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Abstract

Microbial communities are crucial players in various biological systems. Their diversity and
stability  are  usually  associated  with  the  health  of  organisms and the  ecology and evolution  of
ecosystems.  Although adaptive  plasticity,  specifically  plasticity  in  metabolism,  is  ubiquitous  in
microorganisms, its impact on ecological properties of microbial communities remains elusive and
understudied. Here, by utilizing metabolic networks reconstructed from the genomes of 18 human
gut bacteria species and the dynamic flux balance analysis (dFBA), we modelled plastic metabolism
in the studied bacteria and investigated its effect at both single species and community level. We
showed that  enabling metabolic  plasticity  has allowed many species to reach higher population
densities at equilibrium in a variety of environments. Intrinsic plasticity was then measured as the
capability of a species to exploit plasticity for its growth in a specific environment and was found to
be determined both by the metabolic network of the species and its environmental condition.  The
results show that batch culture with fixed resources were less conducive to benefits from plasticity
than  continuous  culture.  Interestingly,  variations  in  intrinsic  plasticity  among  species  were  not
correlated with their taxonomy. For small communities of two species, our simulations revealed that
plasticity  could  foster  competitive  exclusion  when  the  interacting  species  differed  strongly  in
intrinsic plasticity. In those cases, the plastic species generally outcompeted the non-plastic one.
Plasticity  could  also  either  hamper  or  facilitate  competitive  interactions.  Importantly,  we
demonstrated  that  when  there  was  plasticity,  interaction  coefficients  inferred  by  fitting  the
generalized  Lotka-Volterra  (gLV)  model  to  species  densities  data  were  incapable  of  reflecting
species interactions at equilibrium. When the species were plastic, even if the inferred interaction
coefficients  were  non-zero,  most  of  the  studied  communities  were  likely  to  have  little  to  no
dependence between their members at equilibrium. These results also suggest that plasticity could
promote  stability  by  weakening  ecological  interactions.  Nevertheless,  several  questions  on  the
effect of plasticity on community stability remain after our analyses. First, new methods are needed
to quantify the effect of plasticity on ecological interactions in a dynamic context; second, different
measures have to be explored to track the propagation of perturbations through a community, and to
quantify their impact. Future study therefore will have to address these remained issues and extend
the research for a more thorough understanding of the impact of plasticity on species coexistence
and dynamic interactions.

Keywords: adaptive  plasticity,  metabolic  plasticity,  microbial  community,  community
diversity, community stability

Abbreviations

dFBA Dynamic flux balance analysis

FBA Flux balance analysis

gLV Generalized Lotka-Volterra
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Introduction

From human health to ecosystem functioning,  microorganisms and their communities play
crucial roles in a wide variety of biological systems at multiple ecological levels. At organism level,
diversity and stability of microbiome has been linked to the health of plants  [1], animals  [2], and
humans [3]. Microbial communities also have tremendous impact on the biodiversity and functions
of ecosystems such as soils [4] and oceans [5]. Understanding microbial communities, therefore, is
important,  not only for deciphering mechanistically the behaviours of their associated biological
systems but also for predicting and engineering those behaviours [3, 4, 6]. 

Recently,  aided by the rapid advancement  of  sequencing technologies,  there  has  been an
escalating  in  descriptive  findings  on  various  microbial  communities  across  space  and  time.
Nevertheless, as increasingly detailed descriptions become available, there is also rising need for
theoretical  framework(s)  that  could  help  explain  and  generalize  these  descriptions  in  a  both
comprehensive and mechanistic manner [7, 8]. Indeed, although perhaps with a lower rate than that
of  empirical  studies,  there  also  has  been  an  increase  in  theoretical  and  empirical-theoretical
integrated  studies  in  microbial  community  research.  Most  of  them  regarded  the  generalized
Lotka-Volterra (gLV) model as a framework for the dynamics of the microbial communities being
studied. The model has been utilized to study community network properties that link to diversity
and stability of random and hypothetical communities  [9], the assembly rules of the human gut
microbiome  [10–12], and the resilience of microbiomes to a wide range of perturbations – from
antimicrobial treatment in the context of health [13] to climate change in the context of ecosystem
management  [14]. In a gLV model, a community is represented as a single matrix of intra- and
inter-species interaction coefficients. On the one hand, this allows for generalizing the findings at a
low computational  cost,  but  on the  other,  it  omits  the extensive  complexity  in  the interactions
between microbial  species which usually  harbour a plethora of mechanisms and behaviours for
interacting with their surroundings [15]. The gLV models also rely on the assumption of constant
interactions  between  community  members.  Adaptive  plasticity,  however,  is  ubiquitous  in
microorganisms [16–18], and therefore, the assumption may be violated in many microbial systems
in natural settings. 

Different  models,  therefore,  have been proposed.  Those include,  but are  not  restricted  to,
models  of  consumers  and  resources,  in  which  community  members  are  allowed  to  interact
dynamically with each other through their metabolism [19–21]. Oña et al. modelled their microbial
communities by networks of species linked with each other via nodes of their metabolites. Their
results supported that strong cooperative cross-feeding promoted the robustness of communities to
major disturbance [21]. The finding therefore is contradictory to that from the study of Coyte et al.,
which was based on the gLV model and suggested that strong cooperation could have destabilizing
effect  on community  stability  [9].  Under  usual  metabolite-mediated  models,  however,  adaptive
plasticity in metabolism is still absent. The role of plasticity on community indeed is understudied
not  only  in  microbial  community  research  but  also  in  other  biological  systems  research  area.
Pacciani-Mori  et  al. have  emphasized  this  and  therefore,  designed  their  study  to  incorporate
metabolic  plasticity  into  the  classical  MacArthur’s  consumer-resource  model.  Their  findings
suggested that  plasticity  could  support  species  coexistence  in  competitive  communities  [20].  A
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limitation of the study, however, is that all members were assumed to be plastic and there was no
possibility for cross-feeding. 

Herein,  with attempts  to overcome the limitations  of the above approaches,  we utilized  a
mechanistic approach in modelling bacterial metabolism and aimed to study the effect of adaptive
plasticity in metabolism, or shortly metabolic plasticity, both on the population growth at single
species level and on the diversity and stability of microbial communities. Our approach involved
metabolic  networks  reconstructed  from the  genomes of  18 human gut  bacteria  species  and the
dynamic flux balance analysis (dFBA) to model bacterial metabolism and to allow species to switch
their metabolic strategies adaptively. In silico comparisons were conducted between when plasticity
was permitted and when it was prohibited. At single species level, species were in silico cultured
separately (mono-culture simulations), and their intrinsic plasticity were assessed as their capability
to exploit  plasticity  for their  growth. Intrinsic plasticity  was examined not only across multiple
species but also across differing environmental conditions, specifically differing media and culture
types  (batch  and  continuous  culture).  At  community  level,  10  representative  two-member
communities were studied in two representative media using dynamics simulations of co-cultures.
Plasticity was assessed for its effects on species coexistence, species interactions, and community
stability.
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Methods

Genome-scale metabolic networks and media
We collected genome-scale metabolic networks and nutrient profiles of culture media from

the  AGORA  database  v1.3  [22].  These  metabolic  networks  were  reconstructed  from  bacterial
genome  sequences  and  refined  with  literature-derived  experimental  data.  Differing  media  are
defined based on various human diets and are described in details at https://www.vmh.life/. All 11
media  available  on the  database  were included in  our  study.  However,  the number  of  bacteria
species were restricted to 18 species in total.  The selection criteria were only to obtain a set of
species from diverse taxonomy and whose growth were successfully calibrated by our simulations,
as described below. List of selected species were provided in Table S1.

