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Abstract
One possible pathway for understanding the formation and evolution of galaxies is by studying

their earliest stellar structures, namely globular clusters (GC). In this work, we present the
number of GCs for 540 dwarf galaxies in the Fornax Cluster, which is currently the largest dwarf
galaxy sample with GC counts in the literature. Based on the number of GCs in the galaxies
we estimated their dark matter halo masses. To obtain the number of GCs, we subtracted an
elliptical model from the images of the dwarf galaxies in the g, r and i bands from the Fornax
Deep Survey, and thereby improved the detection of GCs on top of these galaxies. After applying
aperture photometry, a selection of the data was matched to already observed GCs from the
HST/ACS survey of the Fornax Cluster to determine how GC candidates should be selected.
This was possible for 19 galaxies. Criteria were determined based on the values of the matched
GCs and used for the GC selection of the resulting galaxies. These selection criteria include
g-band magnitude, colors (g-r, r-i) and a compactness parameter representing the difference in
magnitude between aperture sizes of 4 and 8 pixels. These selection criteria were also applied
on empty fields to determine a statistical background correction for the number of GCs. For
the analysis, we subdivided the sample in various ways to investigate the number and specific
frequency of GCs as a function of location, early- and late-type galaxies, nucleated and non-
nucleated galaxies and surface brightness. We find a higher number of GCs for early-type,
nucleated and lower surface brightness galaxies. The higher number of GCs in early-type galaxies
is affected by the distribution of the early- and late-type galaxies, because early-type galaxies are
more concentrated in the center. Similarly, nucleated galaxies are also more concentrated in the
center of the cluster. Additionally, the higher number of GCs in nucleated galaxies can be linked
to nuclear star cluster formation paths by the inspiralling of the GCs. Lower surface brightness
galaxies have on average a higher number of nucleated star clusters. However, the difference in
number of GCs for low and high surface brightness galaxies remains when only nucleated galaxies
are considered. The number of GCs is higher in the center of the Fornax Cluster than in the
region around Fornax A, consistent with the fact that the GC number in the center of the dense
Virgo cluster is higher than in all other regions. Finally, we have also derived the dark matter
halo mass for the dwarf galaxies using the scaling relation between the number of GCs and the
dark halo mass of a galaxy.
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1. Introduction

1 Introduction

It is consensus in the literature that in the early Universe globular clusters (GC) formed when
protogalaxies merged. As a result, the GCs only contain very old stars [Carretta, E. et al., 2010;
Letarte et al., 2006; Larsen et al., 2014]. GC systems have been found in both old elliptical
galaxies and in younger spiral galaxies for a range of masses. Studying these systems brings
us further in understanding galaxy formation and evolution. GCs are compact gravitationally
bound spherical stellar systems. GCs can be described by several physical size parameters, such
as the half-light radius (rh). A typical half-light radius for GC in the Milky Way is ∼ 2−3 pc with
a mean mass of ∼ 1 × 105M� [Harris, 1996; Peterson and King, 1975]. The age and metallicity
distribution of GC stars is simpler than that of galaxies due to their star-formation history. The
simple stellar population, high luminosity and large galactocentric distances which extend several
effective radii of the host galaxy makes them attractive to study when investigating a galaxy and
its environment. Most galaxies contain globular clusters.
GCs can be used to study the mass assembly of galaxies and trace their mass content in several
ways, such as the relations visible in Fig. 1. The GCs mass is plotted versus the stellar mass
and the dark matter halo mass. The right panel, shows the linear correlation between the GCs
mass and the dark matter halo mass of the host galaxy [Hudson et al., 2014; Harris et al., 2015].

Figure 1: Left panel: Total mass of GCs versus the stellar mass. Right panel: Total mass of GCs
versus the dark matter halo mass showing a linear relation. This figure is taken from Hudson
et al. [2014]

1.1 Formation of GCs

To be able to describe the formation and evolution of GCs, many distinct processes need to be
captured within a model. Some example processes are star cluster formation, the initial mass
function, destruction paths by tidal perturbations and relocation due to hierarchical galaxy as-
sembly. There are different models that try to describe the GC formation and evolution. One of
these theories considers the GCs to be formed in the most massive gas-rich environments with
high star formation rates (SFR), similar to young massive clusters (YMC) which are observed in
merging galaxies [Holtzman et al., 1992; Whitmore et al., 1999]. This happened most often in
the early universe.
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1.2 Connections between GCs and their host galaxies

More massive galaxies can also accrete GCs as a result of galaxy mergers [Kim et al., 2018;
Li et al., 2017; Renaud et al., 2017] or their GC formation takes place in galaxy discs [Kruijssen,
2015; Pfeffer et al., 2018]. This formation path would take place in normal high-redshift galaxies
with gas-rich environments. Alternatively, some GCs may form during or before the reionisation
in low-mas dark matter haloes [Peebles and Dicke, 1968; Kimm et al., 2016].

To expand our knowledge on GC formation, larger samples and different environments need
to be studied. Throughout the years, many works have investigated GCs, especially in the Milky
Way which contains many accreted GCs [Leaman et al., 2013; Kruijssen et al., 2019]. For the
extragalactic GC systems the focus lays on early-type galaxies (ETG) which are easier to observe
due to the smooth light profile of ETGs. In late-type galaxies it is more difficult to select the
GCs due to the spiral arms and the fact that they do not reach the high mass that ETGs can
reach.
We will discuss several works that investigate GCs and that are important for this work more in
detail below.

1.2 Connections between GCs and their host galaxies

To understand the nature and evolution of the number of GCs within galaxies, most studies
investigate the correlations between GCs and properties of their host galaxy.

The work of Georgiev et al. [2010] also investigated the difference in number of GCs between
early- and late-type galaxies. More specifically, they investigated the specific luminosity, lumi-
nosity ratio of GCs and the luminosity of the host galaxy, and found that early-type galaxies on
average have a value twice as high compared to late-type galaxies.

Figure 2: Left panel: The number of GCs versus the dynamical mass for different types of
galaxies. The different types of galaxies are denoted by different markers and colours and the
diagonal line shows the best fit for galaxies with Mdyn > 1010M�. Right panel: The mean GC
mass versus the dynamical mass for different types of galaxies. The diagonal line represents the
best fit relation. These figures come from Harris et al. [2013].

Currently the best way to study GCs around galaxies is through HST, given its high spatial
resolution. Peng et al. [2008] observed 100 early-type galaxies in the ACS Virgo Cluster Survey
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1.2 Connections between GCs and their host galaxies

using HST. A full description of the survey can be found in Cote et al. [2004]. They investigated
the number of GCs in these ETGs, more specifically the specific frequency, SN , introduced
by Harris and van den Bergh [1981]. This is the number of GCs per unit stellar luminosity,
representing the efficiency of GC formation with respect to the field stars. The Virgo cluster
ETGs show a ’U-shaped’ relation between the SN and the luminosity which can be seen from Fig.
3. The work of Peng et al. [2008] covers the regions from giants to dwarfs. They also investigated
the role of the environment on the number of GCs. They found that galaxies closer to the center
of the cluster have a higher SN . One possible explanation is that the low-mass galaxies in dense
regions have a higher SFR at early times resulting in more GCs. It is also possible that the
SF stopped earlier for galaxies in dense environments, which would not have any effect on the
formation of GCs due to their early creation [Liu et al., 2016]. However, this environmental
dependence was not found in the sample of Miller and Lotz [2007]. Therefore, more evidence is
needed to understand the environmental effects, for example by studying different galaxy clusters.
Liu et al. [2019] investigated 43 galaxies in the Fornax Cluster (ACSFCS: Jordan et al. [2007]).
The Virgo cluster has a larger virial radius and mass density than the Fornax cluster. Liu et al.
[2019] found similar properties for the SN,z for the ETGS from both clusters and they found
an environmental dependence for the low-mass ETGs. The environmental dependence comes
through the low SN,z of ETGS that are located within 10 × Re of the most massive galaxies in
the sample of Liu et al. [2019] so their GC systems are likely tidally stripped. However, they
also found that a denser environment, not too close to a bright heavy galaxy, can improve the
GC formation because other high SN,z galaxies are located around massive neighbors. Different
types of galaxies have on average a different SN . It is even possible for dwarf galaxies to have
comparable specific frequencies to giant ellipticals (see Fig. 3) [Lotz et al., 2004; Miller and Lotz,
2007; Durrell et al., 1996], proposing the possibility for the formation of halos of larger galaxies
through accretion [Searle and Zinn, 1978; Côté et al., 1998, 2000].

1.2.1 Dwarf galaxies

The main focus of this work will be in fainter magnitude ranges studying dwarf galaxies. Dwarf
galaxies can be classified in several manners, for example by morphology or surface brightness.
Due to the large variety of shapes and characteristics of dwarf galaxies, it is also possible to
divide the sample in multiple sub-classes.

From Fig. 3 we see high SN values for dwarf galaxies. A possible explanation could be that
these galaxies formed their stars during high efficiency moments. The SFR was especially high
during early times which would result in high SN values. The spread in the SN could then be
caused by a spread in the formation times. Due to the high efficiency in the star formation
(SF), the galaxies could gain enough mass before their SF is stopped by feedback [Elmegreen
and Efremov, 1997; Kruijssen, 2012].

Recently, the statistics in the dwarf sample has been increased significantly by the work of
Carlsten et al. [2021a]. They investigated GCs and nuclear-star clusters of early-type satellites
from the Exploration of Local VolumE Satellites (ELVES) Survey. Their findings are in line
with the increased SN in denser environment results from Peng et al. [2008]; Liu et al. [2019] and
they proposes three possible causes. An increase in GC creation due to the formation in early
collapsing halos, a decrease in the GC destruction in denser environments from earlier quenching
or increased merger rates, and decreased field star formation from earlier quenching. Carlsten
et al. [2021a] also found a strong correlation between GCs and nuclear-star clusters which is
also influenced by the environment. The nucleation fraction of dwarf satellites is lower than the
fraction from dwarfs present in clusters.
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1.2 Connections between GCs and their host galaxies

Figure 3: Specific frequency versus MV for 100 ACSVCS galaxies (black circles) [Peng et al.,
2008]. Dwarf galaxies from Durrell et al. [1996] and Lotz et al. [2004]. The literature values are
taken from Kissler-Patig et al. [1996, 1997]; Dirsch, B. et al. [2003]; Dirsch et al. [2003, 2005];
Forbes et al. [1996]; Rhode and Zepf [2004]; Zepf et al. [1995]; Harris et al. [2004]. This figure
comes from Peng et al. [2008].

1.2.2 Dark matter halos

Another important relation between the GCs and the host galaxy, is the GC mass fraction from
the total halo mass. The total stellar mass contained within the GCs is determined through the
globular cluster luminosity function (GCLF) and the M/L ratio. The GCLF is represented by
a Gaussian shape, where the peak and the standard deviation depend on the galaxy luminosity.
The largest part of the mass determination is accounted for by the brightest part of the GCLF.
The GC mass trend can be seen in the right panel of Fig. 2, where the mean GC mass is equal
to MGCs/NGC .

Harris et al. [2013] conducted research to investigate several of these correlations. They gath-
ered already published number of GCs for a range of galaxy luminosities. They also investigated
the relation between the number of GCs and the dynamical mass of the galaxy defined by Eq.
1.2.2 [Wolf et al., 2010]:

Mdyn =
4Reσ

2
e

G
, (1)

where Re is the effective radius, σe is the stellar velocity dispersion and G is the gravitational
constant. The dynamical mass does show a linear correlation with the number of GCs as can be
seen from the left panel of Fig. 2. Similar correlations are shown in Peng et al. [2008]; Georgiev
et al. [2010]; Spitler et al. [2008], but these works use masses determined photometrically. The
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1.2 Connections between GCs and their host galaxies

number of GCs increases with the dynamical mass almost linearly. Harris et al. [2013] does note
that if this relation is valid for both spiral and elliptical galaxies, then the spiral galaxies will
have less GCs per unit dynamical mass than elliptical galaxies. This off-set is accounted for in
the left panel Fig. 2 and therefore not visible in this figure.

Harris et al. [2013] also calculated the specific mass, which is defined as the percentage GC
mass of the dynamical mass, SM = 100MGCS

Mdyn
. Throughout different works, slightly different

definitions of the specific mass are used [Peng et al., 2008; Georgiev et al., 2010] which also
leads to different discussion points and explanations. The specific mass calculated in Harris
et al. [2013] can be seen in Fig. 4, which shows a similar shape to the SN relation. Low mass
galaxies (log(Mdyn/M�) ≈ 6 − 9) have a higher GC mass fraction just as high mass galaxies
(log(Mdyn/M�) ≈ 11−13,) while the ratio is the lowest for the intermediate-luminosity and mass
galaxies. This means that the SF was most efficient for the intermediate-mass galaxies. Internal
and external quenching effects caused the low and high mass galaxies to have less efficient SF.
The GCs could be formed in the earliest starbursts in the densest regions. Subsequent SF rounds
could then be truncated for low and high mass galaxies which could explain the U-shape from
Fig. 4. The truncation of SF is likely different depending on the galaxy mass. In the lower
mass galaxies intrinsic process, such as starburst winds, photoionization or supernovea (SNe),
will quench the SF. In high mass galaxies the quenching will be caused trough tidal stripping of
the gas or UV fields heating the the gas of the galaxy.

Figure 4: The specific mass frequency versus the galaxy mass, where the specific mass frequency
is SM = 100(MGCs/Mdyn). The dynamical mass is determined either through effective radius
and the central velocity dispersion (Re, σe) or from the luminosity (Lv). This figure is taken
from Harris et al. [2013].
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1.3 Fornax Deep Survey

1.3 Fornax Deep Survey

The Fornax Deep Survey (FDS) is a collaboration between two surveys, the Fornax Cluster
Ultra-deep Survey (FoCUS, PI: R. Peletier) and the VST Early-Type GAlaxy Survey (VEGAS,
PI: E. Iodice). The survey is centered on NGC 1399, the brightest galaxy of the main Fornax
cluster and the Fornax A sub-group which is centered on NGC 1316, the brightest galaxy of the
complete Fornax cluster. The coverage can be seen in Fig. 5. The Fornax Deep Survey is a very
deep survey, about 3 mag deeper than SDSS. It contains data in the SDSS u-, g-, r- and i-band
and corresponding weight maps. Five fields around the Fornax A subcluster are only observed
in the g-, r- and i-band. The VLT Survey Telescope [Schipani et al., 2012] is the telescope that
operated for the FDS and in 2.6 m long telescope with the OmegaCAM [Kuijken et al., 2002]
attached. The OmegaCAM has 32 CCDs with a 1 × 1 deg2 field and a resolution of 0.21 arcsec
pixel−1 (5 pix ≈ 1 arcsec). For more information on the observations see Venhola et al. [2017];
Iodice et al. [2016].

The dwarf galaxies in the Fornax cluster are published in the Fornax Deep Survey Dwarf
galaxy Catalog (FDSDC) and consists of a total of 564 dwarfs [Venhola et al., 2018a]. This
catalog reaches the 50% completeness at the limiting magnitude of Mr = −10.5 mag with a
mean effective surface brightness of µe,r = 26 mag/arcsec2.

Cantiello et al. [2020] uses the FDS to derive photometry of compact sources, more specifically
GCs, and their distribution throughout the Fornax cluster. Around the central galaxy in the
cluster, NGC 1399, an over-density of GCs is found. There is no clear structure of GCs found
between NGC 1399 and the Fornax A subgroup central galaxy, NGC 1316, which also does not
show a rich intra-cluster GCs population such as NGC 1399.

Figure 5: The complete coverage of the Fornax Deep Survey including galaxies labeled as FCC
galaxies from Ferguson and Sandage [1989]. The green circle is the virial radius of NGC 1399
of 0.7 Mpc [Drinkwater et al., 2001] and the blue circle displays a 2σ over-density around NGC
1316. This figure comes from Venhola et al. [2018b].
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1.4 This thesis

1.4 This thesis

This thesis is structured as follows: in Chapter 2 we describe the sample, the GCs selection
method and the analytical framework that is used to compare data to other works; in Chapter 3
we show the number of GCs for the complete sample of 540 dwarf galaxies of Fornax; in Chapter
4 we will compare our findings to other works; in Chapter 5 we will discuss our results and give
possible explanations; in Chapter 6 we will summarize this work.
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2. Methodology

2 Methodology

In this Chapter, we will describe the method used for observing and selecting GCs. There is
a GC sample based on HST data, which is used to construct a method to select new GCs for
the resulting dwarf galaxies. In Section 2.1, we will elaborate on the dwarf galaxies samples
and the HST sample; in Section 2.2 we will clarify the steps for modelling the galaxy light; in
Section 2.3 the photometric measures are described; in Section 2.4 we explain the method for
finding new GCs based on the initial GC sample (based on HST); in Section 2.5 we comment on
the background subtraction and necessary corrections; in Section 2.6 we explain the last steps
essential for the calculation of the number of GCs per galaxy; in Section 2.7 we list several
relations and equations used for investigation later in this work; in Section 2.8 we compare our
number of GCs for the available HST galaxies to the work of Liu et al. [2019].

2.1 Sample

The sample of galaxies can be divided into two sections: a sample on which the GC selection is
based and a sample containing the resulting dwarf galaxies of the FDS Survey. The complete
FDS dwarf galaxy sample consists of 564 galaxies. Of these 564 galaxies, 24 galaxies were ex-
cluded through the analysis due to different issues and can be found in Appendix 9.

2.1.1 Sample for GC selection

At first, 21 bright dwarf galaxies have been selected which are available in both the FDS data
and from Hubble Space Telescope (HST). HST data is deeper than the FDS data and has a
high spatial resolution, which makes it possible to spatially resolve the GCs. In the FDS data it
is not possible due to the contamination of the atmosphere and distance to the Fornax cluster.
By comparing HST data with FDS data it is possible to determine the completeness of the ob-
served globular clusters of the FDS data at least up to the globular cluster luminosity function
(GCLF). The ACS data is complete to a g-magnitude of ∼ 26.1 covering ∼ 95% of the GCLF
[Cote et al., 2004]. This comparison also enables us to determine trustworthy color criteria for
the GCs. More specifically, the data is compared to work from Jordán et al. [2015] who used
the Advanced Camera for Surveys (ACS) on board of the HST to find GCs as part of the ACS
Virgo and Fornax Cluster Surveys [Cote et al., 2004; Jordan et al., 2007]. Jordán et al. [2015]
has g- and z-band magnitudes for all the sources and half-light radii are obtained by fitting point
spread function-convolved King models. These parameters are used to estimate a probability of
an object being a GCs from 0 to 1, where the probability of an object being a GCs is denoted
by pGC . In this work, only the GCs with pGC > 0.75 are considered.

