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Abstract: The π-calculus is a theoretical model of interacting processes, useful to express
and reason about message-passing concurrency. It includes formal ways of expressing
programs and formal rules for executing their behavior. Executable specifications of
process calculi bridge the gap between theory and practice, while their implementations
are helpful as tools for reasoning about the trustworthiness of software. By creating
an executable specification for π-calculus with reduction semantics, we discover that
its design and implementation are influenced by the π-calculus syntax and axioms of
structural congruence.

1 Introduction

In the field of fundamental computing, there is interest in the formal modeling and reasoning of
concurrent systems. Much research on this topic has been conducted by Milner, who introduced
the Calculus of Communicating Systems (CCS) [3]. He then worked with Parrow and Walker to
extend the CCS by allowing processes to communicate the names of communication channels
themselves, which resulted in the π-calculus [4]. There are many variants of the π-calculus,
which can differ in their operational semantics. The operational semantics describe transitions in
the calculus as individual computational steps and can be classified as either semantics based
labeled transition system (LTS) or reduction semantics. A LTS describes the behavior of an open
system, where the labels describe the interaction of the system with its environment. In contrast,
reduction semantics describe the behavior of a closed system, where no external interactions are
possible, thus removing the need for labels. Both of these approaches have their applications,
though the key benefit of reduction semantics is the simplified notation.

Shifting from paper-based specifications of π-calculus processes to specifications executable
by machines is an important step to increase our confidence in formal specifications and to
streamline reasoning, thus bridging the gap between theory and practice. The many variations of
the π-calculus result in numerous distinct executable specification implementations. The first
specification of the π-calculus in reduction style was introduced by Viry [13]. It made use of
De Bruijn indexes and explicit substitutions in the language ELAN. Stehr suggested improving
this specification with the use of his Generic Calculus of Explicit Substitutions (CINNI) [9],
which combines the usage of standard variables and De Bruijn indices. Stehr used the rewrite
engine Maude to make this calculus executable. Thati et al. observed all the preceding work,
and created an executable specification of asynchronous π-calculus with a LTS in Maude using
rewriting logic [10]. This was soon followed by the implementation of typed mobile ambients [7],
and more recently, with an implementation of the π-calculus variant privacy calculus [6], both
of which also utilized CINNI in Maude. A more general overview of rewriting logic is given by
Meseguer [2].
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We are particularly interested in π-calculus with reduction semantics because of its simple
representation, and would like to use it to practically analyze and reason about message-based
concurrency. Therefore, we have created an executable specification for π-calculus with reduction
semantics in Maude. This variant of π-calculus has a different syntax than the original π-calculus
for which Viry created their executable specification [13]. Besides a difference in the syntax, this
executable specification features an alternative substitution calculus, based on CINNI [9]. The
Maude implementation of asynchronous π-calculus and similar work have been used as examples
of operational semantics implementations [10, 11]. Because of the development of our executable
specification, we will be able to answer the question: What are the design choices when creating
and implementing an executable specification of π-calculus with reduction semantics?

Before the executable specification can be presented, the variant of the π-calculus and its
properties have to be considered. Section 2 will describe a π-calculus variant with reduction
semantics derived from Sangiorgi’s [8]. Afterwards, Section 3 will present the corresponding
executable specification formal notation, its analysis and comments on the implementation in
Maude. Readers only interested in the practical application of the implemented executable
specification can skip to Section 4, after confirming the presented π-calculus variant suits their
needs. Finally, Section 5 will conclude by answering the research question.

2 The π-calculus variant

2.1 Syntax and substitution

In their introduction to the π-calculus, Parrow stated that process terms should satisfy the
following three conditions when working with reduction semantics [5]:

1. All sums are guarded sums, i.e., of kind α1.P1 + · · ·+ αn.Pn (where α are prefixes).
2. There are no unguarded match-operators.
3. There are no τ -prefixes.

The syntax in Table 2.1 neatly satisfies the first condition by only allowing summations as
the operands of sums. For the sake of simplifying the coming executable specification, the
non-essential match operator has been omitted, automatically satisfying the second condition.
Without the match operator there is a loss of expressiveness, though a similar effect can be
achieved by exploiting the parallel composition operator [5]. Another difference with respect to
the original syntax definition by Sangiorgi is the replacement of replication by the input-guarded
replication. This change has implications which will be elaborated on later. This syntax definition
deviates from the third condition, by allowing the appearance of τ -prefixes. This is compensated
for by the addition of the R-TAU reduction rule, which does not appear in Parrow’s explanation
of reduction semantics.