Dynamic flux balance analysis (dFBA)
When there is no metabolic plasticity (plasticity=OFF), a population was allowed to search

for  an  optimal  metabolic  fluxes  profile,  i.e.  metabolic  strategy,  corresponding  to  its  initial
environment.  However,  although  the  population  growth  and  nutrient  concentrations  in  the
environment were constantly updated, the whole population would only follow its initial strategy
for the entire course of the simulation, up to reaching equilibrium (stationary phase in batch culture
simulations,  but herein the two terms are used interchangeably).  Standard flux balance analysis,
therefore, was applied for the optimization problem, but only at the beginning of the simulations.
Details of the flux balance analysis on metabolic networks are described elsewhere [22].

Dynamic  flux  balance  analysis  (dFBA)  was  applied  when  plasticity  is  allowed
(plasticity=ON). In this scenario, the population was permitted to continually search for optimal
metabolic strategy corresponding to its current environment. Each newly found metabolic strategy
was introduced as a subpopulation. At every time step, it was possible for the population to harbour
a maximum of 20 subpopulations. Switching therefore occurred as changes in density frequency
between  the  subpopulations,  with  pre-defined  constant  switching  rate  (=3.5  h-1),  switching
sensitivity  of differences in growth rate between metabolic  strategies (=0.05 h -1),  and a random
effect.  

The  FBA  estimates  optimal  metabolic  fluxes  profile  by  computing  and  optimizing  the
biomass production rate. Thus, to estimate the outcome of each optimal metabolic strategy found by
FBA on the population growth, it is required to convert the associated biomass production rate into
a growth rate.  We involved two scaling parameters  for this  conversion:  FLX representing how
much resources or biomass a cell needs for growth and YLD representing the degrees of metabolic
fluxes required for reaching a certain population density at equilibrium. The growth rate derived
from this scaling was regarded as a sum of both the rate for cell maintenance (fluxNGAM) and the
rate for cell replication. For all simulations, the fluxNGAM was constant and was 0.1 h-1. FLX and
YLD scaling parameters were estimated by fitting data after the initial FBA update to a reference
growth curve with maximum growth rate and maximum density at equilibrium. Data from initial
FBA was used in this calibration step because resources in initial environment are abundant and
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therefore, initial growth rate was considered maximal. In principle,  reference growth curves can
come from empirical studies. However, as such empirical data were not available at the time the
study was conducted, Monod’s equations for growth under a limited resource were applied:

dX
dt

=X⋅r⋅
S

S+K s
 and  

dS
dt

=−X⋅r⋅
S

S+K s
⋅
1
Y

=−X⋅
S

S+K s
,  where  S  is  resource

concentration, X  is population density, K s =0.1 M is half-saturation constant, r=
log(2.0)
0.5

 h-1 is

maximum growth rate corresponding to generation time of 0.5 h under optimal growth condition,
and  Y=r=2 log(2.0)  OD M-1 is yield coefficient. The initial population density was 1.0e-3 OD
and initial resource concentration was 1.0 M. 

Various characteristics of the systems can be monitored with our models. These include, but
not restricted to, population growth rate and density, metabolic profiles of the population (fluxes of
the  metabolic  network,  resources  consumption  and  production  fluxes),  and  also  the  nutrient
dynamics of the environment. 

In silico culture
Simulations  were  implemented  in  C++11,  supported  with  GNU Linear  Programming  Kit

v5.0-1  (GLPK,  http://www.gnu.org/software/glpk/),  library  LibSBML  v5.19.0  [23],  and  Java
environment v1.8.0_192.

Mono-culture simulations were conducted to study the effect of plasticity at single species
level. Each of 18 selected species were in silico cultured independently in 11 differing media under
either batch or continuous culture condition. Resources in batch culture were fixed. Meanwhile, the
condition of continuous culture mirrored that in a chemostat, with the medium was continuously
refreshed and bacteria were also washed out at a pre-define constant rate of 0.1 h-1. Simulations with
plasticity=OFF in principle are deterministic, but were still replicated 3 times. On the other hand,
every species-environment case with plasticity=ON was replicated 10 times,  due to the random
effect in the modelled metabolic switching. In all simulations, initial population density was 1.0e-3
OD. 

The effect of plasticity was next studied at community level with two-member communities.
Within the scope of the project, the number of tested communities was narrowed to 10 and there
were  only  two media  selected  for  studying (EU_avg and  high_fat).  The  communities  were  all
possible pairs from a set of 5 representative species. The selection process was only based on the
intrinsic  plasticity  (see  below)  across  species  and  environments,  but  not  on  the  resource
consumption and production profiles. The study also focused on continuous culture experiments.
Results  from  continuous  culture  experiments  were  expected  to  be  more  interpretable  and
biologically relevant. They showed more consistency between replicates (Fig. S1, S2, S4, and S5).
More importantly, they allowed assessing competitive exclusion and the culturing condition also
resembles more natural environments, such as one in the human gut. The number of replicates for
each scenario of plasticity allowance was similar as in mono-culture experiments. All community
species members also started with initial density of 1.0e-3 OD.

As previously mentioned, calibration was required in prior to culturing. Under the assumption
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that all members in communities are equivalent in the extents of metabolic and biomass production
rates required for maximal growth, a same set of FLX and YLD scaling parameters was used for all
studied species. Species were first calibrated separately in differing media, then the maximum FLX
value among all the cases and its associated YLD value was selected for all culture simulations.
This was to enable the expected lowest growing population to fit the reference growth curve and to
allow growth differences between species to be reflected in differences in their biomass production
rate.

The final time point for the simulations was selected such that most of the growth curves
reached stationary phase at the end of the simulation time interval. The simulation time for batch
culture, in both mono-culture and co-culture, was 12.0 hours. For continuous culture, it was 144.0
hours in mono-culture and 96.0 hours in co-culture. These also enabled the estimation of species
density  at  equilibrium as  the  density  measured  at  the  end of  simulation.  The notation  for  this
variable  was  ρ ,  with  ρON  and  ρOFF  denoted  its  value  when  plasticity=ON  and  when
plasticity=OFF, respectively.

Effect of plasticity on species growth
The effect of plasticity on population growth of a species was measured as

P=
ρON
ρOFF

.

In mono-culture, it was named as intrinsic plasticity ( Pmono ) and represented the capability of

a species to exploit plasticity for increasing its population density at equilibrium ρ . In co-culture,

P  computed for every species member was denoted as Pco .

Classification of media and species
Differing media were hierarchical clustered based on their nutrient concentration profiles and

on their  species-wide intrinsic  plasticity  profiles under each culture type (batch or continuous).

Nutrient diversity ( H ) was also computed using Shannon diversity index as follows

H=∑
i

s

pi⋅log2 pi , where  s  is the total number of metabolites and  pi  is the proportion of

metabolite i  in the medium. 

Similarly,  species  were  also  hierarchical  clustered  based  on  their  media-wide  intrinsic
plasticity profiles. All hierarchical clusterings were performed using euclidean distance and Nearest
Point Algorithm.

Metabolite consumption-production profile
The dynamics of metabolite consumption and production of each population in mono-culture

were extracted from the simulations and preprocessed. Specifically, fluxes for each metabolite were
normalized  by  the  total  consumption  or  production  fluxes  at  the  corresponding  time  point.  A
metabolic consumption-production profile at a specific time point, hence, represented how much
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each metabolite was consumed or produced with respect to the total consumption or production of
the population.

Species coexistence
Species coexistence in co-culture experiments was regarded as the absence of competitive

exclusion. In each simulation, a competitive exclusion event was indicated if one of the community
member  had  ρ <0.01 OD. For a  community,  competitive  exclusion then was quantified  as  the
proportion of replicates indicated with competitive exclusion events and took positive value for the
superior member and negative value for the inferior one.