A total of 21 galaxies are available in both data sets. Eventually, the galaxies FCC249 and
FCC277 are not used because there was an improper gri-stacked image and too many bright
foreground objects to obtain a good ellipse fit to model and subtract the galaxy’s light. A list of
the resulting 19 galaxies is visible in Table 6.

2.1.2 Sample of new galaxies

The sample of new galaxies consists of the resulting dwarf galaxies from the FDS catalog with a
couple of exceptions (see Appendix 9). The coverage of the galaxies in this work can be seen in
Fig. 7.
For the rest of this Chapter, the focus is on the sample for the GC selection.
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2.2 Data Reduction

Figure 7: The coverage of the complete sample of dwarf galaxies in this work. The inner blue
circle represents the core [Ferguson, 1989] and the outer the virial radius [Drinkwater et al., 2001]
of the cluster its main galaxy NGC1399. The green circle has a one degree radius centered at
the Fornax A subgroup NGC1316 [Drinkwater et al., 2001].

2.2 Data Reduction

The data from FDS is in the form of mosaic images with corresponding weight images. Even
though the data is available in four bands u, g, r, and i, only the last three are exploited in this
work. First of all, the u-band data is not available in all FDS tiles, it does not go deep enough
and the seeing is in most cases higher than the other bands causing problems later on during the
GC selection. Therefore every galaxy frame is taken in the g, r, i, and in the gri-stacked band, for
identification purposes. For every galaxy, a frame is cut with a dimension of 15×Reff , based on
the effective radius of the galaxy taken from Venhola et al. [2018b], and a bigger frame to have
a higher number of stars around each galaxy of 15 × 15 arcmin2 that will be referred to as the
big galaxy frame. The smaller frame is used to determine the amount of GCs and the big galaxy
frame for aperture correction. The detection of GCs in bright galaxies is not great and therefore
the light of the galaxy needs to be modelled and subtracted. This ensures a better detection of
the GCs that are on top of the galaxy. This is done in two different manners: 1) an elliptical
model is constructed and subtracted using IRAF [National Optical Astronomy Observatories,
1999] and 2) a local background subtraction using Source Extractor [Bertin and Arnouts, 1996].

2.2.1 Modeling the galaxy

The first method is constructing an elliptical model using IRAF, which operates in the space
telescope science data analysis system (STSDAS) [Hanisch, 1989]. The isophote package offers
the function ellipse which fits several elliptical isophotes to a galaxy image. To obtain an optimal
elliptical model all bright objects, such as large foreground stars, should be masked so they can
not influence the model. The ellipse function takes initial guesses for the center of the galaxy,
the position angle (PA) and the ellipticity. It is possible to vary the center coordinates, PA and
ellipticity or to keep them fixed for every isophote. In most cases, all three parameters were
allowed to vary to obtain a good fit. However, in certain cases the position angle was fixed to
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avoid ellipse rings in the subtracted image. The ellipse function returns a table containing the
information to fit elliptical isophotes to the galaxy at different radii. Isophote package also offers
the task bmodel, which uses the output table from ellipse to create the photometric model of the
galaxy. This model is subtracted from the original image utilizing the task imarith. In Fig. 8 an
example is displaying the outcomes of different steps: the original image, the galaxy model and
the subtracted image.

Figure 8: (a) Galaxy FCC100 gri-stacked image. (b) Model of the surface brightness of galaxy
FCC100 produced by the functions ellipse and bmodel. (c) The subtracted image: (a) - (b). In
the subtracted image objects within the galaxy become visible.

The second method is more robust and less time consuming than the first method. This
is done by adjusting several parameters in the default.sex file of Source Extractor to subtract
local background which directly returns the photometric values of the objects within the im-
age frame. The parameters can be found in Table 1 where especially the choice of the mesh size
(BACK_SIZE ) is important for an accurate background determination. The small mesh size will
ensure that only local light is taken into account for the background subtraction. This method
is not suited for very dense fields with many bright objects. Therefore, the largest part of the
galaxies and the brightest galaxies (Mr < −15 mag) are modeled using ellipse. To save time,
the galaxies went first through SExtractor and the returned check images were controlled by eye
to see if the background subtraction was successful. In the case of an unsuccessful subtraction,
the galaxy light is still modeled with ellipse function and afterward run through SExtractor to
find the sources. An example of the local background subtraction can be seen in Fig. 9.

2.3 Photometry

After the elliptical models are subtracted from the image frames in all the different bands and
the stacked image, the images are given to Source Extractor [Bertin and Arnouts, 1996] to per-
form aperture photometry. Aperture photometry includes the summation of the pixel counts
within a specified aperture size and the subtraction of the average close by sky count per pixel
multiplied by the amount of pixels within the aperture. The gri-stacked frame is the deepest
frame and is therefore used as detection frame while photometry is obtained from the separate
bands. The big galaxy frames are directly given to SExtractor without any further reduction
applied to determine aperture corrections and ∆m normalization. During these runs, all the
corresponding weight-images for the frames are also given to SExtractor. Several parameters of
default.sex file are listed in Table 1, where Normal represents the parameters of the SExtractor

16



2.3 Photometry

Figure 9: (a) Galaxy FCC242 g-band image. (b) The check image returned from SExtractor
after applying local background subtraction.

runs for the subtracted frames and the big galaxy frames. Also, the parameters are shown for
the runs with local background subtraction directly returning the objects with their photometric
values. Afterward, the resulting objects in all three bands are matched based on their position
within 0.1 arcsec.

Parameter Normal Local Background subtraction
DETECT_MINAREA 5 5
DETECT_TRESH 3.0 3.0
ANALYSIS_TRESH 3.0 3.0
DEBLEND_NTRESH 32 32
DEBLEND_MINCONT 0.005 0.005
BACK_TYPE AUTO AUTO
BACK_SIZE 64 8
BACK_FILTERSIZE 3 2
CHECKIMAGE_TYPE NONE -BACKGROUND

Table 1: SExtractor configuration parameters.

To be able to measure the light of the objects within the image through SExtractor, an
aperture diameter size of 8 pixels (1.6′′) is chosen. The flux of the objects is therefore only
measured within a small finite aperture even though it is distributed over a larger area. However,
taking a larger aperture size, leads also to more noise (low S/N pixels around an object) being
measured. Therefore, we need to account for the flux from objects outside the 8 pixel aperture
and this can be done by applying aperture correction. Aperture correction is the difference in
magnitude of bright non-saturated stars measured between the used aperture size (8 pixels) and
a larger aperture size, such as 50 pixels which measures roughly all the light of the source. The
smaller the initial aperture, the larger the dependency on the correction factor. The aperture
correction depends on the seeing of the fields. The seeing of the different fields can be quantified
by the FWHM values, visible in Fig. 10.
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2.3.1 Aperture Correction

Figure 10: The columns represent the FCC names (FCC ) [Ferguson, 1989], followed by the FDS
name (FDS NAME ). The full width at half maximum values (FWHM ) are given for all three
bands in [arcsec] and are taken from Venhola et al. [2018b], which displays the average FWHM
over the field. The corrections (cor) in all the three bands are in [mag] and represent the average
of the difference in magnitude between the apertures of 8 pixels and 60 pixels from five stars
around the galaxy. The standard deviations (std) of the mean correction of these five stars is
also given in all three bands.

For bright and unsaturated stars the light profile should be the same and this can be used to
create a correction for the missing light. For every galaxy is an aperture correction determined
based upon five stars surrounding the galaxy. In most cases, there are not enough proper stars
available in the 15×Re image and therefore the big galaxy frames, 15x15 arcmin2 around the
galaxy center, are used to determine the aperture corrections. The coordinates of the galaxy
centers are taken from Venhola et al. [2018a]. To ensure an optimal aperture correction, the stars
should not be saturated so fainter than 16 mag. To find stars in the galaxies, all the acquired
objects are cross-matched with GAIA DR2 [Gaia Collaboration et al., 2018] with parallax

parallaxerror
> 5

to assure that they are stars of point-sources within the Milky Way and to have accurate distance
measurement. The stars should not have any objects close or bad pixels around, which can
be ensured due to the parameter FLAGS returned by SExtractor, which gives basic warnings
about the source extraction process so we take stars with FLAGS=0. Afterward, the stars
are ordered based upon their g magnitudes and the five brightest objects are taken for the
aperture correction. The aperture correction are based upon the curve of growth, which shows
the magnitudes acquired for several consecutive aperture sizes taken up to a diameter size of 60
pixels. At an aperture size of 60 pixels, the curve of growth is already flat and seems to approach
an asymptotic value. The difference in magnitude for consecutive apertures is visible in Fig. 11
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for the five different stars. The apertures considered are in [pixels]: 4, 8, 10, 12, 16, 20, 30,
40, 50 and 60. The vertical axis is therefore displaying the difference in magnitude between on
of the apertures above minus the aperture at 8 pixels. So the absolute magnitude difference
between an aperture of 4 and 8 pixels is 1 mag. All the curves are combined in Fig. 12. The
curve seems to reach an asymptotic value because not much light is added at larger apertures.
To determine a correction factor for each band, the magnitude found at an aperture size of 60
pixels is subtracted from the magnitude found at an aperture size of 8 pixels. The correction
factor is taken to be the average difference of magnitudes between aperture sizes of 8 and 60
pixels for these five bright objects. The correction values in magnitude for every band of the GC
selection sample are shown in Fig. 10 denoted by corg, corr and cori and the standard deviation
of the aperture correction is denoted by stdg, stdr and stdi. In general, the higher the seeing
(FWHM) the higher the aperture correction value because more light will fall outside of the 8
pixel aperture.

Figure 11: Curve of growth of five stars surrounding FCC 100 where the vertical axis is normalized
for an aperture size of 8 pixels.

In Fig. 13 all the objects found by SExtractor with corrected g-band magnitudes are visible
in blue and the GCs for these galaxies from Jordán et al. [2015] in red. Not all objects found are
GCs, in fact only a small amount is and there is a strong decrease for objects g > 25 mag due
to reaching the limit of the data set with a median g-band limit around g ∼ 25.6 mag [Cantiello
et al., 2020].

We have applied several checks to ensure the validity of the corrections and the resulting
colors for the first 19 galaxies before applying this technique to any new galaxies. The first
check is comparing the photometric values of this work to the photometric values of Jordán et al.
[2015] and can give an indication for trustworthy corrections. To find the GCs in the FDS data,
the sources are matched with the GCs of Jordán et al. [2015] based on their location within
1′′. Jordán et al. [2015] only contains data in the g- and z- band and therefore only the g-band
data is compared directly. However, by applying a transition formula it is possible to go from
gACS−zACS to gACS− iACS . The formula is obtained from Hamraz et al. [2019] and is Eq.2.3.1:

(F475W − F814W ) = 0.924(F475W − F850LP )− 0.027, (2)
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Figure 12: Combined curve of growth of five stars in surrounding FCC 100 where the vertical
axis is normalized for an aperture size of 8 pixels.

Figure 13: Histogram of the total amount of objects found within the sample for the GC selection
(blue) and the number of GCs with pGC > 0.75 from Jordán et al. [2015] (red).

where (F475W-F814W) corresponds to the g-i color.

In Table 2, we see the mean difference and standard deviation from Fig. 14 for different
magnitude ranges after cleaning the data through sigma-clipping with σ = 5. The mean off-set
is largest in the magnitude range 21− 22, however it has the smallest spread. In fainter regions,
the average is closer to zero with increasing scatter and standard deviation between FDS data
and HST values. The tables for the g − i and z − i comparisons can be found in Appendix 8.
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Figure 14: Photometric comparison between the magnitudes of this work and the work of Jordán
et al. [2015]. All the data points are objects with pGC > 0.75 [Jordán et al., 2015] and available
in both data sets. All panels have the g magnitude from ACS on the horizontal axis. The
upper panel shows a direct comparison between the g magnitudes. The lower left panel shows a
comparison between zACS and gFDS . The lower right panel shows a comparison between the g-i
color. Eq.2.3.1 is used to transform gACS − zACS to gACS − iACS .

Magnitude range µg σg σg/
√
N

21-22 0.123 0.128 0.036
22-23 0.026 0.193 0.025
23-24 -0.004 0.277 0.022
24-25 -0.008 0.516 0.047

Table 2: The mean off-set, standard deviation and standard deviation divided by the number of
objects per g magnitude range between the this work and the work of Jordán et al. [2015]. N is
the number of objects per g magnitude range.

Another check is to implement the data into color-color diagrams based upon stars Covey
et al. [2007]. For this comparison, only point sources are considered and these are selected
based upon their FWHM shown in Fig. 15, where gauto is the Kron-like [Kron, 1980] automated
aperture magnitude returned directly from SExtractor. A horizontal trend is visible which is
caused by the presence of point sources. These sources are selected by eye and are afterward
compared to Covey et al. [2007] in Fig. 16. The shapes are similar to the data however the
selected point sources have a larger spread.

The point source selection follows the shape of the stars nicely in Fig. 16, which suggests a
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Figure 15: Full width half-maximum values of the g-band versus the Kron-like automated aper-
ture in the g-band. The blue data points is the complete set of the first 19 galaxies. The red
objects are the point source selection.

Figure 16: Color-color plots including point sources form this work compared to color-color
relations for stars from Covey et al. [2007]

reasonable aperture correction.

Another check is directly comparing the photometric values to Cantiello et al. [2020]. This
can be done by matching all the objects resulting from the first 19 galaxies to the data set of
Cantiello et al. [2020]. These comparisons can be seen in Fig. 17

The mean differences from Fig. 17 in the g-band can be found in Table 3 and for the r- and
i-band in Appendix 8. In all three bands, the mean in similar but especially the scatter is low
in the bright region and larger in fainter regions. However, most of the values are in accordance
with the values of Cantiello et al. [2020] which indicates valid aperture photometry.
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(a) (b)

(c)

Figure 17: Direct photometric comparison with the work of Cantiello et al. [2020].(a) Shows
the direct comparison of the g-band magnitudes for all available sources. (b) Shows the direct
comparison of the r-band magnitudes. (c) Shows the direct comparison of the i-band magnitudes.

Magnitude range µg σg σg/
√
N

21-22 0.059 0.100 0.010
22-23 0.062 0.153 0.008
23-24 0.055 0.168 0.006
24-25 0.024 0.219 0.007

Table 3: The mean off-set, standard deviation and standard deviation divided by the number of
objects per g magnitude range between the this work and the work of Cantiello et al. [2020]. N
is the number of objects per g magnitude range.

2.3.2 Compactness Correction

The Fornax Cluster is too far away to resolve GCs by their sizes and therefore another parameter
is introduced [Peng et al., 2011; Beasley and Trujillo, 2016a]: the compactness index, which we
will use to differentiate background galaxies from GCs. In this work, compactness is defined as
the magnitude at an aperture of 4 pixels minus the magnitude at 8 pixels. Compact objects will
add less light at a bigger aperture size and therefore have a small compactness value. However,
larger objects like background galaxies will add more light at bigger apertures and therefore
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have a larger compactness value. Even though a low compactness index means that objects are
compacter than objects with a higher value, it is not exactly the same as the compactness of
an object. Seeing also influences the compactness parameter, because a high seeing will increase
the blurriness of the objects and therefore the objects will have a higher compactness. To make
this compactness index independent of the atmospheric seeing, a normalization is applied in Eq.
2.3.2:

∆mnorm = ∆m−∆mstar, (3)

where ∆mstar is the mean compactness of stars (point sources) within the big galaxy frames
of the galaxy. The stars are selected in the same field and manner as the stars for the curve of
growth.

2.4 GC selection

The GC selection criteria are based upon 19 galaxies of which the GCs are already known due
to Jordán et al. [2015]. The GCs that are found in both Jordán et al. [2015] and in the FDS
data are referred to as known GCs and all the objects found in these 19 galaxies are referred
to as the complete data set. First of all, all the data is split according to their g-magnitude
into bins of 1 magnitude starting at a g magnitude of 21. The apparent magnitude limit of
g = 21 mag (Mg = −10.5 mag) is taken as a separation criteria between GC and ultra-compact
dwarf galaxies (UCDs) [Mieske, S. et al., 2004; Hilker et al., 2007; Saifollahi et al., 2021]. In
Table 4 the number of GCs and the complete data set per magnitude are shown.

Magnitude range NGC Ncomplete data set

21− 22 15 107
22− 23 69 312
23− 24 153 841

24− 24.5 64 581
24.5− 25 33 347

Table 4: Number of GCs per magnitude bin in the first 19 galaxies.

The GCs are selected per magnitude bin based upon their colors g − r and r − i and their
compactness value. In this 3d space, the data is selected which falls within a convex hull of the
GCs data. The convex hull of the GCs data is the smallest convex polygon that contains all the
data and an example of a convex hull can be seen in Fig. 18a.
To minimize the contaminants, only a selection of GCs are used for the convex hull. We want to
include all the points that are closest to the densest GC date in 3d. The distance to the densest
regions depends on the unknown photometric errors in the points and therefore the selection is
established using a special method, namely Kernel Density Estimation (KDE).

2.4.1 Kernel Density Estimation

Density estimation is focused on reproducing the density function based on a given data set.
KDE is a non-parametric method for the estimation of the probability density function of random
variables. Therefore KDE works for uni- and multi-variate data. The kernel density estimator
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(a) (b)

Figure 18: Left panel: Convex hull in 3d considering all the available GCs in the magnitude
range 21−22 mag. The 3d parameters are consisting of 2 colors g−r, r− i and the compactness
∆m. Right panel: Convex hull in 3d only considering a part of the available GCs to decrease
the amount of contamination in the magnitude range 21− 22 mag. If new sources are contained
within the convex hull, they will be considered a GC.

is given by Eq.4:

f̂h(x) =
1

nh

n∑
i=1

K

(
x− xi
h

)
, (4)

where K is the kernel function, h is the bandwidth and n is the number of data points. It is
possible to use several types of kernels and in this work only the Gaussian kernel is considered.
For every data point from the given data, a normal distribution is drawn where the variance is
equal to the bandwidth. A low bandwidth means that only very close points to the considered
points are given weight, while with a high bandwidth a larger amount of surrounding points
are given any weight. Therefore the bandwidth is important for the smoothness of the density
function. In this work the statistical function gaussian kde is used within the Python−based
ecosystem SciPy [Virtanen et al., 2020], which includes a bandwidth estimator. The default
estimator is Scott’s Rule [Scott, 2015]. This is implemented by computing a coefficient, Scott’s
factor. By multiplying this coefficient with the standard deviation of the sample, the bandwidth
is calculated visible in Eq.5

h = σsample × n−1./(d+4), (5)

where n is the number of data points and d the number of dimensions. The optimal bandwidth
choice is the one that minimizes the mean integrated squared error. This bandwidth estima-
tor works well for uni-modal distributions while multi-modal distributions will likely be over
smoothed.

