
Deep Reinforcement Learning for Physics-based

Musculoskeletal Model of a Transfemoral

Amputee with a Prosthesis Walking on Uneven

Terrain

Bachelor’s Project Thesis

Sarah de Boer, s3628701, s.de.boer.27@student.rug.nl,

Supervisors: Prof Dr R. Carloni, V. Raveendranathan, Msc

Abstract: This paper focuses on deep reinforcement learning for physics-based musculoskele-
tal model of a transfemoral amputee with a prosthesis walking on uneven terrain. A multilayer
perceptron is used with as learning algorithm proximal policy optimization in combination with
imitation learning. The imitation data, of a healthy subject walking on flat surface, is gath-
ered from an open dataset and preprocessed to fit the model. The physics-based musculoskeletal
model of a transfemoral amputee subject has a prosthesis on the left leg. This prosthesis contains
two actuators, one at the knee joint and one at the ankle joint. The model is simulated using
the opensource simulation software OpenSim. Two versions of the model are used, one with Co-
ordinate actuators (OpenSim4.1) and one with Activation Coordinate actuators (OpenSim4.2).
Using the deep reinforcement learning algorithm, the model is taught how to perform a human-
like gait on an uneven ground. The robustness of the learning algorithm is being tested using the
musculoskeletal model and the muscle activations are observed when walking on uneven terrain
instead of level-ground walking. No gait pattern could be observed, hence, no conclusions could
be made regarding muscle activation when walking on uneven terrain.

1 Introduction

Reinforcement learning is one of the three
paradigms of machine learning, where the agent is
reinforced with rewards in order to learn to perform
a task [26]. A reward function is designed to give
the wanted behavior a high reward and unwanted
behavior a low reward. The RL agent then tries
to maximize its reward using an optimization algo-
rithm. Deep learning is a subclass of machine learn-
ing that uses multi-layered structures, also called
neural networks, to learn from complex data [12].
Reinforcement learning can be combined with deep
learning, called deep reinforcement learning (DRL),
where the learning algorithm of the deep neural net-
work is reinforcement learning.

Deep reinforcement learning (DRL) is becoming
popular in combination with musculoskeletal mod-
els to study human gait [1], [5], [29], [24]. De Vree
and Carloni [5] mention a few reasons for why DRL
can be applied in transfemoral prosthesis research.
First of all, in the NeurIPS 2018 Artificial Intel-

ligence for Prosthetics challenge, participants were
asked to build a controller for a transtibial amputee
model with the goal of moving it forward, and were
encouraged to use DRL. This provides a promis-
ing method for transfemoral amputee models. Sec-
ondly, DRL is specialized to deal with continuous
action spaces. The motions performed by a muscu-
loskeletal model of a transfemoral amputee are in
a continuous action space, since muscles can acti-
vate also partly instead of fully activate or deacti-
vate. Reinforcement learning would be unsuitable
for such a large action space, but DRL can provide
solutions for this. Thirdly, computer simulations in
combination with DRL techniques do not require
the agent to have knowledge about the environ-
ment. The agent tries actions, receives rewards and
penalties and learns to perform the desired task.
Therefore, little experimental data is needed to find
efficient solutions. Lastly, DRL is flexible, hence be-
ing suitable for making and studying adaptations of
a prosthetic device quickly. Different specifications
of the device can be tested to find the optimal com-

1



bination that leads to highest performance.

DRL for lower/upper limb prosthetics
Katyal et al. [11] use a shallow neural network in
combination with reinforcement learning to learn
a policy for in-hand manipulation from raw im-
ages. Vasan et al. [28] use reinforcement learning to
teach a powered prosthetic arm to perform tasks as
an intact arm. This method, called learning-from-
demonstration, requires experimental data for mus-
cle activations. Mudigonda et al. [17] demonstrate
that it is possible to learn robust grasp policies for
anthropomorphic hands by means of DRL. De Vree
and Carloni [5] use DRL to teach a physics based
musculoskeletal model of a transfemoral amputee
how to walk.

DRL for bipedal robots/humanoids Xie et
al. [31] used a realistic model of a bipedal robot to
demonstrate the effectiveness of DRL. They teach
the walking controllers to imitate a reference mo-
tion with DRL. A feedback control problem is for-
mulated as searching for an optimal imitation pol-
icy for a Markov Decision Process. Muzio et al. [18]
use DRL with different optimization algorithms to
teach a humanoid robot to perform the task of ball-
dribbling in the RoboCup 3D Soccer Simulation do-
main.

DRL for other dynamic systems Unmanned
aerial vehicles (UAVs) are taught how to perform
a stable hovering task in a continuous state ac-
tion environment using DRL [14]. Apuroop et al.
[2] trained a convolutional neural network (CNN)
with a long short term memory layer (LSTM) to
simultaneously generate the tiling shapes and the
trajectory with minimum overall cost for a modi-
fied hTrihex, a honeycomb-shaped tiling robot. Su
et al. [25] proposed a DRL algorithm for satellite
attitude control systems.

