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"I always feel dumb... there is an

uneasy feeling called confusion... and

I’m like a monkey who is trying to

put the two sticks together to get the

banana"

— Richard Feynman
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Abstract
Carbohydrates (saccharides) play a key role in a large number of biological processes.

Precise experimental determination of structure-function relationships of

carbohydrate systems through NMR or cryo-EM methods remains problematic.

Molecular dynamics (MD) approaches, by use of force fields like Martini, can bridge

this gap and help to study complex carbohydrate systems in detail. The original

extension of the Martini force field to carbohydrates, released over ten years ago,

succesfully reproduced complex properties of saccharides such as the transition

between different cellulose allomorphs, the mechanical properties of bacterial

peptidoglycan and β-cyclodextrin mediated cholesterol extraction. However, reports

of unphysical aggregation behaviour in i.e. proteins and carbohydrates, colloquially

referred to as the "sticky effect", raised questions on the accuracy of carbohydrate

interactions in Martini 2. With the recent release of the Martini 3 force field, the

underlying interaction matrix has been completely reparameterized, including more

interaction levels and size dependent cross-interactions. In this work we propose

mapping guidelines for carbohydrates in Martini 3, based on an extensive top down

approach. We find good agreement with newly experimentally determined free

energies of transfer, and experimental osmotic pressures, included to give a measure

for aggregation propensity of the carbohydrate model. Retaining the building block

principle of Martini, we improve on the extensively adapted Martini 2 carbohydrates

with a more specific representation of chemical variety and glycosidic linkages and

define clear mapping guidelines that can be applied to any carbohydrate of

interest.
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1 | Introduction

1.1 Scope

The widely adopted Martini 2 coarse-grained force field has had many successes in

applications to lipids, proteins and carbohydrates. Overestimated aggregation

propensities, as showcased in (membrane) proteins1,2 and (complex) carbohydrates3

were addressed in the recently published Martini 3 force field4. Martini already

offers tools to readily study protein systems5, but lacks a transferable, up-to-date

sugar model that can be applied to e.g. glycosylated protein tails (glycans), an

important part of cell regulation. By taking a measure for aggregation through

osmotic pressures into account, we have parameterized an updated sugar model.

This thesis aims to give an overview of the problems, strategies and solutions that

have emerged while parameterizing such a Martini carbohydrate model using the

newly released Martini 3 force field.

1.1.1 Carbohydrates

Carbohydrates (sugars) are a fundamental class of biomolecules and play a

systematic role in cell metabolism6, signalling pathways7, in addition to acting as

structural building blocks for many biological structures such as nucleic acids and

cell walls8. The chemical diversity of carbohydrates allows for a large variety in

which monosaccharides can be linked together to form complex, branched

structures, commonly referred to as glycans. Present in glycosidic tails of proteins or

extensions of the cellular membrane, the large heterogeneity of glycans form

challenges for experimental methods to elucidate their structure and functioning. In

X-ray crystallography, the main technique of solving protein structures, protein

crystals can commonly only be formed after removal of their attached glycans. Other

experimental approaches suffer from similar problems9. Recent advances in cryo-EM
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methods10 do show promising results but require expensive equipment and cannot

be easily used in high-throughput assays. To tackle some of these problems

computational approaches are becoming increasingly more popular. By developing

models based on empirical criteria which approximate complex biological systems,

some of the limitations of experimental methods can be circumvented. One such

method, with broad applications, is that of molecular dynamics (MD)11.

1.1.2 Carbohydrates and aromatic interactions

The hydrophilic character of carbohydrates promotes hydrogen bonding in the active

site of a protein environment but another feature, attributable to the specific ring-like

composition of carbohydrates, is their favoured interaction with aromatic residues12.

Specific interactions between -CH groups of the carbohydrate and the π electron

density of the aromatic lead to temporary (weak) dipoles that form stabilizing

interactions through van der Waals and electrostatic interactions13. A result of the

nature of the interaction is that it is highly dependent on geometry and orientation of

the carbohydrate with respect to the aromatic residue. Analysis of carbohydrate

libraries found a distinct preference for the axial orientation of C-H bonds of aromatic

residues in carbohydrate binding sites14. Indeed, studies with carbohydrates that

differ only in one axial and equatorial placement (e.g. the isomers β-glucose and

β-galactose which only differ in the placement of the -OH group at the C4 carbon)

measured a significant difference in aromatic orientation and binding affinity15. At

least for negatively charged saccharides, favourable interaction is suggested to be

dependent on the protonation state of the binding site residues12, where either

protonated or deprotonated residues affect the binding affinity. Studies on variations

in carbohydrate length and substituted moieties find an important role for the overall

shape and volume of the glycosidic moieties, as substitution potentially reduces

binding affinity significantly12,15. Experimental measures of the enthalpy change for

a carbohydrate interacting with a single aromatic residue amount to 1.5 - 2 kcal

mol−1, owing a significant contribution of binding affinity to CH-π interactions. The
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highly conserved nature and large number of aromatic residues in carbohydrate

binding sites underlines this significance15 (see Figure 1.1).

Figure 1.1: The aromatic residues in the binding site of lectin UDA-VI and its lig-
and (N,N’,N”-Triacetylchitotriose) are depicted. The high number of aromatics, com-
monly present in triads, participate in stacking with the sugar rings and contribute
significantly to ligand recognition and binding affinity (PDB: 1EHH16).

1.2 Molecular Dynamics

1.2.1 Computational approaches and approximations

Biological systems are characterized by a high degree of complexity and need to be

approximated to offer realistic insight at relevant time scales. In molecular dynamics

(MD), particles are treated according to classical mechanics and electronic effects are

modelled implicitly, neglecting bond formation and breakage. Via this approach,

atomistic resolution and dynamics can easily be obtained at nanosecond (ns)

timescales or greater, making detailed observations of complex systems possible.

Even with limitations like the use of periodic boundary conditions (PBC) and

sampling issues, MD has been shown to reproduce thermodynamic properties and

large scale dynamics of a wide range of systems quite well11. Some examples of

recent work include the study of high-throughput protein-ligand binding17 or the
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elucidation of glycoprotein-membrane structure-function relationships18.

1.2.2 Force fields

Since the dynamics in MD are largely represented by classical mechanics, a ruleset

for the atomistic interactions is required, which is defined in the force field. Bonded

interactions are commonly captured by harmonic potentials (see Section 7.2.2) which

are computationally efficient to solve11. The non-bonded interactions are captured by

two components. The electrostatic effect is modelled by the Coulomb potential (eq

1.1)

Vcoulomb =
qiqj

4πε0ε1
· 1

rij
(1.1)

where qi and qj are the charges of two particles, ε0 and ε1 the permitittivity of

vacuum and the dielectric constant of the solvent respectively and rij the distance

between two interacting particles: The Lennard-Jones (eq 1.2) potential

VLJ(rij) = 4εij

(σij

rij

)12

−
(

σij

rij

)6
 (1.2)

features a repulsive part (r12 term) which models the overlap of electron clouds

following the Pauli exclusion principle. The attractive part (r6 term) aims to capture

the dispersion force, where rij is the distance between two interacting particles, ε the

depth of the potential well and σij the distance at which the particle-particle potential

energy VLJ is zero:

Long ranged interactions are generally assumed to degrade to zero after a certain

cutoff range which is also unique to a specific force field. The choice and

parameterization of a force field largely depend on the objective and validation

strategies employed11. The OPLS all-atom force field19, for example, was specifically

parameterized to reproduce experimental properties of liquids - such as density and

heat of vaporization - making it not suitable for the study of protein dynamics.
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1.2.3 Ensemble and sampling

The particles in an MD simulation are subject to the laws of statistical

thermodynamics. In a "real" system, excess energy is dissipated to the environment,

but in a computer simulation artificial methods need to be introduced to deal with

this physical process. Through inclusion of thermostats and barostats, which

maintain temperature and pressure respectively, experimental conditions can be

closely approximated. The choice of environmental conditions (e.g. constant

pressure, constant volume or constant temperature), reflected in the ensemble, is

connected to the sampling of the simulation. Since ensemble averages, which are

dependent on the position and momentum/force on a particle, are taken as averages

over time, the question is thus when sufficient sampling has occurred. The larger the

number of degrees of freedom in the system, the harder this problem becomes.

Although developments in computer hardware and algorithm efficiency have

drastically improved the performance of molecular dynamics simulations11,

simulations that treat all atoms (AA) explicitly are inherently limited to nanosecond

(ns) - microsecond (µs) ranges, while many relevant biological processes only unfold

at larger timescales. Techniques to improve the sampling efficiency and to speed up

simulations are thus crucial to obtain large scale dynamics.

1.3 Coarse-graining

1.3.1 Advantages of coarse-graining

A widely applied approach to improve the sampling speed and efficiency in MD

simulations is to artifically reduce the degrees of freedom through coarse-graining

(CG). In coarse-graining, multiple atoms in a molecule may be represented by a

single, larger pseudo-atom (often referred to as a "bead"), with the goal of conserving

the topology of the molecule in the best way possible (see Figure 1.2).
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Figure 1.2: A possible coarse-graining approach to β-D-glucose is depicted. A)
The topology of the original molecule is "mapped" to be represented by three large,
pseudo-atoms (beads). B) The coarse-grained molecule is depicted, the original de-
grees of freedom have been reduced to only three atoms and three bonds while still
globally capturing the β-D-glucose properties.