2.4.2 KDE application

For every magnitude range KDE is applied in 3d (g− r, r− i and ∆m) parameter space. There-
fore at locations in 3d space where more data points (GCs) are located, the estimation of the
probability will be higher than a region where almost no data points are found. So KDE returns
the probability of a random data point being located at a certain position. Because the GCs are
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selected based on a convex hull, it is important to keep the contamination low. Therefore, the
known GC data is ordered from highest to lowest KDE probability. By considering all available
GCs in a magnitude range, the contamination will also be much higher. KDE makes it possible
to filter out the outliers and therefore decrease the amount of contamination. The minimum
amount of data points necessary is 4 to be able to create a convex hull in 3d space. As an
example, the magnitude range 21-22 is considered which contains a total of 15 GCs. However,
if all these 15 points are used to create the convex hull, 25 data points are found within the
convex hull from the complete data set. This means that 10 objects are selected which are no
GCs. However, if we do not consider the lowest KDE probability point and only regard 14 data
points for the convex hull creation, 17 data points are selected from the total data sample. By
neglecting this outlier, the contamination also decreased from ten to three data points.

In Fig. 19, the selected objects from the total data sample are shown for every possible
number of GCs considered to create the convex hull. Therefore, the horizontal axes starts at
four and these data points are located in the densest region. In general, the right side of the
figures show steeper slopes and therefore a higher contamination level. In Fig. 18, an example is
shown for the magnitude range 21-22 wherein the left panel all 15 GCs are taken for the convex
hull whereas in the right panel only 13 are considered. From these figures, we have selected the
number of GCs in such a manner to still utilize over 80% of the GC data set while reducing
the contamination level. The final number of GCs considered for the convex hull creation is
indicated by the red lines and these convex hulls are used for further GC selection. In Fig. 18b
the final convex hull for the g range of 21− 22 mag is shown, where the pink data points are not
considered for the convex hull decreasing the contamination level.

In Table 5 the number of initial GCs (Ntotal), the number of GCs considered for the con-
vex hull (Nselec), and the number of objects found in the total sample of the first 19 galaxies
(Nselect total sample) for every magnitude range are listed.

Magnitude range Ntotal Nselect Nselect total sample

21− 22 15 13 15
22− 23 69 60 71
23− 24 153 131 211

24− 24.5 64 47 76
24.5− 25 33 18 35

Table 5: The number of initial GCs (Ntotal), the number of GCs considered for the convex
hull (Nselec), and the number of objects found in the total sample of the first 19 galaxies
(Nselect total sample) for every magnitude range.

2.5 Background subtraction and corrections

Selecting GCs based on their colors and ∆m entails contamination of foreground stars and
background galaxies. Many foreground stars have g < 21 mag and are therefore partly already
selected out. However, this still leaves contamination from background galaxies and fainter
foreground stars. To investigate the contamination in the selection, several larger fields of 15 ×
15 arcmin2 including both emptier and denser fields, to take into account the intra-galactic
GCs [Cantiello et al., 2020], are taken. These field are also going through the same selection
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Figure 19: Number of globular clusters used for the creation of the convex hull with the corre-
sponding number of objects found in the complete data set.

procedure. This was eventually done for 75 frames of different fields and the average luminosity
function (LF) of the resulting selection of objects is divided by the total area of 225 arcmin2.
This results in a number of contaminating objects per magnitude bin per area. In Fig. 20 the
LF of the background contamination per area is showing low contamination in the bright region
(g : 21 − 23 mag) and higher contamination in the fainter regions (g : 23 − 24.5 mag). The
faintest magnitude ranges (g : 24 − 25 mag) have a lower number of contamination due to the
high amount of objects discarded for the selection. This results in a lower contamination, but in
a higher correction factor which is clarified in the next paragraph. For every galaxy, the amount
of background can be determined by multiplying this LF with the area of the galaxy.

For the determination of GC in a galaxy we consider a radius of 3 ×Reff . It is not exactly
known within what radius the GCs are part of the galaxy and this also depends on the size
of the galaxy. For certain comparisons, we have also considered a radius of 5 × Reff , which
in general decreases the S/N due to the higher amount of background objects. In Fig. 21 an
example is shown of 3×Reff area for galaxy FCC100. The center, ellipse parameters, and Reff
are taken from Venhola et al. [2018b] and are visible for the first 19 galaxies in Fig. 6. The area
of the ellipse can be calculated by πab, where a and b are respectively the semi-major and minor
axis of the ellipse. This area is then multiplied by every bin of the LF of Fig. 20 to determine
the amount of contamination per galaxy and subtracted from the globular cluster luminosity
function (GCLF) from the galaxy. The GCLF shows the number of CGs per magnitude bin. An

27



2.5 Background subtraction and corrections

Figure 20: Number of contaminants per area per magnitude bin.

example of the initial GCLF within 3×Reff can be seen in Fig. 22 (a) and after the subtraction
of the background (b).

Figure 21: Locations of all the GCs found in the frame of FCC 100. The points within the green
ellipse are the GCs within 3 ×Reff .

To take into account the missing GCs two corrections are considered: completeness and
selection correction. The completeness selection is calculated per magnitude range and accounts
for the GCs that are not found or matched with the GCs of Jordán et al. [2015]. The selection
correction is accounting for the GCs that are disregarded, to reduce the amount of contamination
in the GC sample, during the creation of the convex hulls. These corrections are calculated
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(a) (b)

(c)

Figure 22: (a) Initial GCLF within 3×Reff of FCC 100. (b) GCLF with background subtracted.
(c) GCLF with background subtracted and correction factors applied.

by dividing the number of missing objects by the total amount of objects used, in the case
of the selection correction, or found, in the case of the completeness selection, in a specific
magnitude range. For the calculation of the completeness correction, certain galaxies have not
been considered to avoid overcompensation. These were galaxies with an edge-on view or another
bright galaxy close which leads to an improper elliptical model and eventually more missing GCs.
This is the case for the galaxies FCC55, FCC255, FCC202, and FCC148. In the left panel of
Fig. 23 the incompleteness per magnitude bin per galaxy is shown for all the 19 galaxies. From
this Figure, it can be seen that the four galaxies mentioned above have a higher incompleteness
compared to the other galaxies. The galaxies eventually used for the completeness correction are
visible in the right panel. In the magnitude range from 21-23 all GCs are found and at fainter
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magnitudes the number of missing GCs is increasing. At magnitudes fainter than 26 almost
no GCs are found anymore and therefore only a magnitude range of 21-25 is considered and
corrected for.

Figure 23: Number of missing GCs compared to Jordán et al. [2015] per magnitude bin. Left
panel: all of the galaxies with missing GCs are shown. Right panel: Selection of galaxies used
to calculate the completeness correction.

The completeness correction is calculated by counting the amount of matched GCs and di-
viding this by the total amount of GCs from Jordán et al. [2015] in the same galaxy frame. To
turn this into a correction factor one is appended to be able to directly multiply it with the
found selection. The selection correction is calculated by the number of GCs used for selection
divided by the total number of GCs available per magnitude bin plus one to turn it into a factor.
The GCLF of every galaxy is multiplied by both the correction as a selection factor presented in
Table 6 and an example of a final GCLF is shown in the right panel of Fig. 22

Magnitude range Completeness correction Selection correction

21− 21.5 1 1.1538
21.5− 22 1 1.1538
22− 22.5 1 1.15
22.5− 23 1 1.15
23− 23.5 1.1071 1.1679
23.5− 24 1.0577 1.1679
24− 24.5 1.1695 1.3617
∗24.5− 25 2.2941 1.8333

Table 6: The correction factors at every magnitude range. The completeness correction is based
on the amount of GCs found within a specific area by Jordán et al. [2015] and how many of
those GCs are also found in this work. The selection correction is based on the amount of GCs
disregarded for the convex hull, which is explained in Section 2.4. ∗ The correction factors in
this magnitude range are not used because we only consider the number of GCs until the GCLF
peak of 24.5 mag.
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2.6 Number of GCs

A common method for establishing the final number of GCs for a galaxy is by summing the
different magnitude bins up to a magnitude of the GCLF peak, which is in the case of Fornax
at a g-band magnitude of 24.5 and multiplying this by 2 to account for the GCs at the faint
end of the GCLF [Harris and van den Bergh, 1981]. Due to the background subtraction and the
correction factors, the final GC numbers are not integers.

2.6.1 Uncertainties

Many factors play a role in the determination of the number of GCs. Therefore, many different
types of uncertainties are encountered. In this thesis only Poisson errors are considered, which
represents the error caused by stochastic processes in nature. After selecting the number of GCs
within a radius of 3×Reff , the error in the number of GCs in every bin is: NGC,error/bin =

√
NGC ,

where NGC is the number of GCs in every bin. To take into account the uncertainty from the
background subtraction, the standard error from Fig. 20 is defined as:

σctmn. normalized/bin/ =
σctmn./bin√
Nbin ∗ 225

, (6)

where σctmb./bin is the standard deviation of the contamination bin including all contami-
nating objects found in 75 fields. Nbin is the total number of objects in that bin and 225
is the normalization for the total area of the 15 × 15 arcmin2 fields. Afterward, the steps
that are applied to calculate the final number of globular clusters are also taken into account
when calculating the uncertainties. The new uncertainty after the background subtraction
is:

√
N2
GC,error/bin + σ2

ctmn. normalized/bin. The correction and selection factor are then multi-
plied with this uncertainty per bin. The last step is to sum up the number of GCs to a g-
magnitude of 24.5 and multiply this value with 2. For the uncertainty propagation this means:
NGC,error = (

√
N2
GC,error_bin1 +N2

GC,error_bin2 + ...) × 2, where NGC,error_bin1 is the error in-
cluding the background subtraction and corrections.

2.6.2 Background subtraction

Throughout this work, we have subtracted a background which was based on an average of 75
fields spread over the complete FDS, an averaged background subtraction. These fields include
a variety of densities and therefore a variety in the amount of background or intergalactic GCs.
However, the work of Cantiello et al. [2020] showed that the Fornax cluster contains regions
with a higher density of intergalactic GCs. These regions can be seen in Fig. 24, where espe-
cially the center field has a very high density of GCs due to the central galaxy of the Fornax
Cluster. Therefore the averaged background subtraction used in this work might underestimate
the number of GCs in these regions, while the background subtraction for galaxies in the outer
regions might be overestimated. To investigate these effects of the different backgrounds, we
have calculated the number of GCs for all the galaxies using local background subtraction. This
means the GCs within a specific radius, such as 3 × Reff or 5 × Reff , are considered as the
GCs of the galaxy and all the other GCs found in the galaxy image are used to construct the
background LF. The background LF from the resulting objects is normalized by the complete
area of the image.

In Fig. 25, the difference in number of GCs between local and averaged background sub-
traction versus the absolute r-band magnitude is shown for different effective radii. The upper
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Figure 24: GC distribution in the Fornax Cluster, where the density is the number of GC
candidates per arcmin2. For further info about the several markers and arrows see the original
figure in Cantiello et al. [2020].

left panel shows the difference in number considering 5 × Reff which is in good agreement for
the fainter galaxies but has several outliers in the bright region. In the right corner panel, we
have added the field number where the galaxy is located in and their error bars. In Fig. 5, the
complete FDS sample is visible including all the field numbers. The central field is field 11 and
contains also most outliers. The difference in number of GCs is caused by the lower amount of
objects when using local background subtraction. Due to the high number of GCs in the back-
ground in the central field [Cantiello et al., 2020] it is logical that the strongest effect is in Field
11 and at other locations where the density is higher. When we take a smaller radius to count
the GCs within a galaxy, we obtain the two lower rows from Fig. 25. The middle row shows
3 × Reff and the lower row shows 2 × Reff , which already shows a decrease in the difference.
The outliers remain but the difference in number of GCs increases more for smaller radii. This
effect is mostly observed for bright galaxies because the GCs in the the brighter galaxies are more
spread over the galaxy and many more will already be observed within a 5 × Reff radius than
in for example a 2 ×Reff radius. The biggest differences are found within the main field while
in the other fields the difference in the number of GCs due to local background subtraction is
not as high compared to averaged background subtraction. In these cases, the preference goes to
the averaged background subtraction due to the better statistics obtained and no opportunities
to have an over-subtracted background due to a larger dwarf galaxy close by which might enter
more objects in the field but not necessarily in the galaxy region itself. An example of such a
situation is with the galaxies FCC 47 and FCC 48. One side of the field of FCC48 is including
many GCs from the larger galaxy FCC47 and therefore the local background subtraction will
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Figure 25: Difference in number of GCs between local background subtraction and averaged
background subtraction versus the absolute r-band magnitude. The difference is taken as:
NGC,averaged background −NGC,local background.

be high, even though the pollution within the 3 ×Reff radius is not as high anymore as at the
outskirts of the image. These situations can lead to underestimating the number of GCs with
local background subtraction. To improve the use of local background subtraction, it is good
to only consider the objects from for example 5 × Reff till 25 × Reff , which is also used in for
example Carlsten et al. [2021a], to increase the statistics and decrease the effects just described.

An important difference between the two subtraction methods is the uncertainty. An ad-
vantage of the averaged background subtraction is the statistics behind compared to local back-
ground subtraction. In Table 7, the uncertainty for both methods are given per arcmin2. Where
σ averaged is the standard error in the local background subtraction calculated from Eq. 2.6.1
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and µ local is calculated by taking the mean of
√
Nnormalized for all the magnitude bins of fields

that have a contamination values, where Nnormalized is the number of contaminants in the local
field per arcmin2. The mean of the local background subtraction is including the magnitude bins
with 0 objects and therefore also no error to be consistent with the uncertainty calculations of the
averaged background field. As expected, the uncertainties in the local background subtraction
are much larger than the averaged background subtraction.

Magnitude range σ averaged µ local

21-21.5 0.0005 0.0120
21.5-22 0.0004 0.0194
22-22.5 0.0019 0.0719
22.5-23 0.0021 0.1130
23-23.5 0.0059 0.2644
23.5-24 0.0105 0.3779
24-24.5 0.0097 0.2940
24.5-25 0.0054 0.1885

Table 7: The uncertainties for different magnitude ranges of the averaged and local background
subtraction normalized per arcmin2. The uncertainty in the averaged background subtraction
(σ averaged) is calculated from Eq. 2.6.1. The uncertainty in the local background subtraction
is determined by taking the mean of the

√
Nnormalized, which is the number of contaminants in

the local field per arcmin2.

2.7 Specific frequency and the Dark Halo Mass

Once the number of GCs is known per galaxy, it is possible to calculate several parameters such
as the specific frequency (SN ), the specific mass frequency (TN ) and the dark matter halo mass
for every galaxy.

The specific frequency is defined as the number of globular clusters per unit of V-band
luminosity with a normalization of a galaxy of MV = −15 [Harris and van den Bergh, 1981].
The relation for the specific frequency is given below in Eq.7:

SN = NGC · 100.4(MV +15), (7)

where MV is the absolute magnitude in the V-band giving an indication of the stellar mass.
However, the FDS data only offers the bands g, r, i and u. Therefore, Mr will be used for the
physical interpretation and MV to compare to other works. To obtain MV a formula from Jester
et al. [2005] is used, which is intended for stars but is also applied to galaxies because no more
suitable transformation is available. Also, V lies between g and r, so this transformation is very
accurate. This formula is shown below in Eq. 8:

MV = Mg − 0.58 × (g − r)− 0.1, (8)

where Mg and Mr the absolute magnitudes calculated from the apparent magnitude obtained
by Sersic fitting from Venhola et al. [2018b]. They used GALFIT [Peng et al., 2002, 2010] and
the r-band images from the FDS. A distance modulus of 31.51 is assumed throughout this work
[Blakeslee et al., 2009]. In cases whereMr is used, Eq. 7 is still applied but with a normalization
factor of Mr = 15.
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Another important feature of a galaxy is its stellar mass, which is inferred in this work through
observed colors and the mass-to-light ratio in the same manner as Venhola et al. [2018b]. The
original formula is defined by Taylor et al. [2011] and seen in Eq. 9:

log10(
M∗
M�

) = 1.15 + 0.070 × (g − i)− 0.4Mi, (9)

where Mi is the absolute i-band magnitude which is not determined in the work of Venhola
et al. [2018b]. The Seŕsic model fitting was done for the r-band images and therefore they have
adapted the formula above to Eq. 10:

log10(
M∗
M�

) = 1.15 + 0.070 × (g − i)− 0.4Mr + 0.4 × (r − i), (10)

where the colors are measured within one effective radius Reff .

We will also take a look at the correlation between the stellar mass and the specific mass
frequency [Zepf and Ashman, 1993], TN . The specific mass frequency is defined in Eq.11:

TN ≡ NGC · 109M�/M∗. (11)

The catalog of Venhola et al. [2018a] does not include the surface brightness for the dwarf
galaxies. So to investigate the relation between the surface brightness and the number of GCs,
the surface brightness is determined using Eq. 2.7:

µr = r1 + 2.5 × log10(R2
eff ·

b

a
· π), (12)

where r1 is the magnitude measured within 1 × Reff and b
a is the axis ratio. These values

are directly taken from the catalog and the surface brightness is calculated in [mag/arcsec2].

Finally, the dark matter halo mass can also be determined based on relations from Harris
et al. [2017]. The total GCs mass is given by MGCS = NGC〈MGC〉, which can be divided by ηM ,
the mass ratio, to obtain the dark matter halo mass. For dwarf galaxies we can take a mean GC
mass of 1.0 × 105M� and ηM = 2.9 × 10−5 [Harris et al., 2017] to obtain the relation visible in
Eq. 13:

Mhalo = NGC × 3.14 · 109M�. (13)

2.8 Validity

The work of Liu et al. [2019] continued with the data and GC selection from Jordán et al.
[2015]; Villegas et al. [2010]; Cote et al. [2004]; Peng et al. [2008]. The work of Liu et al. [2019]
calculated the number of GCs for the available galaxies in the Fornax cluster considering all GCs
with pGC ≥ 0.5 and investigated the specific frequency of the GCs. They order the GCs based
on their galactocentric distances. In Fig. 26 a direct comparison is made between the number
of GCs of this work and from Liu et al. [2019] including the error. The blue line describes a
one-to-one correlation.