Different optimization algorithms for DRL
Using DRL, different optimization algorithms can
be utilized. Su et al. [25] based their proposed
DRL algorithm on deep deterministic policy gradi-
ent (DDPG) [13]. DDPG is an actor-critic method
based on the deterministic policy gradient (DPG)
algorithm. Su et al. [25] use the policy network as
actor network, which is used for parameterization

and the value network is used as critic network,
which is used for value function approximation.
Apuroop et al. [2] used the actor-critic experience
replay (ACER) reinforcement learning algorithm to
train the CNN for the hTrihex tiling robot. ACER
is an off-policy approach of A3C, which is an on-
policy actor-critic algorithm [16].

Trust region policy optimization (TRPO) [22] is
used by [14] and [17]. This method is a model-
free, on-policy, actor-critic-based algorithm. Prox-
imal policy optimization (PPO) [23] is based on
TRPO but has a better sample complexity and is
easier to implement. Xie et al. [31] use PPO to teach
the walking controllers of a bipedal robot to imi-
tate a reference motion. De Vree and Carloni [5]
propose another optimization algorithm that com-
bines PPO with imitation learning to teach a mus-
culoskeletal model how to walk. Table 1.1 gives a
summary of state-of-the-art DRL algorithms used
in multiple dynamic optimization tasks.

Different models used in gait analysis using
DRL Song et al. [24] give an overview of deep
reinforcement learning used for modeling human
locomotion control. They mention a hierarchical
approach for modeling human locomotion control,
which is closer to the way animals control loco-
motion. A lower layer generates basic motor pat-
terns, and a higher layer modulates the basic pat-
terns by sending commands to the lower layer [19].
Two control mechanisms make up the lower layer:
reflexes [9] and central pattern generators (CPGs)
[15]. Multiple lower layer control models have been
proposed, either CPG-based, reflex-based or a com-
bination of the two [24].

Terrain adaptation has been achieved by a reflex-
based controller that was combined with a deep
neural network (which operated as a higher layer
controller) [29]. Wang et al. [29] use PPO to train
the deep neural network. This deep neural network
is taught how to modulate the actions the model
needs to take, in order to adapt to changing terrain.
They experimented with different types of terrain
obstacles, such as: step obstacles, slope obstacles,
wavy obstacles and a combination of those three.

In [5] physics based musculoskeletal models were
used, which modeled the human skeleton with a
simplification of the muscular system. Anand et al.
[2019] compared a neuromusculoskeletal model

2



Article Inputs Parameters Outputs
Objective
function

Kind of
validation

Application

Proximal policy optimization (PPO) [23]

[23] [2017]
Model data
coming from
the humanoid

The neural
network’s
weight
vectors

Continuous
action

Minimum of
clipped and
unclipped
objective

Ability to
perform
benchmark
test

RoboSchool
humanoid

[31] [2018]

Joint angles
and velocities
of all joints
and pelvis’
position,
orientation,
velocity and
angular
velocity

The neural
network’s
weight
vectors

Target joint
angles for
active joints

Closeness of
joint angles
and pelvis
position to
the reference

Increase in
reward over
time

Bipedal robot

Proximal policy optimization (PPO) [23] + imitation learning [10]

[5] [2021]

Position and
velocity of
the joints and
model
position

The neural
network’s
weight
vectors

Continuous
action

Maximize
distance
travelled,
minimize loss

Increase in
average
reward over
time

Transfemoral
amputee
simulations

Deep Deterministic Policy Gradient (DDPG) [13]

[25] [2019]

Dynamic and
kinematic
data coming
from the
satellite

The neural
network’s
weight
vectors

Continuous
action

Mean squared
error of the
value network
and the
policy
network

Increase in
average
reward over
time

Satellite
attitude
control
system

Trust Region Policy Optimization (TRPO) [22]

[14] [2019]

Dynamic and
kinematic
data from
multicoper

The neural
network’s
weight
vectors

Continuous
action

Minimize
difference of
the distance
of the
vehicles’
current and
goal positions

Increase in
average
reward over
time

Continuous
Control for
Multicopter
Systems

[17] [2018]

Internal
position and
velocity of the
25 joints of
the hand and
the object
position

The neural
network’s
weight
vectors

Position of
16 actuators

Penalize the
distance from
the palm of
the hand to
the object

Ability to
grasp
objects

Anthropo-
morphic
hand

Actor-Critic with Experience Relay (ACER) [30]

[2] [2021]

Map of
uncleaned
and cleaned
tiles

The neural
network’s
weight
vectors

Maps
generated to
clean the
tiles

Root mean
square error
is utilized

Increase in
average
reward over
time

Area
Coverage
Path
Planning for
hTrihex
Robot

Table 1.1: State-of-the-art of deep reinforcement learning algorithms for dynamic optimization.

3



Article Training algorithm
Degrees of
Freedom

Application task

Musculoskeletal model

[5] [2021]
DRL, PPO + imiation
learning

Healthy subject: 10
DoF, Transfemural
amputee: 12 DoF

Level-ground walking

Torque-based model

[1] [2019]
DRL, PPO + imiation
learning

14 DoF Level-ground walking

Hierarchical neuromuscular model

[29] [2019]
Particle Swarm
Optimization and DRL
with PPO

8 DoF Terrain adaptive walking

Table 1.2: Different models used in gait analysis using DRL.

with a torque based model and found that the neu-
romusculoskeletal model performed better when
compared to human data. Different models have
been used in gait research using DRL. Table 1.2
gives an overview of the papers using these differ-
ent models.