GUARD α ::= τ | ab | a(x)
TERM P ::= M | P | P ′ | νx P | !a(x).P
SUMTERM M ::= 0 | α.P | M +M ′

Table 2.1: Syntax definition

Here is a compact summary describing the syntax. 0 is the process that cannot perform any
actions. The output-prefixed process ax.P sends the name x via a and continues as P . The
input-prefixed process a(x).P receives a name along a and continues as P{b/x}, meaning all free
occurrences of x in P are substituted by the received name b. The silent-prefixed process τ.P can
evolve to P without any external interaction. Also known as the choice operator, the sum P +P ′
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represents a process that can enact either P or P ′. The composition P | P ′ represents P and P ′

acting in parallel; they can proceed independently and can also interact with each other. The
restriction νx P binds x in scope P , meaning it cannot be used for communication between P and
other processes. Finally, a process with input-guarded replication !a(x).P provides a copy of P
for every received name along a. To avoid ambiguity when writing processes as linear expressions,
the prefixing, restriction and input-guarded replication operators enjoy a higher precedence than
choice and parallel composition.

The restriction νx P and the input-prefixed process a(x).P , and by extension the input-
guarded replication, are able to bind the name x in the scope P . An occurrence of a name in a
process is free if it is not bound in its scope. As seen while describing the input prefix, there is
an implicitly defined substitution operator P{b/x}, with the important aspect that this operator
replaces all free occurrences of x with b. To avoid unintended capture of names by binders, it
is possible to change bound names in a process by α-conversion (an example will be given in
Section 2.3). Substitutions Pσ are applied according to the substitution applications of Table 2.2,
where = denotes definitional equality.

0σ = 0 (ab.P )σ = aσbσ.Pσ
(τ.P )σ = τ.Pσ (a(x).P )σ = aσ(x).Pσ

(P | P ′)σ = Pσ | P ′σ (!a(x).P )σ = !aσ(x).Pσ
(P + P ′)σ = Pσ + P ′σ (νx P )σ = νx Pσ

Table 2.2: Substitution application

2.2 Structural congruence

Before being able to discuss the reduction rules, we have to take a look at the relation of structural
congruence. This relation, denoted by ≡, identifies processes which intuitively represent the
same thing because of their structure. This property is formalized by the axioms of structural
congruence in Table 2.3. Readers familiar with the work of Sangiorgi, might be missing the axioms
of structural congruence involving the match and replication operator. These two axioms have
been removed for our variant because of the omission of the match operator and the replacement
of replication by input-guarded replication. The first six axioms show that the sum and parallel
composition operators are associative and communicative with identity element 0 while the
remaining three axioms represent the laws of scope extension.

SC-SUM-ASSOC M1 + (M2 +M3) ≡ (M1 +M2) +M3

SC-SUM-COMM M1 +M2 ≡ M2 +M1

SC-SUM-INACT M + 0 ≡ M

SC-COMP-ASSOC P1 | (P2 | P3) ≡ (P1 | P2) | P3

SC-COMP-COMM P1 | P2 ≡ P2 | P1

SC-COMP-INACT P | 0 ≡ P

SC-RES νx νy P ≡ νy νx P
SC-RES-INACT νx 0 ≡ 0
SC-RES-COMP νx (P1 | P2) ≡ P1 | νx P2 if x /∈ fn(P1)

Table 2.3: Structural congruence
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The SC-RES-COMP axiom shows that the scope of the restriction νx P2 can be extended to
P1 if x is not a free name in P1. Conversely, in the case where x is a free name in P1, the scope
can still be extended by applying α-conversion such that x in P2 is changed to a name which is
not free in P1. The axioms of structural congruence, together rules of equational reasoning of
Table 2.4 define the relation of structural congruence. The rules of equational reasoning show
the reflexive, symmetric, transitive and context properties of the relation. The CONG equational
reasoning rule uses the definition of contexts by Sangiorgi [8].