The advantage of coarse-graining is at least two-fold: through direct reduction of the

degrees of freedom, less particles and subsequently, less bonded and non-bonded

interactions need to be calculated. Due to the increase in mass of the pseudo-atoms

relative to the atomistic structure, the bonded oscillation is reduced. Effectively,

larger time steps and softer force constants for bond stretching and angle potentials

are allowed, leading to a decrease in computational load and significant speedup of

the structurally simplified model. All these simplifications open up the possibility to

study complex systems at nearly biologically relevant timescales20.

In coarse-grained methods, a clear distinction can be made between individually

optimized models and so called generic (building block) approaches. The former has

the potential to be a more accurate representation of the atomistic resolution, but

requires extensive reparameterization when extending to new molecules. The latter

focuses on transferability over full accuracy. Commonly, a standardized library of

beads are supplied to the end user, which can be used to model certain chemical

groups based on model-specific validation criteria. Via these approaches, the

parameterization of consistent coarse-grained models is a real possibility. One of the
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most popular and widely applied building block CG force fields is Martini, recently

updated to its third iteration4.

1.3.2 The Martini force field

The focus of Martini is to offer a transferable approach to parameterizing new

(classes of) molecules. In Martini 3, this is achieved by defining non-bonded

interactions through a Lennard-Jones (LJ) potential (eq. 1.2), or in case of electrostatic

interactions, a (full) charge on a coarse-grained bead. By varying the parameters εij

and σij, different levels of self-self and self-other interactions can be captured. σij

captures the size effects of a certain molecular fragment while εij (well depth of the LJ

potential) captures the relative strenght of interaction.

Three main bead sizes, regular (R) (σ=0.47 nm), small (S) (σ=0.41 nm) and tiny (T)

(σ=0.34 nm), are present, parameterized to represent a certain fraction of heavy (i.e.

non-hydrogen) atoms. R-beads optimally represent a 4:1 heavy atom to bead

mapping and are suitable for linear, aliphatic arrangements, S-beads are

recommended for aliphatic ring, or branched structures in a 3:1 ratio and T-beads in a

2:1 ratio and are optimized for stacking distances in aromatic rings. 22 levels of

interaction (expressed in εij) and size dependent interactions (expressed in σij) give

rise to a library of standardized bead types, grouped in different, global classes (e.g.

Polar (P), apolar (C), charged (Q)). By reproducing experimental quantities such as

free energies of transfer (see Section 1.4), the interaction levels are validated21. A full

description of the parameterization process can be found in the original Martini 3

publication4.

The interaction matrix (Supplementary Table 1, Souza et al, 20214) is the heart of

Martini. Since non-bonded interactions are taken care of through a specific bead type,

a Martini model can be extended with relative ease to a new molecule. The first

objective is to obtain a viable mapping where some generic rules are employed (see

Section C1, Souza et al, 20214). Here, conserving the topology and volume of the
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original molecule, and preventing a mismatch in the amount of heavy atoms that are

mapped per bead, are important goals. The second objective is to decide on and

validate the bead assignment, i.e. to decide on which Martini beads should be used

to model certain chemical groups. Validation with experimental data, or, at the least,

comparisons with atomistic reference simulations should optimally be used. A

highlight of general validation strategies is summarized in Section 1.4.

The final objective is to obtain the bonded parameters. In Martini, these can be

extracted in a relatively straightforward way from sufficiently sampled atomistic

reference simulations. The standard in Martini 3 over previous releases is to place the

beads at the center of geometry (COG) of all the constituting atoms, including

hydrogen atoms. A mapped pseudo-CG trajectory can be prepared by linking atom

positions to CG beads. By matching the potential distributions with this mapped,

atomistic trajectory, bonded potentials can be obtained and validated. In practice, the

parameterization objectives presented here often intertwine. E.g. mapping or bead

types may be changed depending on findings in certain reference systems or when

volume is not accurately met.

1.3.3 On the Martini 2 carbohydrate definitions

The original extension of Martini to carbohydrates was published in 200922, and

focused on reproducing water/octanol free energies of transfer for accurate bead

assignment. Application of the proposed saccharide model to amylose fibers in water

and nonane, as well as reproduction of the cryo-anhydro effect were additionally

demonstrated to show the accuracy of the model. A wide range of applications,

including succesful modelling of conformational changes in cellulose23, reproduction

of experimental properties such as the bending modulus in peptidoglycan24 and

replication of experimental observations such as β-cyclodextrin mediated cholesterol

extraction25,26 further showcased its efficacy.

An observation in protein and carbohydrate systems in Martini 2 was the propensity
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for overaggregation (colloquially referred to as the "sticky" effect), attributable to too

high solute-solute interaction levels, as characterized in multiple systems1,3,27. As

Schmalhorst et al point out3, such observations (i.e. overaggregation) are not limited

to coarse-grained force fields alone. Atomistic force fields have also been shown to

inaccurately represent aggregation properties of proteins28 and (poly)saccharides29,

substantiating the need for experimental data in the validation process.

In their work, Schmalhorst et al3 downscaled non-bonded sugar-sugar interactions in

the Martini 2 carbohydrates through systematic scaling of the LJ parameter εij,

leading to accurate reproduction of experimental second virial coefficients of osmotic

pressure (B22). This approach of matching solution properties with experimental data

has also succesfully been employed in matching experimental sugar binding

affinities to proteins27, or to significantly improve aggregation behaviour of

carbohydrates in CHARMM3630 and to optimize protein-protein interactions in

Martini1. Rescaling the LJ interactions thus alleviates the sticky effect, but with the

recent release of Martini 34 the increase in interaction levels and the inclusion of size

dependent interaction offers a decidedly more robust foundation to improve the

Martini carbohydrates even further.

1.3.4 On carbohydrate diversity

The chemical diversity of carbohydrates exceeds that of lipids and proteins31. The

simplest possible carbohydrates include the five carbon ring (pyranose) structure and

hemiacetal (e.g. glucose). However, four carbon rings (furanose) are also prevalent.

The stereochemical configuration of the carbon substituents subtly affects the

rotameric configurations of carbohydrates. Effectively, a simple carbohydrate like

glucose exists in many isomeric forms and distinct rotamers. This complexity

increases when looking at carbohydrates that include substituents such as carboxylic

acids (e.g. D-glucuronic acid), amides (e.g. N-Acetylglucosamine) or combinations of

both (e.g. N-acetylneuraminic acid). Other carbohydrates include deoxygenated

species, such as D-ribose in nucleic acids, or sugars such as L-fucose and L-rhamnose
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which are prevalent in N-linked glycans in glycoproteins32. When constructing

polysaccharides from these individual building blocks, the complexity increases by

an order of magnitude due to the variety of glycosidic linkages. The anomeric carbon

(C1 carbon) can in principle be linked to any other carbon. If this receiving carbon is

the C1 or C2 carbon, the sugar is non-reducing and cannot be extended, but from the

C3-C6 carbons a wide variety of linkages can be envisioned, which offers challenges

for coarse-graining force fields like Martini. Somehow, chemical specificity needs to

be generalized while ideally maintaining a generic and transferable model that

matches experimental data. To that end, some general validation strategies are

commonly employed.

1.4 Validation strategies

In the so called top down approach, the Martini models are verified based on

measurable (experimental) quantities. While the Martini force field already contains

the information for non-bonded interactions in the specific bead types, the question

is what bead types accurately capture the chemical specificity of carbohydrates,

commonly validated through the experimental partioning between two solvent

phases. Some a priori estimates of bead assignment follow from previous applications

or are based on the guidelines in Supplementary Table 24 of Souza et al4. The

following validation strategies are recommended for Martini models and were

applied in this study as well.

1.4.1 SASA and molecular volume

A coarse-grained model should capture the global shape and volume of the molecule

in the best way possible. The different bead sizes in Martini 3 affect volume each in a

specific way. Where beads are placed at the center of geometry (COG) of its

constituent atoms, the validation of volume by comparison with atomistic reference

molecules is important. To that end, Solvent Accessible Surface Area (SASA)
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calculations are commonly employed. The algorithm, as implemented in the gmx sasa

package33, comprises of probing the molecular structure using a user defined atom

size which then gives an indication of the molecular volume, based on the van der

Waals radii of the constituting atoms (see Figure 1.3). In the case of atomistic force

fields, these can be derived from experimental data34 and for Martini they are

explicitly defined in the force field (Table 7.1). The surface of a molecule is

proportionally related to its volume and scales with size. SASA (expressed in Å
2
) is

thus a computationally efficient way to estimate relative volume differences. A

deviation of roughly 10 % between the Martini model and the atomistic structure is

deemed acceptable if other properties are reproduced well.

Figure 1.3: A schematic overview of the SASA methodology is presented. A probe,
mimicking a solvent molecule, is rolled across the van der Waals surface of the
molecule, giving an indication of the volume.

While SASA gives an indication whether the coarse-grained model approaches the

atomistic volume to an acceptable degree, local deviations in volume cannot be

captured as the surface is averaged over the entire molecule. To visualize areas where

chemical moieties are either under- or overestimated a closely related property, the

solvent-excluded (Connolly) surface can be utilized35 . By overlaying the Connolly

surface of the proposed coarse-grained model on top of an atomistic reference

structure, a relative indication of volume can be utilized in the mapping

procedure.
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1.4.2 Free energies of transfer

The free energy of transfer (∆G) for a solute is defined as the free energy change

between two immiscible fluids, commonly an organic solvent (like octanol) and a

water phase. Effectively, the transfer of the solute across the solvents gives a measure

for the hydrophobicity of the molecule of interest. In the context of the overarching

Martini force field, free energies of transfer are utilized in the parameterization

process of the bead types as they can be validated with experimental measurements.