Liu et al. [2019] considers GC with pGC ≥ 0.5 and select only GCs that are brighter than 1σ
of the mean of the GCLF [Villegas et al., 2010]. They consider the same background correction
for all the galaxies based on 16 control fields. To determine the GCs that are part of the galaxy,
they order the GC based on their distance to the center of the galaxy and they add a number
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Figure 26: Number of GCs from Liu et al. [2019] versus the number of GCs from this work. The
blue line corresponds to a one-to-one correlation. The galaxy FCC number is included for the
outliers. Left panel: the area for the number of GCs used is 3×Reff . Right panel: the area for
the number of GCs used is 5 ×Reff .

based on the mean density of contaminants, area of the annulus between two subsequent GCs
and pGC . Based on these values, Liu et al. [2019] fit Sérsic radial profiles which are extrapolated
to infinity to determine the number of GCs per galaxy.

Due to different data sets and different methods, it is not expected to have a perfect corre-
lation between this work and the work of Liu et al. [2019]. However, many of the galaxies have
comparable values within the error bars. It is also good to note the dependence of the are, for
several galaxies the difference between an area of 3×Reff and 5×Reff results in a big difference
in the number of GCs. A couple of galaxies, are also noted as special cases in the work of Liu
et al. [2019] and retrieve a specific treatment. In this work, we do not consider specific galaxy
cases in determining the number of GCs.
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3 Results

To obtain the number of GCs for the total sample of 540 dwarf galaxies available in the FDS,
the galaxies have gone through the data reduction steps as explained in Section 2.2. In this
section, the database of GCs is described for 540 dwarf galaxies. This includes an estimate of
the number of GCs per galaxy, but the catalog also includes locations, g, r and i magnitudes and
compactness measurements of the observed GCs.

After obtaining all the sources within the images of the galaxies, they are divided into bins
based on their g magnitude. The sources are only considered as GCs when they are contained
within the convex hull of the corresponding g magnitude range. After this selection, we are left
with all the GCs found within the image of 15 × Reff . To make a selection of GCs per galaxy,
we only select data points that are found within a specific radius. Only sources within an ellipse
with major axis 3 × Reff are considered. The resulting number of GCs for all the galaxies is
visible in Fig. 27 versus the absolute r-band magnitude, where the right panel has uncertainties
included.

Figure 27: The number of GCs versus the absolute galactic r-band magnitude with and without
uncertainties. The negative values arise from galaxies with initially none or almost no GCs. The
background subtraction returns a negative LF which increases due to the multiplication of the
correction factors.

From Fig. 27, it is possible to see an increase in the number of GCs for brighter galaxies,
as expected. The total sample contains 540 galaxies of which 194 have a positive number of
GCs. The number of galaxies with zero or a negative amount of galaxies is increasing for fainter
galaxies as expected for low luminosity galaxies [Georgiev et al., 2010; Lim et al., 2018; Carlsten
et al., 2021a]. Several aspects of the galaxies can be used to investigate their relation with
the number of GCs. In the next section we will compare the complete sample to other works,
investigating the number of globular cluster NGC , specific frequency SN , specific mass frequency
TN and dark matter halo mass estimates.
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4 Analysis

For 540 dwarf galaxies in FDS sample, we have calculated the number of GCs of which 194
galaxies have GCs (NGC > 0). The uncertainty in the number of GCs is calculated considering
Poisson errors from the number of GCs and from the background subtraction. We have calculated
averages to find a trend within the number of GCs and specific frequency, which makes it more
accessible to draw conclusions and compare to other works.
In Section 4.1, we will discuss the radial range for the considerations of GCs; in Section 4.2
we compare our results for the number of GCs and the specific frequency to previous works;
in Section 4.3 we divide the complete sample of 540 galaxies into several sub samples based on
different parameters: spatial distribution, early- and late-type galaxies, nucleation and surface
brightness; in the last Section 4.4 we present estimates of the dark matter halo masses of the
Fornax dwarf galaxies.

4.1 Radial range to consider the GCs

An important choice is the radius wherein the GCs are counted and considered part of the galaxy.
This value depends on the radial distribution of the GCs in low mass dwarf galaxies. Therefore
the radius is often determined by deriving the half-number radius, the radius where half of the
GCs are contained within. Several works [Lim et al., 2018; Amorisco et al., 2018; van Dokkum
et al., 2017] have studied this GC half-number radius and the half-number radius of the GC
distribution is often taken as 1.5 − 2.0 × Reff but there remains uncertainty in these radial
profiles. Carlsten et al. [2021a]; Prole et al. [2019] also investigated the radial profile and find a
small preference for rGC > Reff . They counted the GCs within 2×Reff to investigate the radial
distribution and assume a Plummer profile for this distribution and find a half-number radius
of 1.2 × Reff . They corrected for the GCs outside of their radius by integrating the Plummer
profile to infinity. In this work, we take a larger radius of 3 × Reff while there is no correction
applied for GCs outside this radius. For larger galaxies a value of 5 × Reff would be better
suited due to the larger spread in the radial distribution from accretion of GCs. However, this
would also increase the Poisson noise due to more background sources, so a lower signal to noise.
A possible improvement for this work would be to use the local background subtraction for the
region around NGC 1399 due to the high contamination and use the averaged background sub-
traction for the other regions of the Fornax Cluster. For the calculation of the local background
it might be better to consider only data outside of a larger radius, such as 5 × Reff , and not
everything directly outside of the radius that is considered for the GC counts from the galaxy.
The region between 3 × Reff and 5 × Reff is still likely to contain GCs from the galaxy itself
and therefore not purely represent the background contamination around the galaxy.

4.2 Comparisons to previous works

Even though the counting of GCs is not a difficult task by itself, detecting them is. Therefore,
the works investigating the number of GCs is limited especially in the low-mass dwarf regime.
More massive galaxies have been studied in several surroundings such as Virgo by Peng et al.
[2008] and Fornax by Villegas et al. [2010]; Jordán et al. [2015]; Liu et al. [2019]. Samples of
nearby dwarf galaxies are also investigated by Lotz et al. [2004]; Georgiev et al. [2008, 2009]
and recently a larger sample of dwarf galaxies in Virgo and the Local Volume by Carlsten et al.
[2021a]. These referenced works are also the works used for comparisons. However, the number
of galaxies considered in this paper is the largest until now.
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4.2.1 Number of GCs

Figure 28: Left panel: The number of GCs versus the absolute galactic r-band magnitude. Right
panel: The number of GCs versus the.stellar mass. The black circles represent the mean value
and the error bars are the standard error of the mean.

To be able to compare the number of GCs to other works, we have calculated the mean
number of GCs. This is done by binning the data from Fig. 27 in either Mr or log( M∗

M�
) in

bin sizes of respectively 1 and 0.5. All the galaxies are considered for the calculation and the
resulting means can be seen in Fig. 28, where the stellar mass is calculated through Eq. 10. The
increase for brighter galaxies is clearly reflected in the mean values and the error in the number
of GCs is also increasing for brighter galaxies due to a larger spread and smaller sample sizes.
The error bars are displaying the standard error of the mean: σx̄ = σx√

N
, where σx is the standard

deviation. The higher the number of galaxies within a magnitude bin, the smaller the standard
deviation in a relative sense.

In the left panel of Fig. 29, we see the number of GCs versus the stellar mass of the Fornax
cluster, Virgo cluster [Peng et al., 2008; Carlsten et al., 2021a] and early-type satellites and small
group hosts in the Local Volume (LV) [Carlsten et al., 2021a]. The sample of the LV consists
of 177 dwarf galaxies, which is complete down to MV ∼ −10 [Carlsten et al., 2021b]. For the
Virgo sample Carlsten et al. [2021a] used the Next Generation Virgo Survey (NGVS) catalog
from Ferrarese et al. [2020] which is a sample of the center of the Virgo Cluster. The sample from
Peng et al. [2008] is complete with early-type member until BT < 12, containing very few dwarfs.

For low stellar masses almost no GCs are found and if GCs are present the highest numbers
are found in the Virgo Cluster. Increasing in stellar mass means in general an increase in number
of GCs and scatter. In the right panel of Fig. 29, the mean number of GCs is calculated for the
different data sets in the same manner. The Virgo cluster has on average the highest number
of GCs at a given stellar mass. The dwarf galaxies in the Local Volume and Fornax are more
comparable considering the number of GCs. In the range of log(M∗/M�) = 8 − 8.5 the Local
Volume has a higher average than Fornax. However, the average of the Local Volume in this
range is represented by a smaller sample than Fornax. Also, at higher stellar masses the number
of GCs in this work are more likely to serve as a lower boundary due to the area considered for
the GCs counts (see Section 2.8 and 4.1). The Virgo sample also shows a steeper increase with a
slight dip at log(M∗/M�) = 8.5− 9 caused by the manner of binning. Due to the sample size of
this work, our errors are smaller than the work of Carlsten et al. [2021a] especially in the lower
mass bins. This is best visible in Fig. 30, which is a zoomed in version of Fig. 29.
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Figure 29: Left panel: The number of GCs versus stellar mass for this work, the Virgo cluster
where the more massive galaxies are from Peng et al. [2008] and the low mass range of Virgo and
the Local Volume is from Carlsten et al. [2021a]. Right panel: Corresponding averages calculated
by binning the data in bin sizes of 0.5 and the error bars are the standard error of the mean.

However, one of the most prevailing parameters is the specific frequency calculated through
Eq. 7 and is defined as the number of GCs per galactic luminosity, which expresses the efficiency
of the GC formation with respect to other stars in the galaxy. In Fig. 31, the vertical axes is
given by SN,r which is the specific frequency calculated based on the absolute r-band magnitude
and normalized with a value of Mr = −15 mag. The specific frequency depends on the number
of GCs in a galaxy and galaxies with no GCs are presented as triangles at the bottom of Fig.
31. The trend for dwarf galaxies in SN is increasing for decreasing galactic luminosity [Peng
et al., 2008; Miller and Lotz, 2005; Durrell et al., 1996] which is in agreement with this work
(see Fig. 31). The decrease in the specific frequency is valid until galaxies with luminosities of
MV ≈ −20 mag, brighter galaxies show an increase again in the specific frequency [Peng et al.,
2008; Harris et al., 2013; Rhode et al., 2005].

In Fig. 32, the galaxies are too faint to show the flattening. It does compare the SN of this
work to Coma dwarfs [Lim et al., 2018] and UDGs [Lim et al., 2018] from the HST/ACS Coma
Treasure Survey. The UDGs of the Coma cluster have the highest SN . Due to the consistence
in the manner of binning method, some conclusions might be more difficult to draw with smaller
samples of other works. The higher SN from the Coma UDGs is visible in most bins however
in the brightest and faintest bin it is represented by one galaxy, which also explains the missing
error bars. The SN of the Fornax cluster is lower than the UDG samples but comparable to the
Coma dwarfs. The Coma dwarf sample consists of a total of 54 dwarfs and therefore the statistics
are better in this work leading to smaller uncertainties. Expectably, the SN is the highest in
Coma, since the galaxy density is the highest, followed by Virgo and lastly Fornax.

Another useful parameter is the specific mass frequency, TN , which depends the number of
GCs and the stellar mass of the galaxy calculated trough Eq. 11. In Fig. 33, data from the LV
and the Virgo cluster [Carlsten et al., 2021a] are displayed as well. The dashed black lines show
the specific mass frequencies for NGC = 1, 10, 20 and 30. The dwarfs in Virgo have a higher TN
than in the LV and Fornax, even though the differences are not so high around log(M∗/M�) ∼ 8.
The LV is in the same range as Fornax however with larger errors. In general for the low mass
galaxies the average number of GCs is lower than 1.
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Figure 30: Averages for the number of GCs versus the stellar masses. This image is a zoomed in
version of Figure 29.

Figure 31: Specific frequency versus the V-band magnitude. Galaxies with zero or no GC are
represented by the line on the bottom of the figure. Thee mean value for the specific frequency
is calculated per bin with a size of 1 mag

4.3 Subsamples

To take a closer look at the dwarf galaxies in Fornax, we divide the sample by different parame-
ters. This allows us to study possible environmental effects, but also the differences in the number
of GCs between early- and late-type galaxies and the presence of nuclear star clusters. We will
also divide the sample based on the surface brightness to see if this results in a significant differ-
ence in the specific frequency. All with the aim of understanding GC formation, and dark matter
halos. To test for significance throughout this section, we have applied Kolmonogrov-Smirnov
tests (KS-test).
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Figure 32: Left panel: The number of GCs versus the absolute V-band magnitude compared to
samples of the Coma cluster [Lim et al., 2018]. Right panel: The mean number of GCs versus
the V-band magnitude calculated in bins of 1 mag. The error bars are the standard error of the
mean.

Figure 33: Left panel: Specific mass frequency versus the stellar mass compared to the Virgo
cluster and the Local Volume [Carlsten et al., 2021a]. Right panel: The mean specific mass
frequency versus the stellar mass calculated in bins of 0.5. Galaxies with zero or no GCs are
represented by the triangles in the bottom of the figure.

4.3.1 Environment

Ngalaxies,all Ngalaxies with NGC>0

Fornax core 80 47
Outskirts 407 136
Fornax A 53 11

Table 8: Number of GCs in every regions with and without including the galaxies with NGC = 0.
Fornax core region is consisting of all the galaxies within < 0.7 deg of the central galaxy NGC
1399 (see blue inner circle in Fig. 7). Fornax A region contains all the galaxies within 1 deg of
Fornax A (see green circle in Fig. 7). The outskirt region contain all the residual galaxies.

The environment of a galaxy plays an important role in its creation and evolution and there-
fore also on the number of globular clusters. To investigate the effects of the environment on
the number of GCs per galaxy, we divide the galaxies in three groups based on their location:
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Fornax core, Fornax A and outskirt region. For more details on the differences between the
Fornax core and Fornax A region, see Su et al. [2021]. The Fornax core group is consisting of all
the galaxies within < 0.7 deg of the central galaxy NGC 1399 displayed by the inner blue circle
in Fig. 7, the Fornax A group is consisting of galaxies within 1 deg of Fornax A visible as the
green circle in Fig. 7 and the outskirts region is consisting of all the galaxies that are not part
of one of the previous groups. The number of galaxies in every group is visible in Fig. 8, where
the number of galaxies are included for the complete sample and for the positive NGC sample.
In the left panel of Fig. 34, the mean number of GCs is visible for every group versus the stellar
mass. For all the stellar masses the Fornax A regions seems to have the lowest amount of GCs
and the Fornax core region the largest number of GCs. In the right panel, the specific frequency
versus the absolute r-band also including the mean values for all the three regions. The Fornax
A region has a significantly lower SN than the Fornax core group. It is important to note that
the difference in binning in the two figures lead to a different amount of data points and not all
bins contain galaxies.

Figure 34: Left panel: Number of GCs versus the stellar mass including average values for
three different regions. Right panel: Specific frequency versus the absolute r-band magnitude.
Galaxies with zero or no GCs are represented by the triangles in the bottom of the figure. The
mean values are calculated per bin with a size of 1.

While the Fornax core group lies in the densest regions of the cluster, the amount of GCs
can be influenced by intragalactic GCs and GCs from NGC 1399. Therefore, we have also in-
vestigated the effects of local background subtraction on the mean of the Fornax core group.
In Fig. 35, the mean number of GCs is visible for the the three different regions with a local
background subtraction for the Fornax core group. The Fornax core group is definitely lower
due to the local backgrounds subtraction, yet the Fornax A group does remain lower. The local
background subtraction show its strongest decrease in the last two stellar mass bins. This is also
the range where observed the strongest effect in Section 2.6.2 and due to this decrease and the
overlapping error bars, it becomes difficult to draw any strong conclusions. It would be best to
investigate this further by taking a more sophisticated approach for the background subtraction
in the main region of Fornax or possibly investigate more specific cases, to find a clear trend
between the clustercentric distance and the specific frequency.

Liu et al. [2019] investigated the GC specific frequency for 43 early-type galaxies for Fornax
combined with the ETGs from Peng et al. [2008]. To investigate the environmental effect they
uses two parameters following the work of Guérou et al. [2015], who implemented a region of the
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Figure 35: Specific frequency versus the absolute r-band magnitude for three different regions.
The Fornax core region is calculated with local background subtraction. The Fornax A region
and the outskirts are calculated with averaged background subtracted.

15 closest neighbors. They find that low-mass galaxies located within the densest environments
with strong tidal forces actually strip the galaxies of their GCs, while the galaxies that are not in
these strong tidal fields but in denser regions have a higher GC formation efficiency. They find
low SN,z for galaxies within 10 × Reff of the massive host galaxies or most luminous galaxies
which is likely caused by tidal stripping of the GCs. 10 × Reff of NGC1399 and NGC1316 are
within ∼ 0.1 deg and respectively three and zero galaxies are found within this range. Therefore,
the possible stripping of GCs will not effect the averages strongly within the regions considered.

4.3.2 Early- and late-type

Ngalaxies,all Ngalaxies with NGC>0

Early-type 453 175
Late-type 85 17

Table 9: Total number of galaxies with and without GCs for early- and late-type galaxies.

In the dwarf galaxy catalog of Venhola et al. [2018a], the galaxies are also labeled as early- or
late-type galaxies with possible spiral structure. This distinction between early- and late-type
is through first order morphological classifications based on visual inspection and parametric
classification. For more details on the morphological classification see Venhola et al. [2018a].
The galaxies are divided into the groups early- or late-type galaxies.

In Table 9, the division between early- and late-type galaxies is given considering all the
540 galaxies in the sample. The left panel of Fig. 36, shows the number of GCs versus the
absolute r-band. The right, panel shows the specific frequency, where the galaxies with no GCs
are causing the lower means. The mean number of GCs is higher for early-type galaxies than for
late-type galaxies except for the last two bins where the error bars are larger and overlapping.

In the right panel of Fig. 36, the mean SN,r is derived based on the distinction between the
early- and late-type galaxies. The largest part of the sample is early-type as can be seen from
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Figure 36: Left panel: Number of GCs versus the absolute r-band magnitude including average
values for early- and late-type galaxies. Right panel: Specific frequency versus the absolute
r-band magnitude. The mean values are calculated per bin with a size of 1 mag. Galaxies with
zero or no GCs are represented by the triangles in the bottom of the figure.

Table 9, and the early-type galaxies also contain a higher percentage of galaxies with GCs than
the late-type galaxies. The early-type galaxies show an earlier increase in the number of GCs
than the late-type galaxies but have a similar mean for the brightest galaxies.
In the work of Georgiev et al. [2010], they compare the SN values of early- and late-type galaxies
from several works. They observe a similar trend for the early-type galaxies, so increasing SN for
decreasing luminosities. In Fig. 37 the specific frequencies for several different type of galaxies
is shown, most importantly for this work are the mean values for early- and late-type galaxies.
The mean values are calculated by binning the data in magnitude bins and the error bars are
showing one standard deviation. Georgiev et al. [2010] finds that late-type galaxies have a lower
mean at specific galaxy luminosities than early-type galaxies, just as in this work. There is also
quite some scatter in the fainter regions with large error bars, which are smaller in this work due
to the large sample size. We can conclude that the mean SN is significantly higher for early-type
galaxies than for late-type galaxies.

