, a backward relation can give an argument in
a− a new label and a sideward relation can give an
argument in (a+)− a new label.

Here are examples for a forward, backward and
sideward relation which can be used to assign a new
label:

• An example using a forward relation: Argu-
ment a got labeled OUT and is attacking an
argument b that is now only attacked by ar-
guments labeled OUT . Therefore, argument b
needs to have the label IN . This uses the fact
that an argument labeled IN is only attacked
by arguments labeled OUT .

• An example using a backward relation: Ar-
gument a got labeled UNDEC. All arguments
attacking a except of argument b are labeled
OUT . Therefore, argument b needs to have
the label UNDEC. This uses the fact that an
argument labeled UNDEC is attacked by at
least one argument labeled UNDEC.

• An example using a sideward relation: Ar-
gument a got labeled OUT and is attacking
an argument b labeled OUT . After a got la-
beled OUT , all arguments attacking b are la-
beled OUT or UNDEC except argument c.
Therefore, argument c needs to have the label
IN . This uses the fact that an argument la-
beled OUT must be attacked by at least one
argument labeled IN .

The algorithm DREDD [15] is using all possible for-
ward, backward and sideward relations which can
be derived from Table 2.1. All of these propagation
rules can be seen in Table A.1 in the Appendix.
DREDD was submitted to the ICCMA 2019 but
performed badly because of cases in which the pro-
gram did not respond or gave wrong outputs.

3 THEIA implementation

The program THEIA is a backtracking algorithm
that can be used to find all complete sets. Similar to
HEUREKA or DREDD, the arguments of the ar-
gumentation framework are gradually labeled and
backtracked whenever a contradiction is found. The
basic architecture can be seen in Algorithm 2.

THEIA’s main focus is to explore new efficient
techniques to propagate labels through the argu-
mentation framework. This section will explain the
propagation techniques THEIA uses, a new way to

5

assign labels to arguments and the heuristic THEIA
uses to choose arguments.

3.1 Improved propagation tech-
niques

Let’s call the labels IN , OUT and UNDEC final
labels and any other labels temporal labels. During
the search temporal labels may still be re-labeled
to final labels.

To improve the propagation of labels through
an argumentation framework, it is possible to keep
track of arguments for which it is known that they
cannot be labeled IN or OUT . This can be done by
giving these arguments the temporal label NOTIN
or NOTOUT . Given a labeling function L an ar-
gument a should be labeled NOTIN if it is known
that there does not exist a complete labeling func-
tion Lcomplete with Lcomplete(a) = IN that can
be reached by relabeling the temporal labels of L.
Similar, given a labeling function L an argument
a should be labeled NOTOUT if it is known that
there does not exist a complete labeling function
Lcomplete with Lcomplete(a) = OUT that can be
reached by relabeling the temporal labels of L.

By giving arguments the label NOTIN and
NOTOUT , new propagation techniques can be
used to assign labels. An overview of the propa-
gation rules THEIA uses can be seen in Table A.2
in the Appendix. Each propagation rules can be
explained as follows:

1. Results from the definition of a complete la-
beling function.

2. Results from the definition of a complete la-
beling function.

3. An argument that is attacked by an argument
labeled UNDEC and otherwise by arguments
that cannot be re-labeled to IN should get la-
beled UNDEC. This is a consequence of the
definition of a complete labeling that enforces
an argument labeled UNDEC to be attacked
by at least one argument labeled UNDEC and
no arguments labeled IN .

4. As stated in the definition of a complete label-
ing function, an argument labeled OUT is at-
tacked by at least one argument labeled IN . If
all of the attackers of an argument cannot be

re-labeled to IN , this argument cannot have
the label OUT .

5. As stated in the definition of a complete label-
ing function, an argument labeled IN is only
attacked by arguments labeledOUT . If at least
one of the attackers of an argument cannot be
re-labeled to OUT , this argument cannot have
the label IN .

6. Results from the definition of a complete la-
beling function.

7. As stated in the definition of a complete label-
ing function, an argument labeled OUT is at-
tacked by at least one argument labeled IN . If
all except one of the attackers of an argument
labeled OUT cannot be re-labeled to IN , this
argument must have the label IN .