This paper focuses using DRL for a transfemoral
amputee model. The algorithm proposed by [5] is
used and adapted to use for a transfemoral am-
putee model with prosthesis. Furthermore, it is in-
vestigated what happens to the muscle acitvation
when walking on an uneven ground. The model
of a transfemoral amputee subject is developed by
Raveendranathan [20]. The prosthesis is osseointe-
grated into the femur of the left leg [21]. The pros-
thesis contains two actuators, one at the knee joint
and one at the ankle joint. Two different versions
of the model are used in this paper (due to different
versions of OpenSim), one with Coordinate actua-
tors (Opensim4.1) and one with Activation Coor-
dinate actuators (Opensim4.2).

The interaction between the feet and the uneven
terrain object is modeled using the elastic founda-
tion force algorithm in OpenSim [8]. The contact
material parameters used in the research of De-
Mers et al. [7] are used in the current research as
well. The algorithm proposed by [5] is adapted to
fit the goals of this study and new imitation data
is processed and used in the DRL framework. An
open data set from [3] is used, this dataset con-
tains data from healthy subjects doing multiple ac-
tivities, such as treadmill walking, walking up the
stairs and walking up a ramp. For the current re-
search level ground walking data is used. The re-

sults are validated on this dataset.
The main contributions of this study are:

• To use the new musculoskeletal model of a
transfemoral amputee with a prosthesis in gait
cycle research using Opensim.

• To test the robustness of the PPO + imita-
tion learning algorithm using the new muscu-
loskeletal model.

• To validate the DRL algorithm on imitation
data coming from an open dataset of healthy
subjects during level-ground walking.

• To analyze and evaluate muscle and actuator
activations during walking on uneven terrain.

The remaining sections are organized as follows:
Section 2 describes the materials used in this study,
the imitation data preparation, modeling of the
uneven terrain and the adaptation of the muscu-
loskeletal model are explained. In Section 3 the
DRL framework is explained, as well as the design
of the reward function. The results are described
and discussed in Section 4. Lastly, a conclusion is
given in Section 5.

2 Materials

2.1 The amputee model with pros-
thesis

The physics-based osseointegrated transfemoral
amputee model is developed by Raveendranathan

4



[20], in OpenSim. The model has 15 muscles in to-
tal and 2 actuators, with 14 degrees of freedom: 3
between the pelvis and the ground (2 translational
and 1 rotational), 3 for each hip joint (2 transla-
tional and 1 rotational), 1 for lumbar extension,
1 for each knee joint and 1 for each ankle joint.
The prosthesis, containing the two actuators, is os-
seointegrated into the femur of the left leg. In this
research two different versions of the model were
used. First, a model was used with Coordinate ac-
tuators (OpenSim4.1), which were implemented as
the motors for the prosthetic joint. A Coordinate
actuator is an ideal actuator (with instantaneous
dynamics). A second version contains Activation
Coordinate actuators (OpenSim4.2). These actua-
tors had an advantage of including first order acti-
vation dynamics.

Figure 2.1: The tranfemoral amputee model
with the muscle names. The yellow lines mean
that the muscle is an uniarticular muscle, the
blue lines mean that the muscle is a biarticular
muscle, the green lines are for adduction and
abduction of the hip and the purple lines are
for the actuators.

The following of this subsection describes the two
versions of the model.

2.1.1 Amputee model in Opensim4.1

In Figure 2.1 the different muscles and actuators
the model contains can be seen. The yellow lines
mean that the muscle is an uniarticular muscle,
the blue lines mean that the muscle is a biartic-
ular muscle, the green lines are for adduction and
abduction of the hip and the purple lines are for

the actuators. In Table 2.1 the muscles and their
function can be found. Table 2.2 presents the range
of motion for the joints and actuators in the model.

Muscle
name

Function Left Right

Gluteus
maximus

Hip extension Yes Yes

Hip abductor Hip abduction Yes Yes

Iliopsoas Hip flexion Yes Yes

Hip adductor Hip adduction Yes Yes

Rectus femur
Hip flexion, knee
extension

No Yes

Hamstring
Knee flexion, hip
extension

No Yes

Vasti Knee extension No Yes

Biceps
femoris

Knee flexion No Yes

Soleus
Ankle extension
(plantarflexion)

No Yes

Gastrocnemius
Knee flexion,
ankle extension

No Yes

Tibialis
anterior

Ankle flexion
(dorsiflexion)

No Yes

Table 2.1: The 15 muscles present in the trans-
femoral amputee model with prosthesis and
their function.

Joint Range of motion

Pelvis tilt [-90, 90]

Pelvis list [-90, 90]

Pelvis rotation [-90,90]

Hip flexion (r+l) [-120,120]

Hip adduction (r+l) [-45, 45]

Hip rotation (r+l) Locked to 0

Knee angle (r+l) [-120, 10]

Ankle angle (r+l) [-60, 30]

Lumbar extension Locked to -5

Table 2.2: The range of motion for the joints in
the transfemoral amputee model.