4.3.3 Nucleation

We can also divide the dwarf galaxy sample based on the presence of nuclear star clusters.
Venhola et al. [2018a]selected the galaxies with nuclear star clusters and found that towards the
center of the main cluster, the fraction of early-type and nucleated galaxies increases. This is
however not the case for the Fornax A region where the fractions are lower compared to the main
cluster and not a clear correlation is found. The division of the nucleated galaxies can be seen
in Fig. 38.

In Fig. 39, we show SN for the nucleated and non-nucleated galaxies. The SN for nucleated
galaxies is significantly higher than the non-nucleated galaxies.
In the work of Miller and Lotz [2007], they have investigated several Virgo and Fornax dwarfs
especially looking at the differences between nucleated and non-nucleated dwarfs. They find that
the nucleated sample is more centrally concentrated and has a higher SN than the non-nucleated
and less concentrated galaxies which is in agreement with this work. The nucleated sample in
Fornax is also more centrally concentrated [Venhola et al., 2019]. Carlsten et al. [2021a] also
investigated the effects of nucleated galaxies and confirms the results from Sánchez-Janssen et al.
[2019] stating that the nucleation fraction of dwarfs a dependence on the environment. Several
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Figure 37: The specific frequency versus the absolute V-band magnitude from different works
and different type of galaxies. The errors bars are displaying the standard deviation for every
magnitude bin. The dashed line represents the SN when a galaxy has one GC. For a complete
overview from the literature values included, see the original figure in Georgiev et al. [2010].

works with different data samples focused on early-type galaxies have found a significant differ-
ence between the nucleated and non-nucleated galaxies with an environmental trend [Ferguson
and Sandage, 1989; Miller and Lotz, 2007; Lim et al., 2018; Zanatta et al., 2021].

4.3.4 Surface brightness

The surface brightness is the amount of light per area in the sky and is calculated for all the
dwarf galaxies through Eq. 2.7. In Fig. 40, the surface brightness is visible at different stellar
masses. This data is binned in the horizontal axis with steps of 0.5 and in every bin the data is
divided into two equal sized groups where the surface brightness is ordered. This results in two
groups for every bin of with the lowest surface brightness galaxies (faint) and the highest surface
brightness (bright). In Fig. 41 the number of GCs is displayed versus the stellar mass including
the averages for the two surface brightness ranges. Galaxies with the same stellar mass and a
fainter surface brightness have on average a higher number of GCs. In the right panel, we can
see the SN,r versus Mr with the division of high and low surface brightness based on the stellar
mass. In general, the SN,r is higher for low surface brightness galaxies although the trend is and
difference is strongest in the brightest regions (Mr < −14).

There are not so many works that have investigated the relation between the number of GCs
and the surface brightness of dwarf galaxies. Yet it can give interesting insights on the ongoing
debate on the difference between Ultra-diffuse galaxies (UDGs) and dwarf galaxies. The number
of GCs has also been an important proxy for the dark matter halo mass for UDGs in several
clusters [Amorisco et al., 2018; Lim et al., 2018; Prole et al., 2018; Beasley and Trujillo, 2016a]
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Figure 38: Locations of different type of galaxies: non-nucleated dwarf ellipticals (dE(nN)),
nucleated dwarf ellipticals (dE(N)), late-type dwarf galaxies (Late-type) and giants. The inner
blue circle represents the core [Ferguson, 1989] and the outer the virial radius [Drinkwater et al.,
2001] of the cluster its main galaxy NGC 1399. The green circle has a one degree radius centered
at the Fornax A subgroup NGC 1316 [Drinkwater et al., 2001]. This figure comes from Venhola
et al. [2018b].

Figure 39: Left panel: Number of GCs versus the stellar mass including average values for
nucleated and non-nucleated galaxies. Right panel: Specific frequency versus the absolute r-band
magnitude including averages. Galaxies with zero or no GCs are represented by the triangles in
the bottom of the figure.
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Figure 40: The surface brightness versus the stellar mass, where the surface brightness is calcu-
lated through Eq. 2.7 and the stellar mass through Eq. 9. At every stellar mass bin of 0.5, the
data is divided in equal sizes of low and high surface brightness.

Figure 41: Left panel: Number of GCs versus the stellar mass including average values for low
and high surface brightness galaxies. Right panel: Specific frequency versus the absolute r-band
magnitude including averages. The high and low surface brightness groups are divided within
stellar mass bins from Fig. 40. Galaxies with zero or no GCs are represented by the triangles in
the bottom of the figure.

and these values are consistent within the range of dwarf galaxies. Lim et al. [2018] studied
UDGs in the Coma Cluster and finds that the SN is higher for UDGs than for dwarf galax-
ies. They also investigated the relation between the specific frequency and surface brightness
of dwarfs and UDGs. They observed that galaxies with µe ∼ 25 mag/arcsec2 have higher SN
values than higher surface brightness galaxies. However there is also a lot of scatter found in
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this trend resulting in a insignificant correlation.

The work of Miller and Lotz [2007] investigates mostly the differences between nucleated and
non-nucleated galaxies but also finds a trend in the surface brightness. The specific frequency
increases with decreasing central surface brightness for nucleated galaxies.

4.4 Dark Matter Halo Mass

Between the number of GCs and the dark matter halo mass is a well-known relation, see Eq.
13. This relation is built upon the ratio between the GCs mass and the halo mass of the host
galaxies, where the GCs mass is based in the number of GCs and the mass-to-light ratio for
GCs. Several works [Hudson et al., 2014; Harris et al., 2017; Beasley and Trujillo, 2016b; Spitler
and Forbes, 2009; Peng and Lim, 2016] studied this method and found that the ratio is constant
below a stellar mass of M∗ = 1011M�. Liu et al. [2019] also investigated this relation using this
method, where the dark matter halo mass is inferred from the global stellar mass-halo relations
from Behroozi et al. [2010]. They also found a decrease in the ratio for stellar masses higher
than 3 × 1010M�, possibly by the higher halo masses from Behroozi et al. [2010]. On the nu-
merical side, these relations can be investigated by semi-analytic models based on dark matter
trees [El-Badry et al., 2019]. Kruijssen [2015] suggested as an explanation for the linear relation
between the GC mass and the dark matter halo the environmental effects on the number of GCs
and the merging of galaxies. Therefore a possible explanation for the constant ratio can come
from the central limit theorem and the merging of galaxies [El-Badry et al., 2019; Choksi and
Gnedin, 2019; Bastian et al., 2020].

Even though the uncertainties are large, it gives a rough estimate of the dark matter halo
mass. In Fig. 42, the left panel shows the halo mass versus the absolute r-band magnitude and
the right panel versus the stellar mass. Only for galaxies with NGC > 0 the dark matter halo
mass can be calculated which does not mean that the galaxies with no GCs do not have a dark
matter halo mass. Galaxies with the same stellar mass or magnitude show a large spread in the
dark matter halo mass.

To infer strict conclusions about the halo mass from the previously investigates sub-samples
(environment, early- and late-type galaxies, nucleation and surface brightness) is not possible.

Figure 42: Left panel: Halo mass versus the absolute r-band magnitude. Right panel: Halo mass
versus stellar mass. The halo mass is calculated through Eq. 13.

49



5. Discussion

5 Discussion

The exact nature behind the formation of GCs remains obscure. The search started however
with the formation of massive ellipticals due to the high number of GCs while at low masses most
galaxies do not possess any GCs. Both observations and simulations are creating the framework
where GCs form early and quick and the galaxies SF is quenched at later times. The galaxy can
still accrete stars later on through dissipationless mergers. For the low mass regime, the dwarf
galaxies, it is possible that some GCs are destroyed. The GCs are possibly already stripped by
tidal interactions within their surroundings, destructed over cosmic time or disrupted early-on
[Fall and Rees, 1977; Vesperini, 1998; Fall and Zhang, 2001; Fall et al., 2005; Bastian, N. et al.,
2005]. However, it is also a possibility that the GCs were never formed in these galaxies. Georgiev
et al. [2010] observed isolated galaxies without GCs which implies that the lack of GCs in dwarf
galaxies can not be purely explained by tidal stripping.

Another topic is the GC formation efficiency. The relation between the number of GCs and
the galactic mass encourages an explanation from dark matter simulations. These simulations
can not yet explain the discrepancy between the GC and field star formation. In other words,
how can the difference in SN values for different galaxies and environments be explained? We
will discuss some of these problems and possible explanations below for the several findings rep-
resented in Section 4.

In Section 5.1, we will discuss the possible explanations for the difference in the number
of GCs for different clusters and within the Fornax Cluster; in Section 5.2, we will discuss the
trends for the higher number of GCs in early-type galaxies; in Section 5.3, we will elaborate on
possible formation paths for nuclear star cluster and their relation to GCs; in the last section
5.4, we discuss the effects of the surface brightness on the number of GCs.

5.1 Environment

In this work, we do not find a significant difference in the SN of the Fornax core region and the
outskirts regions. Even though the core region is denser and therefore it might be expected to
have a more effective GCs efficiency [Peng et al., 2008; Lim et al., 2018; Liu et al., 2019]. This can
have several explanations, such as the manner of sampling and investigating or specific reasons
valid for the Fornax cluster. We have divided the complete sample bases on their location from
NGC 1399 and Fornax A, NGC 1316. Another method could have been using the environmental
parameter from Guérou et al. [2015]; Liu et al. [2019]. This environmental parameter takes other
dense regions into account because it considers the 15 closest surrounding galaxies and the corre-
sponding area. The difference between the Fornax core region and the outskirts is not significant
but the average trend is higher as can be seen from Fig. 34. When only the early-type galaxies
are considered in these regions, we do observe an even larger difference between the averages of
the Fornax core region and the outskirts.

The Virgo and Fornax cluster are of course also different environments which can also be
seen from the average difference in the number of GCs for a fixed stellar mass (see Fig. 29).
Virgo has an estimated mass around 5− 6× 1014M� [Ferrarese et al., 2012; Kourkchi and Tully,
2017; Kashibadze, Olga G. et al., 2020] while the Fornax cluster has a virial mass of 7× 1013M�
[Drinkwater et al., 2001]. Fornax is likely dynamically more evolved and has a lower galaxy
density than the Virgo cluster. The lower galaxy density is also an explanation for the lower SN
in Fornax compared to the Coma cluster as seen in Fig. 32. A possible explanation for lower
average of number of GCs for the Fornax A group could come from the relatively large number of
late-type galaxies and non-nucleated galaxies and the low galaxy density in Fornax A. From the
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total Fornax A group ∼ 35% is late-type, compared to ∼ 19% and ∼ 15% respectively for Fornax
core region and the outskirts. To investigate this effect, we have only considered the early-type
galaxies in the three different samples and find that the difference in SN is not significant but
it remains lower than the other two regions. Considering the nucleation, Fornax A contains a
total of 53 galaxies and only one of these galaxies contains a nuclear star cluster. In Section
4.3.2 and 4.3.3, we have seen the significant difference between the early- and late-type galaxies
and nucleated galaxies and non-nucleated galaxies for the SN . However, the question remains
what caused or how large the effect was of for example the environment around Fornax A or if
the galaxy is nucleated or not. Likely the environment will play an important role if not directly
on the number of GCs than on the fact that a galaxy is nucleated or not or the distribution of
early- and late-type galaxies.

In the literature several solutions have been proposed for the higher SN in denser environ-
ments. One possibility for the higher SN for dwarf galaxies in denser environments could be the
earlier collapse of the subhalos, due to the higher merger rate in dense environments. Therefore
the GCs form during higher SFR densities compared to the subhalos further out [Kruijssen, 2015].
This idea was observationally found and discussed by Peng et al. [2008]. The higher number of
GCs is a result of a higher star cluster formation efficiency due to high pressure and densities
in the interstellar medium [Goddard et al., 2010; Kruijssen, 2012]. Models have confirmed the
higher GCs abundance in galaxies that formed earlier on [Mistani et al., 2016; Pfeffer et al., 2018;
Carleton et al., 2021].

Another possibility for the increased SN is that the GCs in denser galaxy regions are less af-
fected by destruction processes than GCs in outer region galaxies. Proposed models can be found
in Elmegreen [2010] and Kruijssen [2015]. The location of the GCs can be explained by these
theories through early mergers, which will cause the GCs to also be in the outskirts of the galaxy.

5.2 Early- late-type galaxies

We found that the SN is significantly higher for early-type galaxies than late-type galaxies.
However, it can also be seen that the differences are not so large for bright galaxies. For both the
number of GCs as SN the brightest two magnitude bins are overlapping. Late-type galaxies are
also further from the center of the cluster, residing in less dense regions which could also lead to
a lower SN . Georgiev et al. [2010] found that the specific luminosity SL for early-type galaxies
is twice the SL of late-type galaxies. At a specific GC luminosity, late-type galaxies usually have
a lower stellar mass than early-type galaxies. Late-type galaxies will likely form the GC in the
disc because the accretion through mergers is unlikely due to the disc-like properties. The works
of Bekki et al. [2006]; Rhode et al. [2005] explain the higher SN for massive elliptical galaxies
by hierarchical merging. One possible explanation for the formation of elliptical dwarf galaxies
is that they formed from late-type dwarf galaxies, like irregulars (dIrrs), through tidal processes
[Moore et al., 1998; Smith et al., 2015]. Yet dwarf ellipticals seem to have a higher number of
GCs than late-type galaxies contradicting this formation suggestion. It would be possible when
new GCs are formed during the transformation from dIrrs to elliptical resulting in younger GCs,
which are generally not found [Sánchez-Janssen and Aguerri, 2012].

5.3 Nuclear star clusters

Several works have investigated the difference in SN of nucleated and non-nucleated galaxies and
find a higher SN for nucleated galaxies which is also found in this work (see Fig. 39) [Miller and
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Lotz, 2007; Lim et al., 2018; Carlsten et al., 2021a; Zanatta et al., 2021]. There might be a bias
involved due to the radial distribution of the nucleated galaxies. The nucleated galaxies are more
towards the center of the cluster (see Fig. 38) where on average also a higher number of GCs is
found. Around a third of the nucleated galaxies is found within the Fornax core region. If we only
consider the galaxies within the Fornax core region, we also find a higher SN for the nucleated
galaxies but this can only be concluded for the brighter (MV < −12.5 mag) galaxy range. At
fainter magnitudes nucleated galaxies are not present. Carlsten et al. [2021a]; Sánchez-Janssen
et al. [2019] also found a secondary dependence on environment for the nucleation fraction of
early-type dwarf galaxies. Ordenes-Briceño et al. [2018] studied the Fornax dwarf population and
compared their nucleation fraction in the range of Rvir/4 < r < Rvir/2 to the results of Eigen-
thaler et al. [2018] who studied the range r < Rvir/4, and found similar nucleation fraction. Both
of these works studied the central dwarf region with the Next Generation Fornax Survey (NGFS).

The higher number of GCs corresponding with nucleated galaxies can also be linked to the
formation of the galaxies. It is possible that the nuclear star clusters were formed in early SF
period or by inspiralling GCs. That NSCs are found with a more metal poor population than
stars surrounding them, suggest that the NSCs are either formed before the stars or grow later
on but from less enriched gas (inspiralling GCs). However, it remains quite difficult for now to
put constraints on the metal-poor populations observationally [Seth et al., 2010; Kacharov et al.,
2018].

The other possible formation path, infalling GCs, was suggested for the first time by Tremaine
et al. [1975]. The dynamical friction created while orbiting would drag the GCs towards the
nucleus. For a more elaborate discussion on the formation and evolution of NSC see the review
on NSCs from Neumayer et al. [2020]. To improve the understanding of the relation between the
number of GCs and the NSC, spectral info obtained from IFU spectra will be critical [Fahrion
et al., 2019; Johnston et al., 2020].

5.4 Surface brightness

We have found a significance difference in the SN between low and high surface brightness
galaxies. It is important to note that the division of low and high surface brightness is not based
on one cut, but by dividing the sample in a stellar mass bin in two equal samples. This division
can be seen in Fig. 40 and especially at high stellar mass most dwarf galaxies in the sample have
in general a high surface brightness. We can draw the conclusion that at a specific stellar mass,
a low surface brightness galaxy will have a higher SN and number of GCs than high surface
brightness galaxies.

The work of Lim et al. [2018] found a higher number of GCs trend for UDGs with µe ∼ 25
mag/arcsec2, which is the surface brightness cut until log(M∗/M�) ∼ 7 − 7.5. Around this
stellar mass the trend starts while at lower stellar masses the average number of GCs is basically
zero in all galaxies. Miller and Lotz [2007] showed an increasing SN for lower surface brightness
nucleated galaxies. In our two equally divided samples, the number of nucleated galaxies in
the low surface brightness group is in most bins twice the number of nucleated galaxies in the
high surface brightness group. This introduces a bias because of the higher SN of nucleated
galaxies at higher stellar masses. Therefore, we have checked if the trend remains when we
consider nucleated and non-nucleated galaxies separately. The increase in SN remains for both
low surface brightness nucleated as non-nucleated galaxies with an increase in scatter and error
bars due to the smaller samples.
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6 Conclusions

In this work we have calculated the number of GCs in a sample of 540 dwarf galaxies from the
Fornax Cluster. Data is obtained from the Fornax Deep Survey Dwarf galaxy Catalog in the gri
bands. To improve the detection of the GCs, we model the light of the galaxy and subtract the
elliptical model. Photometry of all observed sources is obtained through SExctractor with an
aperture size of 8 pixels and to account for the missing light from larger radii, we apply aperture
correction. A total of 19 dwarf galaxies from our sample is also available from HST data, more
specifically the work of Jordán et al. [2015] who determined a probability (pGC) for a source
being a GC. We use the HST data to calibrate the GC sample, by matching our sources based
on their location to the GCs (pGC > 0.75) from Jordán et al. [2015]. This results in a GCs
catalog for 19 galaxies with FDS photometry. To determine GCs in the resulting dwarf galaxies,
we have considered three parameters for the selection: g− r, r− i and ∆m the compactness. We
have divided the GC sample from the 19 galaxies in g magnitude bins and constructed convex
hull in the 3d parameter space. New sources that are within these convex hulls are considered
as GCs. To take into account the contamination of intra-GCs or non-GCs sources, we subtract
a background which is an average number of sources found after the GC selection from 75 fields.
After the background subtraction, we correct for incompleteness from GCs that are not matched
to HST and from missing GCs due to the selection method. Only GCs in an ellipse of 3×Reff are
considered as GCs from the galaxy. The radius is strongly influenced by the larger galaxies which
can contain GCs further out. For future works, it would be interesting to investigate the radial
distribution of the GCs and possible adapt the 3×Reff radius. By counting the number of GCs
per magnitude bin until the GCLF peak and multiplying this number to account for the faint
end of the LF, we obtain the total number of GCs in the galaxy. This leaves us with a sample of
540 dwarf galaxies including their number of GCs, of which only 194 galaxies contain GCs. The
total sample of GCs is divided into several groups to investigate the influences on the number of
GCs and the specific frequency, SN , based on: location, early- late-type galaxies, nucleated and
non-nucleated galaxies and surface brightness. Below we present the main conclusions from this
work:

• We present the largest sample of dwarf galaxies with GC calculations in literature.