8. As stated in the definition of a complete label-
ing function, an argument labeled UNDEC
is attacked by at least one argument labeled
UNDEC. If all except one of the attack-
ers of an argument labeled UNDEC are la-
beled OUT , this argument must have the label
UNDEC.

9. As stated in the definition of a complete label-
ing function, an argument labeled IN is only
attacked by arguments labeled OUT . There-
fore, an argument labeled NOTIN cannot
only be attacked by arguments with the label
OUT . Consequently, if all but one attackers
of an argument labeled NOTIN have the la-
bel OUT , this one argument cannot have the
label OUT and should therefore be labeled
NOTOUT .

10. As stated in the definition of a complete label-
ing function, an argument attacked by an ar-
gument labeled IN must have the label OUT .
Therefore, the attackers of an argument that
cannot be re-labeled to OUT cannot have the
label IN and should be labeled NOTIN .

11. Same logic as for 8.

12. Same logic as for 9.

13. Same logic as for 7.

Using these additional propagation rules, it is pos-
sible to modify the algorithm in the following way:

6

• If there are two rules which can be applied to
label an argument NOTIN and IN , a contra-
diction is found.

• If there are two rules which can be applied to
label an argumentNOTOUT andOUT , a con-
tradiction is found.

• Initially, all self-attacking arguments are la-
beled NOTIN (This is because self attacking
arguments cannot be labeled IN as they would
otherwise be attacked by an argument labeled
IN).

• If it is possible to apply a rule to label an ar-
gument NOTIN that is already labeled OUT
or UNDEC, no changes are applied.

• If it is possible to apply a rule to label an ar-
gument NOTOUT that is already labeled IN
or UNDEC, no changes are applied.

• If two rules can be applied to label an argu-
ment NOTIN and NOTOUT then this argu-
ment will be labeled UNDEC.

• It is possible to split the search over an argu-
ment labeled NOTIN or NOTOUT . In this
case, there are only two possible ways to re-
label the argument (OUT or UNDEC if it was
labeled NOTIN and IN or UNDEC if it was
labeled NOTOUT).

3.2 A new way to split the search
over an argument

If an argument gets assigned the label IN , it is
more likely that a propagation rule can be applied
to label a new argument than if the argument was
assigned the label OUT or UNDEC. This is be-
cause the propagation rules which can be applied
because an argument was labeled IN are less re-
stricted. If an argument a got labeled IN , it is pos-
sible to label all arguments OUT that are attacking
a or are being attacked by a. On the other hand, if
an argument gets labeled OUT or UNDEC, more
specific criteria must be met to be able to apply a
propagation rule. In order to increase the efficiency
of a program, there is an alternative way to split
the search that labels more arguments IN .

Definition 3.1. An argument a is unjustified OUT
if L(a) = OUT and there does not exist an argu-
ment b such that (b, a) ∈ R and L(b) = IN .

Definition 3.2. An argument a is a potential de-
feater of an argument b if (a, b) ∈ R and L(a) ∈
{BLANK,NOTOUT}.

For a complete labeling, at least one attacker of an
argument labeled OUT should be labeled IN . It is
possible to take the n potential defeater of an argu-
ment that is unjustified OUT and split the search
by creating a new labeling function for each possi-
ble way such that at least one of the potential de-
featers is labeled IN . Note that there are

∑n
k=1

(
n
k

)
different variations in which at least one of the n
potential defeaters is labeled IN . Therefore, it is
crucial to choose an argument that is unjustified
OUT and has a small number of potential defeaters.

THEIA can keep track of arguments which are
unjustified OUT and splits the search with this new
method if it finds an unjustified OUT argument
that only has two potential defeaters. The pseudo-
code for this new method can be seen in Algorithm
3.