Species interaction coefficients and linear stability analysis
In  replicates  where  there  were  no  competitive  exclusion  detected,  species  interaction

coefficients were inferred. The inference involved the fitting of simulation data to the gLV model.
Equation for the gLV model of a two-member community is as follows

d X i
dt

=X i(ri+αii X i+αij X j) ,  where  X i  and  r i  are  respectively  population  density  and

intrinsic  growth  rate  of  species  i ;  αii  is  intra-species  interaction  and  αij  is  inter-species
interaction indicating the effect of species j  on species i . As intrinsic growth rate of a species is
regarded as its growth rate when there is neither inter-species nor intra-species interactions, this was
considered equivalent to species growth rate estimated at the beginning of our simulations, where
population  densities  were  still  tiny  and  resources  were  abundant.  To  derive  the  intra- and
inter-species interaction coefficients, ρ  values in mono-culture and in co-culture were also used for
fitting. Equations for the coefficients were, therefore,

αii=
−1
ρi

⋅r i  and  αij=(
ρi ,ij
ρi

−1)⋅
1

ρ j , ij
⋅r i ,  where  ρi  is  ρ  value  of  species  i  in  its

mono-culture;  ρi ,ij  and  ρ j ,ij  are  respectively  ρ  values  of  species  i  and  species  j  in  their
co-culture.

Linear stability analysis was subsequently performed on the fitted gLV models to infer the
asymptotic stability of communities. The Jacobian matrix of the models were derived first, then a
community was considered asymptotically stable if the largest real part among all eigenvalues of its

associated Jacobian matrix ( Re(λ)max ) was below zero. In addition, the absolute magnitude of this

Re(λ)max  was  taken  to  be  indicative  of  how  quickly  a  stable  community  could  return  to  its

equilibrium [24]. 

Species persistence
Communities  were  also  assessed  for  their  species  persistence  upon  perturbation.  In  each

simulation, a pulse perturbation was introduced at 96.0 h time point, where most of simulations
have reached equilibrium, and lasted for 1 hour. The perturbation introduced an 80% death rate to
the perturbed population and was only applied to one of the community members per simulation.
Species persistence was indicated as the ability of the perturbed species to recover and remain in the
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community despite the perturbation.

Data visualization
All post-simulation data analyses were executed by scripting in Bash and Python v3.6.6 with

Numpy v1.19.5 [25] and SciPy v1.5.4 [26]. Visualization of the results were also generated using
Python v3.6.6 with libraries Matplotlib v3.3.4 and Seaborn v0.11.1 [27].
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Results

Metabolic plasticity could support species growth
The effect of metabolic  plasticity was first studied on every single species when they are

grown in mono-culture and under differing environmental conditions – batch or continuous culture
and multiple media with varying nutrient concentrations. An overview of the population density at
~equilibrium  ( ρ )  across  experimental  settings  indicates  that  adaptive  plasticity  could  support
bacteria reaching higher  ρ  ( ρON > ρOFF , i.e.  ρ  when plasticity is allowed (plasticity=ON) >  ρ

when plasticity  is  prohibited  (plasticity=OFF),  positive  effect).  Inherently  due  to  the  stochastic
effect  in  the  modelled  metabolic  switching  behaviour,  there  were  variations  in  ρON  and  thus,
variations in the effect of plasticity among replicates (Fig. 1A-B, S1, and S2). We discussed this
further in the following section. Nonetheless, despite the variations, the effect of plasticity was only
either  positive  or  neutral  ( ρON ≥ ρOFF ),  confirming  that  the  modelled  metabolic  plasticity  was
adaptive  (Fig.  1A-B,  S1,  and  S2).  We  were  also  able  to  demonstrate  the  effect  of  plasticity
mechanistically,  by examining the dynamics of population growth rates and metabolic activities
monitored by our simulations. The curves of growth rate over density display diauxic shifts in cases
with positive effect of plasticity. On the other hand, when the effect was neutral or when plasticity
was disabled, there was no diauxic shift observed (Fig. 1A-C). Additionally, the occurrences of
diauxic shifts  were also associated with changes in metabolite consumption-production profiles of
the populations (Fig. 1). 

A positive  effect  of  plasticity  represents  the  significance  of  plasticity  in  the  growth of  a
species in a certain environment. It also implies that the species was capable of exploiting plasticity
to consume resources efficiently and enlarge its population under such an environmental condition.
A  neutral  effect,  on  the  other  hand,  reflects  that  plasticity  was  not  exploited  and  played  no
significant  role  in  the  species  growth.  We  therefore  translated  the  effect  of  plasticity  in

mono-culture into a proxy for the intrinsic plasticity of a species in a specific environment ( Pmono ,

see Methods). Generally, the more positive the effect, the greater the intrinsic plasticity a species is
considered to have in the corresponding environment.  Our overall  result in mono-culture is that
intrinsic plasticity was highly dependent on culturing type, which in this case is either batch or
continuous culture. Moreover, it was also dictated by the interplay between the medium and the
metabolic  network  of  the  species.  More  details  of  these  results  are  reported  in  the  two below
sections.
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Figure 1: Species growth with and without plasticity allowed. (A-B)  Population densities at
equilibrium  ( ρ ,  measured  by  densities  the  end  of  simulations  –  see  Methods)  of  a  few
representative species-medium cases in batch and continuous mono-culture respectively.  Yellow
points  and  violin  plots  illustrate  the  distributions  of  multiple  densities  ρON  ( ρ  when
plasticity=ON) resulted from 10 replicates. Yellow horizontal lines represent the means of  ρON .
Greyish blue lines represent ρOFF  ( ρ  when plasticity=OFF), which have no stochasticity and take
single value for each species-environment case. In (A), the red box denotes a representative case
with majority of replicates having ρON ≈ ρOFF  and ≤3/10 total replicates having ρON > ρOFF , while
the  purple  box denotes  a  representative  case  with bimodal  distribution  of  ρON . (C)  Curves  of
growth rate over density (OD) of  setA_4 in  vegan medium when plasticity=OFF (left panel) and
plasticity=ON (right panel). Illustrated data were from the first 4 hours of the simulations. Black
bold lines display the average values for the entire populations. When plasticity=ON, proportions of
populations that had values differing from the population average values are represented by lines in
yellow-orange-brown colour gradient (see Key). (D) Metabolite consumption-production profiles of
setA_4 in  vegan medium  when  plasticity=OFF  (left  panel)  and  plasticity=ON  (right  panel).
Illustrated data were from the first 4 hours of the simulations. For each metabolite, the consumption
or production rate is from the entire population and was normalized by the total consumption or
production rate.  Consumed and produced metabolites  are represented by bold and dashed lines,
respectively. In (A, C-D), green stars and blue pentagons indicate two different replicates of setA_4
in vegan medium and batch culture when plasticity=ON. The former indicate a single simulation in
which ρON > ρOFF , while the latter indicate a different single simulation in which ρON = ρOFF . 

Environments with fixed resources were unfavourable for plasticity
We predicted  that  batch  culture  could  be  less  conducive  to  benefits  from plasticity  than

continuous culture. These culture types provide two differing regimes governing how resources are
provided and how the bacteria are retained in the environment. Batch culture is a closed system in
which  all  resources  are  provided  once  and  fixed  and  all  the  bacteria,  either  dead  or  alive,
permanently stay within the environment. Continuous culture, in contrast, is an open system with
resources continuously refreshed and bacteria washed out at a constant rate. As a consequence, the
efficiency of exploiting plasticity required to achieve a higher  ρON  (than  ρOFF ) in batch culture
could be higher than that in continuous culture. In other words, it could be more difficult for the
bacteria to benefit from plasticity in batch culture, unless they are very efficient in exploiting it.
Therefore, it was expected that positive intrinsic plasticity could be found less frequently and with
lower values in batch culture. 