• The number of GCs is on average higher in the Virgo cluster than in Fornax. This is likely
due to the difference in mass and the fact that the Fornax cluster is more evolved.

• The number of GCs and the SN of galaxies in the Fornax core region are slightly higher
than the outskirt regions which can be explained by the higher density in these regions.
Higher density regions can have a higher SN due to the increased GCs formation, decreased
GCs destruction or effective quenching from the field stars formation.

• The SN is significantly lower in the Fornax A group compared to the Fornax core. The For-
nax A group contains a relatively large amount of late-type galaxies, but when considering
only early-type galaxies the SN remains lower in the Fornax A group.

• We find a higher number of GCs in early-type galaxies compared to late-type galaxies. This
result is likely biased from the distribution of the early- and late-type galaxies. Early-type
galaxies are located more in higher density regions which therefore could also lead to a
higher number of GCs.

• The SN is significantly higher in nucleated galaxies compared to non-nucleated galaxies.
Also here the distribution of the galaxies plays an important role because the nucleated
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galaxies are also located in higher density regions. The higher number of GCs in nucleated
galaxies can also be linked to the formation of the nuclear star clusters. One possible
formation mechanism for nuclear star clusters is the inspiralling of GCs which could explain
the more metal poor population compared to the surrounding stars.

• Galaxies with a comparable stellar mass and a lower surface brightness have more GCs
than galaxies with a high surface brightness. The number of nucleated galaxies is higher
in the lower surface brightness groups than in the higher surface brightness group. The
increase in the SN for low surface brightness groups remains when we only consider the
nucleated and non-nucleated galaxies separated.

• We present dark matter halo mass estimates for 194 dwarf galaxies based on their number
of GCs.

54



REFERENCES

References

Amorisco, N. C., Monachesi, A., Agnello, A., and White, S. D. M. (2018). The globular cluster
systems of 54 Coma ultra-diffuse galaxies: statistical constraints from HST data. MNRAS,
475(3):4235–4251.

Bastian, N., Pfeffer, J., Kruijssen, J. M. D., Crain, R. A., Trujillo-Gomez, S., and Reina-Campos,
M. (2020). The globular cluster system mass-halo mass relation in the E-MOSAICS simula-
tions. MNRAS, 498(1):1050–1061.

Bastian, N., Gieles, M., Lamers, H. J. G. L. M., Scheepmaker, R. A., and de Grijs, R. (2005). The
star cluster population of m - ii. age distribution and relations among the derived parameters.
A&A, 431(3):905–924.

Beasley, M. A. and Trujillo, I. (2016a). GLOBULAR CLUSTERS INDICATE THAT ULTRA-
DIFFUSE GALAXIES ARE DWARFS. The Astrophysical Journal, 830(1):23.

Beasley, M. A. and Trujillo, I. (2016b). GLOBULAR CLUSTERS INDICATE THAT ULTRA-
DIFFUSE GALAXIES ARE DWARFS. The Astrophysical Journal, 830(1):23.

Behroozi, P. S., Conroy, C., and Wechsler, R. H. (2010). A COMPREHENSIVE ANALYSIS OF
UNCERTAINTIES AFFECTING THE STELLAR MASS-HALO MASS RELATION FOR 0
<z< 4. The Astrophysical Journal, 717(1):379–403.

Bekki, K., Yahagi, H., and Forbes, D. A. (2006). The U-shaped Distribution of Globular Cluster-
specific Frequencies in a Biased Globular Cluster Formation Scenario. ApJL, 645(1):L29–L32.

Bertin, E. and Arnouts, S. (1996). SExtractor: Software for source extraction. AAPS, 117:393–
404.

Blakeslee, J. P., Jordán, A., Mei, S., Côté, P., Ferrarese, L., Infante, L., Peng, E. W., Tonry, J. L.,
and West, M. J. (2009). The ACS Fornax Cluster Survey. V. Measurement and Recalibration
of Surface Brightness Fluctuations and a Precise Value of the Fornax-Virgo Relative Distance.
ApJ, 694(1):556–572.

Cantiello, M., Venhola, A., Grado, A., Paolillo, M., D’Abrusco, R., Raimondo, G., Quintini,
M., Hilker, M., Mieske, S., Tortora, C., Spavone, M., Capaccioli, M., Iodice, E., Peletier, R.,
Barroso, J. F., Limatola, L., Napolitano, N., Schipani, P., van de Ven, G., Gentile, F., and
Covone, G. (2020). The Fornax Deep Survey with VST. IX. Catalog of sources in the FDS
area with an example study for globular clusters and background galaxies. AAP, 639:A136.

Carleton, T., Guo, Y., Munshi, F., Tremmel, M., and Wright, A. (2021). An excess of globular
clusters in Ultra-Diffuse Galaxies formed through tidal heating. MNRAS, 502(1):398–406.

Carlsten, S. G., Greene, J. E., Beaton, R. L., and Greco, J. P. (2021a). ELVES II: GCs and
Nuclear Star Clusters of Dwarf Galaxies; The Importance of Environment. arXiv e-prints,
page arXiv:2105.03440.

Carlsten, S. G., Greene, J. E., Peter, A. H. G., Beaton, R. L., and Greco, J. P. (2021b). Lu-
minosity Functions and Host-to-host Scatter of Dwarf Satellite Systems in the Local Volume.
ApJ, 908(1):109.

55



REFERENCES

Carretta, E., Bragaglia, A., Gratton, R. G., Recio-Blanco, A., Lucatello, S., D’Orazi, V., and
Cassisi, S. (2010). Properties of stellar generations in globular clusters and relations with
global parameters ***. A&A, 516:A55.

Choksi, N. and Gnedin, O. Y. (2019). Origins of scaling relations of globular cluster systems.
MNRAS, 488(4):5409–5419.

Cote, P., Blakeslee, J. P., Ferrarese, L., Jordan, A., Mei, S., Merritt, D., Milosavljević, M., Peng,
E. W., Tonry, J. L., and West, M. J. (2004). The ACS virgo cluster survey. i. introduction to
the survey. The Astrophysical Journal Supplement Series, 153(1):223–242.

Côté, P., Marzke, R. O., and West, M. J. (1998). The Formation of Giant Elliptical Galaxies
and Their Globular Cluster Systems. ApJ, 501(2):554–570.

Côté, P., Marzke, R. O., West, M. J., and Minniti, D. (2000). Evidence for the Hierarchical
Formation of the Galactic Spheroid. ApJ, 533(2):869–883.

Covey, K. R., Ivezić, Ž., Schlegel, D., Finkbeiner, D., Padmanabhan, N., Lupton, R. H., Agüeros,
M. A., Bochanski, J. J., Hawley, S. L., West, A. A., Seth, A., Kimball, A., Gogarten, S. M.,
Claire, M., Haggard, D., Kaib, N., Schneider, D. P., and Sesar, B. (2007). Stellar SEDs from
0.3 to 2.5 µm: Tracing the Stellar Locus and Searching for Color Outliers in the SDSS and
2MASS. AJ, 134(6):2398–2417.

Dirsch, B., Richtler, T., Geisler, D., Forte, J. C., Bassino, L. P., and Gieren, W. P. (2003). The
Globular Cluster System of NGC 1399. I. A Wide-Field Photometric Study. AJ, 125(4):1908–
1925.

Dirsch, B., Schuberth, Y., and Richtler, T. (2005). A wide-field photometric study of the globular
cluster system of NGC 4636. AAP, 433(1):43–56.

Dirsch, B., Richtler, T., and Bassino, L. P. (2003). The globular cluster systems of ngc 3258 and
ngc 3268 in the antlia cluster*. A&A, 408(3):929–939.

Drinkwater, M. J., Gregg, M. D., and Colless, M. (2001). Substructure and Dynamics of the
Fornax Cluster. ApJL, 548(2):L139–L142.

Durrell, P. R., Harris, W. E., Geisler, D., and Pudritz, R. E. (1996). Globular Cluster Systems
in Dwarf Elliptical Galaxies. II. The Virgo Cluster. AJ, 112:972.

Eigenthaler, P., Puzia, T., Taylor, M., Ordenes-Briceño, Y., Muñoz, R., Ribbeck, K., Alamo-
Martínez, K., Zhang, H., Ángel, S., Capaccioli, M., Côté, P., Ferrarese, L., Galaz, G., Grebel,
E., Hempel, M., Hilker, M., Lançon, A., Mieske, S., Miller, B., and Spengler, C. (2018). The
next generation fornax survey (ngfs). ii. the central dwarf galaxy population. The Astrophysical
Journal, 855.

El-Badry, K., Quataert, E., Weisz, D. R., Choksi, N., and Boylan-Kolchin, M. (2019). The
formation and hierarchical assembly of globular cluster populations. MNRAS, 482(4):4528–
4552.

Elmegreen, B. G. (2010). THE GLOBULAR CLUSTER MASS FUNCTION AS a REMNANT
OF VIOLENT BIRTH. The Astrophysical Journal, 712(2):L184–L188.

Elmegreen, B. G. and Efremov, Y. N. (1997). A universal formation mechanism for open and
globular clusters in turbulent gas. The Astrophysical Journal, 480(1):235–245.

56



REFERENCES

Fahrion, K., Lyubenova, M., van de Ven, G., Leaman, R., Hilker, M., Martín-Navarro, I., Zhu,
L., Alfaro-Cuello, M., Coccato, L., Corsini, E. M., Falcón-Barroso, J., Iodice, E., McDermid,
R. M., Sarzi, M., and de Zeeuw, T. (2019). Constraining nuclear star cluster formation using
MUSE-AO observations of the early-type galaxy FCC 47. AAP, 628:A92.

Fall, S. M., Chandar, R., and Whitmore, B. C. (2005). The age distribution of massive star
clusters in the antennae galaxies. The Astrophysical Journal, 631(2):L133–L136.

Fall, S. M. and Rees, M. J. (1977). Survival and disruption of galactic substructure. MNRAS,
181:37P–42P.

Fall, S. M. and Zhang, Q. (2001). Dynamical evolution of the mass function of globular star
clusters. The Astrophysical Journal, 561(2):751–765.

Ferguson, H. C. (1989). Population Studies in Groups and Clusters of Galaxies. II. A Catalog of
Galaxies in the Central 3.5 Degrees of the Fornax Cluster. AJ, 98:367.

Ferguson, H. C. and Sandage, A. (1989). The Spatial Distributions and Intrinsic Shapes of Dwarf
Elliptical Galaxies in the Virgo and Fornax Clusters. ApJL, 346:L53.

Ferrarese, L., Côté, P., Cuillandre, J.-C., Gwyn, S. D. J., Peng, E. W., MacArthur, L. A., Duc,
P.-A., Boselli, A., Mei, S., Erben, T., McConnachie, A. W., Durrell, P. R., Mihos, J. C.,
Jordán, A., Lançon, A., Puzia, T. H., Emsellem, E., Balogh, M. L., Blakeslee, J. P., van
Waerbeke, L., Gavazzi, R., Vollmer, B., Kavelaars, J. J., Woods, D., Ball, N. M., Boissier, S.,
Courteau, S., Ferriere, E., Gavazzi, G., Hildebrandt, H., Hudelot, P., Huertas-Company, M.,
Liu, C., McLaughlin, D., Mellier, Y., Milkeraitis, M., Schade, D., Balkowski, C., Bournaud, F.,
Carlberg, R. G., Chapman, S. C., Hoekstra, H., Peng, C., Sawicki, M., Simard, L., Taylor, J. E.,
Tully, R. B., van Driel, W., Wilson, C. D., Burdullis, T., Mahoney, B., and Manset, N. (2012).
THE NEXT GENERATION VIRGO CLUSTER SURVEY (NGVS). i. INTRODUCTION TO
THE SURVEY. The Astrophysical Journal Supplement Series, 200(1):4.

Ferrarese, L., Côté, P., MacArthur, L. A., Durrell, P. R., Gwyn, S. D. J., Duc, P.-A., Sánchez-
Janssen, R., Santos, M., Blakeslee, J. P., Boselli, A., Boyer, F., Cantiello, M., Courteau, S.,
Cuillandre, J.-C., Emsellem, E., Erben, T., Gavazzi, G., Guhathakurta, P., Huertas-Company,
M., Jordán, A., Lançon, A., Liu, C., Mei, S., Mihos, J. C., Peng, E. W., Puzia, T. H., Roediger,
J., Schade, D., Taylor, J. E., Toloba, E., and Zhang, H. (2020). The Next Generation Virgo
Cluster Survey (NGVS). XIV. The Discovery of Low-mass Galaxies and a New Galaxy Catalog
in the Core of the Virgo Cluster. ApJ, 890(2):128.

Forbes, D. A., Brodie, J. P., and Huchra, J. (1996). Globular Cluster Luminosity Functions and
the Hubble Constant from WFPC2 Imaging: The Dominant Group Elliptical NGC 5846. AJ,
112:2448.

Gaia Collaboration, Brown, A. G. A., Vallenari, A., Prusti, T., de Bruijne, J. H. J., Babusiaux,
C., Bailer-Jones, C. A. L., Biermann, M., Evans, D. W., Eyer, L., Jansen, F., Jordi, C.,
Klioner, S. A., Lammers, U., Lindegren, L., Luri, X., Mignard, F., Panem, C., Pourbaix, D.,
Randich, S., Sartoretti, P., Siddiqui, H. I., Soubiran, C., van Leeuwen, F., Walton, N. A.,
Arenou, F., Bastian, U., Cropper, M., Drimmel, R., Katz, D., Lattanzi, M. G., Bakker, J.,
Cacciari, C., Castañeda, J., Chaoul, L., Cheek, N., De Angeli, F., Fabricius, C., Guerra, R.,
Holl, B., Masana, E., Messineo, R., Mowlavi, N., Nienartowicz, K., Panuzzo, P., Portell, J.,
Riello, M., Seabroke, G. M., Tanga, P., Thévenin, F., Gracia-Abril, G., Comoretto, G., Garcia-
Reinaldos, M., Teyssier, D., Altmann, M., Andrae, R., Audard, M., Bellas-Velidis, I., Benson,

57



REFERENCES

K., Berthier, J., Blomme, R., Burgess, P., Busso, G., Carry, B., Cellino, A., Clementini,
G., Clotet, M., Creevey, O., Davidson, M., De Ridder, J., Delchambre, L., Dell’Oro, A.,
Ducourant, C., Fernández-Hernández, J., Fouesneau, M., Frémat, Y., Galluccio, L., García-
Torres, M., González-Núñez, J., González-Vidal, J. J., Gosset, E., Guy, L. P., Halbwachs,
J. L., Hambly, N. C., Harrison, D. L., Hernández, J., Hestroffer, D., Hodgkin, S. T., Hutton,
A., Jasniewicz, G., Jean-Antoine-Piccolo, A., Jordan, S., Korn, A. J., Krone-Martins, A.,
Lanzafame, A. C., Lebzelter, T., Löffler, W., Manteiga, M., Marrese, P. M., Martín-Fleitas,
J. M., Moitinho, A., Mora, A., Muinonen, K., Osinde, J., Pancino, E., Pauwels, T., Petit,
J. M., Recio-Blanco, A., Richards, P. J., Rimoldini, L., Robin, A. C., Sarro, L. M., Siopis, C.,
Smith, M., Sozzetti, A., Süveges, M., Torra, J., van Reeven, W., Abbas, U., Abreu Aramburu,
A., Accart, S., Aerts, C., Altavilla, G., Álvarez, M. A., Alvarez, R., Alves, J., Anderson, R. I.,
Andrei, A. H., Anglada Varela, E., Antiche, E., Antoja, T., Arcay, B., Astraatmadja, T. L.,
Bach, N., Baker, S. G., Balaguer-Núñez, L., Balm, P., Barache, C., Barata, C., Barbato, D.,
Barblan, F., Barklem, P. S., Barrado, D., Barros, M., Barstow, M. A., Bartholomé Muñoz,
S., Bassilana, J. L., Becciani, U., Bellazzini, M., Berihuete, A., Bertone, S., Bianchi, L.,
Bienaymé, O., Blanco-Cuaresma, S., Boch, T., Boeche, C., Bombrun, A., Borrachero, R.,
Bossini, D., Bouquillon, S., Bourda, G., Bragaglia, A., Bramante, L., Breddels, M. A., Bressan,
A., Brouillet, N., Brüsemeister, T., Brugaletta, E., Bucciarelli, B., Burlacu, A., Busonero, D.,
Butkevich, A. G., Buzzi, R., Caffau, E., Cancelliere, R., Cannizzaro, G., Cantat-Gaudin, T.,
Carballo, R., Carlucci, T., Carrasco, J. M., Casamiquela, L., Castellani, M., Castro-Ginard,
A., Charlot, P., Chemin, L., Chiavassa, A., Cocozza, G., Costigan, G., Cowell, S., Crifo, F.,
Crosta, M., Crowley, C., Cuypers, J., Dafonte, C., Damerdji, Y., Dapergolas, A., David, P.,
David, M., de Laverny, P., De Luise, F., De March, R., de Martino, D., de Souza, R., de
Torres, A., Debosscher, J., del Pozo, E., Delbo, M., Delgado, A., Delgado, H. E., Di Matteo,
P., Diakite, S., Diener, C., Distefano, E., Dolding, C., Drazinos, P., Durán, J., Edvardsson, B.,
Enke, H., Eriksson, K., Esquej, P., Eynard Bontemps, G., Fabre, C., Fabrizio, M., Faigler, S.,
Falcão, A. J., Farràs Casas, M., Federici, L., Fedorets, G., Fernique, P., Figueras, F., Filippi,
F., Findeisen, K., Fonti, A., Fraile, E., Fraser, M., Frézouls, B., Gai, M., Galleti, S., Garabato,
D., García-Sedano, F., Garofalo, A., Garralda, N., Gavel, A., Gavras, P., Gerssen, J., Geyer,
R., Giacobbe, P., Gilmore, G., Girona, S., Giuffrida, G., Glass, F., Gomes, M., Granvik, M.,
Gueguen, A., Guerrier, A., Guiraud, J., Gutiérrez-Sánchez, R., Haigron, R., Hatzidimitriou,
D., Hauser, M., Haywood, M., Heiter, U., Helmi, A., Heu, J., Hilger, T., Hobbs, D., Hofmann,
W., Holland, G., Huckle, H. E., Hypki, A., Icardi, V., Janßen, K., Jevardat de Fombelle,
G., Jonker, P. G., Juhász, Á. L., Julbe, F., Karampelas, A., Kewley, A., Klar, J., Kochoska,
A., Kohley, R., Kolenberg, K., Kontizas, M., Kontizas, E., Koposov, S. E., Kordopatis, G.,
Kostrzewa-Rutkowska, Z., Koubsky, P., Lambert, S., Lanza, A. F., Lasne, Y., Lavigne, J. B.,
Le Fustec, Y., Le Poncin-Lafitte, C., Lebreton, Y., Leccia, S., Leclerc, N., Lecoeur-Taibi, I.,
Lenhardt, H., Leroux, F., Liao, S., Licata, E., Lindstrøm, H. E. P., Lister, T. A., Livanou,
E., Lobel, A., López, M., Managau, S., Mann, R. G., Mantelet, G., Marchal, O., Marchant,
J. M., Marconi, M., Marinoni, S., Marschalkó, G., Marshall, D. J., Martino, M., Marton,
G., Mary, N., Massari, D., Matijevič, G., Mazeh, T., McMillan, P. J., Messina, S., Michalik,
D., Millar, N. R., Molina, D., Molinaro, R., Molnár, L., Montegriffo, P., Mor, R., Morbidelli,
R., Morel, T., Morris, D., Mulone, A. F., Muraveva, T., Musella, I., Nelemans, G., Nicastro,
L., Noval, L., O’Mullane, W., Ordénovic, C., Ordóñez-Blanco, D., Osborne, P., Pagani, C.,
Pagano, I., Pailler, F., Palacin, H., Palaversa, L., Panahi, A., Pawlak, M., Piersimoni, A. M.,
Pineau, F. X., Plachy, E., Plum, G., Poggio, E., Poujoulet, E., Prša, A., Pulone, L., Racero,
E., Ragaini, S., Rambaux, N., Ramos-Lerate, M., Regibo, S., Reylé, C., Riclet, F., Ripepi,
V., Riva, A., Rivard, A., Rixon, G., Roegiers, T., Roelens, M., Romero-Gómez, M., Rowell,