As the first requirement in a Martini model is to formulate an effective mapping

scheme, bead assignment accuracy can subsequently be scored based on reference

data. Free energies of transfer are commonly expressed in partition coefficients (log

P), as the ratio of unionized solutes in both solvents. In this study, experimental

partition coefficients for different carbohydrates were recorded (Table A1.6), which

can be transformed to the free energy of transfer ∆GOCO→W (kJ mol−1) via the

relation

∆GOCO→W = ln(10) RT log P (1.3)

where R is the gas constant (kJ mol−1 K−1) and T the temperature (K).

Since free energies of transfer can be estimated from MD simulations (Section 7.4.2) as

a function of the solvation free energies ∆GW and ∆GOCO, a validation routine for

bead assignment follows.

1.4.3 Osmotic pressure

The osmotic pressure is a thermodynamic solution property which describes the

minimum pressure that needs to be applied to a dissolved solute to prevent flow

across a semipermeable membrane. The osmotic pressure of many particle systems is

given by the relationship:

Π = φ c R T (1.4)
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where Π is the osmotic pressure (bar), φ is the (concentration dependent) osmotic

coefficient, c the concentration (m) and R the gas constant (L bar K−1 mol−1).

The osmotic coefficient represents the ratio of the solute specific osmotic pressure to

that corresponding to an ideal solution and can therefore be interpreted in the

following way: a value higher than 1 indicates repulsive solute-solute interactions,

while a value lower than 1 indicates attractive solute-solute interactions. The osmotic

coefficient or pressure that is calculated for a specific solute can then be correlated to

experimentally determined values, to give a measure for aggregation qualities of the

specific model.

Osmotic coefficients for many carbohydrates are ubiquitously available36–40 and

osmotic pressures may be obtained from MD simulations (see Section 7.5.1), as a

function of molality:

m =
N

NA

ρW V
(1.5)

where N is the absolute number of solute molecules in the system, NA is Avogadro’s

constant, ρW the density of water and V the volume of the box.
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2 | Modelling carbohydrates in Mar-

tini 3

2.1 General considerations

Due to their large variety (see Section 1.3.4), in this study a representative group of

carbohydrates was selected, with a focus on those for which physiochemical

experimental data in the form of free energies of transfer or osmotic coefficients was

available.

The following monosaccharides were considered in this study: β-D-glucopyranose

(Glc), β-D-mannopyranose (Man) , β-D-galactopyranose (Gal), β-D-fructofuranose

(Fruf), D-ribofuranose (Ribf), β-D-xylopyranose (Xyl), β-L-fucose (Fuc),

β-L-rhamnose (Rha), N-acetylglucosamine (GlcNAc), N-acetylneuraminic acid

(Neu5Ac) and myo-inositol (Ino).

The following disaccharides were considered in this study: lactose (Gal-β1,4-Glc)

(Lac), sucrose (Glc-α1,2-Fruf)(Sucr) and trehalose (Glc-α1,1-Glc) (Treh).

The following polysaccharides were considered in this study: β-cyclodextrin (ring of

seven α1,4-linked D-glucose subunits).

Monosaccharides in solution are in equilibrium between an open, aldehyde structure

and closed, ring structure through the process of mutarotation41, in which the ring

form isomerizes between the α- and β-anomers through an open form intermediate.

The contribution of the latter structure is minimal, at room temperature only 0.02% of

glucose is in the open structure, with a 36% and 64% contribution for the α- and

β-epimer respectively41. As the ring form is also the only biologically relevant

structure42, the open form was not considered in the parameterization

procedure.
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2.2 Hypotheses concerning modelling guidelines

2.2.1 Monosaccharides

Generating parameters for molecules using Martini 3 follows a set of rules as

outlined previously (Section 1.3.2). Ultimately, parameters that yield the best match

against experimental data determine the goodness of the parameters. To derive

generic guidelines for parameterizing monosaccharides, we translate the generic

Martini 3 rules into hypotheses, which will be proven or disproven by making

comparisons to experimental data.

As was explained in Section 1.3.2, the first objective of a Martini model is to derive a

valid mapping scheme. In the case of glucose, twelve heavy atoms (six carbons and

six oxygens) can be represented by three regular (R) beads in a 4:1 mapping.

However, as is pointed out in Section C1 of SI, Souza et al4, R bead types are mostly

parameterized for modelling linear, unbranched arrangements. Small (S) beads are

generally recommended to model ring structures, making them in theory more

suitable than R beads to map the carbohydrate ring. Similarly, Section C3 of Souza et

al4 underlines the significance of the position where the bead is placed for accurate

reproduction of volume. In Martini 2, beads were placed at the center of mass (COM)

of the constituting heavy atoms while Martini 3 has moved to a center of geometry

(COG) approach where beads are placed in the geometrical center of the constituting

atoms (hydrogen atoms included). While this is the recommended approach, it

should still be explicitly verified whether this is optimal for monosaccharides. In the

(preliminary) mapping scheme we attempted to follow the rules as outlined in Souza

et al4 as closely as possible. A consequence of the branching rule is that diols are kept

together as much as possible, which is showcased in Figure 2.1:
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Figure 2.1: Preliminary mapping of a simple carbohydrate (β-D-glucose). The main
ring is modelled by three beads, each representing four heavy atoms.

Based on these considerations, we formulated the following hypothesis:

Hypothesis 1 (H1): The best mapping scheme for monosacharides utilizes 3 S-beads,

maximizes the number of diols per bead and places the beads at the center of geometry of

the constituting atoms.

Next, we have to assign the optimal bead types to the chemical groups. For the initial

bead assignment, we used Supplementary Table 24 from Souza et al4 as a reference.

Specifically, the diol (-CH(OH)-CH(OH)-) moieties (bead "A" and "B" in Figure 2.1)

are similar to ethanediol, modelled by a SP3 bead. The remaining hemiacetal (bead

"C") matches the P2 moiety as highlighted in the Martini 3 publication, prompting us

to map it with SP2, which leads to the following hypothesis:

Hypothesis 2 (H2): SP3 is the most accurate bead assignment for modelling the diol

moieties in carbohydrates. SP2 is the most accurate bead assignment for modelling the

hemiacetal group

The presence of anomers in monosaccharides (i.e. the sterical configuration of the

-OH group on the anomeric (C1) carbon) leads to two distinctly different molecules,
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such as α-glucose and β-glucose. Due to the anomeric effect, where the β-anomer

shows higher stability in aqeuous solutions due to axial positioning of the alcohol43,

the β-anomer was deemed representative of monosaccharides. In the context of

Martini as a coarse-grained force field, representing anomers explicitly would

expand the sugar library twofold. To maintain transferability, we thus hypothesize

the following:

Hypothesis 3 (H3): α-anomers of monosaccharides do not significantly affect bonded

parameters, with respect to β-anomers, in Martini 3.

So called epimers, where the only difference between isomers is the axial or

equatorial orientation of one -OH group on one carbon, also theoretically lend

themselves for generic models. β-D-glucose, β-D-mannose and β-D-galactose fit this

specific type of isomericity and could perhaps be represented by a singular, unified

model. While we believe this to be possible, agreement with experimental data

should still be verified to validate the accuracy of the constituting model, leading to

the following hypothesis:

Hypothesis 4 (H4): Representing carbohydrate isomers by generic models still leads to

good reproduction of experimental data of the individual carbohydrates.

As is highlighted in Section 1.1.2, the CH-π ring stacking between carbohydrates and

aromatic residues is an important property of carbohydrates interacting with protein

systems. Initial testing with a preliminary Martini 3 sugar model in a Shiga toxin

(Stx)44 found more accurate affinity for lipids by inclusion of a hydrophobic virtual

site bead in the geometrical center of each monosaccharide ring. A virtual site is a

massless particle that when placed in a molecule does not interact with its

constituting atoms45. In the recent development of phosphatidylinositide (PIP) lipid

parameters of Martini 3, such a virtual particle was included in the inositol

carbohydrate model as well46. In general, we expect the inclusion of a TC4 virtual
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site bead to help affinity of carbohydrates for hydrophobic environments. For

example, the inclusion of cholesterol in the inner face of β-cyclodextrin26, or the

binding of carbohydrates to proteins - governed by aromatic residues - are systems

we expect to behave more in line with experimental observations when using such a

TC4 dummy particle. However, the agreement with reference data such as molecular

volume, partitioning and osmotic pressure should still be verified, leading to the

explicit hypothesis:

Hypothesis 5 (H5): The inclusion of a TC4 virtual site in the geometric center of the

monosaccharide does not significantly affect agreement with thermodynamic reference

data.

2.2.2 Disaccharides

Disaccharides are formed from a condensation reaction between two

monosaccharides. A glycosidic bond is formed between the anomeric carbon of the

first sugar and one of the carbons in the second sugar. Based on the specific

stereochemistry of the two monosaccharides, a distinction is made between α- and

β-glycosidic linkages. Due to glycosidic linkages, the total number of heavy atoms of

the sum of two monosaccharides decreases by one (see Figure A1.1), which affects the

volume of the disaccharide.

Figure 2.2: A) Lactose (Gal-β1,4-Glc) is depicted. B) Sucrose (Glc-α1,2-Fruf) is de-
picted. During glycosidic linkage (condensation reaction), disaccharides "lose" one
oxygen (leading to a total of eleven heavy atoms)
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Ideally, we would like to construct disaccharides from monosaccharides in a

consistent manner, and then extend those to polysaccharides. To achieve this goal,

we need to account for the glycosidic linkage in a specific way. As we hypothesize

the core monosaccharide ring to be modelled by three S-beads (Hypothesis 1), we can

conceivably account for the decrease in heavy atom by taking part of the sugar as a

T-bead, since it will have one atoms less due to the asymmetrical nature of

disaccharides. Therefore, we formulate the following hypothesis:

Hypothesis 6 (H6): The optimal way to account for volume loss is by taking the

glycosidic oxygen in an S-bead of the first monosaccharide unit, while the loss of heavy

atom in the receiving monosaccharide is modelled by a T-bead.