REFL P1 ≡ P1

SYMM P1 ≡ P2 implies P2 ≡ P1

TRANS P1 ≡ P2 and P2 ≡ P3 implies P1 ≡ P3

CONG P1 ≡ P2 implies C[P1] ≡ C[P2]

Table 2.4: Equational reasoning

2.3 Operational semantics

Now that the syntax and structural congruence of our π-calculus variant have been introduced,
we can move on to analyze its reduction relation, −→, on processes. Intuitively, the statement
P −→ P ′ expresses that process P reduces to process P ′ by means of an action within P .
Considering the process P which has two components, with one of these components having the
capability to send along a while the other can receive along a. The inference rule of communication
reduction (R-COM) shows that this P can have a reduction because of the interaction between its
components. Since replication is not represented as an axiom of structural congruence, a second
variant of the reduction communication rule is introduced for the input-guarded replication.
In this rule of input-guarded replication reduction (R-REP), the receiving component !a(x).P
is split into the two components P{b/x} (where b is the received name) and !a(x).P after reduction.

R-COM
(ab.P1 +M1) | (a(x).P2 +M2) −→ P1 | P2{b/x}

R-REP
(ab.P1 +M1) | (!a(x).P2 +M2) −→ P1 | P2{b/x} | !a(x).P2

R-TAU
τ.P +M −→ P

R-PAR
P1 −→ P ′

1

P1 | P2 −→ P ′
1 | P2

R-RES
P −→ P ′

νx P −→ νx P ′

R-STRUCT
P1 ≡ P2, P2 −→ P ′

2, P
′
1 ≡ P ′

2

P1 −→ P ′
1

Table 2.5: Reduction Rules

As promised in Section 2.1 we also introduce another rule R-TAU as counterpart to the
communication rules to manage τ -prefixes that represent an internal action within a process.
Additionally, the R-PAR and R-RES rules allow reductions under parallel composition and restriction.
Without these two rules, a process P1 would not be able to reduce to P ′

1 if composed in parallel
with another process or if it lives under a restriction.
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Finally, the structural congruence reduction rule is required to allow applications of the axioms
of structural congruence when working with reductions. One might consider the process term
τ.P and its intuitive reduction to P , and notice how this reduction is depended on an application
of the structural congruence axiom SC-SUM-INACT. Because the R-STRUCT rule freely allows these
applications, we don’t have to define new rules that could be created by the axioms of structural
congruence.

3 The executable specification

3.1 Extending CINNIπ

When working on the π-calculus with pen and paper, α-conversion is an intuitive a convenient way
of avoiding capture when name clashes occur. Unfortunately, this exact process is quite difficult
for a machine to replicate. The idea behind CINNI is to solve this problem by adding indices to
the representation of names and explicitly defining the substitution operator, hence why CINNI
is called an explicit substitution calculus. There are other explicit substitution calculi based on
De Bruijn indices that replace variables with indices. The benefit of CINNI over these other
explicit substitution calculi is the smaller difference between our π-calculus and the executable
specification. The idea is to eliminate the need for α-conversion by keeping the bound names
inside the binders as they are, but to replace their use by the name followed by an index, which is
a count of the number of binders with the same name it jumps before it reaches the place of use.
In other words, occurrences of the names in the π-calculus: a, b . . . are replaced by combinations
of a name and an index: a{i}, b{j} . . . , while the binders remain unchanged.

The CINNI substitution calculus contains the two kinds of basic substitutions [a := x]
(simple) and ↑ a (shift). In addition, substitutions can be lifted using ⇑ a(σ) (lift), where σ ranges
over all three kinds of CINNI substitutions. To differentiate the explicit CINNI substitutions from
the implicit π-calculus substitutions, we write them before instead of after the terms. All future
mentioned substitutions can be assumed to be explicit CINNI substitutions. In Table 3.1, the
equations of simple substitution on the left show that the name a is substituted by x whenever
the name a is accompanied by index 0 while decreasing all other indices with a higher value.
Next, the equations on the top right of the table show that the shift operation increments the
indices corresponding to the specified name. Finally, the lift operation is used to adjust basic
substitutions such that they skip one index (we will see a use for this shortly). The operator
equations also show that all the substitutions involving a have no effect on all other names b,
where a 6= b.