An example of an argumentation framework for
which this new algorithm can help can be seen in
Figure 3.1. For this framework there are three com-
plete sets. One with argument a and c being labeled
IN , one with all b-arguments labeled IN and one
with all arguments being labeled UNDEC. Let’s
assume a basic backtracking solver as shown in Al-
gorithm 2 is run using the propagating techniques
in Table A.1. Let’s further assume that the order in
which the arguments are chosen to split the search
favours the b-arguments. In this case the time com-
plexity would be O(2n) with n being the number
of b-arguments. This is because if an b-argument
gets labeled OUT or UNDEC, it is not possible
to propagate any labels. Therefore, the next b ar-
gument is considered to split the search and only
after every of the b-arguments got assigned a label,
the solutions are found. By doing this, an exponen-
tially growing search tree is created.

This can be avoided by splitting the search over
the potential defeater of an argument labeled un-
justified OUT. This is because once one of the b-
arguments gets labeled OUT the argument a and c
are potential defeaters of this argument. Therefore,
the search can be continued by labeling argument

7

Algorithm 3 THEIAS new algorithm to split the
search.
1: procedure findCompleteRec(AF,L)
2: input: An argumentation framework AF =
〈A,R〉 with A being the set of arguments and
R ⊆ A×A being the set of attacks. A function
L mapping each argument in A to a label.

3: result: Prints all complete sets.
4:

5: if ∀a[L(a) ∈ {IN,OUT,UNDEC}] then
6: printSolution(L)
7: return
8: if there exists an argument a that is
UNJUSTIFIED OUT and it only has two
potential defeating arguments b and c. then

9: Lnew ←− L with L(b) = IN and L(c) =
NOTIN

10: if propageLabels(AF,Lnew) = SUC-
CESSFUL then

11: findCompleteRec(AF,Lnew)

12: Lnew ←− L with L(b) = NOTIN and
L(c) = IN

13: if propageLabels(AF,Lnew) = SUC-
CESSFUL then

14: findCompleteRec(AF,Lnew)

15: Lnew ←− L with L(b) = IN and L(c) =
IN

16: if propageLabels(AF,Lnew) = SUC-
CESSFUL then

17: findCompleteRec(AF,Lnew)

18: else
19: a ←− an argument from A labeled

NOTIN , NOTOUT or BLANK with a higher
heuristic than any other argument

20: for all l ∈ {IN,OUT,UNDEC} do
21: L(a) = l
22: if propagateLabels(AF,L) = SUC-

CESSFUL then
23: findCompleteRec(AF,L)

24: L ←− Lgrounded
25: findCompleteRec(AF,L)

a and/or b IN which avoids an exponential growth
of the search tree.

While testing this new technique, it was discov-
ered that this extension can give great improve-
ments in computational time when searching for all
complete sets. However, for some problems this ex-

Figure 3.1: An argumentation framework with
A = {a, bk, c} and R = {〈a, bk〉, 〈bk, a〉 , 〈c, bk〉, 〈bk, c〉}
for all k ∈ {1, 2, ..., n} with n being a positive num-
ber.

tension did not give an improvement but caused the
program to take more time. This can be explained
with the fact that keeping track of all arguments
that are labeled OUT to see if they are unjustified
OUT takes additional time.

Empirically, the extension only gives an improve-
ment in computational time if the average amount
of attack relations of arguments is low. This makes
sense because if an argument is labeled OUT and
the amount of attacking arguments is big, it is more
unlikely that it has only two potential defeaters.

A simple solution for this is to initially check
the average amount of attack relations of the argu-
ments in the argumentation frame. This gives the
option to only use the extension if this average is
smaller than some certain threshold µ. To investi-
gate this, three different versions of THEIA were
created:

• THEIA BASIC does not keep track of argu-
ments which are unjustified OUT and does not
split the search over the potential defeater of
an argument labeled unjustified OUT.

• THEIA EXTENDED always keeps track of ar-
guments which are unjustified OUT and splits
the search over the potential defeater of an
argument labeled unjustified OUT whenever
there are two potential defeater.

• THEIA HYBRID initially calculates the aver-

8

age number of attack relations of the argu-
ments in the argumentation framework and
behaves like THEIA BASIC if this average is
above 50 and like THEIA EXTENDED if this
average is below 50.

For THEIA HYBRID, µ = 50 was chosen based
on experiments with different values. For these ex-
periments, the data-set used are the argumentation
frameworks of the ICCMA 2019.