The simulated biological muscles that the trans-
femoral amputee model contains are based on a
first-order dynamic Hill-type muscle model between
excitation and activation [27]. The Hill-type mus-
cle model includes a contractile element (CE), a
parallel elastic element (PE) and a series elastic el-
ement (SE), as can be seen in Figure 2.2. The gen-
erated muscle force is a function of three factors:

5



the fiber-length, the fiber-length-velocity, and the
muscle activation level, which can range between
0% and 100%. The muscle activations generate a
movement as a function of muscle properties, such
as, the maximum isometric force, the muscle fiber
length LM , the tendon slack length LT , the maxi-
mum contraction velocity, and the pennation angle
αM .

LM cos αM

CE

PE

LT

LMT

αM
SE

Figure 2.2: Hill-type muscle model that de-
scribes the musculo-tendon contraction mechan-
ics in the transfemoral amputee models. It in-
cludes a contractile element (CE), and two elas-
tic elements (one parallel and one series). The
elements generate a force on the tendon [27].
Figure from [5].

The DRL algorithm outputs a vector of muscle
and actuator excitations, based on the observation
vector coming from the model. OpenSim calculates
the muscle activations from the excitations by us-
ing first-order dynamics equations of the Hill-type
muscle model. During each time-step of 5 ms, the
simulation:

1. Computes the activations of the muscles based
on the provided excitation vector;

2. Actuates the muscles;

3. Computes the torques based on the activa-
tions;

4. Computes the ground reaction forces;

5. Computes the positions and the velocities of
the joints and the bodies’ segments;

6. Generates a new state based on the forces, ve-
locities, and positions of the joints.

The Opensim4.1 version of the transfemoral
amputee model contains Coordinate actuators.
Namely, actuators that apply a generalized force

in the direction of a generalized coordinate. This
version of the model was used to test walking on
the uneven terrain object.

2.1.2 Amputee model in Opensim4.2

The Opensim4.2 version of the transfemoral am-
putee model contains the same 15 muscles as the
Opensim4.1 model (see Figure2.1). They are mod-
eled using the Hill-type muscle model. The actua-
tors, however, are different from the ones used in
the Opensim4.1 version. Instead of Coordinate ac-
tuators, Activation Coordinate actuators are used.
The Activation Coordinate actuator generates a
force with first-order linear activation dynamics.
This actuator has one state variable, activation,
with ȧ = (u − a)/τ , where a is activation, u is ex-
citation, and τ is the activation time constant (set
to 0.02). The default activation is set to 0.01. This
version of the model was taught how to walk on flat
surface.

2.2 Data preparation

The imitation data used in the learning algorithm
has been retrieved from an open dataset [3]. The
dataset contains data from 22 able-bodied adults,
age 21 ± 3.4 yr, height 1.70 ± 0.07 m, mass 68.3
± 10.83 kg. The subjects were instrumented uni-
laterally on their right side with 11 EMG (Biomet-
rics. Ltd. Newport, UK), 3 goniometers (Biomet-
rics. Ltd. Newport, UK), 4 six-axis inertial mea-
surement units (Yost, Ohio, USA), and bilaterally
with 32 motion capture markers following the He-
len Hayes Hospital marker set (Vicon. Ltd., Ox-
ford, UK). Ground reaction forces were recorded
using force plates (Bertec, Ohio, USA). From this
dataset one subject was chosen, AB06, height 1.80
m mass 74.8 kg.

The dataset contains motion capture marker
data, which was used to scale the amputee model to
fit to the data. The dimensions of each segment in
the model are scaled so that the distances between
the virtual markers (on the model) match the dis-
tances between the experimental markers (from the
data). The scaling was performed using the Scale
tool in the OpenSim software [6]. The motion cap-
ture markers, the pink balls in Figure 2.3, were fixed
to the joints they belong to, by specifying the loca-
tion and the body to which the marker is attached

6



(i.e., which body its location is measured with re-
spect to). Two consecutive timestamps from the
data, while the subject was standing idle, were used
to scale the model to fit the data.

Figure 2.3: The physics-based osseointegrated
transfemoral amputee model developed by
Raveendranathan [20]. The red lines are the
muscles, the pink balls the markers and the blue
spheres on the feet are the contact meshes.

Next, a transformation of the data was needed to
fit the orientation of the model. Using the marker
data in the dataset and the experimental data pre-
view tool in Opensim, the data could be rotated
around the Y-axis with 270 degrees. This way the
axis matched between the model’s orientation and
the orientation of the subject in the dataset. Af-
ter the rotation of the data, the joint angles were
retrieved using the inverse kinematic tool in Open-
sim. The inputs are the scaled osim model file, ex-
perimental marker trajectories for a trial obtained
from a motion capture system (obtained from the
dataset), and a setup file containing the weights
for the markers. The output is a motion file with
the joint angles. It was ensured that the maximum
marker error was below 2-4 cm and the RMS under
2 cm. Once the joint angles were gathered, the re-
sulting motion file was converted to a comma sep-
arated values (CSV) file. Next, the velocities and
accelerations were calculated, using the joint angles
and added to the CSV file.

2.3 Terrain object

The amputee model with Coordinate actuators
(Opensim4.1) is taught how to walk on uneven
ground. Using a modeling software this terrain ob-
ject was created. In Figure 2.4 the terrain object
can be seen with its dimensions. The height of the
‘peaks’ is 0.6 cm. The width of the object is 6 me-
ters, the length is 8 meters and the height is 0.321
meters. The dimensions of the object are chosen to
correspond to the circuit performed by the subject
in the imitation data. It was chosen to let the agent
start at the flat surface and first let it learn to take
a step on that terrain before walking on the uneven
part.