↑ a a{n} =−−→ a{n+ 1}
[a := x] a{0} =−−→ x ↑ a b{n} =−−→ b{n}

[a := x] a{n+ 1} =−−→ a{n} ⇑ a(σ) a{0} =−−→ a{0}
[a := x] b{n} =−−→ b{n} ⇑ a(σ) a{n+ 1} =−−→ ↑ a (σa{n})

⇑ a(σ) b{n} =−−→ ↑ a (σb{n})

Table 3.1: Explicit substitution on variables

The original instantiation of CINNI for π-calculus (CINNIπ) also contains equations depended
on the π-calculus syntax to define applications of substitution on process terms [9]. For our
purposes, CINNIπ is extended according to the syntax of Table 2.1, such that it includes the
τ -prefix, choice operator and input-guarded replication. Of this extension, called CINNI+π ,
the syntax-depended equations are shown in Table 3.2. These equations show applications of
substitutions in the π-calculus from Table 2.2 adapted to the explicit CINNI substitutions. The
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lift operation is used to adjust substitutions when they move into a new scope. For the equation
involving the parallel composition operator, it is assumed that both P and P ′ are not 0.

σ0
=−−→ 0 σ(ab.P )

=−−→ σaσb.σP

σ(τ.P )
=−−→ τ.σP σ(a(x).P )

=−−→ σa(x).(⇑ x(σ)P )

σ(P | P ′)
=−−→ σP | σP ′ σ(!a(x).P )

=−−→ !σa(x).(⇑ x(σ)P )

σ(P + P ′)
=−−→ σP + σP ′ σ(νx P )

=−−→ νx (⇑ x(σ)P )

Table 3.2: Explicit substitution on terms

Additionally, process congruence is generated by the equations of associativity, commutativity
and identity for the choice and parallel composition operators in combination with the equations
of scope extension in Table 3.3. When extending the scope of a restriction to a process P1, the
shift operator is used to increment the index of all occurrences of the restricted name in P1. The
conditions of the scope extension equations avoid non-termination and presuppose a total order
on names.

νx 0
=−−→ 0

νx νy P
=−−→ νy νx P if y < x

P1 | νx P2
=−−→ νx (↑ x P1 | P2) if P1 6= 0 6= P2

Table 3.3: Scope extension equations

Up until now, a
=−−→ b could be simply interpreted as an equation a = b. However, by

regarding these equations as rewrite rules, they equip the CINNI+π explicit substitution calculus
with operational semantics to obtain a rewrite system. Just like Stehr showed that the rewrite
relations induced by the equations of CINNIπ are convergent (confluent and terminating) [9],
the same can be shown for CINNI+π because of the almost identical design of the executable
specification so far. This property of convergence will be affected by the following introduction of
the reduction relation to the executable specification as shown by the analysis of the executable
specification in Section 3.2.

R-COM (ab.P1 +M1) | (a(x).P2 +M2) −→ P1 | [x := b]P2

R-REP (ab.P1 +M1) | (!a(x).P2 +M2) −→ P1 | [x := b]P2 | !a(x).P2

R-TAU τ.P +M −→ P

Table 3.4: Reduction rewrite rules

The reduction relation in the executable specification is defined by the rewrite rules of
Table 3.4. These rules are an adaptation of the three inference rules R-COM, R-REP and R-TAU

from Section 2.3 to the explicit substitution calculus. In the executable specification it is ensured
that, in conformance with the π-calculus, reduction never takes place inside terms of the form
ab.P1 or a(x).P2 while still allowing for reductions under parallel composition and restriction
without needing the R-PAR and R-RES rules. This can be implemented with a suitable strategy
for when the rewrite rules should be executed. Additionally, the characteristics of the R-STRUCT

rule are provided by the equational representation of structural congruence from before, since
P1 −→ P ′

1 can be achieved by P1
=−−→ P2 −→ P ′

2
=−−→ P ′

1.
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3.2 Analysis

In the π-calculus as introduced in Section 2, processes are considered modulo the set of structural
equations consisting of α-conversion and the axioms of structural congruence in Table 2.3. Let’s
call the equational theory entailed by these axioms SN’, for Structural equivalence of processes
with Names. Reduction of processes modulo SN’ according to the inference rules of Section 2.3 is
denoted by P1/SN’ −→ P2/SN’. Then, in Section 3, processes modulo CINNI+π were said to be
considered modulo the equations of associativity, commutativity and identity for the choice and
parallel composition operators in combination with the equations of scope extension in Table 3.3.
The reduction of processes modulo CINNI+π enabled by the rewrite rules of Table 3.4 is designed
such that P1/CINNI+π

−→ P2/CINNI+π
iff P1/SN’ −→ P2/SN’, meaning that a process P1 expressed

in SN’ or CINNI+π reduces to the same process P2 expressed in that respective theory.
Both Stehr and Viry devote their attention to the convergent property of their obtained

rewrite systems [9, 12]. Viry ensures convergence of their rewrite system by introducing a rewrite
strategy to restricting applications of the expansion and replication theorems to be bounded by
the size of the input term. Stehr did not need such a rewrite system, since they used a smaller
π-calculus without the choice and replication operators that are essential to those theorems.