3.3 Heuristic used for THEIA

The dynamic heuristic used to repeatedly choose
arguments to split the search is similar but easier
to compute than the heuristic used by HEUREKA.
The heuristic value of an argument a is H(a) =
n+10∗isNotin+8∗isNotOut. Here n is the number
of arguments a is attacking. The variable isNotin
is 1 if L(a) = NOTIN and 0 otherwise. Similarly,
the variable isNotout is 1 if L(a) = NOTOUT
and 0 otherwise. The values 8 and 10 were chosen
because they let the program perform best in a row
of experiments conducted with big argumentation
frameworks of the ICCMA 2019.

If there are multiple arguments that are unjusti-
fied OUT and with two potential defeaters, then a
random one is chosen to split the search.

4 Results

In order to estimate and compare the perfor-
mance of THEIA, the data-set of the ICCMA 2019
was used. It contains 326 argumentation frame-
works with a variety of different characteristics
like the amount of arguments and attacks, size of
grounded set, number of complete sets, etc. More
information about the argumentation frameworks
and how they were generated can be found in
[7]. The full data-set can be downloaded under
http://argumentationcompetition.org/2019/files.html.

The solver µ-toksida [10] was used to generate
the ground truth of the tasks because it did not give
any wrong outputs for this data-set, as reported by
the ICCMA. The procedure to check correctness of
µ-toksida by the ICCMA is elaborated in [7].

The different solvers were tested on this data-set
in which they had to find all complete sets. For
each argumentation framework they had 60 sec-
onds of CPU time for this task. If they did not

find all complete sets by then, they were stopped.
#SUCCESS, #TIMEOUT, #ERR, #TIME corre-
sponds to: number of correct answers, number of
timeouts, number of crashes and the total time for
all problems in seconds, respectively. Each timeout
and crash added 60 seconds to #TIME.

First, different versions of THEIA were com-
pared. The results of the different versions of
THEIA can be seen in Table 4.1.

Table 4.1: Performance of different versions of
THEIA for the 336 argumentation frameworks
which were used in the ICCMA 2019.

#SUCCESS #TIMEOUT #ERR #TIME
THEIA BASIC 286 40 0 2518

THEIA EXTENDED 285 41 0 2560
THEIA HYBRID 290 36 0 2310

The results of THEIA HYBRID, DREDD and
HEUREKA can be seen in Table 4.2. Overall
THEIA HYBRID needed less CPU time to find all
complete sets of the 326 argumentation frameworks
than the other programs.

Table 4.2: Performance in finding all complete
sets of THEIA, DREDD and HEUREKA for the
336 argumentation frameworks which were used
in the ICCMA 2019.

#SUCCESS #TIMEOUT #ERR #TIME
HEUREKA 280 46 0 2891

DREDD 152 155 19 10807
THEIA HYBRID 290 36 0 2310

Let’s call the processing time for an argumenta-
tion framework of program X meaningfully faster
than program Y if Y needed more than 0.5 seconds
of CPU time and program X was more than twice as
fast as Y. The reason that only results that needed
more than 0.5 seconds are considered is that it is
interesting to learn about how the processing time
of the programs scales for large problems.

In this sense, HEUREKA was meaningfully
faster than THEIA for 28 of the argumentation
frameworks and THEIA HYBRID was 26 times
meaningfully faster than HEUREKA. DREDD, on
the other hand, was never meaningfully faster than
THEIA HYBRID for any of the 326 argumentation
frameworks but THEIA HYBRID was 168 times
meaningfully faster than DREDD.

Experiments were conducted using a wsl-
terminal run on an AMD Ryzen 7 3700U 2.3GHz
CPU, with 13.9 GB RAM.