We indeed observed outcomes consistent with our expectation in the results across various
experimental settings. For most of the combinations of species and media, intrinsic plasticity in
continuous culture was found to be higher than that  in batch culture  (Fig.  2). Additionally,  in
several cases of batch culture, a high value of intrinsic plasticity was also unrepresentative, owing
to the large inconsistencies among replicates (Fig. 1A and 2, cases annotated with red and purple
boxes; Fig. S1). In these instances, the majority of replicates showed ~zero intrinsic plasticity ( ρON

≈ ρOFF )  and  only  very  few  replicates  with  intrinsic  plasticity  ( ρON > ρOFF ,  at  most  3/10  total

replicates) (Fig. 1A and 2, cases annotated with red boxes; Fig. S1). The distribution of ρON  was
also sometimes bimodal or approximately bimodal, and in the latter cases, replicates with ~zero
intrinsic plasticity still  took up a higher proportion (Fig. 1A and 2, cases annotated with purple
boxes; Fig. S1). Conversely, in continuous culture, replicates with intrinsic plasticity were always
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the majority (at least 8/10 total replicates) (Fig. 1B and S2). Inconsistencies among replicates arose
from variations in  ρON , which inherently stemmed from the random effect added to  the decision
making of bacteria in metabolic switching. Our results, therefore, suggest that switching to the right
strategy at the right moment could be more critical in environments with fixed limited resources.
Indeed, a more mechanistic view into the growth rate and metabolism dynamics show that it was
more frequent in batch culture that diauxic shift could not take place before the resources ran out
and the population stopped growing, resulting in more replicates with zero intrinsic plasticity (Fig.
1).

Figure  2:  Intrinsic  plasticity  across  species  and  environmental  conditions.  The  heatmaps
illustrate intrinsic plasticity values ( Pmono ) across all  studied species (n=18) in all tested media
(n=11) in batch (left) and continuous (right) culture. Species are annotated for their taxonomy at
phylum and class levels by the two leftmost columns (see Key). By the two uppermost rows, media
are, sequentially,  annotated for their ranked Shannon nutrient diversity ( H , see Key) and their
associated principal clusters resulted from hierarchical clustering on nutrient concentration profiles
(see Key and Fig. 3). In the heatmap of batch culture results, red boxes denote cases with majority
of replicates having ρON ≈ ρOFF  and ≤3/10 total replicates having ρON > ρOFF , while purple boxes
denote cases with bimodal or approximately bimodal distributions of ρON  (see Fig. 1A, S1, and S2
for clarification).

Both species and environmental conditions determined intrinsic 
plasticity

Intrinsic plasticity in general was determined by the interplay between metabolic networks of
species and environmental conditions. 

Firstly, how unfavourable the batch culture is for exploiting plasticity was variable  across
both differing species and differing media. Some species were able to have high intrinsic plasticity
regardless of the culturing type (e.g.  setA_15) while others were not and their intrinsic plasticity
was dramatically hampered in batch culture (e.g. setA_13) (Fig. 1A). Intrinsic plasticity of a species
could also be affected by culturing type to a greater extent in a medium but to a lesser extent in the
other one. For example, batch culture was more unfavourable for plasticity of setA_22 in high_fiber
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medium than in  vegetarian medium. Intrinsic plasticity of the species was lower in batch than in
continuous  culture  if  high_fiber medium  was  supplemented,  but  with  vegetarian medium,  the
difference between the two culturing types was not significant (Fig. 2, S1, and S2).

Furthermore,  under  a  same  culturing  type,  nearly  all  species  displayed  varied  intrinsic
plasticity across tested media. Specifically, a species could have very high intrinsic plasticity in one
medium but have almost no intrinsic plasticity in the other medium (Fig. 2). However, intrinsic
plasticity could be similar between some media with shared nutrient profiles, and media could be
hierarchically clustered by their species-wide intrinsic plasticity profiles (Fig. 2, 3, and S3). For
instance, it was found that species usually expressed similar intrinsic plasticity in  EU_avg and in
diabetes2. In addition, there were also more species found to have intrinsic plasticity in these two
media than in other media, suggesting that they could be more favourable for plasticity (Fig. 2 and
S3).  The  clustering  of  media  based  on  intrinsic  plasticity  was  also  used  to  compare  with  the
clustering based on nutrient concentrations  (Fig. 3) and with the variations in Shannon nutrient

diversity ( H , see Methods). One notable finding from this is that high_fat and unhealthy shared

similar profiles both in nutrients content and in intrinsic plasticity (Fig. 2, 3, and S3).  The analyses
also  show  that  intrinsic  plasticity  clustering  appeared  to  be  more  correlated  with  nutrient

concentrations clustering than with variations in  H  (Fig. 2, 3, and S3), suggesting that intrinsic

plasticity could be more dependent on the quota of certain essential nutrients than on the nutrient
diversity of the medium. 

How favourable a medium is for intrinsic plasticity, however, was not exhaustively general
for  all  species.  Intrinsic  plasticity  was  also  species-dependent  and  the  variations  in  intrinsic
plasticity between media were different among species. Some species showed nearly homogeneous
medium-wide profiles. They expressed high intrinsic plasticity in almost all media (e.g.  setA_13,
setA_4 in  continuous  culture)  or  no  intrinsic  plasticity  at  all  in  any  environmental  condition
(setA_16).  On  the  other  hand,  other  species  appeared  to  have  preferential  media  where  they
expressed intrinsic plasticity exclusively or significantly higher (e.g.  setA_15,  setA_24) and their
preferences were also diverse (Fig. 2). Nonetheless, similar to media, species can also be stratified
by their intrinsic plasticity profiles, suggesting a statistical structure in the diversity among  them
(Fig.  S3).  Importantly,  variations  in  intrinsic  plasticity  between  species  showed  almost  no
correlation with species taxonomy at both phylum and class levels (Fig. S3). Species from differing
phyla and/or classes could have similar intrinsic plasticity profiles (e.g. setA_26 and setA_19), but
the profiles of species from a same class could be considerably dissimilar from each other (setA_6
and setA_16) (Fig. 2 and S3). These suggest that if metabolic interactions play a major role in the
ecology of microbial communities, then it is probable that intrinsic plasticity could be a stronger
predictor for the ecological function of a species than taxonomy classification.
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Figure 3: Classification of media.  The left-hand vertical  dendrogram displays the hierarchical
clustering of 11 studied media based on their nutrient concentration profiles. The clustering resulted
in 5 principal clusters: A1, A2a, A2b, and B, which are indicated by circles in differing colours at
the corresponding nodes (see Key). The adjacent column indicates the ranked Shannon diversity (

H , see Key) of the media, which were also based on their nutrient concentration profiles. These
profiles are illustrated by the adjacent heatmap with rows corresponding to multiple metabolites.
Each cell corresponds to the metabolite concentration (flux), measured in mmol/person/day based
on  the  human  diet  type  defining  the  associated  media  (see  Key).  Metabolites  were  also
hierarchically clustered, by a similar method and represented by the top horizontal dendrogram.

Adaptive plasticity could strongly affect species coexistence and 
interactions

We next studied the effect of metabolic plasticity on species coexistence and interactions in
2-member  communities.  Due  to  the  high  computational  cost  of  community  simulations,  our
investigation was narrowed to a small  subset of 10 communities comprising of 5 representative
species and studied in environments supplemented with either  EU_avg (average Western diet) or
high_fat (high-fat  and  low-carb  diet)  medium.  The  species  and  media  were  selected  such that
diverse scenarios of variation in intrinsic plasticity between co-inhabitants and between media could
be  included.  To  avoid  bias,  we  did  not  select  species  based  on  their  metabolite
consumption-production profiles. We also focused our analyses on continuous culture experiments,
since  competitive  exclusion  could  not  be  inferred  from  those  in  batch  culture.  Results  from
continuous  culture  experiments  were  also  expected  to  be  more  interpretable  and  biologically
relevant as they showed more consistency between replicates (Fig. S1, S2, S4, and S5) and the
culturing condition resembles more natural environments, such as one in the human gut. 