The divergence caused by the expansion theorem is demonstrated by this process term with
the choice operator:

(ab.0 + τ.0) | a(x).0 −→ 0 | [x := b]0 ∨ 0 | a(x).0

In our Maude implementation of the executable specification, it is the user’s responsibility to
ensure convergence. This is made possible by the powerful search command and the possibility to
assign bounds for termination, as will be explained in Section 4. Using this method for π-calculus
with conventional replication would require special attention to termination for every occurrence
of a process term involving replication. This was the motivation behind the replacement of
replication by input-guarded replication discussed in Section 2.1. Since an input-guarded process
term is only able to replicate itself when receiving a name, instead of at all times, it allows
the use of some controlled form of replication without worrying about termination as much.
Non-termination is not entirely eliminated, as demonstrated by this process term that can be
rewritten to itself:

ab.0 | !a(x).ax.0 −→ 0 | (ax.0){b/x} | !a(x).ax.0
=−−→ ab.0 | !a(x).ax.0

Though, these kinds of situations can be avoided by carefully considering the input process term.

3.3 Maude implementation

In our implementation, sorts and subsorts are used to mirror the three layers of the syntax
(Guards, Terms, and Sums). The sorts Term and SumTerm are connected with the subsort relation
to represent P ::= M , while the Guard sort is used in the prefix operator as expected. Another
sort Input is introduced as a subsort of Guard which is used to construct the input-guarded
replication operator !a(x).P . Built-in Maude operator attributes were used for the representation
of precedence, associativity, commutativity and identity properties, which are easily added to
π-calculus operators as needed. Binders of the input prefix and restriction are represented by
a quoted identifier, whereas a channel name (sort Chan) is represented by the combination of a
quoted identifier (the name) and a natural number (the index). Since substitutions occur on
both process terms and channels, the operator for substitution in Maude is overloaded for both
of these sorts.

All the equations and rewrite rules introduced in Section 3.1 can then be expressed using the
already implemented syntax. Though, for one of the conditions of the scope extension laws, we
need to be able to compare names for one of the restrictions. Since binders are represented by
quoted identifiers and every quoted identifier has a unique obtainable corresponding string, a
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string comparison operation can be made. This comparison uses the lexicographic order, where
characters are compared going through their ASCII codes. Some aspects of the executable
specification are implicitly implemented by Maude behavior, such as equational reasoning and
the execution strategy. The Maude implementation described in this section can be found in its
entirety in Appendix A.

4 Executable specification usage and Maude examples

As mentioned in the previous section, to make our specification executable, it has been implemented
in the programming language Maude. For our purposes, the Maude environment revolves around
the commands: rewrite and search. These commands can be used after loading the executable
specification modules and setting the user preferred display options. For repeated use of the
executable specification it is recommended to save these steps in a Maude script, similar to
interpreter.maude in Appendix A. The following description and examples of the rewrite and
search commands are influenced by their description in the Maude Manual [1], just tuned to our
use case.

The rewrite command, causes the specified term to be rewritten using the rules and equations
of the currently loaded modules (unless otherwise specified by the user) and has the following
structure:

rewrite [depth] term .

The optional depth bound restricts the number of rewrite rule applications, it can be omitted
if the user is certain the process term only has a finite number of reductions. The term has
to be entered according to the syntax implementation of the executable specification, where
binders are represented by quoted identifiers, while names also have an index. For example,
a(x).xb.0 | νb ab.τ.0 can be rewritten by Maude with the command:

rewrite ’a{0}(’x) . ’x{0} < ’b{0} > . nil | [’b] ’a{0} < ’b{0} > . tau . nil .