9

http://argumentationcompetition.org/2019/files.html

5 Discussion

The results provided by different versions of
THEIA show that there can be an improvement by
splitting the search over an argument that is unjus-
tified OUT. In cases in which THEIA EXTENDED
needed more time than THEIA BAIC the num-
ber of times the programs had to backtrack
was about the same. On the other hand, in
cases in which THEIA EXTENDED needed less
time than THEIA BAIC, the number of times
THEIA EXTENDED backtracked was much lower.
This shows that THEIA EXTENDED needs time
to track arguments that are unjustified OUT, but
could sometimes reduce the size of the search
tree by doing so. THEIA EXTENDED checks
each time when an argument gets labeled OUT ,
UNDEC or NOTIN if this argument attacks
another argument that is unjustified OUT and
now only has two potential defeaters. To do this,
THEIA EXTENDED needs time. The main prob-
lem is that if an argument is unjustified OUT but
has many attacking arguments, it is unlikely that
it only has two potential defeaters. Therefore, it
makes sense to not keep track of arguments which
are unjustified OUT if the average number of attack
relations of the arguments in an argumentation
framework is high. By doing this, THEIA HYBRID
is able to perform better than the other versions of
THEIA.

The lower processing time THEIA needed com-
pared to HEUREKA and DREDD shows that keep-
ing track of arguments which cannot be IN or
OUT at some point during the search can increase
the performance of a backtracking solver. However,
HEUREKA was able to be meaningfully faster than
THEIA for some argumentation frameworks. This
can be explained by the heuristic HEUREKA is us-
ing to choose an argument. Apparently, there are
some argumentation frameworks, for which it is im-
portant to choose some key arguments early on to
reduce the size of the search tree which HEUREKA
is sometimes able to do better than THEIA. An ex-
ample for such an argumentation framework can be
seen in Figure 3.1. For this framework it is impor-
tant to choose arguments a and c first to split the
search because after arguments a and c are labeled
the labels for all b-arguments can be found directly.
Choosing the b arguments first to split the search
can result in an exponentially growing search tree,

as explained in Section 3.2.
Even though THEIA HYBRID was in general

faster than HEUREKA, it was the case that
HEUREKA was 28 times meaningfully faster than
THEIA HYBRID and THEIA HYBRID was only
26 times meaningfully faster than HEUREKA.
This is because if HEUREKA was faster, the
time difference between the solvers was usually
not as big, compared to the time difference if
THEIA HYBRID was faster. This indicates that
the time THEIA HYBRID needs scales better with
large problems.

DREDD seemed not to be able to seriously com-
pete with HEUREKA or THEIA. This is probably
not only due to errors in its code causing crashes
or wrong outputs, but also due to its worse heuris-
tic compared to HEUREKA and weaker label-
propagation techniques compared to THEIA.

6 Future work

The propagation techniques THEIA uses which can
be seen in Table A.2 are all possible forward, back-
ward and sideward relations using the labels IN ,
OUT , UNDEC, NOTIN and NOTOUT . How-
ever, there are more propagation techniques possi-
ble, using rules that can only be applied in a setup
with more involving arguments. For example, tri-
angle relations within an argumentation framework
often force labels on arguments. A triangle relation
is a set of three arguments a, b and c such that the
attack relations between a, b and c are: a attacks
b, b attacks c and c attacks a. How this can enforce
labels on arguments is illustrated in Figure A.1 in
the Appendix.

One more way to increase the ability to propa-
gate labels through a graph may be to introduce
a new label NOTUNDEC that can be used for
an argument that is known to be either IN or
OUT during some state in the search similar to
the NOTIN or NOTOUT label. An example of
a situation in which an argument may be labeled
NOTUNDEC is if there are two potential defeaters
a and b of an argument c that is unjustified OUT
and a− = {b}. In this case, argument b may be
labeled NOTUNDEC. This is because if b gets la-
beled UNDEC, then a must be labeled UNDEC
as well because all of its attackers would have the la-
bel UNDEC. However, this would not be possible

10

because at least one of the potential defeaters of c
needs to have the label IN . Future work may inves-
tigate how the NOTUNDEC label could be used
to create new propagation rules which may give an
improvement over existing backtracking solvers.

There is another propagation technique that
promises to improve existing backtracking solver.
Let’s assume we have arguments a and b and a− =
b−. In this case both arguments must have the same
label in any complete labeling. This is because the
label of an argument is fully dictated by the la-
bels of the arguments attacking it. For example,
all b-arguments in the argumentation frame shown
in Figure 3.1 must have the same label. Using this
relation alone is not necessarily helpful because it
is unlikely that two arguments share the same at-
tacking arguments. However, in some cases it is not
necessary that all of the attacking arguments are
the same.