58



REFERENCES

N., Royer, F., Ruiz-Dern, L., Sadowski, G., Sagristà Sellés, T., Sahlmann, J., Salgado, J.,
Salguero, E., Sanna, N., Santana-Ros, T., Sarasso, M., Savietto, H., Schultheis, M., Sciacca,
E., Segol, M., Segovia, J. C., Ségransan, D., Shih, I. C., Siltala, L., Silva, A. F., Smart, R. L.,
Smith, K. W., Solano, E., Solitro, F., Sordo, R., Soria Nieto, S., Souchay, J., Spagna, A.,
Spoto, F., Stampa, U., Steele, I. A., Steidelmüller, H., Stephenson, C. A., Stoev, H., Suess,
F. F., Surdej, J., Szabados, L., Szegedi-Elek, E., Tapiador, D., Taris, F., Tauran, G., Taylor,
M. B., Teixeira, R., Terrett, D., Teyssandier, P., Thuillot, W., Titarenko, A., Torra Clotet, F.,
Turon, C., Ulla, A., Utrilla, E., Uzzi, S., Vaillant, M., Valentini, G., Valette, V., van Elteren,
A., Van Hemelryck, E., van Leeuwen, M., Vaschetto, M., Vecchiato, A., Veljanoski, J., Viala,
Y., Vicente, D., Vogt, S., von Essen, C., Voss, H., Votruba, V., Voutsinas, S., Walmsley, G.,
Weiler, M., Wertz, O., Wevers, T., Wyrzykowski, Ł., Yoldas, A., Žerjal, M., Ziaeepour, H.,
Zorec, J., Zschocke, S., Zucker, S., Zurbach, C., and Zwitter, T. (2018). Gaia Data Release 2.
Summary of the contents and survey properties. AAP, 616:A1.

Georgiev, I. Y., Goudfrooij, P., Puzia, T. H., and Hilker, M. (2008). Old Globular Clusters in
Magellanic-Type Dwarf Irregular Galaxies. AJ, 135(5):1858–1876.

Georgiev, I. Y., Puzia, T. H., Goudfrooij, P., and Hilker, M. (2010). Globular cluster systems in
nearby dwarf galaxies – III. Formation efficiencies of old globular clusters*. Monthly Notices
of the Royal Astronomical Society, 406(3):1967–1984.

Georgiev, I. Y., Puzia, T. H., Hilker, M., and Goudfrooij, P. (2009). Globular cluster systems in
nearby dwarf galaxies - I. HST/ACS observations and dynamical properties of globular clusters
at low environmental density. MNRAS, 392(2):879–893.

Goddard, Q. E., Bastian, N., and Kennicutt, R. C. (2010). On the fraction of star clusters
surviving the embedded phase. MNRAS, 405(2):857–869.

Guérou, A., Emsellem, E., McDermid, R. M., Côté, P., Ferrarese, L., Blakeslee, J. P., Dur-
rell, P. R., MacArthur, L. A., Peng, E. W., Cuillandre, J.-C., and Gwyn, S. (2015). THE
NEXT GENERATION VIRGO CLUSTER SURVEY. XII. STELLAR POPULATIONS AND
KINEMATICS OF COMPACT, LOW-MASS EARLY-TYPE GALAXIES FROM GEMINI
GMOS-IFU SPECTROSCOPY. The Astrophysical Journal, 804(1):70.

Hamraz, E., Peletier, R. F., Khosroshahi, H. G., Valentijn, E. A., den Brok, M., and Venhola,
A. (2019). Young stellar populations in early-type dwarf galaxies. Astronomy & Astrophysics,
625:A94.

Hanisch, R. J. (1989). STSDAS: The Space Telescope Science Data Analysis System, pages
129–140. Springer US, Boston, MA.

Harris, G. L. H., Harris, W. E., and Geisler, D. (2004). Wide-Field Washington Photometry
of the NGC 5128 Globular Cluster System. II. Large-Scale Properties of the System. AJ,
128(2):723–735.

Harris, W. E. (1996). A Catalog of Parameters for Globular Clusters in the Milky Way. AJ,
112:1487.

Harris, W. E., Blakeslee, J. P., and Harris, G. L. H. (2017). Galactic dark matter halos and glob-
ular cluster populations. III. extension to extreme environments. The Astrophysical Journal,
836(1):67.

59



REFERENCES

Harris, W. E., Harris, G. L., and Hudson, M. J. (2015). DARKMATTER HALOS IN GALAXIES
AND GLOBULAR CLUSTER POPULATIONS. II. METALLICITY AND MORPHOLOGY.
The Astrophysical Journal, 806(1):36.

Harris, W. E., Harris, G. L. H., and Alessi, M. (2013). A CATALOG OF GLOBULAR CLUSTER
SYSTEMS: WHAT DETERMINES THE SIZE OF a GALAXY's GLOBULAR CLUSTER
POPULATION? The Astrophysical Journal, 772(2):82.

Harris, W. E. and van den Bergh, S. (1981). Globular clusters in galaxies beyond the local group.
I. New cluster systems in selected northern ellipticals. AJ, 86:1627–1642.

Hilker, M., Baumgardt, H., Infante, L., Drinkwater, M., Evstigneeva, E., and Gregg, M. (2007).
Dynamical masses of ultra-compact dwarf galaxies in Fornax. AAP, 463(1):119–130.

Holtzman, J. A., Faber, S. M., Shaya, E. J., Lauer, T. R., Groth, J., Hunter, D. A., Baum,
W. A., Ewald, S. P., Hester, J. J., Light, R. M., Lynds, C. R., O’Neil, E. J., J., and Westphal,
J. A. (1992). Planetary Camera Observations of NGC 1275: Discovery of a Central Population
of Compact Massive Blue Star Clusters. AJ, 103:691.

Hudson, M. J., Harris, G. L., and Harris, W. E. (2014). DARKMATTER HALOS IN GALAXIES
AND GLOBULAR CLUSTER POPULATIONS. The Astrophysical Journal, 787(1):L5.

Iodice, E., Capaccioli, M., Grado, A., Limatola, L., Spavone, M., Napolitano, N. R., Paolillo, M.,
Peletier, R. F., Cantiello, M., Lisker, T., Wittmann, C., Venhola, A., Hilker, M., D’Abrusco,
R., Pota, V., and Schipani, P. (2016). The Fornax Deep Survey with VST. I. The Extended
and Diffuse Stellar Halo of NGC 1399 out to 192 kpc. ApJ, 820(1):42.

Jester, S., Schneider, D. P., Richards, G. T., Green, R. F., Schmidt, M., Hall, P. B., Strauss,
M. A., Vanden Berk, D. E., Stoughton, C., Gunn, J. E., Brinkmann, J., Kent, S. M., Smith,
J. A., Tucker, D. L., and Yanny, B. (2005). The Sloan Digital Sky Survey View of the Palomar-
Green Bright Quasar Survey. AJ, 130(3):873–895.

Johnston, E., Puzia, T., D’Ago, G., Eigenthaler, P., Galaz, G., Häußler, B., Mora, M., Ordenes-
Briceño, Y., Rong, Y., Spengler, C., Vogt, F., Côté, P., Grebel, E., Hilker, M., Mieske, S.,
Miller, B., Sánchez-Janssen, R., Taylor, M., and Zhang, H. (2020). The next generation fornax
survey (ngfs): Vii. a muse view of the nuclear star clusters in fornax dwarf galaxies. Monthly
Notices of the Royal Astronomical Society, 495:2247–2264.

Jordan, A., Blakeslee, J. P., Cote, P., Ferrarese, L., Infante, L., Mei, S., Merritt, D., Peng,
E. W., Tonry, J. L., and West, M. J. (2007). The ACS fornax cluster survey. i. introduction
to the survey and data reduction procedures. The Astrophysical Journal Supplement Series,
169(2):213–224.

Jordán, A., Peng, E., Blakeslee, J., Côté, P., Eyheramendy, S., and Ferrarese, L. (2015). The
acs fornax cluster survey. xi. catalog of globular cluster candidates. The Astrophysical Journal
Supplement Series, 221:13.

Kacharov, N., Neumayer, N., Seth, A. C., Cappellari, M., McDermid, R., Walcher, C. J., and
Böker, T. (2018). Stellar populations and star formation histories of the nuclear star clusters
in six nearby galaxies. MNRAS, 480(2):1973–1998.

Kashibadze, Olga G., Karachentsev, Igor D., and Karachentseva, Valentina E. (2020). Structure
and kinematics of the virgo cluster of galaxies. A&A, 635:A135.

60



REFERENCES

Kim, J.-h., Ma, X., Grudić, M. Y., Hopkins, P. F., Hayward, C. C., Wetzel, A., Faucher-Giguère,
C.-A., Kereš, D., Garrison-Kimmel, S., and Murray, N. (2018). Formation of globular cluster
candidates in merging proto-galaxies at high redshift: a view from the FIRE cosmological
simulations. MNRAS, 474(3):4232–4244.

Kimm, T., Cen, R., Rosdahl, J., and Yi, S. K. (2016). Formation of Globular Clusters in
Atomic-cooling Halos Via Rapid Gas Condensation and Fragmentation during the Epoch of
Reionization. ApJ, 823(1):52.

Kissler-Patig, M., Kohle, S., Hilker, M., Richtler, T., Infante, L., and Quintana, H. (1997).
Globular cluster systems of early-type galaxies in Fornax. AAP, 319:470–480.

Kissler-Patig, M., Richtler, T., and Hilker, M. (1996). The elliptical globular cluster system of
NGC 720. AAP, 308:704–712.

Kourkchi, E. and Tully, R. B. (2017). Galaxy groups within 3500 km s-1. The Astrophysical
Journal, 843(1):16.

Kron, R. G. (1980). Photometry of a complete sample of faint galaxies. ApJS, 43:305–325.

Kruijssen, J. M. D. (2012). On the fraction of star formation occurring in bound stellar clusters.
MNRAS, 426(4):3008–3040.

Kruijssen, J. M. D. (2015). Globular clusters as the relics of regular star formation in ‘normal’
high-redshift galaxies. MNRAS, 454(2):1658–1686.

Kruijssen, J. M. D., Pfeffer, J. L., Crain, R. A., and Bastian, N. (2019). The E-MOSAICS
project: tracing galaxy formation and assembly with the age-metallicity distribution of glob-
ular clusters. MNRAS, 486(3):3134–3179.

Kuijken, K., Bender, R., Cappellaro, E., Muschielok, B., Baruffolo, A., Cascone, E., Iwert, O.,
Mitsch, W., Nicklas, H., Valentijn, E., Baade, D., Begeman, K., Bortolussi, A., Boxhoorn, D.,
Christen, F., Deul, E., Geimer, C., Greggio, L., Harke, R., Häfner, R., Hess, G., Hess, H.-J.,
Hopp, U., Ilijevski, I., Klink, G., Kravcar, H., Lizon, J., Magagna, C., Müller, P., Niemeczek,
R., de Pizzol, L., Poschmann, H., Reif, K., Rengelink, R., Reyes, J., Silber, A., and Wellem,
W. (2002). Omegacam: the 16k×16k ccd camera for the vlt survey telescope. The Messenger,
110(December 2002):15–18.

Larsen, S. S., Brodie, J. P., Grundahl, F., and Strader, J. (2014). NITROGEN ABUNDANCES
AND MULTIPLE STELLAR POPULATIONS IN THE GLOBULAR CLUSTERS OF THE
FORNAX dSph. The Astrophysical Journal, 797(1):15.

Leaman, R., VandenBerg, D. A., and Mendel, J. T. (2013). The bifurcated age-metallicity
relation of Milky Way globular clusters and its implications for the accretion history of the
galaxy. MNRAS, 436(1):122–135.

Letarte, B., Hill, V., Jablonka, P., Tolstoy, E., François, P., and Meylan, G. (2006). VLT/UVES
spectroscopy of individual stars in three globular clusters in the Fornax dwarf spheroidal
galaxy. AAP, 453(2):547–554.

Li, H., Gnedin, O. Y., Gnedin, N. Y., Meng, X., Semenov, V. A., and Kravtsov, A. V. (2017).
STAR CLUSTER FORMATION IN COSMOLOGICAL SIMULATIONS. i. PROPERTIES
OF YOUNG CLUSTERS. The Astrophysical Journal, 834(1):69.

61



REFERENCES

Lim, S., Peng, E. W., Côté, P., Sales, L. V., den Brok, M., Blakeslee, J. P., and Guhathakurta,
P. (2018). The globular cluster systems of ultra-diffuse galaxies in the coma cluster. The
Astrophysical Journal, 862(1):82.

Liu, Y., Peng, E. W., Blakeslee, J., Côté, P., Ferrarese, L., Jordán, A., Puzia, T. H., Toloba,
E., and Zhang, H.-X. (2016). EVIDENCE FOR THE RAPID FORMATION OF LOW-
MASS EARLY-TYPE GALAXIES IN DENSE ENVIRONMENTS. The Astrophysical Journal,
818(2):179.

Liu, Y., Peng, E. W., Jordán, A., Blakeslee, J. P., Côté, P., Ferrarese, L., and Puzia, T. H.
(2019). The ACS Fornax Cluster Survey. III. Globular Cluster Specific Frequencies of Early-
type Galaxies. ApJ, 875(2):156.

Lotz, J. M., Miller, B. W., and Ferguson, H. C. (2004). The Colors of Dwarf Elliptical Galaxy
Globular Cluster Systems, Nuclei, and Stellar Halos. ApJ, 613(1):262–278.

Mieske, S., Hilker, M., and Infante, L. (2004). Fornax compact object survey fcos: On the nature
of ultra compact dwarf galaxies. A&A, 418(2):445–458.

Miller, B. W. and Lotz, J. M. (2005). Globular Cluster Luminosity Functions and Specific
Frequencies in Dwarf Elliptical Galaxies. In American Astronomical Society Meeting Abstracts,
volume 207 of American Astronomical Society Meeting Abstracts, page 128.17.

Miller, B. W. and Lotz, J. M. (2007). The globular cluster luminosity function and specific
frequency in dwarf elliptical galaxies. The Astrophysical Journal, 670(2):1074–1089.

Mistani, P. A., Sales, L. V., Pillepich, A., Sanchez-Janssen, R., Vogelsberger, M., Nelson, D.,
Rodriguez-Gomez, V., Torrey, P., and Hernquist, L. (2016). On the assembly of dwarf galaxies
in clusters and their efficient formation of globular clusters. MNRAS, 455(3):2323–2336.

Moore, B., Lake, G., and Katz, N. (1998). Morphological transformation from galaxy harassment.
The Astrophysical Journal, 495(1):139–151.

National Optical Astronomy Observatories (1999). IRAF: Image Reduction and Analysis Facility.

Neumayer, N., Seth, A., and Böker, T. (2020). Nuclear star clusters. AAPR, 28(1):4.

Ordenes-Briceño, Y., Eigenthaler, P., Taylor, M. A., Puzia, T. H., Alamo-Martínez, K., Ribbeck,
K. X., Muñoz, R. P., Zhang, H., Grebel, E. K., Ángel, S., Côté, P., Ferrarese, L., Hilker, M.,
Lançon, A., Mieske, S., Miller, B. W., Rong, Y., and Sánchez-Janssen, R. (2018). The next
generation fornax survey (NGFS). III. revealing the spatial substructure of the dwarf galaxy
population inside half of fornax's virial radius. The Astrophysical Journal, 859(1):52.

Peebles, P. J. E. and Dicke, R. H. (1968). Origin of the Globular Star Clusters. ApJ, 154:891.

Peng, C. Y., Ho, L. C., Impey, C. D., and Rix, H.-W. (2002). Detailed Structural Decomposition
of Galaxy Images. AJ, 124(1):266–293.

Peng, C. Y., Ho, L. C., Impey, C. D., and Rix, H.-W. (2010). Detailed Decomposition of Galaxy
Images. II. Beyond Axisymmetric Models. AJ, 139(6):2097–2129.