The nature of the glycosidic linkage (i.e. α vs β) affects the orientation and flexibility

of carbohydrates47,48, which is ideally captured by Martini. However, since Martini

utilizes a coarse-graining approach, a generic model for both types offers a few

distinct advantages. Firstly, fewer models (by a factor of two) need to be

parameterized, promoting transferability and ease of usage. Secondly, the use of

generic parameters promotes stability due to fewer bonded combinations that need

to be tested:

Hypothesis 7 (H7): It is possible to parameterize a generic carbohydrate model which

combines α- and β linkages together in one, generic parameter set, similar to Martini 2.

The inclusion of virtual sites, which was already discussed in Hypothesis 5 is also

relevant to disaccharides. The observation that virtual sites in constraint heavy

systems improve stability49 could be argued to play a role in disaccharides and

polysaccharides as well. The rigidity in the monosaccharide ring, expressed in a

small standard deviation of bond length (similar as in Martini 2) lends itself well for

constraints. In more complex sugars a large number of constraints are thus used,

promppting us to define the bonded potentials through the virtual site, as is
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described in Section C4 of Supplementary Information, Souza et al4:

Hypothesis 8 (H8): Connecting individual monosaccharide units via bonds and

angle/dihedral potentials through virtual sites leads to accurate reproduction of atomistic

dynamics and flexibility and promotes (numerical) stability

The aforementioned Martini 3 model for myo-inositol in PIP lipid also serves as a

frame of reference in deriving a valid mapping scheme46. For reproduction of

volume, a 13% increase in COG bond lengths was needed in their model. Based on

this consideration, our hypotheses and preliminary testing, we focused on the

following models:

• S-bead - COG mapping using S-beads, no virtual site

• N-bead - COG mapping using R-beads, no virtual site

• VS (TC4) - COG mapping using S-beads and a TC4 virtual site

• VS (TC4) (15%) - mapping using S-beads, TC4 virtual site and 15% uniform

scaling of the constraints in the monosaccharide ring.

As our main goal is to improve on the Martini 2 carbohydrates, we should of course

draw a comparison for each validation criterion. Of the carbohydrates studied here,

glucose, fructose, sucrose and trehalose were also mapped to Martini 2. For clarity it

should be highlighted that in Martini 2, monosaccharides were mapped by three

R-beads and consecutively, disaccharides by six R-beads.

These five models (including Martini 2) were applied to (our) experimental data, the

result of which is presented in the next Chapter.

20





3 | Results

3.1 Molecular volume and SASA

Figure 3.1: SASA values of different carbohydrates are displayed. Colour refers to
different models. Green = S-bead (-7.7% AA), TC4. Orange = S-bead, TC4 15% (-1.9%
AA) . Blue = R-bead (-3.6% AA). Purple = Martini 2 (R-bead).

In Figure 3.1 the coarse-grained model SASA values are plotted with respect to the

atomistic reference value. The atomistic van der Waals radii are those by Rowland

and Taylor34, as recommended in the Martini 3 publication4 for hydrogen rich

compounds.

Since SASA only gives a 2D representation of the volume, we have also calculated

the Connolly (solvent-excluded) surface for β-D-glucose (Figure 3.2). The Connolly

surface gives a more extensive view of local volume deviations.
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Figure 3.2: Connolly (solvent-excluded) surfaces of glucose, where in blue the atom-
istic surface is presented and in red the specific coarse-grained surface. A) R-bead
model, top view. B) R-bead model, side view. C) S-bead model, top view. D) S-bead
model, side view.

The full SASA values are collected in Table A1.4. In the case of monosaccharides with

substituent groups, such as GlcNAc or Neu5Ac, scaling is only performed on the

internal bonds, i.e. on the beads that make up the core monosaccharide ring and not

on substituent beads.
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3.2 Free energies of transfer

Figure 3.3: The free energies of transfer for different coarse-grained models are plotted
with respect to the experimental reference. Mean absolute errors (MAE) are given in
kJ mol−1. Models are distinguished by colour where pink = S-bead no VS, blue = R-
bead no VS, purple = Martini 2, green = S-bead TC4 and orange = S-bead TC4 15%
scaled.

Free energies of transfer were calculated according to the methodology as outlined in

Section 7.4.2 and the results are displayed in Figure 3.3, with respect to the

experimental reference value. The selection of bead assignment followed an iterative

approach. Firstly, the bead assignment for the diol moiety was validated in inositol

for each specific model (the structure of inositol can be seen in Figure 6.1D), as that

sugar consists of three of such diol groups. Then, the hemiacetal bead (C5/C6

hydroxymethyl group) was validated in D-glucose, as that sugar is mapped by two

diol moieties (validated in inositol) and then optimization could be done on solely

the hemiacetal bead. The bead assignment followed this iterative manner until all

chemical groups were explicitly verified.
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3.3 Osmotic pressure

Figure 3.4: The osmotic pressure of different coarse-grained models with respect to
the experimental value is shown. Models are distinguished by colour where pink = S-
bead no VS, blue = R-bead no VS, purple = Martini 2, green = S-bead TC4 and orange
= S-bead TC4 15% scaled. Mean absolute errors (MAE) are calculated from the range
0-1 molal (A and C) or 0-2.5 molal (B and D). A) <1 molal range for R-bead and S-bead
model. B) 1-2.5 molal R-bead and S-bead model. C) < 1 molal for S-bead TC4 and
S-bead TC4 15% scaled. D) 1-2.5 molal for S-bead TC4 and S-bead TC4 15% scaled.
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The osmotic pressure as a function of temperature and the concentration in molality

was calculated and related to experimental values derived from osmotic coefficients

(see Section 7.5.2). The Martini 2 model, modelled by three R-beads, was also taken

into account as a reference, where 10% WF (antifreeze) particles were included, as

Schmalhorst et al indicate is necessary for optimal aggregation behaviour in Martini

23.

3.3.1 Lactose - receiving glycosidic bead

Figure 3.5: Osmotic pressures of lactose, for the S-bead TC4 15% scaled model where
the receiving (i.e. not the bead that includes the glycosidic oxygen) bead in the second
monosaccharide is modelled as a TP1 bead (orange) or SP1 bead (light green). A)
< 1 molal concentration range. Mean absolute errors (MAE) are calculated from the
range 0-1 molal B) 1-2.5 molal concentration range. Mean absolute errors (MAE) are
calculated from the range 0-2.5 molal (B)

3.4 Bonded potentials

3.4.1 α-D-glucose & β-D-glucose

The anomeric influence (i.e. whether the -OH at the C1 carbon is in the axial or

equatorial position) on the Martini 3 monosaccharides was related to D-glucose. The
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bonded parameters are given in Table 3.1:

Bond α-D-Glc β-D-Glc %-diff

A - B 0.322 0.330 2.45%

A - C 0.389 0.409 5%

B - C 0.349 0.344 1.4 %

Table 3.1: Bonded parameters of α-D-glucose and β-D-glucose. Bead names (A, B or
C) refer to the mapping of monosaccharides as outlined in Chapter 6.

3.4.2 Virtual site & direct glycosidic bond

The construction of carbohydrates through a virtual site description was related to a

direct bond approach, where bonded potentials are not drawn through virtual sites.

To showcase the differences, the dihedral distributions of two relatively flexible

sugars, maltose (Glc-α1,4-Glc) and sucrose (Glc-α1,2-Fruf) are showcased in Figure

3.6:

Figure 3.6: The difference in dihedral multiplicity for the virtual site bonded model
and the direct bonded model is shown for two α-linked sugars, maltose (Glc-α1,4-Glc)
and sucrose (Glc-α1,2-Fruf). The dihedral profile for virtual site bonds is erratic and
hard to accurately capture by harmonic potentials.
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3.4.3 α- & β- glycosidic linkages

Figure 3.7: Distributions for the glycosidic bond, angles and dihedrals are shown for
Glc-α1,4-Glc, Glc-β1,4-Glc, Glc-α1,6-Glc and Glc-β1,6-Glc. Angles correspond to the
mapping scheme as outlined in Section 6.2.

27





4 | Discussion

4.1 Martini 3 monosaccharides are best represented by

S-beads

A simple monosaccharide like glucose can be represented by three beads in a 4:1

mapping. The reflection on the choice for S-beads or R-beads depends on a few

criteria. From Figure 3.1, it becomes apparent that the S-bead model underestimates

atomistic SASA by on average 7.9%. The R-bead model in that regard is more

accurate, with an average overestimation of 3.6%. However, when looking at larger

polysaccharides like β-cyclodextrin, the Martini 2 model (comparable to a Martini 3

R-bead model) overshoots volume significantly (by a factor of 1̃0 %).

The risk of overmapping is also reflected in the lack of agreement with partitioning

data and aggregation behaviour of the R-bead model. The S-bead, no VS model has a

mean absolute error of 1.77 kJ mol−1, while the R-bead, no VS model has an error of

2.36 kJ mol−1. This increase in hydrophobicity also makes the R-bead model more

prone to aggregation, reflected in osmotic pressure (see Figure 3.4 A & B, blue

projection). S-bead carbohydrates have a MAE of only 1.93 bar for the 0-2.5 molal

range, while R-bead carbohydrates are significantly worse with a MAE of 16.02 bar.