Studying the effect of plasticity in co-culture, we first computed Pco  for every species in each

community using a similar formula for computing intrinsic plasticity  Pmono . The values of  Pco ,

therefore, are also proportional to how higher density a species could reach at ~equilibrium when
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plasticity=ON compared to when plasticity=OFF. Examining Pco  with respect to Pmono , we found

that species which had intrinsic plasticity (in mono-culture) also expressed positive Pco  and those

which did not had intrinsic plasticity also showed ~zero Pco  (Fig. S6). However, it is difficult to

interpret from these results whether a positive Pco  indicates that the species was able to retain their

capability of utilizing plasticity or the species was positively affected by the co-inhabitant or the

combination of both.  This ambiguity in the meaning of  Pco  was exemplified by the strikingly

negative values in species with no intrinsic plasticity (Fig. S6). Since our modelled plasticity was

adaptive  (as  discussed above),  it  was  revealed  that  Pco  also encapsulates  effects  from species

interactions, which in these cases could be negative. 

The  effect  of  plasticity,  thus,  was  then  assessed  specifically  on  species  coexistence
(represented  for  community  diversity,  qualitative  effect)  and  species  interactions  (quantitative
effect)  and  separately  on  each  case  of  plasticity  allowance  (plasticity=ON  or  plasticity=OFF).
Species  coexistence  was  represented  by  the  absence  of  competitive  exclusion.  Competitive
exclusion was measured as the proportion of replicates with almost only one species remained at the
end of simulations. The values took positive sign for the superior co-inhabitant and negative sign
for  the  inferior  co-inhabitant.  Where  there  was  no  competitive  exclusion,  species  interaction
coefficients  were  inferred  by  fitting  the  generalized  Lotka-Volterra  (gLV)  model  to  species
densities  data  from  the  simulations.  For  each  species  member  in  a  community,  the  derived
intra-species interaction coefficient was inversely proportional to its  ρ  in mono-culture and the
inter-species interaction coefficient was proportional to the ratio of its ρ  in co-culture over its ρ  in
mono-culture.  As expected,  the computation resulted in reduced intra-species  interactions  when
plasticity=ON in species with intrinsic plasticity (Fig. S7C-D).

In both tested media,  allowing plasticity  led to  more competitive  exclusion.  However,  all
competitive exclusion instances were only at communities with one or both members that did not
expressed intrinsic plasticity. Communities underwent competitive exclusion when plasticity was
prohibited were comprised of only the latter cases, in which allowing plasticity could not have any
effect. Hence, we were not able to explore whether plasticity could obstruct competitive exclusion
and facilitate  coexistence.  In the former cases,  enabling plasticity  led to competitive  exclusion,
which was not occurred when plasticity was disabled. Nonetheless, it should be noted that member
that had intrinsic plasticity was always the superior (Fig. 4A-B and S7). Additionally, we found that
inter-species interactions of these communities were mostly negative when plasticity=OFF (Fig.
4A-B and S7). These results, therefore, reveal that if plasticity was allowed but only one of the
members was capable of utilizing it, inter-species competition could be dramatically intensified and
competitive exclusion could be fostered. 

Inter-species interaction coefficients when there was no plasticity were mostly neutral,  but
there  was  no  positive  instance  found  and  a  number  of  communities  demonstrated  either
negative-neutral  (-/0) or  negative-negative (-/-) relationship.  Many of  the negative  relationships
corresponded  to competitive  exclusion  when  plasticity  was  introduced,  as  described  above.
However, we also recorded 2 cases in which  (-/0) relationships changed into (0/0) following the
introduction of plasticity and members that received the positive effects also had intrinsic plasticity.
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For communities with neutral relationship (when plasticity=OFF), enabling plasticity also appeared
to  have  both  negative  and  positive  impacts.  There  were  cases  corresponding  to  competitive
exclusion, (-/0), or positive-neutral (+/0) when plasticity=ON. As can be seen, we did not obtain
any cases in which the impact of plasticity led to  mutually beneficial (+/+) nor mutually harmful
(-/-) relationships,  even when all  the co-inhabitants possessed intrinsic  plasticity.  Moreover,  not
only species that were positively affected were those that had high intrinsic plasticity but also those
that were negatively affected were the ones with higher intrinsic plasticity in the community (Fig.
4A-B and S7). Nevertheless, it could not be concluded from the computed coefficients whether or
not cooperation or competition has been facilitated by plasticity. This is because the negative or
positive effects observed from these results only expressed changes in the ratio of ρ  in co-culture
over  ρ  in  mono-culture.  They  did  not  necessarily  reflect  changes  in  species  interactions  at
equilibrium, particularly when plasticity was permitted and there were at least one co-inhabitant
capable of utilizing it. When there was plasticity, the bacteria changed their metabolic behaviours
and, therefore, both of their intra- and inter-species interactions very dynamically throughout the
co-living period. Consequentially, co-inhabiting species could have been propelled by each other to
the  metabolic  states  (at  equilibrium)  that  were  different  to  where  they  were  in  mono-culture
equilibria. Whether such new states led to higher, lower, or unchanged ρ  resulted in respectively
positive, negative,  or neutral interaction coefficients (Fig. 5), but it was uncertain whether there
were any forms of cooperative or competitive interactions at the new states. Notwithstanding these
limitations,  since  the  coefficients  could  still  reflect  species  interactions  when  there  was  no
plasticity, if a negative interaction coefficient was observed to be “neutralized” by plasticity (as in
setA_21 and setA_11 in EU_avg, setA_15 and setA_24 in EU_avg, Fig. 4A-B), it is still likely that
competitive interaction was avoided, thanks to plasticity.

Figure 4: Inter-species interactions and linear stability of 2-member communities. (A-B) The
heatmaps  illustrate  inter-species  interaction  coefficients  overlaid  with  competitive  exclusion
measurements in continuous culture supplemented with EU_avg (A) and high_fat (B) media. Each

17



off-diagonal  cell displays the value of species in the corresponding row when it  was  co-cultured
with species in the corresponding column. For competitive exclusion measurements, positive values
indicate the superior members while negative values indicate the inferior members. Their absolute
values  are  the  proportions  of  replicates  with competitive  exclusion events  indicated  (see Key).
Interaction coefficients were inferred only if a simulation indicated to not experience a competitive
exclusion event. The coefficient represented by an off-diagonal cell indicates the effect of species in
the associated column on species in the associated row, which can be positive, negative, or neutral
(+/-/0).  At  a  community  which  was indicated  with competitive  exclusion  in  only  a  part  of  its
replicates, competitive exclusion measurements are displayed by smaller squares, nested inside cells
displaying species interaction coefficients. Yellow points indicate communities in which interaction
coefficients were more positive when plasticity=ON than when plasticity=OFF, while dark purple

points indicate  communities with the opposite figures.  (C-D) Community stabilities ( Re(λ)max )

measured by linear  stability  analyses in continuous culture supplemented with  EU_avg (C) and
high_fat (D) media. Stabilities were measured only in simulations without competitive exclusion
indicated. In each (A), (B), (C), and (D), the leftmost column corresponds to the intrinsic plasticity (

Pmono ) values of the species.

Figure  5:  Association  between  changes  in  metabolic  state  and  inter-species  interaction
coefficients when there is plasticity. The illustration depicts three possible scenarios of change in
the metabolic state of a species at its co-culture equilibrium (green points) compared to that at its
mono-culture equilibrium (violet points), when there is metabolic plasticity. The outcomes of those
scenarios  in  the  inter-species  interaction  coefficients  ( αAB ),  inferred  by  fitting  species  density
measurements at mono- and co-culture equilibria to a gLV model, are specified correspondingly.
The metabolic  space of  the  focal  species  is  hypothesized  to  have or  to  have been scaled  to  2
dimensions. The colour gradient of the space represents the gradient in population density of the
species  at  equilibria  ( ρ ).  If  darker  shades  correspond to  higher  ρ ,  then the  leftmost  scenario
corresponds to αAB >0, and vice versa. In the other two scenarios, both mono-culture and co-culture
equilibria have equivalent  ρ  and thus, result in  αAB =0, regardless of the degree of difference in
the metabolic states.