Figure 2.4: The uneven terrain object with
’peaks’ of 0.6 cm and dimensions chosen to fit
the circuit the subject in the imitation data is
walking.

The terrain object is then added to the Open-
sim4.1 model. Before adding the terrain object, the
interaction between the ground and the feet of the
model was modeled using the Hunt Crossley force.
Instead of the Hunt Crossley force, another Open-
Sim modeling algorithm is used to model the inter-
action between the feet and the new terrain object,
namely the Elastic Foundation Force [8]. In order to
use this, the spheres on the feet were swapped for
contact meshes. The contact material parameters
that were used can be seen in Table 2.3. These pa-
rameters were selected by DeMers et al. [7] to rep-
resent rubber contacting rubber, with a shoe sole
thickness of 2 cm.

7



Stiffness 50 MPa/m
Friction coefficient 0.9

Dissipation 5 s/m

Table 2.3: Contact material parameters used for
modeling the interaction between the uneven
terrain object and the contact spheres on the
feet of the transfemoral amputee model. These
parameters were selected by DeMers et al. [7]
to represent rubber contacting rubber, with a
shoe sole thickness of 2 cm.

3 Methods

3.1 Deep neural network

The deep neural network used is a multi layer per-
ceptron (MLP), which is a feedforward neural net-
work that uses backpropagation to learn. The MLP
consists of 4 layers, one input layer, one output
layer and 2 hidden layers. The input to the net-
work is the state of the model, which consists of 88
different values, described in Table 3.1. The hidden
layers each consist of 312 neurons. The output is an
action, muscle activation of the 15 muscles and the
2 actuators. The muscle activations are clipped to
the range [0, 1] and the actuator activations are
clipped to the range [-1,1]. In the policy of the
multilayer perceptron, a multicategorical probabil-
ity distribution is used, which results in a discrete
action space. It was chosen to go with this proba-
bility distribution, because it was a main approach
in existing frameworks (also the one used in [5]).
Furthermore, reinforcement learning itself is quite
challenging and tends to produce good results ear-
lier with discrete action spaces. Using the multicat-
egorical probability distribution means that in the
activation vector only 0’s or 1’s are present. The
actuators need a value in the range [-1,1]. It was
chosen to increase the output vector with 2 values
(resulting in 19 values). The last four values are now
related to the two actuators. The negative value of
the 16th element in the activation vector was added
to the 17th element and given to the knee actuator.
The negative value of the 18th element in the ac-
tivation vector was added to the 19th element and
given to the ankle actuator. This way, the first of
the two elements in the output vector (at places 16
and 18), belonging to an actuator is responsible for
the negative rotation of the actuator and the sec-

ond element is responsible for the positive rotation
of the actuator. This results in either -1’s, 0’s or 1’s
for the actuator activations.

For each neuron vi in the neural network, the
output y is calculated using a general output func-
tion, y(vi) = tanh(b +

∑n
i=1 xiwi), where n is the

number of i = 1 inputs from the previous layer, x
the input to the neuron, w the weight between the
current and the previous neuron, b the bias, and
tanh the activation function.

Pelvis height, pitch, roll + velocities 3+6
Ground reaction forces (left + right) 3+3
Joint positions (left + right) 4+4
Joint velocities (left + right) 4+4
Muscle forces, lengths and velocities 15+15+15
Actuators force, speed, control,
actuation, power and stress

6+6

Total size of observation vector 88

Table 3.1: The variables in the observation vec-
tor of the model.

The goal of the framework is to optimize the
weights such that the gait of the model is close to
the human gait. In Figure 3.1 an overview of the
framework can be seen.

Figure 3.1: Overview of the DRL framework.
The agent’s state and received reward are fed
into the deep neural network and a new pol-
icy with an action is outputted and given back
to the agent. The reward term consists of two
parts, the objective function and the imitation
learning.

8



3.2 Learning algorithm

In order for the deep neural network to learn, a
learning algorithm is needed. In the current re-
search reinforcement learning (RL) is used. The
RL agent is given rewards after an action has been
taken. The task is then to maximize the reward and
therefore learn the wanted behaviour (a human-like
gait pattern). The optimization strategy used in
this paper is proximal policy optimization (PPO)
with the addition of imitation learning [5]. PPO
has been proposed by Schulman et al. [2017] and
has some of the benefits of trust region policy opti-
mization (TRPO) [22], but is said to be simpler to
implement, and have a better sample complexity.
PPO has the following main objective:

LCLIP (θ) =

Êt
[
min(rt(θ)Ât, clip(rt(θ), 1 − ε, 1 + ε)Ât)

]
(3.1)

where E is the expected value, Ât is the advantage
estimation, i.e., the difference between the expected
and the real reward from an action, and ε is the
clip value, set to 0.2. rt(θ) denotes the probabil-

ity ratio: rt(θ) = πθ(at|st)
πθold(at|st) , where θ and θold are

the new and old parameters. πθ is the policy corre-
sponding to the parameters θ, and at and st are the
action and state vectors at timestep t respectively.
The objective function of PPO differs from TRPO
in such a way that it clips the probability ratio to
stay within a certain region, ensuring that the pol-
icy updates are not too large. Using the objective
function of PPO the weights of the deep neural net-
work are updated to ensure that actions with a low
reward have a low probability of being chosen again
and actions with a high reward have a high prob-
ability of being chosen again. The clipping in the
objective function ensures that the updates are not
too large.