To which the Maude environment will respond with: [’b]’b{0} < ’b{1} > . nil. An inter-
pretation from this result is that the term has been rewritten to νb′ b′b.0 (where b′ is the result
of α-conversion on b), exactly as expected after applications of the rewrite rules and structural
congruence axioms. The process term from Section 3.2, that was used to demonstrate non-
termination in the executable specification, ab.0 | !a(x).ax.0, can be rewritten using the optional
depth bound as follows:

rewrite [128] ’a{0} < ’b{0} > . nil | ! ’a{0}(’x) . ’a{0} < ’x{0} > . nil .

Maude has no problem with this input, as after 128 rewrite rule applications it will respond with
a solution identical to the input term. While quite simple to use, this rewrite command can only
find the first solution that cannot be further rewritten. The search command transcends these
limitations by also being able to find intermediate solutions and solutions of divergent process
terms. The command has the structure:

search [solutions, depth] term searchtype pattern

The four searchtypes and the solutions they find are described by the following list, where one
step is one rewrite rule application:

=>1 one-step solutions
=>+ one or more steps solutions
=>* zero or more steps solutions
=>! only final solutions, that cannot be further rewritten
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Similar to the rewrite command, the search command has an optional bound depth for
restricting the number of rewrite rule applications. Another optional bound solutions restricts
the number of solutions that can be found. The search pattern describes what kind of terms
the solutions should consist of. The interesting search pattern for our use case is X:Term, which
searches for some solution X of the sort Term (including SumTerm because of the subsort relation).
To demonstrate the power of the search command, we take a look at one final example. Solutions
to the process term from Section 3.2, that was used to demonstrate divergence in the executable
specification, (ab.0 + τ.0) | a(x).0, can be found with the following search command:

search ’a{0} < ’b{0} > . nil + tau . nil | ’a{0}(’x) . nil =>+ X:Term .

Where only one solution would have been found with the rewrite command, this search command
will find the two solutions that explore both of the capabilities of the sum term.

5 Conclusions

Creating and implementing an executable specification of π-calculus with reduction semantics
allowed for the discovery of design choices and their effect. The first and most important
consideration is the syntax of the desired π-calculus variant. For this project, the syntax had to
be compatible with reduction semantics and contain all operators we deemed essential, including
some kind of replication. The replacement of replication by input-guarded replication has led to
a functioning form of replication in the executable specification without a special strategy for
replication theorem applications, though, with the unfortunate effect of non-termination. Another
challenging aspect of the executable specification was representing structural congruence, and
specifically the scope extension laws. Their implementation using directional equations is made
possible by the choice to only allow scopes to expand when rewriting process terms. Finally, the
execution strategy mentioned towards the end of Section 2.3 should only allow application of the
rewrite rules under appropriate contexts. This should be taken into account when deciding the
programming language for the implementation of the executable specification. While Maude was
very suitable for this project, one might also consider the other popular rewriting logic languages
CafeOBJ and ELAN [2].

Of course, the presented executable specification and its implementation have room for
improvement. An example would be the automatic translation of process terms in formal syntax
to and from their representation in Maude syntax, this could be implemented utilizing Maude’s
META-LEVEL. The executable specification itself could be improved by enforcing termination
with respect to replication or the addition of the match operator, the latter of which could be
implemented by a strategy that only evaluates the match operators not under an input prefix.
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di Pisa, 1996. URL http://eprints.adm.unipi.it/1952/.

[13] Patrick Viry. Input/Output for ELAN. Electronic Notes in Theoretical Computer Science, 4:
51–64, 1996. ISSN 1571-0661. doi:https://doi.org/10.1016/S1571-0661(04)00033-7. RWLW96,
First International Workshop on Rewriting Logic and its Applications.

10

http://maude.cs.illinois.edu/w/images/6/62/Maude-3.1-manual.pdf
http://maude.cs.illinois.edu/w/images/6/62/Maude-3.1-manual.pdf
https://doi.org/https://doi.org/10.1016/j.jlap.2012.06.003
https://doi.org/https://doi.org/10.1016/B978-044482830-9/50026-6
https://doi.org/https://doi.org/10.1016/j.entcs.2005.06.041
https://doi.org/https://doi.org/10.1016/S1571-0661(05)80125-2
https://doi.org/https://doi.org/10.1016/S1571-0661(05)82539-3
https://doi.org/https://doi.org/10.1016/S1571-0661(05)82540-X
https://www.sciencedirect.com/science/article/pii/S157106610582540X
https://www.sciencedirect.com/science/article/pii/S157106610582540X
http://eprints.adm.unipi.it/1952/
https://doi.org/https://doi.org/10.1016/S1571-0661(04)00033-7


A Appendix: Executable specification of π-calculus with
reduction semantics

cinni.maude

1 fmod CINNI is

2 protecting QID .