A first look at community stability
Following  the  inference  of  species  interaction  coefficients,  community  stability  was  first

inferred via linear stability  analyses on the gLV models  fitted to our simulation outcomes (see
Methods).  Under  this  method,  stability  was  measured  as  local  asymptotic  stability,  indicating
whether a community would return to its equilibrium following a transient change in the density of
any of the species member at that equilibrium. A community would be asymptotically stable if the
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largest real part among all eigenvalues of its gLV model’s Jacobian matrix ( Re(λ)max ) was below

zero. In addition, how quickly a stable community would return to its equilibrium was indicated by

the absolute magnitude of this Re(λ)max . 

When there was no plasticity, the community with (-/-) interactions (setA_16 and setA_11 in
EU_avg)  was  the  least  stable  one.  However,  there  were  no  significant  differences  in  stability
between (-/0) and (0/0) communities (Fig. 4C-D). As plasticity being introduced, more than half of
communities  that experienced positive effects  on interaction coefficients  (changed from (-/0) to
(0/0) or from (0/0) to (+/0)) showed increased stability (Fig. 4, communities annotated with yellow
points). Meanwhile, at communities that experienced negative effects, the differences in stability
between with and without plasticity were not significant (Fig. 4, communities annotated with dark
purple points). These suggest that plasticity could support community’s asymptotic stability around
its equilibrium. However, this is only under the conditions that the inferred interaction coefficients
have precisely reflected the interactions between species at equilibrium and that those interactions
would be constant upon transient perturbations. As discussed above, such conditions might have
been violated when there was plasticity. 

As can be seen, when species were adaptively plastic in their metabolism, the results from
applying the gLV model were seismically ambiguous to interpret. Therefore, to further investigate
the  impact  of  plasticity  on  community  stability,  we  experimented  with  directly  introducing
perturbations  into  our  dynamic  flux  balance  analysis  (dFBA)  simulations.  Perturbation  was
introduced after 96.0 hours of co-culture, when most of simulations had reached steady states, and
then lasted for 1 hour (pulse perturbation).  The perturbation  induced an 80% death rate  to  the
perturbed population,  mimicking events  such as bacteriophage lysis.  In addition,  to explore the
persistence of each member in the community, there was only one member that was perturbed in
each simulation, and thus, there were two experiment settings for each community.

The results show that regardless of the presence of plasticity, the introduced perturbations did
not lead to any extinction and all of the species were able to retain their population during and after
perturbation (Fig. 6, S8, and S9). Therefore, the effect of plasticity on species persistence was not
observed.  Nevertheless,  the  results  reveal  certain  insights  into  the  species  interactions  at
equilibrium, which could not be interpreted from the interaction coefficients inferred from fitting
the gLV model to species densities data. We observed that when there was no plasticity, there was
usually a spike in population of the unperturbed member during perturbation if  the community
expressed a (-/0) or (-/-) relationship, indicating competitive interactions at equilibrium (the only
exception  was  community  of  setA_11 and  setA_24 in  EU_avg).  By  contrast,  when  there  was
plasticity, the unperturbed member in most of the communities appeared to be not affected by the
perturbation, suggesting that there could be little to no interaction between community members at
the equilibrium, even when the interaction coefficients were not (0/0) (Fig. 4A-B, 6, S8, and S9).
The  findings  here,  therefore,  support  that when  there  was  plasticity, species  interactions  at
equilibrium in co-culture could not be thoroughly captured by the coefficients inferred from the
fitted  gLV  models.  In  addition,  for  communities  with  positive  or  negative  coefficients  (when
plasticity=ON),  they  also  suggest  that  affected  by  both  plasticity  and  co-living,  species  were
propelled to metabolic states that gave rise to higher or lower ρ  than in their mono-cultures (Fig.
5), but at equilibrium, their existence were not or nearly not affected by their co-inhabitants. As
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there was likely no species interaction at equilibrium, it was also suggested that those communities
could  be  asymptotically  stable.  Nevertheless,  we did observed a  community  in  which negative
coefficients  when  plasticity=ON  possibly  were  associated  with  competitive  interactions.  The
community comprised  setA_24 and  setA_16, cultured in  high_fat medium. When plasticity=ON,
their interaction coefficients were (-/-) and there was an elevation in setA_16 population when the
setA_24 was perturbed. As their interaction coefficients when there was no plasticity were much
less  negative  (-/0  but  approximately  0/0),  these  findings  suggest  that  plasticity  has  facilitated
competition in this community (Fig. 4A-B, 6, S8, and S9).
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Figure 6: Species persistence upon perturbation. Plots of species density over time in co-culture
simulations  with  pulse  perturbations  when plasticity=OFF (left  panel)  and when plasticity=ON
(right  panel)  of  4  representative  community-medium cases.  Names  of  supplemented  media  are
specified in the right border of the figure. Thin vertical blocks in grey highlight the period that the
perturbations occurred (duration of 1 hour). Yellow lightning bolts indicate species members which
the introduced perturbations targeted to. When plasticity=ON, multiple curves in different colours
represent results from different 10 replicates.
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Discussion

Utilizing dFBA with genome-scale metabolic models of 18 gut bacteria species, we were able
explore the impact of adaptive plasticity both on species growth in mono-culture and on species
metabolic interactions in microbial communities. This mechanistic approach has enabled us avoid
the assumptions of constant species interactions of the gLV model as well as the bias accompanying
with pre-defined species metabolism. The bacteria were allowed to find and switch to the metabolic
strategy  that  is  optimal  for  their  growth  rate  during  their  living  and  therefore,  to  interact
dynamically  with  their  environment  and  with  other  co-inhabitants.  Furthermore,  although  the
metabolic networks were pre-defined, the experiments were still blind to their metabolic spaces in
differing  environments,  enabling  us  to  discover  unexpected  behaviours.  The  use  of  metabolic
networks  reconstructed  from  bacteria  genomes  also  allowed  us  have  biologically  relevant
constraints on the metabolic spaces that are specific to each different species.

As expected, the allowance of plasticity has facilitated the growth of many species in a variety
of environments, resulting in their elevated population densities at equilibrium. However, the extent
to which a population could exploit plasticity for its growth, measured by intrinsic plasticity, was
variable  among differing species  and environmental  conditions.  We observed that batch culture
conditions,  with  fixed  limited  resources,  were  more  unfavourable  for  intrinsic  plasticity  than
continuous  culture  conditions,  in  which  resources  were  continuously  refreshed.  Furthermore,
intrinsic plasticity was also determined by the interplay between species and supplemented media.
Intrinsic plasticity of species appeared to be dependent more on nutrient abundance than on nutrient
diversity of the media. More notably, species intrinsic plasticity was not correlated with species
taxonomy, suggesting that intrinsic plasticity could be a better predictor for the ecological function
of a species. This, however, is under the condition that the ecological function of a species is mainly
defined  by  its  metabolism.  Herein,  a  species  was  represented  only  by  its  metabolic  network.
Certainly, bacteria have a plethora of behaviours that could also be important for their ecological
role,  such  as  toxin  production  [28] or  motility  and  chemotaxis  [29,  30].  Although  there  are
limitations in bridging our results to natural biological systems, there could be avenues in studying
bacterial metabolic networks. One possibility for extending research could be exploring network
properties  that  are  associated  with plasticity  behaviours.  Also,  it  should be noted  that  intrinsic
plasticity was only measured as the outcome of plasticity in final population density. This proxy did
not imply about the metabolic switching behaviours of the species, i.e. the metabolic networks,
which could be, for instance, the frequency and amplitude of metabolic switching.