Table 3.2 summarizes the hyperparameters and
specifications used in the PPO learning algorithm,
these values are taken from [5]. The only hyper-
parameter used to experiment with in this paper
was the hidden layer size, but after some trials it
was chosen to stick to 312 neurons, because de-
creasing the hidden layer size did not result in a
better learning curve. δ controls the size of the al-
lowed policy updates (i.e., the Kullback-Leiber di-
vergence should be smaller than δ) and γ is the

discount factor (0 ≤ γ ≤ 1), i.e., a meta-parameter
that determines to what extent the agent considers
future rewards.

Parameter Value Parameter Value

Parameter
noise

Yes
PPO clip
parameter (ε)

0.2

PPO batch size 512
PPO optimiz.
per epoch

4

PPO entropy
coefficient

0.01 PPO δ 0.9

PPO γ 0.999
Number
hidden layers

2

Entropy coeff. 0.01
Hidden layer
size

312

Policy
network(s)

1
Activation
function

tanh

Table 3.2: Summary of the hyperparameters and
specifications used in the proximal policy opti-
mization algorithm, adapted to fit the current
research from [5].

3.3 Reward function

The reward received by the model after taking a
certain action consists of two parts, the goal reward
and the imitation reward (as can also be seen in
Figure 3.1). The first part, Equation 3.2, is designed
to let the agent walk for multiple steps and to keep
the agent ’alive’ (meaning to stay with the pelvis
above a certain height).

Rewardgoal,t =∑
t

Rewarddistance +
∑
t

Rewardalive
(3.2)

The second part of the reward is the imitation re-
ward, Equation 3.3. This reward has two different
aspects, the first one is the position reward, how
close are the joint angular positions to the imita-
tion data. The second part are the velocities, how
close are the joint angular velocities to the imita-
tion data.

Rewardimitation,t =
∑
t

Rewardposition,t+∑
t

Rewardvelocity,t

(3.3)

9



The position and velocity losses are calcu-
lated using the following loss function: L =
(xobservation − xdata)2, where x can be position or
velocity of the ankle, knee or hip joints. The reward
term is then determined using: R = e−α·L, where α
is a weight constant and L is the loss. The total re-
ward is then calculated by combining the imitation
reward and the goal reward:

Rewardt = 0.6 ·Rewardimitation,t+
0.4 ·Rewardgoal,t

(3.4)

The 60% and 40% terms have been chosen regard-
ing the research done by De Vree and Carloni [5]. In
their work they investigated the use of these scaling
terms and found that this distribution showed the
best results. It was not further investigated in the
current research.

4 Results & Discussion

In this section the results of the simulation will be
presented. First, the DRL algorithm’s performance
will be discussed. Next, the limitations and some
possibilities for future work will be discussed.

4.1 Algorithm’s performance

No gait pattern has been observed with both mod-
els. The average reward per episode for both ver-
sions of the model are plotted in Figure 4.1 (red
line for the version with Coordinate actuators and
green line for the version with Activation Coordi-
nate actuators). It can be seen that there is not a
real increase in reward over time for both models,
suggesting little to no learning. In Table 4.1 the
mean total reward and standard deviation of the
simulations with both models are presented.

Model Mean
Standard
deviation

Coordinate actuators 55 9,6587

Activation
Coordinate actuators

56,6 9,6293

Table 4.1: Mean total reward and the corre-
sponding standard deviation of both models,
one with Coordinator actuators and one with
Activation Coordinator actuators.

Figure 4.1: Mean rewards for the final runs
of the Coordinate actuator model (red line)
and the Activation Coordinate actuator model
(green line).

4.2 Limitations and Future Outlook

The algorithm was not able to generate a gait pat-
tern for both models. There could be different rea-
sons for this, which will be discussed in this section.
Future research is needed to investigate the differ-
ent modifications that could be done in order to
possibly generate a gait pattern.

Multicategorical probability distribution
Firstly, in the proposed algorithm by De Vree
and Carloni [5] a multicategorical probability
distribution is used. This choice makes the action
space discrete, which decreases the size of the
action space. The multicategorical probability
distribution generates either 1’s or 0’s and gives
these to the action vector. The action vector, an
activation value for each muscle and actuator,
is then given to the model and an action is
performed. The muscles have no difficulty with
the binary input, since the opensim software
ensures that the discrete values are transformed
into continuous values. Next to that, as described
in Section 2, the muscles are modeled using the
Hill-type muscle model. This ensures that there
is a delay between the excitation being given to
the muscle and an activation coming out, which is
not an on-off function. However, the Coordinate
actuators in the transfemoral amputee model

10



(Opensim4.1) do not have this delay function and
are rather modeled as a step function, meaning
that an input of either 0 or 1 results directly in
full activation or de-activation. The version with
Activation Coordinate actuators (Opensim4.2)
resolved this problem as there is an activation
function involved (as described in Section 2). With
the Coordinate actuator version it was investigated
what happened if the multicategorical probability
distribution was swapped for a Gaussian probabil-
ity distribution, because values in any range can
be produced by this distribution. This approach
resulted in exploding gradients, which was likely
caused by the enormous action space. PPO was
found to not work well with large continuous
action spaces, as the gradients become unstable
[4]. One approach for future research could be to
change the PPO algorithm to an algorithm which
is more stable using large continuous action spaces
in combination with the new version containing
the Activation Coordinate actuators.