We therefore opted to map the base monosaccharide (pyranose) ring with three

S-beads, in a 4:1 mapping. The agreement with experimental data for this model is

better, and it offers us the flexibility of scaling COG bonds uniformly if volume

becomes an important consideration in later stages of the parameterization

process.
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4.2 Diols are mapped by SP3 beads and hemiacetals by

SP1

In the choice for bead assignment, we worked in an iterative manner. We started in

inositol, which has three diol moieties that should thus have the same bead

assignment. When opting for SP3, the free energy of transfer is -19.71 kJ mol−1,

which is only 0.21 off the experimental value. One can imagine that all SP2 or all SP4

beads would thus worsen the agreement, validating SP3 for the diol moieties.

However, when looking at monosaccharides with two diol moieties and a hemiacetal

group (e.g. glucose), we use two SP3 beads and then validate the hemiacetal. When

we take SP2, the free energy of transfer is -18.89 kJ mol−1 (+1.08 kJ mol−1 from

experimental). When we move one polarity level down, to SP1, our agreement

becomes much better with a value of -17.68 kJ mol−1 and deviation of only -0.13 kJ

mol−1. The electronegative ether oxygen in the hemiacetal group could perhaps

explain this change in two polarity levels. The change from SP2 to SP1 also improves

the agreement with reference osmotic pressure data for glucose. SP3-SP3-SP2

mapping has a MAE of 3.8 bar for the 0-2.5 molal range, while SP3-SP3-SP1 mapping

has a MAE of 1.9 bar (data not shown).

4.3 α- and β-monosaccharides are highly similar in Mar-

tini 3

As can be seen from Table 3.1, there are slight influences of anomeric positioning of

the C1 alcohol on the COG bond lengths. The maximum bond length difference is

only 5% which is barely significant. Here, the goal of simplicity and transferability

should probably have priority over explicit representation of α- and

β-monosaccharides in Martini 3. We have currently opted to take the final bonded

parameters of monosaccharides as simply being the β-configuration. A possible
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improvement to the model proposed here might be to average the bonded

parameters of the α- and β anomers to give a more accurate reflection, while still

limiting the amount of explicit representation needed.

4.4 Generic models can be used to limit the complexity

of the Martini 3 carbohydrate library

While not shown in this thesis, we have built generic models out of the average

bonded parameters of β-D-glucose, β-D-mannose and β-D-galactose. The difference

in bonded parameters only leads to a very small effect in partitioning agreement, as

can be seen from the values in Table A1.5, as well as the osmotic pressure agreement,

as can be seen from the clustering of monosaccharides in Figure 3.4. In this study, we

have mostly focused on the the validation of the mapping concepts and therefore

have opted to treat each sugar explicitly for now. However, from our generic models

(data not shown) and from inspecting the validation criteria, we see no reason why

generic models should not be utilized. One, perhaps, interesting exception to this is

D-mannose (∆GOCO→W = -14.9 kJ mol−1), which is decidedly more hydrophobic than

D-glucose (∆GOCO→W = -17.81 kJ mol−1), while sharing the same chemical structure.

Because of this, this effect cannot really be captured by Martini as the bead

assignment is exactly the same as in D-glucose. Small changes in bonded parameters

cannot significantly make the coarse-grained mannose more hydrophobic, perhaps

requiring this molecule to be represented in a worse way than either D-glucose, or

D-galactose, to maintain transferability.

4.5 Inclusion of a virtual site significantly affects the chem-

ical behaviour of carbohydrates in Martini 3

The inclusion of a TC4 dummy particle in the center of each monosaccharide ring

severely affects the aggregation behaviour of the carbohydrates. As can be seen from
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Figure 3.4C & D and as is reflected in the mean absolute eror (MAE), when including

a TC4 virtual site the agreement with osmotic pressure worsens. When comparing

the S-bead model, COG mapped, with no virtual site (MAE = 1.93 bar), to the model

with a TC4 virtual site, COG mapped (MAE = 16.03 bar), the effect of the TC4 bead

on aggregation behaviour becomes apparent.

To compensate for this effect, we have opted to scale the internal/ring bonds

uniformly by 15%, effectively helping both SASA agreement and aggregation

behaviour. When we scale by 15% our CG SASA deviation is reduced to only an

average error of 1.9% from 7.7 % and our osmotic pressure MAE improves from 16.03

bar to 7.99 bar.

The advantage of transferability, intrinsic to Martini is still maintained with this

approach. Still, even after scaling the TC4 model is significantly worse with regard to

aggregation, especially for the disaccharides (sucrose and lactose). Because of

preliminary observations in complex systems, we have still decided to take the final

carbohydrate model to be based on the TC4 model, with uniform bond scaling of

15% to both improve volume agreement and to help osmotic pressure agreement.

However, the highest priority after finalizing the carbohydrate definitions is to finally

validate this application in complex test systems.

4.6 Disaccharides cannot simply be constructed from monosac-

charides

In the Martini 2 carbohydrate definitions, disaccharides were effectively directly

constructed from monosaccharides, leading to a six R-bead mapping. As we have

shown, the use of S-beads is preferable to model the monosaccharide ring but the

question still remains on how we should deal with the glycosidic bond.

In our current approach we take the glycosidic oxygen in the bead in the first

monosaccharide. The receiving glycosidic moiety is then modelled by a T-bead. In
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the case of lactose, the SASA agreement moderately changes, from LAC AA 6.07 Å
2

,

CG 15% receiving T-bead 6.0 Å
2

and CG 15% receiving S-bead 6.05 Å
2
. However, the

effect on aggregation is more pronounced. For lactose, we go from a MAE of 4.32 bar

from the 0-2.5 molal range for a receiving T-bead to a MAE of 8.53 for a receiving

S-bead. The choice for T-bead is thus validated, but we can imagine that the use of a

T-bead can lead to packing issues in tightly packed crystal structures such as

cellulose. The use of S-bead here is in principle not incorrect, because we would still

be maintaining a 3:1 heavy atom - bead mapping. Due to the chemical similarity in

the glycosidic bead moiety see (Figure 6.2) to the hemiacetal group, we have opted to

represent this as an SP1 bead as well for 1,1 - 1,4 linkages, while 1,5-1,6 linkages are

represented by an SN6 bead due to the extra carbon modelled in the bead affecting

the polarity. The receiving bead is modelled as a TP1 bead, which has been validated

in D-ribose and N-Acetylglucosamine via free energies of transfer.

4.7 α- and β-linkages should be treated separately in Mar-

tini 3

The use of generic models is secondary to accurate models. The goal of simplifying

glycosidic linkages by treating α or β linkages indiscriminately, or by some

combination of individual parameters seems to overshoot its purpose. As the

distributions in Figure 3.7 show, α bonds have distinctly different bond lengths from

their β counterparts. While angle distributions are fairly similar, the difference in

force constant, especially between α1,4 and β1,4, is also significant. The observation

that β-glycosidic linkages are more rigid match observations in larger structures such

as cellulose fibers (data not shown). For these reasons, these types of linkages are

parameterized separately in Martini 3.
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4.8 A direct bond approach is more stable than a virtual

site bond

Where all glycosidic bonds and bonded potentials were initially drawn between two

virtual sites, this implementation led to instabilities, especially in the more flexible

α-linkages48. This matches observations of instabilities in the simulation of the

coronavirus, where a preliminary sugar model, based on a virtual site bonded

description was used. The free rotation around the glycosidic bond seemed to allow

for more conformational flexibility, exhibited in the dihedral distributions shown in

Figure 3.6. These high degrees of multiplicity also directly oppose experimental

findings where mostly two distinct rotameric states are dominant in glycosidic

linkages50. Therefore, we opted to represent glycosidic linkages as explained in

Chapter 6. Using direct bonds, a time step of 20 fs is possible without major issues,

even in larger carbohydrates such as β-cyclodextrin and dextran (data not shown)

which is in line with recommendations by Souza et al4.

4.9 Bead assignment leads to generic linkages

One result of modelling the carbohydrates by three S-beads, is that in the case of

pyranoses, two carbons are mapped per bead. Because of this, we have decided to

group 1,1-1,2, 1,3-1,4 and 1,5-1,6 linkages together in one overarching linkage class.

Our potential scheme then leads to six Martini "glycosidic" linkages (summarized in

Table 6.1). Explicitly representing each glycosidic linkage would lead to twelve

distinct parameter sets, which is possible, but a large undertaking. By averaging the

bonded parameters of the three main bond classes, we expect improved behaviour

relative to Martini 2, while still having a manageable amount of parameters in the

carbohydrate definitions.
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4.10 Comparison to Martini 2 reworked carbohydrates

The Martini 2 carbohydrate model was applied to a wide range of complex

systems23–26, but the unphysical aggregation levels hampered application in e.g.

glycosylated proteins. As was explained in Section 1.3.3, the strategy of scaling the εij

parameter between the sugar-sugar interactions alleviated this issue significantly,

allowing for good reproduction of experimental second virial coefficients (see Table 2,

Schhmalhorst et al3) and accurate aggregation properties of complex carbohydrates

like A2 glycan. However, in the case of glucose a systematic overestimation of B22 is

reported, while we are underestimating the agreement with experimental osmotic

pressure.

Another thing of note is Schmalhorst et al’s reported standard deviations which are

relatively high (e.g. for glucose a B22 value of 0.22 L mol−1 with a standard deviation

of 0.23 is reported, relative to an experimental value of 0.117 L mol−1), making it

questionable as to how exactly the carbohydrates are scoring relative to our model.

The following distinct advantages from the Martini 3 carbohydrates compared to

Martini 2 become at least apparent. Firstly, in this study more monosaccharides were

mapped (in Martini 2, only glucose and fructose were mapped) and related to free

energies of transfer, allowing for validation of a higher variety of chemical moieties.