The work of Pacciani-Mori et al. showed that allowing adaptive switching, i.e. plasticity, of
metabolic strategies promoted species coexistence in competitive communities. However, in their
model, when plasticity was introduced, all community members were assumed to be plastic [20]. As
described  above,  this  might  not  be  the  case  for  metabolic  plasticity  in  bacteria. When  two
co-inhabitants  differed  strikingly  in  intrinsic  plasticity,  we found that  plasticity  could  intensify
competition and foster competitive exclusion. In such cases, it appeared that plasticity has allowed
the  plastic  member  to  be  much  more  metabolically  efficient  (for  its  own growth) such that  it
outcompeted the other non-plastic member, whose metabolic strategy was fixed and probably much
less efficient. We were not able to study if plasticity could also instead foster species coexistence
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and  hamper  competitive  exclusion,  since  all  competitive  exclusion  events  when  there  was  no
plasticity  were  only  observed  in  communities  with  non-plastic  members.  Nonetheless,  findings
from studying species interactions and species persistence show that plasticity could help species
avoid competition. Species interaction coefficients were inferred by  integrating mono-culture and
co-culture  densities  at  equilibria  into  the  gLV model,  and  experiments  for  species  persistence
involved the introduction of a pulse perturbation onto one of the community members after the
community has reached equilibrium. From the results, we have identified two communities in both
two tested media, whose interaction coefficient pair was (-/0) when there was no plasticity, but was
(0/0) when plasticity was present. Additionally, in these communities, when they were not plastic,
perturbing one member after the community has reached equilibrium resulted in a spike in the
population  of  the  other,  but  when  they  were  plastic,  community  members  appeared  to  be  not
affected by the perturbation at  their  co-inhabitants.  However,  we also recorded one community
showing  a  completely  opposite  figure.  Their  interaction  coefficients  were  significantly  more
negative as plasticity was introduced and perturbing one of the members was associated with a
spike in density of the other, which mirrored figures of other competitive communities when there
was no plasticity.  Hence, it  appeared that allowing species to explore and switch their resource
consumption  strategies,  could  either  prevent  or  facilitate  competition,  probably  depending  on
whether the optimal strategies lie within the niche overlaps.

Except from the above community,  most of other communities which showed a transition
from (0/0) coefficients when plasticity=OFF to (-/0) or (+/0) coefficients when plasticity=ON did
not  display  any  dependence  upon perturbation.  These  demonstrate  that  when there  is  adaptive
plasticity,  interaction  coefficients  inferred  by  fitting  the  gLV  model  could  falsely  capture
interactions at equilibrium between community members, due to the violation of the gLV model’s
assumption  on  constant  interaction.  In  our  case  of  metabolic  interactions,  plastic  community
members could have interacted very dynamically such that they were propelled by each other to
metabolic states that were different from ones in their mono-cultures. As illustrated in Fig. 2E, such
new  states  might  result  in  higher,  lower,  or  unchanged  densities  compared  to  mono-culture
densities, but they did not reflect the interactions between the members at their co-culture equilibria.
Moreover,  these  could  also  be  extended  to  the  misinterpretation  of  species  interactions  from
differences  in  species  density  or  abundance  observed over  time.  Whereas  adaptive  plasticity  is
ubiquitous in bacteria [16–18], it has been a common practice in microbial community research to
infer about the communities’ equilibria and dynamics by fitting population densities from empirical
measurements  into gLV models  [12,  13,  31–33].  Our findings point  to the shortcoming of this
common  approach  and  support  the  utilization  and  development  of  mechanistic  techniques  for
directly  measuring  molecular  interactions  in  microbial  communities.  Indeed,  although  to  some
extent, we were able to have a better look at species interactions by introducing perturbation to one
of the community members, interpretations from these experiments are still limited. It is uncertain if
the introduced perturbation was strong and prolonged enough to observe the dependence between
community members. More importantly, it is also possible that owing to plasticity, species were
able to become independent when their co-inhabitants were perturbed. The best approach to reveal
the species interactions, therefore, is still examining the metabolic activities of each member in the
community and their dynamics during co-culture, which we were not able to extend our project to,
but will be performed in further study.
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The effect  of  plasticity  on  community  stability  was  still  unclear  from our  investigations.
Although linear stability analyses indicate  that plasticity has supported asymptotic  stability,  this
could be invalid if the inferred co-culture equilibria from fitted gLV models were inaccurate, which
actually  were  demonstrated  to  be  highly  probable.  Moreover,  almost  no effect  of  plasticity  on
species persistence was observed, since species were always able to remain in the community upon
perturbation regardless of the presence of plasticity. Despite these limitations, as discussed above,
the results from species persistence experiments support that most of the communities showed no
dependence  between  members  when  there  was  plasticity,  while  a  number  of  them  showed
competitive dependence when there was no plasticity. These suggest that plasticity could possibly
support  community  stability  by  diminishing  species  interactions,  or  dependence.  This  was  also
suggested  by  Coyte  et  al.,  although  their  work  was  based  on  the  use  of  the  gLV model  [9].
Nevertheless, it is important to develop a more comprehensive framework for assessing community
stability with our mechanistic model of plastic metabolism and dynamic metabolic interactions. We
believe there could be plenty of rooms for further research in this  direction.  Our model allows
monitoring many characteristics of each species members, ranging from population density, growth
rate, to metabolic activities. It is also feasible to track the nutrient dynamics of the environment.
Hence,  multiple  facets community  stability  [34,  35],  such  as  community  resistance  [16,  17],
resilience [24], and robustness [36], both in terms of composition and function, are expected to be
feasibly studied.

Overall, our study has shed light onto how adaptive plasticity could affect species coexistence
and metabolic  interactions,  which in  turn  could  play  crucial  roles  in  shaping the diversity  and
stability  of  microbial  communities.  In  order  to  obtain  a  more  thorough understanding  of  these
impacts, in addition to the above suggestions, it is also necessary to extend the investigations to
more species and environments such that a more diverse number of scenarios could be explored.
Also importantly, the impacts should be studied at communities with larger size. This would not
only  enable  the  findings  to  be  more  biologically  relevant,  but  also  help  decipher  the  role  of
higher-order interactions and the predictability of pairwise interactions, which are still controversial
among studies  [10, 37, 38]. Other mechanisms and/or types of interactions that also regulate the
structure and function of microbial  communities are also needed to be taken into consideration.
These could be bacterial  chemical,  mechanical, or biological warfare  [28, 39]; bacterial  motility
[29, 30, 40]; and host biology [41].
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Appendices

Table  S1: List  of  species  whose  genome-scale  metabolic  network  used  in  the  study.  The
reconstructed metabolic networks were collected from AGORA database v.1.3. Bold text indicates
species selected for co-culture experiments.