Let’s assume for example, argument a gets la-
beled OUT . In this case, all arguments b with {c|c ∈
a− ∧ L(c) /∈ {OUT,UNDEC,NOTIN}} ⊆ b−

should be labeled OUT as well. This is because,
based on the definition of a complete labeling, if
an argument a is labeled OUT , at least one argu-
ment in a− must be labeled IN . Therefore, the set
{c|c ∈ a−

∧
L(c) /∈ {OUT,UNDEC,NOTIN}}

must contain at least one argument that gets la-
beled IN to reach a complete labeling.

In general, these propagation techniques can be
helpful because labeling based backtracking solvers
have the tendency to create an exponentially grow-
ing search tree for big argumentation frameworks.
Therefore, label-propagation techniques, even if
they have a time complexity that is a polynomial
of n with n being the number of arguments, can
make the algorithm more efficient if they reduce
the exponential growth factor.

7 Conclusion

This paper discussed two new techniques for back-
tracking solvers in abstract argumentation. The
main technique is to use advanced propagation
techniques to be able to detect contradictions in
the labeling function earlier. The second is a new
way of generating new branches in the search tree
by looking at the potential defeaters of an argument
labeled unjustified OUT.

The advanced propagation techniques proved to
be very useful and TEHEIA HYBRID was able to
outperform DREDD and HEUREKA in the task of
finding all complete sets.

Secondly, the new way of splitting the search
over an argument labeled unjustified OUT gave an
improvement for argumentation frames for which
the probability of an argument attacking some
other argument is low. This is interesting because
other solvers often perform better on argumenta-
tion frameworks with a high degree of attack re-
lations among arguments (see for example [14]).
Therefore, the new techniques to generate new
search branches may be useful as a tool for specific
argumentation frameworks.

Currently, THEIA can only find all complete
sets, but it should be possible to adapt it to find
only stable sets or to check if an argument is scep-
tically or credulously accepted in a similarly as ex-
isting backtracking solvers, as described in section
2.2.

Interestingly, even though the solver THEIA gave
better overall results than the solver HEUREKA,
it was still the case that HEUREKA outper-
formed THEIA for some argumentation frame-
works. HEUREKA seemed to be able to do this by
compensating its more limited propagation tech-
niques with its heuristic to dynamically re-order
arguments to reduce the number of backtracking
steps. For future work, it would be interesting
to see if it is possible to combine the heuristic
of HEUREKA and the propagation techniques of
THEIA to create an efficient solver, benefiting from
both sides.

The C code of THEIA is available under
https://github.com/LukasKinder/THEIA.

References

[1] L. Amgoud and C. Devred. Argumentation
frameworks as constraint satisfaction prob-
lems. In International Conference on Scal-
able Uncertainty Management, pages 110–122.
Springer, Berlin, 2011.

[2] P. Baroni, M. Caminada, and M. Giacomin.
An introduction to argumentation semantics.
Knowledge Engineering Review, 26(4):365–
410, 2011.

11

https://github.com/LukasKinder/THEIA

[3] P. Baroni, F. Toni, and B. Verheij. On the
acceptability of arguments and its fundamen-
tal role in nonmonotonic reasoning, logic pro-
gramming and n-person games: 25 years later.
Argument Comput., 11(1-2):1–14, 2020.

[4] T. J. Bench-Capon and P. E. Dunne. Argu-
mentation in artificial intelligence. Artificial
intelligence, 171(10–15):619–641, 2007.

[5] M. W. Caminada and D. M. Gabbay. A log-
ical account of formal argumentation. Studia
Logica, 93(2):109–145, 2009.

[6] P. M. Dung. On the acceptability of arguments
and its fundamental role in nonmonotonic
reasoning, logic programming and n-person
games. Artificial intelligence, 77(2):321–357,
1995.

[7] S. A. Gaggl, T. Linsbichler, M. Maratea, and
S. Woltran. Design and results of the sec-
ond international competition on computa-
tional models of argumentation. Artificial In-
telligence, 279, 2020.