Actuator activations Secondly, while the mus-
cles need an excitation value in the range of [0,1],
the actuators need an excitation in the range [-1,1].
As described in the previous paragraph, a multi-
categorical probability distribution was used. This
distribution generates either 0’s or 1’s and not -1. It
was chosen to increase the size of the action vector
by 2 values. Then, after the distribution generated
19 values, all either 0 or 1, the negative value of the
16th element was added to the 17th element and the
negative value of the 18th element was added to the
19th element as well. This way the two values for
the actuators could either be -1, 0 or 1. This could
be another limitation of the study, as the DRL al-
gortihm now learns 19 values instead of 17. And
it might not understand that the last 4 values are
for the actuators. Switching to the Gaussian prob-
ability distribution fixes this limitation as now only
17 values are needed, but the same problem of the
exploding gradients arises. More research is needed
in this area to identify a suitable algorithm.

Maximum muscle forces Lastly, since the left
leg of the transfemoral amputee model contains
less muscles and instead 2 actuators, it might be
the case that the maximum muscle force needs to
be increased. In this study the maximum muscle

fiber forces of all muscles have been increased by
50% compared to the original model by Raveen-
dranathan [20]. Next to that the maximum isomet-
ric force of the 2 actuators was also slightly in-
creased. Due to time limitations, it was not further
investigated if and which increase had the most ef-
fect. This could be investigated further in future
research.

5 Conclusion

By using a physics-based osseointegrated transfe-
mural amputee model one step further in the trans-
femural prosthetics research has been achieved. Un-
fortunately, no gait pattern has been observed.
Nonetheless, great steps towards a walking model
have been conducted. Data has been processed
and made useable for DRL research with imitation
data. The Elastic Foundation Force has been im-
plemented in a model to model the interaction be-
tween the feet and the uneven terrain object. A new
version of the model with Activation Coordinate
actuators (Opensim4.2) has been used and has a
promising theory, but should be investigated more.
No conclusions can be made about what caused
the inability of the models to walk, but suggestions
have been made for future research.

Due to the inability of the models to perform an
emerging gait, no conclusions can be made regard-
ing the robustness of the algorithm proposed by
[5]. It might be the case that modifications need to
be made to the algorithm regarding the probabil-
ity distribution, but there are no certainties relat-
ing this. Furthermore, no conclusions can be made
regarding the muscle activations when walking on
uneven terrain.

6 Acknowledgements

The author would like to thank her supervisors,
Raffaella Carloni (Professor, University of Gronin-
gen) and Vishal Raveendranathan (Doctoral candi-
date, University of Groningen) for the supervision
and help during the project. Next, the author would
like to thank Aurelien J.C. Adriaenssens (BSc stu-
dent, University of Groningen) for the discussions
and help with the Elastic Foundation algorithm and
the code and her fellow Bsc students (University

11



of Groningen), Milan van Wouden, Shikha Surana,
Ruxandra Petrescu and Robin Kock for the dis-
cussions on the models and algorithms during the
project. This work was funded by the European
Commission’s Horizon 2020 Programme as part of
project MyLeg under grant no. 780871.

References

[1] A. S. Anand, G. Zhao, H. Roth, and A. Sey-
farth. A deep reinforcement learning based
approach towards generating human walking
behavior with a neuromuscular model. IEEE-
RAS International Conference on Humanoid
Robots, pages 537–543, 2019.

[2] K. G. S. Apuroop, A. V. Le, M. R. Elara, and
B. J. Sheu. Reinforcement learning-based com-
plete area coverage path planning for modified
htrihex robot. Sensors, 21:1067–1087, 2021.

[3] J. Camargo, A. Ramanathan, W. Flanagan,
and A. Young. A comprehensive, open-source
dataset of lower limb biomechanics in multiple
conditions of stairs, ramps, and level-ground
ambulation and transitions. Journal of Biome-
chanics, 119:110320, 2021.

[4] C. Ching-Yun Hsu, C. Mendler-Dünner, and
M. Hardt. Revisiting design choices in prox-
imal policy optimization. pre-print, 2009.
arXiv:2009.10897.

[5] L. De Vree and R. Carloni. Deep reinforce-
ment learning for physics-based musculoskele-
tal simulations of healthy subjects and trans-
femoral prostheses’ users during normal walk-
ing. IEEE Transactions on Neural Systems
and Rehabilitation Engineering, 29:607–618,
2021.

[6] S. Delp, F. Anderson, A. Arnold, P. Loan,
A. Habib, C. John, E. Guendelman, and
D. Thelan. Opensim: Open-source software
to create and analyze dynamic simulations of
movement. IEEE Transactions on Biomedial
Engineering, 55:1940–50, 2007.

[7] M. S. DeMers, J. L. Hicks, and S. L. Delp.
Preparatory co-activation of the ankle muscles
may prevent ankle inversion injuries. Journal
of Biomechanics, 52:17–23, 2017.