Species ID Strain name Phylum Class Gram
staining

setA_9 Corynebacterium_ulcerans_809 Actinobacteria Actinobacteria +

setA_18 Microbacterium_oleivorans_NBRC_1030
75

Actinobacteria Actinobacteria +

setA_11 Eggerthella_lenta_DSM_2243 Actinobacteria Coriobacteriia +

setA_3 Alistipes_finegoldii_DSM_17242 Bacteroidetes Bacteroidia -

setA_4 Bacteroides_caccae_ATCC_43185 Bacteroidetes Bacteroidia -

setA_19 Odoribacter_laneus_YIT_12061 Bacteroidetes Bacteroidia -

setA_22 Prevotella_ruminicola_23 Bacteroidetes Bacteroidia -

setA_6 Brevibacillus_brevis_NBRC_100599 Firmicutes Bacilli +

setA_16 Lactobacillus_gastricus_PS3 Firmicutes Bacilli +

setA_8 Clostridium_difficile_NAP07 Firmicutes Clostridia +

setA_14 Faecalibacterium_cf_prausnitzii_KLE125
5

Firmicutes Clostridia +

setA_24 Ruminococcus_lactaris_ATCC_29176 Firmicutes Clostridia +

setA_20 Peptoniphilus_timonensis_JC401 Firmicutes Tissierellia +

setA_17 Methyloversatilis_universalis_Fam50001 Proteobacteria Beta -

setA_15 Helicobacter_pylori_26695 Proteobacteria Epsilon -

setA_13 Escherichia_coli_str_K_12_substr_MG16
55

Proteobacteria Gamma -

setA_21 Pseudomonas_nitroreducens_HBP1 Proteobacteria Gamma -

setA_26 Vibrio_mimicus_MB_451 Proteobacteria Gamma +
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Figure S1 (page 31): Population densities at equilibrium ( ρ , measured by densities the end of
simulations  – see Methods) in batch mono-culture.  Yellow points and violin  plots  illustrate  the
distributions of multiple densities  ρON  ( ρ  when plasticity=ON) resulted from 10 replicates. The
distributions  are  not  represented  by  violin  plots  when standard  deviation  of  ρON ≤0.1. Yellow
horizontal  lines  represent  the  means  of  ρON .  Greyish  blue  lines  represent  ρOFF  ( ρ  when
plasticity=OFF), which have no stochasticity and take single value for  every species-environment
case. Representative cases in Fig. 1A were extracted from here.

Figure S2 (page 32): Population densities at equilibrium ( ρ , measured by densities the end of
simulations – see Methods) in continuous mono-culture. Yellow points and violin plots illustrate the
distributions of multiple densities  ρON  ( ρ  when plasticity=ON) resulted from 10 replicates. The
distributions  are  not  represented  by  violin  plots  when standard  deviation  of  ρON ≤0.1.  Yellow
horizontal  lines  represent  the  means  of  ρON .  Greyish  blue  lines  represent  ρOFF  ( ρ  when
plasticity=OFF), which have no stochasticity and take single value for  every species-environment
case. Representative cases in Fig. 1B were extracted from here.

Figure  S3: Heatmaps  illustrating intrinsic  plasticity  values  ( Pmono )  across  all  studied  species
(n=18)  in  all  tested  media  (n=11)  in  batch  (left)  and  continuous  (right)  culture.  Dendrograms
represent hierarchical clustering of species (vertical) or of media (horizontal) based on the intrinsic
plasticity profiles. Species are annotated for their taxonomy at phylum and class levels by the two
leftmost columns (see Key). By the two uppermost rows, media are, sequentially,  annotated for
their  ranked  Shannon  nutrient  diversity  ( H ,  see  Key)  and  their  associated  principal  clusters
resulted from hierarchical clustering on nutrient concentration profiles (see Key and Fig. 3).
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Figure S4 (page 34): Population densities at equilibrium ( ρ , measured by densities the end of
simulations – see Methods) in batch mono- and co-culture in EU_avg (A) and high_fat (B) media.
Elements in purple are from mono-culture experiments, while elements in green are from co-culture
experiments. Points and violin plots illustrate the distributions of multiple densities ρON  ( ρ  when
plasticity=ON) resulted from 10 replicates.  The distributions are not represented by violin plots
when standard deviation of  ρON ≤0.1. Bold horizontal lines represent the means of  ρON . Dashed
horizontal lines represent  ρOFF  ( ρ  when plasticity=OFF), which have no stochasticity and take
single value for every case.

Figure S5 (page 35): Population densities at equilibrium ( ρ , measured by densities the end of
simulations – see Methods) in continuous mono- and co-culture in  EU_avg (A) and  high_fat (B)
media. Elements in purple are from mono-culture experiments, while elements in green are from
co-culture experiments. Points and violin plots illustrate the distributions of multiple densities ρON
( ρ  when plasticity=ON) resulted from 10 replicates. The distributions are not represented by violin
plots  when standard deviation  of  ρON ≤0.1.  Bold horizontal  lines  represent  the  means of  ρON .
Dashed horizontal lines represent ρOFF  ( ρ  when plasticity=OFF), which have no stochasticity and
take single value for every case.

Figure  S6: The  effect  of  plasticity  on  growth  of  member  species  in  continuous  co-culture
supplemented with EU_avg (left) and high_fat (right) media, measured as  Pco  (see Methods). In

each heatmap, an off-diagonal cell displays the Pco  value of species in the corresponding row when
it was co-cultured with species in the corresponding column. At each heatmap, the left-hand column
corresponds to the intrinsic plasticity ( Pmono ) values of the species.
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Figure S7: Species interactions in continuous co-culture simulations with plasticity=OFF and with
plasticity=ON in EU_avg (A-C) and high_fat (B-D) media. In each heatmap, an off-diagonal cell
displays the value of species in the corresponding row when it was co-cultured with species in the
corresponding column. (A-B) The heatmaps illustrate competitive exclusion measurements only.
Positive values indicate the superior members while negative values indicate the inferior members.
The corresponding absolute  values  are  the  proportions  of  replicates  with competitive  exclusion
events indicated (see Key). (C-D) The heatmaps illustrate species interaction coefficients overlaid
with competitive  exclusion measurements.  Cells  on the leading diagonal  represent  intra-species
interaction  coefficients.  Inter-species  interaction  coefficients  were  inferred  only  if  a  simulation
indicated  to  not  experience  a  competitive  exclusion  event.  The  coefficient  represented  by  an
off-diagonal cell indicates the effect of species in the associated column on species in the associated
row, which can be positive, negative, or neutral (+/-/0). At a community which was indicated with
competitive  exclusion  in  only  a  part  of  its  replicates,  competitive  exclusion  measurements  are
displayed by smaller squares, nested inside cells displaying species interaction coefficients. In each
(A), (B), (C), and (D), the leftmost column corresponds to the intrinsic plasticity ( Pmono ) values of
the species.

Figure S8 (page 37-38): Plots of species density over time in co-culture simulations with pulse
perturbations when plasticity=OFF (left panel) and when plasticity=ON (right panel) in  high_fat
medium. Thin vertical blocks in grey highlight the period that the perturbations occurred (duration
of 1 hour). Yellow lightning bolts indicate species members which the introduced perturbations
targeted  to.  When  plasticity=ON,  multiple  curves  in  different  colours  represent  results  from
different 10 replicates. Experiments with perturbations were not conducted on simulations indicated
to experience competitive exclusion.
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Figure S9 (page 39-40): Plots of species density over time in co-culture simulations with pulse
perturbations when plasticity=OFF (left panel) and when plasticity=ON (right panel) in  high_fat
medium. Thin vertical blocks in grey highlight the period that the perturbations occurred (duration
of 1 hour). Yellow lightning bolts indicate species members which the introduced perturbations
targeted  to.  When  plasticity=ON,  multiple  curves  in  different  colours  represent  results  from
different 10 replicates. Experiments with perturbations were not conducted on simulations indicated
to experience competitive exclusion.

38



39



40


	Abstract
	Abbreviations
	Introduction
	Methods
	Genome‑scale metabolic networks and media
	Dynamic flux balance analysis (dFBA)
	In silico culture
	Effect of plasticity on species growth
	Classification of media and species
	Metabolite consumption‑production profile
	Species coexistence
	Species interaction coefficients and linear stability analysis
	Species persistence
	Data visualization

	Results
	Metabolic plasticity could support species growth
	Environments with fixed resources were unfavourable for plasticity
	Both species and environmental conditions determined intrinsic plasticity
	Adaptive plasticity could strongly affect species coexistence and interactions
	A first look at community stability

	Discussion
	References
	Appendices