Secondly, a measure of aggregation through osmotic pressures was taken into

account. From Figure 3.4 it can be clearly observed that the changes in Martini 3

improve aggregation markedly, especially when bond scaling is introduced. Thirdly,

our description of glycosidic linkages is more detailed. We represent α- and

β-linkages explicitly, which was not the case in Martini 2. In the Martini 2

carbohydrate definitions, representation of 1,6 linkages was omitted due to problems

in matching the dihedral distributions, which is not a problem in our potential

scheme.
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4.11 Considerations for further parameterization

The current model revolves around a virtual site description, where a hydrophobic

TC4 bead is included in the center of each monosaccharide, and constituent bead

assignments are scaled in polarity accordingly. To improve the aggregation

behaviour and to improve the SASA agreement, we have opted to scale the internal

ring bonds by 15%. This decision is based on the rigid structure of the core, three ring

beads. The glycosidic bond and the bond of substituent groups on the

monosaccharides are comparatively much more dynamic.

The decision for TC4 as being the central bead is also not fully explored. While we

have tested some other options, the application in complex systems should tell us

more than agreement with experimental data currently can.

To improve agreement with aggregation data, we could also opt for an ’r’ label to

reduce the self-interaction level by one (see Section A4, Supplementary Information,

Souza et al4). Effectively, the interaction with octanol/water is not affected, leading to

similar bead assignment, but theoretically this reduced self-interaction could lead to

more realistic aggregation behaviour.

Some of the limitations of the carbohydrate model proposed here include intrinsic

limitations to MD approaches. The modelling of ring puckering, i.e. boat and chair

conformation is also limited in MD. Similar to Martini 2, only the 4C1 chair

conformation is considered which is fortunately the dominant puckering

state51.

The absence of complex test cases (such as protein-carbohydrate binding, lipid

affinity and other applications) is the next goal in the optimization of the model,

although the current mapping approach is mature enough that it can be applied to

any carbohydrate system of interest.
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5 | Conclusion
Here, we show the parameterization and mapping guidelines of an updated

carbohydrate model in the overarching Martini 3 force field. By experimental

determination of free energies of transfer from external collaborators, we are able to

validate bead assignment of many different chemical moieties in a more accurate

way than in Martini 2. Additionally, we show that our final model, revolving around

a hydrophobic virtual site description, improves on the Martini 2 carbohydrates

where aggregation is concerned. The use of R-beads over S-beads in the previous

model seems to be a large contributing factor to the aggregation problems in Martini

2, as we show that R-beads are significantly more hydrophobic. Our model also

improves in the level of detail by which glycosidic linkages are described. The

Martini 3 carbohydrate model distinguishes between α and β-linkages, and can

describe all glycosidic linkages without any problems. The addition of a hydrophobic

virtual site should lead to better affinity for systems such as the inclusion of

cholesterol in the inner face of β-cyclodextrin26, or the binding of carbohydrates to

proteins. We have yet to fully explore complex systems, which is the next step now

that the mapping definitions and parameterization are finished.
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6 | Final modelling guidelines

6.1 Monosaccharides

6.1.1 Mapping principles

Based on the validation principles, the following general mapping rules for

monosaccharides are suggested:

• Mapping starts at the lowest molecular weight substituent next to the ether

oxygen, which becomes bead "A"

• Mapping always goes in the direction of the ether oxygen, making that the last

bead of the ring structure, and thus always bead "C"

• A focus is put on matching diols going in a circle

• Functional groups are kept together, whenever possible

• In the case of substituent groups on the base five/six carbon ring, the ring is

mapped first, moving on to substituents in the order of the ring mapping. I.e.

N-acetylneuraminic acid (Figure 6.1H), has bead "D" connected to bead "A", "E"

to "B", et cetera

• Internal bonds (i.e. between bead "A", "B" and "C") are defined as constraints

while substituent beads are characterized by bonds and simple angle potentials

that allow for flexibility of substituent groups

• Nrexcl = 3 is used, meaning the exclusion of non-bonded interactions between

atoms that are no further than 3 bonds away

• A TC4 virtual site is included in the geometrical center of the ring and internal

constraints are scaled by 15%

Representative monosaccharides and bead ordering are presented in Figure 6.1:
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Figure 6.1: The mapping approach for representative monosaccharides as modelled in
this study are showcased. A) D-glucose. B) D-fructose. C) L-fucose. D) Myo-inositol.
E) D-xylopyranose. F) D-ribose. G) N-Acetylglucosamine. H) N-Acetylneuraminic
acid
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6.2 Disaccharides & polysaccharides

6.2.1 Mapping principles

As has been explained in Chapter 3, three main types of glycosidic linkages can be

distinguished where α- and β-linkages are treated separately (see Table 6.1). The loss

of a heavy atom through glycosidic linkage affects the mapping scheme. The

glycosidic oxygen is taken in a bead with the first monosaccharide (named "A", "B" or

"C", depending on which linkage class is present) as an S-bead while the recipient

bead is modelled by a T-bead. Through a difference in ordering of the mapping

scheme (Figure 6.1), a clear distinction between the three linkage classes is

possible.

Class Glycosidic linkage

Class 1 α1,1 & α1,2

Class 1 β1,1 & β1,2

Class 2 α1,3 & α1,4

Class 2 β1,3 & β1,4

Class 3 α1,5 & α1,6

Class 3 β1,5 & β1,6

Table 6.1: The six groups of glycosidic linkages and their mapping approach (show-
cased in the class type) are highlighted. Due to the more flexible nature of α-glycosidic
linkages, they are treated separately from β-linkages. Further simplification follows
from the division of the six different carbon linkages into three main types of classes.
By changing the bead assignment, each class is easily mapped and recognized.

All internal constraints (so not the glycosidic bond) are scaled by 15%. The mapping

direction follows the opposite direction of the glycosidic linkage, in accordance with

how atomistic glycans are constructed. In practice this means that e.g. β1,4 linkages

are mapped in the 4 −→ 1 direction (see Figure 6.2)
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Figure 6.2: The three main types of linkages in the Martini 3 carbohydrate model
are presented here. A) Class 1 encompasses the x1,1/x1,2 linkages where glycosidic
bonds are drawn between the neighbouring beads A and A’. B) Class 2 encompasses
the x1,3/x1,4 linkages where bonds are drawn between the neighbouring beads B and
A’. C) Class 3 encompasses the x1,5/x1,6 linkages where bonds are drawn between
beads A and C’

6.2.2 Bonded potentials

While internal monosaccharide bonds are defined as constraints in GROMACS,

glycosidic bonds are intrinsically more flexible, and need to be explicitly modelled as

such. Furthermore, a neighbour exclusion of 3 is defined, excluding non-bonded

interactions between atoms that are no further than three bonds away. A simple

bonded potential scheme is suggested, where four angle potentials (GROMACS

function 1) and one proper dihedral potential (GROMACS function 1) seem to define

the conformational space of carbohydrates well, with no major instabilities reported.

Using a Class 3 linkage as an example, Figure 6.3 highlights which potential controls

each specific rotation. It should be noted that for polysaccharides, an extra dihedral

potential spanning from n to the n + 2 neighbour is required that controls this type of
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rotation.

Figure 6.3: All the bonded potentials required to cover the conformational space for
Class 3 linkages are presented. A) The four angle potentials control rotation of the two
sugar rings with respect to each other. B) The dihedral potential captures flipping of
sugar beads across the glycosidic bond. C) The additional dihedral potential captures
rotation from n with respect to the n + 2 neighbour.

By extrapolating the potential scheme as outlined in Figure 6.3, the potentials for the

other linkage classes logically follow. These are presented in Table 6.2 for additional

clarity. It should be further noted that in the case of Class 1 potentials, homogenous

polysaccharides do not exist due to all monosaccharides having their reducing end

already bound. In the case of heterogeneous polysaccharides/glycans, a generic

dihedral is desirable that will require explicit testing in complex systems, such as

glycosylated proteins.
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Class 1 Class 2 Class 3

Type Potential Potential Potential

Bond A - A’ B - A’ A - C’

Ang 1 B - A - A’ A - B - A’ C - A - C’

Ang 2 A - A’ - B’ B - A’ - B’ A - C’ - A’

Ang 3 A - A’ - C’ B - A’ - C’ A - C’ - B’

Ang 4 C - A - A’ C - B - A’ B - A - C’

Dih 1 B - A - A’ - C’ A - B - A’ - B’ C - A - C’ - A’

Dih 2 - B - A’ - B’ - A” A - C’ - A’ - C”

Table 6.2: The potential scheme suggested here, applied to the main three classes of
linkages. Due to specific mapping of each different linkage type, different linkages
can quickly be distinguished.
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7 | Methods

7.1 Simulation details

All simulations were performed with GROMACS (2018.8)52,53. Atomistic simulations

(AA) were performed with the GLYCAM0654, CHARMM3655 and GROMOS54a756

force fields. Coarse-grained (CG) simulations were performed with the Martini 3

force field4, or Martini 2 force field57. Visualization of the trajectories was done in

VMD58 and PyMOL (DeLano Scientific, Palo Alto, CA,USA)

7.1.1 GLYCAM06 setup

Each sugar was placed in the middle of a box of size 2.4 x 2.4 x 2.4 nm3 and then

solvated using the TIP3P water model58. Periodic boundary conditions were used

and a 1 nm cutoff for nonbonded interactions was employed. Simulations were

performed at constant pressure of 1 atm and temperature of 310 K, using the

Parrinello-Rahman barostat59,60 , and velocity-rescaling algorithm61, respectively.