[8] N. Geilen and M. Thimm. Heureka: a gen-
eral heuristic backtracking solver for abstract
argumentation. In Proceedings of the 2017 In-
ternational Workshop on Theory and Applica-
tions of Formal Argument (TAFA’17), pages
143–149, 2017.

[9] S. Modgil and M. Caminada. Proof theo-
ries and algorithms for abstract argumenta-
tion frameworks. In Rahwan Y, Simar G (eds.)
Argumentation in artificial intelligence, pages
105–129. Springer, Heidelberg, 2009.

[10] A. Niskanen and M. Järvisalo. µ-toksia: An
efficient abstract argumentation reasoner. In
Calvanese D, Erdem E, Thielscher M (eds.)
Proceedings of the International Conference on
Principles of Knowledge Representation and
Reasoning, pages 800–804. KR 2020, Rhodes,
Greece, 2020.

[11] S. Nofal, K. Atkinson, and P. E. Dunne. Algo-
rithms for argumentation semantics: labeling
attacks as a generalization of labeling argu-
ments. Journal of Artificial Intelligence Re-
search, 49:635–668, 2014.

[12] S. Nofal, K. Atkinson, and P. E. Dunne. Algo-
rithms for decision problems in argument sys-
tems under preferred semantics. Artificial In-
telligence, 207:23–51, 2014.

[13] S. Nofal, K. Atkinson, and P. E. Dunne.
Looking-ahead in backtracking algorithms for
abstract argumentation. International Journal
of Approximate Reasoning, 78:265–282, 2016.

[14] O. Rodrigues. A forward propagation algo-
rithm for the computation of the semantics of
argumentation frameworks. In Black E, Modgil
S, Oren N (eds.) International Workshop on
Theorie and Applications of Formal Argumen-
tation, pages 120–136. Springer, Cham, 2017.

[15] M. Thimm. Dredd-a heuristics-guided back-
tracking solver with information propaga-
tion for abstract argumentation. The
Third International Competition on Com-
putational Models of Argumentation (IC-
CMA’19), page url: https://www.iccma2019.
dmi.unipg.it/submissions.html, 2019.

[16] D. Walton and D. M. Godden. The im-
pact of argumentation on artificial intelli-
gence. Considering Pragma-Dialectics, pages
287–299, 2006.

12

A Appendix

Relation
Argument a
got labeled:

prerequisite New resulting label

Forward
relations

L(a) = IN (a, b) ∈ R L(b) = OUT
L(a) = OUT (a, b) ∈ R ∧ ∀c[(c, b) ∈ R −→ L(c) = OUT] L(b) = IN
L(a) = OUT or
L(a) = UNDEC

(a, b) ∈ R ∧ ∀c[(c, b) ∈ R −→ (L(c) = OUT ∨
L(c) = UNDEC)] ∧ ∃d[(d, b) ∈ R ∧ L(d) = UNDEC]

L(b) = UNDEC

Backward
relations

L(a) = IN (b, a) ∈ R L(b) = OUT

L(a) = OUT
(b, a) ∈ R ∧ ∀c[(c, a) ∈ R −→ (c = b ∨ L(c) = OUT∨
L(c) = UNDEC)]

L(b) = IN

L(a) = UNDEC (b, a) ∈ R ∧ ∀c[(c, a) ∈ R −→ (c = b ∨ L(c) = OUT)] L(b) = UNDEC

Sideward
relations

L(a) = OUT
(a, b) ∈ R ∧ L(b) = UNDEC ∧ ∃c[(c, b) ∈ R ∧
∀d[(d, b) ∈ R −→ (L(d) = OUT ∨ d = c)]]

L(c) = UNDEC

L(a) = OUT or
L(a) = UNDEC

(a, b) ∈ R ∧ L(b) = OUT ∧ ∃c[(c, b) ∈ R ∧ ∀d[(d, b) ∈ R
−→ (L(d) = OUT ∨ L(d) = UNDEC ∨ d = c)]]

L(c) = IN

Table A.1: All propagation rules which can be derived from Table 2.1 and are used by DREDD.