[8] M. W. Hast, B. G. Hansona, and J. R. Baxter.
Simulating contact using the elastic founda-
tion algorithm in opensim. Journal of Biome-
chanics, 82:392–396, 2019.

[9] H. Hultborn. Spinal reflexes, mechanisms and
concepts: From eccles to lundberg and beyond.
Progress in Neurobiology, 78:215–232, 2006.

[10] A. Hussein, M. Gaber, E. Elyan, and C. Jayne.
Imitation learning: A survey of learning meth-
ods. ACM Computing Surveys, 50, 2017.

[11] K. Katyal, E. Staley, M. Johannes, W. I. A.
Reiter, and P. Burline. In-hand robotic ma-
nipulation via deep reinforcement learning. In
Conference on Neural Information Processing
Systems, volume 1, pages 1–5, 2016.

[12] J. D. Kelleher. Deep Learning. MIT Press,
2019.

[13] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess,
T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement
learning. pre-print, 2015. arXiv:1509.02971.

[14] A. Manukyan, M. A. Olivares-Mendez,
M. Geist, and H. Voos. Deep reinforce-
ment learning-based continuous control for
multicopter systems. In 2019 6th Interna-
tional Conference on Control, Decision and
Information Technologies (CoDIT), pages
1876–1881, 2019.

[15] K. Minassian, U. S. Hofstoetter, F. Dzeladini,
P. A. Guertin, and A. Ijspeert. The human
central pattern generator for locomotion: Does
it exist and contribute to walking? The Neu-
roscientist, 23:649–663, 2017.

[16] V. Mnih, A. P. Badia, M. Mirza, A. Graves,
T. Harley, T. P. Lillicrap, D. Silver, and
K. Kavukcuoglu. Asynchronous methods for
deep reinforcement learning. 2016.

[17] M. Mudigonda, P. Agrawal, M. Deweese, and
J. Malik. Investigating deep reinforcement
learning for grasping objects with an anthro-
pomorphic hand. In International Conference
on Learning Representations, pages 1–5, 2018.

12



[18] A. F. V. Muzio, M. R. O. A. Maximo, and
T. Yoneyama. Deep reinforcement learning for
humanoid robot dribbling. 2020 Latin Ameri-
can Robotics Symposium (LARS), 2020 Brazil-
ian Symposium on Robotics (SBR) and 2020
Workshop on Robotics in Education (WRE),
pages 1–6, 2020.

[19] G. Orlovsky, T. G. Deliagina, and S. Grillner.
Neuronal Control of Locomotion: From Mol-
lusc to Man. Oxford University Press, 1999.

[20] V. Raveendranathan. Simplified transfemoral
amputee model for deep reinforcement learn-
ing. Internal research, in progress.

[21] V. Raveendranathan and r. Carloni. Muscu-
loskeletal model of an osseointegrated trans-
femoral amputee in opensim. In 8th
IEEE RAS/EMBS International Conference
for Biomedical Robotics and Biomechatronics
(BioRob).

[22] J. Schulman, S. Levine, P. Moritz, M. I. Jor-
dan, and P. Abbeel. Trust region policy opti-
mization. pre-print, 2015. arXiv:1502.05477.

[23] J. Schulman, F. Wolski, P. Dhariwal, A. Rad-
ford, and O. Klimov. Proximal policy opti-
mization. pre-print, 2017. arXiv:1707.06347.

[24] S. Song, L. Kidzinski, X. Bin Peng, C. Ong,
J. Hicks, S. Levine, C. G. Atkeson, and S. L.
Delp. Deep reinforcement learning for mod-
eling human locomotion control in neurome-
chanical simulation. Preprint available at
bioRxiv, 2020.

[25] R. Su, F. Wu, and J. Zhao. Deep reinforcement
learning method based on ddpg with simulated
annealing for satellite attitude control system.
In 2019 Chinese Automation Congress (CAC),
pages 390–395, 2019.

[26] R. S. Sutton and A. G. Barto. Reinforcement
Learning: An Introduction. MIT Press, 1998.

[27] D. Thelen. Adjustment of muscle mechanics
model parameters to simulate dynamic con-
tractions in older adults. Journal of Biomedi-
cal Engineering, 125:70–77, 2003.

[28] G. Vasan and P. Pilarski. Learning from
demonstratio: Teaching a myoelectric prosthe-
sis with an intact limb via reinforcement learn-
ing. In IEEE International Conference on Re-
habilitation Robotics, pages 1457–1464, 2017.

[29] J. Wang, W. Qin, and L. Sun. Terrain adaptive
walking of biped neuromuscular virtual human
using deep reinforcement learning. IEEE Ac-
cess, 7:92465–92475, 2019.

[30] Z. Wang, V. Bapst, N. Heess, V. Mnih,
R. Munos, K. Kavukcuoglu, and N. de Fre-
itas. Sample efficient actor-critic with experi-
ence replay. pre-print, 2017. arXiv:1611.01224.

[31] Z. Xie, G. Berseth, P. Clary, J. Hurst, and
M. van de Panne. Feedback control for cassie
with deep reinforcement learning. IEEE/RSJ
International Conference on Intelligent Robots
and Systems (IROS), pages 1241–1246, 2018.

13