3
4 *** Channel definition

5 sort Chan .

6 op _{_} : Qid Nat -> Chan [ctor prec 1] .

7
8 *** Calculus independent equations of CINNI

9 sort Subst .

10 op [_:=_] : Qid Chan -> Subst .

11 op [shift_] : Qid -> Subst .

12 op [lift__] : Qid Subst -> Subst .

13 op __ : Subst Chan -> Chan .

14
15 vars a b : Qid .

16 var n : Nat .

17 var x : Chan .

18 var S : Subst .

19
20 eq [a := x] a{0} = x .

21 eq [a := x] a{s(n)} = a{n} .

22 ceq [a := x] b{n} = b{n} if a =/= b .

23
24 eq [shift a] a{n} = a{s(n)} .

25 ceq [shift a] b{n} = b{n} if a =/= b .

26
27 eq [lift a S] a{0} = a{0} .

28 eq [lift a S] a{s(n)} = [shift a] S a{n} .

29 ceq [lift a S] b{n} = [shift a] S b{n} if a =/= b .

30 endfm

syntax.maude

1 fmod SYNTAX is

2 protecting CINNI .

3
4 *** Syntax definition

5 sorts Guard Input .

6 subsort Input < Guard .

7 op tau : -> Guard [ctor] .

8 op _<_> : Chan Chan -> Guard [ctor prec 4] .

9 op _(_) : Chan Qid -> Input [ctor prec 3] .

10
11 sort Term .

12 op _|_ : Term Term -> Term [ctor assoc comm prec 9 id: nil] .

13 op [_]_ : Qid Term -> Term [ctor prec 7] .

14 op !_._ : Input Term -> Term [ctor prec 6] .

15
16 sort SumTerm .

17 subsort SumTerm < Term .

18 op nil : -> SumTerm [ctor] .

19 op _._ : Guard Term -> SumTerm [ctor prec 5] .

11



20 op _+_ : SumTerm SumTerm -> SumTerm [ctor assoc comm prec 8 id: nil] .

21
22 *** Scope extension

23 vars P P1 P2 : Term .

24 vars x y : Qid .

25
26 eq [x] nil = nil .

27 ceq [x] P1 | P2 = [x] (P1 | [shift x] P2) if P1 =/= nil and P2 =/= nil

.

28 ceq [x] [y] P = [y] [x] P if string(y) < string(x) .

29
30 *** Substitution rules

31 op __ : Subst Term -> Term [ctor prec 2] .

32
33 var S : Subst .

34 vars a b : Chan .

35
36 eq S (tau . P) = tau . (S P) .

37 eq S (a < b > . P) = (S a) < (S b) > . (S P) .

38 eq S (a(x) . P) = (S a)(x) . ([lift x S] P) .

39 ceq S (P1 | P2) = (S P1) | (S P2) if P1 =/= nil and P2 =/= nil .

40 eq S ([x] P) = [x] ([lift x S] P) .

41 eq S (! a(x) . P) = ! (S a)(x) . ([lift x S] P) .

42 eq S nil = nil .

43 eq S (P1 + P2) = (S P1) + (S P2) .

44 endfm

semantics.maude

1 mod SEMANTICS is

2 protecting SYNTAX .

3
4 vars P1 P1’ P2 : Term .

5 vars M1 M2 : SumTerm .

6 var x : Qid .

7 vars a b : Chan .

8
9 *** Reduction rules without alpha equivalence

10 rl [R-COM] : a < b > . P1 + M1 | a(x) . P2 + M2 => P1 | [x := b] P2 .

11 rl [R-REP] : a < b > . P1 + M1 | ! a(x) . P2 + M2 => P1 | [x := b] P2 |

! a(x) . P2 .

12 rl [R-TAU] : tau . P1 + M1 => P1 .

13 endm

interpreter.maude

1 load cinni .

2 load syntax .

3 load semantics .

4
5 set show advisories off .

6 set show command off .
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