13

Relation
Argument a
got labeled:

prerequisite New resulting label

Forward
relations

1.) L(a) = IN (a, b) ∈ R L(b) = OUT
2.)L(a) = OUT (a, b) ∈ R ∧ ∀c[(c, b) ∈ R −→ L(c) = OUT] L(b) = IN

3.))
L(a) = OUT or
L(a) = UNDEC or
L(a) = NOTIN

(a, b) ∈ R ∧ ∀c[(c, b) ∈ R −→ L(c) ∈ {OUT,UNDEC, IN}]
∧∃d[(d, b) ∈ R ∧ L(d) = UNDEC]

L(b) = UNDEC

4.))
L(a) = OUT or
L(a) = NOTIN

(a, b) ∈ R ∧ ∀c[(c, b) ∈ R −→ L(c) ∈ {NOTIN,OUT}] L(b) = NOTOUT

5.))
L(a) = NOTOUT or
L(a) = UNDEC

(a, b) ∈ R L(b) = NOTIN

Backward
relations

6.) L(a) = IN (b, a) ∈ R L(b) = OUT

7.) L(a) = OUT
(b, a) ∈ R ∧ ∀c[(c, a) ∈ R −→ (c = b
∨L(c) ∈ {OUT,UNDEC,NOTIN})] L(b) = IN

8.) L(a) = UNDEC (b, a) ∈ R ∧ ∀c[(c, a) ∈ R −→ (c = b ∨ L(c) = OUT)] L(b) = UNDEC
9.) L(a) = NOTIN (b, a) ∈ R ∧ ∀c[(c, a) ∈ R −→ (c = b ∨ L(c) = OUT)] L(b) = NOTOUT

10.))
L(a) = NOTOUT or
L(a) = UNDEC

(b, a) ∈ R L(b) = NOTIN

Sideward
relations

11.)L(a) = OUT
(a, b) ∈ R ∧ L(b) = UNDEC ∧ (c, b) ∈ R ∧ ∀d[(d, b) ∈ R
−→ (L(d) = OUT ∨ d = c)]

L(c) = UNDEC

12.)L(a) = OUT
(a, b) ∈ R ∧ L(b) = NOTIN ∧ (c, b) ∈ R ∧ ∀d[(d, b) ∈ R
−→ (L(d) = OUT ∨ d = c)]

L(c) = NOTOUT

13.))
L(a) = OUT or
L(a) = UNDEC or
L(a) = NOTIN

(a, b) ∈ R ∧ L(b) = OUT ∧ (c, b) ∈ R ∧ ∀d[(d, b) ∈ R
−→ (d = c ∨ L(a) ∈ {OUT,UNDEC,NOTIN})] L(c) = IN

Table A.2: A table summarising all propagation rules THEIA is using. The rules in blue rows are
also used by DREDD, the rules in purple are used by DREDD without the NOTIN and NOTOUT
label and the red rules are only used by THEIA.

14

(a) A triangle relation. There may be attack relations
from a, b and c to some other argument but no exter-
nal argument is attacking a, b or c.

(b) A triangle relation. There may be attack relations
from a, b and c to some other argument but no exter-
nal argument is attacking a or b.

(c) A triangle relation. There may be attack relations from a, b and c to
some other argument but no external argument is attacking a.

Figure A.1: Three triangle relations: In (a) none of the arguments can have the label IN or OUT .
In (b) c can not have the label IN , a can not have the label OUT and b can not have the label IN .
And in (c) b can not have the label IN . This is a consequence of propagation rules 1) and 2) in
Table A.2. For example, if argument b gets labeled IN , then argument c must be labeled OUT and
argument a would get labeled IN because it is only attacked by c. This would mean that argument
b is attacked by an argument labeled IN which is not possible because it has the label IN .

15

	Introduction
	Background
	Dungs Argumentation frameworks
	Basic backtracking solvers for complete sets
	Choosing an argument to split the search
	Propagating the labels through the graph

	THEIA implementation
	Improved propagation techniques
	A new way to split the search over an argument
	Heuristic used for THEIA

	Results
	Discussion
	Future work
	Conclusion
	Appendix