Each simulation was ran for 200 ns, following an equilibration stage with position

restraints applied on all sugar atoms. The LINCS algorithm62 was used to solve the

constraints. Glucose, mannose, N-Acetylglucosamine (GlcNAc) and

N-Acetylneuraminic acid (Neu5Ac) were simulated using this force field.

7.1.2 Basic CHARMM36 setup

Each CHARMM36 simulation used the following settings, unless specified

otherwise. The CHARMM-GUI63 Glycan reader64 was employed to prepare the

simulations. The TIP3P65 water model was used to solvate the structure in such a

way that each atom was at least 10 Å removed from the box boundaries. Periodic

boundary conditions were used and for treatment of long-range electrostatic

interactions, the particle-mesh Ewald method66,67 was employed. Electrostatic
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interactions were cutoff at 1.2 nm using the Verlet buffer scheme. The twin range

cutoff scheme with a cutoff value of 1.2 nm was used for short range van der Waals

interactions. Simulations were performed at constant pressure of 1 atm and a

temperature of 303.15 K, using the Parrinello-Rahman barostat59,60 , and

Nosé-Hoover thermostat68,69, respectively. All systems were equilibrated in the NPT

ensemble using position restraints for 1.25 ns, which were removed in the production

simulation. All systems were ran for at least 200 ns, with an integration timestep of 2

fs. The LINCS algorithm62 was used to solve the constraints. All carbohydrates not

mentioned in GLYCAM06 and GROMOS54a7 were simulated using these

settings.

7.1.3 GROMOS54a7 setup

Structures were prepared using the ATB56. The Verlet cutoff scheme70 and reaction

field method71, were employed, both with a cut-off of 1.4 nm and relative

permittivity εr set to 61. The SPC water model72 was used to solvate the structure in

such a way that each atom was at least 10 Å removed from the box boundaries.

Simulations were performed at constant pressure of 1 atm and a temperature of

298.15 K, using the Parrinello-Rahman barostat59,60, and Nosé-Hoover

thermostat68,69, respectively. All systems were ran for at least 200 ns, with an

integration timestep of 2 fs. The LINCS algorithm62 was used to solve the

constraints. Sucrose and inositol were simulated using this force field.

7.1.4 Basic Martini 3 setup

Each Martini 3 simulation followed the standard simulation settings as outlined in

the main publication4 and the "new" set of parameters as outlined by de Jong et al,

201673, unless specified otherwise. The Verlet cutoff scheme70 using a cutoff of 1.1

nm was used for the Lennard-Jones terms. Electrostatic interactions were treated

with reaction field71, with εr = 15 and a cutoff value of 1.1 nm. The velocity scaling

thermostat61 and Parrinello-Rahman barostat were used to maintain temperature
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and pressure respectively. Equilibration was performed in two stages, 2.5 ns long

each, first using an integration timestep of 10 fs and then 20 fs.

7.2 Parameterization of bonded interactions

7.2.1 Mapping approach

Mapping files were prepared using pycgbuilder

(https://github.com/marrink-lab/pycgbuilder). Mapping always followed the

general guidelines as outlined in Chapter 6. In the case of monosaccharides, bead

assignment was iteratively validated with partition data until the best possible

agreement could be found. In case of known accurate assignment, only unknown

chemical moieties were touched.

Initial bonded parameters were derived using pycgmap

(https://github.com/fgrunewald/pycgmap), which employs the following

summarized methodology: a simulation trajectory and mapping files may be

supplied. The coarse-grained beads are then placed at the center of geometry of the

constituting atoms (H-atoms included), following the Martini 3 guidelines4. Using

Boltzmann inversion (BI)74, an initial estimate of the bonded parameters could be

made. The parameters were then iteratively optimized for close agreement of their

potential distributions with the atomistic reference simulation.

7.2.2 Modelled potentials

Three types of bonded interactions were modelled. Bonds were described by a

harmonic potential as shown in eq. 7.1:

Vbond =
1
2

Kbond(r− rbond)
2 (7.1)

where rbond and Kbond are the equilibrium distance and force constant respectively.

Internal bonds are constrained at the equilibrium length while glycosidic bonds are

treated explicitly by Vbond. Angles were defined over three beads that crossed the
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glycosidic bond, described by the potential Vangle (eq. 7.2).

Vangle =
1
2

Kangle(θ − θangle)
2 (7.2)

where θangle and Kangle are the equilbrium angle and force constant respectively.

Proper dihedrals (GROMACS functions 1 and 9) were described using the potential

Vdihedral (eq. 7.3)

Vdihedral = Kdihedral(1 + cos(n · θ − θdihedral)) (7.3)

where Kdihedral is the force constant, n is the multiplicity and θdihedral is the

equilibrium angle between planes defined by the beads i, j, k and j, k, l

respectively.

7.3 SASA and volume calculations

7.3.1 SASA

Solvent Accessible Surface Area (SASA) calculations were performed on

PBC-corrected, at least 200 ns long, trajectories using the gmx sasa33 package, as

implemented in GROMACS. Experimental van der Waals radii34 were used for the

atomistic trajectory. For the Martini model, custom radii were defined via the

definition:

rvdW = rmin =
dmin

2
=

6√2σ

2
(7.4)

where σ is the radius of a certain bead type.

The resulting radii are collected in Table 7.1. The probe size was kept at 0.191 nm in

all calculations as that is the radius of a T-bead and thus the smallest possible particle

that interacts in Martini.
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Bead type VDW radius (nm)

T-bead 0.191

S-bead 0.230

N-bead 0.264

Table 7.1: The van der Waals radii for Martini beads as employed in SASA calculations

7.4 Free energies of transfer

7.4.1 Experimental methodology

Partition coefficients of the free energies of transfer ∆∆GOCO→W were collected via

the methodology as outlined by Virtanen et al, 2020, at a temperature of 298.15 K and

4% octanol hydration. For a full description on the methodology, see Appendix A1.3.1.

Log P values can be transformed to the free energy of transfer ∆∆GOCO→W (kJ mol−1)

via the relation

∆∆GOCO→W = 2.203 R T log P (7.5)

where R is the gas constant (kJ mol−1 K−1) and T the temperature (K). Final partition

values are collected in Table A1.6.

7.4.2 MD methodology

The free energy of transfer (∆∆GOCO→W) for a compound is defined as the difference

in the solvation free energy of the water (∆GW) phase and 5w% octanol (∆GOCO)

phase, which describes the free energy change from vacuum to solvent.

The solvation free energies were calculated as the free energy difference ∆F of the

sugar in vacuum (state A) and the solvated phase (state B), using the thermodynamic

integration (TI)75 procedure (eq. 7.6)

∆FBA = ∆FB − ∆FA =
∫ λB

λA
dλ

〈
∂Uuv(λ)

∂λ

〉
λ

(7.6)
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The potential energy function ∂Uuv describes the interactions between sugar and

solvent and is averaged over a specific simulation trajectory. λ is defined as a

coupling parameter that controls the level of ∂Uuv, which varies from no (λA = 0) to

full (λB = 1) interaction.

The calculations were performed using 19 λ values (0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.55, 0.6

0.65, 0.7, 0.75, 0.775, 0.8, 0.825, 0.85, 0.875, 0.9, 0.95 and 1.0), at 298.15 K. For each

window, 12 ns of simulation trajectory was used. The free energy difference was

estimated using Bennett’s Acceptance Ratio (BAR)76 as implemented in the gmx bar

package.

7.5 Osmotic pressures

7.5.1 Pressure calculations

The osmotic coefficient was computed from simulations adopting the protocol as

originally proposed by Luo and Roux77. A rectangular box was created in which the

solute molecules were confined in the z-direction by a flat-bottomed potential to the

center of the box. At a distance of 2.52078 nm from the center of the box, a harmonic

force with a force constant of 1000 kJ mol−1 nm−2 was applied to the solute

molecules. The box dimensions were taken to be 10.08312 nm and 5.04156 nm, in the

z dimension and x + y direction respectively. Previous to each run, a random

configuration of solute and solvent molecules was created with Polyply

(https://github.com/marrink-lab/polyply_1.0) placing solute molecules only in the

center of the box, and the solvent in the entire box.

After energy minimization, this setup was subjected to 10 ns of equilibration using

the Berendsen barostat78. Production simulations were run for 500 ns at a pressure of

1 bar and coupled to a temperature of the respective experimental reference values

using the velocity rescaling algorithm61. Following Sauter and Grafmüller29, the

pressure was coupled only in the z-dimensions using the Parrinello-Rahman
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barostat59. In the original implementation, the simulation was performed in the NVT

ensemble. The particle-mesh Ewald method66,67 was used in all simulations. The

osmotic pressure was computed from the trajectory by recalculating the total force

exerted by the solute particles onto the flat-bottomed potential averaged over the two

potentials. Subsequently, that force was divided by the xy area of the box. The

ensemble average as well as an error were computed from the time-series of the

osmotic pressure.

The osmotic pressures were calculated as a function of the concentration in molality,

determined by the expression

m =
N

NA

ρW V
(7.7)

where N is the absolute number of solute molecules in the system, NA is Avogadro’s

constant, ρW the density of water and V the volume of the box.