Peng, E. W., Ferguson, H. C., Goudfrooij, P., Hammer, D., Lucey, J. R., Marzke, R. O., Puzia,
T. H., Carter, D., Balcells, M., Bridges, T., Chiboucas, K., del Burgo, C., Graham, A. W.,
Guzmán, R., Hudson, M. J., Matković, A., Merritt, D., Miller, B. W., Mouhcine, M., Phillipps,

62



REFERENCES

S., Sharples, R., Smith, R. J., Tully, B., and Kleijn, G. V. (2011). THEHST/ACS COMA
CLUSTER SURVEY. IV. INTERGALACTIC GLOBULAR CLUSTERS AND THE MAS-
SIVE GLOBULAR CLUSTER SYSTEM AT THE CORE OF THE COMA GALAXY CLUS-
TER. The Astrophysical Journal, 730(1):23.

Peng, E. W., Jordán, A., Côté, P., Takamiya, M., West, M. J., Blakeslee, J. P., Chen, C.-W.,
Ferrarese, L., Mei, S., Tonry, J. L., and West, A. A. (2008). The ACS virgo cluster survey.
XV. the formation efficiencies of globular clusters in early-type galaxies: The effects of mass
and environment. The Astrophysical Journal, 681(1):197–224.

Peng, E. W. and Lim, S. (2016). A RICH GLOBULAR CLUSTER SYSTEM IN DRAGON-
FLY 17: ARE ULTRA-DIFFUSE GALAXIES PURE STELLAR HALOS? The Astrophysical
Journal, 822(2):L31.

Peterson, C. J. and King, I. R. (1975). The structure of star clusters. VI. Observed radii and
structural parameters in globular clusters. AJ, 80:427–436.

Pfeffer, J., Kruijssen, J. M. D., Crain, R. A., and Bastian, N. (2018). The E-MOSAICS project:
simulating the formation and co-evolution of galaxies and their star cluster populations. MN-
RAS, 475(4):4309–4346.

Prole, D. J., Davies, J. I., Keenan, O. C., and Davies, L. J. M. (2018). Automated detectionof
very low surface brightness galaxiesin the Virgo cluster. MNRAS, 478(1):667–681.

Prole, D. J., Hilker, M., van der Burg, R. F. J., Cantiello, M., Venhola, A., Iodice, E., van
de Ven, G., Wittmann, C., Peletier, R. F., Mieske, S., Capaccioli, M., Napolitano, N. R.,
Paolillo, M., Spavone, M., and Valentijn, E. (2019). Halo mass estimates from the globular
cluster populations of 175 low surface brightness galaxies in the Fornax cluster. MNRAS,
484(4):4865–4880.

Renaud, F., Agertz, O., and Gieles, M. (2017). The origin of the Milky Way globular clusters.
MNRAS, 465(3):3622–3636.

Rhode, K. L. and Zepf, S. E. (2004). The Globular Cluster Systems of the Early-Type Galaxies
NGC 3379, NGC 4406, and NGC 4594 and Implications for Galaxy Formation. AJ, 127(1):302–
317.

Rhode, K. L., Zepf, S. E., and Santos, M. R. (2005). Metal-poor Globular Clusters and the
Formation of Their Host Galaxies. ApJL, 630(1):L21–L24.

Rhode, K. L., Zepf, S. E., and Santos, M. R. (2005). Metal-poor globular clusters and the
formation of their host galaxies. The Astrophysical Journal, 630(1):L21–L24.

Saifollahi, T., Janz, J., Peletier, R. F., Cantiello, M., Hilker, M., Mieske, S., Valentijn, E. A.,
Venhola, A., and Kleijn, G. V. (2021). Ultra-compact dwarfs beyond the centre of the Fornax
galaxy cluster: hints of UCD formation in low-density environments. MNRAS, 504(3):3580–
3609.

Sánchez-Janssen, R. and Aguerri, J. A. L. (2012). Globular cluster systems as tracers of envi-
ronmental effects on Virgo early-type dwarfs. MNRAS, 424(4):2614–2624.

63



REFERENCES

Sánchez-Janssen, R., Côté, P., Ferrarese, L., Peng, E. W., Roediger, J., Blakeslee, J. P., Em-
sellem, E., Puzia, T. H., Spengler, C., Taylor, J., Álamo-Martínez, K. A., Boselli, A., Cantiello,
M., Cuillandre, J.-C., Duc, P.-A., Durrell, P., Gwyn, S., MacArthur, L. A., Lançon, A., Lim,
S., Liu, C., Mei, S., Miller, B., Muñoz, R., Mihos, J. C., Paudel, S., Powalka, M., and Toloba,
E. (2019). The next generation virgo cluster survey. XXIII. fundamentals of nuclear star
clusters over seven decades in galaxy mass. The Astrophysical Journal, 878(1):18.

Schipani, P., Capaccioli, M., Arcidiacono, C., Argomedo, J., Dall’Ora, M., D’Orsi, S., Farinato,
J., Magrin, D., Marty, L., Ragazzoni, R., and Umbriaco, G. (2012). VST: from commissioning
to science. In Stepp, L. M., Gilmozzi, R., and Hall, H. J., editors, Ground-based and Airborne
Telescopes IV, volume 8444, pages 468 – 477. International Society for Optics and Photonics,
SPIE.

Scott, D. (2015). Multivariate density estimation: Theory, practice, and visualization: Second
edition.

Searle, L. and Zinn, R. (1978). Composition of halo clusters and the formation of the galactic
halo. ApJ, 225:357–379.

Seth, A. C., Cappellari, M., Neumayer, N., Caldwell, N., Bastian, N., Olsen, K., Blum, R. D.,
Debattista, V. P., McDermid, R., Puzia, T., and Stephens, A. (2010). The NGC 404 Nucleus:
Star Cluster and Possible Intermediate-mass Black Hole. ApJ, 714(1):713–731.

Smith, R., Sánchez-Janssen, R., Beasley, M. A., Candlish, G. N., Gibson, B. K., Puzia, T. H.,
Janz, J., Knebe, A., Aguerri, J. A. L., Lisker, T., Hensler, G., Fellhauer, M., Ferrarese, L.,
and Yi, S. K. (2015). The sensitivity of harassment to orbit: mass loss from early-type dwarfs
in galaxy clusters. MNRAS, 454(3):2502–2516.

Spitler, L. R. and Forbes, D. A. (2009). A new method for estimating dark matter halo masses
using globular cluster systems. MNRAS, 392(1):L1–L5.

Spitler, L. R., Forbes, D. A., Strader, J., Brodie, J. P., and Gallagher, J. S. (2008). The
connection between globular cluster systems and their host galaxy and environment: a case
study of the isolated elliptical NGC 821. MNRAS, 385(1):361–380.

Su, A., Salo, H., Janz, J., Laurikainen, E., Venhola, A., Peletier, R., Iodice, E., Hilker, M.,
Cantiello, M., Napolitano, N., Spavone, M., Raj, M., van de Ven, G., Mieske, S., Paolillo,
M., Capaccioli, M., Valentijn, E., and Watkins, A. (2021). The fornax deep survey (fds) with
the vst xi. the search for signs of preprocessing between the fornax main cluster and fornax a
group. Astronomy & astrophysics.

Taylor, E. N., Hopkins, A. M., Baldry, I. K., Brown, M. J. I., Driver, S. P., Kelvin, L. S., Hill,
D. T., Robotham, A. S. G., Bland-Hawthorn, J., Jones, D. H., Sharp, R. G., Thomas, D.,
Liske, J., Loveday, J., Norberg, P., Peacock, J. A., Bamford, S. P., Brough, S., Colless, M.,
Cameron, E., Conselice, C. J., Croom, S. M., Frenk, C. S., Gunawardhana, M., Kuijken, K.,
Nichol, R. C., Parkinson, H. R., Phillipps, S., Pimbblet, K. A., Popescu, C. C., Prescott, M.,
Sutherland, W. J., Tuffs, R. J., van Kampen, E., and Wijesinghe, D. (2011). Galaxy And
Mass Assembly (GAMA): stellar mass estimates. MNRAS, 418(3):1587–1620.

Tremaine, S. D., Ostriker, J. P., and Spitzer, L., J. (1975). The formation of the nuclei of galaxies.
I. M31. ApJ, 196:407–411.

64



REFERENCES

van Dokkum, P., Abraham, R., Romanowsky, A. J., Brodie, J., Conroy, C., Danieli, S., Lokhorst,
D., Merritt, A., Mowla, L., and Zhang, J. (2017). Extensive globular cluster systems associated
with ultra diffuse galaxies in the coma cluster. The Astrophysical Journal, 844(1):L11.

Venhola, A., Peletier, R., Laurikainen, E., Salo, H., Iodice, E., Mieske, S., Hilker, M., Wittmann,
C., Lisker, T., Paolillo, M., Cantiello, M., Janz, J., Spavone, M., D’Abrusco, R., van de Ven,
G., Napolitano, N., Verdoes Kleijn, G., Maddox, N., Capaccioli, M., Grado, A., Valentijn,
E., Falcon-Barroso, J., and Limatola, L. (2018a). VizieR Online Data Catalog: Fornax Deep
Survey with VST. IV. dwarf galaxies (Venhola+, 2018). VizieR Online Data Catalog, pages
J/A+A/620/A165.

Venhola, A., Peletier, R., Laurikainen, E., Salo, H., Iodice, E., Mieske, S., Hilker, M., Wittmann,
C., Lisker, T., Paolillo, M., Cantiello, M., Janz, J., Spavone, M., D’Abrusco, R., Ven, G.,
Napolitano, N., Kleijn, G., Maddox, N., Capaccioli, M., Grado, A., Valentijn, E., Falcón-
Barroso, J., and Limatola, L. (2018b). The Fornax Deep Survey with the VST. IV. A size and
magnitude limited catalog of dwarf galaxies in the area of the Fornax cluster. AAP, 620:A165.

Venhola, A., Peletier, R., Laurikainen, E., Salo, H., Iodice, E., Mieske, S., Hilker, M., Wittmann,
C., Paolillo, M., Cantiello, M., Janz, J., Spavone, M., D’Abrusco, R., van de Ven, G., Napoli-
tano, N., Verdoes Kleijn, G., Capaccioli, M., Grado, A., Valentijn, E., Falcón-Barroso, J., and
Limatola, L. (2019). The Fornax Deep Survey (FDS) with VST. VI. Optical properties of the
dwarf galaxies in the Fornax cluster. AAP, 625:A143.

Venhola, A., Peletier, R., Laurikainen, E., Salo, H., Lisker, T., Iodice, E., Capaccioli, M., Verdois
Kleijn, G., Valentijn, E., Mieske, S., Hilker, M., Wittmann, C., van de Ven, G., Grado, A.,
Spavone, M., Cantiello, M., Napolitano, N., Paolillo, M., and Falcón-Barroso, J. (2017). The
Fornax Deep Survey with VST. III. Low surface brightness dwarfs and ultra diffuse galaxies
in the center of the Fornax cluster. AAP, 608:A142.

Vesperini, E. (1998). Evolution of the mass function of the Galactic globular cluster system.
MNRAS, 299(4):1019–1039.

Villegas, D., Jordán, A., Peng, E. W., Blakeslee, J. P., Côté, P., Ferrarese, L., Kissler-Patig, M.,
Mei, S., Infante, L., Tonry, J. L., and West, M. J. (2010). THE ACS FORNAX CLUSTER
SURVEY. VIII. THE LUMINOSITY FUNCTION OF GLOBULAR CLUSTERS IN VIRGO
AND FORNAX EARLY-TYPE GALAXIES AND ITS USE AS a DISTANCE INDICATOR.
The Astrophysical Journal, 717(2):603–616.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wil-
son, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey,
C. J., Polat, İ., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman,
R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa,
F., van Mulbregt, P., and SciPy 1.0 Contributors (2020). SciPy 1.0: Fundamental Algorithms
for Scientific Computing in Python. Nature Methods, 17:261–272.

Whitmore, B. C., Zhang, Q., Leitherer, C., Fall, S. M., Schweizer, F., and Miller, B. W. (1999).
The luminosity function of young star clusters in “the antennae” galaxies (NGC 4038/4039).
The Astronomical Journal, 118(4):1551–1576.

Wolf, J., Martinez, G. D., Bullock, J. S., Kaplinghat, M., Geha, M., Muñoz, R. R., Simon,
J. D., and Avedo, F. F. (2010). Accurate masses for dispersion-supported galaxies. MNRAS,
406(2):1220–1237.

65



REFERENCES

Zanatta, E. J. B., Sánchez-Janssen, R., Chies-Santos, A. L., de Souza, R. S., and Blakeslee, J. P.
(2021). A high occurrence of nuclear star clusters in faint Coma galaxies, and the roles of mass
and environment. arXiv e-prints, page arXiv:2103.02123.

Zepf, S. E. and Ashman, K. M. (1993). Globular cluster systems formed in galaxy mergers.
MNRAS, 264:611–618.

Zepf, S. E., Ashman, K. M., and Geisler, D. (1995). Constraints on the Formation History of
the Elliptical Galaxy NGC 3923 from the Colors of Its Globular Clusters. ApJ, 443:570.

66



7. Appendix A

7 Appendix A

Several factors play an important role in the determination of the amount of GC within a
galaxy and the values differ due to factors as the data set, method, area or what kind of
background subtraction is applied. Therefore, these steps should be conducted with care and
reflected upon to be able to draw valid conclusions.

7.1 Data and selection

The GC selection is based upon the outcomes of 19 galaxies from the work of Jordán et al.
[2015], who studied 43 galaxies from the ACS Fornax Cluster Survey. They estimate a
probability, pGC , for each catalog source that it is a GC. In this work, we have only considered
the GCs with a chance of 75% or higher as GCs. Their GC catalogue is determined through
magnitude-, color- and half-light radii cuts. One big difference compared to the FDS data is
that the GCs can be resolved from HST observations. This makes it possible to estimate the
size of the GCs, which can be used to select out background galaxies more effectively than
other parameters such as color or compactness.
The sources found in the images of the 19 galaxies are matched with the GCs sources from
Jordán et al. [2015]. There can be several underlying reasons for not matching to all GCs in a
galaxy image. The leading reason is the magnitude limit of the FDS data, almost no objects
are found anymore fainter than g = 25 mag and therefore also not matched with the GCs from
Jordán et al. [2015]. Another source for missing GCs arises when two objects are located close
together (< 1′′) and still resolved in the HST data but detected as one source in the FDS data.
The last reason for missing matches which is linked to improper modelling of the light of the
galaxy and therefore a bad subtracted image. The light is modelled using the ellipse function
which will not be optimal for edge-on galaxies or galaxies having strong spiral structures.
Especially, the subtracted central region of these galaxies is poor resulting in missing matches.
An example of improper modelling due to an edge-on view is visible in Fig. 43.

Figure 43: Subtracted frame of the edge-on galaxy FCC55.

To account for these missing matches (GCs), a completeness correction is applied (see 2.5).
However, this completeness correction only takes into account the GCs that we do not find and
Jordán et al. [2015] does find. This means that we take the GCs catalog with pGC > 0.75 as
the true number of GCs in these 19 galaxies. This assumption is based on the completeness of
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the data from Jordán et al. [2015] which is complete up to a g-magnitude of ∼ 26.1 covering
∼ 95% of the GCLF [Cote et al., 2004]. Even though we match and calculate the GCLF until a
g = 25 mag, it only needs to be complete till the GCLF peak at 24.5 mag because all the GCs
are counted up until the peak and doubled to account for the faint end.

7.1.1 Photometry

Problems that arise using aperture photometry are for example cosmic rays or bad pixels
contaminating your aperture or nearby stars. The aperture magnitude from a source, possibly
a GCs, can also be influenced by the light of a close objects (< 1′′). These cases are either
disregarded by the selection or their photometric values are too bright. These problems can be
best solved by obtaining data where all these objects are resolved. For the first 19 galaxies, all
the missing GCs where checked by eye and the unresolved cases are found.
In general, we have tried to apply aperture correction using a constant and solid method. The
height of the aperture correction depends on the seeing which differs for every field. Even
throughout the field there fluctuations in the seeing. By calculating the aperture correction new
for every galaxy based on five unsaturated brightest stars available in their big fields, we do not
consider extra effects of these local fluctuations. The aperture correction method was the same
for all the galaxies and the corrections for the first 19 galaxies can be found in Fig. 10.
Another parameter for which we have tried to take care of the seeing effects is the compactness.
If two similar sized point sources are measured with different seeing values, one object will
appear blurrier than the other. The seeing is often denoted by the FWHM, which will be
higher for larger seeing effects. When measuring the compactness the blurrier object will likely
have a larger compactness value. To decrease these effect we use a normalization from Eq.
2.3.2. Also here five unsaturated bright stars from the big field are used to calculate a mean
compactness, which can then be subtracted from every object. In fields where the seeing is
higher, the mean compactness value for point sourced will be higher than for point sources in
field where there is a low FWHM. By subtracting this mean compactness from every object,
the compactness is normalized.
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Magnitude range µg−i σg−i σg−i/
√
N

21-22 0.149 0.269 0.075
22-23 0.047 0.142 0.018
23-24 0.027 0.221 0.018
24-25 0.026 0.333 0.030

Table 10: The mean off-set, standard deviation and standard deviation divided by the number
of objects per g magnitude range between the this work and the work of Jordán et al. [2015]. N
is the number of objects per g magnitude range.

Magnitude range µz−i σz−i σz−i/
√
N

21-22 -0.138 0.306 0.085
22-23 -0.126 0.193 0.025
23-24 -0.131 0.334 0.027
24-25 -0.101 0.475 0.043

Table 11: The mean off-set, standard deviation and standard deviation divided by the number
of objects per g magnitude range between the this work and the work of Jordán et al. [2015]. N
is the number of objects per g magnitude range.

Magnitude range µr σr σr/
√
N

21-22 0.011 0.100 0.008
22-23 0.013 0.102 0.006
23-24 0.0002 0.167 0.006
24-25 -0.020 0.220 0.007

Table 12: The mean off-set, standard deviation and standard deviation divided by the number
of objects per g magnitude range between the this work and the work of Cantiello et al. [2020].
N is the number of objects per g magnitude range.

Magnitude range µi σi σi/
√
N

21-22 0.072 0.085 0.009
22-23 0.054 0.122 0.007
23-24 0.061 0.160 0.006
24-25 0.044 0.262 0.009

Table 13: The mean off-set, standard deviation and standard deviation divided by the number
of objects per g magnitude range between the this work and the work of Cantiello et al. [2020].
N is the number of objects per g magnitude range.
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