7.5.2 Experimental osmotic pressures

Experimental osmotic coefficients (φ) for many representative carbohydrates may be

found in literature and are commonly expressed a function of molality. Relating the

osmotic coefficient to osmotic pressure follows the expression

Π = φ c R T (7.8)

where Π is the osmotic pressure in bar, φ the osmotic coefficient, c the solute

concentration (m), R the gas constant (L bar K−1 mol−1) and K the temperature

(K).
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A1 | Appendix

A1.1 Monosaccharides

A1.1.1 Bonded parameters

The final bead assignment of the monosaccharides is summarized in Table A1.2

Sugar Code Bond A-B Bond A-C Bond B-C Bond A-D ANG C-A-D

D-glucose GLC 0.380 0.470 0.396 - -

D-mannose MAN 0.373 0.450 0.394 - -

D-galactose GAL 0.361 0.478 0.381 - -

L-fucose LFUC 0.359 0.454 0.361 - -

L-rhamnose LRHA 0.367 0.432 0.367 - -

Fructose FRU 0.376 0.454 0.357 - -

D-ribose RIB 0.320 0.400 0.324 - -

D-xylose XYL 0.380 0.362 0.315 - -

Inositol INO 0.369 0.375 0.386 - -

GlcNAc/GalNAc GYN 0.392 0.427 0.397 0.339 | 4700 144 | 100

Sugar Code Bond A-B Bond A-C Bond B-C Bond A-D

Neu5Ac NMC 0.331 0.424 0.397 0.251

Bond B-E Bond C-F Ang B-A-D Ang B-C-F Ang A-B-E

0.336 | 6000 0.273 | 11500 96 | 350 144 | 100 141 | 150

Table A1.1: Parameters belonging to monosaccharides. Bonds that make up the main
monosaccharide ring (mapped by beads "A", "B" and "C") are defined as constraints.
Subsituent groups are defined as bonds with angles to prevent flipping of the bead
across the bond. Units: length (nm), angle (°), force constant (kJ mol−1 nm−2). All
internal constraints are scaled by 15%.
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A1.1.2 Bead assignment final model (TC4)

Code Mapping

GLC SP4-SP4-SP1-TC4

MAN SP4-SP4-SP1-TC4

GAL SP4-SP4-SP1-TC4

FRUF SP2-SP4-SP1-TC4

LFUC SP4-SP4-SN4ar-TC4

LRHA SP4-SP4-SN4ar-TC4

RIBF SP4-TP1-SP1-TC4

XYL SP4-SP4-TN4a-TC4

INO SP4-SP4-SP4-TC4

GYN TP1-SP4-SP1-SP1h-TC4

NMC SP1-SP1-TP1-SQ5n-SP1h-SP2-TC4

Table A1.2: Final bead assignment for the Martini 3 monosaccharides in this study,
with 15% scaling of internal bonds.
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A1.1.3 Bead assignment of models considered.

Code S-bead no VS S-bead TC4 S-bead TC4 (15%) N-bead no VS

GLC SP3-SP3-SP1 SP3-SP3-SP2-TC4 SP4-SP4-SP1-TC4 P3-P3 -P2

MAN SP3-SP3-SP1 SP3-SP3-SP2-TC4 SP4-SP4-SP1-TC4 P3-P3-P2

GAL SP3-SP3-SP1 SP3-SP3-SP2-TC4 SP4-SP4-SP1-TC4 P3-P3-P2

FRUF SP2-SP3-SP1 SP2-SP3-SP1-TC4 SP2-SP4-SP1-TC4 -

FUC SP3-SP3-SN3ar SP3-SP3-SN3ar-TC4 SP4-SP4-SN4ar-TC4 P3-P3-N3ar

RIBF SP3-TP1-SP1 SP3-TP1-SP1-TC4 SP4-TP1-SP1-TC4 -

XYL SP3-SP3-TN2a SP3-SP3-TN4a-TC4 SP4-SP4-TN4a-TC4 P3-P3-TN3ar

INO SP3-SP3-SP3 SP3-SP3-SP3-TC4 SP4-SP4-SP4-TC4 P3-P3-P3

GYN TP1-SP3-SP1-P2 TP1-SP3-SP2-P2-TC4 TP1-SP4-SP1-SP1h-TC4 -

NMC SP1-TP1-TP1-SP2-P2-SP2 SP1-TP1-TP1-SP2-P2-SP2-TC4 SP1-SP1-TP1-SP2-SP1h-SP2-TC4 -

Table A1.3: Final bead assignments of the four main models applied to the different
monosaccharides, corresponding to the free energies of transfer as outlined in Table
A1.5. Bead assignment follows the order"A"-"B"-"C" etc.
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A1.2 SASA values

Sugar Code AA SASA S-beads S-beads (15%) N-beads M2

D-glucose GLC 4.08 3.75 4.06 4.26 4.22

D-mannose MAN 4.05 3.75 4.06 4.23

D-galactose GAL 4.08 3.75 4.06 4.26

GlcNAc GYN 4.78 4.35 4.56

Neu5Ac NMC 5.63 5.44 5.62

L-fucose FUC 3.92 3.77 3.91 4.16

L-rhamnose RHA 3.92 3.77 3.91 4F.16

D-xylose XYL 3.66 3.38 3.59 3.75

Inositol INO 4 3.63 3.85 4.1

D-fructose FRUF 4.08 3.7 3.94 4.18 4.17

D-ribose RIBF 3.7 3.37 3.58 3.76

Trehalose TREH 5.97 5.41 5.87

Sucrose SUCR 5.9 5.28 5.6 6.2

Lactose LAC 6.07 5.54 6 6.18

Table A1.4: SASA values of different models, given in Å
2
. "AA SASA" refers to the

reference atomistic model (see Section 7.1 for a full overview of which carbohydrate
was modelled by which force field)

.
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A1.3 Free energies of transfer

A1.3.1 Experimental methodology

Measurements were performed by researchers at the University of Turku, following a

similar methodology as outlined in Virtanen et al, 202079. Measurements were done

with an UPLC-DAD-HESI-Orbitrap-MS instrument. The column in the UPLC was an

Aquity BEH Phenyl (100 × 2.1 mm i.d., 1.7 µm) and the mobile phase consisted of

acetonitrile (A) and 0.1% aqueous formic acid (B). The elution gradient was carried

out with a constant flow rate of 0.65 mL/min as follows: 0–0.1 min: 3% A; 0.1–3.0

min: 3.0–45.0% A (linear gradient); 3.0–3.1 min: 45.0–90.0% A (linear gradient);

3.1–4.0 min: 90% A; 4.0–4.1 min: 90.0–3.0% A (linear gradient); 4.1–4.2 min: 3.0% A.

The ionization mode (negative/positive) of the mass spectrometer that was used for

each compound depended on their ionization efficiency in either negative or positive

mode and the one where each compound ionized more effectively in the test samples

was then used for quantitative measurements.

All measurements were done in triplicate and quantitation for each compound was

done from extracted ion chromatograms (EICs) from full scan MS analysis with a

specific m/z-range for each compound. Integrated EIC areas were converted to

concentrations before partition coefficient calculations with a calibration series done

with a dilution series of each compound. Both the calibration series samples and the

actual Kow samples mass responses (integrated EIC areas) were normalized with an

external standards mass response so that the possible variation in the mass

spectrometers performance during the measurements and on different days could be

taken into account.
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A1.3.2 Partition values of final Martini models

Sugar Code S-bead, no VS N-bead, no VS TC4 TC4 15%

D-glucose GLC -17.68 -15.65 -17.51 -17.06

D-mannose MAN -17.68 -15.65 -17.52 -17.06

D-galactose GAL -17.68 -15.65 -18.01 -17.16

N-acetylgalactosamine GalNAc -17.61 - -17.86 -17.21

N-acetylglucosamine GlcNAc -17.61 - -17.86 -17.21

N-acetylneuraminic acid NMC -25.9 - -24.89 -23.61

D-fucose FUC -25.9 -10.24 -12.19 -12.04

L-rhamnose RHA -13.43 -10.24 -12.53 -11.8

D-xylose XYL -12.2 -11.8 -14.4 -13.75

Myo-inositol INO -19.71 -17.65 -21.73 -21.03

Trehalose TREH -26.25 - -24.78 -23.95

Sucrose SUCR -28.11 - -24.30 -23.57

Table A1.5: Final partition values of the different models tested, given in kJ mol−1.
Standard deviation of each Martini model was within ± 0.25 kJ mol−1. Note that for
NMC, the free energy was calculated for the protonated form (modelled by SP2 bead),
where the final deprotonated model is modelled by a SQ5n bead.
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A1.3.3 Experimental octanol/water partition values

Sugar Code Log P SD ∆GOCO→W SD

D-glucose GLC -3.12 0.1 -17.81 0.57

D-mannose MAN -2.61 0.03 -14.9 0.17

D-galactose GAL -3.07 0.03 -17.52 0.17

N-acetylgalactosamine GYN -3.06 0.02 -17.47 0.11

N-acetylglucosamine GYN -3.03 0.06 -17.29 0.34

N-acetylneuraminic acid NMC* -4.4 0.08 -25.11 0.46

D-glucosamine GCA -4.03 0.09 -23 0.51

D-glucuronic acid GLA* -3.26 0.02 -18.61 0.11

D-fucose FUC -2.26 0.06 -12.9 0.34

L-rhamnose RHA -2.26 0.04 -12.9 0.23

D-xylose XYL -2.43 0.02 -13.87 0.11

Myo-inositol INO -3.49 0.04 -19.92 0.23

Table A1.6: The experimentally determined partition values for the carbohydrates an-
alyzed in this study. Log P values were translated to ∆GOCO→W, as outlined in Section
7.4.1. The error is given as the standard deviation (n=3), for both log P and ∆GOCO→W
(kJ mol−1). Note that for NMC and GLA the log P is given for the protonated solute
while at physical pH the majority of species are deprotonated.
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A1.4 Distributions disaccharides

Figure A1.1: The distributions of the AA simulations and final CG models for the
glycosidic bond, dihedral and four angle potentials are shown for the disaccharides
sucrose and lactose.
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